Cantor’s Grundlagen and the Paradoxes of
Set Theory

W. W. Tait*

Foundations of a General Theory of Manifolds [Cantor, 1883], which I
will refer to as the Grundlagen, is Cantor’s first work on the general theory
of sets. It was a separate printing, with a preface and some footnotes added,
of the fifth in a series of six papers under the title of “On infinite linear
point manifolds”. I want to briefly describe some of the achievements of this
great work. But at the same time, I want to discuss its connection with
the so-called paradoxes in set theory. There seems to be some agreement
now that Cantor’s own understanding of the theory of transfinite numbers in
that monograph did not contain an implicit contradiction; but there is less
agreement about exactly why this is so and about the content of the theory
itself. For various reasons, both historical and internal, the Grundlagen seems
not to have been widely read compared to later works of Cantor, and to
have been even less well understood. But even some of the more recent
discussions of the work, while recognizing to some degree its unique character,
misunderstand it on crucial points and fail to convey its true worth.

*This paper was written in honor of Charles Parsons, from whom I have profited for
many years in my study of the philosophy of mathematics and expect to continue profiting
for many more years to come. In particular, listening to his lecture on “Sets and classes”,
published in [Parsons, 1974], motivated my first attempts to understand proper classes
and the realm of transfinite numbers. I read a version of the paper at the APA Central
Division meeting in Chicago in May, 1998. I thank Howard Stein, who provided valuable
criticisms of an earlier draft, ranging from the correction of spelling mistakes, through
important historical remarks, to the correction of a mathematical mistake, and Patricia
Blanchette, who commented on the paper at the APA meeting and raised two challenging
points which have led to improvements in this final version.



1 Cantor’s Pre- Grundlagen Achievements in
Set Theory

Cantor’s earlier work in set theory contained

1. A proof that the set of real numbers is not denumerable, i.e. is not in
one-to-one correspondance with or, as we shall say, is not equipollent to the
set of natural numbers. [1874]

2. A definition of what it means for two sets M and N to have the same
power or cardinal number; namely that they be equipollent.[1878]

3. A proof that the set of real numbers and the set of points in n-
dimensional Euclidean space have the same power. [1878]

So, on the basis of this earlier work, one could conclude that there are
at least two infinite cardinal numbers, that of the set of natural numbers
and that of the set of real numbers, but could not prove that there are more
than two infinite powers. (It was in [1878] that Cantor stated his Continuum
Hypothesis, from which followed that in mathematics prior to 1883 there
were precisely two infinite powers.)

Cantor’s clarification of the notion of set prior to 1883 should also be
mentioned, especially in connection with his definition of cardinal number.
Bolzano, in his Paradoxes of the Infinite [1851], seems to have already clearly
distinguished a set simpliciter from the set armed with some structure: in §4
he writes “An aggregate so conceived that it is indifferent to the arrangement
of its members I call a set”. But when he came to discuss cardinal numbers he
seems to have forgotten his definition of set and failed to distinguish between,
say, the cardinal number of the set of points on the line and the magnitude
of the line as a geometric object. For this reason, he was prevented from
resolving one of the traditional paradoxes of the infinite; namely that, e.g.,
the interval (0, 1) of real numbers is equipollent to the ‘larger’ interval (0, 2).
Of course, even without the confusion of the set with the geometric object,
there is still a conflict with Euclid’s Common Notion 5, that the whole is
greater than the part. But this principle does indeed apply to geometric
magnitude, and it is likely that, without the confusion, it would have sooner
been accepted that infinite sets are simply a counterexample to it.

In fact, Bolzano’s understanding of the notion of set was in general less
than perfect. For example, the word I translated as “members” in the above
quote is actually the word “Teile” for parts, which he generally used to refer
to the elements of a set. Throughout his discussion there are signs that he



hadn’t sufficiently distinguished the element/set relation from the part/whole
relation. For example, the last sentence in §3 asserts that it would be absurd
to speak of an aggregate with just one element, and the null set is not even
contemplated. But in spite of this lack of clarity, it is to him that we owe
the identification of sets as the carriers of the property finite or wnfinite
in mathematics (§11). In particular, his analysis of the ‘infinity’ of variable
quantities in §12 and the observation that this kind of infinity presupposes the
infinity of the set of possible values of the corresponding variable preceded (as
Cantor acknowledges in §7) Cantor’s own discussion in §1 of the Grundlagen,
where he refers to what he calls the ‘variable finite’ as the ‘improper infinite’.!

Cantor himself, in using the notation M for the cardinal number of the
set M, where the second bar indicates abstraction from the order of the
elements of M, betrays some confusion between the abstract set M and M
armed with some structure. Moreover, both Cantor and Dedekind avoided
the null set. (After all, no whole has zero parts.) It is food for thought
that as late as 1930, Zermelo chose in his important paper [1930] on the
foundations of set theory to axiomatize set theory without the null set (using
some distinguished urelement in its stead). The concept of set is no Athena:
school children understand it now; but its development was long drawn out,
beginning with the earliest counting and reckoning and extending into the
late nineteenth century.

But it was nevertheless Cantor who understood it sufficiently to dissolve
the traditional paradoxes and to simply confront Common Notion 5 and de-
fine the relation of having the same cardinal number in terms of equipollence.
The equivalence of these notions had long been accepted for finite sets; but
it was rejected, even by Bolzano, in the case of infinite sets. Prior to Cantor,
these paradoxes had led people to believe that there was no coherent account
of cardinal number in the case of infinite multiplicities.? It should be noted,
too, that, in the face of the long tradition, from Aristotle through Gauss,
of opposition to the infinite in mathematics, it was not only a better under-
standing of the notion of set that Cantor needed to bring to his definition of
cardinal number; it required, too, some intellectual courage.

1 Bolzano was in turn anticipated by Galileo in his Two New Sciences, First Day, where
Salviati remarks “The very ability to continue forever the division into quantified parts
implies the necessity of composition from infinitely many unquantifiables.”

2In the fourteenth century Henry of Harclay and, perhaps more clearly, Gregory of
Rimini seem to have been at least close to Cantor’s analysis; but the soil was thin and the
idea did not take root.



In the light of these remarks, it is unfortunate that some contemporary
writers on philosophy of mathematics and its history insist on referring to
Cantor’s definition of equality of power as Hume’s Principle, for the philoso-
pher David Hume, who explicitly rejected the infinite in mathematics.

It is instructive to compare Cantor’s conception of a set prior to his
Grundlagen with what he writes about it thereafter. As far as I know,
his earliest explanation of what he meant by a set is in the third paper
[Cantor, 1882] in the series on infinite linear sets of points. He writes

I call a manifold (an aggregate [Inbegriff], a set) of elements,
which belong to any conceptual sphere, well-defined, if on the
basis of its definition and in consequence of the logical principle
of excluded middle, it must be recognized that it is internally
determined whether an arbitrary object of this conceptual sphere
belongs to the manifold or not, and also, whether two objects in
the set , in spite of formal differences in the manner in which they
are given, are equal or not. In general the relevant distinctions
cannot in practice be made with certainty and exactness by the
capabilities or methods presently availabe. But that is not of any
concern. The only concern is the internal determination from
which in concrete cases, where it is required, an actual (external)
determination is to be developed by means of a perfection of
resources. [1932; p. 150]

The latter part of this passage is interesting because it reflects the growing
tension within mathematics (and one whose history has yet to be written)
over the role of properties which are ‘undecidable’; i.e. for which we have
no algorithm for deciding for any object in the conceptual sphere, whether
or not it has the property. Cantor is saying that the existence of such an
algorithm is unnecessary in order for the property to define a set. He gives the
example of determining whether or not a particular real number is algebraic
or not, which may or may not be possible at a given time with the available
techiniques. He contends that, nevertheless, the set of algebraic numbers is
well-defined. Very likely Cantor took up this issue here because of his proof
in [1874] that the set of algebraic numbers is countable and that therefore,
in any interval on the real line, there are uncountably many transcendental
numbers. This shows that interesting results about a set may be obtainable
even when no algorithm exists for determining membership in the set.®> On

3There has been some confusion about the non-constructive character of Cantor’s proof
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the other end of the ideological scale was Kronecker, who took the view,
later associated with Hilbert’s finitism, not merely that the law of excluded
middle should not be assumed, but even more: only those objects which
can be finitely represented and only those concepts for which we have an
algorithm for deciding whether or not they hold for a given object should be
introduced into mathematics. (See [Kronecker, 1886, p. 156, fn. *)].) We
shall see that Cantor more fully takes up the defense of classical mathematics
against the strictures of Kronecker in §4 of Grundlagen.

But to return to the main topic, what did Cantor mean by a ‘concep-
tual sphere’? The answer seems to be clearly indicated by a later passage
in the same work, where he writes “The theory of manifolds, according to
the interpretation given it here, includes the domains of arithmetic, function
theory and geometry, if we leave aside for the time being other conceptual
spheres and consider only the mathematical.” [1882, p. 152] So I think that
Cantor was simply using the expression ‘conceptual sphere’ to refer to dif-
ferent domains of discourse. Presumably non-mathematical spheres would
include that of physical phenomena and of mental phenomena. *

Thus I think that in this work and, in fact, up to the discovery of the
theory of transfinite numbers, Cantor’s notion of a set was the logical notion
of set, the notion studied in second-order logic, namely of a collection of
elements of some given domain. This notion of a set would fairly be described

that every interval contains transcendental numbers. His proof that no one-to-one enumer-
ation of real numbers exhausts an interval, while not constructive, is easily reformulated
as a constructive proof. His inference from the existence of an enumeration of the alge-
braic numbers in the interval to one without repetitions is, of course, non-constructive.
However, as Howard Stein has pointed out to me, one can constructively enumerate the
algerbraic numbers in the interval in a one-to-one manner, although this requires methods,
e.g. Sturm’s Theorem, that were not available to Cantor.

4Cantor’s explanation of the notion of set does present another apparent difficulty: his
words suggest that equality of objects is relative to the set in question: A set is determined
when we have determined what objects of the conceptual sphere are in it and, of two objects
in it, whether or not they are equal—-in spite of possible formal differences in the manner in
which they are given. But here I think that the most reasonable interpretation is that what
Cantor actually writes is misleading and that he is thinking of cases such as defining a set
of rational numbers by means of a property of pairs of integers or a set of real numbers by
means of a property of Cauchy sequences of rational numbers. Thus a Cauchy sequences
may have the property in question and so the real number it determines is in the set.
What more is required is that we have a criterion for when two such sequences, distinct
qua sequences, determine the same number and that the property of Cauchy sequences in
question respect that criterion.



by saying that a set is, as Frege suggested, the extension of a concept; but,
as opposed to Frege’s notion of concept, which is defined for all objects, the
relevant concept here is one defined only for objects of some given domain. °
Finally, note that this is the conception of set as it is most often applied in
mathematics and that the so-called paradoxes of set theory have nothing to
do with it.% So much for a summary of Cantor’s relevant achievements prior
to the Grundlagen. 1 want to turn now to the Grundlagen itself.

2 Summary of the Content of the Grundla-
gen

1. The raison d étre of the Grundlagen was the theory of transfinite num-
bers, which Cantor seems to have mentioned for the first time in a letter to

5Notice that, in spite of Cantor’s avoidance of the null set, it is hard to avoid it on this
conception—as Frege pointed out.

6It is striking how clear both Cantor’s conception of set and his treatment of it are
compared to Bolzano’s some thirty-one years earlier. In spite of his double abstraction of
the set to obtain the cardinal number, mentioned earlier, he in fact is able to distinguish
properties of the set in his definition of power from properties that the set may have in
virtue of some particular structure on it. Perhaps the explanation of why Cantor was
clearer than earlier writers and in particular Bolzano about this lies in his earlier work.
The historical confusion was between a geometric object and the set of points constituting
it—for example, between a line segment as a geometric object and the set of points on it;
and the effect of that confusion was the further one between the measure of the segment
(a property of the geometric object) and the number of points on the segment (a property
of the set). The explanation I am proposing is that, in his earlier research concerning
the uniqueness problem for trigonometric series, he got used to considering sets of points
(viz. the domains of convergence of series) to which the notion of measure (certainly as it
was understood then) did not obviously extend—in other words, sets devoid of geometric
significance. In fact, Cantor didn’t even bother to explicitly address the confusion between
the set and the geometric object as a problem. He was far more concerned with pointing
out the distinction between point sets armed with topological structure and abstract sets
and with explaining why his proof of the equipollence of point sets of different dimension
(e.g., the set of points on the line and the set of points in the plane) does not lead to
topological paradoxes. (See [Cantor, 1932, p. 121].) Howard Stein has pointed out to
me that, initially, Cantor himself seems to have been not entirely comfortable with his
result. In a letter to Dedekind on June 25, 1887 [Nother and Cavailles, 1937, p. 35|, he
expresses concern that it undermines the common assumption that no one-to-one map
exists between continuous domains of different dimension. It was Dedekind who pointed
out to him in a reply on July 2 [N6ther and Cavailles, 1937, p. 37] that what had been
assumed was that there be no continuous such map.



Dedekind in November of 1882. He defines the numbers to be what can be
obtained, starting with the initial number and applying the two operations
of taking successors (the first principle of generation) and taking limits of
increasing sequences (the second principle of generation). (See §3 below.) He
in fact took the initial number to be 1, but it will make no difference if we
adopt the now more common practice of starting with 0.7

2. The transfinite numbers—and henceforth I will often just speak of
the numbers, both finite and transfinite—were stratified into the number
classes. (See §4 below.) Whereas only two infinite powers were known to exist
prior to Grundlagen, the number classes represent an increasing sequence of
powers or cardinal numbers, in one-to-one correspondance with the numbers
themselves. Cantor believed the number classes to represent all powers; and
it was this application of his theory of transfinite numbers to the theory
of powers that he mentioned in his letter to Dedekind and that he mentions
first in the Grundlagen. In 1890-1, Cantor introduced his diagonal argument,
proving that the set of two-valued functions on a set is of higher power than

"The date I assign, November 1882, may seem to contradict Cantor’s own statement
in §1 that he had already had the notion of transfinite number in earlier works [Cantor,
1880], where he wanted to iterate the operation of taking the derived set (the set of limit
points) of a set of real numbers into the transfinite. He introduced what he called the
“definite defined infinity symbols”, which, in contemporary terms, we would call a system
of ordinal notations. In fact, Cantor’s symbols constitute a very familiar system of ordinal
notations, one which represents precisely all of the ordinals < €¢y—an ordinal in the second
number class. The essential difference between this system of notations and Cantor’s later
definition of the second number class is not, as it is often stated, that the former is a system
of symbols and the latter of numbers. Rather the important thing is that any system of
ordinal notations, being countable, will be bounded by some number in the second number
class. In fact, in a reasonable sense of the notion of a system of ordinal notations, there
is an absolute bound on the ordinal of any such system-—namely, the least non-projectable
ordinal, which is still in the second number class. To obtain all of the second number
class, much less the higher number classes, a new idea was needed, namely the idea of
introducing numbers as limits of arbitrary increasing sequences of numbers (w-sequences
in the case of the second number class). As far as I know, at no time before his letter
to Dedekind did Cantor explicitly introduce this idea. So Purkert and Ilgauds, who, in
their fine book [1987], claim that the origin of set theory was in Cantor’s invention of the
the transfinite numbers, a claim with which I entirely agree, may be making a mistake
in giving the date of this origin as 1870 (p. 39), when, apparently, Cantor first thought
of the ordinal notations. But this may be a matter for more historical investigation.
Cantor, himself, in the letter to Dedekind explains that he calls the transfinite numbers
numbers, in contrast with his earlier name ‘infinity symbols’, because he has introduced
the fundamental arithmetic operations on them.



the set itself[1891], and thus providing another, cofinal, sequence of powers;
but in 1883 the number classes were the only examples that existed of higher
powers.

3. In §2, Cantor analyzed the notion of a counting number, for which
he used the term Anzahl, and extended it to the transfinite. He saw that
counting a set determines a (total) ordering of it and, indeed, a well-ordering.
This notion of well-ordering was introduced into mathematics here for the
first time. As he noted, the requirement of well-ordering had been obscured
by the fact that, in the case of finite sets, all total orderings of the set are
well-orderings and are isomorphic to one another.

He noted, too, that the set of predecessors of any transfinite number
form a well-ordered set and that every well-ordered set is isomorphic to such
a proper segment of the numbers. For this reason, his transfinite numbers
have come to be called ordinal numbers in the literature on the Grundlagen,
although Cantor himself refers to them simply as numbers (Zahlen) or as real
whole (reale ganze) numbers. He seems to have wanted to distinguish the
numbers themselves from their application as measures of well-ordered sets,
just as we may consider the finite whole numbers as they are in themselves,
independently of applications as counting numbers or as measures of finite
sets.

Failure to see this has led to a minor mystification about Cantor’s use of
the term Anzahl and how it is to be distinguished from his use of the term
Zahl when speaking about his transfinite numbers. [Hallett, 1984] translates
‘Anzahl’ as ‘enumeral’, which seems a reasonable alternative to ‘counting
number’; but he interprets the term Zahl as referring to ordinal numbers—
and then worries about the distinction. An ordinal number for Cantor, when
he later introduced the term, is the order type of a well-ordered set, just as a
cardinal number is for him the equipollence type of an abstract set. It is true
that the numbers (Zahlen) represent ordinal numbers, in the sense that every
well-ordered set is measured by some number; but the numbers must first be
regared as given before the proper initial segments of them can be taken to
be measure sticks of the well-ordered sets. Among philosophers, especially,
the confusion has been exacerbated by the influence of Frege, who used the
term Anzahl for the cardinal numbers. Contrary to the general tendency in
the late nineteenth century on foundations of arithmetic, Frege considered
the natural numbers primarily in their role as cardinals.

The view that Cantor regarded the transfinite numbers essentially as or-
dinals stands out rather strongly in Hallett’s book, where Cantor’s actual



definition of the numbers seems to be counted as a mistake, and it is only
their role as measures of well-ordered sets that gives the numbers substance.
One difficulty with this view, aside from the obvious ones that there is noth-
ing wrong with Cantor’s definition in the Grundlagen as it is and that he
does not identify the numbers as ordinals there, is that if the numbers exist
essentially as measures of well-ordered sets, then how is one to understand
the numbers in the higher number classes? The problem is that, at that time,
as we have already noted, the only infinite well-ordered sets known to be not
isomorphic to well-orderings of the natural numbers or the continuum were
those represented by proper segments of the system of transfinite numbers
themselves. In response to this, Hallett attempts to construe the construc-
tion of the sequence of numbers as a procedure whereby, having constructed
a segment of the numbers and recognized it as well-ordered, one then may
introduce its order type (p. 57). But this baroque construction is not at all
the way in which Cantor introduces the numbers.®

Certainly Hallett is right that Cantor believed the application of the trans-
finite numbers as measures of well-ordered sets constituted an argument for
admitting them into mathematics—of ‘legitimitizing’ them, if you like. Cantor
himself mentions this at the beginning of §2 of Grundlagen.® But, it should

8Hallett (pp. 50-51) refers to letters to Kronecker and Mittag-Leffler, both in 1884, in
which Cantor seems to be supporting the view that the the foundation for the transfinite
numbers should really be their application as measures of well-ordered sets, i.e. that
they should be identified with the ordinal numbers. In the letter to Kronecker he writes
“I have for some time had a foundation for these numbers which is somewhat different
from that given in my written works, and this will certainly suit you better.” He goes
on to describe a number as the “symbol or concept” of an order type of a well-ordered
set. But notice that it is Kronecker that the new foundation would suit better. Cantor
was unjustifiably optimistic in thinking that Kronecker, who resisted the introduction of
the irrational numbers in terms of w-sequences of rationals, would be interested in even
the second number class, that is the totality of all well-orderings of the rationals; but
surely his optimism did not extend to thinking that he could interest him in the theory
of the higher number classes. But it is connection with them, as we have noted, that the
conception of number as order type would have been inadequate. The letter to Mittag-
Leffler refers to a manuscript which Cantor never published, but is most likely the one
published in [Grattan-Guinness, 1970]. But in this manuscript, Cantor is interested in the
general theory of order types and in this context, certainly, it is reasonable to identifiy the
numbers with the ordinal numbers.

962 begins

Since this concept [i.e. of Anzahl] is always expressed by a completely deter-
minate number of our extended domain of numbers and since on the other



be noted that the application to well-ordered sets was not the only applica-
tion of the transfinite numbers that Cantor had in mind: as we have already
noted, it was not even the first. The first application that he mentioned in
the Grundlagen was to the theory of powers. Moreover, in his earlier letter
to Dedekind, he also wrote about the issue of legitimatizing his theory; but it
was in terms of the application to the theory of powers.!’ But this matter of
legitimitization, which we will discuss below, is distinct from the question of
whether the notion of transfinite number depends on that of a well-ordered

hand the concept of Anzahl has an immediate objective representation in our
inner intuition (Anschauung), then through this connection between Anzahl
and number, the reality that I stress for the latter, even in the determinate-
infinite case, is proven.

The reference to inner intuition is surprising. Later on, in the discussion in §10 of the
idea of a continuum, Cantor rejects the idea that this can be founded on the concept or
intuition of time or on spatial intuition; rather he argues, following Dedekind in [1872] and,
indeed, [Bolzano, 1817], that just the reverse is true: our adequate conception of space and
time depend upon the analysis of the mathematical idea of a continuum. But he says even
more: “even with the help of this latter [i.e. an independent concept of continuity] [time]
can be conceived neither objectively as a substance, nor subjectively as a necessary a priori
form of intuition.” Thus he seems in this passage to be rejecting Kant’s doctrine of inner
intuition, at least in so far as it is identified with time. But, it seems, he is not rejecting
it as a basis of the concept of Anzahl. On the other hand, note that he is not asserting
that it is the basis of the concept of number, either finite or infinite. So in this respect he
is not in conflict with the view of [Frege, 1884] and [Dedekind, 1887], that arithmetic can
and should be developed purely logically, without reference to inner intuiition. But what
does he mean when he writes that the concept of Anzahl has an objective representation
in our inner intuition? My surmise—and it can only be that: I have found no other place in
which he discussed this—is that he is referring to the intuitiveness of the idea of iterating
an operation, even into the transfinite. Certainly it was that idea, in the case of iterating
the operation of taking the derivative of a set of points on the real line, which led him to
the transfinite numbers in the first place.

104In this way, by complying with all three elements [i.e. the two principles of generation
and the inhibiting principle] one can with the greatest certainty succeed to ever new
number classes and powers; and furthermore the new numbers obtained in this way are
all entirely of the same concrete determinateness and reality as the old [i.e. the finite
numbers]. Thus I truly don’t know what holds us back from this process of constructing
new whole numbers, so long as it is shown that, for the progress of science, the new
introduction of these uncountably many number classes has become desirable or indeed
indispensible. And the latter appears to me to be the case in the theory of sets—and
perhaps also in a wide range of other cases—at least, without this extension [of the domain
of numbers], I can make no further progress and, with it, I obtain much that is entirely
unexpected.”

10



set—whether numbers need to be explained, as Hallett puts it, as enumerals.
And in fact Cantor’s definition of the numbers stands on its own feet and
is entirely independent of their application e.g. as measures of well-ordered
sets.

4. Not only did Cantor introduce the notion of a well-ordered set in
Grundlagen, but at the beginning of §3, he proposed the Well-Ordering Prin-
ciple, that every set is well-orderable, as a fundamental law of thought. It
follows from this principle that every infinite power is represented in the
sequence of number classes. (See §4.) Zermelo, in 1904, deduced the Well-
Ordering Principle from the Axiom of Choice, which seems to have been
(implicitly) regarded as a part of logic by earlier writers such as Cantor and
Dedekind.

5. The Grundlagen also introduces for the first time the distinction be-
tween sets and what later came to be called proper classes. Every well-defined
set has a power (§1), but, as we shall see, Cantor recognized that there are
totalities, such as the totality of all whole numbers or of all powers, which
have no power. (See Grundlagen, Note 2 and §3 below.) Often we use the
term ‘proper class’ in a relative sense, to refer to the subsets of the domain
a model of set theory which are not coextensive with some element of the
domain. But we also use it in the absolute sense to refer, for example, to
the totality of all ordinals, independently of the (well-founded) models in
which they are represented. It is in this latter sense that Cantor discovered
the distinction between a set and a proper class—his distinction between the
determinate infinites (represented by the number classes) and the absolute
infinite (represented by the totality of transfinite numbers or the totality of
the number classes or powers).

6. In §8, in defending the introduction of the transfinite numbers, Cantor
gives what may be the first statement and defense of the autonomy of what we
would call pure mathematics and which he prefers to call ‘free’ mathematics.
I am not referring to the thesis that reasoning in mathematics should proceed
purely deductively, without reference to empirical phenomena, but rather the
thesis that pure mathematics may be concerned with systems of objects which
have no known relation to empirical phenomena at all. Especially when one
remembers how long it took for the various extensions of the number system,
0 and the negative numbers and the complex numbers, to be accepted, it
is not remarkable that Cantor felt the need to discuss this matter. Let me
quote Cantor on free mathematics:

11



We are justified in regarding the numbers as real in so far as the system of
transfinite numbers has been consistently defined and integrated with the

Mathematics is in its development entirely free and is only bound
in the self-evident respect that its concepts must both be consis-
tent with each other and also stand in exact relationships, es-
tablished by definitions, to those concepts which have previously
been introduced and are already at hand and established. In par-
ticular, in the introduction of new numbers it is only obligated
to give definitions of them which will bestow such a determinacy
and, in certain circumstances, such a relationship to the older
numbers that they can in any given instance be precisely distin-
guished. As soon as a number satisfies all these conditions it can
and must be regarded in mathematics as existent and real.

finite numbers.

Cantor’s argument for the ‘freedom’ of mathematics and the reality of
the transfinite numbers is based on his distinction between ‘immanent’ or
‘intrasubjective’ reality and ‘transient’ or ‘transsubjective’ reality. Of the

former he writes

So the reality that he has claimed for the numbers is immanent reality. Con-

First, we may regard the whole numbers as real in so far as, on
the basis of definitions, they occupy an entirely determinate place
in our understanding, are well distinguished from all other parts
of our thought and stand to them in determinate relationships,
and thus modify the substance of our minds in a determinate way.

cerning transient reality he wrote:

But then, reality can also be ascribed to numbers to the extent
that they must be taken as an expression or copy of the events and
relationships in the external world which confronts the intellect,
or to the extent that, for instance, the various number classes
are representatives of powers that actually occur in physical or
mental nature.

1Tt is more or less clear what Cantor meant by “intrasubjektive” or “immanente Re-
alitdt” and by “transsubjektive” or *‘transiente Realitat”. But where do these terms come

from?

12



But he further argues in §8 that mathematics-that is ‘free’ mathematics—is
constrained only by the requirements of immanent reality.

It should be noted that, up to this point in his argument, the application
of the transfinite numbers either as measures of well-ordered sets or to the
theory of powers plays no role at all. But I think that we may see that role
in the ‘legitimitization’ of the transfinite numbers in the following passage in
68:

It is not necessary, I believe, to fear, as many do, that these prin-
ciples [admitting into mathematics objects satisfying the criteria
for immanent existence] present any danger to science. For in
the first place the designated conditions, under which alone the
freedom to form numbers can be practiced, are of such a kind
as to allow only the narrowest scope for discretion (Willkir).
Moreover, every mathematical concept carries within itself the
necessary corrective: if it is fruitless or unsuited to its purpose,
then that appears very soon through its uselessness and it will be
abandoned for lack of success.

Quite simply, the two applications of the transfinite numbers were important
to Cantor in establishing his theory of transfinite numbers as a legitimate
part of mathematics because it was part of his argument that the theory is
fruitful. This has nothing to do with the internal logic of the theory, only with
the question of whether it is worth pursuing. In particular, it has nothing to
do with the immanent reality of the numbers.

It should also be noted that the issue of legitimacy is separate from that
of transient reality: the applicability of the transfinite numbers to the theory
of higher powers or well-ordered sets is no guarantee that they have any
empirical application.

As a matter of fact, Cantor expresses his faith that whatever has imma-
nent reality also has transient reality:

there is no doubt in my mind that these two forms of reality
always occur together in the sense that a concept said to exist
in the first sense also always possesses in certain, even infinitely
many, ways a transient reality. To be sure, the determination of
this transient reality is often one of the most troublesome and dif-
ficult problems in metaphysics, and must frequently be left to the
future, when the natural developement of one of the other sciences
will uncover the transient meaning of the concept in question.
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Metaphysics here seems to refer to the inventory of the basic structures of the
empirical world—since it may be left to the other sciences to uncover them.
I take Cantor to be simply expressing an article of faith here, but not one
on which his theory of transfinite numbers in any sense rests. This could be
questioned on the grounds that he goes on to write

The mention of this connection [between the two realities| has
here only one purpose: that of enabling one to derive from it a
result which seems to me of very great importance for mathemat-
ics, namely, that mathematics in the developement of its ideas has
only to take account of the immanent reality of its concepts . ...

It might then seem that Cantor believes that in some sense the validity of free
mathematics depends on this article of faith. But in the ensuing discussion
he writes

If T had not discovered this property of mathematics [i.e. its free-
dom] by means of the reasoning I have described, then the entire
development of the science itself, as we find it in our century,
would have led me to exactly the same opinions.

I think that the point of these remarks is not to qualify the autonomy of free
mathematics; rather it is to argue that, even if what one is interested in is
metaphysics, i.e. the basic structures of the natural world, one should allow
mathematics to proceed freely, because what it develops freely will in the
end turn out to be instantiated in nature.

I especially mention this because Hallett takes a quite different stance
with regard to this discussion in §8 and one according to which Cantor’s
view is identified with an unintelligible doctrine that is often attributed to
Plato. He writes [1984, p. 18] “And crucially, immanent and transient reality
are intimately connected.” After quoting Note 6, in which Cantor suggests
that his view that what is immanently real will also turn out to be transiently
real is in agreement with Plato, he writes

As Cantor himself says ..., what he proposes is a Platonic princi-
ple: the ‘creation’ of a consistent coherent concept in the human
mind is actually the uncovering or discovering of a permanently
and independently existing real abstract idea.

It is now clear why Cantor considered mathematics as so free.
It does concern itself with objective truth and an independent
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(Platonic) realm of existents in so far as its objects of study are
transiently real. But it need not attempt to investigate this tran-
sient reality directly, or even worry about the precise transient
‘significance’ of a concept. All that mathematics need worry it-
self with is ‘intrasubjective’ reality, and once this is established
it is guaranteed that the concepts are also transiently real

It is evident that, for Hallett, perhaps because he was misled by Cantor’s use
of the term ‘metaphysics’, transient reality refers, not to the instantiation of
the concept in nature, but to an ‘independent (Platonic) realm of existents’.
But that is not the point of Cantor’s reference to Plato: rather he seems to
be assuming that Plato also advocated the free development of mathematics
and believed that what it created freely would as a matter of fact turn out
to be exemplified in the natural world. This reading of Plato, though better
than what we usually get, is incorrect; but it ¢s the basis of Cantor’s note.

Purkert [1989, p. 58] seems to share Hallett’s view: he cites as evidence a
letter to Everhard Illigens from May, 1886 in which Cantor writes “If I have
known the internal consistency of a concept that represents a being, then I
am forced to believe by the idea of the omnipotence of God that the being
which is stated by the concept under discussion must be realized in some way.
With regard to this, I call it a possible being but this does not mean that
it is realized somewhere and some time and somehow in reality.” Purkert
concludes from this that “For Cantor’s Platonistic ontology of mathematical
objects, consistency was a necessary but not a sufficient condition.” But, as
I understand it, this is not at all what Cantor is saying. He is saying that
his theological beliefs lead him to believe that the immanent being must be
empirically realized in some way. That it could be so realized is the respect
under which he refers to it as ‘possible’; but calling it ‘possible’ does not
mean that it has been, is or will be realized, nor does it mean that it lacks
immanent being if it fails to be so realized.

It is simply impossible to make sense of the reading of Hallett and Purkert,
according to which immanent reality is in some sense wanting and transient
reality means ‘really exists’ in some ‘Platonic’ sense: Cantor speaks of the
further development of the sciences (other than mathematics) uncovering
the transient reality; and he refers to the development of function theory as
an instance of mathematics proceeding freely, without having first secured
the transient reality of its concepts in mechanics, astronomy, etc. Hallett
doesn’t ignore this; rather he introduces another kind of reality: there is
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not only immanent and transient reality, but there is also having ‘physical
applications’. He writes (p.18) “There may be all kinds of ways in which
transient reality is manifested; in particular, concepts might be represented or
instantiated in the physical world.” Thus, being transiently real is manifested
by, but not identical with, having empirical application (rather like a calvinist
being among the elect is manifested by, but not identical with, having a
prosperous farm). But what in the text or in sweet reason prevents Hallett
from identifying the latter kind of reality with transient reality? 12

7. In §4, Cantor defended what has come to be called classical mathe-
matics, in particular the methods in function theory associated with Bolzano,
Cauchy, Riemann and Weierstrass, as well as his new theory of transfinite
numbers, against the opposition of Kronecker. We noted that he had al-
ready in [1882] defended the use of the law of excluded middle in reasoning in
arithmetic, geometry and function theory. But in Grundlagen the emphasis
is more on a related, but somewhat different stricture of Kronecker, namely
concerning the kinds of objects that should be admitted into mathematics.
For Kronecker, all genuine mathematical propositions must ultimately be in-
terpretable as statements about the natural numbers. Let me quote Cantor:

In this manner a definite (if also rather prosaic and obvious)
principle is recommended to all as a guidline; it should thereby
serve to confine the playing out of the passion for speculation and
conceptual invention in mathematics within the true boundaries,

12Perhaps some hint of his thinking about this is contained in his remarks on the above
quote from Grundlagen concerning inner intuition. He writes “ one can make sense of the
passage as follows. We invent the concept of (ordinal) number and even postulate that
such numbers exist; but the concept obtains legitimacy and significance and we realize that
the postulated objects actually do exist by recognizing that they correspond to enumerals
of well-ordered sets. This is the explanation of the perhaps hazily understood concept of
number in terms of, for Cantor, the clear concept of enumeral” (pp.53-4). Well, Cantor
indeed did invent the concept of transfinite whole number; but I doubt that it would have
occured to him to postulate that they exist: on the basis of their definition, he would prove
that some exist with this or that property. The concept did indeed obtain legitimacy and
significance for Cantor by the recognition that the numbers measure well-ordered sets.
But this is not an explanation of the concept of number in terms of that of an enumeral.
In whatever sense the concept of number is hazily understood, namely, because (as we
will see) it is essentially open-ended, the fact that the numbers measure well-ordered sets
does not in any way disperse the haze. And, moreover, as we noted, being enumerals of
well-ordered sets does not bestow transient reality on the numbers, anyway, unless the
well-ordered sets in question have transient reality.
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within which it runs no danger of falling into the abyss of the
“Transcendent”, in which, it is said in order to inspire dread
and wholesome terror, “everything is possible”. It is uncertain
(who knows?) whether it was not just from the point of view
of expediency alone that the originators of this doctrine decided
to recommend it to the soaring powers, which so easily endanger
themselves through enthusiasm and extravagance, as an effective
regulation for protection against all error; but a fruitful principle
cannot be found in it. For I cannot accept the assumption that
the originators of this view themselves, in the discovery of new
truths, started from these principles. And I, no matter how many
good things I may cull from these maxims, must strictly speaking
regard them as erroneous: no real progress has stemmed from
them, and if science had proceeded precisely in accordance with
them, it would have been retarded or at least confined within the
narrowest of boundaries.

This precedes by four years the well-known footnote in [Dedekind, 1887] in
which the author challenges Kronecker to justify his constraints on mathe-
matics.

This concludes my summary of the content of the Grundlagen. Given
such a rich assortment of original material and given the prominence any-
way of the problem of the infinite in the history of philosophy, one would
a priori have expected the Grundlagen to be regarded as one of the great
philosophical classics of all time; but in fact, until recently, even in discus-
sions of Cantor’s work, it has been largely neglected and, when considered
at all, has tended to be viewed through the window of his later papers, lead-
ing to serious misunderstanding. This is especially so when, as is often the
case, Cantor’s theory of sets as a whole is interpreted as ‘naive set theory’,
the ground for Frege’s later inconsistent Begriffsschrift—as a somewhat im-
precise formulation of naive intuitions which Frege, at tragic cost to himself,
merely made precise. Of course, the exposition in the Grundlagen has also
contributed to the lack of appreciation of it. Cantor’s exposition of technical
arguments is generally quite lucid; but this paper, with its wealth of con-
ceptual, philosophical analysis, does not share that property; and it easily
falls prey to those who (following the model of Frege) too quickly attack the
choice of words without sufficiently searching for the intended meaning.

Recent scholars such as Michael Hallett [1984], Walter Purkert [1989]
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and Shaughan Lavine [1994], have recognized the special nature of Grundla-
gen, even within Cantor’s eceuvre on set theory, and to varying degrees have
rejected the myth of Cantor’s ‘naive’ set theory; '* but interesting and en-
lightening as they are, they still leave without satisfactory answers a number
of questions concerning the text. Indeed, each of the three cited works, while
advancing our understanding of the Grundlagen on the whole, introduces
interpretations on important points which, as in some cases I have already
made clear, seem to me entirely wrong.

3 The Grundlagen and the paradoxes of Set
Theory

There is a significant change in Cantor’s conception of a set in the Grundla-
gen. In Note 1 he writes:

By a ‘manifold’ or ‘set’ I understand any multiplicity which can
be thought of as one, i.e. any aggregate [inbegriff| of determinate
elements which can be united into a whole by some law.

The most notable changes in this from his earlier explanation of the concept
of set is the absence of any reference to a prior conceptual sphere or domain
from which the elements of the set are drawn and the modification accord-
ing to which the property or ‘law’” which determines elementhood in the set
“unites them into a whole”. But I think that a convincing explanation for
this change can be found in his theory of the transfinite number; and it will
provide a natural transition to the question of the relation of the Grundlagen
to the paradoxes of set theory. In introducing the transfinite numbers, Can-
tor employs the notion of set in an entirely new way: numbers are defined
in terms of the notion of a set of numbers. Essentially, he introduces the
transfinite numbers as follows:

X is a subset of Q@ = S(X) € Q

Here, ) denotes the class of all numbers and, let me emphasize: X ranges
over sets. S(X) is intended to be the least number greater than every number
in X. So assuming the existence of the null set and unit sets of numbers

13The opening paragraphs of Lavine’s book are especially pleasing.

18



S(@) should be the least number 0

S({a}) should denote the successor of a.

and, if X is a set of number with no greatest element, then S(X) is the limit
of the sequence of numbers in X arranged in natural order. We omit the
definitions (which Cantor also doesn’t bother to give) of what it means for
two numbers to be equal and for one number to be less than another. Cantor
also took it to be implicit in his definition of the numbers that there are no
infinite descending sequences

Qg > Q1 > Qg > -+

so that  is well-ordered by <.

Cantor’s definition of ) has the familiar look of an inductive definition;
but that is deceptive: An inductive definition picks out a subset of some
given domain of objects by means of some closure condition. The definition
of the transfinite numbers, on the contrary, is intended to introduce a whole
new domain of objects, not a subcollection of a given domain.

But he is not only introducing a new domain of objects, he is introducing
it in terms of the notion of a set of objects of that very same domain. That
is, unlike his previous notion of a set, according to which a set is a set of
objects from some given domain, already well-defined, here the notion of an
object of the domain and that of a set of objects of the domain are dependent
on each other. This is an entirely new context for the notion of a set.

A symptom of the problem that arises from the interdependence of the
notions of (transfinite) number and set of numbers is the

THEOREM. (2 is not a set.

The proof is simply that, otherwise, S(£2) would be a number and so
S(Q2) > S(Q) > --- would be an infinite descending sequence of numbers.

14That Cantor speaks of sequences of numbers rather than sets is inconsequential, since
the sequences in question are in their natural order and so are determined by the set of
their members.
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Cantor clearly knew this simple theorem. This, I suggest, accounts for
the fact that, in his later explanations of the notion of set, including the
one in Grundlagen, Cantor does not simply take the notion of set to refer to
the extension of a concept in some conceptual sphere. For in the conceptual
sphere of transfinite number theory, this leads to a contradiction.

There has been much discussion of whether or not he knew the Burali-
Forti paradox, the paradox of the greatest ordinal; but behind that discussion
lies a misconception that we have already noted, namely of thinking of the
transfinite numbers as ordinals. This has lead some commentators to forget
Cantor’s actual definition of the numbers in the Grundlagen and to think of
them simply as order types of well-ordered sets. Thus, although I entirely
agree with [Purkert, 1989] that it would be difficult to believe that Cantor was
not aware that it would be contradictory to assume that €2 is a set; I disagree
with him on exactly what contradiction Cantor was likely to have discerned.
Purkert cites essentially the Burali-Forti paradox in this connection (p. 57).
This paradox involves showing that the totality of all order types of well-
ordered sets, if a set O, is a well-ordered set under the natural ordering but
one whose order type # cannot be in O, since otherwise # + 1 would be in O
and so be < #. But given Cantor’s actual definition of the numbers, reference
to well-orderings is grotesquely prolix. The contradiction we described above
is based, not on the property of ordinals as order types of well-ordered sets,
but directly on Cantor’s definition of the numbers, which admits the more
direct and immediately evident argument. It is this latter argument, and
not the Burali-Forti paradox, that I am reasonably convinced could not have
escaped Cantor’s eye. Here I think is one of many instances in the literature
on Cantor where a failure to read Grundlagen on its own terms rather than
through the window of later works somewhat distorts the picture; though it
is far from being the worst such instance.

Whether or not Cantor was aware that it would be contradictory to as-
sume that €2 is a set, we have already noted that in Note 2 in Grundlagen
he had certainly excluded €2 and the totality of all powers as sets. Yet Can-
tor’s comments in this note do not refer to a contradiction as the ground for
rejecting the totality of numbers or powers as sets. Rather he writes

The absolute can only be acknowledged but never be known—and
not even approximately known. For just as in the [first number
class| every finite number, however great, always has the same
power of finite numbers greater than it, so every supra-finite num-
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ber, however great, of any of the higher number classes is followed
by an aggregate of numbers and number-classes whose power is
not in the slightest reduces compared to the entire absolutely
infinite aggregate of numbers, starting with 1.

In fact, this is a strange argument which ultimately makes no sense. For
not only the first number class and the totality of all numbers or alephs, but
any number class N has the property that it has the same power as the set
M of all of its elements > a given one «. For the function § — a + 3 is
a bijection of NV onto M. Moreover, when v is a fixed point 7 = w, of the
initial ordinal function o — w,, then for any « in N, the function 8 +— N,z
is a bijection from NN, onto the set of number classes Ng for a < 8 < 7).
So, when Purkert refers to a letter to Hilbert in 1897 in which Cantor writes
that “Totalities that cannot be regarded as sets (an example is the totality of
all alephs as is shown above), I have already many years ago called absolute
infinite totalities, which I sharply distinguish from infinite sets”, he is almost
certainly right in taking the reference to be to Note 2 in Grundlagen; but
his claim that this is evidence that Cantor at that time already knew the
paradox of the greatest aleph is less well-founded.

4 What Numbers/Sets of Numbers Are There?

It was Cantor’s construction of the system of transfinite numbers employing
the concept ‘set of numbers’ which opened a Pandora’s Box of foundational
problems in mathematics, namely, the question of what cardinal numbers
there are. One can in a way understand the resistance to Cantor’s ideas
on the part of the mathematical law-and-order types—in the same way that
one can understand the church terrorizing the elderly Galileo: in defense
of a closed, tidy universe. In that respect Hilbert’s reference to Cantor’s
‘Paradise’ is ironic: it was the Kroneckers who wanted to stay in Paradise
and it was Cantor who lost it for us—bless him. I should note, though,
that Kronecker went some way beyond the rejection of just Cantor’s theory
of transfinite numbers. His brand of finitism would have cut back much of
the Garden of Eden itself—not just classical analysis, but even constructive
analysis in the sense of Brouwer or Bishop.

The latter point is significant because there are many mathematicians
who will accept the Garden of Eden, i.e. the theory of functions as developed
in the 19th century, but will, if not reject, at least put aside the theory of
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transfinite numbers, on the grounds that it is not needed for analysis. Of
course, on such grounds, one might also ask what analysis is needed for;
and if the answer is basic physics, one might then ask what that is needed
for. When it comes down to putting food in one’s mouth, the ‘need’ for
any real mathematics becomes somewhat tenuous. Cantor started us on an
intellectual journey. One can peel off at any point; but no one should make
a virtue of doing so.

The question of what numbers S(X) exist is precisely equivalent to the
question of what sets X of numbers exist. Before proceeding further, I want
to remark on how this fact bears on Lavine’s account in [Lavine, 1994] of the
notion of set in Grundlagen. He understands Cantor to have defined a set to
be a totality in one-to-one correspondance with a proper initial segment of the
numbers (see Definition 2.5 on p.81); but this can’t be right. In the first place,
in §3 Cantor describes the Well-Ordering Principle as a “law of thought”—
“that it is always possible to bring any well-defined set into the form of a
well-ordered set—a law which seems to me fundamental and momentous and
quite astonishing by reason of its general validity.” For some reason, Lavine
quotes this very passage as confirmation of his view; but it is a strange use
of language to count a definition as a law of thought. Moreover we have
already quoted a passage from Note 1 in which Cantor explained what he
meant by a set without any reference to the notion of well-ordering. Lavine
again takes this passage as confirmation of his view because “Cantor’s typical
use of the word ‘law’ in the [Grundlagen] is ‘natural succession according to
law’, which suggests quite a different picture [from the one in which ‘law’
simply refers to some property|”: a “law is, for Cantor, a well-ordering or
‘counting’”. But the note in question attaches to the first sentence of §1
and the notion of a well-ordering is introduced for the first time ever in §2.
Moreover, there are, according to my own count, exactly 19 uses of the term
“Gesetz” or its plural in the Grundlagen besides the one in question and the
occurrence of “Denkgesetz” mentioned above and counting one occurrence
of gesetzméssig”; and not one of them supports Lavine’s contention. !°

150f the 19, 14 unambiguously refer to theorems or laws of arithmetic. The occurrence of
“gesetzmassig” is in a discussion of subsets of R™ defined by any law. Here Cantor clearly
is including the case of sets defined by equations; and so the usage is not what Lavine
suggests. That leaves four occurrences to consider. 2 of them, and these are possibly the
2 that Lavine considered, are contained in the discussion of well-ordered sets and refer to
‘laws of counting’ or laws of succession, according to which a set can be counted. But
there is no implication in these passages that the set is to be initially given by such a
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In the second place, and much more decisive: The question of whether
an initial segment X of numbers is a proper segment is, as we have noted,
precisely the question of whether it is a set: it is proper just in case S(X)
exists. So, in the particular case of transitive classes X of numbers, Lavine’s
proposed definition is circular.'®

Lavine goes on to account for the changes in Cantor’s later views by
pointing to his discovery in 1891 of the hierarchy of powers arising from
iterating the operation of passing from a set M to the set of 2-valued functions
on M, starting with the set of finite numbers. His point is that, since it is
not clear that these function spaces can be well-ordered, Cantor had to give
up Lavine’s Definition 2.5 of the notion of set. But that doesn’t really make
sense. Cantor already knew of the totality of real numbers, and any problems
that he had with the well-orderability of the set of two-valued functions on
a set he would already have faced in the case of the real numbers. But he
explicitly speaks of sets of real numbers and subsets of R".

Lavine expresses the view that the alternative to his reading of the ex-
planation of the notion of set in Note 1 is to hold that Cantor’s set theory
in Grundlagen is naive set theory.[1994, p.85] But, it is only with his in-
troduction of the transfinite numbers in terms of sets of transfinite numbers
that the notion of set became problematic; prior to that, naive set theory—
viz. the Comprehension Principle, that every property determines a set—was
perfectly valid, since property meant property of objects of some conceptual
sphere. With the introduction of the transfinite numbers, though, Cantor
immediately recognized that the notion of set was problematic, to the extent
of understanding that not every property of numbers ‘unites the objects pos-
sessing it into a whole’, thereby determining a set. So, even if we read the
passage in Note 1 in the most natural way, he was not naive. Let me note
again that defining sets to be totalities equipollent to some proper initial
segment of the numbers in no way eliminates this problem of set theory, not
for Cantor and not for us, since the question of whether or not an initial
segment of the numbers is proper is precisely the question of whether or not
it is cofinal with a set.

law. Of the final 2 occurrences, one refers to the natural numbers in their natural order
‘according to law’ and the other refers to an arbitrary subset of the second number class,
determined by some law.

16Moreover, the case of classes of numbers is the crucial case. On the usual conception
of set theory, every set has a rank and a class of sets is a set just in case the class of ranks
of its elements is a set of numbers.

23



But Pandora’s Box is indeed open: Under what conditions should we
admit the extension of a property of transfinite numbers to be a set—or,
equivalently, what transfinite numbers are there? No answer is final, in the
sense that, given any criterion for what counts as a set of numbers, we can
relativize the definition of 2 to sets satisfying that criterion and obtain a
class € of numbers. But there would be no grounds for denying that €' is
a set: the argument above that {2 is not a set merely transforms in the case
of 2 into a proof that €' does not satisfy the criterion in question. So S(£)
is a number, and we can go on. In the foundations of set theory, Plato’s
dialectician, searching for the first principles, will never go out of business.

Cantor himself offered the first answer to the question of what sets exist.
For totalities M and N, let

M <N

mean that there is a function defined on N whose range of values is all of
M—i.e. M is of power < that of N. Cantor repeatedly took as a sufficient
condition for the sethood of M that M < N for some set N, which is es-
sentially the Axiom of Replacement. Relativizing the notion of set in the
definition of Q to totalities of power < that of N, we obtain the set ', which
we denote by (N). Cantor proved (assuming the Well-Ordering Principle),
that (V) represents the next highest power after N. By iterating the oper-
ation §(—) starting with the finite numbers, we obtain (essentially) Cantor’s
number classes:
Ny is the set of finite numbers

Na-‘,—l = Q(Noe)
and for v a limit number
N, = U N,
a<y

So the power of N, is N,,.

But, of course, Cantor’s answer is only the first in an open sequence of
non-trivial answers to the question of what numbers exist. Suitably under-
stood, Cantor’s hierarchy yields all the numbers less than the least weakly
inaccessible number, i.e. the least regular fixed point o = w, of the initial
ordinal function. Namely, if C' is the least transitive class of numbers which
contains 0, is closed under successors, includes N, for all @ € C and contains
Limg,<o; when v and the o;’s are in C, then the least upper bound of C'is
the least weakly inaccessible number.!”

17T don’t know to what extent Cantor understood the open-ended character of the notion
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