Godel on Intuition and on Hilbert’s finitism

W. W. Tait*

There are some puzzles about Godel’s published and unpublished remarks
concerning finitism that have led some commentators to believe that his
conception of it was unstable, that he oscillated back and forth between
different accounts of it. I want to discuss these puzzles and argue that,
on the contrary, Godel’s writings represent a smooth evolution, with just
one rather small double-reversal, of his view of finitism. He used the term
“finit” (in German) or “finitary” or “finitistic” primarily to refer to Hilbert’s
conception of finitary mathematics. On two occasions (only, as far as I know),
the lecture notes for his lecture at Zilsel’s [Godel, 1938a] and the lecture notes
for a lecture at Yale [Godel, *1941], he used it in a way that he knew—in the
second case, explicitly—went beyond what Hilbert meant.

Early in his career, he believed that finitism (in Hilbert’s sense) is open-
ended, in the sense that no correct formal system can be known to formal-
ize all finitist proofs and, in particular, all possible finitist proofs of consis-
tency of first-order number theory, PA; but starting in the Dialectica paper
[Godel, 1958], he expressed in writing the view that €y is an upper bound on
the finitist ordinals, and that, therefore, the consistency of PA, cannot be
finitistically proved. Although I do not understand the “therefore” (see §8
below), here was a genuine change in his views. But I am unaware of any
writings in which he retracted this new position. Incidentally, the analysis he
gives of what should count as a finitist ordinal in [Gddel, 1958; Godel, 1972]
should in fact lead to the bound w®, the ordinal of primitive recursive arith-
metic, PRA. (Again, see §8 below.) The one area of double-reversal in the
development of his ideas concerns the view, expressed in letters to Bernays
in the early 1960’s, about whether or not ¢; is the least upper bound on the
finitist ordinals. (See §1 below.)

*I have had valuable comments from Michael Friedman, Wilfried Sieg, Daniel Suther-
landand members of the editorial board on earlier versions of this paper, and I thank all
of them.



There is a second theme I will pursue in this paper as well, namely Godel’s
notion of Anschauung, that he takes to be the basis of Hilbert’s finitism, and
its relation both to Kant’s and to that of Hilbert and Bernays. The term is
translated as ‘intuition’ from Goédel’s works in German, but he himself trans-
lated it explicitly as concrete intuition in [1972] and identified it both with
Kant’s Anchauung and with the concept of intuition underlying Hilbert’s
finitism. I believe, however, that Godel’s notion of intuition, whatever re-
lationship it bears to Hilbert’s, is very different from Kant’s and that the
latter’s notion of intuition and the conception of arithmetic that most natu-
rally follows from his admittedly somewhat meager discussion of the subject
lead quite naturally in fact to the arithmetic formalizable in PRA, thus
differing both from Godel’s early view that finitism (i.e. the mathematics
based on intuitive evidence) is unbounded and from the bound ¢, that he
later entertained for the finitist ordinals.

1. Godel expressed the view that finitism is open-ended from almost the
beginning of his career: In a well-known passage in his 1931 incompleteness
paper, he wrote that his incompleteness theorems

do not contradict Hilbert’s formalistic standpoint. For this stand-
point presupposes only the existence of a consistency proof in
which nothing but finitary means of proof is used, and it is
conceivable that there exist finitary proofs that cannot be ex-
pressed in the formalism of [simple type theory over the natural
numbers|.[1931, p. 19§]

In letters that same year to Herbrand (1931, #2)* and von Neumann,? he
defends the position that, for any correct formal system, there could be
finitary proofs that escape it. On the face of it, his grounds seem to be that
the notion of a finitary proof is not well-defined. Thus in letter #3 (4.2.31)
to Bernays, he writes

By the way, I don’t think that one can rest content with the sys-
tems [Z*, Z**] as a satisfactory foundation of number theory (even

'T will cite Godel’s correspondence by giving the date and the number of the letter in
Kurt Godel: Collected Works, Volumes IV and V [Gédel, 2003a; Godel, 2003b).

2In letter # 3 (1931), von Neumann is disagreeing with Godel’s view on the formaliz-
ability of “intuitionism”, by which he meant finitism. The letter to which he was replying
has not been found.



apart from their lack of deductive closure), and indeed, above all
because in them the complicated and problematical concept “fini-
tary proof” is assumed (in the statement of the rule for axioms)
without having been made mathematically precise.

Z* and Z** are systems defined by Hilbert’s so-called w-rule and an extension
of it proposed by Bernays, where the application of these rules makes essential
reference to the notion of finitary proof.

In his earlier writings, Godel does not say exactly what he believes Hilbert’s
finitism to be and, between 1931 and 1958, he had nothing really to say at
all about finitism in his writings. But it is plausible to think that, when in
1858 he wrote “finitary mathematics is defined as the mathematics in which
evidence rests on what is intuitive” (anschaulichen) [Godel, 1958, p. 281],
he was expressing what he had always taken to be Hilbert’s conception. As
far as I know, Hilbert’s “Uber das Unendliche” [Hilbert, 1926] is the only
source in Hilbert’s writings on finitism or proof theory that he ever cited,
and surely his characterization of finitary mathematics accurately reflects
what he would have read there.

But the view expressed in the Dialectica paper [Godel, 1958, p. 280-
81] and essentially repeated at the end of his career in his English version
(unpublished by him) is somewhat weaker than his earlier statements. In the
latter, he still writes

Due to the lack of a precise definition of either concrete or ab-
stract evidence there exists, today, no rigorous proof for the in-
sufficiency (even for the consistency proof of number theory) of
finitary mathematics. [1972, p. 273]

(He had just previously, in footnote b, introduced the aforementioned term
“concrete intuition” to translate Kant’s “Anschauung” and had written that
“finitary mathematics is defined as the mathematics of concrete intuition” | so
there seems to be no doubt that “concrete evidence” refers to the evidence
based on concrete intuition. This would seem to be ample evidence that
Godel is still expressing the view that finitism is the mathematics in which
evidence rests on what is concretely intuitive.)

But there is this difference between his view in 1958 and later and the
view that he expressed in 1931: He now goes on to state that in spite of the
lack of a precise definition of what constitutes concrete or abstract evidence,
the insufficiency of finitary mathematics for the proof of consistency of PA



“has been made abundantly clear by the examination of induction by [sic] €y
The argument as stated in [1972, p. 273] is that induction up to arbitrary
ordinals < €y is not finitarily valid and that it could be proved finitarily if the
consistency of PA could. We will discuss this argument below, but for the
moment [ want only to point out that, although it does not contradict his
earlier view that finitary mathematics is open-ended, it does contradict the
view that his second incompleteness theorem does not close out the possibility
of a finitary consistency proof of PA.

In this connection, though, one should note that, in the 1960’s and 1970’s,
there was indeed some mind-changing in his correspondence with Bernays
and in the revised version [Godel, 1972] of the Dialectica paper over the
question of whether or not ¢, is the least upper bound of the finitist ordinals.
Although he concluded, in [Gédel, 1958; Godel, 1972], that no valid argument
had been given that it is the least upper bound, there are three references in
his correspondence with Bernays to proofs that it is. One is an argument by
Kreisel [1960; 1965], which admits as finitist a reflection principle for which
I can see no finitist justification. See [Godel, 2003a, letter # 40 (8/11/61)]
and Tait [1981; 2006]. Godel himself in [1972, p. 274, fn.4 and fn.f] explic-
itly recognizes that this goes beyond finitary reasoning in Hilbert’s sense. A
second proof Godel cites [2003a, letter # 68b (7/25/69)] is mine [Tait, 1961],
which proves in this connection only that recursion on w® is reducible to
nested recursion on w x «. The third [Gédel, 2003a, letter #68b (7/25/69)]
is Bernays’ argument for induction up to < ¢ in the second edition of Grund-
lagen der Mathematik, Volume 2. But this argument is simply a nicer proof
of (essentially) the result just mentioned from [Tait, 1961] and, again, does
not yield a finitary proof of induction up to < €y. (See [Tait, 2006, pp. 90-91]
for a discussion of this.)

But none of these changes concern Godel’s conception of finitism as the
mathematics whose evidence rests on concrete intuition. They only concern
the possibility of analyzing this kind of intuition and placing bounds on it.

2. The fly in the otherwise smooth ointment of this story of Godel’s con-
ception of finitism, however, is the set of notes for his lecture at Zilsel’s in
1938 [Godel, 1938al, in which he describes a system which he calls ‘finitary
(finite) number theory’. The lecture notes are quite rough, but it seems un-
controversial that the system he describes is primitive recursive arithmetic,



PRA, which is a formalizable system.? This fits neither his early view that
finitism is open-ended nor the view that he later on entertained, that ¢y is
the least upper bound of the finitist ordinals.

Before discussing this further, however, we need to distinguish two ques-
tions. One is: How did Gédel think the term “finitary” (“finit”) should be
applied? The other is: How did he understand Hilbert to be applying the
term? (Two others are: How should the term be applied? And: How did
Hilbert apply it? I gave my own answer to the first of these questions in
[Tait, 1981]. I will briefly discuss the second here; but mainly I remain ag-
nostic about whether Gédel correctly understood Hilbert.) I believe that the
evidence is overwhelming that, aside from his use of the term “finitary” in
the Zilsel lecture and in one other case, in all of the instances cited above
of his use of the term, it referred to what he took Hilbert to mean by it: In
almost every case, either there is a direct reference to Hilbert or the context
of the remark is a discussion of Hilbert’s finitism.

That, in the Zilsel lecture notes, he has something else in mind is clear
already from the fact that he is describing a hierarchy of systems which
he calls ‘finitary.” These include not only finitary number theory (PRA),
which he calls the lowest level of the hierarchy, but systems which extend
beyond this, involving functions of higher type, or the logical operations
(which he calls the ‘modal-logical route’), or transfinite induction [Godel,
1938a, pp.93-4]. The latter systems clearly go beyond the mathematics of
concrete intuition; and so it has to be concluded that he was not using the
term ‘finitary’ (‘finit’) here to refer to Hilbert’s finitism.

Incidentally, referring to finitary number theory, he writes “I believe that
Hilbert wanted to carry out the proof [[of consistency|] with this” (p. 93)
This may seem to hint at the view that Hilbert identified finitism with PRA,
but that is not what he is saying. He is repeating what is written in his notes
[Godel, *19330, p. 25] for his lecture at a meeting in 1933 of the MAA (joint
with the AMS). There he wrote that the methods used in attempts to prove
consistency “by Hilbert and his disciples” are all expressible in a system

3These lecture notes, together with those for his lecture in 1933 at a joint meeting of
the AMA and the AMS, play a central role in my discussion. In neither case does the
introductory note in [G6del, 1995] indicate any other source of information about the actual
content of the lecture. Given the nature of lecture notes in general and in particular—
despite the heroic efforts of the editors to clarify their content—the exceedingly sketchy
character of the Zilsel lecture notes, special care is needed in assessing their intended
meaning.



that he called ‘system A’, but which by 1938 he could identify with PRA.
(We will discuss the connection between PRA and the system A presently.)
Literally, Godel is mistaken about this: As Richard Zach has noted [Zach,
2003], Hilbert had approved as finitist Ackermann’s use of induction up to
w*” in his dissertation [Ackermann, 1924]. In fact, though, the only instance
of transfinite induction for which Ackermann gave any justification in his
paper was induction up to w? and his argument was essentially just the
reduction of this to primitive recursion with substitution in the parameters
(which of course reduces to primitive recursion). It seems quite possible that
Hilbert mistakenly believed that one could with some further complication
likewise derive the stronger cases of induction in PRA. (I discuss this further
in [Tait, 2005b, Appendix to Chapters 1 and 2].) In any case, there is no
reason to believe that Godel should have been aware of this: In Uber das
Unendliche [Hilbert, 1926], the Ackermann function (induction up to w*) is
not taken to be finitist. (See the discussion of this in [Tait, 1981].)

In the notes for the 1933 lecture, he described the hierarchy of systems
analogous to the 1938 one as ‘constructive’, rather than as finitary. The
explanation of why Godel applied the term “finit” to the systems in this
hierarchy in 1938 is probably given in the notes for his lecture at Yale [Godel,
*1941] on the Dialectica interpretation, where he does so as well. He writes

Let me call a system strictly constructive or finitistic if it satis-
fies these three requirements (relations and functions decidable,
respectively, calculable, no existential quantifiers at all, and no
propositional operations applied to universal propositions). I
don’t know if the name “finitistic” is very well chosen, but there
is certainly a close relationship between these systems and what
Hilbert called the “finite Einstellung”.

The conditions that he places on a finitary system in the Zilsel lecture notes
differ slightly from those in the Yale lecture notes, but not significantly.

3. There are hints in later writings that, independently of what Hilbert
thought, “finitism” might have a more extensive meaning for Godel simply
because the term “intuition” does. Just prior to his statement that “finitary
mathematics is defined as the mathematics in which evidence rests on what
is what is intuitive” in [1958], he sets the stage for this by specifying that he



is speaking about “what is, in Hilbert’s sense, finitary mathematics”. (The
italics are mine.) The footnote b in the 1972 version is even more suggestive:

7 Concrete intuition”, ” concretely intuitive” are used as transla-
tions of 7 Anschauung”, ”anschaulich”. ..."What Hilbert means
by ” Anschauung” is substantially Kant’s space-time intuition con-
fined, however, to configurations of a finite number of discrete
objects. Note that it is Hilbert’s insistence on concrete knowl-
edge that makes finitary mathematics so surprisingly weak and
excludes many things that are just as incontrovertibly evident
to everybody as finitary number theory. E.g., while any primi-
tive recursive definition is finitary, the general principle of prim-
itive recursive definition is not a finitary proposition, because it
contains the abstract concept of function. There is nothing in
the term "finitary” which would suggest a restriction to concrete
knowledge. Only Hilbert’s special interpretation of it introduces
this restriction.

Godel simply doesn’t see the ‘finite’ in ‘finitary’: He sees ‘concrete intuition’
instead, and he questions Hilbert’s restriction to the concrete.* By “abstract”
he refers to concepts

which do not have as their content properties or relations of con-
crete objects ...but rather of thought structures or thought con-
tents (e.g., proofs, meaningful propositions, and so on), where in
the proofs of propositions about these mental objects insights
are needed which are not derived from a reflection upon the
combinatorial (space-time) properties of the symbols representing
them, but rather upon a reflection upon the meanings involved.
([Godel, 1972, pp.272-3] Cf.[Gddel, 1958, p. 280]

I believe it would be very hard to defend his reference to such higher-order
objects, where are also to include functions of finite types over the numbers,
as “mental”. They are, after all, in the public domain, i.e. objective: we

4[Bernays, 1930-31] argues precisely for the view that the ‘finite’ in finitism is a corollary
of, let us say, concrete intuition. But I do not know whether Gédel ever read that paper. It
is striking that in Gédel’s correspondence with Bernays, neither ever refers to the latter’s
quite obvious involvement in the 1920’s in constructing the finitist ideology. It is as if
Bernays were merely a witness to Hilbert’s development of it.



define them and reason about them together. If we disagree about the truth
of an numerical equation, we believe that one of us is right and the other
wrong, not that you have your successor function and I have mine. If we
restrict the higher-order objects—proofs of arithmetic sentences, functions
of finite type over N, etc.—to ones that are computable, then they can be
represented by Turing machines and so, in this sense, are finite. But then, on
the face of it, our reasoning about them qua finite objects (Turing machines)
involves nontrivial arithmetic: For example, the definition of a computable
object of type A has roughly the same logical complexity as A itself (where
A may be a finite type over the natural numbers or a formula of PA).

Godel seems to have had in mind a kind of evidence that one might say
rests on abstract intuition, that goes beyond concrete intuition, but remains
logic free. This seems to be the idea that he was trying to work out—but
never succeeded—in the Dialectica paper and its revision (which he never
released for publication). But it is a different conception of intuition from
the kind of intuition he speaks of in [Godel, ¥*1961/7; Godel, 1964], where
intuition is invoked as a source of new axioms in set theory. Charles Parsons
(1995, pp. 57-58] makes the distinction between the concrete intuition of
Hilbert’s finitism and intuition in the sense that it is used in [Godel, 1964;
Godel, *1961/7] and discusses the latter in some detail. I am suggesting
that for Godel there was another conception of intuition, to which I am
referring as ‘abstract intuition’, which would play the same foundational role
as concrete intuition. For the purpose of consistency proofs it was essential,
on pain of circularity, that the methods used to prove consistency—finitism
or proposed extensions of it—rest on a different, non-azxiomatic foundation
from the axiomatic theories whose consistency is to be proved.

Anticipating §4 below, if we understand that what is given with ‘concrete
intuition’ is finite iteration, as an operation that can be applied to operations
on finitary domains (i.e. domains which can be represented by the domain
of natural numbers), then a natural extension to ‘abstract intuition’ arises
simply by admitting iteration to be applied to operations on non-finitary
domains, such as the domain of numerical functions, the domain of function
on these, etc. On this basis, one would then have a foundation in abstract
intuition for Godel’s theory of primitive recursive functions of finite type,
although not the one Godel was after. That is because of his finiteness
requirement: He wanted to restrict the domain of functions of type n + 1
to the hereditarily computable ones, i.e. to those which are computable
applied to computable functions of type n. And he required that this notion
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of ‘computable function of type n’ be understood in some way that is logic-
free—and that is why he failed. See [Tait, 2005a] for a fuller discussion of
this. We note here that, again giving up the finiteness requirement, this same
‘abstract intuition’ also provides a basis for intuitionistic first-order number
theory.)

But this ‘abstract intuition’, too, is very different from that discussed
in [Godel, *1961/7]. In set theory the finite iteration ‘given in intuition’ is
analyzed away, a la Frege/Dedekind.

4. In [*1961/7], Godel related intuition as a source of new axioms to Kant’s
conception of intuition and its role in mathematics. In this and the next
section, I want to comment on the relation between Gédel’s conception(s)
of intuition and Kant’s. Goédel’s conception seems to correspond well with
Leibniz’s notion of intuition: a direct insight into truth, which is the starting
point of proof—although, as Parsons points out [1995, p. 61], for Godel
the insight need not be infallible. For both Leibniz and Godel, intuition is
propositional: To use Parsons’ term [1995, p. 58], it is intuition that.’ Here
is what Godel writes in [¥1961/7):

I would like to point out that this intuitive grasping of ever newer
axioms that are logically independent from the earlier ones, which
is necessary for the solvability of all problems even within a very
limited domain, agrees in principle with the Kantian conception
of mathematics. The relevant utterances by Kant are, it is true,
incorrect if taken literally, since Kant asserts that in the deriva-
tion of geometrical theorems we always need new geometrical
intuitions, and that therefore a purely logical derivation from a
finite number of axioms is impossible. [Gddel, ¥*1961/7, p. 10]

This is a mistake, and it is this incorrect understanding of Kant that supports
Godel’s view that reasoning based upon concrete intuition is open-ended.
Indeed, as I will argue below, on the most plausible reading, a development
of Kant’s philosophy of arithmetic leads precisely to PRA.

However much Kant may have on occasion used the term “intuition” (An-
schauung”) in the propositional sense, it is a fundament of his philosophy

5Tt is true that intuition of may be suggested by “in this kind of perception, i.e.,
in mathematical intuition” in [1964, p. 271]. But, as I argued in [Tait, 1986, fn. 3],
the context makes it clear that it is propositional knowledge—namely axioms—that the
intuition is to be yielding.



to distinguish sensibility, the faculty of intuition, from understanding, the
faculty of concepts, and there is no doubt but that, in this context, intu-
ition is intuition of, the unique immediate mode of our acquaintance with
objects: All objects are represented in sensible intuition. Abstracted from
its empirical content the intuition is just space (pure outer intuition) and
time (pure inner intuition). He also speaks of (sensible) intuitions of objects
to refer to their representations in intuition. But an intuition by itself is
not knowledge: The latter requires recognizing that an object represented in
intuition falls under a certain concept or that one concept entails another. A
priori knowledge of the latter sort, that all S are P, may be analytic, namely
when P is contained in S. But, although the truths of mathematics can be
known a priori, they are not in general analytic. When they are not analytic,
the connection between subject and predicate is mediated by construction.’
The demonstration of the proposition begins with the ‘construction of the
concept’ S. Thus, to take one of Kant’s examples, to demonstrate that the
interior angles of a triangle equal two right angles, we construct the concept
‘triangle’, construct some auxiliary lines, and then compute the equality of
the sums of two sets of angles, using the Postulate “All right angles are
equal” and the Common Notions “Equals added to (subtracted from) equals
are equal”. The construction of a concept is according to a rule, which Kant
calls the schema of the concept. In the case of geometric concepts these are
or at least include the rules of construction given by Euclid’s ‘to construct’
postulates, Postulates 1-3 and 5. Of course, these rules are rules to construct
objects from given objects. For example, given three points A, B, C', we can

6Tt has frequently been asserted that at least some of the explanation for Kant’s theory
of sensibility and the distinction between demonstration in mathematics and discursive
reasoning lies in the poverty of logic in his time: Construction and computation could not
be expressed as logical processes. But another, complementary, way to understand him is
to see that he was expressing and attempting to underpin what was in his day a commonly
held conception of mathematics, as primarily involving computation and construction. So
long as € — d-arguments could be hidden behind infinitesimals, this view of mathematics
could prevail, at least if not too closely scrutinized. It was precisely the evolution of
mathematics in the nineteenth century, which forced complex € — J-arguments out into
the open, that led to the development of logic—in particular, quantification theory—in
which computation and construction could be expressed. (This latter point was made in
a talk by William Ewald in a workshop on Hilbert’s program in 1995 at Carnegie-Mellon
University and the University of Pittsburgh.) It of course also led to a more structural
conception of mathematics itself, in which computation and construction yielded to logic
and existence axioms and proofs. (See [Stein, 1988].)
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construct the three lines joining them and thereby, assuming that they are
non-collinear, construct the triangle ABC'.

Kant recognized that we cannot be speaking of empirical construction
here, although he doesn’t explicitly give as a reason that empirical objects
fail to satisfy the assumptions of geometry. Rather he was concerned with
the fact that any empirical figure would be too special to satisfy the require-
ment that the demonstration apply generally: For example, the empirically
constructed triangle is either a right triangle or not—at least if we ignore
the fact just mentioned, that they are not really triangles at all. If right,
then why does the demonstration apply to those triangles which are not?
And conversely.” Kant’s solution to this problem is that we construct the
figure in imagination: Thus, we imagine three non-colinear points X,Y, Z
and construct from these the triangle XY Z and whatever auxiliary objects
that are needed. These points are indeterminate, in the sense that their only
properties are those we put into them—in other words, those implied by the
original assumption that they are non-colinear. In general, we are able to
construct figures in imagination that contain only the properties that we put
into them. The construction of the triangle therefore serves as a template
for demonstrating the theorem for any three empirical non-colinear points.

There is no general agreement about how to understand this construction
in imagination. Are we to understand that an object is really being con-
structed in imagination—that the construction-of-a-triangle-from-the-given-
points in imagination is the construction of an object from given objects,
but from ones which are in the relevant sense ‘indeterminate’;® or are we to
understand that no objects are given and no object is being constructed at
all, but that it is the total construction itself, regarded as a function that
can be applied to any system A, B,C' of empirical points, which is the ob-
ject of pure geometry? On this latter view, developed in the writings of
Michael Friedman (see especially [Friedman, 1992; Friedman, 2008]), there
are no objects of pure intuition: rather pure intuition, i.e. space, is simply
the context of the constructions, giving the rules of construction meaning.”

"Interpreting Kant to hold that we construct the triangle in pure intuition or that it
is itself a ‘pure intuition’ presents the same difficulty: if its a triangle, then it is either a
right triangle or it is not.

81 think it is enlightening here to think of the indeterminates X1,..., X, in the poly-
nomial extension R[X7,...,X,] of a ring R.

T suggest the view that it is the latter idea that Kant was aiming for, but that a
sufficiently general notion of function was unavailable to him; and so in the construction
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On this view, geometry qua mathematics is really about these constructions,
about the functions. The theorems of geometry (roughly) apply to empirical
figures because our representation/construction of these figure in empirical
intuition is in accordance with these self-same rules.

But on neither view is intuition intuition that.

So, on the basis of this, what can be made of Godel’s assertion “Kant
asserts that in the derivation of geometrical theorems we always need new
geometrical intuitions”, quoted above? Presumably, the ‘new geometrical
intuition” needed for the theorem that all S are P is in the construction of
the concept S or in the auxiliary constructions. But Kant is quite clear that
all of these constructions are according to the schemata for the concepts in
question. And there is nothing in Kant’s writings to indicate a belief that any
new rules of construction are needed, much less one for the demonstration
of each new geometric theorem. Yet it is these rules of construction, that
correspond, via the transformation from “To construct an x such that ...”
to “There exists an x such that ...”, to axioms. So I think that Goédel’s
conception of intuition in [Gédel, 1964; Godel, *1961/7] has little to do with
Kant’s notion of intuition.

5. Kant had rather less to say about arithmetic than he did about geometry.!°
Corresponding to the concepts of triangle, line, etc., in arithmetic there is the
concept magnitude (Grosse and, in parenthesis, quantitatis.'® The schema
according to which we construct this concept is number. About this he writes

The schema is in itself always a product of imagination. Since,
however, the synthesis of imagination aims at no special intu-
ition, but only at unity in the determination of sensibility, the
schema has to be distinguished from the image. If five points be

of the triangle in imagination, for example, there are imagined points X, Y, Z which play
the role of indeterminates—non-colinear, but otherwise indeterminate in their relations
with one another—in the construction.

1080 far as I can recall, the single example he discusses in C PR of a synthetic arithmetical
proposition is 7+ 5 = 12 (B15 — 16), which he states is synthetic because being 12 is not
contained in the concept of being 7+5: Only the concept of being some number is contained
in it. But I don’t understand that: How does the concept of a totality consisting precisely
of seven things and five other things contain the concept of having a (finite) number? It
would seem that that too would be a synthetic judgment. See footnote 12 below.)

' This refers to magnitude in the sense that two distinct geometric figures can have
the same magnitude. Kant distinguishes this from the (Greek) concept of magnitude
according to which the geometric objects themselves are the magnitudes.
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set alongside one another, thus, ...I have an image of the number
five. But if, on the other hand, I think only a number in gen-
eral, whether it be five or a hundred, this thought is rather the
representation of a method whereby a multiplicity, for instance a
thousand, may be represented in an image in conformity with a
certain concept, than the image itself. ... . This representation
of a universal procedure of imagination in providing an image for
a concept, I entitle the schema of this concept. (B179)

He continues at B182:

[T|he pure schema of [the concept of] magnitude ... is a repre-
sentation which comprises the successive addition of homogeneous
units. Number is therefore simply the unity of the synthesis of
the manifold of a homogeneous intuition in general, a unity due to
my generating time itself in the apprehension of the intuition.'2

So the schema of the concept of magnitude, i. e. number, is finite iteration,
which he conceived as always taking place in time, as in counting—that is
why arithmetic is associated with inner intuition. In taking number to be the
schema of magnitude, he is recognizing the fundamental role of counting in
measurement—comparing two lines, for example, with respect to how many
units they contain. Thus:

No one can define the concept of magnitude in general except
by something like this: That it is the determination of a thing
through which it can be thought how many units are posited in
it Only this how-many-times is grounded on successive repetition,
thus on time and the synthesis of the homogeneous in it. (B300,
italics mine)

12The reader who finds all of this perfectly clear might consider taking up Kant
scholarship—and, as an initial exercise, answering the following question: It would seem
that Kant’s assertion that the concept of consisting of precisely seven things and five oth-
ers includes the concept of having a number must be understood now to mean that it
includes the concept of being a quantity. But the concept of quantity applies only via the
schema, number, which consists in counting it out. So how do we know that the totality
can be counted out without either counting it out (and so knowing that the sum is 12) or
invoking the principle that 7+ V is a quantity for arbitrary (indeterminate) quantity V7
But in either case, the knowledge would seem to be synthetic, involving construction in
accordance with the schema number.
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If we follow the model given by Kant’s geometric examples, we may con-
struct in productive imagination the quantity (i.e. finite iteration) f(Vi,...,V},)
from 0 (the null iteration), the construction +1 (of iterating once more), and
the indeterminate quantities (finite iterations) Vi,...,V,. Here the inde-
terminate finite iterations Vi, ..., V,, correspond to the indeterminate points
in the case of geometry. A proof of the general arithmetical proposition
fVi, ..., V,) = 0 would also be a construction in a finite number of steps.
But, on pain of failing to found any non-trivial arithmetic, a single step in
the construction either of f(Vi,...,V,) or of the proof of f(V3,...,V,) =0
may consist of applying one of the finite iterations Vi,...,V, itself to iter-
ate a construction obtained at earlier steps. For example, we construct the
number 7+ V as (+1)V(7). Again, suppose we have constructed a proof p
of f(0) =0 and a proof ¢(V) of f(V) =0 = f(V+1)=0. ¢(V) is to be
understood as a computation of f(V +1) = 0 from an arbitrary computation
of f(V)=0. Then a proof (V) of f(V) =0 is defined by

$(0) =p PV +1) =¢(V)(V)

Here we understand the right-hand side of the second equation to be the result
of applying ¢(V) to the particular computation (V). This definition is not
a pure iteration; but it is not difficult to reduce it to one. (See [Tait, 2005a].)

Thus, as in the case of geometry, the role of intuition is not that of
a source of truth (‘intuitive truths’). Rather it is this: We may imagine an
arbitrary quantity V', a finite iteration, and, in pure inner intuition (i.e. time)
construct a quantity f(V') or construct a proof of a proposition f(V) = 0
from it.

This conception can be developed to provide a foundation for definition
of functions of a numerical variable and proof of equations by mathematical
induction (see [Tait, 1981] and [Tait, 2005a, §1] for details) that is alternative
to the axiomatic foundation involving second-order logic in [Dedekind, 1888].
Dedekind himself was quite explicit about wanting to eliminate ‘inner intu-
ition’ from the foundations of arithmetic (see p. iv of the preface to the
first edition); but when Hilbert began to attack the problem of proving the
consistency of axiomatic theories, he or, better, he and Bernays came to re-
alize that, on pain of circularity, one needs a different kind of foundation for
mathematics of the consistency proofs themselves, and returned (for this) in
1922 to Kant’s—or at least what Hilbert took to be Kant’s—foundation.?

13Tn [1931, p. 8], Hilbert mentioned Kronecker’s conception of mathematics in this con-
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If iteration is restricted to operations on domains of finite objects, say the
domain, for each n, of n-tuples of natural numbers or (as in the above ex-
ample) a domain of computations, then this conception leads to the system
PRA. AsImentioned §2, I have argued, independently of what Kant, Hilbert
and Bernays, or Godel believed, that this is what the term “finitism” should
mean.

Of course, PRA goes well beyond what one finds in Kant’s writings. I only
want to argue that it embodies a logic-free conception of arithmetic based on
iteration that naturally derives from Kant, but in which iteration is freed from
the temporal character it has in Kant’s theory. This ‘Kantian’ conception
of arithmetic is in rough agreement with the intuitionism of Poincaré and
Weyl. For the former the principle of iteration is given in intuition and
is the one synthetic a priori truth of mathematics (see [Poincaré, 1900])
and for the latter, at least in his intuitionistic phase, it is the basis of all
arithmetic, the one principle that need not and indeed cannot be proved.
See [Weyl, 1921], the end of Part II §1,“The Basic Ideas”, and the first
paragraph of §2a (“Functio Discreta”), and also [Weyl, 1949, p. 33]. Weyl
had already rejected Dedekind’s foundation of arithmetic on grounds of its
impredicativity in Das Kontinuum [1918].

6. As was mentioned above, Godel’s only reference to Hilbert’s writings
concerning finitism is the one cited above, to “Uber das Unendliche”. Here
is the relevant part of what Hilbert wrote:

Kant already taught—and indeed it is part and parcel of his
doctrine—that mathematics has at its disposal a content secured
independently of all logic and hence can never be provided with
a foundation by means of logic alone;. ... Rather, as a condition
for the use of logical inferences and the performance of logical
operations, something must already be given to our faculty of
representation, certain extralogical concrete objects that are in-
tuitively present as immediate experience prior to all thought. If
logical inference is to be reliable, it must be possible to survey
these objects completely in all their parts, and the fact that they
occur, that they differ from one another, and that they follow each
other, or are concatenated, is immediately given intuitively, to-

nection in opposition to Dedekind’s foundations and expressed the view that Kronecker’s
conception “essentially coincides with our finite mode of thought.”
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gether with the objects, as something that neither can be reduced
to anything else nor requires reduction. This is the basic philo-
sophical position that I consider requisite for mathematics and,
in general, for all scientific thinking, understanding, and commu-
nication. And in mathematics, in particular, what we consider
is the concrete signs themselves, whose shape, according to the
conception we have adopted, is immediately clear and recogniz-
able.

The concrete objects Hilbert had in mind are the words over a finite alphabet,
since he was interested in reasoning about the expressions in formal axiomatic
systems; but of course it suffices for us to think only about the case of
reasoning in arithmetic, which concerns the words

over the single letter |. In the passage quoted above, Kant refers to these
words—or at least to particular physical instantiations of them—as images
of numbers. From a Kantian point of view, it seems fair enough to represent
particular quantities by these words. But the words are dead: What are we
supposed to do with them? There is no trace in the passage just quoted
from Hilbert of the central role of iteration, of the Kantian conception of
iteration as the schema for constructing quantities. In fact Hilbert gives no
account, of how we are to reason about these words in general, except for the
negative requirement that the reasoning be logic-free. This is not only true
of the passage in question: The criticism extends as far as [ know to all of the
writings of Hilbert and Bernays on finitism.We are given examples of finitist
reasoning and examples of non-finitst reasoning, but we are not told what
finitist reasoning is. For example, the rule of definition and proof by math-
ematical induction emerges as a finitist principle, on the grounds that the
words over | are built up by finitely iterating the operation of adding another
|; but it is in no way marked out, as it was by Weyl, as the principle of finitist
reasoning. It is not explicitly excluded by them that logic-free principles of
transfinite induction up to some « (represented by an ordering of the natu-
ral numbers) can have equal claim to being finitist, even though they might
not be derived from mathematical induction. But on what grounds does
one distinguish between those principles that are finitist and those that are
not?'* I believe that no clear answer is given to this question by Hilbert and

14 A minimalist reading of the above passage from “Uber das Unendliche” has led Parsons
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Bernays. In particular, although the issue has been debated on the battlefield
of §7 of Grundlagen der Mathematik, Volume 1 [Hilbert and Bernays, 1934]
(see [Zach, 1998], [Tait, 2002] and [Tait, 2005b, Appendix]), the question of
whether Hilbert and Bernays, in the period 1922 until 1931, when the quest
for consistency proofs was framed in terms of finitism and before the need
to extend that framework became apparent, regarded reducibility to PRA
as the essential mark of finitist definition and proof is not, in my opinion,
definitively resolved.

On the other hand, the absence of a clear statement of that criterion could
lead one to the presumption that they did not accept it. There are some other
bits of information that tend towards that conclusion. One concerns what
has been misnamed ‘Hilbert’s w-rule’ in his [1931]. This asserts that, if the
quantifier-free formula A(n) is true for all numbers n, then Vo A(z) may be
taken as an axiom. “True” here has to mean true on finitist grounds and,
moreover, Hilbert refers to this principle as being finitary. One can reason-
ably conclude that the principle can be restated as saying that VxA(z) may
be taken as an axiom if A(V) is finitistically valid, for the arbitrary (inde-
terminate) number V. But if Hilbert intended finitism to be limited to what
can be defined and proved in PRA, his ‘w-rule’ amounts simply to adding
PRA to the formalism. Likewise, in a letter [Godel, 2003a, letter #2 (1931)]
to Godel, written in 1931, Bernays suggests that perhaps the incompleteness
theorems do not apply to the result of adding this rule to first-order arith-
metic. Certainly if he were identifying what is finitistically provable with

to the conclusion that even primitive recursion, in particular, exponentiation, cannot be
founded on intuition [Parsons, 1998, p. 265]. He believes that not even the elaboration of
the finitist point of view in [Bernays, 1930-31] avoids this conclusion (p. 263); but that
is not clear to me. If one takes as the basis of finitism not ‘intuitions’ of inert symbol
complexes, but ‘processes’, to use Bernays’ term, then exponentiation and, indeed, all of
the primitive recursive functions become accessible. It remained only for Bernays to be
more specific about the processes in question and explain why, or better, in what sense
they are founded on intuition. He didn’t do that. But I don’t see that this justifies
Parson’s position: It isn’t that we are told exactly how to reason about the dead symbols
and what the limits of such reasoning are, and that what we are told does not support
exponentiation. Aside from examples, we are told nothing about how to reason concerning
them, except that it should be logic-free. It is true that a certain sketch is given of how to
understand addition and multiplication finitistically, using the operations of concatenation
and replacement (of each occurrence of | in a word by a given word), where there is
no reasonable extension of this sketch to exponentiation. But these constructions are
themselves just examples. The general principle of primitive recursion is another example
that is given.
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what is provable in PRA, he would have known that this suggestion is false.
More generally, in all of his published correspondence with Godel, Bernays
nowhere suggests that PRA was understood to be the criterion for finitist
meaningfulness and validity. Indeed, in letter #68b (7/25/69) to Bernays,
Godel states that “nested recursions are not finitary in Hilbert’s sense (i.e.
not intuitive).” In his reply, letter #69 (1/7/70), Bernays remarks that he
feels that manifold nested recursions are finitary in the same sense as prim-
itive recursions. But Bernays was then eighty-two years old, and (although
[ grow increasingly reluctant to do so) it seems reasonable to somewhat dis-
count what he said then as evidence for his or Hilbert’s views in the 1920’s.
In fact, the argument he sketches involves iteration applied to an opera-
tion on the non-finitist domain of numerical functions.(See [Tait, 2002, pp.
415-416].) The question remains whether in the 1920’s Hilbert would have
accepted a definition or proof as finitist that he knew could not be reduced
to PRA.

Of course, there is an oft-stated view, perhaps suggested first by Kreisel
(see [Kreisel, 1958]), with which I have considerable sympathy, that Hilbert’s
attitude towards what counts as finitist was pragmatic: Find the consistency
proof and then see what has been used.

7. Let me turn to another puzzle in connection with Godel’s conception
of finitism, concerning the system A described in the lecture notes [Godel,
*19330] for his lecture at a meeting of the M AA (held jointly with the AMS).
It should be noted that Godel does not use the term “finitism” or “finitary” in
the 1933 lecture notes at all, and in particular, as we have noted, he refers to
this hierarchy as a hierarchy of ‘constructive’ systems. But nevertheless, there
is a puzzle about the relationship between finitary number theory (PRA) in
the 1938 lecture notes and the system A: Both are described as being at the
lowest level of the hierarchy.!®

A is a free-variable system based on the principle of both definition and
proof by complete induction. It differs from the finitary number theory of
the 1938 lecture, however, in that it admits, besides the domain of natural
numbers, other totalities for which “we can give a finite procedure for gener-
ating all of their elements” [Godel, *19330, p.23]. Since complete induction
is to be valid when applied to the generating procedure in each case [ibid,
p. 24|, clearly there must be a unique generation for each object. Thus,

151 have discussed this in some detail also in [2006, §9, pp. 98-105].
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the totalities in question can be represented by certain ‘finitely generated’
totalities of words over some alphabet (finite or itself a finitely generated
totality )—which, in view of the fact that A is to be a foundation for proof
theory, concerned with syntactical systems of the sort studied in the Hilbert
school, is undoubtedly what Godel had in mind. The admission of such to-
talities, other than the totality of numbers, is the sole difference between the
system A and the finitary number theory of the Zilsel lecture notes.

Why this difference between the system A in 1933 and the system of
finitary number theory of 19387 A related question is why in the notes for
the 1933 lecture he wrote that

there are reasons for believing that [any intuitionistic proof com-
plying with the requirements of system A| can easily be expressed
in the system of classical analysis and even in the system of clas-
sical arithmetic.

The answer, I think, lies in the fact that in 1933 he felt that what counted as a
‘finite procedure’, i.e. an effective procedure, was not convincingly analyzed,
so that it was not fully established that all ‘finitely generated’ totalities
of words could be, via Godel-numbering, expressed in arithmetic. This is
the doubt that he expressed one year later in footnote 3 of his lectures in
Princeton on incompleteness [Godel, 1934, p. 3, fn. 3.

On the other hand, as he suggested in that footnote, there was some
ground for believing in the analysis of effective procedure in terms of general
recursiveness, so that the totalities generated by finite procedures are all
representable by recursively enumerable sets of numbers, i.e. by formulas
Jyé(z,y) where ¢ is primitive recursive. Thus the totality of natural numbers
is the only finitely generated totality required. Since primitive recursion can
be derived in second-order number theory (as was already proved in effect
by Dedekind) and even first-order number theory (as Gdel himself proved in
[1931]), it follows that there was indeed a reason for believing that proofs in
accord with the system A could always be expressed in classical analysis and
even in classical arithmetic.

In some notes [Godel, *1937], evidently for a lecture sometime in the
1930’s, Godel expressed his belief that the “gap” between the informal notion
of computability and a precise mathematical definition “has been filled by
Herbrand, Church and Turing.” Certainly he is referring to the papers of
Church and Turing in 1936. If we assume that he had that belief when he
wrote his notes for the 1938 lecture at Zilsel’s, this will explain why, in those
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notes, he restricted the lowest level of finitary mathematics to PRA, i.e., to
the case of system A in which the only totality involved for which “we can
give a finite procedure for generating all of [its] elements” is the totality of
natural numbers.!®

8. As I mentioned earlier, the real change in Godel’s view of finitism was
later, first visible in the Dialectica paper, [1958]. It is there that he asserts
that induction on €, cannot be proved finitarily: I quote the slightly expanded
passage in the 1972 version:

Recursion for ¢, could be proved finitarily if the consistency of
number theory could. On the other hand the validity of this recur-
sion can certainly not be made immediately evident, as is possible
for example in the case of w?. That is to say, one cannot grasp at
one glance the various structural possibilities which exist for de-
creasing sequences, and there exists, therefore, no immediate con-
crete knowledge of the termination of every such sequence. But
furthermore such concrete knowledge (in Hilbert’s sense) cannot
be realized either by stepwise transition from smaller to larger
ordinal numbers, because the concretely evident steps, such as
a — o, are so small that they would have to be repeated ¢,
times in order to reach €y. [1972, p. 273]

I don’t understand the first statement of this quote. Recursion up to a < ¢
can be formalized by the formula “If f(0) = a, then there is a number k such
that f(k+1) £ f(k)”, where f is a free numerical function variable, < is the
standard ordering of all the natural numbers of order type €y, and a is the
number representing « in that ordering. Indeed, as stated in [Godel, 1958, pp.
281], Gentzen [1943] proved that, for each @ < ¢, this formula is deducible in
PA. But why does the consistency of PA finitarily imply these statements?
Gentzen’s own consistency proof, in the form that for every deduction in PA,
every one of his reduction sequences terminates with a sequent () = A, where
A is a true atomic sentence, does indeed imply this. (Roughly, the ordering
up to « is embedded in the tree of reductions corresponding to the deduction

16The history of Godel’s reaction to Turing’s analysis is somewhat more complex than
I represented it to be in [2006] and in an earlier version of this paper. I have Wilfried Sieg
to thank for pointing this out to me so that I avoided error (at least about this). As to the
precise relationship between Godel and Turing on computability and the issues involved,
the reader should consult [Sieg, 2006].
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of recursion up to «.) But I don’t see why an arbitrary finitary consistency
proof for PA should translate into Gentzen’s.

Nevertheless, the argument that recursion on ordinals < €j is not finitarily
provable is interesting. In letter #61(1/24/67) to Bernays Godel wrote

I am now convinced that €y is a bound on Hilbert’s finitism, not
merely in practice but in principle, and that it will also be possible
to prove that convincingly.

The argument in the 1972 paper is a considerable expansion of his remarks
in 1957; and so it is reasonable to assume that it contains the analysis which
led to the conviction. The basic notion is that of “grasping at one glance
the various structural possibilities which exist for decreasing sequences” from
a countable ordinal a—TIets just call this grasping a. We can assume that
the descending sequences are in fact paths through a conceived as an upside-
down connected tree: 0 is the null tree, a+1 is the tree obtained by adding one
node above the tree o, and lim,, ., o, is the tree whose immediate subtrees are
the a,. (Of course, this distinguishes ordinals that are classically identified—
e.g. w = lim,n with lim,.,2n. But that is of no consequence for the
discussion.)

Surely 1 is graspable and, if a and (3 are graspable, then so is a+ (3, since
its paths are just the concatenation of a path through 3 followed by one
through «. Indeed, if a, ..., a4 are graspable, then so is a; +- - - +ayg. Thus,
when (3 is graspable, then so is # x n for any fixed n. But we cannot explicitly
‘grasp in one glance’ an infinite number of things; and so if « is infinite and
we grasp at one glance all the structural possibilities of paths through «,
then obviously the glance has to contain some schematic elements—some
“...7 representing the result of an arbitrary finitely repeated concatenation
of paths through some given graspable ordinals. Thus, we can represent w as
the arbitrary finitely repeated concatenation of paths through 1: a 4+ w can
be represented by a---;. I don’t want to fully explore the point now, but
given that we are speaking of ‘immediate concrete knowledge’ here, I don’t
see what candidates for an --- are available other than than ---5 for some
graspable 3, i.e. representing arbitrary concatenations of paths through f.
Thus, if we admit this principle for constructing graspable ordinals, then
w? =1 and w"™! = 0---,» shows that w" is graspable for each particular
n < w. But, if # < w®, ie. B < w" for some n, then 0---3 = X w < w";
and so on this analysis, w*” (the ordinal of PRA) is not graspable.!”

17One might think to diagonalize: We obtain w“ by considering finite iterations of
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In the passage quoted above in, Godel himself seems to suggest that
the operation o — o? preserves graspability, presumably because a path p
through «o? arises from a path ¢ in o by replacing each node of ¢ by a path
through a. Of course, assuming the graspability of w, this operation will
yield the same bound w®, but I question Godel’s intuition about this: What
B x a amounts to is the construction — — —3, but where “— — =" now refers,
not to arbitrary finite iteration, but rather to iteration up to some arbitrary
v < a. I do not see why the graspability of o should imply the graspability of
— — —,. When v is infinite, the iteration in question requires the choice of an
infinite number of paths through 4. (Once again, it seems to me, Godel failed

to respect the unique character of the finite—this time in finite iteration.)!®
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