
GÖDEL’S REFORMULATION OF
GENTZEN’S FIRST CONSISTENCY PROOF FOR ARITHMETIC:

THE NO-COUNTEREXAMPLE INTERPRETATION

W. W. TAIT

Abstract. The last section of “Lecture at Zilsel’s” [9, §4] contains an interesting

but quite condensed discussion of Gentzen’s first version of his consistency proof

for PA [8], reformulating it as what has come to be called the no-counterexample

interpretation. I will describe Gentzen’s result (in game-theoretic terms), fill in the

details (with some corrections) of Gödel’s reformulation, and discuss the relation

between the two proofs.

1. Let me begin with a description of Gentzen’s consistency proof.
As had already been noted in [5], we may express it in terms of a
game.1 To simplify things, we can assume that the logical constants
of the classical system of number theory, PA, are ∧, ∨, ∀ and ∃ and
that negations are applied only to atomic formulas. ¬φ in general
is represented by the complement φ of φ, obtained by interchanging
∧ with ∨, ∀ with ∃, and atomic sentences with their negations. The
components of the sentences φ ∨ ψ and φ ∧ ψ are φ and ψ. The
components of the sentences ∃xφ(x) and ∀xφ(x) are the sentences
φ(n̄) for each numeral n̄. A ∧- or ∀-sentence, called a

∧
-sentence,

is thus expressed by the conjunction of its components and a ∨- or
∃-sentence, called a

∨
-sentence, is expressed by the disjunction of

them; and so it follows that every sentence can be represented as
an infinitary propositional formula built up from prime sentences—
atomic or negated atomic sentences. Disjunctive and conjunctive
sentences with the components φn (where the range of n is 1, 2 or ω)
will be denoted respectively by∨

n

φn

∧
n

φn

I am grateful to Jeremy Avigad, John W. Dawson Jr., and Solomon Feferman
for valuable comments on earlier drafts of this paper.

1This paper is an expansion of §4 of [20]. I regret that I did not know Thierry
Coquand’s paper when I wrote [20] and so failed to cite it.
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2. There is of course one well-known game T (φ) associated with
sentences φ of PA, played by

∨
and

∧
. Each stage of the game

consists of exactly one sentence on the board, with φ on the board
at the first stage. Let ψ be on the board at a given stage. If ψ
is a prime sentence, then the game is over and is won by

∨
if the

sentence is true and by
∧

otherwise. If ψ is a
∧

-sentence, then
∧

replaces it on the board by one of its components at the next stage;
and if it is a

∨
-sentence, then

∨
replaces it on the board by one of its

components at the next stage. The play is over in ≤ n+1 steps, if n
is the logical complexity of φ. The truth of φ is obviously equivalent
to the existence of a winning strategy for

∨
in T (φ). But, as is also

well-known, there may be no effective such winning strategy. The
most elementary example of this is

∀x∃y∀z[φ(x, y) ∨ φ(x, z)]

where φ(x, y) is decidable and ∃yφ(x, y) is not.

3. Gentzen’s game G(Γ), unlike T (φ), is played with nonempty
finite sets Γ of sentences, rather than with single sentences, and the
plays are infinite. The game starts with Γ on the board. Let ∆ be on
the board at a given stage n. If ∆ consists only of prime sentences,
then the set on the board at stage n+ 1 is again ∆. Assume that ∆
contains some composite sentences. Then

∨
designates one of them,

say φ. If φ is a
∧

sentence, then at stage n+ 1
∧

moves by adding
to ∆ a component of φ and possibly dropping φ from the set. If φ
is a

∨
-sentence, then

∨
moves by adding to ∆ a component of φ

and possibly dropping φ from the set.
∨

wins the play in G(Γ) iff
at some stage, the set on the board contains a true prime sentence;
otherwise,

∧
wins. A winning strategy for

∨
in G(Γ) was called by

Gentzen a reduction of Γ.2

It is not hard to see that the disjunction of the sentences in Γ is
true if and only if there is an effective reduction of Γ. The essential
difference between G({φ}) and T (φ), accounting for the effectiveness
of the winning strategy in the former case, is that

∨
is allowed to

keep the designated sentence
∨

n ψn on the board as well as some
component of it, so that if he makes a bad choice of a component
the first time, he has a chance later on to choose a different one. In

2Gentzen considered, not sets of sentences, but sequents, of the form
φ1, . . . , φn ⇒ ψ (n ≥ 0). We have simplified his treatment by coding this
sequent by the set {φ1, . . . , φn, ψ}.
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fact, a winning strategy (not a very efficient one!) consists in going
back infinitely often to designate each

∨
n ψn that appears on the

board, so that eventually all of the ψn are chosen.
Gentzen’s first version of his consistency proof consisted in effec-

tively constructing, from each formal deduction of a set Γ of sen-
tences of PA, a reduction of Γ.3 Such a reduction determines a
well-founded tree, whose paths are precisely the plays (up to the
stage at which there is a true prime sentence on the board) in ac-
cordance with the winning strategy for

∨
in G(Γ). In the published

version of his first proof, Gentzen assigned an ordinal < ε0 to each
formal deduction, which turns out to be a bound on the height of
the associated tree. The construction of the reduction proceeds by
recursion on the ordinal. [15], at the cost of slightly obscuring (if
you don’t read it thoughtfully) the constructive content of Gentzen’s
result, recasts the construction as a cut-elimination theorem for PA
with the ω-rule, in which the cut-free deduction obtained from the
given deduction is the tree determined by Gentzen’s winning strat-
egy.4 An original version of Gentzen’s proof, which he did not publish
but is now published in [3], did not assign ordinals to deductions: in
place of recursion on ordinals, it uses recursion on well-founded trees
(essentially the principle of bar recursion).5

4. Gödel describes Gentzen’s proof in [9] in a way that avoids
a calculus of sequents (which, as I mentioned, we have replaced by
finite sets). He considers deductions of single formulas in an ordinary
Hilbert-style formalization of PA. Assume that with each formula
φ in the deduction we associate a certain one of its prenex normal
forms

∃x1∀y1 · · · ∃xn∀ynA(xi, yj)

3In fact, Gentzen considered a ‘semi-formal’ system which, on the face of it, is
stronger than PA: he admitted as axioms finitistically verifiable equations. This
seems to be the system Hilbert describes in [10]. There would be no difficulty in
extending the present treatment to this ‘system.’ But if we assume that any such
equation is derivable in primitive recursive arithmetic, then the greater scope of
his theorem is only apparent.

4[4] contains a detailed discussion of the relation between Gentzen’s proof and
Schütte’s cut-elimination theorem.

5For a discussion of the criticism of the original version of Gentzen’s proof,
leading to the published version, see [14, pp. 52-54].
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with A(xi, yj) = A(x1, y1, . . . , xn, yn) quantifier-free and so a decid-
able formula. (For example, in ¬φ ∨ ψ, bring out all the quantifiers
in φ first.) Then we may as well—and, in what follows, will—regard
sentences of the form A(k̄i, m̄j) as prime in playing the game G({φ}).

Note that a winning strategy for
∧

in T (φ) (again, taking quantifier-
free sentences as prime) is uniquely determined by n functions

f ′k(x1, . . . , xk) = yk

of the preceding existentially quantified variables such that

∀x1 · · ·xn¬A[x1, f
′
1(x1), . . . , xn, f

′
n(x1, . . . , xn)]

so that the system f ′ = 〈f ′1, . . . , f ′n〉 could be regarded as a coun-
terexample to φ. Gödel considers systems f ′, but it will be simpler
for us to consider instead systems f = 〈f1, . . . , fn〉, where

fk(x1, y1, . . . , xk) = yk

is a function of all the preceding quantified variables and so could be
a Skolem function for

∃yj∀xj+1∃yj+1 · · · ∃yn¬A(xi, yj)

so that, if φ is false, then

∀x1 · · ·xn¬A[x1, f1(x1), . . . , xn, fn(x1, f1(x1), . . . , xn)]

Clearly, systems f and f ′ are obtainable from one another: to obtain
f from f ′, define

fk(x1, y1, . . . , xk) = f ′k(x1, . . . , xk)

and to obtain f ′ from f , define by induction on k

f ′k(x1, . . . , xk) = fk(x1, f1(x1), . . . , xk)

Whichever we start with, f and f ′ determine the same strategy for∧
in T (φ).

5. If in the game G({φ}), we restrict
∧

’s moves to those given by f ,
a winning strategy for

∨
effectively yields a system F = 〈F1, . . . , Fm〉

of computable functionals such that

∀fA[Fi(f), fj(F1(f), . . . , Fj(f))]

On the branch of the strategy tree determined by f , find the true
sentence A(ki,mj) in the top node and set Fi(f) = ki. Gentzen’s
proof amounts to a definition of this path as a functional of f by
recursion on the height α of the tree, and so the Fi are obtainable
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directly from this proof as α-recursive functionals. Gödel’s idea is to
construct F directly from the Hilbert-style deduction of φ.

But contrary to Gödel’s assertion (p. 108) that such a system F
of functionals is a reduction of φ, playing in accordance with the
functions f (or f ′) constitutes a restriction on the play for

∧
in

G({φ}), since it could happen that the sets ∆ ∪ {∀xψ(x)} and ∆′ ∪
{∀xψ(x)} are, respectively, an earlier and a later stage in a play,
in each case with ∀xψ(x) designated. According to the strategy
determined by f , the same component ψ(n) must be chosen in both
cases, whereas this is not required in the game G({φ}) in general.
However, it is not hard to see that

∨
can always modify his winning

strategy in the restricted game by never designating ∀xψ(x) more
than once, so that the apparent restriction on

∧
never comes into

play. In any case, we will briefly indicate in §13 how a winning
strategy in the form of a system of functionals F for

∨
, with

∧
restricted to strategies of the form f , effectively determines a winning
strategy even when

∧
is allowed to exercise all of its options.

C. Parsons and W. Sieg observe in their introductory note ([7,
p.82]) that the winning strategy F for

∨
(in the restricted game)

is precisely a witness for the so-called no-counterexample interpreta-
tion, NCI

∃F∀fA[Fi(f), fj(F1(f), . . . , Fj(f))]

of φ, first introduced in print in [13]. Kreisel showed that, from any
deduction of φ, one could extract a witness. His proof is not based
on the game-theoretic idea behind Gentzen’s consistency proof for
PA, but rather is a corollary of Ackermann’s proof, using the ε-
substitution method [1]: Assume given a deduction of φ. From φ
logically follows

∃x1 · · ·xnA[x1, f
′
1(x1), . . . , xn, f

′
n(x1, . . . , xn)]

In the ε-calculus, this has the form

A[t1, f
′
1(t1), . . . , tn, f

′
n(t1, . . . , tn)]

where the tk are ε-terms. Applying Ackermann’s result, the ε-terms
are eliminated from the deduction, so that tk is replaced by some
Fk(f

′), and the resulting deduction is in primitive recursive arith-
metic together with a principle of definition by transfinite recursion
on the segment of ordinals up to some α < ε0 (where α depends on
the given deduction of φ). We shall see that the key lemma is the
same in the two cases, Gödel’s direct derivation of the NCI using
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Gentzen’s idea and Ackermann’s elimination of ε-terms, leading to
Kreisel’s derivation of the NCI. (See §14.)6

6. It is easy to see that, if there is a witness G = 〈G1, . . . , Gn〉 for
the NCI of φ, then there is one F in standard form, i.e. such that
for each k ≤ n, if∧
i<k

fi(F1(f), f1(F1(f)), . . . , Fi(f)) = gi(F1(g), g1(F1(g)), . . . , Fi(g))

and ∧
i<k

Fi(f) = Fi(g)

then

Fk(f) = Fk(g).

Namely, settingB(x1, . . . , xn) = A(xi, fj(x1, f1(x1), . . . , xj)), we have

∃x1 ≤ G1(f) · · · ∃xn ≤ Gn(f)B(x1, . . . , xn)

Successively define Fi(f) to be the least xi ≤ Gi(f) such that

∃xi+1 ≤ Gi+1(f) · · · ∃xn ≤ Gn(f)B(F1(f), . . . , Fi−1(f), xi, . . . , xn)

7. To obtain the no-counterexample interpretation directly, we
need to obtain the witness of the NCI of the conclusion of each
inference in the given deduction from witnesses of the NCI’s of its
premises. Since a Hilbert-style deduction of a sentence may con-
tain steps which are open formulas ψ(~x), we must understand by a
witness for the NCI of this formula a sequence of functionals that
also depend upon the parameters ~x. Gödel states that the only non-
trivial case is modus ponens: from φ and φ −→ ψ (i.e. φ ∨ ψ), infer
ψ.

Certainly he is right that the axioms and rules of inference other
than modus ponens and mathematical induction are quite trivial.
In the case of a deduction of φ involving neither modus ponens or
mathematical induction, witnesses for the NCI of φ can be built by
means of definition by (decidable) cases from functionals of the form
L(h) = t, where t is a term of PA extended by numerical function
variables. To see the necessity of definition by cases, consider a

6A direct proof of the NCI for PA based on that lemma is given in the
unpublished manuscript [17] dating from the early 1960’s and listed among the
references in [19] as “To Appear.”
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deduction of ∀xA(x)∨∀yB(y) −→ ∀zC(z) from ∀xA(x) −→ ∀zC(z)
and ∀yB(y) −→ ∀zC(z). So we assume that we have witnesses F
and G for the NCI of the premises:

A(a) −→ C(F (a)) B(b) −→ C(G(b))

from which we get the witness H for the conclusion

A(a) ∨B(b) −→ C(H(a, b))

by

H(a, b) =

{
F (a) if A(a)
G(b) otherwise

It is shown in [19, §6] that, in fact, the functionals built up in this
way suffice for the NCI of sentences proved without use of math-
ematical induction. This follows from the fact that they suffice for
the elimination of ε-terms in this case.7 Notice that the elimination
of definition by cases from the definition of the witness for the NCI
of φ yields the familiar form∨

h1<k1

· · ·
∨

hn<kn

A[ti,hi
, fj(t1,h1 , . . . , tj,hj

)]

where the ti,hi
are terms of PA supplemented by the function symbols

fj.

8. Concerning the construction of a witness for the NCI of ψ from
witnesses for the NCI’s of φ and φ −→ ψ, there seems to be only one
natural way to go. I will illustrate it with the case in which φ and
ψ have the prenex forms ∃x∀y∃z∀uA(x, y, z, u) and ∃v∀wB(v, w), re-
spectively, so that ¬φ∨ψ has the form ∀x∃y∀z∃u∃v∀w[¬A(x, y, z, u)∨
B(v, w)]. Thus the NCI’s of φ and ¬φ ∨ ψ are of the form

A[F1(f), f1(F1(f)), F2(f), f2(F1(f), F2(f))]

¬A[g1, G1(g), g2(G1(g)), G2(g)] ∨B[G3(g), g3(G1(g), G2(g), G3(g))]

7In terms of our present direct treatment of modus ponens, the ordinals αL

considered in the treatment of modus ponens in section 10 are finite for such
functionals L, and so 2αL is also finite. But recursion on a finite ordinal is
obviously reducible to definition by cases. Our reduction in the last section of a
witness G = 〈G1, . . . , Gn〉 to one, F , in standard form involved the use of the
least number operator; but when the Gi are all defined from terms by definition
by cases, it is easy to see that we can choose F with the Fi also so definable.
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where we may assume these are in standard form. We may restrict
g3 to functions that depend only on the last argument, so that the
second formula can be rewritten as

¬A[g1, G1(g), g2(G1(g)), G2(g)] ∨B[G3(g), g3(G3(g))]

We can solve the equations

g1 = F1(f), f1(g1) = G1(g), g2(f1(F1(f))) = F2(f)

f2(g1, g2(G1(g))) = G2(g)

one-by-one from the left, substituting the solution in the subsequent
equations, obtaining g1 as a function of f1, g2, f2, g3, then f1 as a
function of g2, f2, g3, then g2 as a function of f2, g3 and, finally, f2 as
a function G(g3) of g3. Then B[G(g3), g3(G(g3))], a witness for the
NCI of ψ, is obtained by modus ponens.8

The first equation is an explicit definition. The remaining ones,
ignoring parameters, have the form

h(L(h)) = K(h)

where, because the NCI’s are in standard form,

L(h) = L(h′) −→ K(h) = K(h′)

h is being represented here as a numerical function of one variable,
whereas in fact the fi and gi are in general functions of more than
one variable; but such functions can of course be coded primitive
recursively as functions of one variable. Similarly, numerical-valued
functionals of an argument (f1, . . . , fm, k1, . . . , kn) consisting of nu-
merical functions and numbers, can be primitive recursively coded
as numerical-valued functionals of one numerical function of a single
argument.

9. To solve these equations, define the sequence 〈hn | n < ω〉 of
approximations to a solution for this equation by h0(m) = 0 for all

8[12, Remark 3.9] notes that the solution of the corresponding system of equa-
tions for φ a Π0

3 sentence ∀x∃y∀zA(x, y, z) is the same system that is solved by
bar recursion in [16] to obtain the Dialectica interpretation of

∀x¬¬∃y∀zA(x, y, z) −→ ¬¬φ.

Kohlenbach uses the same construction to obtain the NCI for ψ from witnesses
of the NCIs of φ and φ −→ ψ in this case.
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m and

hn+1(m) =

{
K(hn) if m = L(hn)
hn(m) otherwise

It is easy to show that hn(m) 6= 0 implies that hn(m) = hn+k(m) for
all k. We need to infer from this property that, for some n,

L(hn) = L(hn+1)

For then h = hn+1 is the desired solution for the equation. n itself is
a functional n = N(b) of the remaining parameters b (which I have
been hiding).

10. Classically, the continuity of L on Baire space, which just fol-
lows from the assumption that it is computable, yields an n such that
L(hn+m) = L(limk→∞ hk) for all m. But we want more information
about N and we have more about L than its continuity. It is in this
context that Gödel appeals to “Souslin’s schema” (a.k.a. Brouwer’s
Bar Theorem). I quote [9, §19]:

The proof for [φ −→ ψ] goes as follows: We can assign
ordinals of the second number class to the functionals that
are defined in a finitary way (that is, computable for every
concretely presented f) (Souslin’s schema). The reducing
function for ψ is defined by transfinite induction on the
ordinal of the reducing function for φ, and if we compute
the ordinal that is assigned to the reducing function for
ψ, then that for φ occurs in the exponent. It is therefore
exactly the inference of introducing a certain new ordinal by
recursion on an ordinal already recognized as such and then
again applying recursive definition on this new [ordinal].

He is right that, for his proposed proof of the NCI of every prenex
formula φ which is a theorem of PA, it suffices to restrict the wit-
nesses F of NCIs to those such that each Fi has an ordinal, i.e.
its associated tree of unsecured sequences is well-founded. But his
equation of functionals “defined in a finitary way” with functionals
that are computable for every concretely presented [argument] f is
misleading, since there are partial computable functionals, defined
for all computable f (which presumably includes all the concretely
presented ones) for which no ordinal can be assigned—the tree of un-
secured sequences is not well-founded. Souslin’s schema applies to
total continuous functionals (on Baire space) in the classical sense.
It was because this schema is not valid in general for constructive
functionals defined on computable arguments that Brouwer stated it
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for functionals defined on free choice sequences (although I can un-
derstand Brouwer’s argument for the well-foundedness of the tree of
unsecured sequences only as a partial statement of what the notation
for free choice sequences really means).

Also, Gödel’s statement that the reducing function for ψ (i.e., in his
reformulation, the witness of the NCI of ψ) is obtained by recursion
on the ordinal of the reducing function for φ is incorrect in two
respects. First, only in the case that φ is Π0

2 or Σ0
2 is it the case that

the reducing function for ψ depends only on the reducing function
for φ. For example, with φ and ψ as above, the third of the equations
we need to solve has the form g2(G1(g)) = F2(f), where G1 is part of
the witness for the NCI of φ −→ ψ, i.e. ¬φ∨ψ, not of φ. Second, the
equation is solved (as we shall see) not by recursion on the ordinal
α of λg2G1(g), but by recursion in 2α.

In the first published treatment of the NCI for modus ponens,
in [12], the functional N is defined directly by the principle of bar
recursion. As noted in [17] and by Kohlenbach, this yields the witness
H of ψ as a function of the witnesses F and G of the NCIs of φ and
φ −→ ψ—the construction of H is uniform in F and G. But it does
not directly yield the ordinals of the functionals Hi as a function of
the ordinals of the Fi and Gi (nor, one should add, was it the purpose
of Kohlenbach’s paper to do so). This method of constructing N
parallels the unpublished version of Gentzen’s first consistency proof
for PA, at least as this is presented in [3]. In this version, a reduction
of Γ is obtained from a deduction of Γ by recursion on the reductions
(as well-founded trees) of the premises from which Γ is obtained.

The method of constructing H in [17], drawing on the machinery
set up in [18], is not uniform in F and G; but it does yield the or-
dinal of the functionals in H from those of the functionals in F and
G, and so more parallels the published version of Gentzen’s proof.
Moreover, in this proof, reference to functionals may be regarded as a
shorthand for speaking about numerical functions, so that speaking
of “functionals that are defined in a finitary way” makes some sense.
Namely, the functionals L from which we need to construct the cor-
responding functional N have this property: we can associate with
such an L a numerical function ΦL, an ordinal αL < ε0, and function
ΨL from the natural numbers into the segment of ordinals < αL such
that, writing f(n) for the code of the sequence 〈f(0), . . . , f(n− 1)〉,

ΦL(f̄(n)) = 0 −→ ΨL(f̄(n+ 1)) < ΨL(f̄(n))
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ΦL(f̄(n)) 6= 0 −→ L(f) = ΦL(f̄(n+m))− 1, for all m.

In fact, representing the ordinals < ε0 in the usual way by natural
numbers, ΦL and ΨL are definable in the extension of primitive re-
cursive arithmetic PRA obtained by adding definition by recursion
on αL. For the witnesses L of the NCI of formulas deducible in PA
without using modus ponens or mathematical induction, it is easy to
see that αL < ω. For functionals L definable by transfinite recursion
on an ordinal β ≥ ω, αL will be < βω and ΦL and ΨL are definable
in PRA with recursion on ordinals < βω. (For details, see Theorem
1 of [18].) For example, if L is defined by the primitive recursion

L(h, 0) = K(h) L(h, n+ 1) = M(h, n, L(h, n))

then αL is bounded by αK + (αM × ω).

When L is so represented in terms of ΦL, αL, and ΨL, it is easy
to define rn (as a function of n and the other parameters) as the
least number k such that ΦL(h̄n(k)) = 0 by recursion on αL. Let
mn,1, . . . ,mn,sn be the increasing sequence of numbers m < rn such
that hn(m) = 0, and let γn,i = ΨL(h̄n(mn,i)). Set

γn = 2γn,1 + · · ·+ 2γn,mn,sn < 2αL

If L(hn) 6= L(hn+1), then γn+1 < γn. So we may define by induction
on 2αL the function Nk such that Nk(b) is the least number x such
that L(hk+x) = L(hk+x+1). The required function N then is just
N0.

9

11. Returning to the above quote from [9, §19], notice that Gödel
reverses the true situation: He asserts that the ordinal αL of a β-
recursive functional L is in general exponential in β and, as we have
already noted, that the solution of the equation h(L(h)) = K(h) is
obtained by recursion on αL.10 One should recall that the quoted
passage is from notes that he wrote for himself as a basis for a
lecture and therefore not expect the same level of care as in a pub-
lished paper. However, another possibility in the case of the first
inaccuracy is that he confused two notions of recursive definition of

9[2] solves the equation L(hn) = L(hn+1) in essentially the same way as [18],
as an instance of constructing a finite fixed point of an update procedure. The
update procedure in this case is F (h) = 〈L(h),K(h)〉.

10Of course Gödel asserts this when L is the reducing function for φ and, as
we have noted, this makes sense only if φ is of at most two-quantifier form. But
even in this case, the assertion is in general false.
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functionals on β ≥ ω, one predicative and the other impredicative.
In the predicative sense, a functional F is defined by giving its nu-
merical value F (h, x) in terms of its numerical value F (h, k(h, x)),
where k(h, x) ≺ x and ≺ is the standard well-ordering of the natural
numbers with order type β. For functionals L defined using only ele-
mentary operations and predicative recursion on β, αL < βω. On the
other hand, if we admit impredicative recursion, allowing F (h, x, y)
to be defined in terms of λuF (h, k(h, x), u), then, indeed, we may
have αL = ωβ. But notice that, in our construction of witnesses for
the NCI of theorems of PA, we have used only predicative recur-
sions.

With respect to uniformity, note that, in contrast with [12], we
obtain the witness H for the conclusion of modus ponens, not as a
function of the witnesses F and G of the premises, but in terms of
the representations 〈ΦL, αL,ΨL〉 of functionals L successively derived
from them.

12. Writing on p. 110 that the whole difficulty of the proof of the
NCI of theorems of PA lies with modus ponens, Gödel dismisses the
case of mathematical induction by noting that, if we have witnesses
for the NCI of the premises

φ(0) φ(x) −→ φ(x+ 1)

then, by applying modus ponens n times, we have a witness for the
NCI of φ(n) and so, by induction, one for φ(x). But this argument
won’t do. As we have seen, passing from φ(n) to φ(n+ 1) can involve
ascending from an ordinal α to 2α

k , where φ(x) ∈ Σ0
2k, 2α

0 = α and
2α

m+1 = 22α
m . So just two applications of mathematical induction, on

this analysis, could get us already to ε0.
11

I shall illustrate the treatment of mathematical induction with the
case of φ(x) = ∃y∀zA(x, y, z). We can assume that, corresponding
to the premises of mathematical induction, we have

A[0, F ′(f), f(0, F ′(f))]

A[x, g(x), G(x, f, g)] −→ A[x+ 1, F ′′(x, f, g), f(x, F ′′(x, f, g))]

where the witnesses are in standard form and we have restricted f
to depend only on x and F ′′(x, f). If we define F (0, f, g) = F ′(f)

11Alas, in [20] I accepted Gödel’s treatment of mathematical induction, al-
though I knew the correct treatment over forty years ago.
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and F (x+ 1, f, g) = F ′′(x, f, g), then

A[0, F (0, f, g), f(0, F (0, f, g))]

A[x, g(x), G(x, f, g)] −→ A[x+ 1, F (x+ 1, f, g), f(x, F (x+ 1, f, g))]

Explicitly define g in terms of the unkown functions f1 and g1 by

g(x) = F (x, f1, g1)

and, using the fact that the witness 〈G,F ′′〉 is in standard form, solve
the equation

f1(x, F (x, f1, g1)) = G(f, g)

This has again the form h(L(h)) = K(h) with L(h) = L(h′) −→
K(h) = K(h′) and so the method of sections 9 and 10 can be applied
and we can define f1 = Ψ(f, g1) using recursion on 2αF . Define the
function θx(f) by the impredicative primitive recursion

θ0(f)(y) = 0 θx+1(f)(y) = F [y,Ψ(f, θx(f)), θx(f)]

(which can be reduced to predicative recursion on ωω). Setting g1 =
θx(f), Φx(f) = Ψ(f, θx(f)) and K(x, f) = F (x, f, θx(f)), we have
g = θx+1(f) and

A[0, K(0, f), f(0, K(0, f))]

A[x,K(x,Φx(f)),Φx(f)(x,K(x,Φx(f)))]

−→ A[x+ 1, K(x+ 1, f), f(x+ 1, K(x+ 1, f))]

Then A[x,K(x, f), f(x,K(x, f))] follows by mathematical induction
with substitution in parameters, which is reducible to the rule of
mathematical induction ([18, VI]).12

13. To see how a witness for the the NCI of φ yields a winning
strategy for

∨
in G({φ}), consider the simple case

φ = ∃x∀y∃u∀vA(x, y, u, v)

and let F = 〈G,H〉 be a witness for its NCI. J(m,n) = 1/2[(m +
n)(m+ n+ 1)] +m is the position of 〈m,n〉 in the ordering of pairs

12Assume B(0, f) and B(x, ξx(f)) −→ B(x + 1, f). Define η0(f) = f and
ηx+1(f) = ξx(ηx(f)). Then B(0, ηn−0(f)) and

x < n −→ [B(x, ηn−x(f)) −→ B(x+ 1, ηn−x−1(f))]

by substitution. So by mathematical induction, x ≤ n −→ B(x, ηn−x(f)). Apply
this now to x = n.
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of natural numbers according to least sum m + n and, within that,
according to least first member m. We can assume that function-
als K of two function variables are coded by functionals K ′ of one
argument, where K(f, g) = K ′[λnJ(f(n), g(n))].

A winning strategy for
∨

in G({φ}) determined by F is as fol-
lows. Let m = J(i, j). At stage 4m

∨
designates φ and adds

∀y∃u∀vA(̄i, y, u, v). At stage 4m + 1, he designates this sentence.
After

∧
’s response ∃u∀vA(̄i, b̄i, u, v),

∨
designates this sentence at

stage 4m + 2 and adds ∀vA(̄i, b̄i, j̄, v). At stage 4m + 3, he des-
ignates this sentence so that

∧
’s must choose some A(̄i, b̄i, j̄, c̄j).

At stage h(m) = 8m(2m − 1), sentences A[̄i, b̄i, j̄, c̄j] are on the
board for all i, j < m. If ΦG′(〈J(b0, c0), . . . , J(bm−1l, cm1)〉) > 0
and ΦH′(〈J(b0, c0), . . . , J(bm−1l, cm1)〉) > 0, then choose f and g
such that f(i) = b1 and g(j) = cj for all i, j < m. Then at stage
J(G(f, g), H(f, g)) + 3, if not before, the game is won for

∨
. So, by

induction on αG′ + αH′ ,
∨

wins.

14. As I indicated at the end of section 5, the solution of the
equation L(hn)) = L(hn+1) using recursion on 2αL arises also in
connection with the ε-substitution method for PA.13

The essence of the substitution method is defining functions h sat-
isfying a finite set of conditions

A(x, Li(h)) −→ A(x, h(x))

A(x, Li(h)) −→ h(x) ≤ Li(h)

for i < k, where A is quantifier-free and x does not occur in the Li(h)
(although function parameters other than h in general do). These
conditions are derived from the critical formulas associated with the
ε-term εyA(x, y) in a given deduction in the ε-calculus of a sentence,
where h(x) represents this ε-term. (In general, x is a finite sequence
of variables.) Let

L(h) = max{Li(h) : i < k}
and define h0(x) = 0 and

hn+1(x) =

{
µy≤L(hn)A(x, y) if ∃y≤L(hn)A(x, y)
0 otherwise

13In fact, it is a special case of Theorem 3 of [18], which is called there the
‘principal lemma of the substitution method,’ and is applied in [19] to obtain
(essentially) Ackermann’s [1] proof of the consistency of PA.
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Again, hn(x) > 0 implies that hn(x) = hn+k(x) for all k, and so, as
above, we obtain n = N(b) such that L(hn) = L(hn+1) by recursion
on 2αL . h = hn+1 will then satisfy the set of conditions.
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