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This paper introduces a new development for designing a Multi-Input Multi-Output (MIMO) Fuzzy Optimal Model Predictive
Control (FOMPC) using the Adaptive Particle Swarm Optimization (APSO) algorithm. The aim of this proposed control, called
FOMPC-APSO, is to develop an efficient algorithm that is able to have good performance by guaranteeing a minimal control. This
is done by determining the optimal weights of the objective function. Our method is considered an optimization problem based on
the APSO algorithm. The MIMO system to be controlled is modeled by a Takagi-Sugeno (TS) fuzzy system whose parameters are
identified using weighted recursive least squares method. The utility of the proposed controller is demonstrated by applying it to
two nonlinear processes, Continuous Stirred Tank Reactor (CSTR) and Tank system, where the proposed approach provides better
performances compared with other methods.

1. Introduction

Predictive control is a member of advanced discrete-time
process control algorithms. This control algorithm is based
on the use of an explicit process model to predict the
manipulated variables and thus the future control actions
are optimized throughout a finite horizon. To obtain a good
performance, a process model describing the effects of all
the different inputs on all the outputs must be developed.
Although the linear model predictive control is suitable for
processes that are not highly nonlinear, this strategy has
been applied in the control of nonlinear systems, whether
for SISO systems [1–3] or for MIMO systems [4–7]. But
many industrial processes have strong nonlinearities and
predictive control is applied in order to provide satisfactory
control results. Two problems have appeared because of the
introduction of nonlinearities in the predictive control.

(i) The first of the problems is that the modeling of
processes is much more difficult and complex than
the linear case. fuzzy logic is among the most used
strategies in all areas [4]. Despite the fact that this
strategy has been developed in the last few years,

the fuzzy models of the TS type remain among the
most used methods to deal with the MPC control for
nonlinear systems (NMPC), because of their capacity
to give an accurate approximation of the complex
nonlinear MIMO systems.

(ii) The second important problem in nonlinear pre-
dictive control is the solving of the optimization
problem. Conventional optimization methods, such
as the gradient search method, used for designing
the state feedback controller are restricted to the
eigenvalues of the linear system matrix that not only
increases the difficulty but also takes long time to find
the global optimum solution [8]. Hence, evolutionary
computation (EC) can be considered an alternative
method to solve this type of optimization problem.
In literature, plenty of works have been reported
to solve the control optimization problems using
EC techniques because they do not require explicit
gradient information for optimization.

Particle Swarm Optimization (PSO), introduced by [9],
is a population based metaheuristic search (MS) algorithm,
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Figure 1: Problem principle of optimal control.

which emulates the collaborative behaviour of bird flocking
and fish schooling in searching for foods. In addition, unlike
other heuristic optimization methods, PSO has a flexible
and well-balanced mechanism to enhance the global and
local exploration abilities. Since the introduction of PSO,
many works based on MPC have been solved using PSO
because it is not largely affected by the size and nonlinearity
of the problem. Reference [10] introduces an approach
for designing an adaptive fuzzy model predictive control
using the PSO algorithm (AFMPC-PSO). In [11], a type of
MPC is proposed using Chaos Particle Swarm Optimization
(CPSO). First, for the modeling phase, the TS fuzzy model
is employed to approximate the nonlinear system. Second,
we introduce CPSO intoMPC using a modified performance
criterion in order to provide less computational controller’s
expression.

Although these methods have represented effective solu-
tions to the problemof theMPC control of nonlinear systems,
there is the problem of choice of control parameters. Several
studies have shown the influence of these parameters on the
quality of the responses of the systems treated. To overcome
this problem, this paper presents a method of tuning the
weight parameters of the performance function according to
the output quantities detected from the system. One of the
challenges in MPC is how control parameters can be tuned
for various target systems, and the use of APSO for automatic
tuning is one of the solutions. Firstly, for the modeling
phase, the TS fuzzy model is employed to approximate the
nonlinear system. In the second step, we used the principle
of optimal control to calculate the control law of each linear
subsystem.Then, we introduceAPSO algorithm to determine
the best weight parameters of the performance function using
a performance criterion in order to improve the quality of the
response with a minimum of energy.

The rest of the paper is organized as follows. Section 2
presents the influence of weights existing in the objective
function on the quality of system performances. Section 3
reviewed the TS fuzzy model and the OMPC design method.
Themain contribution of this paper is presented in Section 4.
In order to show the good performance of the proposal
approach, simulation results are given in Section 5. Finally,
Section 6 concludes.

2. Statement

The MPC control is a method of designing process control
systems with feedback. This designing is carried out by the
online repetition of a procedure that includes inputting data
to a system of the initial input values. The principle of
calculating the control law is the resolution of an optimal
control problem using the present output values. So, the
MPC control is a special case of the optimal control whose

horizon is finite. It is recalled that this command minimizes
the function described above. However, when the horizon is
infinite, we speak of optimal control. The objective function
is written as follows:

𝐽𝑐𝑜 =
𝑛𝑦∑
𝑖=1

Γ𝑦𝑖 (𝑦𝑟𝑖 − 𝑦𝑖)2 +
𝑛𝑢∑
𝑖=1

Γ𝑢𝑖 (𝑢𝑖 − 𝑢𝑟𝑖)2 , (1)

where Γ𝑦𝑖, Γ𝑢𝑖 are the weight values of the outputs and inputs.𝑢𝑟𝑖 are the control instructions that are defined beforehand
based on an expertise of the system. The partial derivative of
the objective function described by (1) is as follows:

𝜕𝐽𝑐𝑜𝜕𝑢 = 𝜕∑𝑛𝑦𝑖=1 Γ𝑦𝑖 (𝑦𝑟𝑖 − 𝑦𝑖)2 + ∑𝑛𝑢𝑖=1 Γ𝑢𝑖 (𝑢𝑖 − 𝑢𝑟𝑖)2𝜕𝑢 . (2)

By applying the principle of the optimal control, we obtain
the following:

𝑢𝑜𝑝 (𝑘) = 𝜕𝐽𝑐𝑜 (𝑦, 𝑢, Γ𝑦𝑖, Γ𝑢𝑖)
𝜕𝑢 . (3)

The structure of the loop system based on OMPC illustrating
this method is shown in Figure 1. According to (1), the
criterion 𝐽𝑐𝑜 depends strongly on the weights Γ𝑖 = [Γ𝑦𝑖, Γ𝑢𝑖].
These weights directly affect the performances index (Pi) of
the system studied, such as overshoot (Ov%), settling time
(Ts), rise time (Tr), and static error (Es).

To show the importance of the choice of these parameters
on the response of the system in closed loop, we consider
the following a multivariable linear system. This system is
described by the following equations:

𝑥11 (𝑘) = 0.9401𝑥11 (𝑘 − 1) + 𝑢1 (𝑘 − 1)
𝑥12 (𝑘) = 0.9524𝑥12 (𝑘 − 1) + 𝑢2 (𝑘 − 1)
𝑥21 (𝑘) = 0.9083𝑥21 (𝑘 − 1) + 𝑢1 (𝑘 − 1)
𝑥22 (𝑘) = 0.9306𝑥22 (𝑘 − 1) + 𝑢2 (𝑘 − 1)
𝑦1 (𝑘) = −0.7664𝑥11 (𝑘) + 0.9𝑥12 (𝑘)
𝑦2 (𝑘) = −0.6055𝑥21 (𝑘) + 1.3472𝑥22 (𝑘) .

(4)

The criterion to be minimized is:

𝐽𝑐𝑜 =
2∑
𝑖=1

Γ𝑦𝑖 (𝑦𝑖 − 𝑦𝑟𝑖)2 +
2∑
𝑖=1

Γ𝑢𝑖 (𝑢𝑖 − 𝑢𝑟𝑖)2 ; (𝑖 = 1, 2) (5)

with 𝑦𝑟1 = 6.1, 𝑦𝑟2 = 12.8, 𝑢𝑟1 = 1, and 𝑢𝑟2 = 1.
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In a first step, the minimization of the objective function
is obtained by canceling the gradient of 𝐽𝑐𝑜 with respect to

𝑢𝑖; the expressions are obtained as a function of 𝑥𝑖𝑗 of (4)
and Γ:

𝑢1 (𝑘) = 2Γ𝑢1 + Γ𝑦2 (1.63Γ𝑦2 (𝑘 − 1) − 0.66𝑥21 (𝑘 − 1) + 1.52𝑥22 (𝑘 − 1) − 15, 50)
+ Γ𝑦1 ((1.37𝑢2 (𝑘 − 1) − 1.10𝑥11 (𝑘 − 1) + 1.13𝑥22 (𝑘 − 1) − 9.35))(1.17Γ𝑦1 + 0.73Γ𝑦2 + 2Γ𝑢1) .

𝑢2 (𝑘) = 2Γ𝑢2 + Γ𝑦1 (1, 37𝑢1 (𝑘 − 1) + 1.29𝑥11 (𝑘 − 1) − 1.54𝑥12 (𝑘 − 1)) + 10.98
+ Γ𝑦2 (1.36𝑢1 (𝑘 − 1) + 1, 48𝑥21 (𝑘 − 1) − 3.37𝑥22 (𝑘 − 1) + 34.48)(1.62Γ𝑦1 + 3.62Γ𝑦2 + 2Γ𝑢2)

(6)

Table 1 shows how the overshoot, settling time, rise time,
and static error as the performance indices vary with the
weight parameters (Γ𝑦1, Γ𝑦2, Γ𝑢1, Γ𝑢2) of the performance
function when outputs transitions 𝑦1 and 𝑦2 of the optimal
control are used. As can be seen from the table, the transient
characteristics depend strongly on the weight parameters(Γ𝑦1, Γ𝑦2, Γ𝑢1, Γ𝑢2) of evaluation function (4).

The example presented shows the influence of the choice
of the values of the weights existing in the expression of the
optimal control law. So, the weight parameters directly affect
Ov%, Es, ts, and tr.

3. MIMO TS Fuzzy Model and OMPC Design

Takagi and Sugeno proposed the well-known TS fuzzymodel
in [12] to describe the complicated nonlinear system. The
TS fuzzy models are universal approximators capable of
approximating any continuous function with certain level
of accuracy [13]. Since the MIMO system can be divided
into multiple input-single output (MISO) systems, we take
MISO systems instead, to identify MIMO systems. It is
assumed that anMISO system𝐹(𝑥, 𝑦) is the system that needs
identification, where 𝑥 is the system input with 𝑥 ∈ 𝑅𝑀 and𝑦 is the system output with 𝑦 ∈ 𝑅.

The rules of TS fuzzy models, used in this work, have the
following form:

𝑅𝑔: IF 𝑍𝑖1 est Ω𝑖𝑔1 et . . . 𝑍𝑖𝑀 est Ω𝑖𝑔𝑀
THEN 𝑦𝑖𝑔 (𝑘) = 𝐴 𝑖𝑔𝑦 (𝑘 − 1) + 𝐵𝑖𝑔𝑢 (𝑘 − 1) ,

𝑖 = 1, . . . , 𝑛𝑦, 𝑔 = 1, 2, . . . , 𝑐𝑖,
(7)

where 𝑅𝑔 represents the 𝑔th rule, 𝑐𝑖 is the number of rules
for the 𝑖th subsystem,𝑀 is the dimension of the input vector,Ω𝑖𝑔 is the fuzzy subset of the 𝑔-th rule, 𝑍𝑖 = [𝑍𝑖1, . . . , 𝑍𝑖𝑀] ∈𝑅𝑀 is the input vector, and 𝐴𝑔 = [𝐴𝑔1, . . . , 𝐴𝑔𝑛𝑦] and 𝐵𝑔 =[𝐵𝑔1, . . . ,B𝑔𝑛𝑢] are two polynomial vectors.The final output is
calculated as the average of the outputs corresponding to the
rules 𝑅𝑟, weighted by the normalized degree of completion
(membership), as follows:

𝑦𝑖 (𝑘) = ∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) 𝑦𝑖𝑔 (𝑘)
∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) (8)

w𝑖𝑔 (𝑍𝑖) =
𝑀∏
𝑗=1

A𝑖𝑔𝑗 (𝑍𝑖𝑗) . (9)

The standardized degree of completion is described in the
following form:

𝜇𝑖𝑔 (𝑍𝑖) = w𝑖𝑔 (𝑍𝑖)
∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) . (10)

The standard degree of achievement is actually the degree
of activation of the corresponding local model in the region
where the system evolves. The fuzzy subsets are generally
Gaussian, triangular or sigmoid and must satisfy the follow-
ing properties:

𝑐𝑖∑
𝑔=1

𝜇𝑖𝑟 (𝑍𝑖) = 1, ∀𝑔 = 1, 2, . . . , 𝑐𝑖
0 ≤ 𝜇𝑖𝑔 (𝑍𝑖) ≤ 1.

(11)

TheMPCcontrol is amethod of designing process control
systems with feedback. This designing is carried out by the
online repetition of a procedure that includes inputting data
to a system of the initial input values. The MPC control is
a special case of the optimal control. It is recalled that this
control minimizes the function described above. However,
when the horizon is infinite, we speak of optimal control for
each linear subsystem.

The concept of the OMPC technique for TS system is
utilized to design fuzzy controller. In this concept, the fuzzy
controller rule shares the same premise part as the fuzzy
system (8) and use same number of fuzzy rules.

The fuzzy controller is inferred as follows:

𝑈𝑖 = ∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) 𝑢𝑖𝑔
∑𝑐𝑖𝑔=1 w𝑖𝑔 (𝑍𝑖) . (12)

In the OMPC, the cost index to be minimized is expressed as
follows:

𝐽𝑔 =
𝑛𝑦∑
𝑖=1

Γ𝑦𝑔 (𝑦𝑟𝑖𝑔 − 𝑦𝑖𝑔)2 +
𝑛𝑢∑
𝑖=1

Γ𝑢𝑔 (𝑢𝑖𝑔 − 𝑢𝑟𝑖𝑔)2 , (13)
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Table 1: Weight parameter Γ𝑖 dependence of transient characteristic.
Pi { Γ𝑦1 ,Γ𝑦2Γ𝑢1 ,Γ𝑢2

}
{ 1,11,1 } { 1,10.2,0.2 } { 1,0.11,0.1 } { 0.3,0.31,0.1 }

Es1 0.000 0.003 0.015 0.000
Es2 0.000 0.001 0.02 0.000
Ov1 (%) 40.41 32.09 09.33 26.33
Ov2 (%) 57.3988 36.36 25.33 53.20
Ts1 12.00 10.50 8.00 12.00
Ts2 11.00 13.00 16.00 17.00
Tr1 4.869 5.4701 4.6000 5.5637
Tr2 7.00 6.50 20.00 21.00

where Γ𝑦𝑔 , Γ𝑢𝑔 are the weight values of the outputs and inputs.𝑢𝑟𝑖𝑔 are the control instructions that are defined beforehand
based on an expertise of the system. The general structure of
the 𝑔th controller is then as follows:

𝑅𝑔: IF 𝑍𝑖1 is Ω𝑖𝑔1, . . . , 𝑍𝑖𝑀 is Ω𝑖𝑔𝑀
THEN 𝑢𝑖𝑔 (𝑘) = 𝜕𝐽𝑖𝑔

𝜕𝑢𝑖𝑔 .
(14)

The previous solution shows that the Γ weights directly affect
the performance of the system. Indeed, despite the fact that
the weight values Γ chosen can give good performance, we
can not conclude that these are the best values.

4. Design of the Proposed FOMPC Controller

In this section, we describe a new method for determining
the weight values of the objective function 𝐽𝑔 of each local
system.

So, an objective function is given, and the optimal control
law of each local system is calculated. Then, the APSO
algorithm intervenes to determine the optimal values of the
weight. The next step is to design the global control law
such that the proposed OFMPC-APSO presents the desired
dynamic characteristics. The proposed FOMPC based on
APSO combines both of the advantages of FOMPC and
APSO algorithm. APSO algorithm is used to search and to
fine tune the weight vector Γ𝑦 and Γ𝑢 of MPC controller.
So, the expression of control law by the principle of optimal
control is calculated. Once the latter has been established, the
next step is to calculate the optimal weights such that the
proposed algorithm presents the desired dynamic character-
istics.

4.1. Design of the Linear Control Law. We consider parameter
optimization problem as a simple problem of tuning only the
weight Γ. Now let us assume that the performance functionΦ for each output evaluates the (Ov%), (Ts), (Tr), and (Es).
Let us define the performance functionΦ as proposed in the
following:

Φ𝑔 = 𝑞1Es + 𝑞2Ov% + 𝑞3Ts + 𝑞4Tr. (15)

Here (𝑞1, 𝑞2, 𝑞3 et 𝑞4) are the weights of the respective
performance indices. So, we obtain the optimal values of

the weights of criterion (13) while respecting the following
constraint:

min Φ𝑔
Γmin<Γ<Γmax

(Γ) . (16)

With Γmin and Γmax the minimum and maximum limits are
chosen.

The optimization problem given by (15) is a constrained
nonlinear and nonconvex optimization problem, the solution
of which is difficult and generally expensive in computing
time. Different approaches were investigated to solve this
problem, such as the numerical optimization techniques [14,
15], the metaheuristic based optimization algorithms [16–18],
the linearization of the process fuzzy model [19], and the use
of particular model structures to obtain a convex form for the
cost function [20].

4.2. APSOAlgorithm. ThePSOalgorithm is a type of stochas-
tic global optimization algorithm for improving candidate
solutions [9]. This algorithm iteratively explores a multidi-
mensional search space with a swarm of individuals (referred
to as “particles”), looking for the global optima [21, 22]. PSO
has memory to store the knowledge of good solutions by all
particles; in addition, particles in the swarm share informa-
tion with each other. Therefore, due to the simple concept,
easy implementation, and quick convergence, nowadays PSO
has gained much attention and wide applications in solving
continuous nonlinear optimization problems [23–26].

It is initialized with a population of random solutions,
called particles, to find the optimal result. Each particle has
a position and a velocity, representing a possible solution
to the optimization problem and a search direction in the
search space. In each iterative process, the particle adjusts
the velocity and position according to the best experiences
that are called the 𝑝best, found by itself, and 𝑔best, found by
all its neighbors [27]. For every generation, the velocity and
position can be updated by the following equations:

𝑉𝑑𝑝 (t + 1) = 𝑤𝑉𝑑𝑝 (t) + 𝑟1𝐶1 (𝑝best𝑑𝑝 − 𝑋𝑑𝑝 (t))
+ 𝑟2𝐶2 (𝑝best𝑑𝑔 − 𝑋𝑑𝑝 (t))

(17)

𝑋𝑑𝑝 (t + 1) = 𝑋𝑑𝑝 (t) + 𝑉𝑑𝑝 (t + 1) , (18)

where 𝑖 = 1, 2, . . . , 𝑁𝑝 and 𝑁𝑝 is the number of particles,
t is the number of iterations, and 𝑟1 and 𝑟2 are two random
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Figure 2: The control scheme.

Pahse 1. Identification of the model
Step 1. The nonlinear MIMO system is modeled by a TS fuzzy inference system.
Step 2. Identify of parameters using WRLS method.
Pahse 2. Application of Algorithm 1 for each local model
Step 1. The weight parameter Γ is specified.
Step 2. Give the objective function in the form of Eq. (13).
Step 3. Calculate the control law 𝑢𝑖 using Eq. (3).
Step 4. Compute ΓBest that minimize the restricted function (15) using the procedure of Algorithm 2
and find the best particle labeled as Γ = [ΓBest𝑦𝑖 , ΓBest𝑢𝑖 ].
Step 5. Calculate the control law 𝑢𝑖 using (3) According to the optimum values of ΓBest
Pahse 3. Design the control law 𝑈 via equation (12)

Algorithm 1: FOMPC-APSO algorithm.

numbers in the interval [0, 1]. 𝐶1 and 𝐶2 are positive
constants.𝑤 is the inertia weight, a parameter used to control
the impact of the previous velocities on the current velocity. If
it is chosen properly, the particle will have the balanced ability
of exploitation and development. 𝑤 is updated as follows:

𝑤 = 𝑤max (𝑤max − 𝑤min
tmax

) t, (19)

where 𝑤min and 𝑤max are minimum and maximum values of𝑤 which are taken as 0.4 and 0.9, respectively.
In conventional PSO, the velocity of each particle in

the next search is updated using the knowledge of its past
velocity and personal and global best positions. However, the
performance of PSO greatly depends on its parameters; it
often suffers from being trapped in local optimum [28, 29].
Indeed, the inertia weight is the most important parameter
to balance the local search ability and global search ability
[30]. This balancing is a key role to improve the performance
of PSO. However, the method of selecting inertia weight is
difficult. And experiments show that particles can accumulate
at point in local searching area. So, to avoid all these
difficulties, an improved version of PSO has appeared; it is
the APSO algorithm.

The basic idea of APSO is that the global best and the
personal best position of particle always change over iteration

and tend to the similar value if the swarm has approached
the solution. The values of 𝑝best and 𝑔best are taken and are
used to adjust the value of inertia weight by using feedback
mechanism. In this condition, the inertia weight should be
set to larger value. So, the balancing between local-global can
be controlled based on the swarm condition.

The modified inertia weight is modified as follows:

𝜔 = (𝜔0 − 𝑝𝑔best𝑝𝑝best ) , (20)

where 𝜒0 is the initial value of inertia weight.
The controller structure is illustrated in Figure 2. This

Figure represents the case of a systemwith two inputs (𝑢1 and𝑢2) and two outputs (𝑦1 and 𝑦2). 𝑦𝑟1 and 𝑦𝑟2 represent the
references of each output, respectively.

4.3. FOMPC-APSO Algorithm. The general design steps of
the FOMPC-APSO algorithm are summarized in Algo-
rithm 1.

5. Simulation Study

In order to show the considerable contribution in the perfor-
mance of the proposed control scheme, two highly nonlinear
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S.1. Choose the weighting matrices Γ = [Γ𝑦𝑖 > 0, Γ𝑢𝑖 > 0], Γmax, Γmin, the number of particles NP.
Initialize the position and velocity of each particle; fix learning factors 𝐶1 and 𝐶2; 𝜔0 and the
number of iterations tmax.
S.2. For t = 1 to tmax do
for each particle do
(1) Calculate the fittness value of each particle by minimizing the following Eq. (15)
(2) Find the individual best pbest for each particle and the global best 𝑔best.
(3) Update the velocity and the position of each particle using equations (17) and (18), respectively.
end for
end for
S.3. Find the best particle labeled as Γ = [ΓBest𝑦𝑖 , ΓBest𝑢𝑖 ]

Algorithm 2: Procedure of weight parameter optimization.

Table 2: Specification of the surge tank.

Parameter Description Normal operation condition
𝐻0 Initial value of tank level 0.15 [m]𝐻𝑠 Initial value of the output channel level 0.015 [m]𝑎 Section of the channel output 0.0001 [m2]𝐴 Section of the tank 0.04 [m2]𝑄0 The initial flow 0.00013 [m3s−1]𝑘0 Constant 1𝑘1 Constant 0.1

+

a

Qs(k)

H(k)

I(k)

Q(k)

Figure 3: The surge tank system.

systems are selected. The first example is the surge tank. The
second example is the CSTR. We compare our results with
those obtained by other existing methods such as NMPC [31]
and FMPC using the APSO algorithm [32].

In this paper, the Tr, Ts, Ov%, pic, and Es are used as the
performance indexes.

5.1. Surge Tank System. The behaviour of the surge tank
system, shown in Figure 3, is fed by a pump driven by a
current 𝐼(𝑘) [10].

In Figure 3,𝑄(𝑘) is the feed rate, 𝐼(𝑘) is the supply current
of the pump,𝐻 is the liquid level in the tank,𝑄𝑠 is the output
flow, 𝑎 is the section of the output channel,𝐴 is the section of
the tank, and𝐻𝑠 is the water level in the output channel. The
mathematical model of this reactor is

(i) Model of the valve is as follows:

𝑄 (𝑘) = 𝑄 (𝑘 − 1) + 𝑇𝑒 (−𝑘0𝑄 (𝑘 − 1) + 𝑘1𝐼 (𝑘 − 1)) (21)

(ii) The change in water level in the tank is given by the
following:

𝑉 (𝑘) = 𝐴𝐻 (𝑘)
= 𝐻 (𝑘 − 1) + 𝑇𝑒 (𝑄 (𝑘 − 1) − 𝑄𝑠 (𝑘 − 1)) ,

(22)

where 𝑄𝑠(𝑘) = 0.6𝑎√2𝑔(𝐻(𝑘) − 𝐻𝑠).
The values of the constant parameters of this system are

grouped in the Table 2.
Fuzzymodeling: 1000 pairs of data are used to identify the

model using the FCM algorithm. For a good approximation
of the plant, we suppose that the subsystems are in the third
order. The model consists of two rules of the form:

𝑅1: If 𝐼1 is 𝑄1
THEN 𝐻1 (𝑘)

= 𝑎11𝐻(𝑘 − 1) + 𝑎12𝐻(𝑘 − 2)
+ 𝑎13𝐻(𝑘 − 3) + 𝑏11𝐼1 (𝑘 − 1)
+ 𝑏12𝐼1 (𝑘 − 2)

𝑅2: IF 𝐼1 is 𝑄2
THEN 𝐻2 (𝑘)

= 𝑎21𝐻(𝑘 − 1) + 𝑎22𝐻(𝑘 − 2)
+ 𝑎23𝐻(𝑘 − 3) + 𝑏21𝐼1 (𝑘 − 1)
+ 𝑏22𝐼1 (𝑘 − 2) .

(23)
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Table 3: Pi performances obtained by the different algorithms.

Pi Algorithms
NMPC FMPC-APSO FOMPC-APSO

Tr 0.8111 0.9820 0.7402
Ts 5.6402 11.0788 1.9936
Ov% 6.0804 2.6922 0.5017
Pic 1.26 0.2055 0.2162
Es 0.00 0.00 0.00
W% 53.4 54.86 —

The vector of parameters of 𝑔th rule is obtained by using
the WRLS. This fuzzy model is used to represent the process
model in the controller:

𝑎11 = 1.952,
𝑎21 = 0.0487,
𝑎31 = 0.0522,
𝑏11 = 0.1131,
𝑏21 = 0.1106,
𝑎21 = 0.8421,
𝑎22 = 0.0808,
𝑎23 = 0.0764,
𝑏21 = 0.1668,
𝑏22 = 0.1697.

(24)

Once the estimated model is obtained, we will investigate
the optimal parameters of the FOMPC control law using
the APSO algorithm. This gives the best results with these
settings: 𝑡max = 350, 𝑁𝑝 = 35, 𝐶1 = 𝐶2 = 2.05, 𝑟2 = 0.2,
and 𝑤0 = 1.4. The fitness function of the APSO algorithm is
defined by the following:

𝐽𝑖 = Γ𝑦𝑖 (𝐻𝑖 − 𝐻𝑟)2 + Γ𝐼𝑖 (𝐼𝑖)2 , 𝑖 = 1, 2. (25)

Table 3 shows the performances obtained by these meth-
ods. In each interval time, we have changed the set point for
evaluating eachmethod to control a highly nonlinear system.
The proposed method can generate a high quality solution
within shorter calculation time and it tends to converge
very fast compared to other methods.The comparison shows
some interesting results. It is important to observe that, with
FOMPC-APSO, the Ts has been reduced almost 2 times
comparing with that obtained from the NMPC and has been
reduced almost 5 times comparing with that obtained from
the FMPC-APSO.The same observation can be made for the
Ov%, where in the FOMPC-APSO case we notice a reduction
of nearly 4 times compared with that obtained from FMPC-
APSO and more than 10 times with NMPC without any
increase in Tr. So, the proposed method is able to keep better
stability with less control effort applied.

In fact, the proposed technique is able to achieve good
performance using 53.4% of total control energy consumed
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Figure 4: Evolution of liquid level𝐻.
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Figure 5: Evolution of liquid level𝐻 in the presence of disturbance.

by FMPC-APSO as well as 54.68% of FMPC-APSO. As it is
presented in Table 3, the accuracy of our model outperforms
that of other methods. To confirm these results further,
Figure 4 shows the variations in liquid level in the tank when
a step change is applied at 30, 60, and 90, respectively, by
FOMPC-APSO, FMPC-APSO, and NMPC.

Figure 5 shows the manipulated responses when a distur-
bance is applied to the feed rate, at 40 and 80, respectively.

In conclusion, the proposed controller shows the best
performance for both set point tracking and regulatory
conditions for the entire range of the process as compared to
the other controllers.
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Table 4: CSTR model parameters.

Description Parameter Nominal value
Product concentration 𝐶𝑎 0.1 [mol L−1]
Reactor temperature 𝑇 438.51 [K]
Coolant flow rate 𝑞𝑐 103.41 [min−1]
Process flow rate 𝑞 100 [Lmin−1]
Feed concentration 𝐶𝐴𝑓 1 [mol L−1]
Feed temperature 𝑇𝑓 350 [K]
Inlet coolant temp 𝑇𝑐𝑓 350 [K]
Reaction volume V 100 [L]
Heat transfer coefficient ℎ𝑎 7 ∗ 105 [calmin−1 K]
Reaction rate constant 𝑘0 7.2 ∗ 1010 [min−1]
Activation energy term 𝐸/𝑅 1 ∗ 104 [K]
Heat of reaction Δ𝐻 2 ∗ 105 [calmol−1]
Liquid densities ℓ𝑐, ℓ 1 ∗ 103 [g L−1]
Specific heats 𝐶𝑝, 𝐶𝑝𝑐 1 [cal g−1 K−1]

In fact, the proposed technique is able to achieve good
performance using 53.4% of total control energy consumed
by NMPC as well as 54.86% of FMPC-APSO. As it is
presented in Table 3, the accuracy of our model outperforms
that of other methods.

5.2. Continuous Stirred Tank Reactor (CSTR). The efficiency
and the control accuracy of the proposed algorithm were
investigated and compared to other control strategies by
considering the control of a highly nonlinearMIMO process,
namely, a Continuous Stirred Tank Reactor, where the model
is presented in [33] and described by the following differen-
tials equations:

𝐶𝑎 (𝑘 + 1) = 𝐶𝑎 (𝑘) + 𝑇𝑒 (1V𝑞 (𝑘) (𝐶𝐴𝑓 − 𝐶𝑎 (𝑘))
− 𝑘0𝐶𝑎 (𝑘) 𝑒(−𝐸/𝑅𝑇(𝑘)))

𝑇 (𝑘 + 1) = 𝑇 (𝑘) + 𝑇𝑒 (1V𝑞 (𝑘) (𝑇𝑓 − 𝑇 (𝑘))
+ 𝑘1𝐶𝑎 (𝑘) 𝑒−(𝐸/𝑅𝑇(𝑘))
+ 𝑘2𝑞𝑐 (𝑘) (1 − 𝑒−(𝑘3/𝑞𝑐(𝑘))) (𝑇𝑐𝑓 − 𝑇 (𝑘))) ,

(26)

where 𝑘1 = −Δ𝐻𝑘0/ℓ𝐶𝑝, 𝑘2 = ℓ𝑐𝐶𝑝𝑐/ℓ𝐶𝑝V, and 𝑘3 =ℎ𝑎/ℓ𝑐𝐶𝑝𝑐.
The process describes the reaction that converts the

product 𝐴 into a new product B, the concentration 𝐶𝑎 is the
concentration of product 𝐴, and 𝑇 is the temperature of the
mixture. The reaction is exothermic and it is controlled by a
coolant flowwhose rate is represented by 𝑞𝑐.The temperature
is controlled by changing the coolant and by controlling the
temperature, and the concentration is also controlled. 𝐶𝑎0 is
the inlet feed concentration, 𝑞 is the process flow rate, and𝑇𝑓 and 𝑇𝑐𝑓 are the inlet feed and coolant temperatures. All
these values are assumed constant at nominal values. In the

same way, 𝑘0, 𝐸/𝑅, V, 𝑘1, 𝑘2, and 𝑘3 are thermodynamic and
chemical constants.The numerical values of these parameters
are given in Table 4.

Fuzzy modeling: the above nonlinear model is used to
produce input-output time data. The sampling time is set to
0.01min. [𝐶𝑎(𝑘−1), 𝐶𝑎(𝑘−2), 𝑞𝑐(𝑘−1), 𝑞𝑐(𝑘−2), 𝑞(𝑘−1)]
and [𝑇(𝑘 − 1), 𝑇(𝑘 − 2), 𝑞(𝑘 − 1), 𝑞(𝑘 − 2), 𝑞𝑐(𝑘 − 1)] are
selected as the input vector.The rule numbers of the identified
fuzzy models are four.

The APSO algorithm parameters are chosen as follows:
the maximum number of APSO iterations 𝑡max = 110,
number of particles𝑁𝑝 = 10, 𝑟1 =0.2, 𝑟2 = 0.2, 𝐶1 = 1.5, 𝐶2 =
2.5, and 𝑤0 = 1.4.

The fitness function is selected as follows:

𝐽𝑖 = Γ𝑦1𝑖 (𝐶𝑎𝑖 − 𝐶𝑎𝑟)2 + Γ𝑞𝑖 (𝑞𝑐𝑖)2 + Γ𝑦2𝑖 (𝑇𝑖 − 𝑇𝑟)2
+ Γ𝑞𝑖 (𝑞𝑖)2 𝑖 = 1, 2, 3, 4. (27)

The reference signals applied to the system are as follows:

𝐶𝑎𝑟 =
{{{{{{{{{{{{{{{

0.1 0 ≤ 𝑘 < 50
0.05 50 ≤ 𝑘 < 100
0.15 100 ≤ 𝑘 < 150
0.25 150 ≤ 𝑘

𝑇𝑟 =
{{{{{{{{{{{{{{{

480 0 ≤ 𝑘 < 50
365 50 ≤ 𝑘 < 100
495 100 ≤ 𝑘 < 150
465 150 ≤ 𝑘.

(28)

Tables 5 and 6 contain the performance indices obtained for
the outputs Ca and T by the NMPC [10], FMPC-APSO [11],
and FOMPC-APSO algorithms. It summarizes the results of
this example in terms of the Ov%, Tr, Ts, and Es. As seen
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Table 5: Pi found by different methods.

Pi Algorithms
NMPC FMPC-APSO FOMPC-APSO

Tr 1.4965 4.4693 0.4135
Ts 6.8561 7.2779 3.5480
Ov% 5.0973 0.1215 0.00
Pic 1.0510 1.0012 1.0000
Es 0.00 0.00 0.00
W% 48.94 47.28 —

Table 6: Pi found by different methods.

Pi Algorithms
NMPC FMPC-APSO FOMPC-APSO

Tr 1.3711 3.0459 0.4116
Ts 9.2185 4.5471 3.2626
Ov% 5.4003 1.6309 0.0011
Pic 1.0540 1.0163 1.0000
ES 0.00 0.00 0.00
W% 48.14 49.07 —
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Figure 6: Evolution of concentration 𝐶𝑎.

in these tables, we can note that our method gives the best
performance of all compared techniques.

They applied NMPC algorithm to control the concen-
tration of product and it has the Tr and Ts values of
1.4965min and 6.8561min, while the FMPC-APSO approach
has 4.4693min and 7.2779min. However, the corresponding
Tr and Ts values for the same problem were 0.4135min and
3.5480 and with no Ov%. This indicates that the proposed
controller is able to perform faster than the other methods in
real application environment. Figures 6 and 7 show the evo-
lution of the Ca and T outputs from the three methods. From
these figures, there is a perfect continuation of the signal of
the setpoint whose FOMPC-APSOmethod has ensured good
performances. We also note that our method provides more
acceptable control effort regarding Figures 8 and 9.

In a second test, the disturbances on the system output in
different times have been applied to validate the tracking of
the reactor concentration. Thus, a disturbance of 0.002mol/l
at time 𝑡 = 82min and time 𝑡 = 130min is added.
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Figure 7: Evolution of temperature 𝑇.

Figure 10 illustrates the disturbance rejection performance of
the FOMPC-APSO controller.The results show that the adap-
tive controller has the ability to keep the process stable and
regulate the outlet concentration at its desired set point value.

6. Conclusion

In this paper, we have introduced the FOMPC-APSO con-
troller applied to highly nonlinear systems. An approach of
determining the optimum weights is developed by minimiz-
ing a chosen performance criterion using APSO algorithm.
The proposed approach is based on the advantage of the TS
fuzzy system in the modeling phase and the metaheuristic
optimization APSO algorithm in a new structure predictive
controller. The advantage of this structure is its ability to
handle highly nonlinear systems regardless and keep a good
stability in terms of overshoot, rise time, and settling time
including disturbances. We have achieved these objectives
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Figure 10: Evolution of concentration with external disturbances.

without any obligation increase in the control signal since
we have injected the phenomenon of optimal control in the
synthesis of our controller. Compared with other similar
existing methods, the FOMPC-APSO algorithm enhances
the convergence and accuracy of the controller optimization,
which is much easier for implementation in real time.
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