
Proof-theoretic semantics for classical
mathematics

W. W. Tait

The picture of mathematics as being about constructing objects of various
sorts and proving the constructed objects equal or unequal is an attractive
one, going back at least to Euclid. On this picture, what counts as a mathe-
matical object is specified once and for all by effective rules of construction.

In the last century, this picture arose in a richer form with Brouwer’s
intuitionism. In his hands (for example, in his proof of the Bar Theorem),
proofs themselves became constructed mathematical objects, the objects of
mathematical study, and with Heyting’s development of intuitionistic logic,
this conception of proof became quite explicit. Today it finds its most elegant
expression in the Curry-Howard theory of types, in which a proposition may
be regarded, at least in principle, as simply a type of object, namely the type
of its proofs. When we speak of ‘proof-theoretic semantics’ for mathematics,
it is of course this point of view that we have in mind.

On this view, objects are given or constructed as objects of a ginen type.
That an object is of this or that type is thus not a matter for discovery
or proof. One consequence of this view is that equality of types must be a
decidable relation. For, if an object is constructed as an object of type A
and A and B are equal, then the object is of type B, too, and this must be
determinable.

One pleasant feature of the type theoretic point of view is that the laws
of logic are no longer ‘empty’: The laws governing the type

∀x :A.F (x) = Πx:AF (x)

simply express our general notion of a function, and the laws governing

∃x :A.F (x) = Σx:AF (x)

1



express our notion of an ordered pair.
Much of my discussion applies equally to constructive mathematics. But

the type-theoretic point of view remains, for many people, restricted to the
domain of constructive mathematics. The term “classical” is included in
the title to indicate that, on the contrary, classical mathematics can also
be understood in this way and does not need to be founded on an inchoate
picture of truth-functional semantics in the big-model-in-the-sky, a picture
that can in any case never be coherently realized.

Of course, no particular system of types is going to capture all of classical—
or for that matter, constructive—mathematics. In the classical case, the
open-endedness can be expressed by the possibility of introducing ever larger
systems of transfinite numbers as types. But here I will discuss only the
elementary theory of types, omitting even the introduction of the finite num-
bers.

One thing to be noticed, and this is independent of whether or not one
admits classical reasoning, is that Frege’s simple ontology of function and
object must be abandoned. In particular, his notion of a concept, as a truth-
valued function, won’t do: it must be replaced by the notion of a proposi-
tional or type-valued function. This is obvious in the case of constructive
mathematics; but it applies equally to the classical case. What we prove are
propositions, not truth-values: propositions may be said to have truth-values;
but that is in virtue of being provable or refutable. Moreover, our concepts,
i.e. proposition- or type-valued functionals, range not over the ‘universe of
all objects’, as for Frege, but over specific types.

1. Another element of Frege’s picture that I want to at least avoid is
his notion of an ‘incomplete object’: the notion of a function as what is
denoted by an open term and the notion of a propositional function as what
is expressed by an open sentence. This very ugly idea has raised its head
again in recent times because of the apparent need for bound variables in
formulas such as

Qx :A.F (x)

where Q is a quantifier, and in terms

λx :A.t(x)

expressing universal quantifier introduction. (x : A expresses the restriction
of x to objects of type A.)

2



However useful in practice, variables are dispensible in the compositional
semantics of type theory. Providing that we can always bring the formula
F (v) into the form F ′v, where F ′ contains only variables in F other than
v and denotes a propositional function defined on A, and similarly we can
always bring t(v) into the form t′v, where t′ contains only variables in t other
than v and denotes a function defined on A, then we may eliminate bound
variables as primitive notation and write

Qx :A.F (x) := QF ′ λx :A.t(x) := t′

That we can eliminate bound variables in this way I proved in [Tait 1998b],
building on the work of Schönfinkel in [1924]. Let me describe the ontology
upon which the elimination is founded.

More generally, consider a sentence of the form

Q1x1 :A1 Q2x2 :A2 · · ·Qnxn :An.F (x1, . . . , xn)

where the Qk are quantifiers and F (x1, . . . , xn) contains no bound variables.
xk is a variable of type Ak. In general, Ak may contain the variables xj for
j < k. Iterating the above procedure, we obtain

Q1x1 :A′
1 Q2x2 :A′

2x1 · · ·Qnxn :A′
nx1 · · ·xn−1.F

′x1 · · ·xn = Q1 · · ·QnF
′

where

A′
kv1 · · · vk−1 = Ak F ′v1 · · · vn = F

The sequence

A′
1, . . . , A′

n, F

is a type-base in the sense of the following

DEFINITION. The notion of a type-base or simply a base and of an argument
for a base is defined by induction.

• The null sequence is a base and its only argument is the null sequence
of objects.

• For n ≥ 0, the sequence

F0, . . . , Fn

3



is a base iff F0, . . . , Fn−1 is a base and Fn is a type-valued function
defined on the arguments of F0, . . . , Fn−1. An argument for this base
is a sequence b0, . . . , bn such that b = b0, . . . , bn−1 is an argument for
F0, . . . , Fn−1 and bn is of type Fnb. In particular, the unit sequence
consisting of a type A is a base. Its arguments are the unit sequences
consisting of objects of type A.

Thus, every initial segment F0, . . . , Fk (k < n) of a base B = F0, . . . , Fn

is a base. If b0, . . . , bn is an argument for B, then Fkb0 · · · bk−1 is a type. We
will call the terms in a base functionals. When B, F is a base, we call B the
base of the functional F. When B is a base and b is an argument for it, we
write

b :B

As a special case, when B is a type

b :B

means that b is an object of type B.

2. We assume given an initial stock of functionals, closed under bases,
and, for each included type, all the objects of that type. We now extend
this stock by means of base-forming operations. In §3, we extend the class
of objects by means of object-forming operations

INSTANTIATION We may, à Schönfinkel, regard a functional of n + 1 vari-
ables as a function of the first variable, whose values are functions of the
remaining variables:

Fb0b1 · · · bn = (Fb0)b1 · · · bn

Thus, when B = A, F0, . . . , Fn is a base and b :A, then

Bb = F0b, . . . , Fnb

defines a base whose arguments are those sequences b0, . . . , bn such that
b, b0, . . . , bn is an argument for A, F0, . . . , Fn. Bb is called an instantiation
of B.

We assume, too, that when B is in the initial stock of bases, then so is
Bb.

4



QUANTIFICATION When F has base A, ∀F and ∃F are types.
We may extend quantification QF , defined initially for a functional whose

base is a type, to arbitrary functionals with non-null bases as follows: when
F has base B, G, then QF has base B. If b is an argument for B, then
(QF )b is defined point-wise by

(QF )b = Q(Fb)

If the base of the functional F is of length n, then we define its universal
closure to be

F ∗ := ∀ · · · ∀F

with n occurrences of ∀. So F ∗ is a type.

If b0, . . . , bn is an argument for the base F0, . . . , Fn, then the type Fkb0 · · · bk−1

of bk depends upon b0, . . . , bk−1. But sometimes we may wish to consider
propositional functions F of n arguments of independent types D1, . . . , Dn,
respectively. For example, in first or higher order predicate logic, we have
variables ranging over the type of individuals, the type of sets of individuals,
the type of sets of these, and so on. To deal with this, we need the following
operation:

DUMMY ARGUMENTS. If A is a type and F0, . . . , Fn is a base, the base
A, F0[A], . . . , Fn[A] is defined by

Fk[A]a = Fk

We extend this operation point-wise: If B, G and B, H0, . . . , Hn are bases,
then so is

B, G, H0[G], . . . , Hn[G]

where, for each argument b for B

Hk[G]b := Hkb[Gb]

Now, given the list D1, . . . , Dn of types, we may form the base D1, . . . , Dn

where D1 = D1 and

5



Dk+1 = Dk+1[D
1][D2] · · · [Dk]

Then, if b = b1, . . . , bn is an argument for this base, then

Dkb1 · · · bk−1 = Dk

Hence b is an argument for the base iff bk :Dk for each k = 1, . . . , n.1

In terms of the quantifiers and dummy arguments, we can define impli-
cation and conjunction: Let F and G have base B. then

F −→ G := ∀G[F ] F ∧ G := ∃G[F ]

Then F −→ G and F ∧ G have base B. Note that, if b :B, then

(F −→ G)b = (Fb −→ Gb) (F ∧ G)b = (Fb ∧ Gb)

Coimplication is defined between functionals with the same base by

F ←→ G := (F −→ G) ∧ (G −→ F )

There is one more operation on bases that we need, besides quantification,
instantiation and introducing dummy arguments:

TRANSPOSITION. Let

F, G, H0, . . . , Hn

be a base. ∀G is a type and F [∀G] has base ∀G; so ∀G, F [∀G] is a base. If
cd is an argument for this base, then c : ∀(G) and d : F [∀G]c = F . So cd is

1We could avoid this admittedly artificial treatment of variables of independent types,
but at the cost of a more complex structure of bases. Namely, we would define bases to
be trees, where, besides the null base, trees of the form

B1 · · · Bn

F

are admitted as bases when n ≥ 0, B1, . . . ,Bn are bases and, F is a type-valued function
defined on B1 × · · · × Bn. An argument for this base is of the form b1, . . . ,bn, c, where
bk : Bk for each k = 1, . . . , n and c : F (b1, . . . ,bn). But, in the interests of simplicity,
if not in the interests of efficient computation, we will continue to deal only with linear
bases.

6



defined and is of type Gd. Thus d, cd is an argument for F, G. It follows that
we can form a new base

∀G, F [∀G], H0{G}, . . . , Hn{G}

where the functionals Hk{G} are defined by

Hk{G}cd := Hkd(cd).

Again, we may extend the operation point-wise: Let B, F, G, H0, . . . , Hn

be a base. Then the base B,∀G, F [∀G], H0{G}, . . . , Hn{G} is defined by

Hk{G}b = Hkb{Gb}

3. We turn now to object-forming operations.
The LAW OF ∀-ELIMINATION is

f :∀F & b :A ⇒ fb :Fb.

The LAW OF ∃-INTRODUCTION is

b :A & c :Fb ⇒ (b, c) :∃F

and the LAW OF ∃-ELIMINATION takes the form of projections:

p :∃F ⇒ p1:A & p2:F (p1).

Note that 1 and 2 do not count here as objects.2

In order to obtain the law of ∀-Introduction without using lambda-abstraction,
we need to introduce a generalization of Schönfinkel’s combinators.

COMBINATOR K. If A and B are types, then

K(A, B) :A −→ (B −→ A)

where

K(A, B)ab = a.

2This form of ∃-Elimination is different from that of Martin-Löf, e.g. in [Martin-Löf
1998], although, as he notes, the two forms are equivalent. It would seem that projection
more directly expresses what it means to have an object of type ∃F .

7



This is the typed version of one of Schönfinkel’s combinators.
We extend K to functionals F and G with a common base B: if b : B,

then

K(F, G) : (F −→ (G −→ F ))∗

is defined point-wise by setting

K(F, G)b = K(Fb, Gb)

COMBINATORS S∀ and S∃. Let H have base F, G and let Q be a quantifier
∀ or ∃. Then ∀QH and Q∀(H{G}) both are types. We will define the
combinator

SQ(H) : (∀QH −→ Q∀(H{G})

Let c :∀Q(H). Then

SQ(H)c :Q∀(H{G})

H{G} has base ∀G, F [∀G].

First, let Q = ∀.

S∀(H)c :∀∀(H{G})

Let d : ∀G and e : F = F [∀G]c. S∀(H)cde must be defined to be of type
H{G}de, i.e. of type He(de), which is the type of ce(de). Hence, we define

S∀(H)cde = ce(de)

Thus, S∀ is the typed version of Schönfinkel’s other combinator.

Now let Q = ∃.

S∃(H)c :∃∀(H{G})

Thus we must have

S∃(H)c1:∀G

8



S∃(H)c2:∀H{G}(S∃(H)c1)

Let d :F . Then we must have

S∃(H)c1d :Gd

S∃(H)c2d :Hd(S∃(H)c1d)

But cd :∃Hd and so cd1:Gd and cd2:Hd(cd1). So we may define S∃(H) by

S∃(H)c1d := cd1 S∃(H)c2d := cd2

We again extend the combinators SQ(H) to the case in which H has a
base B, F, G by point-wise definition:

SQ(H) : (∀QH −→ Q∀H{G})∗

Let b :B. Then

SQ(H)b := SQ(Hb)

Notice that, if H has base A, B[A], the type

∀∃H −→ ∃∀H{B[A]}

of S∃(H), which may be expressed by

∀x :A∃y :B.Hxy −→ ∃z : (A −→ B)∀x :A.Hx(zx)

is an expression of the Axiom of Choice. Our definition of the combinator
S∃(H) amounts to a constructive proof of this axiom.

4. We need now to discuss the notion of definitional equality. We are
discussing a system Σ of bases and objects built up by means of certain op-
erations: instantiation, quantification, introducing dummy arguments, trans-
position, and ∃ and ∀ introduction and elimination from a given stock of bases
and objects, which are distinct from the newly introduced ones. We assume
that equality between given functionals or objects is given and we assume
that it is closed under instantiation and ∀-elimination. Thus, besides the

9



defining equations given above for the new functionals and objects, we have
all of the true equations

Fa = G fa = b

concerning given functionals F and G and given objects a and b (when f is of
some type ∀H and A, F is a given base). We can extend the equality relation
to the new objects and types by taking it to be the equivalence relation
generated by the defining equations and the true equations concerning the
given objects and functionals. However, for functionals in general, we need
a weaker (i.e. more inclusive) notion of equality, which we can define by
induction on the length of their bases: two functionals F and G are equal iff
their bases have the same length n and the members are pairwise equal and
if Fx1 · · ·xn = Gx1 · · ·xn follows purely formally from the given equations,
where x1, . . . , xn are distinct symbols. We need to specify that, when an
object c is of some type A and A = B, then c is of type B, too.

It can be shown that this definition of equality, called definitional equality,
is decidable relative to the true equations concerning the given functionals
and objects. It turns out, too, that when b = c and b :A, then c :A. So each
object has a unique type.

The inelegant definition of equality between functionals with non-null
bases is necessitated by the fact that we need below some special cases of the
equations

H[G]{G} = H[∀G]

(QH)[G] = Q(H[G])

whenever Q is a quantifier and the left-hand sides are meaningful. These
equations are valid for the notion of equality we have just introduced; but
it would be more satisfactory to be able to extend this list of equations to a
‘complete’ one, i.e. so that equality of objects or functionals in general could
be taken to be the equivalence relation generated by all the equations. For
example, besides the above equations, we would need

(QH){G} = Q(HG)

H[F ][G[F ]] = H[G][F ]

10



H{F}{G{F}} = H{G}{F}

H[F ]{G[F ]} = H{G}[F ]

when, again, the left-hand sides make sense.

QUESTION. Is this system of equations complete? I suspect so; but if not,
how is it to be extended to a complete system?

5. Let G and H have base B, F , so that H[G]{G} = H[∀G]. Let S =
S∀(H[G]). Then

S : (∀∀H[G] −→ ∀∀(H[G]{G}))∗

Hence

S : (∀(G −→ H) −→ ∀∀(H[∀G]))∗

But ∀(H[∀G]) = (∀H)[∀G] and so, finally

S : (∀(G −→ H) −→ (∀G −→ ∀H))(1)

Note that the types of K(F, G) and S, i.e.

(F −→ ∀F [G])∗ and (∀(G −→ H) −→ (∀G −→ ∀H))∗

are precisely Quine’s [1951] axioms for the universal quantifier in first-order
predicate logic, which have the property of avoiding λ-abstraction, i.e. hy-
pothetical proof. The difference is that Quine retains bound variables in
formulas. Both Quine [1960a] and Bernays [1959] discussed the question of
eliminating bound variables in formulas in first-order logic; but neither pre-
sented an entirely adequate account from the point of view of proof theory,
even for predicate logic.

If in the equation (1) we replace G and H by B[A] and C[A], respectively,
where A, B, C are types, then we obtain Schönfinkel’s combinator S of type

[A −→ (B −→ C)] −→ [(A −→ B) −→ (A −→ C)]

This type, together with the type of K(A,B):

A −→ (B −→ A)

11



are the axioms of positive implicational logic. This correspondance between
the positive implicational logic and the typed theory of combinators seems
to have been first noticed in [Curry Feys 1958] and is cited in [Howard 1980]
as one of the sources of the propositions-as-types point of view.

6. So far, we’ve said nothing about eliminating bound variables, or what
amounts to the same thing, eliminating the need for free variables. In order
to show how we can eliminate variables, we first have to introduce them.

Let A be a type in Σ and let v be a symbol that we take as an indeter-
minate of type A. We can construct the formal ‘polynomial extension’ Σ[v]
of Σ in the obvious way, formally closing it under the above operations and
where equality is again the relation of definitional equality. For every b : A
in Σ, there is a homomorphism b∗ : Σ[v] −→ Σ obtained by ‘substituting b
for v in the formulas and terms of Σ[v]’. Restricted to Σ, b∗ is the identity
function. The following is proved in [Tait 1998b]

EXPLICIT DEFINITION THEOREM. Let F1, . . . , Fn be a base and t a
term of type B in Σ[v].

• There is a base A, F ′
1, . . . , F ′

n in Σ such that, for any b :A in Σ,

F ′
kb = Fk (k = 1, . . . , n)

• There is an object t′ :∀B′ in Σ such that for all :
¯

A in Σ

t′b = t

We can write

λx :A.F (x) := F ′ λx :A.t(x) := t′

This process of taking formal extensions can be iterated: let Σ[v0, . . . , vn] be
given and let Bn+1 be a type in this system. Choose a new symbol vn+1 as
an indeterminate of type B and form Σ[v0, . . . , vn+1] = Σ[v0, . . . , vn][vn+1].

Given a functional F (v1, . . . , vn) in the system Σ[v1, . . . , vn], we can con-
struct the functional

F ′ = λx1 :B1 · · ·λxn :Bb.F (x1, . . . , xn)

12



in Σ such that

F ′v1 · · · vn = F (v1, . . . , vn).

7. Notice that we have not introduced disjunction in type theory: it
is indeed an awkward operation. Were we to introduce the type N of the
natural numbers with its corresponding introduction and elimination rules,
the functional = 0 with base N can be defined and so disjunction can be
defined by

A ∨ B := ∃x :N[(x = 0 −→ A) ∧ (x 	= 0 −→ B)]

But the most elementary way to deal with disjunction is to introduce the
base

2,T

2 is the two-object type. 2-Introduction specifies that the truth-values 

and ⊥ are of type 2. 2-Elimination asserts the existence, for any functional
F with base 2, of

N2(F ) : [F
 −→ (F⊥ −→ ∀F )]

where

N2(F )bc
 := b N2(F )bc⊥ := c

We take T
 to be the terminal type and T⊥ to be the initial type, i.e.

1 := T
 0 := T⊥

1-Introduction specifies that ι is an object of type 1 and 1-Elimination asserts
the existence, for any functional F of base 1, of

N1(F ) : [Fι −→ ∀F ]

where

N1(F )bι := b

13



There is no 0-Introduction, of course. 0-Elimination asserts the existence,
for any functional F of base 0, of

N0(F ) :∀F

Our types k are of course Martin-Löf’s [1998] types Nk.
In order to preserve the Explicit Definition Theorem, the elimination

rules for k = 2,1 and 0 need to be extended in the usual way by point-wise
definition to functionals F with bases of the form

B,k[B]

where, if B is G0, . . . , Gn, then k[B] := k[G0][G1] · · · [Gn]. We may do this
as follows: Let F+ with base k,B[k] be defined by

F+ := λx :kλy1 :B1 · · ·λyn :Bb.Fy1 · · · ynx

Then we define

N2(F ) : [F+
 −→ (F+⊥ −→ ∀F )]∗

N1(F ) : [F+ι −→ ∀F ]∗

N0(F ) :∀F

by

Nk(F )b := Nk(Fb)

for b :B.
If F has base B, then we define

¬F := F −→ 0[B].

Let F and G have the base B. Set

〈F, G〉 := ∃x :2.[(Tx −→ A) ∧ (¬Tx −→ B)].

It is easy to deduce (i.e. find objects of type)

(F ←→ 〈F, G〉
)∗ (G ←→ 〈F, G〉⊥)∗.(2)

14



So we may define

F ∨ G := ∃x :2〈F, G〉x.

With this definition, using the deducibility of (2), the usual laws of ∨-
Introduction and -Elimination are derivable.

8. Up to now, we have been discussing the theory of types in general,
with no particular reference to the classical theory. The latter is of course
obtained by adding the law of

¬¬-ELIMINATION. Let F have base B. Then

D(F ) : (¬¬F −→ F )∗,

Here again, when B is non-null, D(F ) is defined point-wise in terms of D(A)
for A a type:

D(F )b := D(Fb)

when b :B.
From the type-theoretic point of view, what characterizes classical mathe-

matics is not truth-functional semantics, but the introduction of what, some-
what in the spirit of Hilbert, we may call the ideal objects D(F ).

It is interesting that the problem that writers have found with classi-
cal mathematics, that there exist undecidable propositions A, such as the
continuum hypothesis, for which the law of excluded middle nevertheless is
taken to be valid, takes a different form when one moves from the (anyway
incoherent) point of view of truth-functional semantics to that of type theory.
Even constructively we can produce a deduction p of

¬¬(A ∨ ¬A)

So classically we have

q = D(A ∨ ¬A)))p :A ∨ ¬A

I.e.

q :∃x :2.〈A,¬A〉x

15



Therefore, q1 : 2 and q2 : 〈A,¬A〉(q1). But we are unable to conclude that
q1 is 
 and we are unable to conclude that it is ⊥; and so we are unable
to conclude that q2 is a proof of A or that it is a proof of ¬A. We will
see below that, unlike the relation of definitional equality, we can define in
type theory the notion of (extensional) equality ≡. Hence, by 2-Elimination
(which states that anything true of both 
 and ⊥ is true of all objects of
type 2)

q1 ≡ 
 ∨ q1 ≡ ⊥

will be derivable, since


 ≡ 
 ∨ 
 ≡ ⊥

and

⊥ ≡ 
 ∨ ⊥ ≡ ⊥

will both be derivable. Notice that this situation concerns not just undecid-
able propositions in classical mathematics, but any proposition A for which
excluded middle cannot be proved constructively. Also, in the same way in
which there are ideal objects of type 2 which cannot be said to be 
 and
cannot be said to be ⊥, but nevertheless are either one or the other, so there
are ideal numbers for example, i.e. objects of type N (were we to introduce
this type), which therefore are in the sequence 0, 1, 2 . . . but which we cannot
locate in this sequence. This is an interesting observation about how disjunc-
tion works in classical mathematics; but it seems paradoxical only when one
assumes that classical mathematics is based on truth-functional semantics.

9. In classical logic, the sets of elements of type A are not themselves
types, but are precisely the 2-valued functions on A, i.e. they are the objects
of type

P(A) := A −→ 2

We may define the functional εA with base A,P(A)[A] by

aεAf := εAaf := T (fa)

So when fa = 
, aεf is the true proposition 1 and when fa = ⊥, it is the
false proposition 0.

16



We have shown how, in classical logic, for any functional F with base A,
to obtain an object

p : ∀x :A[F (x) ∨ ¬F (x)]

Let f = λx : A(px1) and g = λx : A(px2). Then f : A −→ 2 = P(A). Let
u :A. Then gu is a deduction of 〈F (u),¬F (u)〉(fu) =

[T(fu) −→ F (u)] ∧ [¬T(fu) −→ ¬F (u)]

From the second conjunct, in classical logic, we obtain a deduction of F (u) −→
T(fu). Recalling that uεAf is T(fu), we thus have a deduction r(u) of

uεAf ←→ F (u)

So (f, λx :A.r(x)) is a deduction of the COMPREHENSION PRINCIPLE 3

∃z :P(A)∀x :A[xεz ←→ F (x)]

10. In this final section, I will show that extensional equality can be
defined in the Curry-Howard theory.4 Recall that equality between types is
to be understood intensionally, as definitional equality. This is important
for the type-theoretic point of view: what the type of an object is should
be determined from the object. If c is given as an object of type A and
A is the same type as B, then we should be able to determine that c is of
type B. Similarly, the identity of objects should be understood in terms of
definitional equality: objects are given by terms and two terms denote the
same object iff they are definitionally equal. Of course, definitional equality
as a relation among the objects of some type A is not expressible as a type;
that is, there is no functional E with base A, A[A] such that the type Ebc
expresses the definitional equality of objects b and c of type A.

3Thus, the Comprehension Principle follows from the Law of Excluded Middle. The
converse is also true: Let B be any type. Using the Comprehension Principle, there is a
b : P(2) such that T(b⊥) ←→ B. Hence, ¬¬T(b⊥) ←→ ¬¬B. But even constructively,
¬¬T(b⊥) −→ T(b⊥) and so ¬¬B −→ B.

4I discussed this in [1996]; but the treatment, besides being unnecessarily complicated,
contained an error which was discovered in conversations with Robert Harper and Christo-
pher Stone at Carnegie-Mellon in Autumn 1999. Part of the complication in the earlier
paper resulted from the fact that I thought that extensional equality could be treated only
in the classical system. We shall see that this is false.

17



There is, however, the notion of extensional equality between objects of
a given type, which we can express in type theory. Let me discuss this.

An immediate problem with defining extensional equality between objects
of the same type is this: Let c and d be of type ∀x : A.F . Then clearly the
extensional equality of c and d should imply that, for all extensionally equal
a and b of type A, ca should be extensionally equal to db. But the types
Fa and Fb of ca and db, respectively, are not in general the same type, i.e.,
are not definitionaly equal. So we must define extensional equality between
object of certain different types.

In virtue of the Explicit Definition Theorem, every functional is of the
form

Fb1 · · · bn

where n ≥ 0 and F is built up without using instantiation. If

Fc1 · · · cn

is another functional, then we call these two functionals congruent. Obvi-
ously, congruence is an equivalence relation on the functionals. We need to
define the functional ≡FG of extensional equality for congruent functionals
F and G. We will drop the subscript on ≡FG when no confusion results. Let
F have base B and G base B′. ≡FG will be defined as a functional with base
B,B′[B], F [B′[B]], G[B, F [B′[B]]], point-wise: for each b :B and b′ :B′

≡FG bb′ := ≡FbGb′ .

So it suffices to define ≡AB for congruent types A and B. But for this we need
only define what a ≡ b means for objects a :A and b :B in some polynomial
extension of Σ. For then we obtain ≡ as λx :Aλy :B.x ≡ y.

We assume that the relation of extensional equality is defined for the
basic types and that it is an equivalence relation. We define it now for the
new types that we have introduced.

DEFINITION OF EXTENSIONAL EQUALITY Let a :A and b :B.

• A = B = 2. Recalling that T
 is the terminal type 1 and T⊥ is the
initial type 0, it clearly suffices to define ≡ by

a ≡ b := Ta ←→ Tb.

18



• A = Tc, B = Td. Then c and d are of type 2.

a ≡ b := c ≡ d.

• A = ∀F, B = ∀G, where F and G have bases C and D, respectively.
Then C and D are congruent and F and G are congruent.

a ≡ b := ∀x :C∃y :D(x ≡ y) ∧ ∀y :D∃x :C(x ≡ y)

∧∀x :C∀y :D(x ≡ y −→ ax ≡ by).

• A = ∃F, B = ∃G where F and G have bases C and D, respectively.
Again, C and F are respectively congruent to D and G.

a ≡ b := a1 ≡ b1 ∧ a2 ≡ b2.

It is easy to deduce that


 	≡ ⊥

∀x :2 [x ≡ 
 ∨ x ≡ ⊥]

∀x :2∀y :Tx∀z :Txy ≡ z

and that extensional equality is transitive and symmetric. I.e.

∀x :A ∀y :A ∀z :A [x ≡ y ∧ y ≡ z −→ x ≡ z]

∀x :A∀y :A[x ≡ y −→ y ≡ x].

Moreover, for a given object a of type A in Σ, there is a deduction of a ≡ a.
But, alas, we cannot deduce for an arbitrary type A that extensional equality
on A is reflexive:

∀x :A [x ≡ x].(3)

The problem case is, of course, when A is of the form ∀F , where F has some
base B. It would be consistent to add non-extensional functions to Σ.

19



On the other hand, we could consider introducing the principle (3) as a
‘regulative principle’. Thus, for each object b of a type A that is introduced,
there must be a proof E ′

b provided of b ≡ b. Then we would introduce the
constant

E(A) :∀x :A.(x ≡ x).

by means of the definition

E(A)b := Eb.

However, we are not done, since according to our requirement for introducing
objects, we have to prove the reflexivity of E(A), itself: E(A) ≡ E(A). I.e.,
we have to have a proof of

∀x :A∀y :A[x ≡ y −→ E(A)x ≡ E(A)y]

The proof of this turns out to be something of a tour de force.

Proposition. In any polynomial extension on Σ, from p : a ≡ a′, q : b ≡ b′

and r : a ≡ b, we can construct a proof of p ≡ q.

In particular, then, from proofs r : u ≡ v we can construct a proof of
E(A)u ≡ E(A)v. We prove the theorem by induction on the type of a. Note
that from p, q and r we obtain a proof s of a′ ≡ b′.

CASE 1. a is of type 2. Then

p : Ta ←→ Ta′ q : Tb ←→ Tb′

Thus

p1: Ta −→ Ta′ q1: Tb −→ Tb′

We need p1 ≡ q1, i.e.

∀x :Ta ∃y :Tb(x ≡ y) ∀y :Tb ∃x :Ta(x ≡ y)

and

∀x : Ta ∀y : Tb[x ≡ y −→ p1x ≡ q1y]

20



r1 : Ta −→ Tb and r2 : Tb −→ Ta. So, if u : Ta and v : Tb, then r1u : Tb
and r2v :Ta. So the first two conditions are satisfied. The last condition is
just (Ta ←→ Tb) −→ (Ta′ ←→ Tb′), which is obtained from p and q. By
symmetry, we also have p2 ≡ q2 and so p ≡ q.

CASE 2. a : Tc. Then a′ : Tc′, b : Td, b′ : Td′. Then a ≡ a′ is just c ≡ c′,
etc.; and this case reduces to Case 1.

CASE 3. a : ∃x : AF (x). Then a1: A and a2: F (a1), p1: a1 ≡ a′1, q1: b1 ≡
b′1, etc; and so, by the induction hypothesis, p1 ≡ q1 and p2 ≡ q2.

CASE 4. a : (∀x : A.F (x)), b : (∀y : B.G(y)), a′ : (∀x′ : A′.F ′(x′)), b′ : (∀y′ :
B′.G′(y′)). In the following, I will drop the A in x : A, and similarly for x′, y
and y′. So p, as a proof of

∀x∃x′(x ≡ x′) ∧ ∀x′∃x(x ≡ x′) ∧ ∀xx′[x ≡ x′ −→ ax ≡ a′x′]

has three components, p0, p1, p2 which are proofs of the conjuncts, respec-
tively, and similarly for q, r and s. We need to show for i ≡ 0, 1, 2 that
pi ≡ qi. To prove p0 ≡ q0, we need

∀x∃y(x ≡ y) ∀y∃x(x ≡ y)

which have the proofs r0 and r1, and

∀xy[x ≡ y −→ p0x ≡ q0y]

Let u : A, v : B and assume u ≡ v. p0u1 : A′, q0v1 : B′, p0u2 : u ≡ p0u1 and
q0v2 : v ≡ q0v1. So p0u1 ≡ q0v1 and hence, by the induction hypothesis,
p0u2 ≡ q0v2. Thus, p0 ≡ q0.

By symmetry, p1 ≡ q1.
As for p2 and q2, we have

p2 : ∀xx′[x ≡ x′ −→ ax ≡ a′x′] q2 :∀yy′[y ≡ y′ −→ by ≡ b′y′]

p2 ≡ q2 is clearly equivalent to the conjunction of

∀x∃y(x ≡ y) ∀y∃x(x ≡ y)

∀x′∃y′(x′ ≡ y′) ∀y′∃x′(x′ ≡ y′)

21



which have the proofs r0 and s0, and

∀xx′yy′[x ≡ y ∧ x′ ≡ y′ −→ p2xx′ ≡ q2yy′](4)

Let u, u′, u∗ be of types A, A′ and u ≡ u′, respectively, and let v, v′ and v∗

be of types B, B′ and v ≡ v′, respectively. Then p2uu′u∗ : au ≡ a′u′ and
q2vv′v∗ : bv ≡ bv′. Let w :u ≡ v and w′ :u′ ≡ v′. Then r2uvw :au ≡ bv. So by
the induction hypotheses, p2uu′u∗ ≡ q2vv′v∗ follows from the assumptions w
and w′. This demonstrates 4.

References

Bernays, P. [1959]. Über eine naturliche Erweiterung des Relationkalkuls,
[Heyting 1959] pp. 1–14.

Curry, H. Feys, R. [1958]. Combinatory logic i, studies in logic and the
foundations of mathematics. 2nd edition 1968.

Heyting, A. (ed.) [1959]. Constructivity in Mathematics, Amsterdam: North-
Holland.

Howard, W. [1980]. The formula-as-types notion of construction, pp. 479–
490.

Martin-Löf, P. [1998]. An intuitionistic theory of types.

Quine, W. [1951]. Mathematical Logic: Revised Edition, Cambridge: Harvard
University press.

Quine, W. [1960a]. Variables explained away, Proceedings of the Americal
Philosophical Society . Reprinted in [Quine 1966a, 227–235].

Quine, W. [1966a]. Selected Logic Papers, New York: Random House.

Sambin, G. Smith, J. (eds) [1998]. Twenty-Five Years of Constructive Type
Theory, Oxford: Oxford University Press.

Schönfinkel, M. [1924]. Über die Bausteine der mathematischen Logik, Math-
ematische Annalen 92: 305–316.

22



Tait, W. [1996]. Extensional equality in classical type theory, in W. DePauli-
Schimanovich, E. Köhler F. Stadler (eds), The Foundational Debate:
Complexity and Constructivity in Mathematics and Physics, pp. 219–
234.

Tait, W. [1998b]. Variable-free formalization of the Curry-Howard type the-
ory, [Sambin Smith 1998, 265–274] .

23


