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A linear resistive-capacitive-inductance shunted junction (LRCLSJ)model obtained by replacing the nonlinear piecewise resistance
of a nonlinear resistive-capacitive-inductance shunted junction (NRCLSJ) model by a linear resistance is analyzed in this paper.
The LRCLSJ model has two or no equilibrium points depending on the dc bias current. For a suitable choice of the parameters,
the LRCLSJ model without equilibrium point can exhibit regular and fast spiking, intrinsic and periodic bursting, and periodic
and chaotic behaviors. We show that the LRCLSJ model displays similar dynamical behaviors as the NRCLSJ model. Moreover
the coexistence between periodic and chaotic attractors is found in the LRCLSJ model for specific parameters. The lowest order of
the commensurate form of the no equilibrium LRCLSJ model to exhibit chaotic behavior is found to be 2.934. Moreover, adaptive
finite-time synchronization with parameter estimation is applied to achieve synchronization of unidirectional coupled identical
fractional-order form of chaotic no equilibrium LRCLSJ models. Finally, a cryptographic encryption scheme with the help of the
finite-time synchronization of fractional-order chaotic no equilibrium LRCLSJ models is illustrated through a numerical example,
showing that a high level security device can be produced using this system.

1. Introduction

A Josephson junction (JJ) ismade up of two superconductors,
separated by a nonsuperconducting layer so thin that elec-
trons can cross through the insulating barrier [1]. The flow
of current between the superconductors in the absence of an
applied voltage is called a Josephson current and the move-
ment of electrons across the barrier is known as Josephson
tunneling [2, 3]. The JJ finds practical use as a millimetre or

submillimetre wave oscillator [4], in digital systems [5] and in
superconducting quantum interference devices such as mag-
netometer applications [6]. Based on the rapid development
of superconducting devices in the fabrication technology
different models of JJ have been reviewed in order to under-
standwhether such superconducting junction can be used for
ultrahigh-speed chaotic generators for applications of code
generation in spread-spectrum communications and random
key generation in secure communication and encryption [7].
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Figure 1: (a) The schematic representation of NRCLSJ model [14]. (b) Current-voltage characteristics at a temperature 𝑇 (in Kelvin) of the
intrinsic junction shunt resistance 𝑅(𝑉) [3]. (c) The schematic representation of LRCLSJ model.

In the literature, we can find different models of JJ, namely,
linear resistive-capacitive shunted junction (RCSJ) model,
nonlinear resistive-capacitive shunted junction model, and
the NRCLSJ model [3, 8–12]. The first two models show
chaotic behaviors when driven by an external sinusoidal
signal [11] while the NRCLSJ model generates chaotic oscil-
lation with external dc bias only [12–14]. Regular spiking,
intrinsic bursting, and fast spiking which are usually seen in
the mammalian neocortex have been found in the NRCLSJ
model [15]. For large inductance, the NRCLSJ model behaves
as a relaxation oscillator [16]. The NRCLSJ model [8, 9] is
used to simulate JJ, resulting in a fairly good agreement with
experiment. The RCSJ model, however, fails to reproduce
significant features on experimental 𝐼-𝑉 curves when the
shunt of the JJ contains an inductance component [12, 17].

In this paper, we use the NRCLSJ model where the
nonlinear piecewise resistance is replaced by a linear resis-
tance to make it the LRCLSJ model. In [18], Neumann
and Pikovsky reported on the study of a nontrivial type of
slow-fast dynamics in LRCLSJ model. However, to the best
of our knowledge, the dynamical behavior of the LRCLSJ
model without equilibrium and its fractional-order form
remains unaddressed. It is important to note that, due to
the absence of equilibrium, the LRCLSJ model belongs to a
class of systems with hidden attractors [19–22]. Systems with
hidden attractors have three different families: systems with
an infinite number of equilibrium points, systems with only
stable equilibrium point, and systems without equilibrium
points. A hidden attractor has a basin of attraction that does
not intersect with small neighborhoods of any equilibrium
points, while a self-excited attractor has a basin of attraction
that is associated with an unstable equilibrium. Almost all
famous chaotic attractors are self-excited. Hidden attractors
are of high interest in engineering applications because they
can exhibit unexpected and potentially disastrous responses
to perturbations in a structure like a bridge or an airplane
wing [23–26]. The paper is articulated around four sec-
tions presented as follows: in Section 2, the analytical and
numerical analysis of the LRCLSJ model are investigated. In

Section 3, we focus on the dynamical behavior, synchroniza-
tion, and application to digital cryptography in the fractional-
order form of LRCLSJ model without equilibrium points.
Finally the conclusion of the paper is drawn in Section 4.

2. Rate-Equations and Analysis of the Linear
Resistive-Capacitive-Inductance Shunted
Junction Model

In this work, we consider the NRCLSJ model where the
nonlinear resistance 𝑅(𝑉) is replaced by a linear resistance𝑅 as shown in Figure 1.

TheNRCLSJmodel is presented in Figure 1(a).The intrin-
sic junction shunt nonlinear resistance 𝑅(𝑉) is modelled
by a piecewise linear resistor as shown in Figure 1(b). In
Figure 1(c), the shunted nonlinear resistance in Figure 1(a)
is replaced by a linear resistor 𝑅. The JJ is represented by the
supercurrent channel 𝐼𝐶. 𝐼 is the bias current applied to the JJ
and 𝐶 is the junction capacitance. A current 𝐼𝑆 flows through
the shunt inductance 𝐿𝑆 and its internal resistance 𝑅𝑆. The
application of the Kirchhoff laws to the circuit of Figure 1(c)
leads to the following differential equation:

𝐼 = 𝐶𝑑𝑉𝑑𝑡󸀠 + 𝑉𝑅 + 𝐼𝐶 sin𝜙 + 𝐼𝑆 (1a)

𝑉 = 𝐿𝑆𝑑𝐼𝑆𝑑𝑡󸀠 + 𝑅𝑆𝐼𝑆 (1b)

𝑉 = ℏ2𝑒 𝑑𝜙𝑑𝑡󸀠 , (1c)

where 𝜙 denotes the phase difference of JJ. Using the dimen-
sionless variables,

𝑥 = 𝑉𝑅𝑆𝐼𝐶 ,
𝑦 = 𝐼𝑆𝐼𝐶 ,
𝑧 = 𝜙,



Complexity 3

𝑡󸀠 = 𝑡𝜔0 ,
𝜔0 = 2𝜋𝑒𝑅𝑆𝐼𝐶ℎ ,
𝛽𝑅 = 𝑅𝑆𝑅 ,
𝛽𝐶 = 2𝜋𝑒𝐶𝐼𝐶𝑅2𝑆ℎ ,
𝛽𝐿 = 2𝜋𝑒𝐿𝑆𝐼𝐶ℎ ,
𝑖 = 𝐼𝐼𝐶 .

(2)

The dimensionless set of (1a)–(1c) can be rewritten as

𝑑𝑥𝑑𝑡 = 1𝛽𝐶 (𝑖 − 𝑦 − 𝛽𝑅𝑥 − sin 𝑧) (3a)

𝑑𝑦𝑑𝑡 = 1𝛽𝐿 (𝑥 − 𝑦) (3b)

𝑑𝑧𝑑𝑡 = 𝑥, (3c)

where 𝛽𝑅, 𝛽𝐶, 𝛽𝐿, 𝑖 are positive parameters which represent
the dc bias current, the ratio of resistors, the capacitor, and
the inductance, respectively. Therefore, the LRCLSJ model is
described by the set of (3a)–(3c).

2.1. Analytical Analysis of the Linear Resistive-Capacitive-
Inductance Shunted Junction Model. System (3a)–(3c) is dis-
sipative because ∇𝑉 = 𝜕𝑥̇/𝜕𝑥 + 𝜕 ̇𝑦/𝜕𝑦 + 𝜕𝑧̇/𝜕𝑧 = −(𝛽𝑅/𝛽𝐶 +1/𝛽𝐿) < 0. For 𝑖 > 1, it does not have an equilibrium point,
while, for 𝑖 ≤ 1, that same system has two equilibrium points𝐸1 = (0, 0, arcsin(𝑖)) and 𝐸2 = (0, 0, 𝜋 − arcsin(𝑖)). The
characteristic equation associated with the equilibrium point𝐸 = (𝑥∗, 𝑦∗, 𝑧∗) is

𝜆3 + (𝛽𝑅𝛽𝐶 +
1𝛽𝐿)𝜆
2

+ [ 1𝛽𝐶𝛽𝐿 +
𝛽𝑅𝛽𝐶𝛽𝐿 +

1𝛽𝐶 cos (𝑧
∗)] 𝜆

+ 1𝛽𝐶𝛽𝐿 cos (𝑧
∗) = 0,

(4)

which, for 𝐸1, gives
𝜆3 + (𝛽𝑅𝛽𝐶 +

1𝛽𝐿)𝜆
2

+ [ 1𝛽𝐶𝛽𝐿 +
𝛽𝑅𝛽𝐶𝛽𝐿 +

1𝛽𝐶 cos (arcsin (𝑖))] 𝜆
+ 1𝛽𝐶𝛽𝐿 cos (arcsin (𝑖)) = 0

(5)

and, for 𝐸2, the characteristic equation becomes

𝜆3 + (𝛽𝑅𝛽𝐶 +
1𝛽𝐿)𝜆
2

+ [ 1𝛽𝐶𝛽𝐿 +
𝛽𝑅𝛽𝐶𝛽𝐿 −

1𝛽𝐶 cos (arcsin (𝑖))] 𝜆
− 1𝛽𝐶𝛽𝐿 cos (arcsin (𝑖)) = 0.

(6)

According to the Routh–Hurwitz criteria, the equilibrium
point 𝐸1 is a stable node and the equilibrium point 𝐸2 is a
saddle node.

2.2. Dynamical Behaviors of the Linear Resistive-Capacitive-
Inductance Shunted Junction Model. Dynamics of LRCLSJ
model is investigated by considering the effect of parameters
on system’s behavior in order to see if it can exhibit some
of the dynamical behaviors of the NRCLSJ model. Our
simulations show that for 𝑖 < 1.0 the trajectories of system
(3a)–(3c) converge to one of the equilibrium points 𝐸1,2
while, for 𝑖 > 1.0, the trajectories of system (3a)–(3c)
display periodic or complex behaviors as will be seen in the
paragraphs below. It is interesting to note that, for 𝑖 > 1.0,
system (3a)–(3c) has no equilibrium point. We find regular
spiking, intrinsic bursting, fast spiking, and periodic bursting
in the junction as shown in Figure 2 when the capacitive
parameter 𝛽𝐶 is kept fixed at 𝛽𝐶 = 0.007, while the dc bias𝑖, the inductive 𝛽𝐿, and resistive 𝛽𝑅 parameters are varied.

For 𝛽𝐿 = 1.5, 𝛽𝑅 = 0.1, and 𝑖 = 1.25, the junction
exhibits regular spiking as shown in Figure 2(a). The regular
spiking is sensitive to dc bias 𝑖 and the parameter 𝛽𝑅. In
Figure 2(b), for the same values of 𝛽𝐿 and 𝛽𝑅 parameters,
intrinsic bursting is observed for larger dc bias current 𝑖 =1.75 when the spiking frequency is obviously larger. For 𝛽𝐿 =0.5, the fast spiking is found in Figure 2(c) when the dc
bias current 𝑖 and other parameters remain the same as for
intrinsic bursting. For 𝛽𝑅 = 0.01, the periodic bursting is
observed in Figure 2(d) when the dc bias current 𝑖 and other
parameters are kept fixed as for regular spiking. Such spiking
behaviors have been found in the NRCLSJ model [16] and are
typical of the mammalian neocortex [27]. As in the NRCLSJ
model, the LRCLSJ model behaves as a relaxation oscillator
for large value of parameter 𝛽𝐿 [15]. This is shown in Figure 3
which presents the time series of 𝑥(𝑡) and corresponding
phase portrait for 𝛽𝐿 = 26, 𝛽𝐶 = 0.5, 𝑖 = 1.25, and 𝛽𝑅 = 0.1.

In the following, the dynamical behavior of system
(3a)–(3c) is illustrated using bifurcation diagrams, Lyapunov
exponent, time series, phase portraits, and basin of attraction.
In Figure 4, we plot the bifurcation diagram depicting the
local maxima of 𝑥(𝑡) as a function of dc bias current 𝑖 for𝛽𝐿 = 2.6, 𝛽𝐶 = 0.707, and 𝛽𝑅 = 0.06.

When the dc bias current 𝑖 increases from 1.05 to 2.1,
the bifurcation diagram of Figure 4(a) shows period-2-
oscillations followed by an intermittency route to chaos
interspersed with periodic windows. For 𝑖 > 1.255, a
reverse period-tripling bifurcation to period-2-oscillations at𝑖 ≈ 1.594 is observed. By increasing the dc bias current𝑖, the output 𝑥(𝑡) displays period-2-oscillations followed by
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Figure 2: Time series of 𝑥(𝑡) and corresponding phase portraits of system (3a)–(3c) in plane (𝑥, 𝑦) for specific values of (a) 𝛽𝐿 = 1.5, 𝑖 = 1.25,
and 𝛽𝑅 = 0.1, (b) 𝛽𝐿 = 1.5, 𝑖 = 1.75, and 𝛽𝑅 = 0.1, (c) 𝛽𝐿 = 0.5, 𝑖 = 1.75, and 𝛽𝑅 = 0.1, and (d) 𝛽𝐿 = 1.5, 𝑖 = 1.25, and 𝛽𝑅 = 0.01. The other
parameter is 𝛽𝐶 = 0.007.

period-1-oscillations for 𝑖 ≥ 2.0085. The chaotic behavior
is confirmed by the largest Lyapunov exponent shown in
Figure 4(b).The chaotic behavior is illustrated in Figure 5 for
a specific value of dc bias current 𝑖.

From Figure 5, we observe that system (3a)–(3c) exhibits
chaotic attractor similar to the one found in the NRCLSJ
model [12–16].

For 𝑖 = 1.25, 𝛽𝐶 = 0.707, and 𝛽𝑅 = 0.06, we plot the
bifurcation diagram depicting the local maxima of 𝑥(𝑡) and
the largest Lyapunov exponent of system (3a)–(3c) versus the
parameter 𝛽𝐿 as shown in Figure 6.

When the parameter 𝛽𝐿 increases from 1.9 to 2.8 [see
black dot in Figure 6(a)], the bifurcation diagram of the out-
put 𝑥(𝑡) shows period-2-oscillations followed by an intermit-
tency route to chaos interspersed with periodic windows. For𝛽𝐿 > 2.625, a reverse period-tripling bifurcation to period-3-
oscillations at 𝛽𝐿 ≈ 2.725 is observed. Period-3-oscillations
persists for 𝛽𝐿 > 2.725. When performing the same analysis
by ramping the parameter 𝛽𝐿 [see red dot in Figure 6(a)],
the output 𝑥(𝑡) displays the same dynamical behaviors as in

Figure 6(a) (see black dot) in the ranges 1.9 ≤ 𝛽𝐿 < 2.014
and 2.0725 < 𝛽𝐿 ≤ 2.8, while, in the range 2.014 ≤ 𝛽𝐿 ≤2.0725, the output 𝑥(𝑡) shows period-1-oscillations, period-
doubling bifurcation, and chaotic oscillations, respectively.
By comparing the two sets of data [for increasing (black) and
decreasing (red)] used to plot Figure 6(a), one can notice
that system (3a)–(3c) displays coexistence of attractors in the
range 2.014 ≤ 𝛽𝐿 ≤ 2.0725. For 2.014 ≤ 𝛽𝐿 < 2.0375, period-
2-oscillations coexist with period-1-oscillations. Period-2-
oscillations coexist with period-doubling bifurcation in the
range 2.0375 ≤ 𝛽𝐿 < 2.056. For 2.056 < 𝛽𝐿 ≤ 2.0725, period-
1-oscillations coexist with chaotic oscillations. The chaotic
behavior is confirmed by the largest Lyapunov exponent
shown in Figure 6(b). The coexistence of attractors found in
Figure 6(a) is illustrated in Figure 7 which depicts the phase
portraits and cross section of the basin of attraction of system
(3a)–(3c) for specific value of parameter 𝛽𝐿.

System (3a)–(3c) exhibits period-1-oscillations and
chaotic attractor for 𝛽𝐿 = 2.06 and depending on the
initial conditions as shown in Figure 7(a). One can see from
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Figure 3: Time series of 𝑥(𝑡) and corresponding phase portrait of
system (3a)–(3c) in plane (𝑥, 𝑦) for 𝛽𝐿 = 26, 𝛽𝐶 = 0.5, 𝑖 = 1.25, and𝛽𝑅 = 0.1.

Figure 7(a) that system (3a)–(3c) can exhibit either chaotic
or periodic attractor depending on the initial conditions.
It is worth noting that coexistence of attractors has been
observed in various nonlinear systems including laser
[28, 29], biological system [30], chemical reactions [31],
Lorenz systems [32–35], and electrical circuits [36, 37], just
to name a few.

3. Fractional-Order Form of Chaotic No
Equilibrium Linear Resistive-Capacitive-
Inductance Shunted Junction Model

In this section, we consider the commensurate fractional-
order form of the no equilibrium LRCLSJ model given by

𝑑𝑞𝑥𝑑𝑡𝑞 = 1𝛽𝐶 (𝑖 − 𝑦 − 𝛽𝑅𝑥 − sin 𝑧) (7a)

𝑑𝑞𝑦𝑑𝑡𝑞 = 1𝛽𝐿 (𝑥 − 𝑦) (7b)

𝑑𝑞𝑧𝑑𝑡𝑞 = 𝑥, (7c)

where 𝑞 is the derivative order satisfying 0 < 𝑞 ≤1. For numerical solutions of the above set of commen-
surate fractional-order differential equations, the Adams
Bashforth–Moulton predictor-corrector scheme [38] is used.
This method is based on the Caputo definition of the
fractional-order derivative, given by [39, 40]

𝑑𝑞𝑋𝑖𝑑𝑡𝑞 = 1Γ (𝑞 − 𝑛) ∫
𝑡

0

𝑋𝑖(𝑛) (𝑡󸀠)
(𝑡 − 𝑡󸀠)𝑞−𝑛+1 𝑑𝑡󸀠, (8)

where 𝑛 − 1 < 𝑞 < 𝑛, 𝑋1 = 𝑥, 𝑋2 = 𝑦, 𝑋3 = 𝑧, andΓ(⋅) is the Gamma function. In the coming subsections, we
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Figure 4: The bifurcation diagram depicting the local maxima of𝑥(𝑡) (a) and the largest Lyapunov exponent (b) of system (3a)–(3c)
versus the dc bias current 𝑖 for 𝛽𝐿 = 2.6, 𝛽𝐶 = 0.707, and 𝛽𝑅 = 0.06.

will focus on the effect of fractional derivation on the chaotic
system (3a)–(3c) when 𝑖 = 1.25, 𝛽𝐿 = 2.6, 𝛽𝐶 = 0.707,
and 𝛽𝑅 = 0.06 (see Figure 5). Chaos synchronization of
unidirectional identical coupled commensurate fractional-
order system (7a)–(7c) and engineering applications shall
also be investigated.

3.1. Effect of Commensurate Fractional Derivation on
the Chaotic No Equilibrium Linear Resistive-Capacitive-
Inductance Shunted Junction Model. For the dc bias current𝑖 > 1, the commensurate fractional-order system (7a)–(7c)
has no equilibrium points. Therefore we cannot determine
analytically the lowest order of the commensurate fractional-
order system (7a)–(7c) to exhibit chaotic behavior. Rather,
the effect of commensurate fractional derivation on chaotic
system (3a)–(3c) for 𝑖 = 1.25, 𝛽𝐿 = 2.6, 𝛽𝐶 = 0.707, and𝛽𝑅 = 0.06 can only be numerically investigated. Here
accordingly, using the Adams Bashforth–Moulton predictor-
corrector scheme presented in this subsection, we plot the
bifurcation diagram showing the local maxima of the state
variable 𝑥 with respect to the commensurate fractional-
order 𝑞 as shown in Figure 8 in order to find the lowest order
of system (7a)–(7c) to remain chaotic.

The bifurcation diagram of Figure 8 indicates period-
2-oscillations followed by chaotic behavior for 𝑞 ≥ 0.978.
Hence, the lowest order for the commensurate fractional-
order form of the no equilibrium LRCLSJ model to show
chaos is 3𝑞 ≈ 2.934. In Figure 9, the time series of 𝑥(𝑡) and
the phase portraits in the plane (𝑥, 𝑦) of significant results
was obtained for specific values of commensurate fractional-
order 𝑞.

For 𝑞 = 0.98, Figure 9(a) shows chaotic attractor.
Period-2-oscillations (see Figure 9(b)), regular spiking (see
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Figure 9(c)), and fast spiking (see Figure 9(d)) are shown at𝑞 = 0.96, 𝑞 = 0.8, and 𝑞 = 0.7, respectively.
3.2. Adaptive Finite-Time Synchronization with Parameter
Estimation of Unidirectional Coupled Identical Fractional-
Order Form Chaotic No Equilibrium Linear Resistive-
Capacitive-Inductance Shunted Junction Models. In many
practical cases, it is difficult (or impossible) to accurately
determine the values of the parameters of dynamical systems
to be synchronized. As it was proven that accurate control of
these parameters can significantly affect the synchronization
process, however, this problem can be solved by adaptive
synchronization with parameter estimation [41]. The aim of
this subsection is to provide an example of adaptive finite-
time synchronization with parameter estimation applied to
the chaotic commensurate fractional-order system (7a)–(7c).
The drive system can be written in the form

𝑑𝑞𝑥1𝑑𝑡𝑞 = 1𝛽𝐶 (𝑖 − 𝑦1 − 𝛽𝑅𝑥1 − sin 𝑧1) (9a)

𝑑𝑞𝑦1𝑑𝑡𝑞 = 1𝛽𝐿 (𝑥1 − 𝑦1) (9b)

𝑑𝑞𝑧1𝑑𝑡𝑞 = 𝑥1. (9c)

And the response system is described by

𝑑𝑞𝑥2𝑑𝑡𝑞 = 1𝛽𝐶 (𝑖 − 𝑦2 − 𝛽𝑅𝑥2 − sin 𝑧2 − 𝑠 (𝑡)) (10a)

𝑑𝑞𝑦2𝑑𝑡𝑞 = 1𝛽𝐿 (𝑥2 − 𝑦2) (10b)

𝑑𝑞𝑧2𝑑𝑡𝑞 = 𝑥2. (10c)

The controller signal is 𝑠(𝑡) = (𝑧2 − 𝑧1) + 𝑘𝑢(𝑡), where𝑢(𝑡) is the adaptive feedback coupling designed to achieve
finite-time synchronization.We set the synchronization error
between drive and response systems as 𝑒𝑥 = 𝑥2 − 𝑥1, 𝑒𝑦 =𝑦2 − 𝑦1, 𝑒𝑧 = 𝑧2 − 𝑧1, and 𝑒𝛽 = 𝛽𝑅 − 𝛽𝑅. The errors system is
obtained as follows:
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Figure 6: The bifurcation diagrams depicting the local maxima of𝑥(𝑡) (a) and the largest Lyapunov exponent (b) of system (3a)–(3c)
versus the parameter 𝛽𝐿 for 𝑖 = 1.25, 𝛽𝐶 = 0.707, and 𝛽𝑅 = 0.06.
Bifurcation diagrams are obtained by scanning the parameter 𝛽𝐿
upwards (black) and downwards (red).

𝑑𝑞𝑒𝑥𝑑𝑡𝑞
= 1𝛽𝐶 (−𝑒𝑦 − 𝑥2𝑒𝛽 − 𝛽𝑅𝑒𝑥 − 𝑓 (𝑧1, 𝑧2) − 𝑒𝑧 − 𝑘𝑢 (𝑡))

(11a)

𝑑𝑞𝑒𝑦𝑑𝑡𝑞 = 1𝛽𝐿 (𝑒𝑥 − 𝑒𝑦) (11b)

𝑑𝑞𝑒𝑧𝑑𝑡𝑞 = 𝑒𝑦 (11c)

with the nonlinear function 𝑓(𝑧1, 𝑧2) defined by 𝑓(𝑧1, 𝑧2) =
sin 𝑧2 − sin 𝑧1. The response system (10a)–(10c) synchronizes
with the drive system (8) at a finite-time and final time 𝑡syn
exists such that lim𝑡→𝑡syn‖𝑒𝑖(𝑡)‖ = 0.
Assumption 1. The nonlinear function 𝑓(𝑧1, 𝑧2) with 𝑓(0,0) = 0 respects the Lipschitz condition, if and only if scalar
numbers 𝜂1 and 𝜂2 exist such that ‖𝑓(𝑧1, 𝑧2)‖ ≤ 𝜂1‖𝑒𝑧‖ ≤𝜂2‖𝑒𝑥‖.
Theorem 2. The response system (10a)–(10c) synchronizes
with the drive system (8) in the finite-time

𝑡𝑞syn ≤ 𝑡1syn
= 12𝜒 (𝛽𝐶𝑒2𝑥 (0) + 𝛽𝐿𝑒2𝑦 (0) + 𝑒2𝑧 (0) + 𝑒2𝛽 (0))

+ |𝑢 (0)|𝜒 .
(12)

If the adaptive feedback controller and the estimated parameter
are set as follows:

𝑑𝑞𝛽𝑅𝑑𝑡𝑞 = 𝑥2𝑒𝑥 (13a)

𝑑𝑞𝑢𝑑𝑡𝑞 = (𝑘𝑢𝑒𝑥 − 𝜂𝑒2𝑥 − 𝜒) sign (𝑢) , (13b)

where 𝜒, 𝜂, and 𝑘 are the positive parameters. The slave system
can be also written as

𝑑𝑞𝑥2𝑑𝑡𝑞
= 1𝛽𝐶 (𝑖 − 𝑦2 − 𝛽𝑅𝑥2 − sin 𝑧2 − (𝑧2 − 𝑧1) − 𝑘𝑢)

(14a)

𝑑𝑞𝑦2𝑑𝑡𝑞 = 1𝛽𝐿 (𝑥2 − 𝑦2) (14b)

𝑑𝑞𝑧2𝑑𝑡𝑞 = 𝑥2 (14c)

𝑑𝑞𝛽𝑅𝑑𝑡𝑞 = 𝑥2𝑒𝑥 (14d)

𝑑𝑞𝑢𝑑𝑡𝑞 = (𝑘𝑢𝑒𝑥 − 𝜂𝑒2𝑥 − 𝜒) sign (𝑢) . (14e)

Proof. We consider the following Lyapunov candidate func-
tion defined by

𝑉 (𝑡) = 12 (𝛽𝐶𝑒2𝑥 + 𝛽𝐿𝑒2𝑦 + 𝑒2𝑧 + 𝑒2𝛽) + |𝑢 (𝑡)| . (15)

The fractional-order derivative of (15) gives

𝑑𝑞𝑉 (𝑡)𝑑𝑡𝑞 = −𝑥2𝑒𝑥𝑒𝛽 − 𝛽𝑅𝑒2𝑥 − 𝑓 (𝑧1, 𝑧2) 𝑒𝑥 − 𝑘𝑢𝑒𝑥 − 𝑒2𝑦
+ 𝑒𝛽 𝑑𝑞𝛽𝑅𝑑𝑡𝑞 + sign (𝑢) 𝑑𝑞𝑢𝑑𝑡𝑞 .

(16)

Using the assumption, (16) becomes 𝑑𝑞𝑉(𝑡)/𝑑𝑡𝑞 ≤ −𝑥2𝑒𝑥𝑒𝛽 +𝜂𝑒2𝑥−𝑘𝑢𝑒𝑥+𝑒𝛽𝐷𝑞𝛽𝑅+sign(𝑢)(𝑑𝑞𝑢/𝑑𝑡𝑞). If a positive constant𝜒
exists such that 𝑑𝑞𝑉(𝑡)/𝑑𝑡𝑞 ≤ −𝜒, then the update laws for the
controller 𝑢(𝑡) and the estimated parameter 𝛽𝑅 are designed
through the following relations:

𝑑𝑞𝛽𝑅𝑑𝑡𝑞 = 𝑥2𝑒𝑥 (17a)

𝑑𝑞𝑢𝑑𝑡𝑞 = (𝑘𝑢𝑒𝑥 − 𝜂𝑒2𝑥 − 𝜒) sign (𝑢) . (17b)

In [42], the authors have shown that the finite-time syn-
chronization of fractional-order system is shorter than the
finite-time synchronization of integer-order systems. This
implies that the finite-time of synchronization for integer-
order systems is also finite-time of synchronization for the
fractional-order version of the same systems with the same
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Figure 7: (a) Phase portraits in the plane (𝑥, 𝑦) for specific initial conditions: (blue line) (𝑥(0), 𝑦(0), 𝑧(0)) = (0.0, 0.0, 1.0) and (black line)(𝑥(0), 𝑦(0), 𝑧(0)) = (3.3, 0.0, 1.0). (b) Cross section of the basin of attraction of system (3a)–(3c) in the 𝑥𝑧-plane at 𝑦 = 0. In subplot (b),
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parameters are set as 𝑖 = 1.25, 𝛽𝐿 = 2.6, 𝛽𝐶 = 0.707, and 𝛽𝑅 = 0.06.

controller involved. Therefore the fractional-order response
system (10a)–(10c) synchronizes with the drive system (8)
in a finite-time of synchronization given by (12). Figures
10 and 11 are the graphical representation of the synchro-
nization process obtained numerically by carrying out a
numerical integration of drive system described by (8) and
the response system (10a)–(10c) for their respective initial
conditions chosen as (𝑥1(0), 𝑦1(0), 𝑧1(0)) = (0, 0, 1) and(𝑥2(0), 𝑦2(0), 𝑧2(0), 𝛽𝑅(0), 𝑢(0)) = (0.1, 0.1, 1.2, −0.3, 0.1). To
guarantee the chaotic synchronization, the other parameters
are fixed at 𝑞 = 0.98, 𝛽𝐶 = 00.707, 𝑖 = 1.25, 𝛽𝐿 = 2.6,𝛽𝑅 = 0.06, 𝜂 = 0.01, 𝜒 = 0.004, and 𝑘 = 3. Based on
these values, the theoretical settled time of synchronization
is 𝑡1𝑇syn = 45.375.

The dynamic of the synchronization error is present in
Figure 11.

From Figure 11, it can be seen that the numerical time of
synchronization is 𝑡𝑞𝑁syn ≈ 40. By comparing with analytical
time of synchronization obtained above, it can be noted that𝑡𝑞𝑁syn ≤ 𝑡1𝑇syn. This result respects the finite-time condition
given in [42]. Thus, these results can be used for chaos based
communications.

3.3. Application to Digital Cryptography. In this subsection,
we propose a digital cryptography scheme based on the
adaptive finite-time synchronization with parameters esti-
mation of unidirectional coupled identical commensurate
fractional-order form chaotic no equilibriumLRCLSJmodels
developed in the previous subsection.The technique of digital
cryptography to be used in the present paper is an improved
version of the method developed and implemented in [42–
44] but we improve these methods. In [42], the authors
used the adaptive finite-time synchronizationwith parameter
estimation for message encryption; meanwhile in the present
work we use the adaptive finite-time synchronization with
parameters estimation which is recognized to be more robust
than its counterpart [41]. Cryptography is a way to encode a
message by changing its original message form into another
differentmessage whose conversion rule is known only by the
sender. In the digital cryptography, for instance, the letters
can be replaced by numbers which can be assigned by the
sender. In this work, the message (plaintext) will be replaced
by their ASCII codes before the encryption. As the ASCII
code table has 128 characters, we define the formula for
the ciphertext and decrypted message corresponding to the
assignment of numbers as follows:

𝑐 = 𝑝𝑠 + 𝑘𝑠 (mod128) (18a)

𝑝𝑟 = 𝑐 − 𝑘𝑟 (mod128) , (18b)
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Figure 9: Time series of 𝑥(𝑡) and corresponding phase portraits in plane (𝑥, 𝑦) of the fractional-order system (7a)–(7c) with commensurate
fractional-orders: (a) 𝑞 = 0.98, (b) 𝑞 = 0.96, (c) 𝑞 = 0.8, and (d) 𝑞 = 0.7. The other parameters are 𝛽𝐿 = 2.6, 𝛽𝐶 = 0.707, 𝑖 = 1.25, and𝛽𝑅 = 0.06. The initial conditions are (𝑥(0), 𝑦(0), 𝑧(0)) = (0, 0, 1).

where 𝑝𝑠 is the plaintext to be encrypted, 𝑝𝑟 is the plaintext
to be recovered, 𝑘𝑠 is the secret keys of sender, 𝑘𝑟 is the secret
keys of the receiver, and 𝑐 is the ciphertext.
3.3.1. Proposed Affine Cipher. Consider 𝑆 and 𝑅, respectively,
as the sender and the receiver in the cryptosystem. Also
consider the drive system (8) as a sender’s system and the
response system (10a)–(10c) as a receiver’s system. 𝑆 and 𝑅
agree on a time 𝑡 ≥ 𝑡𝑞syn, fractional-order 𝑞 = 0.98, and
a number of characters of the ASCII codes table equal to
128. The public key 𝐷 = Day/Month/year is only shared
by 𝑆 and 𝑅. This public key allows building the two privates
keys.The complete procedure between 𝑆 and𝑅 is described as
follows.

KeyGeneration. (1)Theplaintext can be presented into a form
of integers using the ASCII code table. After this assignation
that plaintext can be organized in blocks of four terms. If the
number of letters constituting the message is a multiple of 4,

we will have 𝑝1, 𝑝2, 𝑝3, 𝑝4 as a first bloc and 𝑝5, 𝑝6, 𝑝7, 𝑝8 as a
second block and so on. On the other hand, if the number of
letters of that message is not a multiple of 4 then blank spaces
have to be insert at the end of the sequence to complete it to
a multiple of 4.(2) For 𝑡 ≥ 𝑡𝑞syn and 𝑞 ≥ 0.98, the sender 𝑆 has (𝑥1, 𝑦1, 𝑧1)
as solution of commensurate fractional-order chaotic system
(8), and the receive 𝑅 has (𝑥2, 𝑦2, 𝑧2) as solution of system
(10a)–(10c). The private keys of the sender and receiver are,
respectively, defined as follows:

𝑘1 = [Day ∗ 𝑧1 +Month ∗ 𝑦1 + year ∗ 𝑥1]
(mod128) (19a)

𝑘2 = [Day ∗ 𝑧2 +Month ∗ 𝑦2 + year ∗ 𝑥2]
(mod128) , (19b)

where [𝑎] is the integer part of 𝑎.



10 Complexity

0.2

0

−0.2
0 10 20 30 40 50 60 70 80 90 100

U
(t
)

t

(a)
0.5

0

−0.5

S(
t)

0 10 20 30 40 50 60 70 80 90 100

t

(b)

0.5

0

−0.5


R

0 10 20 30 40 50 60 70 80 90 100

t

X: 95.3
Y: 0.06

(c)

Figure 10: The time evolution of the adaptive feedback controller𝑢(𝑡) (a) and the controller signal 𝑆(𝑡) (b) as well as the estimated
parameter 𝛽𝑅 (c).

0.5

0

−0.5

0.2

0

−0.2

0.5

0

−0.5

0 20 40 60 80 120100

20 40 60 80 100

20 40 60 80 100

t

0 120

t

0 120

t

e x
e y

e z

Figure 11: Synchronization errors between the drive and response
systems (8) and (10a)–(10c). The parameters are given in the text.

(3) The first four sending keys 𝑘1𝑠, 𝑘2𝑠, 𝑘3𝑠, 𝑘4𝑠 are
determined by

𝑄𝑘1 = (𝐹𝑘1+1 𝐹𝑘
1𝐹𝑘

1

𝐹𝑘
1
−1

) = (𝑘̃1 𝑘̃2
𝑘̃3 𝑘̃4) , (20)

where 𝑘1𝑠 = 𝑘̃1 (mod 128), 𝑘2𝑠 = 𝑘̃2 (mod 128), 𝑘3𝑠 = 𝑘̃3
(mod 128), 𝑘4𝑠 = 𝑘̃4 (mod 128), and 𝐹𝑛 is the Fibonacci

number; 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1 with 𝑛 ≥ 3 taking into account
the fact that the initial terms are 𝐹0 = 0 and 𝐹1 = 𝐹2 = 0.(4) The first four receiving keys 𝑘1𝑟, 𝑘2𝑟, 𝑘3𝑟, 𝑘4𝑟 are
determined by

𝑄𝑘2 = (𝐹𝑘2+1 𝐹𝑘
2𝐹𝑘

2

𝐹𝑘
2
−1

) = (𝑘̃1 𝑘̃2
𝑘̃3 𝑘̃4) , (21)

where 𝑘1𝑟 = 𝑘̃1 (mod 128), 𝑘2𝑟 = 𝑘̃2 (mod 128), 𝑘3𝑟 = 𝑘̃3
(mod 128), and 𝑘4𝑟 = 𝑘̃4 (mod 128).(5) The ciphertext and recovered plaintext are obtained
by applying 𝑐 = 𝑝𝑠 + 𝑘𝑠 (mod 128) and 𝑝𝑟 = 𝑐 − 𝑘𝑟 (mod 128),
respectively. After the treatment of the first block of plaintext
we restart the process in the next block and so on.

As an example, we want to send themessage PASSWORD
to a third party. By following the five steps mentioned above,
we obtain the summarized results in Table 1.

3.3.2. Security Analysis of Proposed AffineCipher. Thepresent
proposed affine cipher consists of three keys: one public key𝐷 and two private keys 𝑘1 and 𝑘2. The two private keys
have been computed with the public key. The four receive
keys and four sending keys have been computed with the
private and sending keys as well as the Fibonacci numbers.
The receiver cannot recover an original text without the
knowledge of the receiver private key 𝑘2. Compared to the
existing work in this field to the best of our knowledge, our
proposed technique is fully authenticated and more adapted
for applications in telecommunications because we have used
the adaptive finite-time synchronization with parameters
estimation. In fact more recently in [42], the authors used the
adaptive finite-time synchronization to improve the digital
cryptography developed in [43, 44]. Yet, the adaptive finite-
time synchronization is less robust than the adaptive finite-
time synchronization with parameters estimation.The finite-
time adaptive synchronization based on the identification of
system parameters appears to be of great practical interest,
especially when the system state is available to external
measurements [45]. Therefore, the proposed affine cipher is
more efficient than the ordinary affine cipher method due
to the adaptive finite-time synchronization with parameters
estimation.

4. Conclusion

The present study dealt with the analysis of the linear
resistive-capacitive-inductance shunted junction model and
its fractional-order form. The linear resistive-capacitive-
inductance junction shunted model has two or no equilib-
rium points depending on the dc bias current. By using
the Routh–Hurwitz stability criteria, it has been found that
the two equilibrium points are stable and saddle nodes,
respectively. In spite of the absence of equilibrium, the lin-
ear resistive-capacitive-inductance shunted junction model
can exhibit fast and regular spiking, intrinsic and peri-
odic bursting, periodic and chaotic behaviors, and coexis-
tence of attractors. Then, the commensurate fractional-order
form of chaotic no equilibrium linear resistive-capacitive-
inductance shunted junction model has been investigated.
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Table 1: Summary of sending and receive message (PASSWORD).

Times 𝑘1 Plaintext Keys 𝑘𝑠 Ciphertext 𝑘2 Keys 𝑘𝑟 Plaintext recovered

𝑡 = 80 55

80 (P) 23 103

55

23 80 (P)
65 (A) 34 99 34 65 (A)
83 (S) 34 117 34 83 (S)
83 (S) 117 200 117 83 (S)

𝑡 = 100 56

87 (W) 57 144

56

57 87 (W)
79 (O) 23 102 23 79 (O)
82 (R) 23 105 23 82 (R)
68 (D) 34 102 34 68 (D)

Chaos has been shown to exist in commensurate fractional-
order form of no equilibrium linear resistive-capacitive-
inductance shunted junction model with orders less than 3.
Using adaptive finite-time synchronization with parameter
estimation, chaos synchronization has been found between
unidirectional coupled identical fractional-order forms of
chaotic no equilibrium linear resistive-capacitive-inductance
shunted junction models. Applying the synchronized com-
mensurate fractional-order form of chaotic no equilibrium
linear resistive-capacitive-inductance shunted junctionmod-
els in digital cryptography, a well secured key system has been
obtained.
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