Skip to main content

The Universe of Set Theory

  • Chapter

Abstract

Since Cohen’s discovery of forcing, many problems in set theory have been proved to be independent of ZF-set theory just as in the case of the parallel postulate in plane geometry. In plane geometry, only the independence of the parallel postulate was considered, but in set theory it seems that infinitely many problems can be proved to be mutually independent. The consideration of many set theories might not be of advantage to us because set theory is a basis of mathematics and working mathematicians cannot believe that both “yes” and “no” are equally reasonable answers to their problems in natural numbers, real numbers or Hubert spaces.

Part of this work was supported by NSF GP-4616. The outline of this work was discussed in a symposium on the Current Status of Set Theory at a joint session of ASL and APA held on December 28, 1965.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison, J. W.: Separation principles in the hierarchies of classical and effective descriptive set theory. Fundamenta Mathematicae 46, 123–134 (1958).

    MathSciNet  Google Scholar 

  2. — Some consequences of the axiom of constructibility. Fundamenta Mathematicae 46, 337–357 (1959).

    MathSciNet  MATH  Google Scholar 

  3. Bernays, P.: Zur Frage der Unendlichkeitsschemata in der axiomatischen Mengenlehre. Essays on the Foundations of Mathematics. Jerusalem 1961, pp. 3–49.

    Google Scholar 

  4. Cohen, P. J.: The independence of the axiom of choice, Mimeographed notes. Mathematics Department, Stanford University (May, 1963), 32 pp.

    Google Scholar 

  5. See also The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences 50, 1143–1148 (1963)

    Article  MathSciNet  Google Scholar 

  6. 51, 105–110 (1964).

    Article  MathSciNet  Google Scholar 

  7. Easton, W. B.: Powers of regular cardinals. Ph. D. Thesis, Princeton University (October 1964) pp. 1–66.

    Google Scholar 

  8. Feferman, S.: Some applications of the notions of forcing and generic sets. Fundamenta Mathematicae 56, 325–345 (1965).

    MathSciNet  MATH  Google Scholar 

  9. Gödel, K.: The consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory. Princeton 1951.

    Google Scholar 

  10. — What is Cantor’s continuum problem? The American Mathematical Monthly 54, 515–525 (1947).

    Article  MathSciNet  Google Scholar 

  11. — Remarks before the Princeton Bicentennial Conference on Problems in Mathematics, pp. 84–88 (1964). The Undecidable.

    Google Scholar 

  12. Hajnal, A.: On a consistency theorem connected with the generalized continuum problem. Acta Math. Acad. Sci. Hungaricae 12, 321–376 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuratowski, C.: Ensembles projectifs et ensembles singuliers. Fundamenta Mathematicae 35, 131–140 (1948).

    MathSciNet  MATH  Google Scholar 

  14. Lévy, A.: Axiom schemata of strong infinity in axiomatic set theory. Pacific J. Mathematics 10, 223–238 (1960).

    MATH  Google Scholar 

  15. — A generalization of Gödel’s notion of constructibility. J. Symbolic Logic 25, 147–155 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  16. — (No title.) Mimeographed notes, 1–32 (1963).

    Google Scholar 

  17. — Definability in set theory I. Proceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science held in Jerusalem, 1964, pp. 127–151.

    Google Scholar 

  18. —, and M. Machover: Recursive functions of ordinal numbers, Amsterdam, to appear. [See abstract in Notices of American Mathematical Society 6, 826 (1959).]

    Google Scholar 

  19. Mahlo, P.: Über lineare transfinite Mengen. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physikalische Klasse 63, 187–225 (1911).

    Google Scholar 

  20. — Zur Theorie und Anwendung der ϱ0 -Zahlen. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physikalische Klasse 64, 108–112 (1912).

    Google Scholar 

  21. — Zur Theorie und Anwendung der ϱ0-Zahlen IL Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physikalische Klasse 65, 268–282 (1913).

    Google Scholar 

  22. Mayberry, J.: Hyperarithmetical functions of ordinal numbers. Thesis, The University of Illinois, 1966.

    Google Scholar 

  23. Shoenfield, J. R.: On the independence of the axiom of constructibility. Amer. J. Mathematics 81, 537–540 (1959).

    Article  MathSciNet  Google Scholar 

  24. Shoenfield, J. R.: The problem of predicativity. Essays on the Foundations of Mathematics, 132–139. Jerusalem 1961.

    Google Scholar 

  25. Taketjti, G.: On the recursive functions of ordinal numbers. J. Mathematical Soc. Japan 12, 119–128 (1960).

    Article  Google Scholar 

  26. — Axioms of infinity of set theory. J. Mathematical Soc. Japan 13, 220–233 (1961).

    Article  Google Scholar 

  27. — Recursive functions and arithmetical functions of ordinal numbers. Proceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science held in Jerusalem, 1964, pp. 179–196.

    Google Scholar 

  28. — Transcendence of cardinals. J. Symbolic Logic 30, 1–7 (1965).

    Article  MathSciNet  Google Scholar 

  29. — A formalization of the theory of ordinal numbers. J. Symbolic Logic 30, 295–317 (1965).

    Article  MathSciNet  Google Scholar 

  30. — On the axiom of constructibility. Proceeding of Symposium of Logic, Computability and Automata at Rome (New York), (1965). To appear.

    Google Scholar 

  31. —, and A. Kino: On hierarchies of predicates of ordinal numbers. J. Mathematical Soc. Japan 14, 199–232 (1962).

    Article  Google Scholar 

  32. Tabski, A.: Quelques théorèmes sur les alephs. Fundamenta Mathematicae 7, 1–14 (1925).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Takeuti, G. (1969). The Universe of Set Theory. In: Bulloff, J.J., Holyoke, T.C., Hahn, S.W. (eds) Foundations of Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86745-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86745-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86747-7

  • Online ISBN: 978-3-642-86745-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics