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abstract. I apply Kooi and Tamminga’s (2012) idea of corre-
spondence analysis for many-valued logics to strong three-valued
logic (K3). First, I characterize each possible single entry in the
truth-table of a unary or a binary truth-functional operator that
could be added to K3 by a basic inference scheme. Second, I define
a class of natural deduction systems on the basis of these charac-
terizing basic inference schemes and a natural deduction system
for K3. Third, I show that each of the resulting natural deduc-
tion systems is sound and complete with respect to its particular
semantics. Among other things, I thus obtain a new proof system
for  Lukasiewicz’s three-valued logic.
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1 Introduction

Strong three-valued logic (K3) [1] and  Lukasiewicz’s three-valued
logic  L3 [2] have much in common: their truth-tables for negation,
disjunction, and conjunction coincide, and they have the same con-
cept of validity. The two logics differ, however, in their treatment
of implication: whereas Kleene’s implication is definable in terms
of negation, disjunction, and conjunction, this does not hold true
for  Lukasiewicz’s implication ( L3 is therefore a truth-functional ex-
tension of K3). This fact seriously complicates the construction of
proof systems for  L3.

In this paper, I present a general method for finding natural de-
duction systems for truth-functional extensions of K3. To do so,
I use the correspondence analysis for many-valued logics that was
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presented recently by [3]. In their study of the logic of paradox
(LP ) [4], they characterize every possible single entry in the truth-
table of a unary or a binary truth-functional operator by a basic
inference scheme. As a consequence, each unary and each binary
truth-functional operator is characterized by a set of basic inference
schemes. Kooi and Tamminga show that if we add the inference
schemes that characterize an operator to a natural deduction sys-
tem for LP , we immediately obtain a natural deduction system
that is sound and complete with respect to the logic that contains,
next to LP ’s negation, disjunction, and conjunction, the additional
operator. In this paper, I show that the same thing can be done for
K3.

The structure of my paper is as follows. First, I briefly present
K3. Second, I give a list of basic inference schemes that charac-
terize every possible single entry in the truth-table of a unary or a
binary truth-functional operator. Third, I define a class of natu-
ral deduction systems on the basis of these characterizing inference
schemes and a natural deduction system for K3. I show that each
of the resulting natural deduction systems is sound and complete
with respect to its particular semantics.

2 Strong three-valued logic (K3)

Strong three-valued logic (K3) provides an alternative way to eval-
uate formulas from a propositional language L built from a set
P = {p, p′, . . .} of atomic formulas using negation (¬), disjunction
(∨), and conjunction (∧). K3 adds a third truth-value ‘none’ to the
classical pair ‘false’ and ‘true’. In K3, a valuation is a function v
from the set P of atomic formulas to the set {0, i, 1} of truth-values
‘false’, ‘none’, and ‘true’. A valuation v on P is extended recur-
sively to a valuation on L by the following truth-tables for ¬, ∨,
and ∧:

f¬
0 1
i i
1 0

f∨ 0 i 1

0 0 i 1
i i i 1
1 1 1 1

f∧ 0 i 1

0 0 0 0
i 0 i i
1 0 i 1



Correspondence analysis for strong three-valued logic 257

An argument from a set Π of premises to a conclusion ϕ is valid
(notation: Π |= ϕ) if and only if for each valuation v it holds that
if v(ψ) = 1 for all ψ in Π, then v(ϕ) = 1.

3 Correspondence Analysis for K3

Let L(∼)m(◦)n be the language built from the set P = {p, p′, . . .} of
atomic formulas using negation (¬), disjunction (∨), conjunction
(∧), m unary operators ∼1, . . . , ∼m, and n binary operators ◦1,
. . . , ◦n. It is obvious that L(∼)m(◦)n is an extension of L. To
interpret this extended language, I use K3’s concept of validity, the
truth-tables f¬, f∨, and f∧, but also the truth-tables f∼1 , . . ., f∼m

and the truth-tables f◦1 , . . ., f◦n . I refer to the resulting logic as
K3(∼)m(◦)n.

To construct a proof system for K3(∼)m(◦)n, I follow [3]. I
first characterize each possible single entry in the truth-table of
a unary or a binary operator by a basic inference scheme. To do
so, I need the following notion of single entry correspondence [3,
p. 722]:

Definition 1 (Single Entry Correspondence). Let Π ⊆
L(∼)m(◦)n and let ϕ ∈ L(∼)m(◦)n . Let x, y, z ∈ {0, i, 1}. Let E be a
truth-table entry of the type f∼(x) = y or f◦(x, y) = z. Then the
truth-table entry E is characterized by an inference scheme Π/ϕ, if

E if and only if Π |= ϕ.

Accordingly, each of the nine possible single entries in a truth-
table f∼ for a unary operator ∼ and each of the twenty-seven possi-
ble entries in a truth-table f◦ for binary operator ◦ is characterized
by an inference scheme (I do the binary operator case first):

Theorem 1. Let ϕ, ψ, χ ∈ L(∼)m(◦)n. Then

f◦(0, 0) =


0 iff ¬ϕ ∧ ¬ψ |= ¬(ϕ ◦ ψ)
i iff ¬ϕ ∧ ¬ψ, (ϕ ◦ ψ) ∨ ¬(ϕ ◦ ψ) |= χ
1 iff ¬ϕ ∧ ¬ψ |= ϕ ◦ ψ
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f◦(0, i) =


0 iff ¬ϕ |= (ψ ∨ ¬ψ) ∨ ¬(ϕ ◦ ψ)
i iff ¬ϕ, (ϕ ◦ ψ) ∨ ¬(ϕ ◦ ψ) |= ψ ∨ ¬ψ
1 iff ¬ϕ |= (ψ ∨ ¬ψ) ∨ (ϕ ◦ ψ)

f◦(0, 1) =


0 iff ¬ϕ ∧ ψ |= ¬(ϕ ◦ ψ)
i iff ¬ϕ ∧ ψ, (ϕ ◦ ψ) ∨ ¬(ϕ ◦ ψ) |= χ
1 iff ¬ϕ ∧ ψ |= ϕ ◦ ψ

f◦(i, 0) =


0 iff ¬ψ |= (ϕ ∨ ¬ϕ) ∨ ¬(ϕ ◦ ψ)
i iff ¬ψ, (ϕ ◦ ψ) ∨ ¬(ϕ ◦ ψ) |= ϕ ∨ ¬ϕ
1 iff ¬ψ |= (ϕ ∨ ¬ϕ) ∨ (ϕ ◦ ψ)

f◦(i, i) =


0 iff |= (ϕ ∨ ¬ϕ) ∨ (ψ ∨ ¬ψ) ∨ ¬(ϕ ◦ ψ)
i iff (ϕ ◦ ψ) ∨ ¬(ϕ ◦ ψ) |= (ϕ ∨ ¬ϕ) ∨ (ψ ∨ ¬ψ)
1 iff |= (ϕ ∨ ¬ϕ) ∨ (ψ ∨ ¬ψ) ∨ (ϕ ◦ ψ)

f◦(i, 1) =


0 iff ψ |= (ϕ ∨ ¬ϕ) ∨ ¬(ϕ ◦ ψ)
i iff ψ, (ϕ ◦ ψ) ∨ ¬(ϕ ◦ ψ) |= ϕ ∨ ¬ϕ
1 iff ψ |= (ϕ ∨ ¬ϕ) ∨ (ϕ ◦ ψ)

f◦(1, 0) =


0 iff ϕ ∧ ¬ψ |= ¬(ϕ ◦ ψ)
i iff ϕ ∧ ¬ψ, (ϕ ◦ ψ) ∨ ¬(ϕ ◦ ψ) |= χ
1 iff ϕ ∧ ¬ψ |= ϕ ◦ ψ

f◦(1, i) =


0 iff ϕ |= (ψ ∨ ¬ψ) ∨ ¬(ϕ ◦ ψ)
i iff ϕ, (ϕ ◦ ψ) ∨ ¬(ϕ ◦ ψ) |= ψ ∨ ¬ψ
1 iff ϕ |= (ψ ∨ ¬ψ) ∨ (ϕ ◦ ψ)

f◦(1, 1) =


0 iff ϕ ∧ ψ |= ¬(ϕ ◦ ψ)
i iff ϕ ∧ ψ, (ϕ ◦ ψ) ∨ ¬(ϕ ◦ ψ) |= χ
1 iff ϕ ∧ ψ |= ϕ ◦ ψ.

Proof. Case f◦(0, 0) = 0. (⇒) Suppose that ¬ϕ∧¬ψ ̸|= ¬(ϕ ◦ψ).
Then there is a valuation v such that v(¬ϕ ∧ ¬ψ) = 1 and v(¬(ϕ ◦
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ψ)) ̸= 1. Then v(ϕ) = 0, v(ψ) = 0, and v(ϕ ◦ ψ) ̸= 0. Therefore, it
must be that f◦(0, 0) ̸= 0.

(⇐) Suppose that ¬ϕ∧¬ψ |= ¬(ϕ◦ψ). Then ¬p∧¬q |= ¬(p◦ q),
where p and q are atomic formulas. Then for every valuation v it
holds that if v(¬p ∧ ¬q) = 1, then v(¬(p ◦ q)) = 1. Then for every
valuation v it holds that if v(p) = 0 and v(q) = 0, then v(p◦ q) = 0.
Therefore, it must be that f◦(0, 0) = 0.

Case f◦(1, i) = i. (⇒) Suppose that ϕ, (ϕ◦ψ)∨¬(ϕ◦ψ) ̸|= ψ∨¬ψ.
Then there is a valuation v such that v(ϕ) = 1, v((ϕ◦ψ)∨¬(ϕ◦ψ)) =
1 and v(ψ ∨ ¬ψ) ̸= 1. Then v(ϕ) = 1, v(ψ) = i, and v(ϕ ◦ ψ) ̸= i.
Therefore, it must be that f◦(1, i) ̸= i.

(⇐) Suppose that ϕ, (ϕ◦ψ)∨¬(ϕ◦ψ) |= ψ∨¬ψ. Then p, (p◦q)∨
¬(p◦q) |= q∨¬q, where p and q are atomic formulas. Then for every
valuation v it holds that if v(p) = 1 and v((p ◦ q) ∨ ¬(p ◦ q)) = 1,
then v(q ∨ ¬q) = 1. Then for every valuation v it holds that if
v(p) = 1 and v(q) = i, then v(p ◦ q) = i. Therefore, it must be that
f◦(1, i) = i.

The other cases are proved similarly. 2

Theorem 2. Let ϕ, ψ ∈ L(∼)m(◦)n. Then

f∼(0) =


0 iff ¬ϕ |= ¬ ∼ ϕ
i iff ¬ϕ, (∼ ϕ ∨ ¬ ∼ ϕ) |= ψ
1 iff ¬ϕ |=∼ ϕ

f∼(i) =


0 iff |= (ϕ ∨ ¬ϕ) ∨ ¬ ∼ ϕ
i iff (∼ ϕ ∨ ¬ ∼ ϕ) |= ϕ ∨ ¬ϕ
1 iff |= (ϕ ∨ ¬ϕ)∨ ∼ ϕ

f∼(1) =


0 iff ϕ |= ¬ ∼ ϕ
i iff ϕ, (∼ ϕ ∨ ¬ ∼ ϕ) |= ψ
1 iff ϕ |=∼ ϕ.

Proof. Adapt the proof of the previous theorem. 2

As a result, given K3’s concept of validity and its truth-tables f¬,
f∨, and f∧, each unary operator ∼k (1 ≤ k ≤ m) is characterized by
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the set of three basic inference schemes that characterize the three
single entries in its truth-table f∼k

and each binary operator ◦l (1 ≤
l ≤ n) is characterized by the set of nine basic inference schemes
that characterize the nine single entries in its truth-table f◦l . The
inference schemes that characterize a truth-table are independent.

4 Natural deduction systems

I now use the characterizations of the previous section to construct
proof systems for truth-functional extensions of K3. First, I define
a natural deduction system NDK3 which I later show to be sound
and complete with respect to K3 (this is a corollary of my main
theorem). Second, on the basis of NDK3 and Theorems 1 and 2,
I define a natural deduction system for the logic K3(∼)m(◦)n as
follows: for each unary operator ∼k (1 ≤ k ≤ m) I add its three
characterizing basic inference schemes as derivation rules to NDK3

and for each binary operator ◦l (1 ≤ l ≤ n) I add its nine char-
acterizing inference schemes as derivation rules to NDK3 . Third,
I show, using a Henkin-style proof, that the resulting natural de-
duction system is sound and complete with respect to the logic
K3(∼)m(◦)n.

My proof-theoretical study of K3 closely follows Kooi and Tam-
minga’s (2012) proof-theoretical study of LP . In fact, to construct
natural deduction systems for extensions of K3 and to prove their
soundness and completeness, I only slightly adapt Kooi and Tam-
minga’s definitions, lemmas and theorems on extensions of LP .

Let me first define the natural deduction system NDK3
1.

Definition 2. Derivations in the system NDK3 are inductively
defined as follows:

Basis: The proof tree with a single occurrence of an assumption ϕ
is a derivation.

Induction Step: Let D, D1, D2, D3 be derivations. Then they can
be extended by the following rules (double lines indicate that the
rules work both ways):

1For the notational conventions, see [5].
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D1

ϕ

D2

¬ϕ
EFQ

ψ

D1

ϕ

D2

ψ
∧I

ϕ ∧ ψ

D
ϕ ∧ ψ ∧E1ϕ

D
ϕ ∧ ψ ∧E2ψ

D
ϕ ∨I1ϕ ∨ ψ

D
ψ ∨I2ϕ ∨ ψ

D1

ϕ∨ψ

[ϕ]u

D2
χ

[ψ]v

D3
χ

∨E u,v

χ

D
ϕ

DN¬¬ϕ

D
¬(ϕ ∨ ψ)

DeM∨¬ϕ ∧ ¬ψ

D
¬(ϕ ∧ ψ)

DeM∧¬ϕ ∨ ¬ψ
On the basis of NDK3 , I now define a natural deduction system

for the logic K3(∼)m(◦)n. The Theorems 1 and 2 tell me that each
truth-table f∼k

is characterized by three basic inference schemes
and that each truth-table f◦l is characterized by nine basic infer-
ence schemes. I obtain a new natural deduction system for the logic
K3(∼)m(◦)n by adding to NDK3 these characterizing basic infer-
ence schemes as derivation rules.

More specifically, for each basic inference scheme ψ1, . . . , ψj/ϕ
that characterizes an entry f∼k

(x) = y in the truth-table f∼k
, I

add the derivation rule

D1

ψ1 · · ·
Dj

ψj
R∼k

(x, y)
ϕ

to the natural deduction system NDK3 . Similarly, for each basic in-
ference scheme ψ1, . . . , ψj/ϕ that characterizes an entry f◦l(x, y) =
z in the truth-table f◦l , I add the derivation rule

D1

ψ1 · · ·
Dj

ψj
R◦l(x, y, z)ϕ

to the natural deduction system NDK3 .
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For instance, assume that f◦(0, 0) = 0 is one of the truth-table
entries in f◦. Then, because Theorem 1 tells me that f◦(0, 0) = 0
is characterized by the basic inference scheme ¬ϕ ∧ ¬ψ/¬(ϕ ◦ ψ), I
add the derivation rule

D
¬ϕ ∧ ¬ψ

R◦(0, 0, 0)
¬(ϕ ◦ ψ)

to the natural deduction system NDK3 .
In this way, I define the system NDK3 +

∪m
k=1{R∼k

(x, y) :
f∼k

(x) = y} +
∪n

l=1{R◦l(x, y, z) : f◦l(x, y) = z}, which I refer to as
NDK3(∼)m(◦)n . I now show that this natural deduction system is
sound and complete with respect to the logic K3(∼)m(◦)n.

4.1 Soundness of NDK3(∼)m(◦)n
A conclusion ϕ is derivable from a set Π of premises (notation: Π ⊢
ϕ) if and only if there is a derivation in the system NDK3(∼)m(◦)n
of ϕ from Π.

The system’s local soundness is easy to establish:

Lemma 1 (Local Soundness). Let Π,Π′,Π′′ ⊆ L(∼)m(◦)n and let
ϕ, ψ ∈ L(∼)m(◦)n . Then

(i) If ϕ ∈ Π, then Π |= ϕ
(ii) If Π |= ϕ and Π′ |= ¬ϕ, then Π,Π′ |= ψ

(iii) If Π |= ϕ and Π′ |= ψ, then Π,Π′ |= ϕ ∧ ψ
(iv) If Π |= ϕ ∧ ψ, then Π |= ϕ
(v) If Π |= ϕ ∧ ψ, then Π |= ψ

(vi) If Π |= ϕ, then Π |= ϕ ∨ ψ
(vii) If Π |= ψ, then Π |= ϕ ∨ ψ

(viii) If Π |= ϕ ∨ ψ and Π′, ϕ |= χ and Π′′, ψ |= χ,
then Π,Π′,Π′′ |= χ

(ix) Π |= ϕ if and only if Π |= ¬¬ϕ
(x) Π |= ¬(ϕ ∨ ψ) if and only if Π |= ¬ϕ ∧ ¬ψ

(xi) Π |= ¬(ϕ ∧ ψ) if and only if Π |= ¬ϕ ∨ ¬ψ.

Theorem 3 (Soundness). Let Π ⊆ L(∼)m(◦)n and let ϕ ∈
L(∼)m(◦)n. Then

If Π ⊢ ϕ, then Π |= ϕ.
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Proof. By induction on the depth of derivations. The local sound-
ness of the rules of the basic natural deduction system NDK3

follows from the previous lemma. For each unary operator ∼k

(1 ≤ k ≤ m) the local soundness of the three derivation rules in
{R∼k

(x, y) : f∼k
(x) = y} follows from Theorem 2. For each binary

operator ◦l (1 ≤ l ≤ n) the local soundness of the nine derivation
rules in {R◦l(x, y, z) : f◦l(x, y) = z} follows from Theorem 1. 2

4.2 Completeness of NDK3(∼)m(◦)n
In my completeness proof, consistent prime theories are the syntac-
tical counterparts of valuations:

Definition 3. Let Π ⊆ L(∼)m(◦)n . Then Π is a consistent prime
theory (CPT), if

(i) Π ̸= L(∼)m(◦)n (consistency)

(ii) If Π ⊢ ϕ, then ϕ ∈ Π (closure)
(iii) If ϕ ∨ ψ ∈ Π, then ϕ ∈ Π or ψ ∈ Π (primeness).

The syntactical counterpart of the truth-value of a formula under
a valuation is a formula’s elementhood in a consistent prime theory:

Definition 4. Let Π ⊆ L(∼)m(◦)n and let ϕ ∈ L(∼)m(◦)n . Then ϕ’s
elementhood in Π (notation: e(ϕ,Π)) is defined as follows:

e(ϕ,Π) =


∅, if ϕ ∈ Π and ¬ϕ ∈ Π
0, if ϕ ̸∈ Π and ¬ϕ ∈ Π
i, if ϕ ̸∈ Π and ¬ϕ ̸∈ Π
1, if ϕ ∈ Π and ¬ϕ ̸∈ Π.

To ensure that in the presence of an operator the notion of ele-
menthood behaves in comformity with the operator’s truth-tables,
I need the following lemma:

Lemma 2. Let Π be a CPT and let ϕ, ψ ∈ L(∼)m(◦)n . Then

(i) e(ϕ,Π) ̸= ∅
(ii) f¬(e(ϕ,Π)) = e(¬ϕ,Π)

(iii) f∨(e(ϕ,Π), e(ψ,Π)) = e(ϕ ∨ ψ,Π)
(iv) f∧(e(ϕ,Π), e(ψ,Π)) = e(ϕ ∧ ψ,Π)
(v) f∼k

(e(ϕ,Π)) = e(∼k ϕ,Π) for 1 ≤ k ≤ m
(vi) f◦l(e(ϕ,Π), e(ψ,Π)) = e(ϕ ◦l ψ,Π) for 1 ≤ l ≤ n.



264 A. Tamminga

Proof.

(i) Suppose e(ϕ,Π) = ∅. Then ϕ ∈ Π and ¬ϕ ∈ Π. Then Π ⊢ ϕ
and Π ⊢ ¬ϕ. By the rule EFQ, it must be that Π ⊢ ψ for all
ψ ∈ L(∼)m(◦)n . By closure, ψ ∈ Π for all ψ ∈ L(∼)m(◦)n . Then
Π = L(∼)m(◦)n . Contradiction.

(ii) Suppose e(ϕ,Π) = 0. Then ϕ ̸∈ Π and ¬ϕ ∈ Π. By closure
and the rule DN, ¬ϕ ∈ Π and ¬¬ϕ ̸∈ Π. Hence, e(¬ϕ,Π) =
1 = f¬(0) = f¬(e(ϕ,Π)).

Suppose e(ϕ,Π) = i. Then ϕ ∈ Π and ¬ϕ ∈ Π. By closure
and the rule DN, ¬ϕ ∈ Π and ¬¬ϕ ∈ Π. Hence, e(¬ϕ,Π) =
i = f¬(i) = f¬(e(ϕ,Π)).

Suppose e(ϕ,Π) = 1. Then ϕ ∈ Π and ¬ϕ ̸∈ Π. By closure
and the rule DN, ¬ϕ ̸∈ Π and ¬¬ϕ ∈ Π. Hence, e(¬ϕ,Π) =
0 = f¬(1) = f¬(e(ϕ,Π)).

(iii) I prove the cases for (1) e(ϕ,Π) = 0 and e(ψ,Π) = 0, (2)
e(ϕ,Π) = i and e(ψ,Π) = i, and (3) e(ϕ,Π) = 1 and e(ψ,Π) =
i. The other six cases are proved similarly.

(1) Suppose e(ϕ,Π) = 0 and e(ψ,Π) = 0. Then ϕ ̸∈ Π,
ψ ̸∈ Π, ¬ϕ ∈ Π, and ¬ψ ∈ Π. By primeness, ϕ ∨ ψ ̸∈ Π.
By closure and the rules ∧I and DeM∨, ¬(ϕ ∨ ψ) ∈ Π.
Hence, e(ϕ∨ψ,Π) = 0 = f∨(0, 0) = f∨(e(ϕ,Π), e(ψ,Π)).

(2) Suppose e(ϕ,Π) = i and e(ψ,Π) = i. Then ϕ ∈ Π,
ψ ∈ Π, ¬ϕ ∈ Π, and ¬ψ ∈ Π. By closure and the rule
∨I1, ϕ ∨ ψ ∈ Π. By closure and the rules ∧I and DeM∨,
¬(ϕ ∨ ψ) ∈ Π. Hence, e(ϕ ∨ ψ,Π) = i = f∨(i, i) =
f∨(e(ϕ,Π), e(ψ,Π)).

(3) Suppose e(ϕ,Π) = 1 and e(ψ,Π) = i. Then ϕ ∈ Π,
ψ ∈ Π, ¬ϕ ̸∈ Π, and ¬ψ ∈ Π. By closure and the
rule ∨I1, ϕ ∨ ψ ∈ Π. By closure and the rules ∧E1 and
DeM∨, ¬(ϕ∨ψ) ̸∈ Π. Hence, e(ϕ∨ψ,Π) = 1 = f∨(1, i) =
f∨(e(ϕ,Π), e(ψ,Π)).

(iv) Analogous to (iii).
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(v) There are three cases for each ∼k (1 ≤ k ≤ n). (For read-
ability, the subscript k is dropped in the remainder of this
proof.) I prove the case for e(ϕ,Π) = 0. The other two cases
are proved similarly.

Suppose e(ϕ,Π) = 0. Then ϕ ̸∈ Π and ¬ϕ ∈ Π. There are
three cases:

(1) Suppose R∼(0, 0) is one of the three rules for ∼ in
NDK3(∼)m(◦)n . Then f∼(0) = 0. By closure and the
rule R∼(0, 0), it must be that ¬ ∼ ϕ ∈ Π. By (i), it
must be that ∼ ϕ ̸∈ Π. Therefore, e(∼ ϕ,Π) = 0 =
f∼(0) = f∼(e(ϕ,Π)).

(2) Suppose R∼(0, i) is one of the three rules for ∼ in
NDLP (∼)m(◦)n . Then f∼(0) = i. By closure, the fact
that Π is a CPT, and the rule R∼(0, i), it must be
that ∼ ϕ ∨ ¬ ∼ ϕ ̸∈ Π. By closure and the rules
∨I1 and ∨I2, ∼ ϕ ̸∈ Π and ¬ ∼ ϕ ̸∈ Π. Therefore,
e(∼ ϕ,Π) = i = f◦(0) = f∼(e(ϕ,Π)).

(3) Suppose R∼(0, 1) is one of the three rules for ∼ in
NDLP (∼)m(◦)n . Analogous to (1).

(vi) Analogous to (v).

2

Lemma 3 (Truth). Let Π be a CPT. Let vΠ be the function that
assigns to each atomic formula p in P the elementhood of p in Π:
vΠ(p) = e(p,Π) for all p in P. Then for all ϕ in L(∼)m(◦)n it holds
that

vΠ(ϕ) = e(ϕ,Π).

Proof. By an easy structural induction on ϕ. Use the previous
lemma. 2

Lemma 4 (Lindenbaum). Let Π ⊆ L(∼)m(◦)n and let ϕ ∈
L(∼)m(◦)n . Suppose that Π ̸⊢ ϕ. Then there is a set Π∗ ⊆ L(∼)m(◦)n
such that
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(i) Π ⊆ Π∗

(ii) Π∗ ̸⊢ ϕ
(iii) Π∗ is a CPT.

Proof. Suppose that Π ̸⊢ ϕ. Let ψ1, ψ2, . . . be an enumeration of
L(∼)m(◦)n . I define the sequence Π0,Π1, . . . of sets of formulas as
follows:

Π0 = Π

Πi+1 =

{
Πi ∪ {ψi+1}, if Πi ∪ {ψi+1} ̸⊢ ϕ
Πi, otherwise.

Take Π∗ =
∪

n∈N Πn. Standard proofs show that (i), (ii), and (iii)
hold. 2

Theorem 4 (Completeness). Let Π ⊆ L(∼)m(◦)n and let ϕ ∈
L(∼)m(◦)n. Then

If Π |= ϕ, then Π ⊢ ϕ.

Proof. By contraposition. Suppose Π ̸⊢ ϕ. By the Lindenbaum
lemma, there is a CPT Π∗ such that Π ⊆ Π∗ and Π∗ ̸⊢ ϕ. Let
vΠ∗ be the valuation introduced in the truth lemma. By the truth
lemma, it holds that vΠ∗(ψ) = 1 for all ψ in Π and vΠ∗(ϕ) ̸= 1.
Therefore, Π ̸|= ϕ. 2

Corollary 1. The system NDK3 is sound and complete with re-
spect to K3.

Proof. Consider the logic K3¬ that is obtained from K3 by adding
K3’s truth-table f¬ for negation to it. Evidently, K3¬ is K3. By
the soundness and completeness theorems, NDK3¬ is sound and
complete with respect to K3¬. It is easy to see that the rules
R¬(0, 1), R¬(i, i), and R¬(1, 0) are derived rules in NDK3 . 2
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5  Lukasiewicz’s three-valued logic ( L3)

Let me illustrate this general method for finding natural deduction
systems for truth-functional extensions of K3 with  Lukasiewicz’s
three-valued logic ( L3).  L3 evaluates arguments consisting of formu-
las from a propositional language L⊃ built from a set P = {p, p′, . . .}
of atomic formulas using negation (¬), disjunction (∨), conjunction
(∧), and implication (⊃).  L3 has the same valuations as K3: in
 L3, a valuation is a function v from the set P of atomic formulas
to the set {0, i, 1} of truth-values. A valuation v on P is extended
recursively to a valuation on L⊃ by the truth-tables for ¬, ∨, and
∧, and the truth-table for ⊃:

f⊃ 0 i 1

0 1 1 1
i i 1 1
1 0 i 1

 L3 has the same concept of validity as K3: an argument from a set
Π of premises to a conclusion ϕ is valid (notation: Π |= ϕ) if and
only if for each valuation v it holds that if v(ψ) = 1 for all ψ in Π,
then v(ϕ) = 1.

Theorem 1 tells me that the truth-table f⊃ is characterized by
the following nine basic inference schemes:

f⊃(0, 0) = 1 iff ¬ϕ ∧ ¬ψ |= ϕ ⊃ ψ
f⊃(0, i) = 1 iff ¬ϕ |= (ψ ∨ ¬ψ) ∨ (ϕ ⊃ ψ)
f⊃(0, 1) = 1 iff ¬ϕ ∧ ψ |= ϕ ⊃ ψ
f⊃(i, 0) = i iff ¬ψ, (ϕ ⊃ ψ) ∨ ¬(ϕ ⊃ ψ) |= ϕ ∨ ¬ϕ
f⊃(i, i) = 1 iff |= (ϕ ∨ ¬ϕ) ∨ (ψ ∨ ¬ψ) ∨ (ϕ ⊃ ψ)
f⊃(i, 1) = 1 iff ψ |= (ϕ ∨ ¬ϕ) ∨ (ϕ ⊃ ψ)
f⊃(1, 0) = 0 iff ϕ ∧ ¬ψ |= ¬(ϕ ⊃ ψ)
f⊃(1, i) = i iff ϕ, (ϕ ⊃ ψ) ∨ ¬(ϕ ⊃ ψ) |= ψ ∨ ¬ψ
f⊃(1, 1) = 1 iff ϕ ∧ ψ |= ϕ ⊃ ψ.

From Theorems 3 and 4 it follows that the natural deduction
system NDK3⊃, obtained from adding these nine basic inference
schemes as derivation rules to the natural deduction system NDK3 ,
is sound and complete with respect to  L3. The general method I
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presented in this paper, therefore, makes it easy to find natural
deduction systems for truth-functional extensions of K3.

6 Conclusion

Next to Kooi and Tamminga’s (2012) proof-theoretical study of LP ,
the present investigation of K3 is only a second step in the study of
many-valued logics using correspondence analysis. At the current
stage of research, the following questions seem pressing. Which
many-valued logics can be studied using correspondence analysis?
Which many-valued logics cannot? Are there some characteristics
a many-valued logic must have to be amenable to correspondence
analysis?
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