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Abstract We develop a multi-agent deontic action logic to study the logical

behaviour of two types of deontic conditionals: (1) conditional obligations, having

the form ‘‘If group H were to perform action aH, then, in group F ’s interest, group

G ought to perform action aG’’ and (2) conditional permissions, having the form ‘‘If

group H were to perform action aH, then, in group F ’s interest, group G may

perform action aG’’. First, we define a formal language for multi-agent deontic

action logic and a class of consequentialist models to interpret the formulas of the

language. Second, we define a transformation that converts any strategic game into a

consequentialist model. Third, we show that an outcome a� is a Nash equilibrium of

a strategic game if and only if a conjunction of certain conditional permissions is

true in the consequentialist model that results from the transformation of that

strategic game.

1 Introduction

Deontic logic concerns the formal study of obligations, permissions, and prohibi-

tions. Since its inception in 1951 by G.H. von Wright, it has been a lively and

fruitful branch of philosophical logic that has led to a wealth of technical results on

formal aspects of normativity. It has long been largely confined, however, to the

formal study of norms within single-agent or even agentless contexts, because

deontic logicians primarily focussed on how things ought to be rather than on what

agents ought to do. The development of a multi-agent logic of agency in the late

1990s has finally made it possible to transpose deontic logic from single-agent to

multi-agent settings, and to use it to investigate normative aspects of strategic
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interaction.1 As a result, multi-agent deontic logic studies obligations, permissions,

and prohibitions within the context of formal models of strategic interaction

between (groups of) agents with different preferences.

Strategic interaction between (coalitions of) players with different preferences is,

of course, also studied mathematically in game theory. Hence, multi-agent deontic

logic and game theory both study multi-agent phenomena that are largely

comparable, albeit that these phenomena are approached from widely diverging

perspectives: whereas deontic logicians concentrate on the formal structure of moral

obligations, game theorists focus on interactive decision making. Several authors

have called for an integration of deontic logic and game theory (Apostel 1960;

Åqvist 1974; van Hees 1995, 1996). They did so not only to pinpoint these

differences in perspective, but also to give more structure to the obligations,

permissions, and prohibitions they studied. Their formalisms, however, were not so

fine-grained as is the multi-agent deontic logic that was set forth only recently by

Horty (2001) and Kooi and Tamminga (2008b). Built upon on the stit logics of

agency that were developed in Kanger (1957, 1972), Pörn (1970), von Kutschera

(1986) and Horty and Belnap (1995),2 their multi-agent deontic logic provides a

unified framework for the formal interpretation of group actions, group abilities, and

group obligations. The question of how to establish connections between this new

multi-agent deontic logic and game theory is therefore both natural and pressing.

The aim of the present paper is to give a partial answer to this question: we translate

strategic games into the models that we use to interpret multi-agent deontic action

logic3 and then characterize Nash equilibria of strategic games in terms of

conditional permissions from this logic.4

Game theorists may have reservations against any interpretation of game theory

in terms of concepts from moral theory. We therefore briefly discuss the conditions

under which a rapprochement between game theory and moral theory is

conceptually defensible. We submit that under the double assumption that the

preferences that figure in our deontic logic are extrinsic preferences and that

1 See Belnap et al. (2001) for a textbook presentation of multi-agent logics of agency.
2 For more on the early history of stit logics of agency, see Hansson (1986).
3 Pauly (2001) also establishes formal relations between strategic games and models. He uses his

coalition models, which are possible worlds-based neighbourhood models, to interpret Coalition Logic, a

modal logic to reason about group abilities.
4 Other logical characterizations of Nash equilibria have been provided by Harrenstein et al. (2003), van

der Hoek et al. (2005), van Benthem et al. (2005), Bonzon et al. (2006), van Benthem (2007), Roy (2008)

and Lorini (2010). Their approaches differ from ours in various respects: Bonzon et al. (2006)

characterize Nash equilibria of n-player Boolean games, whereas Harrenstein et al. (2003), van Benthem

et al. (2005), van Benthem (2007) and Roy (2008) all focus on Nash equilibria of extensive games. Only

van der Hoek et al. (2005) and Lorini (2010) characterize, just as we do here, Nash equilibria of strategic
games. The former expresses Nash equilibria in terms of Alternating-time Temporal Logic (ATL)

extended with counterfactual commitment operators and atomic propositions that capture the agents’

utilities, whereas the latter uses a combination of a variant of Propositional Dynamic Logic (PDL) and

preference logic to formulate Nash equilibria. We shall characterize them in terms of conditional

permissions, without making the agents’ utilities or preferences explicit in the language. Moreover, unlike

the models proposed by van der Hoek et al. (2005) and Lorini (2010) that can be used to represent

sequences of group actions, our models represent group abilities, actions, obligations, and permissions at

a single moment in time.
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evaluative act consequentialism is our moral theory, the conceptual gap between

game theory and moral theory is minimized. (Those who are primarily interested in

our formal results may skip the rest of this introduction, except for the last

paragraph.)

To minimize this conceptual gap, we have to be specific on (1) the type of moral

theory that gives rise to the obligations and permissions we set out to formalize, and

(2) the type of preferences that figure in our deontic logic as the evaluative basis for

the moral rightness of actions. Let us address the latter point first. At first sight,

obligatory actions and preferred actions are worlds apart: it is perfectly possible that

I have the obligation to do X, but at the same time prefer not-X to X. Things begin to

look different, however, as soon as we make a distinction between extrinsic
preferences (which are the result of a previous judgment of betterness on the basis of

reasons) and intrinsic preferences (which reflect the unreasoned subjective likings

of the agents concerned)—see von Wright (1963, p. 14). Preferences in game theory

typically are all-things-considered, extrinsic preferences. Now, given the distinction

between extrinsic and intrinsic preferences, it still makes perfect sense that I have

the obligation to do X and at the same time intrinsically prefer not-X to X (‘‘I have

the obligation to pay my debts, but I prefer not to do so: I just don’t feel like it’’).

Some intellectual effort is needed, however, to imagine a situation where I have the

obligation to do X and at the same time extrinsically prefer not-X to X. Hence, a first

step in bringing deontic logic and game theory together, is to assume that the

preferences that figure in our deontic logic, guiding agents in evaluating the moral

rightness of their actions, are extrinsic.

To make the conceptual match between deontic logic and game theory even

closer, we also have to be specific on the type of moral theory that gives rise to the

obligations and permissions we aim to formalize. From a deontological perspective,

it still might be that I have the obligation to do X and at the same time extrinsically

prefer not-X to X (‘‘I have the obligation to return the gun to you, because I

promised that, but all-things-considered I prefer not to do so’’). This possibility is

minimized once we adopt an evaluative version of act consequentialism as the

moral theory that tells us where obligations and permissions come from.5 For the

sake of the argument, this is what we shall do here. In evaluative act

consequentialism, the moral rightness of an action only depends on the value of

its consequences: the value of the consequences of returning the gun to you is

weighed against the value of the consequences of not returning the gun to you. The

action with the highest-valued consequences is the morally right one. (Unlike

classical act utilitarianism, where the moral rightness of an action depends on the

consequences it has for all agents, our brand of act consequentialism acknowledges

different sorts of moral rightness of an action depending on the value of its

consequences for specific interest groups. To formalize these different sorts of moral

rightness, we assume that each group F of agents has its own extrinsic preference

relation over the full set of possible consequences.) It will be seen below that the

modelling of obligations by way of a formal framework inspired by evaluative act

consequentialism using extrinsic preferences as the basis for the evaluation of the

5 See Darwall (2003) for an overview of the main positions within consequentialism.
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moral rightness of actions makes it plausible that in the interest of a group F of

agents an action is obligatory if and only if that action has according to F the

highest-valued consequences, and that an action has according to F the highest-

valued consequences if and only if that action is best in the ordering induced by F ’s

extrinsic preference relation, and that an action is best in the ordering induced by

F ’s extrinsic preference relation if and only if the group F of agents extrinsically

prefers that action to all the other actions. The consequentialist models we shall use

to interpret the formulas of multi-agent deontic action logic thus establish a strong

conceptual bond between (our particular version of) deontic logic and game theory.

The main purpose of this paper, however, is to establish formal connections between

multi-agent deontic action logic and game theory.

The set-up of the paper is as follows. First, we define a formal language for multi-

agent deontic action logic and a class of consequentialist models to formally

interpret the formulas of that language. Second, we give standard definitions of

strategic games and Nash equilibria. Third, we define a transformation T and a

valuation function v that convert any strategic game G into a consequentialist model

hTðGÞ; vi. Fourth, we show, as a benchmark case for establishing formal

connections between deontic logic and game theory, that an outcome a� is a Nash

equilibrium of strategic game G if and only if a finite conjunction of certain

conditional permissions is true in the consequentialist model hTðGÞ; vi.

2 Multi-Agent Deontic Action Logic

The multi-agent deontic action logic to be presented in this paper studies the logical

behavior of four types of deontic statements: (1) absolute obligations of the form

‘‘In group F ’s interest, group G ought to perform action aG’’ (abbreviated as OFG aG),
(2) conditional obligations of the form ‘‘If groupH were to perform action aH, then,

in group F ’s interest, group G ought to perform action aG’’ (abbreviated as

OFG ðaG=aHÞ), (3) absolute permissions of the form ‘‘In group F ’s interest, group G
may perform action aG’’ (abbreviated as PFG aG), and (4) conditional permissions of

the form ‘‘If group H were to perform action aH, then, in group F ’s interest, group

G may perform action aG’’ (abbreviated as PFG ðaG=aHÞ).
6 (Conditions under which

conditional obligations reduce to absolute obligations, and under which conditional

permissions reduce to absolute permissions are given in Lemmas 1 and 3.)

Obligations and permissions are closely related. Starting from the fairly common

assumption that obligations with respect to a certain moral code do not recommend

incompatible actions, in the current framework an obligation singles out the unique

course of action that best serves the interest of a particular group. Whereas an

obligation is uniquely action-guiding, a permission might leave open several options

for acting. As a consequence, obligations and permissions have different logical

properties (see Lemma 3).

6 Conditional obligations and conditional permissions were first introduced in deontic logic by von

Wright (1956, p. 509).
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We interpret obligations and permissions on consequentialist models. These

models are identical to the ones that were first set forth by Kooi and Tamminga

(2008b), except for some minor details: Kooi and Tamminga (1) use utility

functions rather than preference relations, (2) conceive of group utility as the

arithmetical mean of individual utilities, and (3) think of utility functions as part of

the interpretation of consequentialist frames rather than as an integral part of the

consequentialist frames themselves.7 Kooi and Tamminga (2008b) use their

consequentialist models to interpret absolute obligations indexed by an acting

group G and an interest group F . Their approach differs from ours in that we here

study the actions a group ought to perform, rather than the states of affairs a group

ought to ensure. Moreover, Kooi and Tamminga do not discuss deontic conditionals,

which are central to the present paper.

Our deontic conditionals can be used to study properties of strategic games. For

example, Lemma 2 tells us that the formula ðOFHaH ^OFG ðaG=aHÞÞ ! OFG aG
(‘deontic detachment’) is not true in all consequentialist models. Given our

transformation that converts any strategic game into a consequentialist model, we

can ask for the class of strategic games that is characterized by the property of

deontic detachment.8 In this way, our multi-agent deontic action logic enables us to

pose new questions about strategic games. The answers, however, must be

postponed to another paper. Let us address the basic formalities first.

2.1 Language

Throughout the paper, we use a propositional modal language L built from (1) a

countable set P ¼ fp1; p2; . . .g of atomic propositions and (2) a countable set A ¼
fan
G : G � N and n 2 Ng of atomic action propositions, where N is an arbitrary but

fixed finite set of agents and N is the set of natural numbers. Thus, for each group G
of agents there is a countable set AG ¼ fa1

G; a
2
G; . . .g of atomic action propositions.

We use p and q as variables for atomic propositions in P, and aG and aH as variables

for atomic action propositions in A. The formal language L is the smallest set (in

terms of set-theoretical inclusion) satisfying the conditions (i) through (ix):

(i) P [A � L

(ii) If u 2 L, then :u 2 L

(iii) If u;w 2 L, then u ^ w 2 L

(iv) If u 2 L, then }u 2 L

(v) If aG 2 A and u 2 L, then ½aG�u 2 L

(vi) If aG 2 A and F � N , then OFG aG 2 L

(vii) If aG 2 A and F � N , then PFG aG 2 L

7 Kooi and Tamminga’s consequentialist models are a generalization of the utilitarian models Jeff Horty

constructed to formally interpret statements of the form ‘‘Agent i ought to see to it that u’’ and ‘‘Agent

i has the ability to see to it that u’’ (Horty 1996, 2001). Horty’s utilitarian models, in turn, are grafted on

the branching-time models for stit logics of agency that were developed by Nuel Belnap and others.
8 A class C of consequentialist models characterizes a formula u, if for all consequentialist models M it

holds that M 2 C if and only if M � u.
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(viii) If aG; aH 2 A and F � N and H � N � G, then OFG ðaG=aHÞ 2 L

(ix) If aG; aH 2 A and F � N and H � N � G, then PFG ðaG=aHÞ 2 L.

We leave out brackets and braces if the omission does not give rise to ambiguities.

L is rich enough to express (1) action statements like ‘‘Group G performs action

aG’’ (formalized as aG), ‘‘Group G has the ability to perform action aG’’ (formalized

as }aG), and ‘‘Group G sees to it that u by performing action aG’’ (formalized as

½aG�u) and (2) deontic statements like ‘‘In his own interest, agent i may perform

action ai’’ (formalized as Pi
iai) and ‘‘If agent i were to perform action ai, then, in the

grand coalition’s interest, group G ought to perform action aG’’ (formalized as

ONG ðaG=aiÞ). How diverse these statements may be, they can all be formally

interpreted in terms of consequentialist models.

2.2 Consequentialist Models

Consequentialist models are Kripke-style possible worlds models. They are built

from a non-empty set of possible worlds and a finite set of agents. The models are

used to interpret group abilities, actions, obligations, and permissions at a single

moment in time. Each group of agents is assigned its own choice set that consists of

the group’s options for acting. A group of agents performs an action by choosing an

option from its choice set. Each choice set is modelled as a partition of the full set of

possible worlds, and hence the performance of an action by a group is modelled as a

restriction of the full set of possible worlds to those worlds that are elements of the

option that corresponds to the action being performed. Each group of agents has its

own preference relation over the full set of possible worlds.9

We make these ideas precise by first defining the consequentialist frames that

model group actions and group preferences. On the basis of these frames, we then

define the consequentialist models that interpret the atomic (action) propositions.

Definition 1 A consequentialist frame F is a quadruple hW;N ;Choice; ð�FÞi,
whereW is a non-empty set of possible worlds, N is a finite set of agents, Choice is

a partition function, and �F is a reflexive, transitive, and complete relation on W
for each F � N .

Choice sets of individual agents are given by a partition function Choice : N !
}ð}ðWÞÞ that meets two conditions: (1) for each agent i 2 N it holds that ChoiceðiÞ
is a partition of W, and (2) for each selection function s assigning to each agent

i 2 N a set of possible worlds s(i) such that sðiÞ 2 ChoiceðiÞ it holds that
T

i2N sðiÞ
is non-empty.10

9 Although it seems natural to think of a group’s preference relation as being somehow reducible to the

preference relations of the group’s constituent members (but see List and Pettit 2011), we have chosen to

keep matters general by not choosing for a particular aggregation function from a wide variety of options.

This policy prevents such an aggregation function from interfering with the logic. A group’s preference

relation represents that group’s ‘interests’, broadly conceived. It not only covers the group’s own welfare,

but may well include the welfare of others who are not in that group.
10 The second condition is the requirement of agent independence. It guarantees that there is a possible

world in which each individual agent performs the action of his choice, irrespective of the actions all
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For example, let W ¼ fw1;w2;w3;w4g and N ¼ fi; jg. Let ChoiceðiÞ ¼
ffw1;w2g; fw3;w4gg and ChoiceðjÞ ¼ ffw1;w3g; fw2;w4gg. Then Choice is a

partition function, since it meets the two conditions. As for condition (1), note that

both ChoiceðiÞ and ChoiceðjÞ are partitions of W. As for condition (2), note that

there are in our example four possible selection functions:

s1ðiÞ ¼ fw1;w2g s1ðjÞ ¼ fw1;w3g
s2ðiÞ ¼ fw1;w2g s2ðjÞ ¼ fw2;w4g
s3ðiÞ ¼ fw3;w4g s3ðjÞ ¼ fw1;w3g
s4ðiÞ ¼ fw3;w4g s4ðjÞ ¼ fw2;w4g:

Hence, for every selection function s that assigns to agent i an option s(i) in

ChoiceðiÞ and to agent j an option s(j) in ChoiceðjÞ it holds that s(i) \ s(j) = ;.
Next, we generalize the partition function for individual agents to a partition

function Choice : }ðN Þ ! }ð}ðWÞÞ for groups of agents. Let Select be the set of

all selection functions s assigning to each individual agent i 2 N an option

sðiÞ 2 ChoiceðiÞ. Then

ChoiceðGÞ ¼
\

i2G
sðiÞ : s 2 Select

( )

;

if G is non-empty. Otherwise, ChoiceðGÞ ¼ fWg.
In our example, the set Choiceði; jÞ of actions available to the group {i, j} is

given by {{w1}, {w2}, {w3}, {w4}}, since Select = {s1, s2, s3, s4} and hence

Choiceði; jÞ ¼ fs1ðiÞ \ s1ðjÞ; s2ðiÞ \ s2ðjÞ; s3ðiÞ \ s3ðjÞ; s4ðiÞ \ s4ðjÞg.

Definition 2 A consequentialist model M is an ordered pair hF; vi, where F is a

consequentialist frame and v a valuation function that assigns to each atomic

proposition p 2 P a set of worlds vðpÞ 2 }ðWÞ and to each atomic action

proposition aG 2 A a set of worlds vðaGÞ 2 ChoiceðGÞ.

In a consequentialist model, each possible action of each group of agents is

assumed to have a name, that is, for each G � N and each K 2 ChoiceðGÞ there is

an atomic action proposition aG 2 A such that vðaGÞ ¼ K.

2.3 Absolute and Conditional F -Dominance

As we are currently interested in building bridges between deontic logic and game

theory, we follow the conceptual guidelines of the introduction and interpret

obligations and permissions in consequentialist models that make use of extrinsic

preferences as the basis for the evaluation of the moral rightness of actions. In

search of such a formal interpretation of conditional obligations and permissions, we

adopt the distinction made above that obligations are uniquely action-guiding,

Footnote 10 continued

other individual agents perform. Hence, the definition of Choice ensures that at a single moment in time

no individual agent can prevent any other individual agent from performing an action. See for defenses of

this requirement Belnap et al. (2001, pp. 217–218 and p. 283) and Horty (2001, pp. 30–31).
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whereas permissions are not. Hence, we stipulate that an action is obligatory for a

group of agents if it is the single best thing the group can do. Likewise, an action is

permitted for a group of agents if it is among the best things the group can do.11 To

implement these stipulations within the context of a consequentialist frame F, this

means that for each group G of agents we need to order its available actions in terms

of the preference relations �F . Hence, we have to transform each preference

relation �F into an F -ordering of the set ChoiceðGÞ. Obviously, there are several

ways to do this. Here we adopt the notion of dominance and adapt it to the present

situation.12

Definition 3 Let F be a consequentialist frame. Let F ;G � N and H � N � G.

Let K;K 0 2 ChoiceðGÞ and L 2 ChoiceðHÞ. Then

K�FG K 0 iff for all S 2 ChoiceðN � GÞ and for all w;w0 2 W it holds that

if w 2 K \ S and w0 2 K 0 \ S, then w �F w0.

K�FðG=H;LÞ K 0 iff for all S 2 ChoiceððN � GÞ �HÞ and for all w;w0 2 W it holds that

if w 2 K \ L \ S and w0 2 K 0 \ L \ S, then w �F w0.

As usual, K [F
G K 0 if and only if K �FG K 0 and K 0lFG K. In the same fashion,

K [F
ðG=H;LÞ K 0 if and only if K�FðG=H;LÞ K 0 and K 0lFðG=H;LÞ K.

Intuitively, it holds that K �FG K 0 if and only if group G’s action K furthers the

interests of group F at least as well as group G’s action K0, regardless of the

collective action that is performed by the group N � G of remaining agents.

Likewise, it holds that K �FðG=H;LÞ K 0 if and only if given that group H performs

action L, group G’s action K furthers the interests of group F at least as well as

group G’s action K0, regardless of the collective action that is performed by the

group ðN � GÞ �H of remaining agents.

To illustrate the notions of absolute and conditional F -dominance, consider the

following (partial) description of a consequentialist frame built from three agents

and eight possible worlds, where ChoiceðiÞ ¼ fK1;K2g and ChoiceðjÞ ¼ fL1; L2g
and ChoiceðkÞ ¼ fM1;M2g. The preference relations �j and �i;j;k are given in

Fig. 1 by the left- and right-hand side utilities, respectively (the other six preference

relations are left unspecified).

11 Leo Apostel writes: ‘‘an act is obligatory, if it is the only act such that there is no other act equally

good or better’’ and ‘‘an act is permissible if it can be considered as the application of a strategy such that

there is no better one (there may be many equally good)’’ (Apostel 1960, p. 75). Similarly, in an interview

with Alex Voorhoeve, Ken Binmore states: ‘‘[morality] includes the rules for sustaining an equilibrium in

a game, which specify those actions that are permitted and those actions that will be punished’’

(Voorhoeve 2009, p. 140).
12 Absolute F -dominance was first defined in Kooi and Tamminga (2008b, p. 9). We insert an interest

group F , an acting group H, and an option L 2 ChoiceðHÞ in Horty’s Definition 5.2 (Horty 2001, p. 97)

to define conditional F -dominance.
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As for absolute F -dominance, note that agent i’s action K1 furthers the interests

of agent j at least as well as agent i’s action K2, regardless of the four possible

collective actions of the group {j, k}. Hence, it holds that K1 C i
j K2. Note, however,

that K1l
i;j;k
i K2.

As for conditional F -dominance, note that given that agent k performs action M1,

agent i’s action K1 furthers the interests of the group {i, j, k} at least as well as agent

i’s action K2, regardless of the two possible actions of agent j. Hence, it holds that

K1� i;j;k
ði=k;M1Þ K2. Note, however, that K1l

i;j;k
ði=k;M2Þ K2.

In fact, absolute F -dominance is a special case of conditional F -dominance.

Since Choiceð;Þ ¼ fWg, it holds that K�FG K 0 iff K�FðG=;;WÞ K 0.

2.4 Semantics

Now that we have defined the notions of a consequentialist model, of absolute and

conditional F -dominance, we are in a position to give the semantical rules that state

the conditions under which a formula u from the language L is true at a world w in a

consequentialist model M. We write M;w � u if this is the case.

Definition 4 (Semantical Rules) Let M ¼ hF; vi be a consequentialist model. Let

F ;G � N and let H � N � G. Let w 2 W and let p 2 P and aG; aH 2 A and

u;w 2 L. Then

M;w � p iff w 2 vðpÞ
M;w � aG iff w 2 vðaGÞ
M;w � :u iff M;w 6� u

M;w � u ^ w iff M;w � u and M;w � w

M;w � }u iff there is a w0 such that M;w0 � u

M;w � ½aG�u iff w 2 vðaGÞ and for all w0 2 vðaGÞ it holds that M;w0 � u

M;w � OFG aG iff for all K in ChoiceðGÞ with K 6¼ vðaGÞ it holds that vðaGÞ[ F
G K

M;w � PFG aG iff for all K in ChoiceðGÞ with K 6¼ vðaGÞ it holds that vðaGÞ�FG K

M;w � OFG ðaG=aHÞ iff for all K in ChoiceðGÞ with K 6¼ vðaGÞ it holds that vðaGÞ[F
ðG=H;vðaHÞÞ K

M;w � PFG ðaG=aHÞ iff for all K in ChoiceðGÞ with K 6¼ vðaGÞ it holds that vðaGÞ�FðG=H;vðaHÞÞ K.

We adopt a standard notational convention: given a model M, we write M � u, if

for all worlds w inW it holds that M;w � u. We write � u, if for all models M it

holds that M � u.

The following formulas are true in all models:

Fig. 1 A consequentialist frame
with preference relations �j and

�i;j;k
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Lemma 1 Let aG; aH; a; 2 A. Then

(i) � PFG ðaG=aHÞ ! }aG
(ii) � OFG ðaG=aHÞ ! PFG ðaG=aHÞ
(iii) � OFG ðaG=aHÞ ! ðO

F
G ða0G=aHÞ $ PFG ða0G=aHÞÞ

(iv) � OFG ðaG=aHÞ ! ðP
F
G ða0G=aHÞ $ hðaG $ a0GÞÞ

(v) � OFG aG $ OFG ðaG=a;Þ
(vi) � PFG aG $ PFG ðaG=a;Þ.

The first formula states that a conditional permission to perform an action implies

the ability to perform that action. The second formula states that a conditional

obligation to perform an action implies the corresponding conditional permission to

perform that action.13 The third and the fourth formulas are true because of the

uniqueness requirement in the semantical rule for conditional obligations. The last

two formulas show that an absolute obligation is a conditional obligation with a

vacuous condition, and that an absolute permission is a conditional permission with

a vacuous condition.

The following formulas are not true in all models:

Lemma 2 Let aG; aH 2 A: Then

(i) 6� ðaH ^OFG ðaG=aHÞÞ ! OFG aG (factual detachment)

(ii) 6� ðaH ^ PFG ðaG=aHÞÞ ! PFG aG
(iii) 6� ðOFHaH ^OFG ðaG=aHÞÞ ! OFG aG (deontic detachment)

(iv) 6� ðPFHaH ^ PFG ðaG=aHÞÞ ! PFG aG.

The first invalidity shows that if both an action and an obligation conditional on that

action are true, then the corresponding absolute obligation might still be false. The

third invalidity shows that if both an absolute obligation to perform an action and an

obligation conditional on that action are true, then the corresponding absolute

obligation might still be false. For absolute and conditional permissions the situation

is the same.

There is, however, a different way to characterize the relation between absolute

and conditional permissions: group G may perform action aG in the interest of group

F if and only if group G may perform action aG in the interest of group F regardless

of what action any other group of agents were to perform. (This equivalence does

not hold for absolute and conditional obligations.14)

13 In Standard Deontic Logic, Ou! Pu or, equivalently, :ðOu ^O:uÞ is known as the principle (D).

Rejecting its validity is tantamount to admitting incompatible obligations. Goble (2005) presents a fairly

standard deontic logic that does not validate (D).
14 Let M be a consequentialist model consisting of four worlds and two agents i and j, where ChoiceðiÞ ¼
fK1;K2g and ChoiceðjÞ ¼ fL1;L2g. The preference relation �i is given by the utilities ui(K1 \ L1) = 1

and ui(K1 \ L2) = ui(K2 \ L1) = ui(K2 \ L2) = 0. Let v(ai) = K1 and v(aj) = L2. Then it holds that

M � Oi
iai and M 6� Oi

iðai=ajÞ.
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Lemma 3 (Absolute and Conditional Permissions) Let M ¼ hF; vi be a conse-
quentialist model. Let F ;G � N and let H � N � G: Let aG 2 A: Then the
following statements are equivalent:

(i) M � PFG aG
(ii) M � PFG ðaG=aHÞ for all aH 2 A.

Proof See Appendix. h

It should be noted that our formal semantics provides truth conditions for a wide

variety of conditional obligations and permissions, not all of which have their

counterpart in game theory. Given the general form PFG ðaG=aHÞ of a conditional

permission, we can distinguish at least four different types according to the specifics

of F ;G, and H: (1) conditional permissions where G is a non-singleton group of

agents, (2) conditional permissions whereG andH do not partition the grand coalition,

that is, where G [ H 6¼ N , (3) conditional permissions where the acting group G does

not coincide with the interest group F , that is, where F 6¼ G, and (4) conditional

permissions of the form Pi
iðai=aN�iÞ, which differs from any of the other categories.

As we have seen, these four types of conditional permissions are all evaluated by the

same semantical rule. We only need the last type of conditional permissions, however,

to show that our multi-agent deontic action logic is expressive enough to capture a

central game theoretical notion: Nash equilibria of strategic games.

3 Nash Equilibria of Strategic Games

Strategic games are built from a finite set N ¼ f1; . . .; ng of players. Each player i in

N is assigned a non-empty set Ai of actions. An outcome ða1; . . .; anÞ is reached if

each player i in N chooses an action ai from his set Ai of actions. The full set A of

possible outcomes is given by the Cartesian product of all the players’ sets of

actions. Each player i has its own preference relation % i over the full set of possible

outcomes. The following definition, provided by Osborne and Rubinstein (1994,

p. 14), makes these ideas precise. We also adopt their notational conventions.15

Definition 5 A strategic game G is a triple hN; ðAiÞ; ð% iÞi, where N is a finite set

of players, for each player i 2 N it holds that Ai is a non-empty set of actions

available to player i, and for each player i 2 N it holds that % i is a preference

relation on the set of outcomes A ¼ 	i2NAi.

Unlike Osborne and Rubinstein, we assume each Ai to be finite or countably

infinite, because if we want to use our multi-agent deontic action logic to study

strategic games, we have to make sure that there is a name for each action. Just like

in Osborne and Rubinstein (1994, p. 7), preference relations % i are assumed to be

reflexive, transitive, and complete. We use ai and a�i as variables for actions in Ai.

Likewise, a and a� are variables for outcomes in A. Given an outcome

15 See Osborne and Rubinstein (1994, Section 1.7).
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a ¼ ða1; . . .; anÞ, we use a-i to refer to the combination ða1; . . .; ai�1; aiþ1; . . .; anÞ of

all the actions in a except for player i’s action ai. Given such a combination a-i of

actions and an action ai, we use (a-i, ai) to refer to ða1; . . .; anÞ.
Given a strategic game hN; ðAiÞ; ð% iÞi, for each non-empty coalition G � N we

define the set AG of actions available to coalition G as AG ¼ 	i2GAi. We use aG and

a�G as variables for actions in AG. Obviously, AG is non-empty for each non-empty

coalition G. There are two borderline cases: (1) the set of actions A{i} available to

the singleton coalition {i} equals the set of actions Ai available to player i, and (2)

the set of actions AN available to the grand coalition N equals the set of outcomes A.

An outcome a� ¼ ða�1; . . .; a�nÞ is a Nash equilibrium of a strategic game G if no

player can unilaterally enforce an outcome that he strictly prefers to a� by choosing

a different course of action. We use the following definition (Osborne and

Rubinstein 1994, p. 14):

Definition 6 An outcome a� 2 A is a Nash equilibrium of a strategic game G ¼
hN; ðAiÞ; ð% iÞi if and only if for each player i 2 N it holds that

ða��i; a
�
i Þ% iða��i; aiÞ for all ai 2 Ai:

3.1 From Strategic Games to Consequentialist Models

Our multi-agent deontic action logic can be used to study properties of strategic

games. To do so, we first have to transform strategic games into consequentialist

models. The models that result from this transformation make certain formulas from

the language L true and others false. Some properties of strategic games can hence

be expressed in terms of the formulas that are true in the consequentialist models

that result from the transformation of those games. As an illustration of this claim,

we show that an outcome a� is a Nash equilibrium of a strategic game if and only if

a conjunction of certain conditional permissions is true in the consequentialist

model that results from the transformation of that strategic game. To make things

precise, we first define a transformation T that converts any strategic game G into a

consequentialist frame TðGÞ. To obtain an appropriate consequentialist model

hTðGÞ; vi from this frame, we then define a suitable valuation function v.

The transformation T of a strategic game G into a consequentialist frame TðGÞ
takes four steps. First, we define the set of possible worlds in the consequentialist

frame as the set of outcomes in the strategic game. Second, we define the set of

agents in the consequentialist frame as the set of players in the strategic game.

Third, for each non-empty group of agents we define its choice set in the

consequentialist frame as the set of smallest sets of outcomes in the strategic game

for which that group is a-effective (the choice set of the empty group of agents is

simply defined as the set of all possible worlds).16 Fourth, each singleton group’s

16 A coalition G of players is a-effective for a set B of outcomes in a strategic game G if and only if there

is an action aG in AG such that fðaG; a�GÞ 2 A : a�G 2 A�Gg � B. Informally: regardless of the actions

performed by the other players, the coalition G can ensure that the outcome is in the set B. The notion of

a-effectivity was first defined in Moulin and Peleg (1982, p. 118). The notion is also central to Pauly’s

(2001) characterization of strategic games in terms of playable effectivity functions.
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preference relation in the consequentialist frame is defined as its preference relation

in the strategic game (preference relations for non-singleton groups of agents are

simply defined as the universal relation).

Let us make these ideas clear with the following definition:

Definition 7 Let G ¼ hN; ðAiÞ; ð% iÞi be a strategic game. The quadruple

TðGÞ¼hW;N ;Choice; ð�FÞi is defined as follows:

(i) W ¼ A
(ii) N ¼ N

(iii) ChoiceðGÞ ¼ ðaG; a�GÞ 2 A : a�G 2 A�Gf g : aG 2 AGf g; if G 6¼ ;
fWg; otherwise

�

(iv) �F¼
% i; if F ¼ if g
W 	W otherwise.

�

The operator T transforms strategic games into a consequentialist frames:

Theorem 1 Let G be a strategic game. Then TðGÞ is a consequentialist frame.

Proof See Appendix. h

Note that there is no straightforward transformation T that converts consequen-

tialist frames F into strategic games TðFÞ, since in a consequentialist frame F it

does not necessarily hold that ChoiceðN Þ ¼ ffwg : w 2 Wg, that is, it might be that

there are two different worlds, w1 and w2, such that fw1; w2g 2 ChoiceðN Þ. In

cases as these, the grand coalition does not have the ability to enforce a choice

between w1 and w2. Consequentialist models, however, can simply distinguish these

worlds by making an atomic proposition p true in w1 and false in w2. This additional

structure can, of course, be studied with action statements of the type ½aG�u and

}½aG�u. In this respect, consequentialist models offer a finer-grained analysis of

strategic interaction than strategic games. Furthermore, the preference relations �F
in a consequentialist frame also present an obstacle for its transformation into a

strategic game. Given two options K1;K2 2 ChoiceðN Þ such that K1 = {w1, w2}

and K2 = {w3, w4} and w1 
i w3 and w4 
i w2, it is unclear how to convert the

preference relation �i on W into a preference relation % i on ChoiceðN Þ:
Given a consequentialist frame TðGÞ, we now must define a valuation function

v to obtain a consequentialist model hTðGÞ; vi. Since there are no atomic

propositions p in P to take care of, we simply put vðpÞ ¼ W for all p 2 P. As for

the atomic action propositions, we have to be more subtle, since any valuation

function v that assigns to each aG in A an action K 2 ChoiceðGÞ such that each

possible action of each group of agents has a name would in principle suffice.

Nevertheless, to establish a formal connection between best responses and

conditional permissions, we need to keep track of which atomic action proposition

aG in AG is validated by the performance of which action aG in AG:
To ensure this, we use an injective map f that for each G � N assigns to each

action aG in each AG an atomic action proposition aG in AG. If there is an action aG
in AG such that f ðaGÞ ¼ aG, then we define vf ðaGÞ ¼ fðaG; a�GÞ 2 A : a�G 2 A�Gg
(note that aG is unique, since f is injective). If there is no action aG in AG such that
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f ðaGÞ ¼ aG, then we simply put vf ðaGÞ ¼ K for some unique designated

K 2 ChoiceðGÞ. Although f ðaGÞ itself is strictly speaking not an atomic action

proposition in AG, for convenience we write M;w � f ðaGÞ if and only if M;w � aG
and f ðaGÞ ¼ aG.

17 Given these conventions, we ensure that for each aG in each AG it

holds that

hTðGÞ; vf i;w � f ðaGÞ iff w 2 ðaG; a�GÞ 2 A : a�G 2 A�Gf g

Any valuation function vf for TðGÞ that is based on such an injection f will

henceforth be called a suitable valuation function.

In sum, any strategic game is embeddable in a consequentialist model, provided

that all players have at most countably many actions available to them. Given these

embeddings, we can now characterize Nash equilibria of strategic games in terms of

conditional permissions from multi-agent deontic action logic.

3.2 Nash Equilibria and Conditional Permissions

Conditional permissions enable us to give a formal characterization of Nash

equilibria of strategic games. To do so, we first characterize the notion of a best

response in terms of a conditional permission, that is, we show that an action

a�i 2 Ai in a strategic game G is a best response to a collective action a��i 2 A�i if

and only if the conditional permission Pi
iðf ða�i Þ=f ða��iÞÞ is true in the consequen-

tialist model hTðGÞ; vf i:

Theorem 2 Let G be a strategic game and let vf be a suitable valuation function
for TðGÞ. Then

ða��i; a
�
i Þ% i ða��i; aiÞ for all ai 2 Ai iff hTðGÞ; vf i � Pi

iðf ða�i Þ=f ða��iÞÞ:

Proof See Appendix. h

Since the set N of players is finite, we immediately obtain from the previous

theorem a characterization of Nash equilibria in terms of conditional permissions:

Theorem 3 Let G be a strategic game and let vf be a suitable valuation function
for TðGÞ. Then

a� is a Nash equilibrium of G iff hTðGÞ; vf i �
^

i2NPi
iðf ða�i Þ=f ða��iÞÞ:

4 Conclusion

In this paper we have further explored the opportunities that the framework of

consequentialist models offers for the study of strategic interaction. As Kooi and

Tamminga (2008b) showed, the framework can be used to interpret stit-like

obligations of the type ‘‘In the interest of group F of agents, group G of agents

17 Likewise, we write M � PGGðf ðaGÞ=f ða�GÞÞ if and only if M � PGGðaG=aHÞ and f ðaGÞ ¼ aG and

f ða�GÞ ¼ aH.
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ought to see to it that u’’ and to study the exact structural conditions under which

moral conflicts between groups of agents are possible. In the present paper the

consequentialist models were used to formally interpret multi-agent deontic action

logic. We gave truth conditions for an important class of multi-agent conditional

obligations and permissions. It was showed that strategic games where all players

have at most countably many actions available to them can be systematically

transformed into consequentialist models, and that an outcome is a Nash

equilibrium of a strategic game if and only if a conjunction of certain conditional

permissions is true in the consequentialist model that is obtained from the

transformation of that strategic game. For this characterization only a special type of

conditional permissions was needed, although, as was noted in the last paragraph of

Sect. 2, our semantics gives truth conditions for more general conditional

permissions as well. The level of generality of consequentialist models might very

well be used to further investigate systematic relations between deontic logic and

game theory. We conclude with a brief illustration of this claim.

Let us first extend the relations % i in a strategic game hN; ðAiÞ; ð% iÞi to relations

% F in an extended strategic game hN; ðAiÞ; ð% F Þi such that for each group of

players F � N it holds that % F is a preference relation on the set of outcomes (we

simplify clause (iv) of Definition 7 accordingly). Then it is easy to see that the present

formalism allows for the introduction of a solution concept for cooperative games.

Definition 8 An outcome a� 2 A is a cooperative Nash equilibrium of an extended

strategic game G ¼ hN; ðAiÞ; ð% F Þi for a partition fG1; . . .;Gkg of N if and only if it

holds that

hTðGÞ; vf i �
k̂

i¼1

PGi

Gi
ðf ða�Gi

Þ=f ða��Gi
ÞÞ;

where vf is a suitable valuation function for TðGÞ.

Note that this solution concept is a straightforward generalization of the notion of

a Nash equilibrium. We leave the study of its properties to a future occasion.
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Appendix

Proof of Lemma 3 Assume (i). Suppose aH 2 A. Suppose K 0 2 ChoiceðGÞ with

K 0 6¼ vðaGÞ. Suppose S 2 ChoiceððN � GÞ � HÞ and w;w0 2 W. Suppose
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w 2 vðaGÞ \ vðaHÞ \ S and w0 2 K 0 \ vðaHÞ \ S. Note that vðaHÞ 2 ChoiceðHÞ.
Hence, vðaHÞ \ S 2 ChoiceðN � GÞ. By assumption, it holds that vðaGÞ� FG K 0.

Hence w �F w0. Therefore vðaGÞ� FðG=H;vðaHÞÞ K
0. Therefore M � PFG ðaG=aHÞ.

Assume (ii). Suppose K 0 2 ChoiceðGÞ with K 0 6¼ vðaGÞ. Suppose S 2
ChoiceðN � GÞ and w;w0 2 W. Suppose w 2 vðaGÞ \ S and w0 2 K 0 \ S. Note that

S = L \ M for an L 2 ChoiceðHÞ and an M 2 ChoiceððN � GÞ � HÞ. Since every

possible action has a name, there is an aH 2 A such that vðaHÞ ¼ L. By assumption,

it holds that M � PFG ðaG=aHÞ. Hence vðaGÞ�FðG=H;vðaHÞÞ K
0. Hence w �F w0.

Therefore vðaGÞ�FG K 0. Therefore M � PFG aG. h

Proof of Theorem 1 Consider TðGÞ ¼ hW;N ;Choice; ð�F Þi. We have to show

that (1) W is non-empty, (2) N is finite, (3) ChoiceðiÞ is a partition of W for each

i 2 N , (4)
T

i2N sðiÞ is non-empty for each selection function s that assigns to each

i 2 N a set of possible worlds sðiÞ 2 ChoiceðiÞ, (5) ChoiceðGÞ ¼ f
T

i2G sðiÞ : s 2
Selectg for each non-empty G � N , and (6) �F is a preference relation on W for

each F � N .

Ad (1). By definition, each Ai in G is non-empty. Let ai 2 Ai for each i 2 N. Then

a ¼ 	i2Nai 2 	i2NAi ¼ A. Therefore, W is non-empty.

Ad (2). By definition, N is finite. Therefore, N is finite.

Ad (3). Suppose that K 2 ChoiceðiÞ for some i 2 N . Then K ¼ fðai; a�iÞ 2 A :
a�i 2 A�ig for some ai 2 Ai. Since each Aj in G is non-empty, it must be that A-i is

non-empty as well. Let a�i 2 A�i. Then a ¼ ðai; a�iÞ 2 K. Therefore, K is non-

empty for each K 2 ChoiceðiÞ for each i 2 N .

Suppose that a� 2
S

ChoiceðiÞ. Then there is a K 2 ChoiceðiÞ such that a� 2 K.

It holds that K ¼ fðai; a�iÞ 2 A : a�i 2 A�ig for some ai 2 Ai. Hence, a� 2 A.

Therefore, a� 2 W.

Suppose that a� 2 W. It holds that a� 2 A. Hence, a� ¼ ða�i ; a��iÞ with a�i 2 Ai

and a��i 2 A�i. Then a� 2 fða�i ; a�iÞ 2 A : a�i 2 A�ig 2 ChoiceðiÞ. Therefore,

a� 2
S

ChoiceðiÞ.
Suppose that there are K;K 0 2 ChoiceðiÞ and a� 2 W such that a� 2 K \ K 0.

Then a� 2 A and a�i 2 Ai. Hence, K ¼ fða�i ; a�iÞ 2 A : a�i 2 A�ig ¼ K 0.
Therefore, ChoiceðiÞ is a partition of W for each i 2 N .

Ad (4). Suppose that s is a selection function that assigns to each i 2 N a set

sðiÞ 2 ChoiceðiÞ. Since all s(i)’s are non-empty, we may take a possible world

ai 2 sðiÞ for each i 2 N . Note that ai 2 A and ai
i 2 Ai and sðiÞ ¼ fðai

i; a�iÞ 2 A :
a�i 2 A�ig for each i 2 N . Since N ¼ fi1; . . .; ing is finite, it must be that

ða1
1; . . .; an

nÞ 2 sðiÞ for each i 2 N . Therefore,
T

i2N sðiÞ is non-empty.

Ad (5). Suppose that K 2 ChoiceðGÞ for a non-empty G � N . Then K ¼
fða�G; a�GÞ 2 A : a�G 2 A�Gg for some a�G 2 AG. Let sðiÞ ¼ fða�i ; a�iÞ 2 A : a�i 2
A�ig for each i 2 G. It is easy to show that K ¼

T
i2G sðiÞ. Therefore

ChoiceðGÞ � f
T

i2G sðiÞ : s 2 Selectg.
Suppose that K 2 f

T
i2G sðiÞ : s 2 Selectg for a non-empty G � N . Then K ¼

T
i2G sðiÞ for some s 2 Select. Since sðiÞ 2 ChoiceðiÞ for each i 2 G, it must be that
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for each i 2 G there is an a�i 2 Ai such that sðiÞ ¼ fða�i ; a�iÞ 2 A : a�i 2 A�ig.
Consider a�G ¼ 	i2Ga

�
i . It is easy to show that K ¼ fða�G; a�GÞ 2 A : a�G 2 A�Gg.

Therefore f
T

i2G sðiÞ : s 2 Selectg � ChoiceðGÞ.
Ad (6). By definition, % i is a preference relation on A for each i 2 N. Therefore,

for each F � N it holds that either �F is the preference relation % i or �F is the

preference relation W 	W. h

Proof of Theorem 2 Assume that ða��i; a
�
i Þ% iða��i; aiÞ for all ai 2 Ai. Consider

hTðGÞ; vf i ¼ hW;N ;Choice;�F ; vf i. Let f(a�i ) = a�i and f(a��i) = a��i. Note that

vf ða�i Þ 2 ChoiceðiÞ and vf ða��iÞ 2 ChoiceðN � iÞ. Suppose that K 2 ChoiceðiÞ such

that K = vf(a
�
i ). By the construction of TðGÞ and vf, there must be an ai 2 Ai such

that f(ai) = ai and K = vf(ai). It suffices to show that vf ða�i Þ� i
ði=N�i;vf ða��iÞÞ

vf ðaiÞ.
Suppose that S 2 ChoiceððN � iÞ � ðN � iÞÞ and that w 2 vf ða�i Þ \ vf ða��iÞ \ S and

w0 2 vf ðaiÞ \ vf ða��iÞ \ S. Note that ChoiceððN � iÞ � ðN � iÞÞ ¼ Choiceð;Þ ¼
fWg. Note that vf(a�i ) \ vf(a��i) = {(a��i, a�i )} and vf(ai) \ vf(a��i) = {(a��i, ai)}.

Hence, w = (a��i, a�i ) and w0 = (a��i, ai). By assumption, we have

ða��i; a
�
i Þ% iða��i; aiÞ. Hence, by the construction of TðGÞ, it must be that w �i w0.

Therefore, hTðGÞ; vf i � Pi
iðf ða�i Þ=f ða��iÞÞ.

Assume that hTðGÞ; vf i � Pi
iðf ða�i Þ=f ða��iÞÞ. Let f(a�i ) = a�i and f(a��i) = a��i.

Suppose that ai 2 Ai. Suppose that ai = a�i . By reflexivity of % i, we have

ða��i; a
�
i Þ% iða��i; aiÞ. Suppose that ai = a�i . Let f(ai) = ai. By the construction of

TðGÞ and vf, it must be that vf ða�i Þ; vf ðaiÞ 2 ChoiceðiÞ and vf ða��iÞ 2 ChoiceðN � iÞ
and vf(a�i ) = vf(ai). By assumption, we have vf ða�i Þ� i

ði=N�i;vf ða��iÞÞ
vf ðaiÞ. Hence, it

must be that ða��i; a
�
i Þ �i ða��i; aiÞ. By the construction of TðGÞ, it must be that

ða��i; a
�
i Þ% i ða��i; aiÞ. Therefore, ða��i; a

�
i Þ% i ða��i; aiÞ for all ai 2 Ai: h
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