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Abstract

In this paper, we show within RCAg that weak Konig’'s lemma is necessary
and sufficient to prove that any (separable) compact group has a Haar measure.
Within WKLy, a Haar measure is constructed by a non-standard method based on
a fact that every countable non-standard model of WKL has a proper initial part

isomorphic to itself [9].

1 Introduction

This paper is a contribution to Reverse Mathematics, an ongoing program to determine
which set existence axioms are needed to prove particular theorems of ordinary mathe-
matics ([7], [8]). Along this program, measure theory has been studied by Yu and Simpson
[11], [12], but the right axioms for the existence of Haar measure had been unknown.
Haar measure has an important role in the foundations of real analysis, and also relates
to a famous problem of Hilbert (i.e., the fifth of his twenty-three problems). The existence

of Haar measure was first shown by Haar in 1933 for locally compact groups which are
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second countable, and subsequently by von Neumann for compact groups. As explained
in a classical textbook [4] of Pontryagin, von Neumann’s proof essentially depends on
the Arzela-Ascoli lemma, which can not be proved within WKLg. Succeedingly, Weil,
Cartan and others invented simpler proofs and yet for more general families of groups.
Although some proofs do not use the Arzela-Ascoli argument, none seems to be free from
the notion of sup or limit, which also requires et existence axioms beyond WKLjg.

Later, Bishop [1] modifies Cartan’s proof by a certain approximation trick to obtain
his constructive version. By contrast, Hauser [3] and others simplify Weil’s proof by way
of non-standard analysis. Inspired by both of these disparate proofs (constructive and
non-standard), we here manage to construct a Haar measure in WKLjg.

The system WKLg is a subsystem of second-order arithmetic obtained from RCA,
(= the axioms of ordered semirings, recursive comprehension and ¢ induction) by adding
the weak Konig’s lemma: every infinite tree of sequences of 0’s and 1’s has an infinite
path. The first-order (arithmetical) part of WKLg is the same as that of RCA,, or
equivalently I3, which is II3-conservative over PRA. Thus, the consistency of WKLy is
as clear as that of PRA, while WKL proves much more than RCAgy or PRA, e.g., the
Hahn-Banach theorem for separable Banach spaces [2], [5], the Cauchy-Peano theorem
for ordinary differential equations [5], [6], [10].

Most of basic notions of analysis can be defined within RCAg. A complete separable
metric space A is coded by its countable dense subset A together with a pseudo-metric
d on it. Then A is said to be compact if there is an infinite sequence of finite subsets of
A, (A, : n € N), such that A, is a 27"-net of A for each n. Let G be a compact group,
i.e., a compact metric space with continuous group-operations. A Haar measure on G
is a o-additive left-invariant positive linear operator u on the space C (G’) of continuous
functionals on G such that (1) = 1. More details of these definitions will be given in the
next section.

Our main theorem of this paper is as follows:



Main Theorem 1 (RCAg) The following are equivalent:
(1) WKLy,

(2) Any compact group has a Haar measure.

In the next section, we define basic concepts of topological groups, and show in RCA,
that a kind of approximation to Haar measure exists. Section 3 is devoted to set up a
non-standard method, by which we will construct a Haar measure in Section 4. It is also
shown in Section 4 that WKLy is necessary for the existence of Haar measure. Finally,
in Section 5, we eliminate the non-standard argument from the previous construction of
a Haar measure, and prove, for instance, that WWKLg, which is strictly weaker than
WKL, is necessary and sufficient to show that any compact group whose operations
have a modulus of uniform continuity has a unique Haar measure. The work of Section 5
is essentially due to the second author, while the other parts are collaboration of the two

authors.

2 Haar measure and its finite approximations

We are working within RCA( unless otherwise stated. A complete separable metric
space A is coded by a set A C N together with a pseudo-metric d : A x A — R.
A point in A is a sequence (a, : n € N) from A such that d(a,,an4;) < 27" for each
n,1 € N. A complete separable metric space is compact if there exists an infinite sequence
({(a;; € A:i < n;):j € N) of finite sequences of points in A such that for each j,
(a;; =i < n;)is a2 -net, ie., Va € AJi < ny[d(a,a;;) < 29]. RCAg proves that the
unit interval [0, 1] is compact in this sense, but does not that [0, 1] has the Heine-Borel
property.

A triple b = {(a,r,s) € Ax Q x Q with 0 < s < r encodes a basic function b : AR



defined by

1 if d(a,x) < s,
—d
b(z) = r—dle,z) if s <d(a,z) <,
r—s
0 if d(a,x) > r.
Then a finite sequence p = ({(gn, b,) : n < m) encodes a polynomial p(z) = 37", @by (),

where ¢,’s are rationals and b,,’s are basic functions.

Let P be the set of all (codes for) polynomials. Assuming that A is compact, P can be
seen as a countable vector space over Q equipped with the sup-norm |[p|| = sup{|p(z)| :
z € A}. Finally, by C(A), we mean the separable Banach space P. A point in C(A)
can be regarded as a continuous function f : A — R in the obvious way, and moreover
it has a modulus A of uniform continuity, i.e., such that for each n and each z, y € ﬁ,
d(z,y) < 27" — [f(z) = fly)| <27

Now we define a compact group as follows.

Definition 1 (RCAy) A compact metric space G is called a compact group if it is

equipped with an element e € G and continuous functions ! : G — CA?, :GxG =G

such that (CA?, e, ~1, -) satisfies the azioms of groups.

Let G be a compact group. A measure p on G is defined to be a positive bounded
linear functional on C(G) such that p(1) = 1. For each f € C(G) and s € G, let f*
denote the continuous function defined by f*(z) = f(sz). Then a measure p on G is
called left-invariant if u(f*) = p(f) whenever f, f* € C(G). For example, the unit circle

S is regarded as a compact group with a left-invariant measure in RCAg. Finally, the

countable additivity of measure is defined as usual. See [11].

Definition 2 (RCA,) A measure 1 on G is called o Haar measure iof 1 1s a countably

additive left-invariant measure.

We shall use the symbol C(G)* informally to denote the set of positive functions in

C (CA?) A standard construction of a Haar measure calls for the concept of least upper



bound such as

(f:9)=inf{D> a;: f <D a;g® for some s; € G and q; > 0}

i=0 i=0
for f, g € C(G)*. But, in RCAq (or WKL), the existence of “inf” cannot be guaran-

teed.
From now on, we assume that the group operations of G are uniformly continuous.

Then, an approximation to (f : g) exists in RCAg as follows.

Lemma 1 (RCAy) Let G be a compact group with uniformly continuous operations.

Choose any f, g € C(G)*. Then for each positive real ¢ € Ry, there exists a finite

sequence (a; : i < n) of non-negative reals such that

1) there exists a sequence (s; : i < n) from G such that f <> ,a;9%, and
( ) q 1=0 g )

(2) if a sequence {(¢; : i < m) of non-negative reals and a sequence {(v; : i < m) of points

in G satisfy f < Yoo cighi, then 30 ga; <YM ci+€

~

Proof. Working in RCAg. Take any f, g € C(G)". Since g # 0, there are r > 0 and
t € G such that 2r < g(t). Since the operations are uniformly continuous, there exists
81 > 0 such that d(z,y) < 6 — r < g(tz™y).

Let () : i < k) be a & -net of G, ie., Vo € GFi < kld(t),z) < &]. Then for each
z € @G, there exists i < k such that r < g(tt;'z). Now, we write t; by ¢';'. Then for

each x € C;', there exists i < k such that r < g(¢;z). Hence we have,
k
1) r <> g(tiz).
i=0

Without loss of generality, we may assume that the ¢;’s are taken from G.

Choose a rational number M such that ||f|| < M. So, we have

(i) f(z) <r7'M Y g(tix).

1=0

Fix any € > 0. Then take § < (1+r ?M(k+1)?) 'e. Since g(zy) is uniformly continuous

and G is compact, there exists a finite sequence (u; : i < I) from G such that
(iii) Vs € GIi < vz € G[g(sz) < g(uix) + ).
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Choose J € N such that J > §~'(I+1)r~'M(k +1). By bounded I1%-comprehension, we

define a set ® as follows:

® ={({jo,...,q) €{0,..., J}*:
I k
Vz € GIf(z) <01+ 1)) jig(usz) + 6r*M(k+ 1)) g(tiz)]}-
=0 1=0
Then ® # ¢, since
k
fl@) < 7'M g(tix) (by (i) )
i=0
!
< r Mk +1) Y g(um) + 6r "M (k + 1) ( by (iii) )
1=0
! k
< S+ Jg(uiz) +6r>M(k+1) > g(tiz) ( by (i) and the choice of J ).
i=0 i=0
Choose (j; : i <) € ® with the least >:_; j;. And, let
5(1+1)"1j;, ifi<l,
a; =
or2M(k +1), ifl+1<i<k+1+1
Then (a; : i < k41 + 1) satisfies property (1) of lemma 1 with (s;) = (u;) ().
Next, to show (a;) satisfies the property (2), assume that f(z) < >, c;g(viz). By
(iii), there exists (d; : i < 1) such that X", ¢; = >'_, d; and
m l l
> cig(viz) <D dig(wz) + 6 d;.
i=0 i=0 i=0
First consider the case Y7 ci(= Xt odi) < 7 'M(k +1). Since 1 < 7~ 3% g(t;7) by
(1),
I k
flx) <D dig(uiz) +0r?M(k +1) ) g(tix).

=0 1=0
For each i <[, let j/ =min{j e N: j < JAd; <6(l+1)"15}. Clearly, (ji:1 <) € ®
So,
ki1

ooa = 6(1+1) Zj,+(57" M(k + 1)

< s(1+1) Zjé +or2M(k + 1)2
=0



!
< S (di+6(1+ 1)) +6r*M(k 4+ 1)%(since 61+ 1) 75 — 1) < d; )
i=0
l m
< S di+ 514+ ME+1)%) <D ¢
1=0 1=0
Secondly, consider the case r™'M(k +1) < X" ¢;. By (ii), (i : i < k) = r™'M : i < k)
satisfies f(z) < 3", cig(tiz) and 37 i = 'M(k +1). Hence, by the above argument,
St g <YM te=r"Mk+1)+e <YM ci+e. O
For each € € Ry and each f, g € C(G)*, (f : g)¢ is defined to be >r o a; where a;’s

are given in the above lemma. We may assume that (f : ¢)¢ is rational.

Lemma 2 (RCAy) Choose any f1, fo and g € C’(@')*. Then, the following conditions
hold:

(1) for eache >0, (fi: g)F > AL

(2) if fi < fo, then for each e >0, (fi:g)* < (f2:9)" +&;

(8) for eache,e1,e2 >0, (fi:9)° < (fi: fo)'(f2:9) +e;

(4) for cache,er,e2>0, (fi+f2:9) < (fizg) +(for9)™ +e
(5) for each e, A >0, [(Af1:9)" — A(f1:9)°| < (A+1)e;

(6) for each e >0 and each s € G, (ff:9)f—=(fi:9)c] <Le.

Proof. (1) Since f, # 0, there exists o € G such that Hfl“

Yiaig(siz), then

< fla). If fi(z) <

f
|| 1H <Zazg s <\|g||2a,

e s [l

Hence (f; : g)¢ > 201
(2) is trivial. For (3), assume that (f1 : f2)* = X;a; and (f2 : 9)** = X, ¢; where
filz) < Eiaifa(siz) and fo(z) < ¥jci9(tz). Then fi(z) < Xi;aicig(sitjz). Since

i aic; < 30 25 ¢j, (3) holds. (4), (5) and (6) can be treated similarly. O



(f:9)
(1:g)¢

d(z,e) > c. We are going to show that I (f) is “approximate” to the Haar measure when

Now we define I7(f) by We say g is small of order c if g(z) = 0 whenever

g is sufficiently small.

~

Lemma 3 (RCA,) Foreache € Ryg and each fo, ..., fn € C(G)7, there exists ¢ € R

~

such that if g € C(G)t with ||g|| =1 is small of order c, then for each sufficiently small

g € Ryg and for each 0 < \; < 1,

n

z)\ilj(fi) < ]SI(Z Aifi) + €.
i=0

i=0
fi
o Aifite
have a common modulus of uniform continuity independent from the choice of j and

1
Proof. Fix any ¢ < 3" Let h} = It is easy to see that all the h}’s

A= (N :i<n) (with0< )\ <1). Take M > > || fil| + 3. Then there exists ¢ > 0
such that for each A such that 0 < \; <1,

€

§ < e Mg~y — pA e e—
(1) Vj<nVs,z € G(d(sz,e) < c— |hj(s7) — hj(z)| < (n+1)M

).

~

Suppose that a g € C(G)" is small of order ¢ and ||g|| = 1. For each (c), (sx) such
that 37" o Aifi + ¢ < X0t ceg®, we have

fi=h - Q- Nifi+e) < h)Y crg™
=0 k=0

m €

< )\ _—1 - Sk
= g%(hﬂ(% I ey vaL
€
1). Ch ! . Th L 1(2
by (1). Choose any &’ < max(M.n 1) en by Lemma 1 (2),
(529 < S ealbds;) + o)+
! k=0 7 (n+1)M (n+1)
Therefore,
n , m 6
Z)\,(fZ :g)° < ch(1—|— —)+e
i=0 k=0 M

Now take a (c;) such that (37_g\ifi + ¢ : 9 = Yiciand Y g Aifi +e < Xjcig%

for some (s;). So by Lemma 2,

Ni(fiz ) < [(znj Nifi9) +e(1:9) +¢](1+ %) +e.

n
1=0
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Dividing the both sides of the above inequality by (1 : ¢)°', we have

< Z)\ i)+ w + 6)(since % < (1: ¢)*by Lemma 2).

Since > o Aifi < 3o || fill, by Lemma 2,

n

(io/\ifi L <SR g

=0
Then,
Z)‘fz §Z||fz‘+25<M
1=0 1=0

By (2) and the above inequality, we finally obtain

n

SONIG (F) IS (X Nifi) + Te
i=0

1=0

O

Lemma 4 (RCAg) Let C be a finite subset of C(G)t. Given e € Rsy, then there exists
a g e C(G)T with ||g|]] = 1 such that for each fi, fo € C and each sufficiently small

g € Rso,

(1) if f1 < fo, then I (f1) < Ig (f2) + ¢

(2) 115 (i + f2) = (I (F) + I (£2)] < &5

(3) if f{ = fo withs € G, then |IZ' (1) — I (f2)| < &

(4) if M1 = fo with A € R, then |AIZ (f1) — I (f2)| < (A + 1)e.

Proof. Fix any ¢ € Rsq. By Lemma 3, we can choose a g € C(G)* with ||g|| = 1 such

that for each sufficiently small ¢’ € Ry (¢' < %),

E(f)+ I (o) I (fi + fo) +€

for each fi, fo € C. Since = < (1: g)E' by Lemma 2,

N | =

f§'(f1 + f2) < I;(ﬁ) + Igl(f2) te
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Similarly, by (6) (resp.(5)) of Lemma 2, if f# = f, for some s € G (resp. Afi = f, for

some A € R),

I (f1) =I5 (f2)| < & (vesp. |AIS(f1) — I (f2)| < (A + 1)e).

3 A non-standard method in WKL,

By V = (M, S), we denote a structure of second-order arithmetic, where M is an ordered
semiring and S consists of subsets of M. For an initial segment I of M, we put S[I =
{XNI:XeS}and V[I=(I,S[I).

In [9], we have shown

Theorem 5 (the self-embedding theorem) LetV be a countable non-standard model
of WKLg. Then there exists a proper initial part VI of V' and an isomorphism f :V —
VII.

Fix a countable non-standard model V' of WKLy. By the above theorem, V' has an
initial part isomorphic to itself. Since the initial part and V' are isomorphic to each other,
they may exchange their roles, and thus we can say that V' has an isomorphic extension
*V = (*M,*S). We shall use *V' as a non-standard universe.

Let f be a function from N to R in V. Rigorously, f is coded by its graph F' C
N xR C N x N x Q. Then, F' must satisfy the following conditions: for each m € M,

(L.1)Vi <mVn <mdq € Q({(i,n,q) € F);

(1.2)Vi < m¥Vn < mVqi,qo < m({i,n,q1), (i,n,q2) € F — q1 = ¢2);

(1.3)Vi < mVnq,ny < mVqi, qa < m({(i,n1,q1), (i,n2,q2) € F Ang < ngy

=g — g <27™),
where ¢, g2 in the bounded quantifiers are treated as their codes. Let *Q be the set of
rationals in *V. Take a set *F' € *S such that F' = *F[M. Fix a non-standard element

o € *M. Then, for each m € M, it holds in *V that
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(2.1)Vi <m¥Vn <miq < alqg € *QA (i,n,q) € *F);
(2.2)Vi < m¥n < mVqi, g2 < m({i,n, q1), (i,n,q2) € *F — q1 = ¢);
(2.3)Vi < m¥nqy,ne < mv¥qr, e < m({(i,n1,q1), {i,n2,q2) € *F Any < ngy
= |1 — qo] < 27™).
Since (2.1), (2.2) and (2.3) are X, by overspill, there exists a non-standard element
B € *M(with § < «) such that in *V/
(3-1)Vi < fVn < f3q < alg € "Q A (i;n,q) € *F);
(3:2)Vi < BVn < Vg1, ¢2 < B((isn, q1), (i, 0, g2) € *F = q1 = o);
(3.3)Vi < BYny, ne < BVq1, g < B((i, n1, q1), (1, n2,q2) € "F Any <mg
= g — g <27™).
For a set X € *S, let X(m) denote {n € X : n < m}. Then put *Fy = *F N (*M(3) x
*M(B) x *Q(c)). Since *Fy is a finite subset of *F in *V/, we can define *F; : *M(3) x
*M(B) — *Q(«) as follows:

*Fi(i,n) =min{q : "V = (i,n,q) € "Fy},

where “min” means the minimum with respect to codes for rationals. Then we obtain a
function *f from *M(3) to *Q(«) (called an extension of f) such that *f(i) = *Fi (i, 3).
Occasionally, we regard *f (i) as a *V -finite sequence (*F1(i,0),...,*Fi(i, 3)). By noticing
that for each i,n € M and ¢ € Q, *V | *Fi(i,n) = ¢ iff V = (i,n,q) € F, we easily

obtain the following lemma.

Lemma 6 Let *f be an extension of a real-valued function f. Then for each i € M and

7,4 €Q,
(1) fVEq<[f(i)<d then™V Eq<*f(i) <d¢;
(2) Regarding *f(i) as a *V -finite sequence, f(i) is an initial segment of * f (7).

Let A be a complete separable metric space with metric d. Since d is a real-valued

function on A X A, d has an extension *d. Moreover we can take (3 such that *d is a
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pseudo-metric on *A(3) x *A(f). We use *A in the place of *A(f) for simplicity. Then,
we can think that the pseudo-metric space * A includes A in the following sense: For each
z = {a,) € A, there exists *a € *A such that for each n € M, *V [ |*d(an, *a)| < 2°™.
Using this *d instead of | | in (2.3) and (3.3), we can define an extension of a sequence
from A.

Let Segs be the set of finite sequences of 0’s and 1’s, and dg.q, be a metric on Segy
defined by dseq, (0, 7) = | Ciciney 0(1)27 = Xjciniy 7(7)2777 1. The space Seq, can be
regarded as a closed unit interval [0,1]. Then, for each function f from M to [0, 1], an
extension *f is a function from a proper initial segment of *V to a set of *V-finite 0-1
sequences. By adding suitably many 0’s at the end of a sequence, we may suppose that
every sequence in the range of * f has the same length 3 € *M\ M. Hence, *[0, 1] is defined
by a set of *V-finite 0-1 sequences with length 3. Similarly, with a metric dy def kdseq,
*[0, k] is defined by a set of *V-finite 0-1 sequences.

Since a continuous function f from A to B is uniquely determined by a sequence
(f(a) : a € A), we define an extension *f of f to be *(f(a): a € A). The extension of a

continuous function plays a leading part in the arguments of next section.

4 Haar measure and WKL,

In this section, we describe a construction of Haar measure by a non-standard method
within WKLg. Fix a countable non-standard model V of WKLg. Choose a compact
group G (in V). Then we have, as continuous functions, the norm || || on C(G), the
operation Ab : C(G) — C(G) defined by Ab(f)(z) = |f(z)| and L : C(G) x G — C(G) by
L(f,s) = f*. Notice that any continuous function is uniformly continuous within WKLjg.
And a continuous function has an extension in *V', which we shall often denote by the

same symbol.

Lemma 7 Let V = (M,S) be a countable non-standard model of WKLq and G be a

compact group (in' V). Then there exists I : P — Rsq such that:
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1. for each non-negative f = (p; : i € N) € C(GQ) with ||f|| < 1, I(f) dof lim; 7 (p;)

exists.
2. for fi, fo, fs € C(G)* with || fi|| <1 (i =1,2,3),

(1) if fa = f1+ fo, then I(f3) = I(f1) + I(fo);
(2) if f{ = fa with s € G, then I(f) = 1(f);

(3) if M1 = fo with X € Ruq, then M (f1) = I(f2);
(4) 1(1) = 1.

Proof. We first define a X-formula ¢(o,m) with parameters from *V which roughly
means that o is a 2~™-approximation of Haar measure on {p € P(m) : p is positive, ||p|| <
2}. More precisely, ¢ asserts the following: o is a finite sequence from *[0, 2] with length

m and, for each pi, ps, p3 € *P(m) with ||p;|| < 2 and each I < m,

(i) if ||Ab(ps) — (Ab(p1) + Ab(p2))|| < 27, then |o(ps) — (o(p1) + o(p2))| < 627

(ii) if ||Ab(L(py1,s)) — Ab(p2)|| < 27! with s € *G(m), then |o(p;) — o(p2)| < 5-27;
(iii) if [|Ab(rp1) — Ab(po)|| < 27! with r € *Qso(m), then |ra(p;) — o(ps)| < (r + 5)27;
(iv) o(1) = 1.

Similarly to the proof of Lemma 1, the following claim can be shown in WKLg: Given
any g € C(G)* and any finite sequence (f; : i < n) from C(G)", for each £ € Ry, there
exists a rational sequence (g; : © < n) such that ¢; = (f; : ¢)¢ for each i < n.

Fix any m € M. Letting C = {Ab(p) : p € P(m) and ||p|| < 2} and ¢ = 27™ in
Lemma 4, we take ¢ and &' to satisfy the assertion of the lemma. Then there exists a
finite sequence o of length m such that o(p) = Ig’ (Ab(p)) if p € P(m) and ||p|| < 2, and
o(p) = 1 otherwise. We shall see that o satisfies ¢(o, m).

To show that the condition (i) of ¢(c,m) holds, assume that p1,pe, ps € *P(m) with

[ps]] < 2 and ||Ab(p3) — (Ab(p1) + Ab(p2))|| < 27! (I < m). By Lemma 6, the same
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assertion holds in V. Then using Lemma 4, the following two inequalities hold in V:
|T¢ (Ab(p1) + Ab(p2)) — (15 (Ab(p1)) + I; (Ab(p2)))| < 27,

|I5 (Ab(ps)) — I (Ab(p1) + Ab(pa))| < 27" + 272,

Then,

7 (Ab(ps)) — (I3 (Ab(p)) + T (Ab(p)))| < 6 - 27"

Again by Lemma 6, the last inequality holds in *V. Similarly, (ii) to (iv) hold.
Therefore, for each m € M,

V= dop(o,m).

By overspill, there exists v € *M \ M and oq such that ¢(og,~y) holds in *V.
Let I = oo[M. Since *[0,2] is regarded as a set of *V-finite 0-1 sequences, I is a
[0, 2]-valued function defined all over P. I(1) = 1 is trivial. By the definition of ¢ and

Lemma 6, for any positive py, ps, p3 € P with ||p;|| < 2 and each [ € M,
(a) if [Ips — (p1 +p2)|| < 27, then [I(ps) — (Z(p1) + I(p2))| < 6-27
(b) if ||p1 — p3|| < 27! with s € G, then [I(p;) — I(py)| <527
(c) if ||rpy — po|| < 27! with r € Qso, then |rI(p;) — I(p2)| < (r +5)27"

Fix f € C(G)* with ||f|| < 1. Since f can be taken as a sequence (p; : i € M) of positive
polynomials with ||p;|| < 2, lim; I(p;) = (I(pit4a)ita : ¢ € M) is a real by (a). The other
properties of I can be easily shown by (a) to (c¢). O

From the above result, we can easily obtain the following theorem.
Theorem 8 (WKLg) Any compact group has a Haar measure.

Proof. Fix a countable non-standard model V' of WKL and fix a compact group G (in

V). For each f € C(G), f+ = max(f,0) (resp. f~ = —min(f,0)) is a non-negative point
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of C(G). Moreover, we can obtain functions: f — f*, f + f~. Therefore, using I of
Lemma 7, we can define a left-invariant measure y : P — R as follows:

f* f-

() = (U1 + DU ) = T

)= I( ))-

The countable additivity of a measure is provable in WWKL, which is a weaker subsys-
tem of WKLy [11]. Thus the proof is completed.O

Now, we have our main results.
Theorem 9 (RCAy) The following assertions are pairwise equivalent.
(1) WKLy,
(2) Any compact group has a Haar measure.

Proof. Since (1)—(2) is shown by Theorem 8, we only need to prove (2)—(1). We reason
in RCAy. Deny WKL, and let 7' C 2<N be an infinite tree with no path.

Let G={ceT:0=0V(c#0— o(lh(c)—1) =1)} and G be a complete separable
metric space coded by G and dgeg,. (dseq, Was defined at the end of the last section.)
If there were z € G \ G, = would be a path through 7. So, G=G. Take a bijection
h :Z — G. Then it induces a group operation on GG. Since CA¥=G, the operation must be
continuous on G. For each n € N, G, = {0 € G : 1h(0) < n} is 27"-net. Hence, G is a
compact group.

Now, if G had a Haar measure z, 4(G) = 0 in the case that u({e}) = 0, and x(G) = oo

otherwise, either of which is a contradiction. So G does not possess a Haar measure. O

5 Some variations

In this section, we eliminate the non-standard argument from the previous construction
of Haar measure to obtain some refined assertion. Among others, we show within RCA,
the existence of a left-invariant measure on a compact group with a modulus of uniform

continuity for its operations.

15



Lemma 10 (RCAg) Let G be a compact group with a modulus of uniform continuity.
Given f € C(CA?)+ and € € Qsg, we can effectively find ¢ > 0 such that if a positive
p € P with ||p|| = 1 is small of order c, there exist two finite sequences {¢; : i < k) and

(d; -1 < k) of nonnegative rationals and a sequence (s; : i < k) from G such that
k k
max(||f = Y ep™ ||, [[1 =D dip™|]) <e.
i=0 i=0

Proof. Fix any f € C’(CA?)jL and € € Q~y. We may suppose that ¢ < % Then we can
effectively find ¢ > 0 such that d(y~'z,e) < c— |f(z) — f(y)| < % We shall see that this
c satisfies the condition of lemma.

Assume that a positive p € P with ||p|| = 1 is small of order c. Let p(z) = p(z ') and

€

N < ——————. Sinnce p is uniformly continuous, ¢’ > 0 such that d(y~'z,e) < ¢ —
6 5+ 1 ! e

Ip(z) — p(y)| < n. We take a %—net (s; i < m) from G and hy, ..., h, € C(G)T such

that > o h; = 1, and h;(x) = 0 wherever ¢’ < d(s;z,e) (Lemma I1.7.3 [7]. Then, for each

:C,SE@,

hi(8)f(s)(p(s™'2) = n) < hals)f(s)p(siw)

< hi(s)f(s)(p(s™'=) + ).

Therefore,

IA
NgE
&
D
~—
—
—~
2
!
—
&
&

< Y () () (s a) + )

< (fl@) + 5)p(s™'2) +nf(s).

Using Lemma 2, for each positive p’ € P and each &' > 0,
£ m

(F(@) = 5)@: p)" —n(f :p)" < (;)p(six)hif )7+ (I fll+8+n+

9

2)5'.

16



Similarly,

(O plsia)haf :9)7 < (F@)+5)(B:p) +n(F )+ (IF|+8+n+)e"
1=0
Therefore,

e nf p)e M,¢'

(1) f(z) - ) B : p’)E' o (b p/)s’
1 s e
< W(Z;p(sﬂ)hif :p')
< Fla)+ 5+ n(f :p)° Mée'

! + ~ 19
2 () PP
where M; = ||f|| + 9. Again using Lemma 2, since 0 < p(s;z) < 1,

(3m +2)e’

(2) fﬁf(gp(sim)hif)Sgp(sz’x)fé’(hif AN

e n(f:p)° M€ L , (3m + 2)&’
— 7 i IE/ hz = N -
2" G Gy 15 (D) ;p(s R B:p)

By Lemma 3, we take a sufficiently small ¢’ and a positive polynomial p with ||p|| =1

such that

m

(4) Zp(six)lzf,’(hif) < I;;(f:p(six)hif) + m

e n(f:p)" Mg £
(D) = - 2 (@:p)  (B:p)F 6[(1:p)t+ 11y (B)

We may suppose that &' <

12(M; +3m +2)

Since E;; i,l)):, <(f:p)' +1and 85 Z;:, <(1:p)' +1 by Lemma 2,
7(0) = 3 o) < =

for all z € G. Similarly, ||1 — Y7 dip%|| < ¢ for some (d;). O
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Let P = {{{(gi,b;) : i < m) € P : bys are basic functions and ¢; € Qso}. Then we
define a X9-formula ¢(p, b, s, k, 0, 7) to denote that p € P and b is a basic function, two

sequences o, 7 from Q- and one sequence s from G have all the same length and

max(|[p — - o (@b O], [[1 = Y70 O]) < 27,

Since Vp € PVk3b, s, o, T(p, b, s, k,0,7) by Lemma 10, there exists a function F; : P x
N — Q such that

n

F:(p, k) — E:LZO CC; such that ¢(p, b, s, k, (¢; : i < n),{d; : i <n)) holds for some b, s.
i=0 %4

We write t2 = Fy((p, k)). Let F, be a function from P x N to Q such that

<pa k> — t£+mp+1’

where m,, is a number given effectively by p € P such that ||p|| + 3 < 2™. The following

lemma can be shown easily.

Lemma 11 (RCAy) For each € > 0 and each k € N, there ezists ¢ > 0 such that if a
basic function b is small of order c, then |I§ (p) — thrmpt1| < 27% + ¢ for each sufficiently

small € > 0.

Theorem 12 (RCAg) Let G be a compact group with a modulus of uniform continuity.

Then there exists a unique left-invarant measure on G.

Proof. By Lemma 11, for each n, j (n < j) and each € > 0, there exists &’ > 0
such that |If (p) — th 11l < 27" ' +eand |If (p) — thypu] < 27971 + & Then,
oty 1 = typm, 11| < 27" + 2¢. Since ¢ is at random, [t} 11 — 5, 1] < 27" Hence,
(Fy(p, k) : k € N) is real. We define F': P — R by F(p) = (Fy(p, k) : k € N).

Since, for each p € P, p can be expressed by ({g;, b;) : i < m) such that Vi < (0 < ¢;)

and Vi > I(g; < 0), we define

p(p) = F({{gi, bi) i < k) — F({((~q;,b:) : k <i<m)).

18



Then p is a left-invariant measure by Lemma 11.

Let ' be another left-invariant measure. Fix any p € P and any k& > 1. We take

io Ci
o d;
i cbsi||, |1 = X5 dibgi|[) < 27F. Then, |1/ (p) — 3 cap” (by)| < 27 and [1 — 32, dygd'(by)| <

27k Therefore,

finite sequences (¢;) and (d;) of positive rationals such that t; = with max(||p —

_ YieG _ KO +2F _pp)+2 "
icodi  1'(bp) Xio di 1—27k
pp) -2 i
1+ 2-k ?:0 dl
unique invariant-measure. O

ty

Similarly, = t},. Since pu(p) = limy ty, 4'(p) = p(p). Then G has a

By Theorem 1 in [12], Theorem 12 leads to the following corollary.

Corollary 13 (RCAy) the following assertions are pairwise equivalent.
(1) WWKLy;

(2) Any compact group whose operations have a modulus of uniform continuity has a

unique Haar measure.
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