
© 2017 BY THE AMERICAN PHILOSOPHICAL ASSOCIATION 		  ISSN 2155-9708

Philosophy and Computers

NEWSLETTER  |  The American Philosophical Association

VOLUME 16   |   NUMBER 2	 SPRING 2017

SPRING 2017  	  VOLUME 16  |  NUMBER 2

FROM THE EDITOR 
Peter Boltuc 

FROM THE CHAIR 
Marcello Guarini 

FEATURED ARTICLE 
William J. Rapaport 

What Is Computer Science? 

ARTICLES 
Marcin Miłkowski 

Why Think That the Brain Is Not a Computer? 

Jun Tani and Jeff White 

From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure 
Essential to Consciousness (Part 2) 

Richard Evans 

Kant on Constituted Mental Activity 

Don Perlis 

I Am, Therefore I Think 

CALL FOR PAPERS 



Philosophy and Computers

PETER BOLTUC, EDITOR 	  	 VOLUME 16  |  NUMBER 2  |  SPRING 2017

APA NEWSLETTER ON

 

  

  

FROM THE EDITOR 
Peter Boltuc 
UNIVERSITY OF ILLINOIS, SPRINGFIELD 

We are pleased to feature the article by Bill Rapaport, 
which was his John Barwise Prize acceptance speech at 
the 2016 Eastern Division meeting. Bill is a long-term friend 
of the Committee on Philosophy and Computers, and of 
this newsletter. In the spring of 2007, when I edited my 
first issue here and we were in a bit of a time-crunch, Bill 
took his important article, “Searle on Brains as Computers,” 
which I believe may have been invited for a different venue, 
and gave it to us, quite selflessly. The present article, titled 
“What Is Computer Science?,” does what’s promised in 
the title—it is a thorough discussion of the main issues in 
computer science today (and in the recent past). The paper 
is based on the essential chapters of Bill’s introductory 
work on philosophy of computer science, which has been 
taking shape on his website since at least 2004; yet, it 
goes beyond the introductory level and engages students 
and colleagues alike. The present article may serve as a 
model open source text to begin a class on any aspect of 
philosophical and general theoretical issues in computer 
science. (In the next issue of this newsletter we are going 
to have Bill’s vital article “Semantics as Syntax” and a 
conversation between Rapaport and Selmer Bringsjord.) 

We follow up with a provocative article: “Why Think That the 
Brain Is Not a Computer?” Its author, Marcin Miłkowski, is 
known as one of the main defenders—alongside Gualtiero 
Piccinini—of what I would call the modern-moderate 
version of computationalism. The current article provides an 
opportunity for Miłkowski to zero in on the main objections 
to this view. The next paper is a heavy-metal presentation 
of “predictive coding” as a platform for testing competing 
hypotheses about functionalities of consciousness 
embodied in both biological and artificial systems. The 
article is based upon (and to some degree provides a follow-
up on) Jun Tani’s important book Exploring Robotic Minds: 
Actions, Symbols, and Consciousness as Self-Organizing 
Dynamic Phenomena (Oxford University Press, 2016). Jun 
Tani, one of the leaders in synthetic neurorobotics, co­
authored (with Jeff White) a more theoretical article on 
consciousness for the previous issue of this newsletter. 
Noteworthy is the fact that, for the current paper, the order 
of the authors has been reversed—here we learn firsthand 
some of the essential models in neuro-robotics. The article 
may be placed on the border, or maybe in a demarcation 
zone, between science and philosophy (and on the science 
side at that!). Yet, in its later sections it uses models based 

largely on Husserl to come up with a broad definition of 
consciousness. We look forward to reading the third and 
final part of this scientific trilogy in the following issue of 
the newsletter. 

The remaining two articles are shorter and to a much larger 
degree belong to the realm of philosophy the way most 
departments of philosophy view it. While Tani and White 
related primarily to Husserl, Richard Evans focuses on Kant’s 
conception of Constituted Mental Activity. Evans argues 
that the “Kantian cognitive architecture is a rule-induction 
computational process.” Under certain constraints “the 
process’ internal activities count as cognitive activities.” 
This paper provides a philosophical background for a 
constructivist model of artificial cognitive architectures 
developed in Evans’ presentation “A Kantian Cognitive 
Architecture” at 2016 IACAP (to appear in Philosophical 
Studies). Don Perlis, in his thought provoking paper, “I 
Am, Therefore I Think,” argues in favor of reflexive-self 
formulation of mind and consciousness that can be studied 
as an engineering problem. Some historical issues in 
computer science touched on in this article provide a nice 
way to come back to the topics discussed in Rapaport’s 
opening article. 

I want to thank Marcello Guarini, the chair of this committee, 
and all committee members (who are listed in Marcello’s 
note, From the Chair) for their support. Special thanks go to 
Lucia Vazquez, Interim Dean of the College of Liberal Arts 
and Sciences at the University of Illinois at Springfield, for 
continuing the tradition and making my work as the editor 
of this newsletter possible. 

FROM THE CHAIR 
Marcello Guarini 
UNIVERSITY OF WINDSOR, WESTERN ONTARIO 

The winner of the 2015 Barwise prize was Dr. William 
Rapaport, and we are fortunate to have the text of 
his acceptance talk—delivered at the 2016 American 
Philosophical Association Eastern Division meeting—in this 
issue of our newsletter. 

We are also in position to announce the winner of the 2016 
Barwise prize: Dr. Edward Zalta. Dr. Zalta is a Senior Research 
Scholar at the Center for the Study of Language and 
Information, Stanford University. Zalta has not only made 
a series of very high quality contributions to computational 
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metaphysics, but he is also one of the founders and 
the principal editor of the Stanford Encyclopedia of 
Philosophy. His contributions to philosophy and computing 
are ongoing, and the community of scholars in this area 
continues to benefit from his work. Dr. Zalta was very 
pleased to hear of the award. Unbeknownst to the APA 
Committee on Philosophy and Computers who selected 
Zalta for the award, Ed knew John Barwise personally and 
feels especially honored to be receiving this award. Dr. 
Zalta has agreed to accept the 2016 Barwise Prize at the 
2018 APA Eastern meeting. We hope to announce details in 
the next issue of the newsletter. 

Thanks go out to all members of the APA committee on 
Philosophy and Computers for their deliberations over the 
Barwise Prize. A special thanks goes to Susan Schneider, 
who has completed her term on the committee. My 
gratitude also goes out to the continuing members of the 
committee, Colin Allen, William Barry, Fritz J. McDonald, 
Gary Mar, Dylan E. Wittkower, and Piotr Boltuc. Finally, a 
special welcome to Gualtiero Piccinini, who has recently 
joined the committee. 

Readers of the newsletter are encouraged to contact 
any member of the committee if they are interested in 
proposing or collaborating on a symposium at the APA 
that engages any of the wide range of issues associated 
with philosophy and computing. We are happy to continue 
facilitating the presentation of high quality research in this 
area. 

FEATURED ARTICLE 
What Is Computer Science? 
William J. Rapaport 
UNIVERSITY AT BUFFALO, THE STATE UNIVERSITY OF NEW YORK 

ABSTRACT 
A survey of various proposed definitions of “computer 
science,” arguing that it is a “portmanteau” scientific study 
of a family of topics surrounding both theoretical and 
practical computing. Its single most central question is What 
can be computed (and how)? Four other questions follow 
logically from that central one: What can be computed 
efficiently, and how? What can be computed practically, 
and how? What can be computed physically, and how? What 
should be computed, and how? 

The Holy Grail of computer science is to capture the 
messy complexity of the natural world and express 
it algorithmically. 

– Teresa Marrin Nakra1 

1 PHILOSOPHY OF COMPUTER SCIENCE 
In 2004, I created a course on the philosophy of computer 
science;2 a draft of a textbook based on the course is 
available online.3 The book is intended for readers who 

might know some philosophy but no computer science, 
those who might know some computer science but no 
philosophy, and even those who know little or nothing 
about both. So, we begin by asking what philosophy is 
(primarily aimed at the computer-science audience), and, 
in particular: What is “the philosophy of X”? (where X = 
things like: science, psychology, history, and, of course, 
computer science). 

I take the focal question of the philosophy of computer 
science to be: What is computer science? To answer this, 
we need to consider a series of questions, each of which 
leads to another: Is computer science a science, a branch 
of engineering, some combination of them, or something 
else altogether? To answer these, we need to ask what 
science is and what engineering is. 

Whether science or engineering, computer science is 
surely scientific, so we next ask what it is a (scientific) 
study of. Computers? If so, then what is a computer? Or is 
computer science a study of computation? If so, then what 
is computation? What is an algorithm?4 Algorithms are 
said to be procedures, or recipes, so what is a procedure? 
What is a recipe? What is the Church-Turing Computability 
Thesis (that our intuitive notion of computation is 
completely captured by the formal notion of Turing-machine 
computation)?5 What is “hypercomputation” (i.e., the claim 
that the intuitive notion of computation goes beyond Turing-
machine computation)? 

Computations are expressed in computer programs, which 
are executed by computers, so what is a computer program? 
Are computer programs “implementations” of algorithms? 
If so, then what is an implementation? What is the relation 
of programs and computation to the world?6 Are programs 
(scientific) theories? What is the difference between 
software and hardware? Are programs copyrightable texts, 
or are they patentable machines? Ontologically, they seem 
to be both texts and machines, yet legally they cannot 
be both copyrightable and patentable.7 Can computer 
programs be verified?8 

We then turn to issues in the philosophy of AI, focusing on 
the Turing Test and the Chinese Room Argument.9 

Finally, we consider two questions in computer ethics, 
which, when I created the course, were not much 
discussed, but are now at the forefront of computational 
ethical debates: (1) Should we trust decisions made by 
computers?10—a question made urgent by the advent of 
automated vehicles. And (2) should we build “intelligent” 
computers? Do we have moral obligations towards robots? 
Can or should they have moral obligations towards us? 

And, along the way, we look at how philosophers reason 
and evaluate logical arguments.11 

Although these questions arise naturally from our first 
question (What is computer science?), they do not exhaust 
the philosophy of computer science. Many topics are not 
covered: the nature of information, social and economic 
uses of computers, the Internet, etc. However, rather 
than aiming for universal coverage, I seek to provide a 
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foundation for further discussion: Neither the course nor 
the book is designed to answer all (or even any) of the 
philosophical questions that can be raised about the nature 
of computer science, computers, and computation. Rather, 
they provide background knowledge to “bring students up 
to speed” on the conversations about these issues, so that 
they can read the literature for themselves and perhaps 
become part of the conversations by contributing their own 
views. The present paper is a synopsis of Philosophy of 
Computer Science (Chapter 3), based on my Barwise Prize 
talk at the APA.12 

2 PRELIMINARY QUESTIONS 
However, before investigate what computer science is, it’s 
worth asking some preliminary questions. 

2.1 WHAT IS THE NAME OF THIS DISCIPLINE? 
Should we call the discipline “computer science” (which 
seems to assume that it is the science of a certain kind 
of machine), or “computer engineering” (which seems to 
assume that it is not a science, but a branch of engineering), 
or “computing science” (which seems to assume that it is 
the science of what those machines do), or “informatics” 
(which suggests that it is a mathematical discipline 
concerned with information)? 

In this essay—but only for convenience—I call it “computer 
science.” However, by doing so, I do not presuppose 
that it is the science of computers. Think of the subject 
as being called by a 15-letter word “computerscience” 
that may have as little to do with computers or science as 
“cattle” has to do with cats. Or, to save space and suppress 
presuppositions, just think of it as “CS.” 

2.2 WHY ASK WHAT CS IS? 
There are both academic and philosophical motivations for 
trying to define CS. 

2.2.1 ACADEMIC MOTIVATIONS 
There is the political question of where to locate a CS 
department: In a college, faculty, or school of (arts and) 
science? Of engineering? Or in its own college, faculty, or 
school (perhaps of informatics, along with communications 
and library science)? 

There is the pedagogical question of what to teach in an 
introductory course: Programming? Computer literacy? The 
mathematical theory of computation? Or an introduction to 
several different branches of CS, including, perhaps, some 
of its history? 

And there is the publicity question: How should a 
CS department advertise itself so as to attract good 
students? How should the discipline advertise itself so as 
to encourage primary- or secondary-school students to 
consider it as something to study in college or to consider 
it as an occupation? How should it advertise itself so as to 
attract more women and minorities to the field? How should 
it advertise itself to the public at large, so that ordinary 
citizens might have a better understanding of what CS is? 

Different motivations may yield different definitions. 

2.2.2 PHILOSOPHICAL MOTIVATIONS 
The philosophical question concerns what CS “really” is. 
Is it like some other academic discipline (mathematics, 
physics, engineering)? Or is it sui generis? 

To illustrate this difference, consider two very different 
comments by two Turing-award–winning computer 
scientists:13 Marvin Minsky, a founder of artificial 
intelligence, once said: 

Computer science has such intimate relations 
with so many other subjects that it is hard to see 
it as a thing in itself.14 

On the other hand, Juris Hartmanis, a founder of 
computational complexity theory, has said: 

Computer science differs from the known sciences 
so deeply that it has to be viewed as a new species 
among the sciences.15 

3 TWO KINDS OF DEFINITIONS 

3.1 AN EXTENSIONAL DEFINITION OF CS 
As with most non-mathematical concepts, there are 
probably no necessary and sufficient conditions for being 
CS. At best, the various branches of the discipline share 
only a family resemblance. If no intensional definition can 
be given in terms of necessary and sufficient conditions, 
perhaps an extensional one can: Perhaps CS is simply 
whatever computer scientists do: “Computing has no 
nature. It is what it is because people have made it so.”16 

So, what do computer scientists do? Ordered from the most 
to the least abstract, this might range from the abstract 
mathematical theories of computation, computational 
complexity, and program development; through software 
engineering, operating systems, and AI; to computer 
architecture, chip design, networks, and social uses of 
computers. But this is less than satisfactory as a definition. 

3.2 INTENSIONAL DEFINITIONS 
In the absence of necessary and sufficient conditions or an 
extensional definition, we can ask what the methodology of 
CS is: Is it a methodology used elsewhere? Or is it a new 
methodology? And then we can ask what its object of study 
is: Does it study something that other disciplines also 
study? Or does it study something new? And is its object of 
study unique to CS? 

As for methodology, CS has been said to be: 

•	 an art form 
(Knuth has said that programs can be beautiful17), 

•	 an art and science 
(“Science is knowledge which we understand so 
well that we can teach it to a computer; and if we 
don’t fully understand something, it is an art to 
deal with it. . . . [T]he process of going from an art 
to a science means that we learn how to automate 
something”18), 
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•	 a liberal art 
(along the lines of the classical liberal arts of logic, 
math, or astronomy19), 

•	 a branch of mathematics,20 

•	 a natural science,21 

•	 an empirical study of the artificial,22 

•	 a combination of science and engineering,23 

•	 just engineering,24 

•	 or—generically—a “study” 

But a study of what? Here is an alphabetical list of some of 
the objects that it 

“traffics” in (to use Barwise’s term25): algorithms, automation, 
complexity, computers, information, intelligence, numbers 
(and other mathematical objects), problem solving, 
procedures, processes, programming, symbol strings. 

It is now time to look at some answers to our title question 
in more detail. 

4 CS IS THE SCIENCE OF COMPUTERS 
Allen Newell, Alan Perlis, and Herbert Simon argued that CS 
is exactly what its name suggests: 

Wherever there are phenomena, there can be a 
science to describe and explain those phenomena. 
. . . There are computers. Ergo, computer science 
is the study of computers.26 

This argument is actually missing a premise to the effect 
that the science of computers (which the first two premises 
imply the existence of) is CS and not some other discipline. 

Loui has objected to the first premise, noting that there 
are toasters, but no science of toasters.27 Another objection 
to the first premise, explicitly considered by Newell, 
Perlis, and Simon, is that science studies only natural 
phenomena, but that computers are non-natural artifacts. 
They replied that there are also sciences of artifacts. But 
one could respond in other ways: Where is the dividing 
line between nature and artifice, anyway? Are birds’ nests 
artificial? As Mahoney observes, not only are artifacts part 
of nature, we use them to study nature; indeed, nature 
itself might be computational in nature (so to speak).28 

Another objection that they consider is to the missing 
premise, that the science of computers is not CS but some 
other subject: electrical engineering, or math, or, perhaps, 
psychology. They reply that CS overlaps each of these, but 
that no single discipline subsumes all of CS. Of course, this 
reply assumes that CS itself is a cohesive whole, which the 
extensional characterization in §3.1 seems to belie. 

One of my department’s deans once suggested that CS 
would eventually dissolve: The computer engineers would 
rejoin the EE department, the complexity theorists would 

join the math department, my AI colleagues might go 
into psychology, I would go back into philosophy, and 
so on. (In much the same way, microscopy dissolved into 
microbiology, optical engineering, etc.29). 

The most significant objection that they consider is that CS 
studies something besides computers, namely, algorithms. 
Their reply is also significant: They change their definition! 
They conclude that CS is the science of computers and 
surrounding phenomena, including algorithms. 

5 CS STUDIES ALGORITHMS 
Donald Knuth starts his definition, largely without any 
argument other than a recitation of its history, roughly 
where Newell, Perlis, and Simon end theirs: “[C]omputer 
science is . . . the study of algorithms.”30 He cites, 
approvingly, a statement by the computer scientist George 
E. Forsythe that the central question of CS is: What can be 
automated? (On that question, see §14.1.1.1, below.) 

Knuth goes on to point out, however, that you need 
computers in order to properly study algorithms, because 
“human beings are not precise enough nor fast enough to 
carry out any but the simplest procedures.”31 Are computers 
really necessary? Do you need a compass and straightedge 
to study geometry? (Hilbert probably didn’t think so.) Do 
you need a microscope to study biology? (Watson and 
Crick probably didn’t think so.) On the other hand, “deep 
learning” algorithms do seem to need computers in order 
to determine if they will really do what they are intended to 
do, and do so in real time.32 

(We’ll return to this in §11.) 

So, just as Newell, Perlis, and Simon said that CS is the 
study of computers and related phenomena such as 
algorithms, Knuth says that it is the study of algorithms and 
related phenomena such as computers! Stated a bit more 
bluntly, Newell, Perlis, and Simon’s definition comes down 
to this: CS is the science of computers and algorithms. 
Knuth’s definition comes down to this: CS is the study of 
algorithms and computers. Ignoring for now the subtle 
difference between “science” and “study,” what we have 
here are extensionally equivalent, but intensionally distinct, 
definitions. Shades of the blind men and the elephant! 

To be fair, however, some ten years later, Knuth backed 
off from the “related phenomena” definition, more 
emphatically defining CS as “primarily the study of 
algorithms,” because he “think[s] of algorithms as 
encompassing the whole range of concepts dealing with 
well-defined processes, including the structure of data 
that is being acted upon as well as the structure of the 
sequence of operations being performed,” preferring the 
name ‘algorithmics’ for the discipline.33 He also suggested 
that what computer scientists have in common (and that 
differentiates them from people in other disciplines) is 
that they are all “algorithmic thinkers.”34 (We’ll return to this 
notion in §13.4.) 

6 CS STUDIES INFORMATION 
Others say “A plague on both your houses”: CS is not the 
study of computers or of algorithms, but of information: 
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Forsythe said that CS is “the art and science of representing 
and processing information and, in particular, processing 
information with the logical engines called automatic 
digital computers.”35 Peter J. Denning defined it as “the 
body of knowledge dealing with the design, analysis, 
implementation, efficiency, and application of processes 
that transform information.”36 Jon Barwise said that 
computers are best thought of as “information processors,” 
rather than as numerical “calculators” or as “devices which 
traffic in formal strings . . . of meaningless symbols.”37 And 
Hartmanis and Lin define CS this way: 

What is the object of study [of CS and engineering]? 
For the physicist, the object of study may be an 
atom or a star. For the biologist, it may be a cell 
or a plant. But computer scientists and engineers 
focus on information, on the ways of representing 
and processing information, and on the machines 
and systems that perform these tasks.38 

Presumably, those who study “the ways of representing 
and processing” are the scientists, and those who study 
“the machines and systems” are the engineers. And, of 
course, it is not just information that is studied; there are 
the usual “related phenomena”: Computer science studies 
how to represent and (algorithmically) process information, 
as well as the machines and systems that do this. 

Simon takes an interesting position on the importance of 
computers as information processors:39 He discusses two 
“revolutions”: The first was the Industrial Revolution, which 
“substitut[ed] . . . mechanical energy for the energy of man 
[sic] and animal.” The second was (were?) the Information 
Revolution(s), beginning with “written language,” then 
“the printed book,” and now the computer. He then points 
out that “The computer is a device endowed with powers 
of utmost generality for processing symbols.” So, pace 
Barwise, the computer is an information processor because 
information is encoded in symbols. 

But here the crucial question is: What is information? 
The term “information” as many people use it informally 
has many meanings: It could refer to Claude Shannon’s 
mathematical theory of information;40 or to Fred Dretske’s 
or Kenneth Sayre’s philosophical theories of information;41 

or to several others.42 

As I noted in §1, the philosophy of information is really a 
separate (albeit closely related!) topic from the philosophy 
of computer science. But, if “information” isn’t intended 
to refer to some specific theory, then it seems to be 
merely a vague synonym for “data” (itself a vague term!). 
As Michael Rescorla observes, “Lacking clarification [of 
the term ‘information’], the description [of “computation 
as ‘information processing’ ”] is little more than an empty 
slogan.”43 

And Gualtiero Piccinini has made the stronger claim that 
computation is distinct from information processing in 
any sense of ‘information’. He argues, e.g., that semantic 
information requires representation, but computation does 
not; so, computation is distinct from semantic information 
processing.44 

7 CS IS A NATURAL SCIENCE (OF PROCEDURES) 
Then there are those who agree that CS is a natural science, 
but not of computers, algorithms, or information: Stuart C. 
Shapiro agrees with Newell, Perlis, and Simon that CS is 
a science, but he differs on what it is a science of, siding 
more with Knuth, but not quite: “Computer Science is 
a natural science that studies procedures.”45 Procedures 
are not natural objects, but they are measurable natural 
phenomena, in the same way that events are not (natural) 
“objects” but are (natural) “phenomena.” On this point, 
Denning cites examples of the “discovery” of “information 
processes in the deep structures of many fields”: biology, 
quantum physics, economics, management science, and 
even the arts and humanities, concluding that “computing 
is now a natural science,” not (or no longer?) “a science of 
the artificial.”46 So, potential objections that sciences only 
study natural phenomena are avoided. 

For Shapiro, procedures include, but are not limited to, 
algorithms. Whereas algorithms are typically considered 
to be precise, to halt, and to produce correct solutions, 
the more general notion allows for variations on these 
themes: (1) Procedures (as opposed to algorithms) may 
be imprecise, such as in a recipe. Does CS really study 
things like recipes? According to Shapiro (personal 
communication), the answer is “yes”: An education in CS 
should help you write a better cookbook, because it will 
help you understand the nature of procedures better!4 7  

(2) Procedures need not halt: A procedure might go into 
an infinite loop either by accident or, more importantly, 
on purpose, as in an operating system or a program that 
computes the infinite decimal expansion of π. (3) Nor do 
they have to produce a correct solution: A chess procedure 
does not always play optimally. 

And CS is a science, which, like any science, has both 
theoreticians (who study the limitations on, and kinds of, 
possible procedures) as well as experimentalists. 

And, as Newell and Simon suggest in their discussion of 
empirical results (see §8, below), there are “fundamental 
principles” of CS as a science.48 Newell and Simon cite 
two: (1) The Physical Symbol System Hypothesis (a theory 
about the nature of symbols in the context of computers) 
and (2) Heuristic Search (a problem-solving method). 
Shapiro cites two others: (1) the Computability Thesis and 
(2) the Boehm-Jacopini Theorem that codifies “structured 
programming.”49 

Moreover, Shapiro says that computer science is not just 
concerned with algorithms and procedures that manipulate 
abstract information, but also with procedures that are 
linked to sensors and effectors that allow computers to 
operate in the real world. Procedures are, or could be, 
carried out in the real world by physical agents, which 
could be biological, mechanical, electronic, etc. Where do 
computers come in? According to Shapiro, a computer is 
simply “a general-purpose procedure-following machine.” 
(But does a computer “follow” a procedure, or merely 
“execute” it?) 

Several pleas for elaboration can be urged on Shapiro: 
Does his view de-emphasize the role of computers in CS, 
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or is it merely a version of the “surrounding phenomena” 
viewpoint (as with Knuth’s view that CS is the study of the 
phenomena surrounding algorithms)?50 Does the emphasis 
on procedures (rather than algorithms) lead us into the 
fraught territory of “hypercomputation”?51 (We’ll return to 
procedures in §13.3.) 

8 CS IS NOT A NATURAL SCIENCE 
In 1967, Simon joined with Newell and Perlis to argue that 
CS was the natural science of (the phenomena surrounding) 
computers. Two years later, in his classic book The Sciences 
of the Artificial, he said that it was a natural science of the 
artificial: Natural science studies things in the world, but he 
was careful not to say that the “things” must be “natural”! 
“The central task of a natural science is . . . to show that 
complexity, correctly viewed, is only a mask for simplicity; 
to find pattern hidden in apparent chaos.”52 Indeed, “The 
world we live in today is much more a[n] . . . artificial 
world than it is a natural world. Almost every element in 
our environment shows evidence of human artifice.”53 So, 
(natural) science can study artifacts; the “sciences of the 
artificial” are natural sciences. 

And then, in a classic paper from 1976, Newell and Simon 
updated their earlier characterization. Instead of saying 
that CS is the science of (the phenomena surrounding) 
computers, they now said that it is the “empirical” 
“study” of those phenomena, “not just the hardware, but 
the programmed, living machine.”54 

The reason that they say that CS is not a science (in 
the classic sense) is that it doesn’t always strictly follow 
the scientific (or “experimental”) method. E.g., often 
one experiment will suffice to answer a question in CS, 
whereas in other sciences, numerous experiments have to 
be run. However, CS, like science, is empirical—because 
programs running on computers are experiments, though 
not necessarily like experiments in other experimental 
sciences. In fact, one difference between CS and other 
experimental sciences is that, in CS, the chief objects of 
study (the computers and the programs) are not “black 
boxes.”55 Most natural phenomena are things whose 
internal workings we cannot see directly but must infer 
from experiments we perform on them. But we know 
exactly how and why computers and computer programs 
behave as they do (they are “glass boxes,” so to speak), 
because we (not nature) designed and built them. So, we 
can understand them in a way that we cannot understand 
more “natural” things. (However, although this is the case 
for “classical” computer programs, it is not the case for 
artificial-neural-network programs: “A neural network, 
however, was a black box”;56 see the comments about 
Google Translate in §11, below.) 

By “programmed, living machines,” they meant computers 
that are actually running programs—not just the static 
machines sitting there waiting for someone to use them 
(computers without programs), nor the static programs just 
sitting there on a piece of paper waiting for someone 
to load them into the computer, nor the algorithms just 
sitting there in someone’s mind waiting for someone to 
express them in a programming language—but processes 
that are actually running on a computer. A program might 

be a static piece of text or the static way that a computer is 
hardwired. A process is a dynamic entity—the program in 
the “process” of actually being executed by the computer. 

However, to study “programmed living machines,” we 
certainly do need to study the algorithms that they are 
executing. After all, we need to know what they are doing— 
i.e., it seems to be necessary to know what algorithm a 
computer is executing. On the other hand, in order to study 
an algorithm, it does not seem to be necessary to have 
a computer around that can execute it or to study the 
computer that is running it. It can be helpful and valuable 
to study the computer and to study the algorithm actually 
being run on the computer, but the mathematical study 
of algorithms and their computational complexity doesn’t 
need the computer. That is, the algorithm can be studied as 
a mathematical object, using only mathematical techniques, 
without necessarily executing it. It may be very much more 
convenient, and even useful, to have a computer handy, 
as Knuth notes, but it does not seem to be necessary. 
If that’s so, then it would seem that algorithms are really 
the essential object of study of CS: Both views require 
algorithms, but only one requires computers. (We’ll see a 
counterargument in §11.) 

9 CS IS ENGINEERING, NOT SCIENCE 
The software engineer Frederick P. Brooks, Jr., says 
that CS isn’t science—which he calls “analytic”— 
because, according to him, it is not concerned with the 
“discovery of facts and laws.”57 Instead, he argues that 
it is “an engineering discipline.” Computer scientists are 
“concerned with making things”: with physical tools such 
as computers and with abstract tools such as algorithms, 
programs, and software systems for others to use; the 
computer scientist is a toolmaker. Computer science, he 
says, is concerned with the usefulness and efficiency of the 
tools it makes; it is not, he says, concerned with newness 
for its own sake (as scientists are). So, “the discipline we 
call ‘computer science’” is really the “synthetic”—i.e., the 
engineering—discipline that is concerned with computers. 

Here is his argument:58 

1.	 “[A] science is concerned with the discovery of 
facts and laws.” 

2.	 “[T]he scientist builds in order to study; the 
engineer studies in order to build. 

3.	 The purpose of engineering is to build things. 

4.	 Computer scientists “are concerned with making 
things, be they computers, algorithms, or software 
systems.” 

5.	 ∴ “the discipline we call ‘computer science’ is in 
fact not a science but a synthetic, an engineering, 
discipline.” 

Let’s accept premise 1 for now; it seems reasonable 
enough.59 
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The point of the second premise is this: If a scientist’s 
goal is to discover facts and laws—i.e., to study rather 
than to build—then anything built by the scientist is only 
built for that ultimate purpose. But building is the ultimate 
goal of engineering, and any studying (or discovery of 
facts and laws) that an engineer does along the way 
to building something is merely done for that ultimate 
purpose. For science, building is a side-effect of studying; 
for engineering, studying is a side-effect of building. Both 
scientists and engineers, according to Brooks, build and 
study, but each focuses more on one than the other. (Does 
this remind you of the algorithms-vs.-computers dispute in 
§§4–5?) 

The second premise supports the third, which defines 
engineering as a discipline whose goal is to build things, 
i.e., a “synthetic”—as opposed to an “analytic”—discipline. 
“We speak of engineering as concerned with ‘synthesis,’ 
while science is concerned with ‘analysis’.”60 “Where 
physical science is commonly regarded as an analytic 
discipline that aims to find laws that generate or explain 
observed phenomena, CS is predominantly (though not 
exclusively) synthetic, in that formalisms and algorithms are 
created in order to support specific desired behaviors.”61 

As with his claim about the nature of science in the first 
premise, the accuracy of Brooks’s notion of engineering is a 
topic for another day.62 So, let’s also assume the truth of the 
second and third premises for the sake of the argument. 

Clearly, if the fourth premise is true, then the conclusion 
will follow validly (or, at least, it will follow that computer 
scientists belong on the engineering side of the science– 
engineering, or studying–building, spectrum). But is it really 
the case that computer scientists are (only? principally?) 
concerned with building or “making things”? And, if so, 
what kind of things? 

Moreover, computer scientists do discover and analyze 
facts and laws: Consider the theories of computation 
and of computational complexity, and the “fundamental 
principles” cited at the end of §7, above. Computer 
scientists devise theories about how to build things, and 
they try to understand what they build. All of this seems to 
be more science than engineering. 

Interestingly, Brooks seems to suggest that computer 
scientists don’t build computers, even if that’s what he 
says in the conclusion of his argument! He says that 
“Even when we build a computer the computer scientist 
designs only the abstract properties—its architecture and 
implementation. Electrical, mechanical, and refrigeration 
engineers design the realization.”63 I think this passage is 
a bit confused: Briefly, I think the “abstract properties” 
are the design for the realization; the engineers build the 
realization (they don’t design it).64 But it makes an interesting 
point: Brooks seems to be saying that computer scientists 
only design abstractions, whereas other (real?) engineers 
implement them in reality. This is reminiscent of the 
distinction between the relatively abstract specifications 
for an algorithm (which typically lack detail) and its 
relatively concrete (and highly detailed) implementation 
in a computer program. Brooks (following Zemanek65) calls 
CS “the engineering of abstract objects”: If engineering is 

a discipline that builds, then what computer-science-qua­
engineering builds is implemented abstractions. 

10 SCIENCE XOR ENGINEERING? 
So, is CS a science of some kind (natural or otherwise), or 
is it not a science at all, but some kind of engineering? 
Here, we would be wise to listen to two skeptics about the 
exclusivity of this choice: 

Let’s remember that there is only one nature— 
the division into science and engineering, and 
subdivision into physics, chemistry, civil and 
electrical, is a human imposition, not a natural 
one. Indeed, the division is a human failure; it 
reflects our limited capacity to comprehend the 
whole. That failure impedes our progress; it builds 
walls just where the most interesting nuggets of 
knowledge may lie.66 

Debates about whether [CS is] science or 
engineering can . . . be counterproductive, since 
we clearly are both, neither, and more. . . .67 

11 CS AS “BOTH” 
Could CS be both science and engineering—perhaps the 
science of computation and the engineering of computers— 
i.e., the study of the “programmed living machine”? 

It certainly makes no sense to have a computer without a 
program. It doesn’t matter whether the program is hardwired 
(in the way that a Turing machine is); i.e., it doesn’t matter 
whether the computer is a special-purpose machine that 
can only do one task. The program is not separable from 
the machine; it is built into its structure. And it doesn’t 
matter whether the program is a piece of software (like a 
program inscribed on a universal Turing machine’s tape)— 
i.e., it doesn’t matter whether the computer is a general-
purpose machine that can be loaded with different “apps” 
allowing the same machine to do many different things. It 
is simply the case that, without a program, the computer 
wouldn’t be able to do anything. So, insofar as CS is about 
computers and hence is engineering, it must also be about 
computation and hence a science (at least, a mathematical 
science). 

But it also makes little sense to have a program 
without a computer to run it on. Yes, you can study the 
program mathematically (e.g., try to verify it) or study its 
computational complexity.68 

The ascendancy of logical abstraction over 
concrete realization has ever since been a guiding 
principle in computer science, which has kept 
itself organizationally almost entirely separate from 
electrical engineering. The reason it has been able 
to do this is that computation is primarily a logical 
concept, and only secondarily an engineering 
one. To compute is to engage in formal reasoning, 
according to certain formal symbolic rules, and 
it makes no logical difference how the formulas 
are physically represented, or how the logical 
transformations of them are physically realized.69 
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But what good would it be (for that matter, what fun would 
it be!) to have, say, a program for passing the Turing test 
that never had an opportunity to pass it? Thus, without a 
computer, the program wouldn’t be able to actually do 
anything. So, insofar as CS is about computation and hence 
is science, it should (must?) also be about computers and 
hence an engineering discipline. 

So, computers require programs in order for the computer 
to do anything, and programs require computers in order 
for the program to actually be able to do anything. This 
is reminiscent of Kant’s slogan that “Thoughts without 
content are empty, intuitions without concepts are blind. . . . 
The understanding can intuit nothing, the senses can think 
nothing. Only through their union can knowledge arise.”70 

Similarly, we can say, “Computers without programs are 
empty; programs without computers are blind. Only through 
the union of a computer with a program can computational 
processing arise.” A good example of this is the need for 
computers to test certain “deep learning” algorithms that 
Google used in their Translate software: Without enough 
computing power, there was no way to prove that their 
connectionist programs would work as advertised.71 So, 
CS must be both a science (that studies algorithms) and an 
engineering discipline (that builds computers). 

But we need not be concerned with these two fighting 
words, because, fortunately, there are two very convenient 
terms that encompass both: ‘scientific’ and ‘STEM’. Surely, 
not only natural science, but also engineering, not to mention 
“artificial science,” “empirical studies,” and mathematics 
are all scientific. And, lately, NSF and the popular press 
have taken to referring to “STEM” disciplines—science, 
technology, engineering, and mathematics—precisely in 
order to have a single term to emphasize their similarities 
and interdependence, and to avoid having to try to spell 
out differences among them.72 

So let’s agree for the moment that CS might be both 
science and engineering. What about Freeman’s other two 
options: neither and more? 

12 CS AS “MORE” 

12.1 CS IS A NEW KIND OF ENGINEERING 
Michael Loui defines CS as “the theory, design, and 
analysis of algorithms for processing [i.e., for storing, 
transforming, retrieving, and transmitting] information, 
and the implementations of these algorithms in hardware 
and in software.”73 He argues that CS is “a new species of 
engineering.”74 He first argues that CS is an engineering 
discipline on the grounds that engineering (1) is concerned 
with what can exist (as opposed to what does exist), (2) “has a 
scientific basis,” (3) is concerned with “design,” (4) analyzes 
“trade-offs,” and (5) has “heuristics and techniques.” 
“Computer science has all the significant attributes of 
engineering”; therefore, CS is a branch of engineering.75 

Let’s consider each of these “significant attributes”: First, 
his justification that CS is not “concerned with . . . what 
does exist” is related to the claim that CS is not a natural 
science, but a science of human-made artifacts. We have 
already considered two possible objections to this: First, 

insofar as procedures are natural entities, CS—as the study 
of procedures—can be considered a natural science. 
Second, insofar as some artifacts—such as bird’s nests, 
beehives, etc.—are natural entities, studies of artifacts can 
be considered to be scientific. 

Next, according to Loui, the “scientific basis” of CS is 
mathematics. The scientific basis of “traditional engineering 
disciplines such as mechanical engineering and electrical 
engineering” is physics. This is what makes it “new”; we’ll 
come back to this. 

According to Loui, engineers apply the principles of the 
scientific base of their engineering discipline to “design” a 
product: “[A] computer specialist applies the principles of 
computation to design a digital system or a program.”76 But 
not all computer scientists (or “specialists”) design systems 
or programs; some do purely theoretical work. And, in any 
case, if the scientific basis of CS is mathematics, then 
why does Loui say that computer “specialists” apply “the 
principles of computation”? I would have expected him to 
say that they apply the principles of mathematics. Perhaps 
he sees “computation” as being a branch of mathematics. 
Or perhaps he doesn’t think that the abstract mathematical 
theory of computation is part of CS, but that seems highly 
unlikely, especially in view of his definition of computer 
science as including the theory and analysis of algorithms. 
It’s almost as if he sees computer engineering as standing 
to computer science in the same way that mechanical or 
electrical engineering stand to physics. But then it is not 
computer science that is a branch of engineering. 

Let’s turn briefly to trade-offs: “To implement algorithms 
efficiently, the designer of a computer system must 
continually evaluate trade-offs between resources” such 
as time vs. space, etc.77 This is true, but doesn’t support 
his argument as well as it might. For one thing, it is not 
only system designers who evaluate such trade-offs; so 
do theoretical computer scientists—witness the abstract 
mathematical theory of complexity. And, as noted above, 
not all computer scientists design such systems. So, 
at most, it is only those who do who are doing a kind of 
engineering. 

Finally, as for heuristics, Loui seems to have in mind rough­
and-ready “rules of thumb” rather than formally precise 
theories in the sense of Newell and Simon.78 (See §14.1.3, 
below, for more on this kind of heuristics.) Insofar as 
engineers rely on such heuristics,79 and insofar as some 
computer scientists also rely on them, then those computer 
scientists are doing something that engineers also do. But 
so do many other people: Writers surely rely on rule-of­
thumb heuristics (“write simply and clearly”); does that make 
them engineers? This is probably his weakest premise. 

The second part of Loui’s argument is to show how CS is a 
“new” kind of engineering:80 

1.	 “[E]ngineering disciplines have a scientific basis.” 

2.	 “The scientific fundamentals of computer science 
. . . are rooted . . . in mathematics.” 
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3.	 “Computer science is therefore a new kind of 
engineering.” (italics added) This argument can be 
made valid by adding two missing premises: 

A. Mathematics is a branch of science. 

B. No other branch of engineering has mathematics as its 
basis. 

We can assume from his first argument that CS is a kind 
of engineering. So, from that and 1, we can infer that CS 
(as an engineering discipline) must have a scientific basis. 
We need premise A so that we can infer that the basis of 
CS (which, by 2, is mathematics) is indeed a scientific 
one. Then, from B, we can infer that CS must differ from 
all other branches of engineering. It is, thus, mathematical 
engineering. 

However, despite these arguments, Loui also says this: “It 
is impossible to define a reasonable boundary between 
the disciplines of computer science and computer 
engineering. They are the same discipline.”81 But doesn’t 
that contradict the title of his essay (“Computer Science Is 
an Engineering Discipline”)? 

12.2 CS IS A NEW KIND OF SCIENCE 

Recall that Hartmanis said that “computer science differs 
from the known sciences so deeply that it has to be viewed 
as a new species among the sciences.”82 First, Hartmanis 
comes down on the side of CS being a science: It is a 
“new species among the sciences.” A chimpanzee is a 
different species from a tiger “among the animals,” but 
they are both animals. 

But what does it mean to be “a new species” of science? 
Both chimps and tigers are species of animals, and both 
lions and tigers are species within the genus Panthera. Is 
the relation of computer science to other sciences more like 
the relation of chimps to tigers (relatively distant) or lions 
to tigers (relatively close)? A clue comes in Hartmanis’s next 
sentence: 

This view is justified by observing that theory and 
experiments in computer science play a different 
role and do not follow the classic pattern in 
physical sciences.83 

This strongly suggests that CS is not a physical science 
(such as physics or biology), and Hartmanis confirms this 
suggestion on page 5: “computer science, though not a 
physical science, is indeed a science.”84 The non-physical 
sciences are typically taken to include at least the social 
sciences (such as psychology) and mathematics. So, it 
would seem that the relation of CS to other sciences is 
more like that of chimps to tigers: distantly related species 
of the same, high-level genus. And, moreover, it would 
seem to put computer science either in the same camp 
as (either) the social sciences or mathematics, or else in a 
brand-new camp of its own, i.e., sui generis. 

Hartmanis offers this definition of CS: 

At the same time, it is clear that the objects of 
study in computer science are information and the 
machines and systems which process and transmit 
information. From this alone, we can see that 
CS is concerned with the abstract subject of 
information, which gains reality only when it has 
a physical representation, and the man-made 
devices which process the representations of 
information. The goal of computer science is to 
endow these information processing devices with 
as much intelligent behavior as possible.85 

Although it may be “clear” to Hartmanis that information 
(an “abstract subject”) is (one of) the “objects of study in 
computer science,” he does not share his reasons for that 
clarity. Since, as we have seen, others seem to disagree 
that CS is the study of information (e.g., it could be the 
study of computers or the study of algorithms), it seems 
a bit unfair for Hartmanis not to defend his view. But he 
cashes out this promissory note when he says that “what 
sets [CS] apart from the other sciences” is that it studies 
“processes [such as information processing] that are not 
directly governed by physical laws.”86 And why are they not 
so governed? Because “information and its transmission” are 
“abstract entities.”87 This makes computer science sound 
very much like mathematics. That is not unreasonable, 
given that it was this aspect of CS that led Hartmanis to 
his ground-breaking work on computational complexity, an 
almost purely mathematical area of CS. 

But it’s not just information that is the object of study; it’s 
also information-processing machines, i.e., computers. 
Computers, however, don’t deal directly with information, 
because information is abstract, i.e., non-physical. For one 
thing, this suggests that, insofar as CS is a new species of 
non-physical science, it is not a species of social science: 
Despite its name, the “social” sciences deal with pretty 
physical things: societies, people, speech, etc. 

Hartmanis explicitly says that CS is a science and is not 
engineering, but his comments imply that it is both. I don’t 
think he can have it both ways. This is remiscent of the 
dialogue between Newell, Perlis, and Simon on the one 
hand, and Knuth on the other. Both Loui and Hartmanis agree 
that computer science is a new kind of something or other; 
each claims that the scientific and mathematical aspects of 
it are central; and each claims that the engineering and 
machinery aspects of it are also central. But one calls it 
“science,” while the other calls it “engineering.” Again, it 
seems to be a matter of point of view. 

A very similar argument (that does not give credit to 
Hartmanis!) that CS is a new kind of science can be found in 
Denning and Rosenbloom.88 We’ll look at some of what they 
have to say in §13.1. 

13 CS AS “NEITHER” 
And now for some things completely different . . . 

13.1 CS HAS ITS OWN PARADIGM 
Hartmanis argued that CS was sui generis among the 
sciences. Denning and Peter A. Freeman offer a slightly 
stronger argument to the effect that CS is neither 
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science, engineering, nor math; rather CS has a “unique 
paradigm.”89 

But their position is somewhat muddied by their claim that 
“computing is a fourth great domain of science alongside 
the physical, life, and social sciences.”90 That implies that 
CS is a science, though of a different kind, as Hartmanis 
suggested. 

It also leaves mathematics out of science! In a related 
article published three months earlier in the same journal, 
Denning and Paul S. Rosenboom assert without argument 
that “mathematics . . . has traditionally not been considered 
a science.”91 Denying that math is a science allows them to 
avoid considering CS as a mathematical science.92 

In any case, to justify their conclusion that CS is truly sui 
generis, Denning and Freeman need to show that it is not 
a physical, life, or social science. Denning and Rosenbloom 
say that “none [of these] studies computation per se.”93 

This is only half of what needs to be shown; it also needs 
to be shown that CS doesn’t study physical, biological, 
or social entities. Obviously, it does study such things, 
though that is not its focus. As they admit, CS is “used 
extensively in all the domains”;94 i.e., computation is used 
by scientists in these domains as a tool. 

So, what makes CS different? Denning and Freeman give a 
partial answer: 

The central focus of the computing paradigm 
can be summarized as information processes— 
natural or constructed processes that transform 
information. . . . [T]he computing paradigm . . . is 
distinctively different because of its central focus 
on information processes.95 

This is only a partial answer, because it only discusses the 
object of study (which, as we saw in §6, is somewhat vague). 

The rest of their answer is provided in a table showing 
the methodology of CS (Table 2, p. 29), which comes 
down to their version of “computational thinking.”96 We’ll 
explore what that is in §13.4. 

Denning and Freeman’s version of it is close to what I will 
present as “synthetic” computational thinking in §14.1.1.1. 

13.2 CS IS THE STUDY OF COMPLEXITY 
It has been suggested that CS is the study of complexity— 
not just the mathematical subject of “computational 
complexity,” but complexity in general and in all of 
nature. Ceruzzi ascribes this to Jerome Wiesner.97 But all 
Wiesner says is that “Information processing systems are 
but one facet of . . . communication sciences . . . that is, 
the study of . . . t̀he problems of organized complexity’.”98 

But even if computer science is part of a larger discipline 
(“communication sciences”?) that studies complexity, it 
doesn’t follow that CS itself is the study of complexity. 

According to Ceruzzi, Edsgar Dijkstra also held this view: 
“programming, when stripped of all its circumstantial 
irrelevancies, boils down to no more and no less than very 

effective thinking so as to avoid unmastered complexity.”99 

It is hierarchical structure that “offers a standard way to 
handle complexity”:100 

[P]rograms are built from programs. . . . Programs 
are compilations in another sense as well. Even 
the smallest sub-program is also a compilation 
of sub-components. Programmers construct sub- 
programs by assembling into a coherent whole 
such discrete program elements as data, data 
structures, and algorithms. The “engineering” 
in software engineering involves knowing how 
to assemble these components to produce the 
desired behavior.101 

The idea that a complex program is “just” a construction 
from simpler things, each of which—recursively—can 
be analyzed down to the primitive operations and data 
structures of one’s programming system (for a Turing 
machine, these would be the operations of printing and 
moving, and data structures constructed from ‘0’s and ‘1’s) 
is, first, the underlying way in which complexity can be 
dealt with and, second, where engineering (considered as 
a form of construction) comes into the picture. 

But, again, at most this makes the claim that part of 
computer science is the study of complexity. CS certainly 
offers many techniques for handling complexity: structured 
programming, abstraction, modularity, hierarchy, top-
down design, stepwise refinement, object-oriented 
programming, recursion, etc. So, yes, CS is one way— 
perhaps even the best way—to manage (or avoid) 
complexity, not that it is the study of it. What’s missing 
from Dijkstra’s argument, in any case, is a premise to the 
effect that computer science is the study of programming, 
but Dijkstra doesn’t say that, either in “EWD 512: Comments 
at a Symposium” (1975) or in “EWD 611: On the Fact that 
the Atlantic Ocean has Two Sides” (1976), the document 
that Ceruzzi says contains that premise.102 

But Denning et al. point out that viewing “‘computer 
science [as] the study of abstraction and the mastering 
of complexity’ . . . also applies to physics, mathematics, or 
philosophy”;103 no doubt many other disciplines also study 
complexity. So defining CS the study of complexity doesn’t 
seem to be right. 

13.3 CS IS THE PHILOSOPHY(!) OF PROCEDURES 
Could CS be the study of procedures, yet be a branch 
of philosophy instead of science? One major introductory 
CS text claims that CS is neither a science nor the study 
of computers.104 Rather, it is what they call “procedural 
epistemology,” which they define (italics added) as: 

the study of the structure of knowledge from an 
imperative point of view, as opposed to the 
more declarative point of view taken by classical 
mathematical subjects. Mathematics provides a 
framework for dealing precisely with notions of 
“what is.” Computation provides a framework for 
dealing precisely with notions of “how to.” 
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And, of course, epistemology is, after all, a branch of 
philosophy. 

“How to” is certainly important, and interestingly distinct 
from “what is.” But this distinction is hard to make 
precise. Many imperative statements can be converted 
to declarative ones; e.g., each “ p :- q” rule of a Prolog 
program can be interpreted either procedurally (“to achieve 
p, execute q”) or declaratively (“ p if q”). 

Or consider Euclid’s Elements; it was originally written in 
“how to” form: To construct an equilateral triangle using 
only compass and straightedge, follow this algorithm.105 

(Compare: To compute the value of this function using only 
the operations of a Turing-machine, follow this algorithm.)106 

But today it is expressed in “what is” form: The triangle 
that is constructed (using only compass and straightedge) 
by following that algorithm is equilateral: “When Hilbert 
gave a modern axiomatization of geometry at the beginning 
of the present century, he asserted the bald existence 
of the line. Euclid, however, also asserted that it can 
be constructed.”107 Note that the declarative version of a 
geometry theorem can be considered to be a formal proof 
of the correctness of the procedural version. This is closely 
related to the notion of program verification. 

But even if procedural language can be intertranslated 
with declarative language, the two are distinct. And surely 
CS is concerned with procedures! There is a related issue 
in philosophy concerning the difference between knowing 
that something is the case (knowing that a declarative 
proposition is true) and knowing how to do something 
(knowing a procedure for doing it). This, in turn, may 
be related to Knuth’s view of programming as teaching 
a computer (perhaps a form of knowing-that), to be 
contrasted with the view of a machine-learning algorithm 
that allows a computer to learn on its own by being trained. 
The former can easily gain declarative “knowledge” of what 
it is doing so that it can be programmed to explain what it 
is doing; the latter not so easily. 

13.4 CS IS COMPUTATIONAL THINKING 
A popular way to describe CS is as a “way of thinking,” that 
“algorithmic thinking” (about anything!) is what makes CS 
unique: 

CS is the new “new math,” and people are beginning 
to realize that CS, like math, is unique in the sense 
that many other disciplines will have to adopt 
that way of thinking. It offers a sort of conceptual 
framework for other disciplines, and that’s fairly 
new. . . . Any student interested in science and 
technology needs to learn to think algorithmically. 
That’s the next big thing. 

– Bernard Chazelle108 

Jeannette Wing’s notion of “computational thinking”109 

is thinking in such a way that a problem’s solution “can 
effectively be carried out by an information-processing 
agent.”110 Here, it is important not to limit such “agents” 
to computers, but to include humans! It may offer 
compromises on several controversies: It avoids the 

procedural-declarative controversy, by including both 
concepts, as well as others. Her definition of CS as “the 
study of computation—what can be computed and how 
to compute it” is nice, too, because the first conjunct 
clearly includes the theory of computation and complexity 
theory (“can” can include “can in principle” as well as “can 
efficiently”), and the second conjunct can be interpreted to 
include both software programming as well as hardware 
engineering. “Study” is nice, too: It avoids the science-
engineering controversy. 

“[T]o think computationally [is] to use abstraction, 
modularity, hierarchy, and so forth in understanding and 
solving problems”111—indeed, computational thinking 
involves all of those methods cited in §13.2 for handling 
complexity! Five years before Perlis defined CS as the 
science of computers, he emphasized what is now called 
computational thinking: 

[T]he purpose of . . . [a] first course in programming 
. . . is not to teach people how to program a specific 
computer, nor is it to teach some new languages. 
The purpose of a course in programming is to teach 
people how to construct and analyze processes. . . . 

A course in programming . . . , if it is taught properly, 
is concerned with abstraction: the abstraction of 
constructing, analyzing, and describing processes. 
. . . 

This, to me, is the whole importance of a course 
in programming. It is a simulation. The point is 
not to teach the students how to use ALGOL, or 
how to program the 704. These are of little direct 
value. The point is to make the students construct 
complex processes out of simpler ones (and this 
is always present in programming) in the hope 
that the basic concepts and abilities will rub off. 
A properly designed programming course will 
develop these abilities better than any other 
course.112 

Here is another characterization of CS, one that also 
characterizes computational thinking: 

Computer science is in significant measure all 
about analyzing problems, breaking them down 
into manageable parts, finding solutions, and 
integrating the results. The skills needed for this 
kind of thinking apply to more than computer 
programming. They offer a kind of disciplined 
mind-set that is applicable to a broad range of 
design and implementation problems. These skills 
are helpful in engineering, scientific research, 
business, and even politics!113 Even if a student 
does not go on to a career in computer science 
or a related subject, these skills are likely to prove 
useful in any endeavor in which analytical thinking 
is valuable.114 

But Denning finds fault with the notion of “computational 
thinking,” primarily on the grounds that it is too narrow: 
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Computation is present in nature even when 
scientists are not observing it or thinking about 
it. Computation is more fundamental than 
computational thinking. For this reason alone, 
computational thinking seems like an inadequate 
characterization of computer science.115 

Note that, by “computation,” Denning means Turing-
machine computation. For his arguments about why it is 
“present in nature,” see the discussion in §7, above.116 

13.5 CS IS AI 
[Computer science] is the science of how machines 
can be made to carry out intellectual processes.117 

The goal of computer science is to endow these 
information processing devices with as much 
intelligent behavior as possible.118 

Computational Intelligence is the manifest destiny 
of computer science, the goal, the destination, the 
final frontier.119 

These aren’t exactly definitions of CS, but they could be 
turned into ones: CS is the study of (choose one): (a) how 
to get computers to do what humans can do; (b) how to 
make computers (at least) as “intelligent” as humans; (c) 
how to understand (human) cognition computationally. 

The history of computers supports this: It is a history 
that began with how to get machines to do some human 
thinking (certain mathematical calculations, in particular), 
then more and more. Indeed, the Turing machine, as a 
model of computation, was motivated by how humans 
compute: Turing analyzes how humans compute, and then 
designs a computer program that does the same thing.120 

But the branch of CS that analyzes how humans perform a 
task and then designs computer programs to do the same 
thing is AI. So, the Turing machine was the first AI program! 

But, as I will suggest in §14.1, defining CS as AI is probably 
best understood as a special case of its fundamental task: 
determining what tasks are computable. 

13.6 CS IS MAGIC 
Any sufficiently advanced technology is 
indistinguishable from magic. 

– Arthur C. Clarke121 

Could it be that the advanced technology of CS is not only 
indistinguishable from magic, but really is magic? Not 
magic as in tricks, but magic as in Merlin or Harry Potter? As 
one CS student put it, 

Computer science is very empowering. It’s kind of 
like knowing magic: you learn the right stuff and 
how to say it, and out comes an answer that solves 
a real problem. That’s so cool. 

– Euakarn (Som) Liengtiraphan122 

Brooks makes an even stronger claim than Clarke: 

The programmer, like the poet, works only slightly 
removed from pure thought-stuff. He [sic] builds 
castles in the air, creating by the exertion of the 
imagination. . . . Yet the program construct, unlike 
the poet’s words [or the magician’s spells?], is real 
in the sense that it moves and works, producing 
visible outputs separate from the construct itself. . 
. . The magic of myth and legend has come true 
in our time. One types the correct incantation on 
a keyboard, and a display screen comes to life, 
showing things that never were nor could be.123 

Of course, the main difference between “the magic of myth 
and legend” and how computers work is that the former 
lacks (or at least fails to specify) any causal connection 
between incantation and result, whereas computation is 
quite clear about the connection: Recall our emphasis on 
algorithms (and see the discussion in §14.1.1.2, below). 

What is “magic”? One anthropologist defines magic as 
the human “use of symbols to control forces in nature.”124 

Clearly, programming involves exactly that kind of use of 
symbols.125 

How is magic supposed to work? The anthropologist James 
G. Frazer “had suggested that primitive people imagine 
magical impulses traveling over distance through ‘a kind 
of invisible ether’.”126 That sounds like a description of 
electromagnetic waves: Think of electrical currents running 
from a keyboard to a CPU, information traveling across the 
Internet, or text messaging. 

According to another anthropologist, Bronisław Malinowski, 

The magical act involves three components: 
the formula, the rite, and the condition of the 
performer. The rite consists of three essential 
features: the dramatic expression of emotion 
through gesture and physical attitude, the use 
of objects and substances that are imbued with 
power by spoken words, and, most important, the 
words themselves.127 

A “wizard,” gesturing with a “wand,” performs a “spell” 
consisting of a formula expressed in the words of an arcane 
language; the spell has real-world effects, imbuing objects 
with power. 

Abstracting away from “the dramatic expression of 
emotion,” use of a computer involves gestures, perhaps 
not with a wand, but with a mouse, a trackpad, or a 
touchscreen: The computer itself can be thought of as 
“imbued with power” when we issue, perhaps not a spell, 
but a command, either spoken or typed. And the words 
(of a programming language, or even English; think: Siri) 
used by the programmer or user are surely important, so 
the “rite” criterion is satisfied. Computer programs can be 
thought of as formulas, and only those programmers who 
know how to use appropriate programming languages, or 
those users who have accounts on a computer, might be 
considered to be in the right “condition.” 
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[A symbol] can take on the qualities of the thing it 
represents, and it can take the place of its referent; 
indeed, as is evident in religion and magic, the 
symbol can become the thing it represents, and 
in so doing, the symbol takes on the power of its 
referent.128 

We see this happening in computers when we treat icons on 
a desktop (such icons are symbols) or the screen output of 
a WYSIWYG word processor (such as a page of a Microsoft 
Word document) as if they were the very things they 
represent. Perhaps more significantly, we see this in the 
case of those computer simulations in which the simulation 
of something really is that (kind of) thing: In online banking, 
the computational simulation of transferring funds between 
accounts is the transferring of funds; (simulated) signatures 
on online Word or PDF documents carry legal weight; in 
AI, computationally simulated cognition (arguably) is 
cognition.129 And an NRC report talks about user interfaces 
as “illusions”:130 

Unlike physical objects, the virtual objects created 
in software are not constrained to obey the laws of 
physics. . . . In the desktop metaphor, for example, 
the electronic version of file folders can expand, 
contract, or reorganize their contents on demand, 
quite unlike their physical counterparts.131 

So, perhaps computers are not just metaphorically magic 
(as Arthur C. Clarke might have said); they are magic! 

But, of course, the main difference between “the magic 
of myth and legend” and how computers work is that 
the former lacks (or at least fails to specify) any causal 
connection between incantation and result, whereas 
computation is quite clear about the connection: Recall 
our emphasis on algorithms (and see the discussion in 
§14.1.1.2, below). 

14 SO, WHAT IS COMPUTER SCIENCE? 
Our exploration of the various answers suggests that there 
is no simple, one-sentence answer to our question. Any 
attempt at one is no better than the celebrated descriptions 
of an elephant by the blind men: Many, if not most or all, 
such attempts wind up describing the entire subject, but 
focusing on only one aspect of it. Recall Newell, Perlis, 
and Simon’s and Knuth’s distinct but logically equivalent 
definitions. 

CS is the scientific study of a family of topics surrounding 
both abstract (or theoretical) and concrete (or practical 
computing)—a “portmanteau” discipline.132 

Charles Darwin said that “all true classification . . . [is] 
genealogical.”133 CS’s genealogy involves two historical 
traditions: (1) the study of algorithms and the foundations 
of mathematics (from ancient Babylonian mathematics,134 

through Euclid’s geometry, to inquiries into the nature of 
logic, leading ultimately to the Turing machine) and (2) the 
attempts to design and construct a calculating machine 
(from the Antikythera Mechanism of ancient Greece; through 
Pascal’s and Leibniz’s calculators and Babbage’s machines; 
to the ENIAC, iPhone, and beyond). So, modern CS is the 

result of a marriage between (or merger of) the engineering 
problem of building better and better automatic calculating 
devices with the mathematical (hence, scientific) problem 
of understanding the nature of algorithmic computation. 
And that implies that modern CS, to the extent that it is a 
single discipline, has both engineering and science in its 
DNA. Hence its portmanteau nature. 

The topics studied in contemporary CS roughly align 
along a spectrum ranging from the mathematical theory 
of computing, at one end, to the engineering of physical 
computers, at the other, as we saw in §3.2. Newell, Perlis, 
and Simon were looking at this spectrum from one end; 
Knuth was looking at it from the other end. The topics share 
a family resemblance (and perhaps nothing more than that, 
except for their underlying DNA), not only to each other, but 
also to other disciplines (including mathematics, electrical 
engineering, information theory, communication, etc.), and 
they overlap with issues discussed in the cognitive sciences, 
philosophy (including ethics), sociology, education, the 
arts, and business. 

14.1 FIVE CENTRAL QUESTIONS OF CS 
In this section, I want to suggest that there are five central 
questions of CS. The single most central question is: 

1. A. What can be computed? 

But to answer that, we also need to ask: 

1. B. How can it be computed? 

Several other questions follow logically from that central 
one: 

2. What can be computed efficiently, and how? 

3. What can be computed practically, and how? 

4. What can be computed physically, and how? 

5. What should be computed, and how? 

Let’s consider each of these in a bit more detail. 

14.1.1 COMPUTABILITY 
14.1.1.1 What Is Computable? “What can be 
computed?” (or: “What is computable?”) is the central 
question, because all other questions presuppose it. The 
fundamental task of any computer scientist—whether 
at the purely mathematical or theoretical end of the 
spectrum, or at the purely practical or engineering end—is 
to determine whether there is a computational solution to 
a given problem, and, if so, how to implement it. But those 
implementation questions are covered by the rest of the 
questions on our list, and only make sense after the first 
question has been answered. (Alternatively, they facilitate 
answering that first question; in any case, they serve the 
goal of answering it.) 

Question 1 includes the question of computability vs. 
non-computability. It is the question that Church, Turing, 
Gö del, and others were originally concerned with—Which 
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mathematical functions are computable?—and whose 
answer has been given as the Church-Turing Computability 
Thesis: A function is computable if and only if it is 
computable by a Turing machine (or any formalism logically 
equivalent to a Turing machine, such as Church’s lambda 
calculus or Gödel’s general recursive functions). It is 
important to note that not all functions are computable. If 
they were, then computability would not be an interesting 
notion. (A standard example of a non-computable function 
is the Halting Problem.) 

Various branches of CS are concerned with identifying 
which problems can be expressed by computable 
functions. So, a corollary of the Computability Thesis is that 
a task is computable if and only if it can be expressed as a 
computable function. 

Here are some examples: 

•	 Is cognition computable? The central question of 
AI is whether the functions that describe cognitive 
processes are computable. (This is one reason why I 
prefer to call AI “computational cognition.”135) Given 
the advances that have been made in AI to date, it 
seems clear that at least some aspects of cognition 
are computable, so a slightly more precise question 
is: How much of cognition is computable?136 

•	 Consider Shannon’s 1950 paper on chess: The 
principal question is: Can we mathematically 
analyze chess? In particular, can we computationally 
analyze it (suggesting that computational analysis 
is a branch or kind of mathematical analysis)—i.e., 
can we analyze it procedurally? I.e., can we play 
chess rationally? 

•	 Is the weather computable?137 

•	 Is fingerprint identification computable?138 

•	 Is final-exam-scheduling computable? Faculty 
members in my department recently debated 
whether it was possible to write a computer 
program that would schedule final exams with no 
time conflicts and in rooms that were of the proper 
size for the class. Some thought that this was a 
trivial problem; others thought that there was no 
such algorithm (on the (perhaps dubious!) grounds 
that no one in the university administration had 
ever been able to produce such a schedule); in 
fact, this problem is NP-complete.139 

This aspect of question 1 is close to Forsythe’s famous one: 

The question “What can be automated?” is one 
of the most inspiring philosophical and practical 
questions of contemporary civilization.140 

Although similar in intent, Forsythe’s question can be 
understood in a slightly different way: Presumably, a process 
can be automated—i.e., done automatically, by a machine, 
without human intervention—if it can be expressed as an 
algorithm. That is, computable implies automatable. But 

automatable does not imply computable: Witness the 
invention of the direct dialing system in telephony, which 
automated the task of the human operator. Yes, direct 
dialing is computable, but it wasn’t a computer that did 
this automation.141 

14.1.1.2 How Is It Computable? The “how” question is also 
important: CS cannot be satisfied with a mere existence 
statement to the effect that a problem is computable; it also 
requires a constructive answer in the form of an algorithm 
that explicitly shows how it is computable. 

In a Calvin and Hobbes cartoon,142 Calvin discovers that if 
you input one thing (bread) into a toaster, a different thing 
(toast) is output. Hobbes wonders what happened to the 
input. It didn’t disappear, of course, nor did it “magically” 
turn into the output: 

Everything going on in the software [of a computer] 
has to be physically supported by something 
going on in the hardware. Otherwise the computer 
couldn’t do what it does from the software 
perspective—it doesn’t work by magic. But usually 
we don’t have to know how the hardware works— 
only the engineer and the repairman do. We can 
act as though the computer just carries out the 
software instructions, period. For all we care, as 
long as it works, it might as well be magic.143 

Rather, the toaster did something to the bread (heated it). 
That intervening process is the analogue of an algorithm 
for the bread-to-toast function. Finding “intervening 
processes” requires algorithmic thinking, and results in 
algorithms that specify the transformational relations 
between input and output. (Where behaviorism focused 
only on inputs and outputs, cognitive psychology focused 
on the intervening algorithms.144) 

So, just as, for any x, there can be a philosophy of x, so we 
can ask, given some x, whether there is a computational 
theory of x. Finding a computational solution to a problem 
requires “computational thinking,” i.e., algorithmic (or 
procedural) thinking (see §13.4, above). 

Computational thinking includes what I call the four Great 
Insights of CS:145 

1.	 The representational insight: 
Only 2 nouns are needed to represent information 
(‘0’, ‘1’). 

2.	 The processing insight: 
Only 3 verbs are needed to process information 
(move(left or right), print(0 or 1), halt) 

3.	 The structural insight: 
Only 3 grammar rules are needed to combine 
actions 
(sequence, selection, repetition) 

4.	 The “closure” insight: Nothing else is needed. 
(This is the import of the Church-Turing 
Computability Thesis.)146 
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Computational thinking involves both synthesis and 
analysis: 

Synthesis: Given a problem P, 

1.	 express P as a mathematical function FP 
(or a collection of interacting functions; 
i.e., give an input-output specification of P); 

2.	 try to find an algorithm AFP for computing FP 
(i.e., for transforming the input to the output; 
then try to find an efficient and practical version 
of AFP ); 

3.	 implement AFP on a physical computer. 

Note the similarity of synthetic computational thinking to 
David Marr’s analysis of information processing.147 

Analysis: 

Given a real-world process P (physical, biological, 
psychological, social, economic, etc.), try to find a 
computational process AP that models (describes, 
simulates, explains, etc.) P. 

Note that, once found, AP can be re-implemented; this is 
why computers can (be said to) think!148 

14.1.2 EFFICIENT COMPUTABILITY 
Question 2 is the question studied by the branch of 
computer science known as computational complexity 
theory. Given an algorithm, one question is how much time 
it will take to be executed and how much space (memory) 
it will need. A more general question is this: Given the set 
of computable functions, which of them can be computed 
in, so to speak, less time than the age of the universe 
or less space than the size of the universe. The principal 
distinction is whether a function is in the class called P (in 
which case, it is “efficiently” computable) or in the class 
NP (in which case it is not efficiently computable but it is 
efficiently “verifiable”):149 

Even children can multiply two primes, but the 
reverse operation—splitting a large number 
into two primes—taxes even the most powerful 
computers. The numbers used in asymmetric 
encryption are typically hundreds of digits long. 
Finding the prime factors of such a large number 
is like trying to unmix the colors in a can of paint, 
. . . “Mixing paint is trivial. Separating paint isn’t.”150 

Almost all practical algorithms are in P. By contrast, one 
important algorithm that is in NP is the Boolean Satisfiability 
Problem: Given a molecular proposition of propositional 
logic with n atomic propositions, under what assignment of 
truth-values to those atomic propositions is the molecular 
proposition true (or “satisfied”)? Whether P = NP is one 
of the major open questions in mathematics and CS; most 
computer scientists both hope and believe that P = NP.151 

14.1.3 PRACTICAL COMPUTABILITY 
Question 3 is considered both by complexity theorists as 
well as by more practically-oriented software engineers. 
Given a computable function in P (or, for that matter, in 
NP) what are some practically efficient methods of actually 
computing it? E.g., under certain circumstances, some 
sorting algorithms are more efficient in a practical sense 
(e.g., faster) than others. Even a computable function that 
is in NP might be practically computable in special cases. 
And some functions might only be practically computable 
“indirectly” via a “heuristic”: A heuristic for problem p can 
be defined as an algorithm for some problem p’, where the 
solution to p’ is “good enough” as a solution to p.152 Being 
“good enough” is, of course, a subjective notion; Oommen 
and Rueda call the “good enough” solution “a sub-optimal 
solution that, hopefully, is arbitrarily close to the optimal.”153 

The idea is related to Simon’s notion of bounded rationality: 
We might not be able to solve a problem p because of 
limitations in space, time, or knowledge, but we might be 
able to solve a different problem p’ algorithmically within 
the required spatio-temporal-epistemic limits. And if the 
algorithmic solution to p’ gets us closer to a solution to p, 
then it is a heuristic solution to p. But it is still an algorithm.154 

A classic case of this is the Traveling Salesperson Problem, 
an NP-problem for which software like Google Maps solves 
special cases for us every day (even if their solutions are 
only “satisficing” ones155). 

14.1.4 PHYSICAL COMPUTABILITY 
But since the only (or the best) way to decide whether 
a computable function really does what it claims to do 
is to execute it on a computer, computers become an 
integral part of CS. Question 4 brings in both empirical 
(hence scientific) and engineering considerations. Even 
a practically efficient algorithm for computing some 
function might run up against physical limitations. Here is 
one example: Even if, eventually, computational linguists 
devise practically efficient algorithms for natural-language 
“competence” (understanding and generation,156 it 
remains the case that humans have a finite life span, so 
the infinite capabilities of natural-language competence 
are not really required (a Turing machine isn’t needed; 
a push-down automaton might suffice). This is also the 
question that issues in the design and construction of real 
computers (“computer engineering”) are concerned with. 
And it is where investigations into alternative physical 
implementations of computing (quantum, optical, DNA, 
etc.) come in. 

14.1.5 ETHICAL COMPUTABILITY 
Bruce Arden, elaborating Forsythe’s question, said that “the 
basic question [is] . . . what can and should be automated.”157 

Question 5 brings in ethical considerations.158 Actually, the 
question is slightly ambiguous. It could simply refer to 
questions of practical efficiency: Given a sorting problem, 
which sorting algorithm should be used; i.e., which one 
is the “best” or “most practical” or “most efficient” in the 
actual circumstances? But this sense of “should” does not 
really differentiate this question from question 3. 

It is the ethical interpretation that makes this question 
interesting: Suppose that there is a practical and efficient 
algorithm for making certain decisions (e.g., as in the 
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case of autonomous vehicles). There is still the question 
of whether we should use those algorithms to actually 
make decisions for us. Or let us suppose that the goal of 
AI—a computational theory of cognition—is practically and 
efficiently computable by physically plausible computers. 
One can and should still raise the question whether such 
“artificial intelligences” should be created, and whether we 
(their creators) have any ethical or moral obligations towards 
them, and vice versa!159 And there is the question of implicit 
biases that might be (intentionally or unintentionally) built 
into some machine-learning algorithms. 

14.2 WING’S FIVE QUESTIONS 
It may prove useful to compare my five questions with 
Wing’s “Five Deep Questions in Computing”:160 

1.	 P = NP ? 

2.	 What is computable? 

3.	 What is intelligence? 

4.	 What is information? 

5.	 (How) can we build complex systems simply? 

All but the last, it seems to me, concern scientific (abstract, 
mathematical) issues: If we consider Wing’s second question 
to be the same as our central one, then her first question 
can be rephrased as our “What is efficiently computable?,” 
and her third can be rephrased as “How much of (human) 
cognition is computable?” (a special case of our central 
question). Her fourth question can then be seen as asking 
an ontological question about the nature of what it is that is 
computed (an aspect of our central question): numbers (0s 
and 1s)? symbols (‘0’s and ‘1’s)? information in some sense 
(and, if so, in which sense)? 

Wing’s last question is ambiguous between two readings 
of “build”: On a software reading, it can be viewed in 
an abstract (scientific, mathematical) way as asking a 
question about the structural nature of software (the issues 
concerning the proper use of the “goto” statement [Dijkstra, 
1968] and structural programming would fall under this 
category). As such, it concerns the grammar rules; it is then 
an aspect of our central question. But it can also be viewed 
on a hardware reading as asking an engineering question: 
How should we—literally—build computers? 

Interpreted in this way, Wing’s five questions can be boiled 
down to two: 

•	 What is computation such that only some things 
can be computed? (And what can be computed 
(efficiently), and how?) 

•	 (How) can we build physical devices to perform 
these computations? 

The first is equivalent to our questions 1–3, the second to 
our question 4. And, in this case, we see once again the 
two parts of the discipline: the scientific (or mathematical, 
or abstract) and the engineering (or concrete). 

It is interesting and important to note that none of Wing’s 
questions correspond to the ethical question 5. 

15 CONCLUSION 
To sum up, computer science is the (scientific, or STEM) 
study of: 

•	 what problems can be solved, 

•	 what tasks can be accomplished, and 

•	 what features of the world can be understood . . . 

. . . computationally, i.e., using a language with only: 

•	 2 nouns (‘0’, ‘1’), 

•	 3 verbs (‘move’, ‘print’, ‘halt’), 

•	 3 grammar rules (sequence, selection, repetition; 
or just recursion), and 

•	 nothing else, 

and then to provide algorithms to show how this can be 
done: 

•	 efficiently, 

•	 practically, 

•	 physically, and 

•	 ethically. 

I said that our survey suggests that there is no simple, 
one-sentence answer to the question: What is computer 
science? My definition above is hardly a simple sentence. 

But our opening quotation—from an interview with a 
computational musician—comes closer, so I will end where 
I began: 

The Holy Grail of computer science is to capture 
the messy complexity of the natural world and 
express it algorithmically. 

– Teresa Marrin Nakra161 
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Computer? 
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OF SCIENCES 

ABSTRACT 
In this paper, I review the objections against the claim 
that brains are computers, or, to be precise, information-
processing mechanisms. By showing that practically all 
the popular objections are either based on uncharitable 
interpretation of the claim, or simply wrong, I argue that 
the claim is likely to be true, relevant to contemporary 
cognitive (neuro)science, and non-trivial. 

Computationalism is here to stay. To see why, I will review 
the reasons why one could think that the brain is not a 
computer. Although more reasons can be brought to bear 
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on the issue, my contention is that it’s less than likely that 
they would make any difference. The claim that the brain 
is a specific kind of an information-processing mechanism, 
and that information-processing is necessary (even if 
not sufficient) for cognition, is non-trivial and generally 
accepted in cognitive (neuro)science. I will not develop 
the positive view here, however, as it was already stated 
sufficiently clearly to my tastes in book-length accounts.1 

Instead, I will go through the objections, and show that 
they all fail just because they make computationalism a 
straw man. 

SOFTWARE AND NUMBER CRUNCHING 
One fairly popular objection against computationalism is 
that there is no simple way to understand the notions of 
software and hardware as applied to biological brains. But 
the software/hardware distinction, popular as the slogan 
“the mind to the brain is like the software to hardware,”2 

need not be applicable to brains at all for computationalism 
to be true. There are computers that are not program-
controllable: they do not load programs from external 
memory to internal memory to execute them. The most 
mundane example of such a computer is a logical gate 
whose operation corresponds to a logical connective, e.g., 
disjunction or conjunction. In other words, while it may 
be interesting to inquire whether there is software in the 
brain, there may as well be none, and computationalism 
could still be true. Hence, the objection fails, even if it is 
repeatedly cited in popular press. 

Another intuitive objection, already stated (and defeated) 
in the 1950s, is that brains are not engaged in number-
crunching, while computers, well, compute over numbers. 
But if this is all computers do, then they don’t control 
missiles, send documents to printers, or display pictures 
on computer monitors. After all, printing is not just number 
crunching. The objection rests therefore on a mistaken 
assumption that computers can only compute numerical 
functions. Computer functions can be defined not only 
on integer numbers but also on arbitrary symbols,3 and as 
physical mechanisms, computers can also control other 
physical processes. 

SYMBOLS AND MEANING 
The notion of a symbol is sometimes interpreted to 
say that symbols in computers are, in some sense, 
abstract and formal, which would make computers 
strangely dis-embodied.4 In other words, the opponents 
of computationalism claim that it implies some kind of 
dualism.5 However, computers are physical mechanisms, 
and they can be broken, put on fire, and thrown out of 
the window. These things may be difficult to accomplish 
with a collection of abstract entities; the last time I tried, 
I was caught red-handed while committing a simple 
category mistake. Surely enough, computers are not just 
symbol-manipulators. They do things, and some of the 
things computers do are not computational. In this sense, 
computers are physically embodied, not unlike mammal 
brains. It is, however, a completely different matter whether 
the symbols in computers mean anything. 

One of the most powerful objections formulated against 
the possibility of Artificial Intelligence is associated with 

John Searle’s Chinese Room thought experiment.6 Searle 
claimed to show that running of a computer program is not 
sufficient for semantic properties to arise, and this was in 
clear contradiction to what was advanced by proponents 
of Artificial Intelligence who assumed that it was sufficient 
to simulate the syntactic structure of representations for 
the semantic properties to appear; as John Haugeland 
quipped: “if you take care of syntax, the semantics will take 
care of itself.”7 But Searle replied: one can easily imagine 
a person with a special set of instructions in English who 
could manipulate Chinese symbols and answer questions 
in Chinese without understanding it at all. Hence, 
understanding is not reducible to syntactic manipulation. 
While the discussion around this thought experiment is 
hardly conclusive,8 the problem was soon reformulated by 
Stevan Harnad as “symbol grounding problem”:9 How can 
symbols in computational machines mean anything? 

If symbol grounding problem makes any sense, then one 
cannot simply assume that symbols in computers mean 
something just by being parts of computers, or at least 
they cannot mean anything outside the computer so easily 
(even if they contain instructional information10). This is an 
assumption made also by proponents of causal-mechanistic 
analyses of physical computation: representational 
properties are not assumed to necessarily exist in physical 
computational mechanisms.11 So, even if Searle is right 
and there is no semantics in computers, the brain might 
still be a computer, as computers need no semantics to be 
computers. Maybe something additional to computation is 
required for semantics. 

Let us make the record straight here. There is an important 
connection between the computational theory of mind and 
the representational account of cognition: they are more 
attractive when both are embraced. Cognitive science 
frequently explains cognitive phenomena by referring to 
semantic properties of mechanisms capable of information­
processing.12 Brains are assumed to model reality, and these 
models can be computed over. While this seems plausible 
to many, it’s important to remember than one can remain 
computationalist without assuming representationalism, or 
the claim that cognition requires cognitive representation. 
At the same time, a plausible account of cognitive 
representation cannot be couched merely in computational 
terms as long as one assumes that the symbol grounding 
problem makes sense at least for some computers. To make 
the account plausible, most theorists appeal to notions of 
teleological function and semantic information,13 which 
are not technical terms of computability theory nor can be 
reduced to such. So, computers need something special to 
operate on inherently meaningful symbols. 

What made computationalism so strongly connected to 
cognitive representations was the fact that it offered a 
solution to the problem of what makes meaning causally 
relevant. Many theorists claim that just because the syntax in 
computer programs is causally relevant (or efficacious), so 
is the meaning. While the wholesale reduction of meaning 
to syntax is implausible, the computational theory of mind 
makes it clear that the answer to the question includes the 
causal role of the syntax of computational vehicles. Still, it 
is not an objection to computationalism itself that it does 
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not offer a naturalistic account of meaning. That would be 
indeed too much. 

The debate over the meaning in computers and animals 
abounds in red herrings, however. One recent example 
is Robert Epstein’s essay.14 While the essay is ridden with 
confusion, the most striking mistake is the assumption 
that computers always represent everything with arbitrary 
accuracy. Epstein cites the example of how people remember 
a dollar bill, and assumes that computers would represent 
it in a photographic manner with all available detail. This is 
an obvious mistake: representation is useful mostly when 
it does not convey information about all properties of the 
represented target (remember that the map of the empire 
is useful only when it is not exact?15). If Epstein is correct, 
then there are no JPEG files in computers, as they are not 
accurate, and they are based on lossy compression. And 
there are no MP3 files. And so on. No assumption of the 
computational theory of mind says that memory should be 
understood in terms of the von Neumann architecture, and 
only some controversial theories suggest that it should.16 

Epstein also presses the point that people are organisms. 
Yes, I would also add that water is (mostly) H2O. It’s true 
but just as irrelevant as Epstein’s claim: physical computers 
are, well, physical, and they may be built in various ways. 
It’s essential that they are physical. 

A related objection may be phrased in terms of James J. 
Gibson’s ecological psychology. Ecological psychologists 
stress that people do not process information, they just 
pick it up from the environment.17 This is an interesting 
idea. But one should make it more explicit what is meant 
by information processing in the computational theory of 
mind. What kind of information is processed? It should be 
clear enough that the information need not be semantic, 
as not all symbols in computers are about something. 
The minimal notion that should suffice for our purposes 
is the notion of structural information: a vehicle can bear 
structural information just in case it has at least one degree 
of freedom, that is, may vary its state.18 The number 
of degrees of freedom, or yes-no questions required 
to exactly describe its current state, is the amount of 
structural information. As long as there are vehicles with 
multiple degrees of freedom and they are part of causal 
processes that cause some other vehicles just like some 
model of computation describes these processes,19 there 
is information processing. This is a very broad notion, as 
all physical causation implies information transfer and 
processing in this sense.20 

Right now it’s important to note that the Gibsonian notion 
of information pickup, interesting as it is, requires vehicles 
of structural information as well. There needs to be some 
information out there to be picked up, and organisms 
have to be so structured to be able to change their state in 
response to information. Gibsonians could, however, claim 
that the information is not processed. Frankly, I do not 
know what is meant by this: for example, Chemero seems 
to imply that processing amounts to adding more and more 
layers of additional information, like in Marr’s account of 
vision.21 Why information processing should require 
multiple stages of adding more information is beyond me. 

Even uses of Gibsonian information in, say, simple robots, 
are clearly computational, and insisting otherwise seems 
to imply that the dispute is purely verbal. To sum up: the 
Gibsonian account does not invalidate computationalism 
at all. 

CONSCIOUSNESS 
Some people find (some kinds of) consciousness to be 
utterly incompatible with computationalism, or at least, 
unexplainable in purely computational terms.22 The 
argument is probably due to Leibniz with his thought 
experiment in Monadology.23 Imagine a brain as huge as a 
mill, and enter it. Nowhere in the interplay of gears could 
you find perceptions, or qualitative consciousness. Hence, 
you cannot explain perception mechanically. Of course, 
this Leibnizian argument appeals only to some physical 
features of mechanisms, but some still seem to think that 
causation has nothing to do with qualitative consciousness. 
Notice also that the argument, if cogent, is applicable more 
broadly, not just to computationalism; it is supposed to 
defeat reductive physicalism or materialism. 

For example, David Chalmers claims that while awareness, 
or the contentful cognitive states and processes, can be 
explained reductively by appealing to physical processes, 
there is some qualitative, phenomenal consciousness that 
escapes all such attempts. But his own positive account 
(or one of his accounts) is panpsychism, and it states 
that whenever there is physical information, there is 
consciousness. Qualitative consciousness. So how is this 
incompatible with computationalism, again? According 
to Chalmers, qualitative consciousness supervenes on 
information with physical necessity (not conceptual one). 
So be it, but it does not invalidate computationalism, of 
course. 

Notice also that virtually all current theories of 
consciousness are computational, even the ones that 
appeal to quantum processes.24 For example, Bernard 
Baars offers a computational account in terms of the 
global workspace theory,25 David Rosenthal an account in 
terms of higher-level states,26 and Giulio Tononi in terms 
of minimal information integration.27 Is there any theory of 
consciousness that is not already computational? 

Let us turn to Searle. After all, he suggests that only a non-
computational theory of consciousness can succeed. His 
claim is that consciousness is utterly biological.28 Fine, 
but how does this exactly contradict computationalism? 
You may build a computer of DNA strands,29 so why claim 
that it’s metaphysically impossible to have a biological 
computer? Moreover, Searle fails to state which biological 
powers of brains specifically make them conscious. He 
just passes the buck to neuroscience. And neuroscience 
offers computational accounts. Maybe there’s a revolution 
behind the corner, but as things stand, I would not hold 
my breath for a non-computational account of qualitative 
consciousness. 

TIME AND ANALOG PROCESSING 
Proponents of dynamical accounts of cognition stress that 
Turing machines do not operate in real time. This means 
that this classical model of computation does not appeal 
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to real time; instead, it operates with the abstract notion 
of the computation step. There is no continuous time flow, 
just discrete clock ticks in a Turing Machine.30 This is true. 
But is this an objection against computationalism? 

First, there are models of computation that appeal to real 
time.31 So one could use such a formalism. Second, the 
objection seems to confuse the formal model of computation 
with its physical realization. Physical computers operate 
in real time, and not all models of computation are made 
equal; some will be relevant to explaining cognition, and 
some may be only useful for computability theory. What 
is required for explanatory purposes is a mechanistically-
adequate model of computation that describes all relevant 
causal processes in the mechanism.32 

Universal Turing machines are crucial to computability 
theory. But one could also appeal to models of analog 
computation if required. These are still understood as 
computational in computability theory, and some theorists 
indeed claim that the brain is an analog computer, which is 
supposed to allow them to compute Turing-incomputable 
functions.33 While this is controversial (others claim that 
brains compute in a more complex fashion34), it shows that 
one cannot dismiss computationalism by saying that the 
brain is not a digital computer, as Gerald Edelman did.35 

There are analog computers, and an early model of a neural 
network, Perceptron, was analog.36 The contention that 
computers have to be digital is just dogmatic. 

ARTIFICIAL INTELLIGENCE 
There are a number of arguments with a form: 

1. People ψ. 
2. Computers will never ψ. 

So, artificial intelligence is impossible (or 
computationalism is false). 

This argument is enthymematic, but the conclusion follows 
with a third assumption: if artificial intelligence is possible, 
then computers will ψ. The plausibility of the argument 
varies from case to case, depending on what you fill for ψ. 
For years, people thought that winning in chess is ψ,37 but it 
turned out to be false, which makes the argument instance 
unsound. So, unless there is a formal proof, it’s difficult to 
treat premise 2 seriously. 

So what could be plausibly substituted for ψ? Obviously, 
not sexual reproduction, even if it is humanly possible. 
There are many properties of biological organisms 
that simply seem irrelevant to this argument, including 
exactly the same energy consumption, having proper 
names, spatiotemporal location, and so on. The plausible 
candidate for substitution is some capacity for information-
processing. If there is such capacity that humans have but 
computers cannot, then the argument is indeed cogent. 

So what could be the candidate capacity? The classical 
argument pointed to the human ability to recognize the 
truth of logical statements that cannot be proven by a 
computer.38 It is based on the alleged ability of human 
beings to understand that some statements are true, 

which is purportedly impossible only for machines (this 
argument is based on the Gödel proof of incompleteness 
of the first-order predicate calculus with basic arithmetic). 
The problem is that this human understanding has to be 
non-contradictory and certain. But Gödel has shown that 
it’s undecidable in general whether a given system is 
contradictory or not; so either the argument states that 
it’s mathematically certain that human understanding 
of mathematics is non-contradictory, which makes the 
argument inconsistent (it cannot be mathematically certain 
because it’s undecidable); or it just dogmatically assumes 
consistency, which means that the argument is implausible, 
and even unsound because we know that people commit 
contradictions unknowingly.39 

Another argument points to common sense. Common 
sense is a particularly difficult capacity, and the trouble 
with implementing common sense on machines is 
sometimes called (somewhat misleadingly) the frame 
problem.40 Inferential capacities of standard AI programs 
do not seem to follow the practices known to humans, 
and that was supposed to hinder progress in such fields 
as high-quality machine translation,41 speech recognition 
(held to be immoral to fund by Weizenbaum42), and so 
on. Even if IBM Watson wins in Jeopardy!, one may still 
think it’s not enough. Admittedly, common sense is a 
plausible candidate in this argument. Notice that even if 
the proponent of the computational theory of cognition 
could reject the necessity of building genuine AI that is 
not based on a computer simulation of human cognitive 
processes, he or she still has the burden of showing that 
human common sense can be simulated on a computer. 
Whether it can or not is still a matter of debate. 

COMPUTERS ARE EVERYWHERE (OR DON’T 
REALLY EXIST) 

Still another argument against computationalism brings 
pretty heavy artillery. The argument has two versions. 
The first version is the following: at least some plausible 
theories of physical implementation of computation lead to 
the conclusion that all physical entities are computational. 
This stance is called pancomputationalism. If this is the case, 
then the computational theory of mind is indeed trivial, as 
not only brains are computational, but also cows, black 
holes, cheese sandwiches, and what not, are computers. 
However, a pancomputationalist may reply by saying that 
there are various kinds (and levels) of computation, and 
brains do not execute all kinds of computation at the same 
time.43 So it’s not just computation that is specific to brains, 
but there is some non-trivial kind of computation specific to 
brains. Only the kind of pancomputationalism that assumes 
that everything computes all kinds of functions at the same 
time is catastrophic, as it makes physical computation 
indeed trivial. But this is what Hilary Putnam claims—he 
even offered a proof that one can ascribe arbitrary kinds of 
computation to any open physical system.44 

Another move is to say that computers do not really exist; 
they are just in the eyes of beholder. John Searle has 
made both moves: the beholder decides whether a given 
physical system is computational, and therefore may make 
this decision for virtually everything. But the body of work 
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on physical computation in the last decade or so has been 
focused on showing why Putnam and Searle were wrong.45 

The contemporary consensus is that computational models 
can adequately describe causal connections in physical 
systems, and that these models can be also ascribed 
wrongly. In other words, computational models are not 
different in kind from any mathematical model used in 
science. If they are mere subjective metaphors and don’t 
describe reality, then mathematical models in physics are 
subjective as well.46 

Intuitively, arguments presented by Searle and Putnam are 
wrong for a very simple reason: nobody would buy a new 
computer if it was just easier to think that an old computer 
simply implemented new software. I could stare at my 
old laptop and think that it’s a brand new smartphone. It’s 
obvious that it doesn’t work this way. Therefore, there must 
be a flaw in these arguments somewhere, and even if the 
technicalities involved are indeed interesting, they fail to 
establish the conclusion. 

A popular strategy to defeat triviality arguments is to 
show that it is ad hoc: the ascriptions of computational 
states to physical systems wouldn’t support relevant 
counterfactuals.47 In other words, they couldn’t, for example, 
accurately predict what kind of computation would run on a 
physical system, were things slightly different. While this is 
intuitive, I have argued that one can strengthen the triviality 
strategies to deal with counterfactuals.48 As long as one is 
poised to predict the evolution of a physical process, one 
can invent a computational ascription. Thus, instead, one 
should look for a systematic solution that presupposes that 
computational models are not different in kind from other 
causal models in science. This is the move recommended 
by David Chalmers, who has stressed that computational 
models should be understood causally.49 However, his 
strategy requires all computational models to be rephrased 
to use his favorite mathematical model of computation, 
combinatorially structured finite-state machine (CFSA), and 
then matched to a causal structure of a physical system. 
But rephrasing has an important disadvantage: the states 
of an original model of computation may turn out to be 
causally inefficacious. This is why, in reply to Chalmers, I 
suggested that computation should be modeled directly in 
a mechanistically-adequate model of computation whose 
causal organization matches the organization of a physical 
mechanism, and appeal to standard explanatory norms.50 

The norms of mechanistic explanation, which should be 
followed when explaining a computational system causally, 
are sufficient to block triviality arguments. (For example, 
ascriptions will turn out to be extremely non-parsimonious, 
and will not offer any new predictions except the ones 
already known from a physical description of a system, 
which suggests that the model is based on so-called over-
fitting.) 

All in all, triviality arguments required theorists to spell out 
the account of physical computation much more clearly but 
are not a real danger to computationalism. This is not to say 
that more often than not, empirical evidence is insufficient 
to decide between vastly different hypotheses about the 
computational organization of a given mechanism. But 
again, this is not in any way special for computational 

hypotheses, since theories are generally underdetermined 
by evidence. 

CONCLUSION 
Let me wrap up. In this paper, I have listed and summarized 
a number of arguments against computationalism. The 
only objection that does not seem to be implausible at the 
first glance is the one that states that common sense is 
impossible or extremely difficult to implement on a machine. 
However, more and more commonsensical capacities are 
being implemented on machines. For example, in the 1990s 
and early 2000s, I used to work as a technical translator 
for software companies. We used to laugh at machine 
translation, and nobody would use it professionally. But it’s 
the machine that translates the Microsoft Knowledge Base, 
which was extremely difficult for professionals to deal with. 
While the quality of machine translation is still behind the 
best human beings for complex literary translations, it is no 
longer something that translators laugh at. We use machine 
translation at work and merely post-edit it. 

The point is that there’s no good reason to think that the brain 
is not a computer. But it’s not just a computer. It is, of course, 
physically embedded in its environment and interacts 
physically with it with its body, and for that, it also needs a 
peripheral nervous system51 and cognitive representations. 
But there’s nothing that denies computationalism here. 
Most criticisms of computationalism therefore fail, and 
sticking to them is probably a matter of ideology rather 
than rational debate. 
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ABSTRACT 
This paper reviews research in “predictive coding” that 
ultimately provides a platform for testing competing 
theses about specific dynamics inherent in consciousness 
embodied in both biological and artificial systems. 

1 INTRODUCTION 
We have been left with a big challenge, to articulate 
consciousness and also to prove it in an artificial agent 
against a biological standard. After introducing Boltuc’s 
h-consciousness in the last paper, we briefly reviewed 
some salient neurology in order to sketch less of a standard 
than a series of targets for artificial consciousness, “most­
consciousness” and “myth-consciousness.” With these 
targets on the horizon, we began reviewing the research 
program pursued by Jun Tani and colleagues in the isolation 
of the formal dynamics essential to either. In this paper, 
we describe in detail Tani’s research program, in order to 
make the clearest case for artificial consciousness in these 
systems. In the next paper, the third in the series, we will 
return to Boltuc’s naturalistic non-reductionism in light of 
the neurorobotics models introduced (alongside some 
others), and evaluate them more completely. 

1.1 PREDICTIVE CODING 
In this section, we will review a research program into 
artificial consciousness that demonstrates the potential for 
computational experiments to isolate the formal dynamics 
of consciousness including the sense of time. Our focus is 
on the capacity for agents like human beings to project and 
to act towards possible futures by reflecting on the past. 
Studies in biological cognition have set out this capacity in 
terms of “predictive coding.”2 With predictive coding, the 
results of actions—common “experience”—are integrated 
into an agent in terms of “prediction error.” 

Prediction error informs the agent about how far from an 
intended target a prior action has led it, with the agent’s 
implicit aim being the minimization of this error signal. That 
said, minimization of error is not absolute. Optimizing for 
long-term ends may result in a relative detachment from the 
immediate perceptual reality, and conversely overt attention 
on immediate rewards may result in mounting error over 
the long run. Because predictive coding makes this form 
of future-oriented proactive agency based on effortful past 
regression possible within a mathematically embodied 

agent, it offers a promising formal framework within which 
the relationship between the subjective mind and the 
objective world may be instantiated in an artificial agent. 

Predictive coding is an important development in artificial 
consciousness research in two important ways. One, it 
provides a direct way to model subjective intention within 
the objective world. And two, it provides an equally direct 
way to project back the reality of the objective world as 
perceived by and as consequent on the actions of embodied 
and embedded cognitive agents.3 The result is a fully 
accessible dynamical mirror into the operations essential 
to consciousness in more complex systems, a promise that 
merely biological approaches to the study of consciousness 
cannot match. Tani was the first to successfully instantiate 
predictive coding in artificial agents, e.g., robots, in a 
deterministic domain, i.e., where intended outcomes are 
stable attractors.4 Alternatively, Friston explored Bayesian 
predictive coding in a probabilistic domain and generalized 
it under the name of the “free energy minimization 
principle” (FEMP).5 

In the next section, we will briefly review a dynamic neural 
network model, the recurrent neural network (RNN),6 

because it is a basic component of contemporary intelligent 
systems, and central to Tani’s deterministic dynamics which 
is the subject of the subsequent section. This review should 
serve as a primer on the dynamic system’s approach to 
embodied cognition. After reviewing Tani and colleagues’ 
formulation using RNN models, we will examine Bayesian 
predictive coding as formulated by Friston and colleagues. 

2. PREDICTIVE CODING IN DYNAMIC NEURAL 
NETWORK MODELS 

2.1 THE RNN MODEL 
The essential characteristic of the RNN7 is that it can generate 
temporal sequence patterns as targets embedded in its 
internal dynamic structure. It “learns” to imitate exemplar 
sequence patterns, and when properly organized even 
to creatively compose its own8 by extracting underlying 
regularity. An example of an RNN is shown in Figure 1. 
This figure shows an RNN used in the predictive learning 
scheme to be described later (section 2.2). 

Figure 1. RNN model of 
predictive learning with 
teaching target. The 
dotted line represents a 
closed-loop copy from the 
output to the input. 

An RNN consists of a set of neural units including input 
units representing the input state, internal (context) units 
representing the internal state and output units representing 
the output state. These are variously interconnected by 
synaptic connectivity weights. These connections can 
be unidirectional, bidirectional, or recurrent. The time 
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Fig. 1 RNN model of predictive learning with teaching target. The dotted line 
represents a closed-loop copy from the output to the input.

An RNN consists of a set of neural units including input units representing the 
input state, internal (context) units representing the internal state and output
units representing the output state. These are variously interconnected by 
synaptic connectivity weights. These connections can be unidirectional,
bidirectional, or recurrent. The time development of each neural unit output
activation in discrete time can be written as:

𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡+1𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖 +𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (1-a)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖= f (𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) (1-b)

Where is the internal state of the ith neural unit at time step t, 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is its output
activation, 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is synaptic connection weight from the jth unit to the ith unit,

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is the bias of the ith unit. f() is a sigmoid function. The time development of

the neural activation of the whole network can generate different types of
dynamic attractor patterns depending on the synaptic weights adopted in the 
network. Fig.2 shows typical attractors including a fixed point attractor, a limit
cycle attractor, a limit torus, and chaotic attractor.

Fig. 1 RNN model of predictive learning with teaching target. The dotted line 
represents a closed-loop copy from the output to the input.
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units representing the output state. These are variously interconnected by 
synaptic connectivity weights. These connections can be unidirectional,
bidirectional, or recurrent. The time development of each neural unit output
activation in discrete time can be written as:
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𝑖𝑖𝑖𝑖 +𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (1-a)
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Where 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is the internal state of the ith neural unit at time step t, is its output
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𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is the bias of the ith unit. f() is a sigmoid function. The time development of

the neural activation of the whole network can generate different types of
dynamic attractor patterns depending on the synaptic weights adopted in the 
network. Fig.2 shows typical attractors including a fixed point attractor, a limit
cycle attractor, a limit torus, and chaotic attractor.

Fig. 1 RNN model of predictive learning with teaching target. The dotted line 
represents a closed-loop copy from the output to the input.

An RNN consists of a set of neural units including input units representing the 
input state, internal (context) units representing the internal state and output
units representing the output state. These are variously interconnected by 
synaptic connectivity weights. These connections can be unidirectional,
bidirectional, or recurrent. The time development of each neural unit output
activation in discrete time can be written as:

Where 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is the internal state of the ith neural unit at time step t, 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is its output
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the neural activation of the whole network can generate different types of
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network. Fig.2 shows typical attractors including a fixed point attractor, a limit
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development of each neural unit output activation in 
discrete time can be written as: 

𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡+1= ∑𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 +𝑏𝑏𝑏𝑏 (1-a) 
𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡= f (𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡) (1-b) 

𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡Where is the internal state of the ith neural unit at time 
𝑖𝑖𝑖𝑖step t, 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 is its output activation, wij is synaptic connection 

weight from the jth unit to the ith unit, bi is the bias of 
the ith unit. f() is a sigmoid function. Over time, the neural 
activation of the whole network can generate different 
types of dynamic attractor patterns depending on the 
synaptic weights adopted in the network. Figure 2 shows 
typical attractors including a fixed point attractor, a limit 
cycle attractor, a limit torus, and chaotic attractor. 

Figure 2. Four different 

types of attractors. (a) fixed 

point attractor, (b) limit 

cycle attractor, (c) limit 

torus characterized by two 

periodicities P1 and P2 which 

form an irrational fraction, 

and (d) chaotic attractor.
 

The simplest attractor is a fixed point attractor in which all 
dynamic states converge to a point (Fig. 2 (a)). The second 
one is a limit cycle attractor (Fig. 2 (b)) in which the trajectory 
converges to a cyclic oscillation pattern with constant 
periodicity. The third one is a limit torus that appears when 
there is more than one frequency involved in the periodic 
trajectory of the system and two of these frequencies form 
an irrational fraction. In this case, the trajectory is no longer 
closed and it exhibits quasi-periodicity (Fig. 2(c)). The fourth 
one is a chaotic attractor in which the trajectory exhibits 
infinite periodicity and thereby forms fractal structures 
(Fig. 2 (d)). 

These different types of attractor dynamics can account 
for the autonomous generation of different types of agent 
action patterns. For example, fixed point attractor dynamics 
account for a hand reaching movement, from an arbitrary 
hand posture to its end point, while limit cycle attractor 
dynamics account for a rhythmical hand waiving pattern 
with a certain periodicity, and chaotic attractor dynamics 
account for non-periodic, seemingly random movement. 

RNNs can learn to generate such attractor dynamics through 
predictive learning. Each specific attractor pattern can be 
developed in an RNN by optimizing the synaptic weights 
and biases through a process of error minimization. In 
predictive learning, the network receives current time step 
perceptual input and outputs a prediction of the next time 
step (see Fig.1). Error is computed between the predicted 
output and the target (e.g., teaching exemplar), and 
synaptic weights and biases are updated in the direction of 
minimizing this error using error back-propagation through 
time (BPTT).9 After learning, the RNNs internal dynamics 
converge on a stable pattern, and the learned attractor can 
be generated from a given initial state through “closed­
loop” (off-line) operation in which the predicted output of 

the current time step is copied to the input of the next time 
step in a closed-loop (see the dotted line in Fig.1). This 
closed-loop operation corresponds to mental simulation, 
as will be described later sections. 

An RNN can be regarded as a dynamical system with 
adaptive parameters including synaptic weights and biases 
which can be described in the following generalized form 

xt+1 = F(xt, w) (2a) 

yt+1 = G(xt+1, W) (2b) 

In these expressions, xt and yt represent the current 
internal state and the output state, respectively, and w 
stands for the adaptive parameter. The internal state xt is 
important, because it represents the current context or 
situation for the system as a whole and develops by means 
of an iterative learning process. The system can exhibit 
contextual information processing through which the 
output of the system reflects not merely the immediately 
perceived inputs but the context accumulated over past 
experiences of inputs. Formally speaking, this system 
embodies temporality, entrained according to patterns that 
extend beyond the immediate context and, as we shall see, 
reaches—even creatively, and inferentially—toward goal 
states. 

The conventional RNN model can learn to generate only a 
single attractor pattern except special cases of developing 
multiple attractors. So, a natural question arises: How can 
the model be advanced such that it can learn to generate 
multiple attractor patterns, each specific to a different 
context? This question motivated an investigation into the 
possibility of applying the framework of predictive coding 
in the advancement of RNN models, as described next. 

2.2 MIXRNNS AND RNNPB 
Tani and colleagues investigated how a network model 
can retrieve and generate a particular sequential pattern 
from long-term memory of multiple patterns. Two versions 
of RNN models resulted, namely a mixture of RNN experts 
(MixRNNs)10 and a recurrent neural network with parametric 
bias (RNNPB).11 MixRNNs use a local representation scheme, 
and RNNPBs use a distributed representation scheme, in 
order to learn to generate and to recognize sequences 
of primitive action patterns. Moreover, these movement 
patterns are temporal patterns requiring active self-
entrainment through online information by another’s live 
and more-or-less similarly embodied example, recalling the 
mechanism of “mirror neurons.”12 In this section, we look 
more closely at how the MixRNN and the RNNPB capture 
aspects of consciousness typically associated with more 
complex biological systems. 

MixRNNs13 consist of sets of local RNNs internally associated 
through gates where the global output of the whole 
network model is computed as the weighted sum of the 
gate opening ratio for all local RNN outputs (see Figure 3). 

During learning, local RNNs compete to predict the next 
perceptual state as the gate opens most for the local RNN 
with the least prediction error. Because the learning rate of 
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Figure 3. Description of MixRNNs. (a) Generation mode (b) 
recognition mode, and (c) segmentation of perceptual flow 
into a sequence of chunked sub-patterns by inferencing gate 
openings. 

each RNN is proportional to the gate opening ratio, the 
more that the gate of a particular RNN opens, the more this 
local RNN is able to learn the current perceptual sequence 
pattern. The goal of learning is to obtain optimal synaptic 
weights for all modular RNNs as well as optimal openings of 
the all gates at each time step, and by “optimal” we mean 
those which minimize the reconstruction error between the 
global output and the target output.14 Through a competitive 
learning process, i.e., error regression training with BPTT 
for the optimal gate opening sequence between RNNs, as 
well as for optimal synaptic weights in 
all local RNNs, each local RNN becomes 
an expert for a particular perceptual 
sequence pattern. Intuitively then, 
MixRNNs can learn a set of frequently 
apparent primitive patterns with each 
consolidated in a corresponding local 
RNN simply through the iterative and 
collective experience of those patterns. 

After learning, a MixRNN model 
can generate a particular intended 
perceptual sequence by opening the 
gate of the corresponding RNN expert 
(Fig. 3(a)). In this way, current gate 
openings represent the current top-
down intention designating the pattern 
to be generated. Additionally, MixRNNs 
can recognize a given perceptual 
sequence pattern through competition 
between local RNNs by reconstructing 
the target pattern with the least error by 
means of the error regression scheme 
optimizing the gate openings (Fig. 3 
(b), with synaptic weights fixed in this 
case). When error is minimal, a gate 
associated with a particular local RNN 
opens in a winner-take-all manner, and the target pattern 
is recognized as belonging to this expert RNN. In other 
words, the target pattern of the current perception can be 
recognized by means of reconstructing it in a particular 
local RNN with minimum error whereby the current gate 
opening states represent the inferred intention. 

When the currently perceived sequential pattern changes, 
gate opening is shifted toward minimizing prediction error 
arising at this moment. An important point here is that the 
continuous perceptual flow is segmented into chunks by 
means of gate openings during these moments. Tani and 
Nolfi argue that this suddenly required effort for minimizing 
the error by inferring appropriate gate openings should 
accompany momentary consciousness.15 Next, we look at 
a further advance on RNNs in this direction, the recurrent 
neural network with parametric bias, or RNNPB. 

The RNNPB16 is a single RNN model employing parametric 
bias (PB) units (see Figure 4). 

PB represents the current intention as it projects a particular 
perceptual sequential pattern onto the external world, 
analogous to the gate dynamics in MixRNNs. PB does this 
job by playing the role of bifurcation parameter modulating 
the dynamical structure of the RNN. 

In simple terms, an RNNPB learns to predict or generate 
a set of perceptual sequence patterns associated with 
corresponding PB vector values. During learning, the optimal 
synaptic weights for all different sequence patterns as well 
as the optimal PB vector value for each sequence pattern 
can be obtained. After learning, an RNNPB can generate a 
learned perceptual sequence pattern by adopting the PB 
with the corresponding vector value (Fig. 4(a)). It can also 
recognize a perceptual sequence pattern given as a target 
by inferring the optimal PB vector by way of which the 

target sequence can be reconstructed 
and output with the minimum error 
(Fig. 4(b)). Fig. 4(c) shows how the 
continuous perceptual stream can be 
segmented into a sequence of prior-
learned patterns in terms of attractor 
dynamics by tracking modulations in PB 
vector bifurcation parameters at each 
time step. 

In the end, switching between chunks 
in the RNNPB is analogous to the 
segmentation mechanism employed 
in MixRNNs which use gates between 
local RNNs to recruit the appropriate 
expert or combination of experts given 
immediate perceptual reality. One 
limitation common to both is that each 
consists of a single level. But, when 
they are organized into a hierarchy, 
they can exhibit higher-order cognitive 
competencies such as creative 
compositionality. 

Such an extension is the subject of the 
next section. 

2.3 FUNCTIONAL HIERARCHY IN THE MTRNN 
Both MixRNNs and the RNNPB have been developed 
into multiple-level architectures.17 The basic idea is that 
higher levels attempt to control lower levels by projecting 
control parameters (such as gate openings or PB vector 
modulations) onto lower levels based on current higher 

Figure 4. Description of RNNPB. (a) 
Generation mode, (b) recognition mode, 
and (c) segmentation of perceptual flow 
by PB vector into chunked patterns. 
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Fig. 5 MTRNN model. (a) MTRNN architecture consisting of 3 levels, and (b) its
top-down compositional generation of different intended actions.

The MTRNN shown in Fig. 5(a) consists of 3 subnetworks (slow, intermediate,
fast dynamics networks; note that the numbers of levels can vary depending on 
application) each consisting of leaky integrator neural units that are assigned 
different time constants. The activation dynamics of a leaky integrator neuron 
can be described as a differential equation:

where 𝜏𝜏𝜏𝜏 represents the time constant of the neuron. When 𝜏𝜏𝜏𝜏 is set with a larger
value, the time development of the neural activation becomes slower. With a 
smaller value, it becomes faster. Eq.3 is integrated over time using the
difference method. The fast dynamics network in the lower level consists of two 
modular RNNs, one for predicting the proprioceptive state in the next step from

 

 
 
 
 
 
 

 
 
 
 

  
 

 
 

   
 

 
 

  

   
   

  
  

 

order intention. And in turn, during normal operation the 
prediction error generated against the perceptual reality 
in the lower level is back-propagated to the higher level, 
where the control parameters for the lower level as well 
as the intention state in the higher level is adjusted in the 
direction of minimizing the error, i.e., by conforming to that 
state which would have resulted in least error.18 

Tani and Nolfi demonstrate that hierarchically organized 
MixRNNs can learn to generate and recognize a set of 
sequential combinations of movement primitives in a 
simulated indoor robot navigation space.19 The analysis 
showed that a set of chunks related to movement primitives 
such as turning to the right/left at a corner, going straight 
along a corridor, and passing through a T-branch developed 
in local lower level RNNs, while different sequential 
combinations of these primitives developed in the higher-
level RNNs, e.g., traveling through different rooms. When 
the simulated robot, for example, turns left at a corner 
from a straight corridor in a particular room, the continuous 
perceptual flow of its range sensor is segmented into the 
corresponding two movement primitives in the lower level. 
On the other hand, when it travels from a familiar room to 
another, segmentation related to the room transition can 
take a place in the higher level. 

Tani achieved similar results in a real robotic arm with a 
similarly hierarchically organized RNNPB, which was able 
to deal with primitives and their sequential combinations 
during a simple object manipulation task. It is important 
to note that what begins as raw experience of the 
continuous perceptual flow becomes a manipulable object 
for the higher level after segmentation into chunks. 
Thus, the hierarchical structure adopted by Tani enables 
the objectification of perceptual experience, as will be 
described in greater detail later.20 

Building on this work in hierarchically organized RNNs, 
Yamashita and Tani21 demonstrated the learning of 
compositional action generation by a humanoid robot 
employing a novel multiple timescale RNN (MTRNN) 
(Figure 5). This MTRNN model uses multiple timescale 
constraints, with higher-level activity constrained by 

Figure 5. MTRNN model. (a) MTRNN architecture consisting 
of 3 levels, and (b) its top-down compositional generation 
of different intended actions. 

slower timescale dynamics, and with lower level activity 
proceeding according to faster timescale dynamics. The 
basic idea is that higher-level information processing 
becomes more abstract as constrained by its slower 
dynamics, whereas lower level information processing 
is more sensitive to immediate details as constrained by 
faster dynamics. 

The MTRNN shown in Fig. 5(a) consists of 3 subnetworks 
(slow, intermediate, fast dynamics networks; note that the 
numbers of levels can vary depending on application) each 
consisting of leaky integrator neural units that are assigned 
different time constants. The activation dynamics of a 
leaky integrator neuron can be described as a differential 
equation: 

̇ 𝚤𝚤𝚤𝚤 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝜏𝜏𝜏𝜏𝑢𝑢𝑢𝑢 = −𝑢𝑢𝑢𝑢 + ∑𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (3a) 

⁄𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 1 (1 + 𝑒𝑒𝑒𝑒 −𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖 ) (3b) 

where τ represents the time constant of the neuron. When 
τ is set with a larger value, the time development of the 
neural activation becomes slower. With a smaller value, 
it becomes faster. Eq.3 is integrated over time using the 
difference method. The fast dynamics network in the lower 
level consists of two modular RNNs, one for predicting the 
proprioceptive state in the next step from current joint angle 
information, and the other for predicting low dimensional 
visual features in the next time step from current visual 
information. 

During these humanoid robot learning experiments, the 
MTRNN was trained to generate a set of different visuo­
proprioceptive trajectories corresponding to supervised 
targets by optimizing connectivity weights as well as 
the intention state corresponding to each trajectory. The 
intention state here is analogous to the PB value in the 
RNNPB, and corresponds with the initial states of neural 
units in the slow dynamics network of the MTRNN (see Fig. 
5(a)). When learning begins, for each training sequence the 
initial state of the intention units is set to a small random 
value. The forward top-down dynamics initiated with this 
temporarily set initial state generates a predictive sequence. 
The error generated between the training sequence and 
the output sequence is back-propagated along the bottom-
up path through the subnetworks with fast and moderate 
dynamics to the subnetwork with slow dynamics. This 
back-propagation is iterated backward through time steps 
via recurrent connections, whereby the connection weights 
within and between these subnetworks are modified in the 
direction of minimizing the error signal (at each time step). 
The error signal is also back-propagated through time steps 
to the initial state of the intention units, where these initial 
state values are modified. 

Here, we see that learning proceeds through dense 
interactions between the top-down regeneration of training 
sequences and the bottom-up regression through these 
sequences by way of error signals, just as in the RNNPB. 
And as a result of this interaction, the robot learns a set of 
behavior primitive patterns such as reaching for an object, 
lifting the object up and down, or moving it left and right. 
These develop as distributed activation patterns in fast 
and intermediate dynamics networks while various control 
sequences for manipulating these primitive constructs 
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represent the estimated accuracy of a prediction, as a form of second-order
prediction.56

Now, the exact formula for representing this idea is derived from the principle of
free energy maximization (Friston, 2005). Free energy can be computed by
addition of Gibbs energy part G and Entropy part E as:

F = G + E (4-a)
Then, F can be written in the following form.

Where 𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧) represents t e pr or str on o  t ntent on state, 𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃൫𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧൯
represents joint probability distribution of observation x and the intention state Z
parameterized by parameterθ. Then, free energy F can be transformed as:

F = න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃(𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 − න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋,𝑍𝑍𝑍𝑍;𝜃𝜃𝜃𝜃)]− 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧)]
= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋,𝑍𝑍𝑍𝑍;𝜃𝜃𝜃𝜃) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑍𝑍𝑍𝑍|𝑋𝑋𝑋𝑋;𝜃𝜃𝜃𝜃) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑍𝑍𝑍𝑍|𝑋𝑋𝑋𝑋;𝜃𝜃𝜃𝜃) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧)]
= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋;𝜃𝜃𝜃𝜃)]− 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾[𝑙𝑙𝑙𝑙(𝑍𝑍𝑍𝑍)||𝑃𝑃𝑃𝑃(𝑍𝑍𝑍𝑍|𝑋𝑋𝑋𝑋;𝜃𝜃𝜃𝜃)] (4-b)

5 It is important here to bear in mind that these are systems enabling agency,
and so an action that ends very far from a target is much worse than one which 
ends close enough. It is not as innocuous as simply getting something wrong. If
variance is high, then a prediction which hits its target is extremely accurate.
Such that in the real world it may not be believed, e.g. “too good to be true.”
However, when variance is high, it also means that average values do not
effectively inform action. Acting on the basis of an average will always in the long
run result in error proportional to variance. Once this is understood, then an 
agent may apply estimated variance in the prediction of optimal next actions, as
this value may inform the agent what to expect given prior instances, reducing
error over the long run.
6 This formal model recalls Plato’s concern with the science of science that is
ultimately knowledge of good and bad, a second-order understanding that for
example directs sight but never sees a thing, c.f. Charmides, as set out in the third
paper.

represent the estimated accuracy of a prediction, as a form of second-order
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free energy maximization (Friston, 2005). Free energy can be computed by
addition of Gibbs energy part G and Entropy part E as:

F = G + E (4-a)
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variance is high, then a prediction which hits its target is extremely accurate.
Such that in the real world it may not be believed, e.g. “too good to be true.”
However, when variance is high, it also means that average values do not
effectively inform action. Acting on the basis of an average will always in the long
run result in error proportional to variance. Once this is understood, then an 
agent may apply estimated variance in the prediction of optimal next actions, as
this value may inform the agent what to expect given prior instances, reducing
error over the long run.
6 This formal model recalls Plato’s concern with the science of science that is
ultimately knowledge of good and bad, a second-order understanding that for
example directs sight but never sees a thing, c.f. Charmides, as set out in the third
paper.

The last form obtained in (4-b) is equal to the lower bound, L which is well known 
in machine learning field. The first term represents the likelihood of
reconstructing X by parameterθand the second term represents minus KL
divergence between the prior probability distribution of the intention state and 
the posterior distribution after observation of X with parameter θ. It can be seen
that maximizing the free energy is equal to maximization of the lower bound.
This lower bound L can be rewritten as:

where 𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠,𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 is the ith dimension of the prediction output at time step t in the sth
sequence, 𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠,𝑡𝑡𝑡𝑡,𝚤𝚤𝚤𝚤തതതതതത is its teaching target, and 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 is its estimated variance, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 is
ith dimension of the intention state for sth sequence, and 𝛿𝛿𝛿𝛿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is its predefined 
deviation.

The generation, recognition and learning of complex action sequences are 
possible through the maximization of free energy in the probabilistic domain just
as the minimization of error performs similarly in the deterministic domain.
According to the first term in the right-hand side of equation (4-c), the likelihood
part can be maximized if variance is taken to be large even if the prediction 
square error is large. In this case, the agent has no reliable guide to anticipated 
future situations, so it simply relaxes any expectation of oncoming events. This
would correspond with a reactive posture in a biological consciousness, for
example. On the other hand, the likelihood might be small even though the 
prediction square error is small if the estimated variance is smaller than reality.
In this case, an agent acts from intentions as if ends are predetermined, e.g. as if
he has plotted all the necessary dimensions and their internal deviations so that
action is facilitated and success presumed guaranteed. But, the agent ends up 
wrong about this, and suffers the correction. In human experience, having failed 
to adequately account for the world while having proceeded with laid plans in 
confidence is called “surprise”. Similarly, according to Friston’s free energy
maximization principle (FEMP), the prediction square error divided by estimated 
variance represents the degree of surprise with interesting implications for
inquiry into consciousness. For one thing, the measure of surprise may correlate
with a measure of consciousness as the top-down accommodation of perceptual
inputs at each time step.

 

 

 

   

    
  

 

 

  

    
  

 

  

   

  

      

                                                   
  

 
    

  
  

   
   

 
    

  

  
  

   
 

   

    
  

 

 

  

    
  

 

  

   

  

      

                                                   
  

 
    

  
  

   
   

 
    

  

  
  

   
 

 
   

  
 

   
   

 

    

   
   

    
  

  
   

  
   

  
 

 
     

  
   

 
 

 

  

  
 

develop in the slow dynamics network (according to its 
initial sensitivity characteristics, see Fig. 5 (b)). 

What explains the success of these models in performing 
such complex cognitive tasks? In the MTRNN, neural 
activity output from the higher level plays the role of 
bifurcation parameter for the lower level, like the PB vector 
in the RNNPB. Building from this work, Yamashita and 
Tani concluded that the decomposition of complex visuo­
proprioceptive sequences into sequences of reusable 
primitives is achieved within this functional hierarchy due 
to subnetwork timescale differences.22 Further experiments 
by Nishimoto and Tani and Arie and colleagues showed 
that MTRNNs can not only generate actual movements, but 
also diverse mental simulations of various intention states 
by performing closed-loop look ahead (so-called “off­
line”) prediction.23 So, the question now becomes how to 
understand such functional hierarchies. 

The development of functional hierarchies is captured 
in a well-known concept central to the study of complex 
adaptive systems, “downward causation,” the causal 
relationship from global to local parts of a system.24 

A functional hierarchy develops by means of upward 
causation in terms of collective neural activity, both in 
forward activation dynamics and in error back-propagation. 
In the other direction, this development is subject to 
downward causation in terms of timescale difference, 
network topology, and environmental interaction. Note 
that these are strictly deterministic features of the system. 
Target conditions are determined. Current states are 
determined, and thereby optimal sequences of action 
are inferred. Next, we will look at an effort to articulate 
these temporal dynamics nondeterministically, in Friston’s 
Bayesian predictive coding scheme formulated according 
to the free energy minimization principle. 

3. THE FREE ENERGY MINIMIZATION PRINCIPLE 
From the subjective perspective of an agent in the world, 
phenomena may be better described probabilistically than 
deterministically. Where upcoming anticipated optimal 
conditions are not pre-determined or perhaps even pre­
determinable, the aforementioned models by Tani and 
colleagues can be extended into the probabilistic domain, 
as Friston has done.25 Friston’s main idea is to predict the 
next time step’s perceptual states in terms both of their 
averages and their variances (or estimated accuracy). The 
average is a value arrived at according to prior instances, 
and actions undertaken on the basis of averages succeed 
best when deviations from the average are minimal. 
Variance, on the other hand, is a measure of the amount 
of difference between instances, and so can represent the 
accuracy of a prediction. Specifically, it can represent the 
estimated accuracy of a prediction, as a form of second-
order prediction.26 

Now, the exact formula for representing this idea is derived 
from the principle of free energy minimization.27 Negative 
free energy F can be computed by the addition of Gibbs 
energy G and Entropy E: 

F = G + E (4-a) 

Then, F can be written in the following form. 

F = න 𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃 (𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 − න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 
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Where q(z) represents the prior distribution of the intention 
state, Pθ (x, z) represents joing probability distribution of 
observation x and the intention state Z parameterized 
by parameter θ. Then, negative free energy F can be 
transformed as: 

F = න 𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃 (𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 − න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 

= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞 [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑋𝑋𝑋𝑋, 𝑍𝑍𝑍𝑍 ; 𝜃𝜃𝜃𝜃 )] − 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞 [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧)] 
= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞 [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑋𝑋𝑋𝑋, 𝑍𝑍𝑍𝑍 ; 𝜃𝜃𝜃𝜃 ) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑍𝑍𝑍𝑍 |𝑋𝑋𝑋𝑋; 𝜃𝜃𝜃𝜃 ) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑍𝑍𝑍𝑍 |𝑋𝑋𝑋𝑋; 𝜃𝜃𝜃𝜃 ) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧)] 
= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞 [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑋𝑋𝑋𝑋; 𝜃𝜃𝜃𝜃)] − 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾[𝑙𝑙𝑙𝑙(𝑍𝑍𝑍𝑍 )||𝑃𝑃𝑃𝑃 (𝑍𝑍𝑍𝑍 |𝑋𝑋𝑋𝑋; 𝜃𝜃𝜃𝜃 )] (4-b) 

The last form obtained in (4-b) is equal to the lower bound, 
L which is well known in the machine learning field. The 
first term represents the likelihood of reconstructing X 
by parameter θ and the second term represents minus 
KL divergence between the prior probability distribution 
of the intention state and the posterior distribution 
after observation of X with parameter θ. It can be seen 
that maximizing the negative free energy is equal to 
maximization of the lower bound. This lower bound L can 
be rewritten as: 

) + ൫𝑜𝑜𝑜𝑜തത𝑠𝑠𝑠𝑠ത,ത𝑡𝑡𝑡𝑡ത,𝚤𝚤𝚤𝚤ത−𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠 ,𝑡𝑡𝑡𝑡 ,𝑖𝑖𝑖𝑖൯
2 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ) + ൫𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 ,𝑖𝑖𝑖𝑖൯
2 

L = ∑ ∑ ∑ 𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 −1/2(ln(𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 ) 𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 2 )+ ∑ ∑ −1/2(ln(𝑣𝑣𝑣𝑣 (4-c) 
𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠 ,𝑖𝑖𝑖𝑖 𝛿𝛿𝛿𝛿 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

where o  is the ith dimension of the prediction output ats,t,i
time step t in the sth sequence, o  is its teaching target,s,t,i
and vsi is its estimated variance, ISsi  is the ith dimension 
of the intention state for the sth sequence, and δIS is its 
predefined deviation. 

The generation, recognition, and learning of complex 
action sequences are possible through the maximization of 
negative free energy in the probabilistic domain just as the 
minimization of error performs similarly in the deterministic 
domain. According to the first term on the right-hand side 
of equation (4-c), the likelihood part can be maximized if 
variance is taken to be large even if the prediction square 
error is large. In this case, the agent has no reliable guide 
to anticipated future situations, so it simply relaxes any 
expectation of oncoming events. This would correspond 
with a reactive posture in a biological consciousness, for 
example. On the other hand, the likelihood might be small 
even though the prediction square error is small if the 
estimated variance is smaller than reality. In this case, an 
agent acts from intentions as if ends are predetermined, 
e.g., as if he has plotted all the necessary dimensions 
and their internal deviations so that action is facilitated 
and success presumed guaranteed. But, the agent ends 
up wrong about this, and suffers the correction. In human 
experience, having failed to adequately account for the 
world while having proceeded with laid plans in confidence 
is called “surprise.” Similarly, according to Friston’s free 
energy minimization principle (FEMP), the prediction 
square error divided by estimated variance represents the 
degree of surprise with interesting implications for inquiry 
into consciousness. For one thing, the measure of surprise 
may correlate with a measure of consciousness as the top-
down accommodation of perceptual inputs at each time 
step. 
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perceptual sequence. The likelihood part exists to minimize the square error
divided by estimated variance at each step. This means that the prediction error
at a particular time step is pressured to be minimized more strongly when its
estimated variance is smaller. Otherwise, the pressure to minimize prediction 
error is less.

Another development is that the intention state 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 in the part of KL divergence
between the prior probability distribution of the intention state and the posterior
distribution in Eq. (4-c) is now represented by the initial states of context units in 
all levels. The KL divergence part in Eq. (4-c) puts specific probabilistic
distribution constraints on optimal initial states for all sequences with the 
parameter 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2 . If is set with a large value, the distribution of initial states
becomes wide. Ot wise, it becomes tight. By maximizing the free energy
during the learning process, optimal connectivity weights common to all teaching
sequences, probability distribution of the initial state for each teaching target
sequence (recognition density in (Friston, 2010)), and the estimates of
time-dependent variance for each sequence are obtained.

Fig. 6 (a) shows the architecture of the S-MTRNN. The difference from the 
original MTRNN is that the S-MTRNN contains output units for predicting
variances for all sensory dimensions at each time step.
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According to the second term on the right-hand side of Eq. 
(4-c), the distance from the prior to the posterior can be 
minimized when the intention state of each sequence is 
distributed by following the Gaussian distribution with the 
predefined deviation δIS. The recognition of the intention 
in FEMP is to infer the optimal probabilistic distribution of 
the intention state for a given target sequence, maximizing 
negative free energy rather than infer a single optimal 
value minimizing the prediction error as in the RNNPB. 
Instantiating such a process in a model dynamic system is 
subject of the next section. 

3.1 THE STOCHASTIC MTRNN MODEL 
Because the original FEMP by Friston28 was not implemented 
in any trainable neural network models, it was not clear how 
maximizing negative free energy in Eq.(4-a) might lead to 
successful learning of internal predictive models extracted 
from perceptual sequence data experienced in reality. 
For this reason, Murata and colleagues proposed a novel 
dynamic neural network, referred to as the stochastic-MTRNN 
(S-MTRNN) model.29 This model incorporates Friston’s (2010) 
FEMP into the deterministic learning model described in 
the last section, the MTRNN. The S- extends the original as 
it earns to predict subsequent inputs taking into account 
not only their means but also their “variances,” or range of 
anticipated values. This means that if some segments of 
input sequences are more variable than others, then the 
time-dependent variances over these periods become larger. 
On the other hand, if some parts are less fluctuated, their 
variances are smaller. In effect, then, the S-MTRNN predicts 
the predictability of its own prediction for each dimension 
of the input sequences in a time-dependent manner. When 
variances are estimated as zero, then the S-MTRNN becomes 
a deterministic dynamic system like the original MTRNN, 
i.e., it anticipates zero variance. Therefore, it can be said 
that—depending on context—S-MTRNNs can develop either 
deterministic or stochastic dynamics, at which point arises 
the notion of probability and so some valuation of possible 
future states accordingly. 

The model operates by means of maximizing the negative 
free energy described in Eq. (4) in all phases of learning, 
recognizing, and generating perceptual sequence patterns. 
An important development in the current model is that vs,i 
as estimated variance in the likelihood part of Eq. (4-c) is 
changed to a time variable valuable v  because its estimates,t,i
can change at each time step of a perceptual sequence. The 
likelihood part exists to minimize the square error divided 
by estimated variance at each step. This means that the 
prediction error at a particular time step is pressured to 
be minimized more strongly when its estimated variance 
is smaller. Otherwise, the pressure to minimize prediction 
error is less. 

Another development is that the intention state ISs,i in the part 
of KL divergence between the prior probability distribution 
of the intention state and the posterior distribution in Eq. 
(4-c) is now represented by the initial states of context units 
in all levels. The KL divergence part of Eq. (4-c) puts specific 
probabilistic distribution constraints on optimal initial states 
for all sequences with the parameter 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼2𝐼𝐼𝐼𝐼 . If 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼2𝐼𝐼𝐼𝐼 is set with 

herher a large value, the distribution of initial states becomes 
wide. Otherwise, it becomes tight. By maximizing the 

negative free energy during the learning process, optimal 
connectivity weights for all teaching sequences, the 
probability distribution of the initial state for each teaching 
target sequence,30 and the estimates of time-dependent 
variance for each sequence are obtained. 

Figure 6 (a) shows the architecture of the S-MTRNN. The 
difference from the original MTRNN is that the S-MTRNN 
contains output units for predicting variances for all sensory 
dimensions at each time step. 

Figure 6. S-MTRNN model and the robotic experiment with the 
model. (a) The S-MTRNN contains additional output units for 
predicting variances for all sensory dimensions at each time step. 
(b) The “self-robot” learns to generate cooperative behaviors with 
the “other-robot.”31 

The next section reviews how the S-MTRNN performs in a 
particular robot task in the probabilistic domain. 

3.2 LEARNING TO COOPERATE WITH OTHERS 
A robotic experiment was conducted utilizing the S-MTRNN 
described in the preceding section (see Fig. 6).32 The 
objective of this robot experiment was to examine how one 
robot can generate “cooperative” behavior by adapting 
to another robot’s behavior, even though its predictions 
occasionally fail. The experiment used two “NAO” humanoid 
robots. One NAO robot, the “self-robot,” attempted to 
generate cooperative behaviors with the “other” NAO 
robot. The other-robot’s behavior was pre-programmed. 
The self-robot was controlled by the S-MTRNN model. 

During the experiment, the other-robot repeated movement 
patterns and the self-robot was tutored to generate 
corresponding “cooperative” behaviors as it perceived 
the other’s object movements. In order to do this, the self-
robot needed to proactively initiate its own arm movement 
before sensing the actual movement initiated by the other-
robot. The self-robot acquired this cooperative behavior 
skill through direct tutoring from the experimenter.33 The 
self-robot observed the other-robot perform sequences of 
five movements, moving a colored object either to the left 
or to the right in all possible combinations (25 sequences). 
Then, the self-robot was required to generate cooperative 
behaviors by simultaneously moving its arm in the same 
direction as the other-robot. As it generated movements 
and adjusted to the other-robot’s movements, differences 
emerged in the dynamics involved in predicting as well as 
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perceptual sequence. The likelihood part exists to minimize the square error
divided by estimated variance at each step. This means that the prediction error
at a particular time step is pressured to be minimized more strongly when its
estimated variance is smaller. Otherwise, the pressure to minimize prediction 
error is less.

Another development is that the intention state 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 in the part of KL divergence
between the prior probability distribution of the intention state and the posterior
distribution in Eq. (4-c) is now represented by the initial states of context units in 
all levels. The KL divergence part in Eq. (4-c) puts specific probabilistic
distribution constraints on optimal initial states for all sequences with the 
parameter 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2 . If is set with a large value, the distribution of initial states
becomes wide. Ot wise, it becomes tight. By maximizing the free energy
during the learning process, optimal connectivity weights common to all teaching
sequences, probability distribution of the initial state for each teaching target
sequence (recognition density in (Friston, 2010)), and the estimates of
time-dependent variance for each sequence are obtained.

Fig. 6 (a) shows the architecture of the S-MTRNN. The difference from the 
original MTRNN is that the S-MTRNN contains output units for predicting
variances for all sensory dimensions at each time step.

 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

  
   

   
 

    
 

 
  

 
   

 
   

      
   

 

    
   

 

generating behavior between the two conditions of the 
wide and narrow initial states. The following explains how 
we tested these results in greater detail. 

During the test phase of the experiment, the S-MTRNN was 
trained with 25 visuo-proprioceptive (VP) sequences during 
the tutoring process. This training was repeated twice, 
once with a small value for 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼2𝐼𝐼𝐼𝐼 and then again with a large 

her value in order to generate a narrow initial state distribution 
(Narrow-IS) and a wide initial state distribution (Wide-IS), 
respectively. Other-robot object movement (either to the 
left or to the right) was randomly determined from amongst 
the same 25 sequences so that the self-robot (S-MTRNN) 
would be unable to predict next movements reliably. 

After training, closed-loop generation of “mental” imagery 
was performed for both wide and narrow training cases 
(i.e., offline rehearsal). During closed-loop operation, 
Gaussian noise corresponding to the estimated variance at 
each step was applied to the feedback from the previous 
step prediction output, and was input to the current step 
(see Figure 7 (a)). 

Figure 7. Generation of mental imagery via closed loop. (a) Closed-
loop generation by S-MTRNN, generated sequences (b) in Narrow-IS 
case and (c) in Wide-IS case.34 

In this way, mental imagery increasingly fluctuates as 
uncertainty of a prediction, i.e., the estimated variance, 
increases. In the example pictured in Fig. 7, the initial 
states were set with the values obtained upon learning 
the “RRLLR” trial sequence as performed by the other-
robot. Fig. 7 (b) and (c) illustrate mental imagery in terms 
of prediction of VP sequences associated with estimated 
variance and internal neural activities in the fast and the 
slow subnetworks as generated by the S-MTRNNs trained 
under both Narrow-IS or Wide-IS conditions. In the Narrow-
IS case, diverse decision sequences were generated even 
though all trials began from the same initial state. As the 
figure shows, estimated variance sharply peaks at decision 
points, but remains almost zero at other time steps. This 
implies that during training the S-MTRNN develops action 
primitives for moving left or right as two distinct chunks, 
and employs a probabilistic switching mechanism at 
decision points. 

On the other hand in the Wide-IS case, the same decision 
sequence was repeatedly generated for the same given 
initial state. Fig. 7 (c) shows that the VP sequence for 
“RRLLR” was generated which seemed to be mostly the 

same as the target VP sequence. Here, it is important 
to note that the variance is estimated as almost zero for 
all steps including at decision points. This implies that 
mental imagery is generated as a deterministic predictive 
dynamics in the Wide-IS condition. Interestingly, for more 
than 20 branching instances before finally converging to 
cyclic branching, the robots’“mental imagery” (predictive 
dynamics) of next-movements was generated pseudo-
randomly by means of transient chaos that developed in 
the slow dynamics part in the model network. This result 
is analogous to that of Namikawa et al., where complete 
chaos (with a positive Lyapunov exponent) instead of 
transient chaos appeared in the neural dynamics of an 
MTRNN.35 

In the end, neural activity internal to the Narrow-IS and Wide-
IS systems was quite different. In the Narrow-IS case, the 
neural activities in both the slow and the fast subnetworks 
showed the same values at all decision points. In the Wide-
IS case, slow and fast neurons exhibited different activation 
patterns at each decision point through which the system 
was able to attempt to predict the subsequent move, left or 
right. There appears to be no such bias in activity at decision 
points in the Narrow-IS case, whereas there are top-down 
predictive biases imposed by specific top-level neural 
activation patterns at decision points in the Wide-IS case. 

Let’s look more closely at how the self-robot interacted 
with the other robot using the network trained in these two 
conditions, Wide-IS and Narrow-IS. Starting with arbitrary 
initial states, S-MTRNN generated one-step predictions for 
subsequent VP states upon perceiving current visual states 
via open-loop generation, while the other robot randomly 
moved a colored object sequences of five (see Figure 8 (a)). 

Figure 8. The results of the self-robot interacting with the other-
robot by open-loop generation. (a) The scheme of the open-loop 
generation, (b) a sequence generated by the network trained with 
the Narrow-IS condition and (c) with the Wide-IS condition.36 

Fig. 8 (b) and (c) show the results of open loop processing 
with the self-robot reacting to the other-robot as it 
generated the “RRLR” sequence for the Narrow-IS and the 
Wide-IS cases, respectively. Here, we observe that one-
step prediction of VP states in the Narrow-IS case is quite 
successful, generating only a small error at each decision 
point. In contrast, one-step prediction in the Wide-IS case 
is much worse. In fact, the prediction error is significantly 
large at many decision points. Interestingly, at this juncture 
of the trials, the movement of the self-robot became erratic. 
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determined simply by following the other-robot by means of sensory reflex
without any top-down bias.7 In contrast, in the Wide-IS case, the top-down bias
of internal neural activity at decision points is too strong to be modified by
sensory input and incorrect movements are initiated and carried through.

3.3 Introducing bottom-up error regression

Next, consider an experiment that examines the effects of introducing an 
additional mechanism of bottom-up error regression into the learned neural
dynamics during the course of behavior generation. This is a modified model
which maximizes the likelihood LHreg for the time window of the immediate past
by modifying the neural activation profile in this past window while fixing the 
connectivity weights (Fig. 9 (a)) as shown in Eq. (5).

where the time window is defined from t-W to t at the current time step and the 
activation states of the slow units at time step t-W which is the onset of the 
window is updated by back propagating the error signal generated. This error 
regression in terms of updating the activation state at the onset of the window
and forward computation through the window is iterated multiple epochs during
each time step in behavior generation. Again, as shown in Eq. 5, error 
back-propagates more strongly when the estimated variance (as the square 
error divided by the variance) is smaller.8 An intuitive explanation is that in this
scheme the internal representation in the immediate past window is rewritten for
the sake of maximizing the likelihood for the on-going perception.

7 Recall that the slow and fast networks showed the same dynamics at each 
point.
8 In terms of human experience, it feels worse being wrong when sure that he/she 
is right than when it is a recognized matter of chance.

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 

   
 

 
  

    
 

 
  

 

  
 

  
     

 
   

  
 

 

                                                   

 
  

 
 
 

 
 
 
 

For example, in the fourth decision as illustrated in Fig. 8 
(c), the self-robot moved its arm in the direction opposite 
to that of the other robot. And, although the self-robot 
seemed to try to follow the movements of the other-robot, 
its movements were significantly delayed. 

The difference observed between the Wide-IS and Narrow-
IS cases is best understood in terms of the different neural 
dynamic structures developed in these cases. In the case 
of the probabilistic dynamic structure developed in the 
Narrow-IS case, the behavior of moving either to the left 
or to the right is determined simply by following the other-
robot by means of sensory reflex without any top-down 
bias.37 In contrast, in the Wide-IS case, the top-down bias 
of internal neural activity at decision points is too strong to 
be modified by sensory input and incorrect movements are 
initiated and carried through. 

3.3 INTRODUCING BOTTOM-UP ERROR 
REGRESSION 

Next, consider an experiment that examines the effects of 
introducing an additional mechanism of bottom-up error 
regression into the learned neural dynamics during the 
course of behavior generation. This is a modified model 
which maximizes the likelihood LHreg for the time window 
of the immediate past by modifying the neural activation 
profile in this past window while fixing the connectivity 
weights (Fig. 9 (a)) as shown in Eq. (5). 

𝑡𝑡𝑡𝑡 ) + ൫𝑜𝑜𝑜𝑜തത𝑠𝑠𝑠𝑠ത,ത𝑡𝑡𝑡𝑡ത,𝚤𝚤𝚤𝚤ത−𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠 ,𝑡𝑡𝑡𝑡 ,𝑖𝑖𝑖𝑖൯
2 
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∑𝑖𝑖𝑖𝑖 −1/2(ln(𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠,𝑡𝑡𝑡𝑡 ,𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠 ,𝑡𝑡𝑡𝑡 ,𝑖𝑖𝑖𝑖 

) (5) 

where the time window is defined from t-W to t at the 
current time step and the activation states of the slow units 
at time step t-W (which is the onset of the window) are 
updated by back propagating the error signal generated. 
This error regression in terms of updating the activation 
state at the onset of the window and forward through the 
window is iterated multiple epochs during each time step 
in behavior generation. Again, as shown in Eq. 5, error back-
propagates more strongly when the estimated variance 
(as the square error divided by the variance) is smaller.38 

An intuitive explanation is that in this scheme the internal 
representation in the immediate past window is rewritten 
for the sake of maximizing the likelihood for the ongoing 
perception. 

Fig. 9 (b) shows an example of developments during on-
line behavior generation in the trained Wide-IS network 
using the present error regression scheme. 

Clearly, neural activity in the gray area changes in a 
discontinuous manner with the generation of a sharp peak 
in prediction error only upon encountering unpredicted 
action by the other even though this error was rapidly 
reduced. Note that this sharp peak in prediction error is 
larger than that generated during on-line prediction in 
the case of the Narrow-IS as shown in Fig. 8 (b). In short, 
modulating higher-level neural activity by using error 
regression caused drastic changes in lower-level network 
activity including sensory predictions, and in this way 
prediction errors were rapidly minimized. Ultimately thus, 
the self-robot was able to re-situate its behavioral context 

Figure 9. The results of 
on-line interaction using 
the error regression 
mechanism. (a) The on-
line error regression 
scheme, (b) a sequence 
generated by the 
network trained with the 
Narrow-IS condition.39 

immediately after encountering unpredictable events 
through dense interactions between top-down intentional 
prediction and bottom-up recognition of actual results. 

How can we interpret these experimental results? First, 
let us summarize what we have just seen. In the Narrow-
IS condition, probabilistic network dynamics develop 
generating actions in a sensory reflex manner. In contrast, 
proactive behaviors pursuant from deterministic predictions 
of next actions develop from the Wide-IS condition. It can 
be said that the Narrow-IS condition develops only weak 
top-down prior states while the Wide-IS condition develops 
strong top-down prior states. During the interaction of the 
self robot with the other robot, the self robot trained under 
the Narrow-IS condition could easily follow the action 
sequences arbitrarily determined by the other robot because 
it simply reacted to sensory inputs, with neural activity at 
decision points. On the other hand in the Wide-IS condition, 
the self-robot could not follow the action sequences of the 
other robot according to sensory inputs, because the top-
down bias originating from the initial state was too strong. 
However, when the error regression scheme was applied 
utilizing the prediction error generated, the actions of the 
Wide-IS self robot were modified immediately by means 
of rapid changes in internal neural states. This bottom-up 
modulation can be quite strong because the variance is 
estimated as small in the case of the Wide-IS. This is due to 
the development of a deterministic dynamic structure, one 
that plans its next action, and that can be said to “have” 
a future toward which it has effectively committed itself 
through proactive cognitive agency given strong top-down 
prior states. On the other hand, the same force is not so 
strong in the probabilistic (Narrow-IS) case because the 
estimated variance at decision points is large. This is to say 
that the Narrow-IS has plotted no future condition beyond 
immediate reaction, and has thus cannot be said to “have” 
a future in this same way. 

Consider these Wide and Narrow conditions from the 
Bayesian viewpoint. In the Bayesian framework, the S-MTRNN 
represents a likelihood function which maps intention 
state to a probability distribution of up-coming perceptual 
states. In these experiments, the distribution of intention 
states (initial states) was constrained by either the Wide 
distribution or the Narrow distribution, and the experiments 
show that the Wide distribution of intention states develops 
a deterministic dynamics with strong top-down prior states, 
whereas the Narrow distribution develops a probabilistic 
process which is a purely reactive process. 
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3.4 TIME PERCEPTION BY “EMBODIED” RNNS 
Now, we come back the main issue of consciousness. This 
section briefly looks at the problem of time perception in 
light of Francisco Varela’s “present-time consciousness.”40 

Tani and Nolfi postulated that “consciousness” arises at the 
very moment of segmenting the perceptual flow by means 
of error regression.41 Varela’s “present-time consciousness” 
arises similarly.42 First, Varela considered that the immediate 
past does not belong to a representational conscious 
memory, but just to an impression consistent with Husserl’s 
idea of retention.43 So, his question was how the immediate 
past, experienced just as an impression, could slip into a 
distant past which can be retrieved through a conscious 
memory operation later on. And, in response, he proposed 
that nonlinear dynamics theory could be used as the 
formal descriptive tool for this phenomenon. By using the 
phenomenon of the spontaneous flipping of a Necker cube 
as an example, he explained that the dynamic properties of 
intermittent chaos characterized by its spontaneous shifts 
between static and rapid transition modes could explain the 
paradox of continuous, yet also segmented, time perception. 

On his consideration, we may still ask how such 
spontaneous shifts as those realized by intermittent chaos 
can be linked to conscious experience. Although Thompson 
and Varela explain that such shifts are accompanied by 
shifts in neuronal bias, what is the formal mechanism of 
this process?44 Tani proposes that consciousness arises 
in the correction and modification of dynamic structures 
which, in biological cognition, are generated in higher 
cortical areas.45 The following attempts to account for the 
development of levels of conscious experience in terms of 
the development of the predictive RNN models described 
so far in the current paper. 

In subjective terms, firstly an agent experiences a continuous 
perceptual flow without this flow being articulated in any 
way, that is without this flow representing any discernible 
thing or event. However, there should be retention and 
protention in this primordial level, as explained by Husserl 
(see the last footnote).46 Retention and protention are used 
to designate the experienced sense of the immediate past 
and the immediate future. They are a part of automatic 
processes and cannot be controlled consciously. Husserl 
believed that the subjective experience of “nowness” 
is extended to include fringes both in the experienced 
sense of the past and the future in terms of retention and 
protention. This description of retention and protention 
at the so-called “pre-empirical”level by Husserl seems to 
directly correspond to what the basic RNN (as illustrated 
in Fig. 1 in the earlier section) is performing. The RNN 
predicts its next state by retaining the past flow in a 
context dependent way as has been described. This self-
organized contextual flow in the forward dynamics of 
RNNs could account for the phenomenon of retention, 
whereas prediction based on this contextual flow naturally 
corresponds to protention. 

With Husserl’s idea of “nowness” in terms of retention 
and protention, the following question arises: Where is 
the “nowness” bounded? Husserl and Varela believe that 
the immediate past does not belong to a representational 

conscious memory but just to an impression, as suggested 
above. This led Varela to wonder what kind of mechanism 
qualitatively changes an experience from just an impression 
to an episodic consciously retrievable event.47 Husserl’s 
goal was to explain the emergence of objective time from 
the pre-empirical level of retention and protention,48 and 
he seems to think that the sense of objective time should 
emerge as a natural consequence of organizing experience 
into one consistent linear sequence. Still, the question 
remains: What is the underlying mechanism for this? 

One way of approaching this question is to consider 
first that “nowness” can be bounded where the flow of 
experience is segmented. Imagine that “Re Fa La” and 
“Do Mi So” are frequently heard phrases. The sequential 
notes of “Do Mi So” constitute a chunk within the sound 
stimulus flow, because the sequence can be predicted 
perfectly by developing coherence between the predictive 
neural dynamics and the perceptual flow. Within the 
chunk, everything proceeds smoothly, automatically, and 
unconsciously. However, when we hear a next phrase of “Re 
Fa La” after “Do Mi So” (considering that this second phrase 
is not necessarily predictable from the first one) a temporal 
incoherence emerges as prediction error is generated in 
the transition between the two phrases. The central thesis 
here is that consciousness arises as the agent attempts to 
deal with the uncertainty or open possibility between the 
two. 

In Tani and colleagues’ RNN models, the winner module is 
switched from one to another in MixRNNs or PB is shifted 
in RNNPB by means of error regression when the external 
perceptual flow does not match with the internal flow 
of the prediction. This matching is primarily occurring in 
the window of the immediate past, as described above. 
When the prediction is betrayed, the perceptual flow is 
segmented into chunks associated with shifts of gates 
or PBs, minimizing prediction error. Those segmented 
chunks are no longer just parts of the flow, but events 
that are identified by an activated local module or a PB 
vector value, e.g., as one of the NAO robot’s behavior 
primitives. Because of delays in the error minimization 
process for optimizing gate openings or PB vector, this 
identification process can be time consuming. This might 
explain the phenomenological observation that the flow of 
the immediate past is experienced only as an impression, 
which later becomes a consciously retrievable object after 
being segmented. This may correspond to an observation 
of postdiction evidenced in neuroscience.49 See Figure 10 
for an illustration of the idea. 

The higher level RNN in MixRNNs, RNNPBs, or MTRNNs 
learns the sequences of the identified events and becomes 
able to regenerate them as a narrative. 

During memory retrieval however, the perceptual flow 
can be reconstructed only in an indirect way since the 
flow is now represented by combining a set of commonly 
used behavior primitives. Although such reconstructions 
provide for compositionality as well as generalization 
in representing perceptual flow, they might lose subtle 
differences or uniqueness in each instance of experience 
depending on the capacities to retain perceptual dynamics. 
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Figure 10. Prediction of future based on the 
postdiction of the past. 

Consequently, we presume that the sense of objective 
time appears when experience of the perceptual flow is 
reconstructed as a narrative in a compositional form, while 
losing its peculiarity. 

From the Bayesian perspective of Friston’s FEMP, the agent 
becomes able to reflect on the episodic sequence with 
self-estimated certainty when the Narrow-IS condition 
is applied to S-MTRNN, as shown in the aforementioned 
experiments by Murata and colleagues.50 At this stage, the 
agent finally becomes able to represent its own episodic 
sequence in terms of a probabilistic model by inferring 
that each chunk (moving left or right) simply arises with 
a certain probability. This is a crucial transition from first 
reflecting on its own experience as a deterministic “one 
time only” episodic sequence occurring only in that way, 
to viewing it as a probability which could have taken place 
in other ways. From the latter point of view, the agent is 
successful in ultimately objectifying its own experience by 
reconstructing it into a generalized model accounting for 
possible interactions between its self and others. However, 
it is interesting to note that the agent in this stage does not 
maintain anymore the subjectivity of naively intending for 
an uncertain future, because all it maintains is ultimately 
objectified models of probable futures. Together, these 
stages of development should begin to account for the 
process of an agent attaining a reflective self which is 
only then potentially maintained, for example through 
inner discourse and conscious narration and which only 
then results in truly direct subjective experience, the 
characteristic “mineness” of h-consciousness as revealed 
in our last paper. 

3.5 DISCUSSION 
With the composition of intentional sequences, we may 
understand surprise as their unexpected correction 
resulting in consciousness. To this, one may object 
that one becomes conscious of many things without 
surprise, but this objection is easily answered. Let us 
consider that intentional processes drive the whole neural 
network dynamics including the peripheral subnetworks 
by means of chaos or transient chaos developed in the 
higher cognitive brain area in order to act on the world in 
achieving some end of agency such as in Murata’s robot 
experiment and in Namikawa et al.51 At this moment of 
acting, some prediction errors may be generated at the 
very least because the world is inevitably unpredictable 
due to its openness relative for instance human cognitive 
agency. Then, at the very moment when the intention state 
is modulated by those errors back-propagated from the 

peripheral to the higher level, the agent becomes conscious 
of the formulation of intention upon which it has acted and 
only in a “postdictive” manner,52 i.e., when the intention in 
the past window is rewritten for the sake of accounting for 
the current perception, there is consciousness. 

With this, we may ask if we can apply the aforementioned 
analysis to account for the delayed awareness of “free 
will” as for example evidenced in the famous Libet 
experiments?53 One might imagine that no prediction 
errors are to be associated with decisions about pressing 
a button as in Libet’s experiments. However, in order to 
initiate a particular movement, internal neural activity in 
peripheral areas including muscle potential states must 
prepare for action. With this in mind, prediction errors 
may arise when the higher cognitive level such as the 
prefrontal cortex (PFC) or supplementary motor area (SMA) 
suddenly attempts to drive the lower peripheral processes 
such as the motor area and somatosensory area through 
the parietal area, possibly by chaos, to generate a specific 
movement when the lower parts are not yet prepared for it 
(see Figure 11). 

Figure 11. Explanation of how free will can be initiated 
unconsciously and how one can become consciously aware 
of it with delay.54 

In such a situation, a gap may appear between the higher 
level with the sudden urge for generating the movement 
and lower level processes which are not yet ready for it. 
This gap appears in the system as a sort of prediction error, 
with the intention to act confounded by factors internal to 
the system as a whole but still external to the intentional 
processes, themselves. This difference, then, between what 
is ideally intended and its practical exercise may then cause 
the conscious awareness of one’s own intention, again with 
a delay as described by Libet, Gleason and Wright,55 and as 
having been conjectured by Tani.56 To sum up, we consider 
that free will may originate unconsciously by means of the 
cortical deterministic chaos which can become an object 
of conscious awareness only after a certain delay under 
embodiment constraint in terms of postdiction.57 

Before concluding the current paper, give a close look 
at the process of error regression at the moment that 
prediction error increases due to unexpected perception. 
This error regression process involves the nontrivial 
phenomena of circular causality, analysis of which reveals 
subtle characteristics of the conscious process. In simple 
situations such as shown in the experiments by Murata and 
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colleagues wherein possible actional decisions are only 
two, either moving an arm to the left or to the right, the 
conflictive situation can be resolved instantly by sudden 
modulation of the intention by error regression.58 However, 
realistic situations are more complex, for example, when 
a system has to perform online modification of a goal-
directed plan by searching among various possible 
combinations of behavior primitives by means of error 
regression, while retaining immediate integrity in the face 
of environmental forces, i.e., adapting to rapid changes of 
the current situation until the newly formulated intention 
can be carried forward. 

4. CONCLUSION 
The current paper reviewed a series of neurorobotics 
studies conducted by Jun Tani and colleagues that attempt 
to provide a purely formal, structural account of dynamical 
processes essential for consciousness. The core ingredients 
of Tani’s models are prediction and postdiction through 
predictive coding and implemented in different recurrent 
neural network (RNN) models that together represent a 
progression from reflexive to proactive, self-reflective and 
creative agency. The review moved from simple to more 
complex model hierarchies. 

Robotics experiments employing these models clarified 
dynamics inherent in levels of consciousness from 
momentary self-consciousness (surprise) to narrative 
self and reflective self-consciousness (the “chunking” 
of experience and the articulation of perceptual flow 
according to developing action potentials). The paper 
concluded with a brief phenomenological analysis of time 
perception within this family of models, including model 
extensions accounting for free will and its characteristic 
postdictive conscious awareness. In the next paper, we 
will begin with some of Tani and colleagues’ work on these 
model extensions into more complex situations, before 
returning to Boltuc’s naturalistic non-reductionism and a 
philosophical analysis of any claim to consciousness of 
artificial systems. 
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Kant on Constituted Mental Activity 
Richard Evans 
IMPERIAL COLLEGE, UK 

1 INTRODUCTION 
Consider the following functionalist claim: 

There is an architecture, describable in the 
language of computer science, such that any 
creature or machine that realises this architecture 
thereby counts as a cognitive agent, an agent with 
original (non-derivative) intentionality. 

Some of the more practically minded among us will be 
dissatisfied with this existentially quantified assertion: 
rather than just saying that there is some such architecture, 
it would be much more helpful to know exactly what this 
architecture is. What sort of architecture could satisfy such 
a claim? 

I believe the answer to this question has been hiding in 
plain sight for over two hundred years: in The Critique of 
Pure Reason, Kant provides a detailed description of just 
such an architecture. 

At the heart of Kant’s vision is the self-legislating agent: 
an agent who constructs rules that he then solemnly 
follows. The Kantian cognitive architecture is a particular 
type of computational process: a rule-induction process. 
If this rule-induction process satisfies certain constraints, 
then—Kant claims—the process’ internal activities count as 
cognitive activities. 

This paper sketches the philosophical background behind 
this architecture. It attempts to motivate and defend Kant’s 
vision of a self-legislating computational agent.1 

2 MENTAL ACTIVITY AS CONSTITUTED ACTIVITY 
We are familiar with the idea that social activity is constituted 
activity. Pushing the wooden horse-shaped piece forward 
counts, in the right circumstances, as moving the knight to 
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king’s bishop three. Jones’ running away counts, in the right 
circumstances, as desertion. An utterance of the words “I 
do” counts, in the right circumstances, as an acceptance of 
marriage vows. These social actions are things we can only 
do indirectly, by doing something else. A social action is 
not something we can just do. 

Kant’s cardinal innovation, as I read him, is to see mental 
activity as constituted activity. This plurality of sensory 
perturbations counts, in the right circumstances, as my 
representing a red triangle. This activity of rule application 
counts, under the right circumstances, as my seeing an 
apple. This activity of rule construction counts, under the 
right circumstances, as my forming the belief that Caius is 
mortal. The surprising Kantian claim is that mental activity 
is itself constituted. We have to perform a certain type of 
ritual in order to experience a world at all. 

2.1 FROM COUNTS-AS TO COUNTING-AS 
Let us start by considering the activity of counting-as: 

•	 Jones counts Smith’s contortion of the lips as a 
delighted smile 

•	 The sergeant counts Jones’ running away as 
desertion 

•	 The teacher counts the boy’s squiggle as an “s” 

•	 The vicar counts the utterance of the words “I do” 
as an acceptance of the marriage vows 

Notice that these examples describe the activity of 
counting-as, rather than the mere relation of counts-as. The 
counts-as relation is commonly formulated as: 

x counts as y (in context c) 

This sentence, ascribing a three-place relation between 
x, y and c, ignores the person who is doing the counting-
as, and the business of counting itself, and focuses solely 
on the resulting judgment. If we want to acknowledge 
the individual performing the counting, and the activity of 
counting itself, we would write it as: 

agent a counts x as y (in context c) 

This sentence describes the activity of counting-as, and 
makes explicit the person who is doing the counting. 

Under what circumstances would it be ok to forget about 
the person doing the counting? Perhaps it would be ok to 
suppress the agent and the activity of counting-as in cases 
where everyone agreed about what counted-as what, where 
massive agreement in counting-as was taken for granted. 
Throughout the Investigations, Wittgenstein repeatedly 
asks us to stop taking this mass communal agreement for 
granted. He demands “what if one person reacts in one 
way and another in another?”2 For example, he considers 
the case where: 

a person naturally reacted to the gesture of 
pointing with the hand by looking in the direction 

of the line from finger-tip to wrist, not from wrist 
to finger-tip.3 

The divergence here is a difference in what activity the 
deviant person is counting the gesture as. The deviant is 
counting the gesture as pointing in the opposite direction 
from what “we”4 count the gesture as. 

Whenever Wittgenstein talks about counts-as, he is careful 
to talk about the activity of counting-as, rather than an 
abstract relation of counts-as that presupposes communal 
agreement: 

But now imagine a game of chess translated 
according to certain rules into a series of actions 
which we do not ordinarily associate with a game— 
say into yells and stamping of feet. ... Should we 
still be inclined to count them as playing a game? 
What right would one have to say so?5 

Wittgenstein focuses on edge cases like these, cases 
where we are no longer sure that everybody agrees about 
what counts as what, in order to help us stop treating this 
mass agreement as given. In a shared culture, there is 
indeed mass agreement in what counts as what. But this 
mass agreement is an achievement, something painfully 
accomplished by constant communication and teaching, a 
fragile accomplishment that is always in need of renewal. 
For Wittgenstein, as Cavell reads him, mass agreement 
in counting-as activity is not something that should be 
presupposed at the beginning of philosophical activity, but 
is instead rather something to be explained. 

I find my general intuition of Wittgenstein’s view 
of language to be the reverse of the idea many 
philosophers seem compelled to argue against 
in him: it is felt that Wittgenstein’s view makes 
language too public, that it cannot do justice to 
the control I have over what I say, to the innerness 
of my meaning. But my wonder, in the face of 
what I have recently been saying, is rather how 
he can arrive at the completed and unshakable 
edifice of shared language from within such 
apparently fragile and intimate moments—private 
moments—as our separate counts and out-calls of 
phenomena, which are after all hardly more than 
our interpretations of what occurs, and with no 
assurance of conventions to back them up.6 

Instead of an abstract “x-counts-as-y” relation that suppresses 
the agent performing the counting-as activity and that 
presupposes communal agreement, Wittgenstein wishes 
us to start with an individual agent counting something as 
something. It is this same counting-as activity that is needed, 
I claim, to understand Kant’s project in the First Critique. 

2.2 FROM DERIVATIVE TO ORIGINAL 
INTENTIONALITY 

Consider the humble barometer, a simple sensory device 
that can detect changes in atmospheric pressure. If the 
mercury rises, this means the atmospheric pressure is 
increasing; if the mercury goes down, the pressure is 
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decreasing. Now we count the mercury’s rising as the 
machine responding to the atmospheric pressure. We count, 
in other words, a process that is internal to the instrument 
(the mercury rising) as representing changing properties 
of an external world (atmospheric pressure increasing). But 
although we count the internal process as representing 
an external process, the barometer itself does not. The 
barometer is incapable of counting the internal process 
as a representing because—of course—it is incapable of 
counting anything as anything. The barometer does not, in 
other words, have original intentionality. We might interpret 
some of its activities as representations, but it does not. 

The distinction between original and derivative 
intentionality comes from Haugeland.7 Intentionality is 
derivative if something has it because it is conferred on it 
by something else (by the agent who is doing the counting-
as): 

At least some outward symbols (for instance, a 
secret signal that you and I explicitly agree on) 
have their intentionality only derivatively—that is, 
by inheriting it from something else that has the 
same content already (e.g., the stipulation in our 
agreement). And, indeed, the latter might also 
have its content only derivatively, from something 
else again; but obviously, that can’t go on forever. 
Derivative intentionality, like an image in a 
photocopy, must derive eventually from something 
that is not similarly derivative; that is, at least some 
intentionality must be original (non derivative).8 

We can distinguish between derivative and original 
intentionality using the activity of counting-as:9 

•	 x has derivative intentionality in representing p if 
an agent y (distinct from x) counts x’s activity as x’s 
representing p 

•	 x has original intentionality in representing p if x 
himself counts x’s activity as x’s representing p 

What distinguishes an agent with original intentionality from 
a mere sensory instrument is that the former counts its own 
sensings as representations of a determinate external world: 

There is no doubt whatever that all our cognition 
begins with experience; for how else should the 
cognitive faculty be awakened into exercise if not 
through objects that stimulate our senses and in 
part themselves produce representations, in part 
bring the activity of our understanding into motion 
to compare these, to connect or separate them, 
and thus to work up the raw material of sensible 
impressions into a cognition of objects that is 
called experience?10 

Original intentionality, in other words, is a type of activity 
interpretation. Just as I can count his moving the horse-
shaped wooden piece from one square to another as his 
moving his knight to king’s bishop three, just so I can 
count the perturbations of my sensory instruments as my 
representing a determinate world.11 

Searle makes a similar distinction between intrinsic and 
derived intentionality.12 He claims that only a certain type of 
biological organism can achieve original intentionality. This 
paper argues, by contrast, that a computational agent built 
to satisfy a Kant-inspired cognitive architecture is capable 
of achieving original intentionality. It doesn’t matter what it 
is made of as long as it achieves the necessary structural 
organization. 

2.3 FROM SENSORY AGENTS TO COGNITIVE 
AGENTS 

A sensory agent is some sort of animal or device, equipped 
with sensors, whose actions depend on the state of its 
sensors. It might have a temperature gauge, a camera with 
limited resolution, or a sonar that can detect distance. The 
sensory agent is continually performing what roboticists 
call the sense-act cycle: it detects changes to its sensors, 
and responds by bodily movements. 

A thermostat, for example, is a simple sensory agent. When 
it notices that the temperature has got too low, it responds 
by increasing the temperature. The thermostat has a 
sense-act cycle, but it does not experience the world it is 
responding to. We count the perturbations of its gauge as 
representations of the temperature in the room it is in, but 
it does not. The gauge movements count as temperature 
representations for us, but not for the thermostat. Nothing 
counts as anything for the thermostat. It just responds 
blindly. 

By contrast, a cognitive agent is a sensory agent with 
original intentionality, who counts his sensings as his 
representing an external world. He interprets his own 
sensory perturbations as his representation of a coherent 
unified world of external objects, interacting with each 
other. This world contains one particular distinguished 
object, with sensors, that the cognitive agent counts as his 
body, and he counts his sensings as the stimulation of his 
body’s sensors by interaction with the other objects. 

One of Kant’s fundamental questions in the First Critique is: 

What does a sensory agent have to do, in order 
for it to count its own sensory perturbations as 
experience, as a representation of an external 
world? 

What, in other words, must a sensory agent do to be a 
cognitive agent? 

Note that this is a question about intentionality—not about 
knowledge. Kant’s question is very different from the 
standard epistemological question: 

Given a set of beliefs, what else has to be true of 
him for us to count his beliefs as knowledge? 

Kant’s question is pre-epistemological: he does not assume 
the agent is “given” a set of beliefs. Instead, we see his 
beliefs as an achievement that cannot be taken for granted, 
but has to be explained: 
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Understanding belongs to all experience and its 
possibility, and the first thing that it does for this 
is not to make the representation of the objects 
distinct, but rather to make the representation of 
an object possible at all.13 

Kant asks for the conditions that must be satisfied for the 
agent to have any possible cognition (true or false).14 

2.4 CLARIFICATIONS 
Kant’s question, in the first person, is 

What must I do, in order to count these sensory 
perturbations as my experience? 

I wish to make two clarifying points. First, counting-as 
can be applied to objects or activities. We can count this 
wooden-shaped piece as a knight (counting an object as 
another object), or we can count this physical pushing 
movement as moving one’s knight to king’s bishop three 
(counting an activity as another activity). In what follows, I 
am talking primarily about counting-as applied to activities, 
not objects. It is not that we count this group of sensors 
as a red triangle, but rather that we count this plurality of 
sensor activity as representing a red triangle. 

Second, the activity that is counted-as is not an individual 
sensor’s activity, but is typically a large plurality of sensory 
perturbations. We have a huge array of independent sensors 
(including 6 to 7 million cone cells in each eye). When we 
count sensory perturbations as representing something, 
we are interpreting a large plurality of such sensings. 
Consider, by way of analogy, a beginner dance-class: under 
what circumstances does this flurry of bodily movements, 
this plurality of limb activities, count as waltzing? 

2.5 THE AMBITION OF THE KANTIAN QUESTION 
Some activity can be explained in terms of other activity. 
Getting married, for example, is not a fundamental primitive 
form of activity. Instead, we count saying “I do,” under 
certain wedding-related circumstances, as getting married. 
We do not treat castling in chess as a fundamental primitive 
form of activity. Instead, we count moving two pieces, 
under certain chess-related circumstances, as castling. 
We explain activity a by counting activity b, under certain 
circumstances, as performing activity a. 

An ingrained assumption of pre-critical philosophy was 
that the having of thoughts is a fundamental activity that 
is not in need of a count-as explanation. There may be (at 
some future time) a physical explanation of this activity in 
terms of neuronal firings etc.—but there is no counts-as 
explanation of this activity. This is what it means to say that 
thoughts are “given”: we do not need to worry about the 
origin of these thoughts—we just assume that they are 
handed to us somehow. 

Both empiricism and rationalism subscribe to a version of 
this pre-critical assumption. Empiricists assume that the 
mind is already capable of having intuitions (constructing 
pre-conceptual representations of objects), and tell a story 
explaining how the mind is able to get from intuitions to 
conceptual thoughts. Rationalists assume that the mind is 

already capable of thinking conceptual thoughts, and tell 
a story explaining how the mind is capable of getting from 
conceptual thoughts to empirical intuitions. Both strategies 
treat some form of thinking as primitive: as not needing a 
counts-as explanation. 

Kant denies this assumption. He claims, to anticipate, that 
all thought can be explained by a rule-constructing agent 
following a procedure that satisfies certain constraints. If 
the agent constructs and applies rules in a certain manner, 
satisfying certain constraints, then his rule-following 
activity counts as his having intuitions, forming concepts, 
judging, and thinking about an external world. 

Kant’s core claim is 

I count this plurality of sensings as my experience if 
I combine them together in the right way 

What, then, does Kant mean by “combine,” and what does 
he mean by “the right way”? 

In section 3, I will describe what Kant means by combining. 
To anticipate, there are two types of combination, achieved 
by applying two types of rules (rules of composition and 
rules of connection). 

3 COMBINATION AS RULE APPLICATION 
The activity at the heart of Kant’s theory is the activity of 
combination, of bringing cognitions together, “running 
through and holding together this manifoldness.”15 

Now this activity of mental combination may seem 
frustratingly metaphorical or ill-defined. As Wolff notes: 

The inadequacies of such locutions as “holding 
together” and “connecting” are obvious, and need 
little comment. Perceptions do not move past the 
mind like parts on a conveyor belt, waiting to be 
picked off and fitted into a finished product. There 
is no workshop where a busy ego can put together 
the bits and snatches of sensory experience, 
hooking a color to a hardness, and balancing the 
two atop a shape.16 

Similarly, Wittgenstein writes: 

How does one teach a child (say in arithmetic) 
“Now take these things together!” or “Now these 
go together”? Clearly “taking together” and 
“going together” must originally have had another 
meaning for him than that of seeing in this way or 
that.17 

There are two types of combination activity.18 The first is 
composition: combining intuitions using the part-of relation. 
For example: if this configuration of sensors is turned on, 
then I count their being-on as representing a nose. Or: if 
this pattern of sensors counts as representing a nose, and 
this other pattern counts as representing an eye, then the 
aggregate pattern of sensors counts as representing a face. 
The second type of combination activity is connection: 
subsuming intuitions under marks.19 For example: if this is 
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a nose, then it cannot be an ear. Or: if this is a dog, then it 
must be an animal. 

3.1 COMBINATION CAN ONLY BE PERFORMED 
INDIRECTLY VIA THE CONSTRUCTION AND AP­
PLICATION OF RULES 
But, although this combining activity is fundamental, 
it cannot, according to Kant, be performed directly by 
the agent. The agent cannot just bring representations 
together willy-nilly. Combining is not something he can 
just do. On the contrary, the only way, according to Kant, 
that the agent can perform the activity of combination is 
by applying general rules that it has constructed. This is 
Kant’s surprising claim. We are used to thinking of social 
activity as constituted (e.g., a certain set of sounds counts, 
under the right conditions, as the request to shut the door). 
But we are not so used to thinking of fundamental mental 
activity as similarly constituted. 

There are two types of rule corresponding to the two 
types of combination.20 Rules of composition are rules for 
combining parts into wholes, producing a part-whole graph 
united under one element: the totality. A rule of composition 
produces, if it applies, a defeasible rule permitting the agent 
to group intuitions together.21 For example, if you count this 
group of sensings as representing an ear, and this group 
of sensings as representing a nose, then you may count 
this aggregate group of sensings as representing a face. 
Whether or not the rule-following agent makes use of this 
permission will depend on his concomitant commitments. 

Rules of composition are described by defeasible 
conditionals. Wittgenstein stresses the defeasibility of such 
conditionals when discussing what counts as a friendly 
face: 

When we notice the friendly expression of a face, 
our attention, our gaze, is drawn to a particular 
feature in the face, the “friendly eyes,” or the 
“friendly mouth etc. . . . It is true that other traits in 
this face could take away the friendly character of 
this eye, and yet in this face it is the eye which is 
the outstanding friendly feature.22 

This is defeasibility in action. In this situation, the features of 
this eye counts as his having a friendly face; but in another 
situation, the same features plus some other additional 
facial features might count as something entirely different: 
mocking cruelty, for instance. 

Rules of connection produce obligations to group 
representations under a mark.23 So, for example, if we 
count this structure as a nose, then we must also count it 
as a facial part—and if we count it as a nose, then we must 
not count it as an ear. 

The activities of combination, then, are themselves 
constituted activity: 

•	 Composing (combining intuitions together using 
part-of) just is applying a rule of composition 

•	 Connecting (subsuming intuitions under marks) 
just is applying a rule of connection 

The striking Kantian claim is that this activity of combination 
is not a self-sufficient action. Rather, it is like moving your 
knight to king’s bishop three: it is something you can 
only do indirectly by doing something else—by pushing a 
wooden object in a certain direction. Similarly, requesting 
Bob to shut the door is not something you can just do: you 
can only do it by doing something else (perhaps by uttering 
a sequence of sounds, or by pointing at the door; there are 
an infinite number of different actions that could constitute 
such a request, but you have to do one of them—requesting 
is not something primitive you can do on your own). 

All the agent can do is construct general rules of the 
above form, permitting or obligating him to combine 
representations in a certain way, and then apply these 
rules, thus indirectly performing combinations via the 
construction and application of rules. 

This claim appears throughout the First Critique: 

all empirical time determination must stand under 
rules of general time determination.24 

In other words, the activity of time-determination can only 
be performed indirectly by applying a general rule: 

everything (that can even come before us as an 
object) necessarily stands under rules, since, 
without such rules, appearances could never 
amount to cognition of an object.25 

Again: 

Thus we think of a triangle as an object by being 
conscious of the composition of three straight 
lines in accordance with a rule according to which 
such an intuition can always be exhibited.26 

In other words, the activity of seeing the three lines as a 
triangle is only achieved indirectly by the application of a 
general rule for counting certain connected triads of lines 
as triangles. 

Why can’t a cognitive agent perform the activity of 
combination directly, without needing to construct and then 
apply a rule? The answer is that combining without rules 
would not satisfy the condition of unification at the heart of 
K’s theory. The unification condition is a set of constraints on 
the construction and application of rules, and so can only be 
applied to a rule-following agent. Arbitrary combination of 
cognitions that was unguided by rules would not produce a 
unity of experience that I could call mine. If I could combine 
representations into intuitions without rules, then there 
would be no self to have the intuitions. 

At the beginning of the B Deduction, Kant writes: 

all combination, whether we are conscious of it or 
not, whether it is a combination of the manifold 
of intuition or of several concepts, and in the first 
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case either of sensible or non-sensible intuition, is 
an action of the understanding.27 

If we recall that the understanding is the capacity for 
constructing and applying rules,28 then it follows that the 
only way in which we can combine representations together 
is via the construction and application of rules. Again: 

Thus the original and necessary consciousness 
of the identity of oneself is at the same time a 
consciousness of an equally necessary unity of the 
synthesis of all appearances in accordance with 
concepts, i.e., in accordance with rules that not 
only make them necessarily reproducible, but also 
thereby determine an object for their intuition, 
i.e., the concept of something in which they 
are necessarily connected; for the mind could 
not possible think of the identity of itself in the 
manifoldness of its representations, and indeed 
think this a priori, if it did not have before its 
eyes the identity of its action, which subjects all 
synthesis of apprehension (which is empirical) to 
a transcendental unity, and first makes possible 
their connection in accordance with a priori 
rules.29 

In other words: the unity of the self is not something that 
we perceive. What we perceive are objects. If we are going 
to achieve unity of the self, it must be through something 
that persists through the sensory flux. What persists are the 
constraints on the rules we apply. 

Suppose, to take the contrapositive, that we combine our 
sensings together without using rules. Suppose we just 
combine representations willy-nilly. Then the combined 
representations will just be a “mere play,” “less even than 
a dream.”30 

The Kantian rule-following agent is continually constructing 
the very software that it will then execute.31 It is always 
constructing rules, and then interpreting those rules. In fact, 
the only way that it can perceive anything is by applying 
rules it has already constructed in order to make sense of 
the incoming barrage of sensations.32 

Instead of having a primitive ability to combine 
representations at will, the rule-following agent can only do 
so when it has a rule which says that it may or must do so. 

The Kantian rule-follower, then, is a norm-giving agent 
who solemnly sets down rules that he will then obediently 
follow. He only allows himself to perform acts of mental 
combination if these acts are shown to be permitted33 by 
rules he has antecedently accepted. 

4 CONCERNS WITH RULE-FOLLOWING 
ACCOUNTS OF INTENTIONALITY 

4.1 WHAT DOES KANT MEAN BY A “RULE”? 
What does a sensory agent have to do to count his sensings 
as representations of an external world? Kant’s answer 
is that he must construct and apply rules of combination 
satisfying various constraints. At the very center of Kant’s 
theory is the notion of a rule-following agent. 

But Kant’s appeal to rule-following has been criticized in 
multiple ways. Rules have been seen as too explicit, or too 
rigid, to do the work that Kant requires of them. At the very 
least, we need a clear sense of what Kant means by “rule” 
if we are to make sense of his theory. What does Kant mean 
by “rule”? 

Let us start by stating what a rule is, and then clarifying by 
emphasising what it is not. A rule, for Kant, is something 
general, something that applies in many different 
situations.34 When it does apply, a rule results in a norm 
becoming operative: a certain activity is now permitted or 
obligatory. For example, if such and such circumstances 
hold, you may combine this sensor and that sensor under 
the mark EAR-14. 

A rule, then, is a norm, operating under a condition: 

Now, however, the representation of a universal 
condition in accordance with which a certain 
manifold (of whatever kind) can be posited is 
called a rule, and if it must be so posited, a law.35 

Here, Kant is clear about the generality in the “universal 
condition” and the normative status (permission/obligatory) 
in the “can”/“must.” 

Next, let us look at what a rule is not. Firstly, a rule is not 
an explicit, linguistically formulated conditional. In order to 
describe a rule, we have to use language—but that does 
not mean, of course, that the rule is essentially linguistically 
formulated. The rule is not an explicit sentence, but an 
implicit “procedure for generating a sensible intuition” that 
the sentence describes.36 If the rule was merely an explicit, 
linguistically-formulated conditional, then there would be 
a further question of whether the linguistically formulated 
antecedent itself applies. If answering this further question 
itself required a rule, then we would have a regress of rule­
application.37 

Secondly, a rule is not a disposition. A disposition is some 
sort of probabilistic counterfactual, formulated as: if such 
and such conditions hold, there is a certain probability 
that a particular action will be performed. But when a rule 
applies, there is a norm stating that the action must (or 
may) be performed. 

Much of Wittgenstein’s Investigations is concerned with 
showing the problems with various inadequate conceptions 
of rules. I hope I have said enough to distinguish Kant’s 
sense of rule from explicit conditionals and from mere 
regularities.38 
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One Wittgenstinian concern with rules is that they are too 
rigid and inflexible to capture real inferential patterns. 
Suppose, for instance, we want to formulate a general rule 
that birds fly.—Well, not all birds fly. Penguins don’t fly.— 
But not all penguins don’t fly: magic penguins do fly.—But 
not all magic penguins fly: magic penguins who have been 
trapped in a cage don’t fly. There are an infinite number 
of exceptions for any rule. If we have to specify all the 
exceptions manually, our task will never be completed.39 

The proper response to this is to admit that yes, of course, 
a rule has an indefinite number of exceptions, but to deny 
that these exceptions need to be stated explicitly in the 
antecedent of the rule. A rule should be defeasible—it 
states that, everything else being equal, if the antecedent 
holds, then the consequent holds. But the conditional is 
not strict implication but defeasible implication. We can 
capture the way some rules override others by placing a 
partial ordering on the defeasible rules. If our rules are 
defeasible, and we can specify which rules override which 
others using a partial ordering, then we don’t need to 
specify all the exceptions. 

Another Wittgenstinian concern with rules is that they 
seem incapable of capturing penumbral concepts. Take, for 
example, Wittgenstein’s famous example of “game.” What 
it is to be a game is not captured once and for all by a set 
of definite rules. Rather, it is a family resemblance concept: 
some paradigms (chess, baseball) are central, while others 
(patience, ring-a-ring-a-roses) are peripheral. Patience is 
less of a game than baseball, but a game nonetheless. 
How can we capture penumbral concepts in a rule-based 
architecture? If we cannot capture them, this would be 
a serious problem for the account proposed. But it has 
recently been pointed out that a Bayesian mixture model 
over discrete rule sets can capture penumbral concepts 
rather well.40 The idea is that the inductive learner is trying 
to construct a set of rules that best explains the data he 
has received. There are various sets of rules that capture 
the data with different degrees of success. The Bayesian 
mixture model applies the various rule-sets in proportion 
to their posterior probabilities. So if, say, there are just 
three sets of rules that explain the data, and rule-set R1 has 
posterior probability 0.7 and says that the newly observed 
instance is a game, and rule-set R2 has posterior probability 
0.2 and says the new instance is not a game, and rule-set 
R3 has posterior probability 0.1 and says the new instance is 
a game, then the mixture model says that the new instance 
is a game with probability 0.7 + 0.1 = 0.8. 

4.2 WHAT DOES KANT MEAN BY A “RULE­
FOLLOWING PROCESS”? 

But Wittgenstein has another fundamental concern with a 
rule-following account of intentionality that we need to 
address head-on. This is the worry that a rule-following 
account cannot accommodate the fact that no set of 
rules can cover all possible cases. Wittgenstein draws our 
attention, again and again, to cases where our rules give out: 

I say “There is a chair.” What if I go up to it, 
meaning to fetch it, and it suddenly disappears 
from sight?—“So it wasn’t a chair, but some kind 
of illusion.”—But in a few moments we see it again 

and are able to touch it and so on.—“So the chair 
was there after all and its disappearance was some 
kind of illusion.”—But suppose that after a time it 
disappears again—or seems to disappear. What 
are we to say now? Have you rules ready for such 
cases—rules saying whether one may use the word 
“chair” to include this kind of thing? But do we 
miss them when we use the word “chair”; and are 
we to say that we do not really attach any meaning 
to this word, because we are not equipped with 
rules for every possible application of it?41 

Our rules for the identification of chairs cannot anticipate 
every eventuality, including their continual appearance 
and disappearance—but this does not mean we cannot 
recognize chairs. Or, to take another famous example, we 
have rules for determining the time in different places on 
Earth. But now suppose someone says: 

“It was just 5 o’clock in the afternoon on the sun.”42 

Again, our rules for determining the time do not cover 
all applications, and sometimes just give out. They do 
not cover cases where we apply time of day on the sun. 
Wittgenstein’s vision is that, since any set of rules is 
inevitably limited and partial, we must always continually 
improvise and update. But this vision is fully compatible 
with the rule-following Kantian agent, as I have described 
him. Such an agent is continually constructing a new set of 
rules that makes best sense of his sensory perturbations. It 
is not that he constructs a set of rules, once and for all, and 
then applies them rigidly and unthinkingly forever after. 
Rather the process of rule construction is a continual effort. 

Kant describes an ongoing process of constructing and 
applying norms to make sense of the barrage of sensory 
stimuli: 

There is no unity of self-consciousness or 
“transcendental unity of apperception” apart 
from this effort, or conatus towards judgement, 
ceaselessly affirmed and ceaselessly threatened 
with dissolution in the “welter of appearances.”43 

Kant’s rule-following agent is continually constructing such 
norms, so as to best make sense of the barrage of sensory 
stimuli. If he were to cease constructing these rules, he 
would cease to be a rule-following agent, and would be 
merely a machine. 

In What is Enlightenment? Kant is emphatic that the cognitive 
agent must never be satisfied with a statically defined set 
of rules—but must always be modifying existing rules and 
constructing new rules. He stresses that adhering to any 
statically defined set of rules is a form of self-enslavement: 

Precepts and formulas, those mechanical 
instruments of a rational use, or rather misuse, of 
his natural endowments, are the ball and chain of 
an everlasting minority.44 

Later, he uses the term “machine” to describe a cognitive 
agent who is no longer open to modifications of his rule-set. 
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He defines “enlightenment” as the continual willingness to 
be open to new and improved sets of rules. He imagines 
what would happen if we decided to fix on a particular set 
of rules, and forbid any future modifications or additions 
to that rule-set. He argues that this would be disastrous for 
society and also for the self. 

In The Metaphysics of Morals, he stresses that the business 
of constructing moral rules is an ongoing never-ending 
task: 

Virtue is always in progress and yet always starts 
from the beginning. It is always in progress 
because, considered objectively, it is an ideal and 
unattainable, while yet constant approximation to 
it is a duty. That it always starts from the beginning 
has a subjective basis in human nature, which is 
affected by inclinations because of which virtue 
can never settle down in peace and quiet with its 
maxims adopted once and for all but, if it is not 
rising, is unavoidable sinking.45 

Just as for moral rules, just so for cognitive rules: Kant’s 
cognitive agent is always constructing new rules to make 
sense of the pattern, a pattern that is new in every moment. 

This sort of rule-following model has its critics. Some of 
Wittgenstein’s remarks, for example, are often interpreted 
as denying the possibility of any sort of rule-following 
account: 

We can easily imagine people amusing themselves 
in a field by playing with a ball so as to start various 
existing games, but playing many without finishing 
them and in between throwing the ball aimlessly 
into the air, chasing one another with the ball and 
bombarding one another for a joke and so on. 
And now someone says: The whole time they are 
playing a ball-game and following definite rules at 
every throw.46 

Now there is a crucial scope ambiguity here. Is Wittgenstein 
merely denying that there is a set of rules that captures 
the ball-play at every moment? Or is he making a stronger 
claim, claiming that there is some moment during the ball-
play that cannot be captured by any set of rules at all? I think 
the weaker claim is more plausible: we make sense of the 
world by applying rules, but we need to continually modify 
our rules as we progress through time. Wittgenstein’s 
passage in fact continues: 

And is there not also the case where we play and 
make up the rules as we go along? And there is 
even one where we alter them, as we go along. 

Here, he does not consider the possibility of there being 
activity that cannot be explained by rules—rather, he is 
keen to stress the diachronic nature of the rule-construction 
process. 

We have considered various interpretations of “rule” and 
“rule-following” that are too rigid and inflexible to serve as 
the foundation for a model of intentionality. 

I have claimed that, suitably interpreted, a rule-following 
account can survive the accusations of inflexible rigidity, as 
long as the rules are interpreted as: 

•	 conditional norms, rather than explicit linguistically 
formulated conditionals 

•	 conditional norms, rather than probabilistic 
dispositions 

•	 defeasible conditionals, rather than strict 
entailments 

•	 defeasible conditionals under a partial ordering, 
rather than conditionals with explicit exceptions 

I have further argued that our rule-following agent must 
be continually expanding and modifying his rule-set: the 
construction of rules is an ongoing activity that we must 
continue forever. 

5 CONSTRUCTING AND APPLYING RULES 
The rule-following agent can perform just two types of 
basic activity. He can construct a rule, and he can apply a 
rule he has already constructed. I shall consider these two 
activities in turn. 

5.1 CONSTRUCTING RULES 
Kant says it is the job of the faculty of understanding to 
construct rules: 

We have above explained the understanding in 
various ways—through a spontaneity of cognition 
(in contrast to the receptivity of the sensibility), 
through a faculty of thinking, or a faculty of concepts, 
or also of judgements—which explanations, if one 
looks at them properly, come down to the same 
thing. Now we can characterise it as the faculty of 
rules. This designation is more fruitful and comes 
closer to its essence. Sensibility gives us forms (of 
intuition), but the understanding gives us rules. It 
is always busy poring through the appearances 
with the aim of finding some sort of rule in them. 
. . . The understanding is thus not merely a faculty 
for making rules through the comparison of the 
appearances; it is itself the legislation for nature.47 

Recall that there are two types of rule (rules of composition, 
and rules of connection), so there are two types of rule 
construction. Constructing rules of composition is forming 
perceptual rules, rules of apprehension for counting 
particular configurations as parts of objects. For example, 
the agent adds a new rule that, if some of its sensors 
satisfy such and such a condition, it may count them as 
representing an ear. 

Constructing rules of connection is forming concepts or 
making judgments. Forming a concept is constructing a set 
of rules that describe the inferential connections between 
this concept and others. So, for example, to form the 
concept of “tree,” we need rules of composition for saying 
under what sensory conditions we can count an intuition as 
a tree. But we also need rules of connection for linking this 
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Kant argues convincingly that it cannot be a further rule
that tells us which to apply:

Now if it [general logic] wanted to show generally 
how one ought to subsume under these rules, i.e., 
distinguish whether something stands under them 
or not, this could not happen except once again 
through a rule. But just because this is a rule, it 
would demand another instruction for the power of 
judgement, and so it becomes clear that although 
the understanding is certainly capable of being 
instructed and equipped through rules, the power 
of judgement is a special talent that cannot be 
taught but only practiced. Thus this is also what is 
specific to so-called mother-wit, the lack of which 
cannot be made good by any school.50

If we needed rules to determine which rules to apply, then 
those determining rules would themselves need further 
rules to determine their application, and so on, generating 
a vicious regress.

Kant defines the imagination as the faculty responsible for 
applying the rules that the understanding has constructed. 
As the duck-rabbit picture shows, the imagination has 
some choice about how to apply the rules of composition:

Now since all of our intuition is sensible, the 
imagination, on account of the subjective condition 
under which alone it can give a corresponding 
intuition to the concepts of understanding, belongs 
to sensibility; but insofar as its synthesis is still an 
exercise of spontaneity, which is determining, and 
not, like sense, merely determinable, and can thus 
determine the form of sense a priori in accordance 
with the unity of apperception, the imagination 
is to this extent a faculty for determining the 
sensibility a priori.51

The imagination belongs to sensibility because the only 
things it can operate on are the sensings that sensibility 
has provided. But it belongs to spontaneity in that it has a 
choice about which rules of composition to apply.

This is why Kant says that both understanding and 
imagination involve spontaneity—the understanding has a 
choice about which rules to construct; and then, once it 
has constructed them, the imagination has a further choice 
about which rules of composition to apply:

It is one and the same spontaneity that, there 
under the name of imagination and here under the 
name of understanding, brings combination into 
the manifold of intuition.52

Note that it is only when applying rules of composition that 
the imagination has choice about which to apply. When it 
comes to applying rules of connection, the rule-following 
agent is obligated to perform the required mental activity.

concept with others. So if we count it as a tree, we must 
also count it as a plant, and must not count it as a biscuit. 
Some of the connection rules involved in characterising a 
concept do more than simply state that one concept is a sub-
concept of another, or that one concept excludes another. 
Some of them relate the concept to another concept only 
conditionally—dependent on the existence of external 
factors. For example: “If the weather gets cold, trees lose 
their leaves,” “If a tree gets no water, it perishes.”48 Some 
of the conceptual inference rules, in Kantian terms, are 
hypothetical rather than categorical.

Constructing rules of connection is also what is involved in 
making judgments. If we form the judgment that “All men 
are mortal,” this is just to adopt the rule of connection: 
if I count a cognition as a man, then I must also count it 
as mortal. But this inferential understanding of judgment 
applies to categorical statements just as much as to 
hypothetical ones: to form the judgment that “Caesar is a 
general” just is to adopt the rule: if I count a cognition as 
Caesar, then I must also count it as a general.

This is why Kant says that the faculty of constructing rules 
is also the faculty of concept-formation and judging: both 
concept-formation and judging are just special cases of the 
more general ability to construct rules.49

5.2 APPLYING RULES
Next, I shall turn to the process of applying the rules that 
the understanding has constructed. Kantian rules, as 
defined above, are norms operating under a condition. 
Rules are not explicit linguistic conditionals, where there 
is a further question whether the antecedent applies. 
Rather, the rule is itself responsible for determining when 
it applies. It contains a procedure for determining whether 
or not it applies. The rule-as-procedure applies itself. If the 
rule applies in a particular situation, a norm is operative: 
either the agent must combine the representations under 
a certain mark (if the rule is a rule of connection), or 
it may do so (if it is a rule of composition). If it is a rule 
of composition, then all the agent knows is that he may
perform the combination activity—he does not have to do 
so. Consider, for example, Jastrow’s famous duck-rabbit 
(Figure 1). Focus on the lines on the left of the image. We 
have two rules of composition that apply to these lines: we 
can count these lines as a mouth, or as a pair of ears. Now 
there is a rule of connection that prevents us from applying 
both: if something is a mouth, then it is not a pair of ears. 
We may apply either rule of composition—but we must not 
apply both. What makes us decide which to apply?

16 Richard Evans

that one concept excludes another. Some of them relate the concept to another con-
cept only conditionally - dependent on the existence of external factors. For example:
“If the weather gets cold, trees lose their leaves”, “If a tree gets no water, it perishes”
(Kant and the Capacity to Judge, p.145). Some of the conceptual inference rules, in
Kantian terms, are hypothetical rather than categorical.

Constructing rules of connection is also what is involved in making judgements.
If we form the judgement that “All men are mortal”, this is just to adopt the rule of
connection: if I count a cognition as a man, then I must also count it as mortal. But
this inferential understanding of judgement applies to categorical statements just as
much as to hypothetical ones: to form the judgement that “Caesar is a general” just
is to adopt the rule: if I count a cognition as Caesar, then I must also count it as a
general.

This is why Kant says ([A126], quoted above) that the faculty of constructing
rules is also the faculty of concept-formation and judging: both concept-formation
and judging are just special cases of the more general ability to construct rules.

5.2 Applying rules

Next, I shall turn to the process of applying the rules that the understanding has
constructed. Kantian rules, as defined above, are norms operating under a condi-
tion. Rules are not explicit linguistic conditionals, where there is a further question
whether the antecedent applies. Rather, the rule is itself responsible for determining
when it applies. It contains a procedure for determining whether or not it applies. The
rule-as-procedure applies itself. If the rule applies in a particular situation, a norm is
operative: either the agent must combine the representations under a certain mark (if
the rule is a rule of connection), or it may do so (if it is a rule of composition). If it
is a rule of composition, then all the agent knows is that he may perform the combi-
nation activity - he does not have to do so. Consider, for example, Jastrow’s famous
duck-rabbit (Figure 1). Focus on the lines on the left of the image. We have two rules

Fig. 1 Jastrow’s duck-rabbit

of composition that apply to these lines: we can count these lines as a mouth, or as a
pair of ears. Now there is a rule of connection that prevents us from applying both:

Figure 1. Jastrow’s famous duck-rabbit.
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 5.3 HAVING AN INTUITION VERSUS FORMING A 
JUDGMENT 

The rule-following agent has two distinct types of thought: 

•	 Thinking an object (having an intuition) 

•	 Thinking a proposition (forming a judgment) 

These two distinct types of representation are achieved by 
two distinct types of activity: 

•	 An intuition is the representation formed by the 
activity of combination, by applying rules it has 
already constructed 

•	 A judgment is the representation formed by 
constructing a rule 

Sellars clarifies the distinction between the two types 
of representation by using different types of syntactic 
units: an intuition (thinking an object) is represented by a 
noun-phrase, while a judgment (thinking a proposition) is 
represented by a sentence. He starts by noting that some 
philosophers interpret “seeing as” in terms of a conjunction 
of a perception and a thought: 

This suggested to some philosophers that to see a 
visual object as a brick with a red and rectangular 
facing surface consists in seeing the brick and 
believing it to be a brick with a red and rectangular 
facing surface: 

This is a brick which has a red and rectangular 
facing surface 

Notice that the subject term of the judgement was 
exhibited above as a bare demonstrative, a sheer 
this, and that what the object is seen as was placed 
in an explicitly predicate position, thus “is a brick 
which has a red and rectangular facing surface.”53 

He prefers instead to characterize intuitions by noun-
phrases: 

I submit, on the contrary, that correctly represented, 
a perceptual belief has the quite different form: 

This brick with a red and rectangular facing 
surface 

Notice that this is not a sentence but a complex 
demonstrative phrase. In other words, I suggest 
that in such a perceptually grounded judgement 
as: 

This brick with a red and rectangular facing 
surface is too large for the job at hand 

the perceptual belief proper is that tokening of a 
complex Mentalese demonstrative phrase which 
is the grammatical subject of the judgement as 
a whole. This can be rephrased as a distinction 

between a perceptual taking and what is believed 
about what is taken.54 

In my terms, there are two activities: 

•	 combining/apprehending/intuiting (i.e., applying 
rules) 

•	 forming judgments (i.e., constructing rules) 

Combining produces an intuition (thinking an object) which 
is described by a noun-phrase, such as 

This brick with a red and rectangular facing surface 

Constructing a rule produces a judgment (thinking a 
proposition) which is described by a sentence, such as 

This brick with a red and rectangular facing surface 
is too large for the job at hand 

The underlying rule that is adopted for a judgment such as 
this could be expressed as something like 

For any intuition, if you count it as the same brick 
as this brick with a red and rectangular facing 
surface then you must also count it as too large for 
the job at hand 

Kant believed that all judgment-formation is rule-adoption: 

Judgements, when considered merely as the 
condition of the unification of given representations 
in a consciousness, are rules.55 

This claim is easiest to see in the case of universally 
quantified judgments. Judging that “All metals are 
divisible” just is adopting the conditional norm 

If you count an intuition as a metal, then you must 
also count it as divisible. 

But Kant did not just analyse universally quantified 
judgments in terms of rule-adoption—he applied this 
account of judging as rule-formation consistently across 
the board to all types of judgment. Forming the singular 
judgment that “Caius is mortal” just is adopting the rule 

If you count an intuition as Caius, then you must 
also count it as mortal 

This applies equally to sentences involving demonstratives: 
forming the judgment that “This brick with a red and 
rectangular facing surface is too large for the job at hand” 
just is adopting the rule 

For any intuition, if you count it as the same object 
as this brick with a red and rectangular facing 
surface then you must also count it as too large for 
the job at hand 

If, later, I have another intuition of the brick (perhaps from 
another angle, and further away), and count this intuition as 
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representing the same object as my earlier intuition, then 
I must apply the rule I have adopted, and also count this 
new intuition as representing a brick that is too large for 
the job at hand. This new combination, which I am forced 
to perform because of the rule I have adopted, is a new 
intuition, that would be described by a noun-phrase rather 
than a sentence: 

This brick, with a red and rectangular facing surface, 
which is too large for the job at hand 

5.4 CONSTRAINTS ON THE CONSTRUCTION AND 
APPLICATION OF RULES 

Kant’s cognitive agent is a rule induction system that makes 
sense of its sensory perturbations by constructing and 
applying rules. Given that there are two types of activity 
(constructing and applying rules), and two types of rule 
(rules of composition and rules of connection), we have a 
square of operations: 

Rules of Composition Rules of Connection 

Constructing Forming perceptual Forming concepts and 
rules judgments 

Applying Forming intuitions Inferring further 
properties of objects 

Recall our original questions: 

What must I do, in order to count these sensory 
perturbations as my experience? 

The rule-following agent is a central part of Kant’s answer: 

•	 A sensory agent is a cognitive agent if he counts 
his sensings as representing an external world 

•	 He counts these sensings as representing an 
external world if he combines those sensings 
together in the right way 

•	 He combines his sensings together in the right 
way if he constructs and applies a set of rules that 
satisfy a set of (as yet unspecified) constraints 

The next question, then, is what set of constraints on 
the construction and application of rules are severally 
necessary and jointly sufficient for counting this plurality 
of sensory perturbations as representing an external world 
(and thereby achieving original intentionality)? 

In the Schematism and the Principles, Kant provides a list 
of constraints on the self-legislating agent, and argues 
that these are all and only the constraints that need to be 
satisfied for the agent to achieve original intentionality. 
These arguments are difficult and dense. I attempt to 
summarize them in A Kantian Cognitive Architecture. The 
basic idea is that an agent can only achieve intentionality 
if it combines its cognitions together into a unity. The only 
relation in which all cognitions can be unified is time. 

Unifying our cognitions in time involves four aspects: 
constructing moments in time, generating intermediate 
moments of time, providing a total ordering on moments 
of time, and generating the totality of time (by excluding 
moments that are impossible). Each of these four aspects 
of time determines constraints on the construction and 
application of rules. We move from one top-level constraint 
(Kant calls it the “supreme principle”), that our cognitions 
be unified, into four sub-constraints (the four aspects of 
time-determination), and from each of these four sub-
constraints, we generate specific constraints on the types 
of rules that can be constructed and further constraints on 
the results of applying these rules.56 

6 CONCLUSION 
Some of the most exciting and ambitious work in recent 
philosophy57 attempts to re-articulate Kantian (and post-
Kantian) philosophy in the language of analytic philosophy. 
Now this re-articulation is not merely window-dressing.—It 
is not merely dressing up old ideas in the latest fashionable 
terminology.—Rather, analytic philosophy, when done well, 
achieves a new level of perspicuity. Saying it again, at this 
level of clarity and precision, is worth saying again. 

My aim is to re-articulate Kant’s theory at a further level 
of precision, by reinterpreting it as a specification of a 
computational architecture. 

Why descend to this particular level of description? What 
could possibly be gained? The computational level of 
description is the ultimate level of precise description. 
There is no more precise you can be: even a mere computer 
can understand a computer program. Computers force us to 
clarify our thoughts. They admit no waffling or vagueness. 
Hand-waving is greeted with a compilation error, and a 
promissory note is returned, unread. 

The advantage of re-articulating Kant’s vision in 
computational terms is that it gives us a new level of 
specificity. This is, in fact, the final level of specificity. There 
is no more precise we can be. 

The danger is that, in an effort to shoe-horn Kant’s theory into 
a particular implementable system, we distort his original 
ideas to the point where they are no longer recognisable. 
Whether this is indeed the unfortunate consequence, the 
gentle reader must decide. 

I have formalized (a particular interpretation of the first half 
of) the First Critique as a specification of a computational 
architecture. I have implemented this architecture as a 
computer program and tested it in two domains. 

In one domain, the sensory agent has to make sense of 
its sensory readings in a simple two-dimensional grid 
world. The rule-induction agent is forced to construct rules 
that make sense of the barrage of sensory data. In doing 
so, it creates a unified cognition, combining momentary 
apprehensions into persisting objects that change over 
time, objects that change according to intelligible rules, 
and interact with other objects according to intelligible 
rules. 
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The second experimental domain is a verbal reasoning task. 
The Kantian machine is given a sequence of symbols and 
has to predict the next element in the series. For example: 
find the next element in the sequence: 

a, k, b, k, k, c, k, k, k, ... 

The Kantian machine makes sense of these sequences by 
constructing rules that, when applied, satisfy the various 
Kantian constraints. Surprisingly, the Kantian machine is 
able to achieve human-level performance in these verbal 
reasoning tasks.58 
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NOTES 

1.	 This paper is a companion to Richard Evans, A Kantian Cognitive 
Architecture (IACAP, 2016), which goes into the technical details. 

2.	 Wittgenstein, Investigations, §206. 

3.	 Ibid., §185. 

4.	 For Wittgenstein, the community of “we” just is the set of 
individuals who count-as in the same way. 

5.	 Wittgenstein, Investigations, §200. My emphasis. 

6.	 Stanley, Cavell, The Claim of Reason (Oxford: Oxford University 
Press, 1979), 36. 

7.	 John Haugeland, “The Intentionality All-stars,” Philosophical 
Perspectives (1990): 383–427. 

8.	 Ibid., 385. 

9.	 Note that I am not defining intentionality in terms of the activity 
of counting-as (which would be uninformative). Rather, I am 
using counting-as to distinguish between original and derivative 
intentionality. Later, counting-as will itself be explicated in terms 
of the construction and application of rules. 

10. Immanuel Kant, 	The Critique of Pure Reason, B Edition, 1. My 
emphasis. 

11.	 In other words, we can only represent a world because we can 
count some activity as mental activity. Therefore, the ability 
to count activity as intentional (representational) behavior is 
necessary to be able to think a world at all. This has interesting 
consequences for scepticism about others’ minds. The sceptic 
suggests it is possible for us to be able to make sense of a purely 
physical world of physical activity, and asks with what right we 
assume that some of this activity is mental activity. But if the 
above is right, the capacity to count activity as mental activity is 
necessary to think anything at all—there is no intentionality-free 
representation of the world, in terms of bare particulars. There 
is always already the ability to see activity as intentional activity 
before we can see anything. 

12. John Searle, The Rediscovery of the Mind (Cambridge, MA: The 
MIT Press, 1992). 

13. Kant, The Critique of Pure Reason, A Edition, 199; B Edition, 244– 
45. 

14. Ibid., A158, B197. 

15. Ibid., A99. 

16. Robert P. Wolff, Kant’s Theory of Mental Activity: A Commentary 
on the Transcendental Analytic of the Critique of Pure Reason 
(Harvard University Press, 1964), 126. 

17.	 Wittgenstein, Investigations, §208e. 

18. See Kant, The Critique of Pure Reason, B201n. 

19.	 Kant says little about what a “mark” is, given its load-bearing 
role in his theory. “Merkmal” is typically translated as “mark,” 
but it can also be translated as “feature.” A mark is not a shared 

linguistic symbol. It is rather what computer scientists call a 
“gen-sym”: a generated symbol, an atomic identifier. A mark is 
an uninterpreted symbol, on which the only primitive operation 
that you are given is a procedure for testing identity: the agent 
can tell, when given two marks m1 and m2, whether or not 
m1 = m2. A mark, on its own, is just an uninterpreted symbol. But 
by constructing inferential rules that relate this mark to others, 
we can elevate it into a concept. 

20. Kant, The Critique of Pure Reason, B201n. 

21.	 See ibid.: “the synthesis of a manifold of what does not 
necessarily belong to each other.” 

22. Brown Book, 145–46. 

23.	 See Kant, The Critique of Pure Reason, B201n: “the synthesis of a 
manifold of what does not necessarily belong to each other.” 

24. Ibid., A177, B220. 

25. Ibid., B198, A159. 

26. Ibid., A105. 

27.	 Ibid., B130. 

28. Ibid., A126. 

29.	 Ibid., A108. 

30. Ibid., A112. 

31.	 In computational terms, think of a meta-interpreter that is able 
to construct pieces of code as data, and then execute these new 
pieces of code. 

32. Kant makes the same point in the Metaphysical Deduction: “The 
same function that gives unity to the different representations in 
a judgement also gives unity to the mere synthesis of different 
representations in an intuition, which, expressed generally, 
is called the pure concept of the understanding. The same 
understanding, therefore, and indeed by means of the very same 
actions through which it brings the logical form of a judgement 
into concepts by means of the analytical unity, also brings a 
transcendental content into its representations by means of the 
synthetic unity of the manifold” [A79, B104-5]. In other words, 
there is only one process (a process of constructing and applying 
rules) which explains both how we form judgments and how we 
form intuitions. 

33.	 An activity is shown to be permitted if there is a rule that applies 
that shows that you may or must do it. Must implies may. 

34. Kant, The Critique of Pure Reason, A106. 

35. Ibid., A113. 

36. Beatrice Longuenesse, Kant and the Capacity to Judge (Princeton 
University Press, 1998), 50. 

37.	 See, e.g., Robert B. Brandom, Making It Explicit: Reasoning, 
Representing, and Discursive Commitment (Harvard University 
Press, 1994), 20 ff. 

38. Thereby steering between the Scylla of regulism (rules as 
linguistically explicit conditionals) and the Charybdis of 
regularism (rules as mere statistical regularities). See Brandom’s 
Making It Explicit, Chapter 1, Section 3. 

39.	 In AI, this is called the qualification problem. 

40. Joshua B. Tenenbaum, Rules and Similarity in Concept Learning 
(NIPS, 1999). 

41. Wittgenstein, Investigations, §80. 

42. Ibid., §351. 

43. Longuenesse, Kant and the Capacity to Judge, 394. 

44. Immanuel Kant, “What Is Enlightenment?” 	On History (1784): 
3–10. 

45. Kant, The Metaphysics of Morals (1797) 6:409. My emphasis. 

46. Wittgenstein, Investigations, 83. 

47.	 Kant, The Critique of Pure Reason, A126. 

48. Longuenesse, Kant and the Capacity to Judge, 145. 
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49.	 Kant, The Critique of Pure Reason, A126, quoted above. 

50. Ibid., A133, B172. 

51. Ibid., B151. 

52. Ibid., B162n. 

53.	 Wilfrid Sellars, “The Role of Imagination in Kant’s Theory of 
Experiencei” in Categories: A Colloquium, ed. H. W. Johnstone, 
Jr. (Pennsylvania State University, 1978), 455. 

54. Ibid., 456. 

55. Kant, Prologomena to Any Future Metaphysics, 1783, §23. 

56. For details of the precise constraints involved, see Evans, 	A 
Kantian Cognitive Architecture; Longuenesse, Kant and the 
Capacity to Judge; and Wayne Waxman, Kant’s Anatomy of the 
Intelligent Mind (Oxford University Press, 2013). 

57.	 Robert B. Brandom, Between Saying and Doing: Towards an 
Analytic Pragmatism (Oxford University Press, 2008); Robert B. 
Brandom, From Empiricism to Expressivism (Harvard University 
Press, 2015); Wilfrid Sellars, Science and Metaphysics: Variations 
on Kantian Themes (New York: Humanities Press, 1968); Sellars, 
“The Role of Imagination in Kant’s Theory of Experience”; and 
Tenenbaum, Rules and Similarity in Concept Learning. 

58. For more details of the approach and the experiments, please 
see Evans, A Kantian Cognitive Architecture. 
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I Am, Therefore I Think 
Don Perlis 
UNIVERSITY OF MARYLAND 

ABSTRACT 
I argue that reflexive self-knowledge is the basis of all 
knowledge, and that a reflexive-self formulation of mind 
and consciousness—perhaps unlike formulations couched 
in more vague in terms of subjectivity, felt experience, or 
what it’s like to be—appears that it might be studied fairly 
directly as a kind of engineering problem. 

INTRODUCTION 
Much has been written on the nature of knowledge, and its 
relation to mind. And the same term—knowledge—is used 
with abandon in artificial intelligence. In the fall of 2015 I 
gave a series of three talks in Birmingham and Lyon, on a 
variety of topics including mind, meaning, and the history 
of AI. In subsequent discussions with Peter Boltuc, I came 
to think that knowledge is a powerful unifying theme to 
all three talks, and Peter suggested that I might turn those 
talks into a paper with such a focus. 

As a result this paper may take what might seem like a 
curiously rambling back-and-forth tour covering many 
areas, which I hope the reader will forgive. In addition, the 
paper is deliberately of a rather impressionistic style, not 
a formal analytic argument. My view is that the ideas and 
concepts are in many cases vague enough (and likely will 
remain so until such time as we actually scientifically solve 
much of the mind-body problem) that the most fruitful 
approach is to suggest promising avenues for research 
rather than precise definitions and sharp derivations. So 
hopefully my paper can be read as providing suggestive 
hints; and that is why I employ a rather loose style that jams 
together what traditionally are taken as distinct topics. But 
I think the evidence points to a promising synthesis and 
unifying direction for investigation across the cognitive 
sciences. My conclusions will be that while knowledge is 
an especially narrow kind of thing (essentially a form of 
self-knowledge), it is also very specially at the center of 
cognition; and that this can be studied computationally. 

PART I: AI RETURNS TO ITS ROOTS; BUT WITH A 
GLARING CHASM 

Artificial intelligence currently is a vast field largely fueled 
by its eye-catching applications, from the chess-playing 
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prowess of Deep Blue to the growing presence of robots 
in many walks of life. 

But I think AI may now—with some very major advances 
under its belt—be returning to its roots as the science of 
cognitive agents, with the exalted aim of a computational 
understanding of the mind. Here is a brief history: 

1960–1985: Youthful ambitions, during which were 
introduced the situation calculus, the frame problem, 
SHAKEY the robot, and nonmonotonic reasoning, among 
other advances; but also during which there was a keen 
interest in building agents with fairly general cognitive 
abilities (but which proved vastly harder than anticipated). 

1985–2010: Age of specialization, in which AI splintered 
into many separate areas with their own conferences and 
journals, major applications appeared, and little was heard 
about cognition. Still, there was also beginning work on 
time-sensitive reasoning and metacognition. 

2010–present: Renewed interest in cognitive agents; 
natural-language processing (NLP) and robotics and vision 
and reasoning and planning and learning starting to come 
together. 

But something key still seems missing. Without further ado, 
I give my view: we need to get a computational grasp on 
reflexive self. In fact, most AI systems have no notion of self 
at all—no metacognition, for instance. They simply perform, 
and do not take themselves into account. Thus, most NLP 
dialog programs are not able to answer questions about 
what they just said, or what their words mean; they do 
not model themselves as agents with purposes. Yet some 
research does incorporate such constructs, and there does 
not seem to be any fundamental puzzle about this effort; 
metareasoning is the principal method. 

Reflexive self, however, is something even more: it is the 
immediate present “I,” the self-knowing self. One doesn’t 
experience pain and then come to know one is in pain. The 
having of the pain is the knowing it. This is controversial, 
but not without supporters. It is to be distinguished from 
reflective or introspective or biographical self. We will 
return to reflexive self later; but notice that the notion of 
knowledge has crept in. 

And in fact one construct central to most of AI—the so-
called knowledge base (KB)—leaves much to be desired. 
Most AI systems have no way to relate items in their KB 
to what those items supposedly stand for in the world; 
any such relation is in the minds of the human designers. 
Thus in some strong sense, AI systems today do not know 
anything. 

So this leads us to ask what knowledge is, and how it might 
be seen as a kind of computational process. We close this 
section with an aside on the holy grail of cognitive science: 
what is it to be conscious? From the Latin, conscious (of) = 
with knowledge (of). I suggest that a (reflexive) conscious 
state of a subject S is a state that S knows itself to be in, 
where that very knowing is part of that same state. (Here 
state is to be regarded as a kind of process, rather than an 

instantaneous instant.) A not uncommon view is that self-
knowledge is a more complex form of knowledge that is 
preceded by knowledge of things more generally. But, as 
will unfold later, I think this is exactly backwards. 

PART II: WHAT DOES IT TAKE FOR A PIECE OF 
DATA TO BE KNOWN? 

A knowledge base is a repository. Without something 
additional, there is no more reason to regard a KB item as 
something known (to be true) than as something false or as 
a mere syntactic entity without meaning. What is missing, 
it would seem, is a knower that relates the symbolic item 
to its meaning in the world. (This of course is the famous 
issue of intentionality, the directedness of cognitive items.) 
Boxology—putting items in boxes and labeling them as 
knowledge, goals, intentions, and so on—does not settle 
or explain anything; yet sadly it is the current standard in AI. 

So, what constitutes a knower, and how can anything be 
known? Can one know anything? It seems easy (e.g., Hume) 
to doubt anything—yet Descartes insists that there is one 
thing one can know for sure: that one is carrying out an act 
of thinking. (To my mind, his further claim that therefore 
he exists pales by comparison.) One cannot think and not 
know it. 

As an aside, here is a related kind of argument due to 
Kripke (in Naming and Necessity, pp 153-4): pain requires a 
subject, an entity that can feel, can know the pain. But mere 
C-fiber firings cannot supply such a feeler/knower. Thus 
pain (and by extension, consciousness) is more than firing 
of C-fibers. But (pace Kripke), a whole brain-full of fibers 
firing in the right ways might be able to supply a feeling 
subject. That after all is the whole question. The reason the 
C-fibers argument works is that no one imagines C-fibers in 
themselves—sending signals in one direction—is enough. 
Kripke’s argument—if applied to the whole brain—is close 
in spirit to zombie-arguments, which we return to at the 
end. 

But back to knowing, especially since consciousness seems 
to be a kind of knowing. 

PART III: PLATO TO GETTIER AND BACK TO 
DESCARTES 

The nature of knowledge has been discussed and argued 
about for millennia. The JTB—justified true belief—theory 
is attributed to Plato and was held in wide acceptance until 
Gettier’s bombshell counterexamples in the 20th century. 
By now others have extended this almost to a cottage 
industry for creating such cases. The underlying issue is 
this: knowledge seems to require some kind of actual 
connection (or acquaintance, in Russell’s terms) with the 
facts; it cannot be a lucky guess to count as knowledge. 
And this is supposed to be provided by the justification. 
But standard sorts of justifications seem to fail, surprisingly. 

The best example I know of is due to Mason Remaley (who 
at the time was an undergraduate in my Intro to AI class). It 
goes like this: You have parked your car outside your office 
building. While you are at work in the office, unknown to 
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In the figure, both H and the green hand (encircled in red) are internal
representations, and the agent takes H to stand for that hand, which in turn is
mapped neuronally and uniquely to the actual hand. So Searle is right in a way: the 
standard sort of symbol processing cannot supply meaning; it takes a special sort,
that has self-representations.

What has this to do with knowledge? Everything! Knowledge requires meaning,
hence self. And what is self? I am suggesting it is special kind of processing (that 
perhaps it is even like something for it to be underway): it knows itself immediately,
as part of that very processing. It is the most basic form (and perhaps definition) of
knowing – the self. What the self (always) knows is itself as that very process of
knowing.

Part VI: Mysteries, or engineering?

Have we just replaced one mystery (or two: knowledge and consciousness)
with another? I think there is some progress here. For the reflexive-self formulation
– perhaps unlike formulations in terms of subjectivity, felt experience, or what it’s like 
to be – appears that it might be studied fairly directly as a kind of engineering
problem (pace Chalmers 1996, who insists consciousness has no function). By 
analogy, consider James Watt’s governor that self-regulates.

 

 

 

 

  

 
 

  
 

 
 

 
 

  
     

   
  

   
 

 
 
 

 
 
   

    
       

      
   

  
 

you a landslide occurs in the parking lot and carries away 
many of the cars, but not yours. You still believe your car 
is parked there, and you have excellent reason to believe 
this, and it is true. Yet we would be loathe to say you know 
your car is parked there. 

Such Gettier-style examples have led some (e.g., Dretske) to 
suggest that perhaps there is no such thing as knowledge, 
only beliefs of varying degrees of plausibility. This may 
seem convincing: isn’t all so-called knowledge inferred, 
concluded on reflection, and thus error-prone? 

We return to Descartes. 

Some have argued that his premise “I think”—or cognize— 
is flawed: How does he conclude he thinks? Isn’t he instead 
merely justified in concluding that “there is thinking”? But 
how can he conclude this unless he somehow knows about 
that thinking; and how can he know about it other than by 
the very doing of the thinking? Consider what it would mean 
for there to be thinking going on, but no one at all knows 
about it; this would not seem to be thinking. (Indeed, one 
might go further and claim that the present thinking act is 
the I/self of that moment.1) And this does not seem to be 
introspective knowing—the thinking 
directly and immediately involves 
the act of knowing about itself going 
on. And a form of reflexive self has 
returned. 

PART IV: PERRY AND “I” 
John Perry gives a famous example 
of coming to realize it is he himself 
whose shopping cart has a torn bag of 
sugar making a mess. (He is wheeling 
his shopping-cart along the aisles 
of a store, going faster and faster 
in an attempt to notify an unknown 
shopper ahead of him—following the 
trail of sugar that is getting thicker 
and thicker—until he red-facedly 
understands.) This experience leads 
him to ask what knowledge he has gained in coming to 
this realization. And he finds it very difficult to explain the 
“I”—the self-known self—in terms not involving that same 
construct. It seems irreducible. 

Are we then stuck? Is this perhaps much the same as the 
explanatory gap between consciousness and physical 
causation? In a later section I propose a way out. 

PART V: BELIEF AND MEANING 
Again from Descartes, whatever knowledge is, it is self-
knowledge that precedes other forms. And it is a strong 
form of knowledge, not mediated by reflection, inference, 
perception. 

So self-knowledge precedes JTB; one first knows (oneself) 
and then infers regarding justifications and so on. But 
then what is belief? This brings us right back to boxology: 
a belief-box settles nothing. There has to be meaning for 
there to be belief. One cannot believe mere symbols; a 
belief is always about something. 

Figure 1. 

This recalls the problem of intentionality, and also that of 
external reference. But Putnam’s Theorem shows that there 
is no unique truth-preserving mapping between words/ 
sentences and the world.2 For any such mapping, many 
others do just as well. This seems to rule out any sensible 
account of meaning (despite Putnam’s own earlier work, 
see below). But this argument leaves out a key component: 
meaning is given by meaners—individuals who ascribe 
meaning to their words and sentences. We are connected 
to the world via our bodies; and (at least some of) our words 
and thoughts are canonically connected to our bodies via 
specific neuronal pathways. 

Indeed earlier on, both Putnam and Kripke—in the so-
called causal-history theory of reference—refer to dubbers, 
namers, baptisers, who assign word-meanings that are 
then later borrowed by other members of a linguistic 
community.3 They do not provide a detailed account of 
such initial dubbing/naming activities; but such an account 
would seem to be far more fundamental to language 
and meaning than the borrowings that flow from them. I 
suggest that the same bodily connection referred to above 
may be the basis for naming and meaning overall. 

Now this is what Searle said cannot 
be done (by a computational system). 
Mere symbol processing (which is 
syntactic) cannot provide semantics. 
Unless it can. But how can it? What is 
being suggested here is that a self 
(embedded in the world) is what is 
needed, to supply the canonical 
connections. 

In Figure 1, both H and the green 
hand (encircled in red) are internal 
representations, and the agent takes 
H to stand for that hand, which in turn 
is mapped neuronally and uniquely 
to the actual hand. So Searle is right 
in a way: the standard sort of symbol 
processing cannot supply meaning; 

it takes a special sort, that has self-representations. 

What has this to do with knowledge? Everything! Knowledge 
requires meaning, hence self. And what is self? I am 
suggesting it is special kind of processing (that perhaps it 
is even like something for it to be underway): it knows itself 
immediately, as part of that very processing. It is the most 
basic form (and perhaps definition) of knowing—the self. 
What the self (always) knows is itself as that very process 
of knowing. 

PART VI: MYSTERIES, OR ENGINEERING? 
Have we just replaced one mystery (or two: knowledge and 
consciousness) with another? I think there is some progress 
here. For the reflexive-self formulation—perhaps unlike 
formulations in terms of subjectivity, felt experience, or 
what it’s like to be—appears that it might be studied fairly 
directly as a kind of engineering problem.4 By analogy, 
consider James Watt’s governor that self-regulates (see 
Figure 2). 
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Figure 2. Watt governor. 

As increased steam-flow causes 
the arms to rotate with increased 
speed, they are pushed upwards 
by the vector sum of a force 
pulling along the arms (upward 
and inward) and an outward 
effective centrifugal force; and the 
new higher position then results 
in a steam-opening being partially 
closed thereby reducing the 
flow of steam and thus slowing 
the rotation, leading to an up-
down cycle until a steady state 
is achieved. This seems magical, 
sense-defying, until one studies 
it. It does indeed have a kind of 
self-control. To be sure, it is not 
reflexive (or reflective) in any relevant sense. But it provides 
a compelling metaphor and food for thought. It does have 
dual causality—the steam causes the rotation, which also 
reduces the steam. 

What might be a similarly practical example of reflexivity? 
How about the utterance, “I am now speaking English”? 
Note the difference from “This sentence is in English.” The 
latter does not refer to a speaker; there is no performance 
relevant to its meaning. But the former is uttered by an 
agent as it reasons about its very same uttering-in-progress. 
It might be tricky to implement this in a computer or robot; 
but it is something one can work on. 

Here is another example: how can one tell one is speaking? 
It surely is not by hearing ones own voice. We might hear 
our voice and take it to be a recording. We know we are 
speaking by the mere fact of engaging in the action (e.g., 
issuing the commands to our vocal cords). The actual 
speech might be impeded (say by an overly dry throat), but 
we still know we are engaged in the process, because we 
are (voluntarily) undertaking it. 

This too can be implemented in a robot—in fact, a robot 
inadvertently taught my research team this lesson. We had 
programmed it so that whenever it heard the word “Julia” 
it would look for her, point, and say “I see Julia.” Yet often 
it would perform this as expected, and then go on to do it 
over and over every few seconds. It took us several minutes 
to figure out that it was responding to hearing itself say 
“Julia.” We had not thought to provide it with a way to 
distinguish self-utterances from others. In fact, it had no 
notion of self at all. But there was ready-to-hand a solution, 
from neuroscience: efference copy.5 

Efference copy is a copy of a motor command (sent to 
muscles) from the brain; the copy is kept in the brain, 
providing a kind of working memory of what the agent 
is doing, and which can be used to make corrections if 
performance deviates from goals. The most famous example 
is VOR—vestibular-ocular reflex—in which ones eyes rotate 
in their socket as ones head turns, so that one retains a 
stable image on the retina when gaze is fixed on an object. 
A similar mechanism is hypothesized to be at work in all 
voluntary actions. We were able to build efference copy 
into our robot, so that it now can distinguish between cases 

of hearing its own utterances and 
those of others; or more precisely, 
between cases of its undertaking 
or not undertaking utterances. Is 
this then a conscious robot, or a 
“self-knowing” robot in any serious 
sense? Surely not. But it seems 
headed in the right direction. 

Again, if we are able to get an NLP 
program simply to use “I” correctly 
in a wide range of circumstances, 
we might then be a lot further along. 
And again, this does not seem 
fundamentally mysterious, rather 
a tough engineering problem. But 
this too will not be enough. 

PART VII: IMAGINATION 
One needs a real-time and real-space connection with the 
world, in order to have meaning (and thus in order to have 
knowledge). This is implicit in what was said above, but it 
needs to be brought out. Here is an example due to Patrick 
Winston.6 

Consider a table-saw with the warning “Do not wear gloves 
when using this saw.” This might be puzzling—after all, 
gloves are usually protective—until we visualize what 
might happen: in our mind’s eye we see the glove being 
caught by a saw-tooth and then pulled (along with our 
hand) into the spinning blade. This inner eye is key to our 
ability to anticipate possibilities. Essentially it amounts to 
imagination, without which we would not be able to think, 
hence not to understand, and thus not to have knowledge 
(except in the unhelpful boxology sense). 

This notion of thinking is not ordinary logic.7 It combines 
symbolic processing with perceptual processing, perhaps 
akin to virtual/augmented reality and even a kind of 
internal self-modeling activity (e.g., seeing oneself pushing 
ones hand forward). Knowledge then might amount to a 
Cartesian awareness of self-in-mental-action. And yet, this 
may turn into a (self-based) engineering problem. 

Perhaps then a reflexive-self based process is our only real 
knowledge—we can’t be wrong about our own ongoing 
imaginative acts (Descartes; not his dualism but simply 
his cogito in reverse: in knowing ourselves—i.e., in self­
predicating—we can be sure that we know). A so-called 
knowledge base is a mere storehouse of codes, not known 
in any useful sense until triggered into imaginative acts of 
anticipation. 

PART VIII: SOME TENTATIVE CONSEQUENCES 
A number of consequences seem to follow from the above 
perspective. 

For one, we can suggest a conclusion about Frank Jackson’s 
color-deprived Mary. She is supposed to know “all physical 
facts” about the brain, and yet never have actually been in 
the presence of anything red. Does she then know what 
it is like to see red? On the theory of knowledge being 
proposed here, if she knows all facts about the brain then 
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her brain actually triggers codes for all such facts into her 
imagination. And then plausibly yes, she will know the 
actual experience of seeing red.8 

If this is hard to swallow, consider the following variant: 
Suppose you have never seen a regular pentagon, living in 
a world of right angles. You have read (un-illustrated) books 
about pentagons, describing them verbally in detail. Now 
will you know what a pentagon looks like? That depends on 
your brain’s imaginative powers, which in turn depends on 
connections between different envisioning capacities and 
abilities to retain envisioned information (e.g., up to five 
linear elements) at once. It is a fact about pentagons and 
suitable brains that a certain “look” of the former can be 
imagined by the latter with never an external pentagon to 
look at; and other brains cannot. Those latter brains then do 
not have all the facts about brains and pentagons. 

Second: In an online video, Kevin O’Regan poignantly asks 
(of any proposed theory that consciousness consists in X): 
what is it about X that makes it conscious? This is a powerful 
question, that leaves many theories in the dust (they offer 
no explanation of felt experience). But without intending 
to sound facile or glib, I suggest: self-knowingness is 
consciousness, and what makes it conscious is that very 
self-knowingness. This at least is not obviously lacking in 
plausibility. Self-knowingness does seem tightly linked to 
consciousness, and has been so linked going back at least 
to Descartes. Moreover, it is the sort of thing that gives 
us handles to work with, and might allow an engineering 
approach that could shine much light. 

Third: Block’s P-consciousness and A-consciousness now 
become the same thing.9 One cannot be a knowing self 
and yet not know that.10 

Fourth: In Davidson’s “Knowing One’s Own Mind” there is a 
thought-experiment in which a creature suddenly is formed 
in a swamp by random accident, but coincidentally molecule­
for-molecule identical to an actual human (Davidson 
himself).11 The Swampman will have consciousness, 
thoughts, feelings, etc, right off the bat in virtue of its 
having the identical self-engineering as a human. But (in 
agreement with Davidson) many of its thoughts will fail 
to refer externally (in the customary sense), at least until 
Swampman has gone on to have relevant experiences (such 
as meeting Davidson’s friends, etc.); and some thoughts 
might never completely refer as long as Swampman takes 
himself to have Davidson’s past history. But this is no great 
oddity; all of us have misconceptions about ourselves and 
the world, including failed reference. 

Fifth: Determinism and freedom and time. Physics is what 
it is: either deterministic or not (e.g., quantum-mechanical 
uncertainty). But our decisions do result from a complex 
(physical) process that includes (and depends on) our 
deliberations. Thus we are indeed (partially) the makers of 
our own fate. This is not independent of physical law but 
rather part and parcel of it: we too are the physics, and 
our deliberations are no illusion; without our deliberative 
activity, our behavior would be far different. This may be 
less so in the case of minor short-term decisions such as 
whether to lift a finger as a clock-hand sweeps by during 

an experiment;12 but for instance in deciding on whether 
to buy a house a great many things enter in over a long 
time-period, and the final moment of “choice” is a result of 
all the previous efforts (conscious and otherwise). We are 
as determined as the world (which may be determined or 
not), but our choices are real and effective internal parts of 
ourselves and of that world. And this brings us to zombies. 

PART IX: ZOMBIES AND SUMMARY OF THE 
OUTLOOK BEING PRESENTED 

We can also draw conclusions about zombies, and this will 
perhaps dramatize the nature of the view being presented 
here. To set the stage, here is a simple argument that 
zombies cannot exist (but I note that the literature on 
zombies is large and sophisticated, and it is unlikely that 
those who have studied this topic will be swayed by my 
rendering): When we say (honestly) that we are feeling a 
throbbing pain in our toe, it normally is the case that (this 
is premise #1) we are in fact feeling such a pain, and also 
that (this is premise #2) our saying so is based causally on 
that felt experience itself (that is, we would not have said 
so had we not been feeling the pain). But then our zombie 
equivalent will also say the same thing while not having 
any such experience (by definition, being a zombie). So its 
saying so cannot have that same causal basis. 

But this is a contradiction: its neural firings are identical 
to ours, and since its firings are a sufficient cause for its 
utterance then they must also be so for ours. If we accept 
the two premises above, then we are forced to conclude 
that there can be no zombies. 

Now, a zombie-loving philosopher may complain about 
premise #2 and say that is the issue: whether our felt 
experiences can cause anything physical, as opposed 
to being mere epiphenomena, feely-freebies, so to 
speak. Yet we do consult our experience—hmm, does my 
toe hurt? Let me attend to how my toe feels—ah, yes—there 
it is, that throbbing pain, and gosh, it’s getting worse. To 
deny that such a statement is in part due to the existence 
of such a felt experience appears to deny that words have 
their ordinary meaning. As indeed they do not for zombies. 
A zombie cannot mean anything by its words, since it has 
no self, no “I” to take itself to intend something. And thus 
a zombie also cannot know anything. (This of course is a 
modest conclusion since we already argued that there can 
be no zombies.) 

The above is contentious—in that it hinges on intuitions. But 
on the self-knowing theory discussed here, a self-knowing 
physical process is its own experience, hence again there 
can be no zombies. Any physical arrangement of the 
proposed sort already involves any associated feelings, and 
it will be inconceivable (once we know the details) that it 
could be otherwise. Pace Kripke (again), pain is like heat: 
the physics is what it is. It simply is that we do not yet have a 
clear enough grasp on the kind of complex interactions that 
can occur in a brain—any more than in 1900 chemists had 
a clear (or even dim) sense of self-reproducing molecules. 
Thus the outlook I am presenting is this: Argument is not 
needed; all (!) we need to do is the (hard) engineering work 
to discover how self-knowingness occurs.13 
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1.	 See D. Perlis, “Consciousness as Self-Function,” Journal of 
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“Five Dimensions of Reasoning in the Wild,” AAAI, 2016. 
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6.	 P. Winston, “The Strong Story Hypothesis and the Directed 
Perception Hypothesis,” AAAI Fall Symposium, 2011; see also N. 
Humphrey, A History of the Mind (Simon and Schuster, 1992) for 
a related view. 
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“Consciousness and Complexity,” Annals of Mathematics and 
Artificial Intelligence 14 (1995): 309–21, for related views. 
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view; but compare P. Boltuc, “The Philosophical Issue in Machine 
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1, no. 1 (2009): 155–76. 

11.	 D. Davidson, “Knowing One’s Own Mind,” Proceedings and 
Addresses of the American Philosophical Association 60 (1987): 
441–58. 

12. B. Libet, C. A. Gleason, E. W. Wright, and D. K. Pearl, “Time of 
Conscious Intention to Act in Relation to Onset of Cerebral 
Activity (Readiness-Potential). The Unconscious Initiation of a 
Freely Voluntary Act,” Brain 106 (1983): 623–42. 

13.	 J. Brody, M. Cox, and D. Perlis, “The Processual Self as Cognitive 
Unifier,” Proceedings, Annual Meeting of the International 
Association for Computing and Philosophy, 2013. 
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