
© 2017 BY THE AMERICAN PHILOSOPHICAL ASSOCIATION 		 ISSN 2155-9708

Philosophy and Computers

NEWSLETTER | The American Philosophical Association

VOLUME 16 | NUMBER 2	 SPRING 2017

SPRING 2017 	 VOLUME 16 | NUMBER 2

FROM THE EDITOR
Peter Boltuc

FROM THE CHAIR
Marcello Guarini

FEATURED ARTICLE
William J. Rapaport

What Is Computer Science?

ARTICLES
Marcin Miłkowski

Why Think That the Brain Is Not a Computer?

Jun Tani and Jeff White

From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure
Essential to Consciousness (Part 2)

Richard Evans

Kant on Constituted Mental Activity

Don Perlis

I Am, Therefore I Think

CALL FOR PAPERS

Philosophy and Computers

PETER BOLTUC, EDITOR 	 	 VOLUME 16 | NUMBER 2 | SPRING 2017

APA NEWSLETTER ON

FROM THE EDITOR
Peter Boltuc
UNIVERSITY OF ILLINOIS, SPRINGFIELD

We are pleased to feature the article by Bill Rapaport,
which was his John Barwise Prize acceptance speech at
the 2016 Eastern Division meeting. Bill is a long-term friend
of the Committee on Philosophy and Computers, and of
this newsletter. In the spring of 2007, when I edited my
first issue here and we were in a bit of a time-crunch, Bill
took his important article, “Searle on Brains as Computers,”
which I believe may have been invited for a different venue,
and gave it to us, quite selflessly. The present article, titled
“What Is Computer Science?,” does what’s promised in
the title—it is a thorough discussion of the main issues in
computer science today (and in the recent past). The paper
is based on the essential chapters of Bill’s introductory
work on philosophy of computer science, which has been
taking shape on his website since at least 2004; yet, it
goes beyond the introductory level and engages students
and colleagues alike. The present article may serve as a
model open source text to begin a class on any aspect of
philosophical and general theoretical issues in computer
science. (In the next issue of this newsletter we are going
to have Bill’s vital article “Semantics as Syntax” and a
conversation between Rapaport and Selmer Bringsjord.)

We follow up with a provocative article: “Why Think That the
Brain Is Not a Computer?” Its author, Marcin Miłkowski, is
known as one of the main defenders—alongside Gualtiero
Piccinini—of what I would call the modern-moderate
version of computationalism. The current article provides an
opportunity for Miłkowski to zero in on the main objections
to this view. The next paper is a heavy-metal presentation
of “predictive coding” as a platform for testing competing
hypotheses about functionalities of consciousness
embodied in both biological and artificial systems. The
article is based upon (and to some degree provides a follow-
up on) Jun Tani’s important book Exploring Robotic Minds:
Actions, Symbols, and Consciousness as Self-Organizing
Dynamic Phenomena (Oxford University Press, 2016). Jun
Tani, one of the leaders in synthetic neurorobotics, co­
authored (with Jeff White) a more theoretical article on
consciousness for the previous issue of this newsletter.
Noteworthy is the fact that, for the current paper, the order
of the authors has been reversed—here we learn firsthand
some of the essential models in neuro-robotics. The article
may be placed on the border, or maybe in a demarcation
zone, between science and philosophy (and on the science
side at that!). Yet, in its later sections it uses models based

largely on Husserl to come up with a broad definition of
consciousness. We look forward to reading the third and
final part of this scientific trilogy in the following issue of
the newsletter.

The remaining two articles are shorter and to a much larger
degree belong to the realm of philosophy the way most
departments of philosophy view it. While Tani and White
related primarily to Husserl, Richard Evans focuses on Kant’s
conception of Constituted Mental Activity. Evans argues
that the “Kantian cognitive architecture is a rule-induction
computational process.” Under certain constraints “the
process’ internal activities count as cognitive activities.”
This paper provides a philosophical background for a
constructivist model of artificial cognitive architectures
developed in Evans’ presentation “A Kantian Cognitive
Architecture” at 2016 IACAP (to appear in Philosophical
Studies). Don Perlis, in his thought provoking paper, “I
Am, Therefore I Think,” argues in favor of reflexive-self
formulation of mind and consciousness that can be studied
as an engineering problem. Some historical issues in
computer science touched on in this article provide a nice
way to come back to the topics discussed in Rapaport’s
opening article.

I want to thank Marcello Guarini, the chair of this committee,
and all committee members (who are listed in Marcello’s
note, From the Chair) for their support. Special thanks go to
Lucia Vazquez, Interim Dean of the College of Liberal Arts
and Sciences at the University of Illinois at Springfield, for
continuing the tradition and making my work as the editor
of this newsletter possible.

FROM THE CHAIR
Marcello Guarini
UNIVERSITY OF WINDSOR, WESTERN ONTARIO

The winner of the 2015 Barwise prize was Dr. William
Rapaport, and we are fortunate to have the text of
his acceptance talk—delivered at the 2016 American
Philosophical Association Eastern Division meeting—in this
issue of our newsletter.

We are also in position to announce the winner of the 2016
Barwise prize: Dr. Edward Zalta. Dr. Zalta is a Senior Research
Scholar at the Center for the Study of Language and
Information, Stanford University. Zalta has not only made
a series of very high quality contributions to computational

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

metaphysics, but he is also one of the founders and
the principal editor of the Stanford Encyclopedia of
Philosophy. His contributions to philosophy and computing
are ongoing, and the community of scholars in this area
continues to benefit from his work. Dr. Zalta was very
pleased to hear of the award. Unbeknownst to the APA
Committee on Philosophy and Computers who selected
Zalta for the award, Ed knew John Barwise personally and
feels especially honored to be receiving this award. Dr.
Zalta has agreed to accept the 2016 Barwise Prize at the
2018 APA Eastern meeting. We hope to announce details in
the next issue of the newsletter.

Thanks go out to all members of the APA committee on
Philosophy and Computers for their deliberations over the
Barwise Prize. A special thanks goes to Susan Schneider,
who has completed her term on the committee. My
gratitude also goes out to the continuing members of the
committee, Colin Allen, William Barry, Fritz J. McDonald,
Gary Mar, Dylan E. Wittkower, and Piotr Boltuc. Finally, a
special welcome to Gualtiero Piccinini, who has recently
joined the committee.

Readers of the newsletter are encouraged to contact
any member of the committee if they are interested in
proposing or collaborating on a symposium at the APA
that engages any of the wide range of issues associated
with philosophy and computing. We are happy to continue
facilitating the presentation of high quality research in this
area.

FEATURED ARTICLE
What Is Computer Science?
William J. Rapaport
UNIVERSITY AT BUFFALO, THE STATE UNIVERSITY OF NEW YORK

ABSTRACT
A survey of various proposed definitions of “computer
science,” arguing that it is a “portmanteau” scientific study
of a family of topics surrounding both theoretical and
practical computing. Its single most central question is What
can be computed (and how)? Four other questions follow
logically from that central one: What can be computed
efficiently, and how? What can be computed practically,
and how? What can be computed physically, and how? What
should be computed, and how?

The Holy Grail of computer science is to capture the
messy complexity of the natural world and express
it algorithmically.

– Teresa Marrin Nakra1

1 PHILOSOPHY OF COMPUTER SCIENCE
In 2004, I created a course on the philosophy of computer
science;2 a draft of a textbook based on the course is
available online.3 The book is intended for readers who

might know some philosophy but no computer science,
those who might know some computer science but no
philosophy, and even those who know little or nothing
about both. So, we begin by asking what philosophy is
(primarily aimed at the computer-science audience), and,
in particular: What is “the philosophy of X”? (where X =
things like: science, psychology, history, and, of course,
computer science).

I take the focal question of the philosophy of computer
science to be: What is computer science? To answer this,
we need to consider a series of questions, each of which
leads to another: Is computer science a science, a branch
of engineering, some combination of them, or something
else altogether? To answer these, we need to ask what
science is and what engineering is.

Whether science or engineering, computer science is
surely scientific, so we next ask what it is a (scientific)
study of. Computers? If so, then what is a computer? Or is
computer science a study of computation? If so, then what
is computation? What is an algorithm?4 Algorithms are
said to be procedures, or recipes, so what is a procedure?
What is a recipe? What is the Church-Turing Computability
Thesis (that our intuitive notion of computation is
completely captured by the formal notion of Turing-machine
computation)?5 What is “hypercomputation” (i.e., the claim
that the intuitive notion of computation goes beyond Turing-
machine computation)?

Computations are expressed in computer programs, which
are executed by computers, so what is a computer program?
Are computer programs “implementations” of algorithms?
If so, then what is an implementation? What is the relation
of programs and computation to the world?6 Are programs
(scientific) theories? What is the difference between
software and hardware? Are programs copyrightable texts,
or are they patentable machines? Ontologically, they seem
to be both texts and machines, yet legally they cannot
be both copyrightable and patentable.7 Can computer
programs be verified?8

We then turn to issues in the philosophy of AI, focusing on
the Turing Test and the Chinese Room Argument.9

Finally, we consider two questions in computer ethics,
which, when I created the course, were not much
discussed, but are now at the forefront of computational
ethical debates: (1) Should we trust decisions made by
computers?10—a question made urgent by the advent of
automated vehicles. And (2) should we build “intelligent”
computers? Do we have moral obligations towards robots?
Can or should they have moral obligations towards us?

And, along the way, we look at how philosophers reason
and evaluate logical arguments.11

Although these questions arise naturally from our first
question (What is computer science?), they do not exhaust
the philosophy of computer science. Many topics are not
covered: the nature of information, social and economic
uses of computers, the Internet, etc. However, rather
than aiming for universal coverage, I seek to provide a

PAGE 2 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

foundation for further discussion: Neither the course nor
the book is designed to answer all (or even any) of the
philosophical questions that can be raised about the nature
of computer science, computers, and computation. Rather,
they provide background knowledge to “bring students up
to speed” on the conversations about these issues, so that
they can read the literature for themselves and perhaps
become part of the conversations by contributing their own
views. The present paper is a synopsis of Philosophy of
Computer Science (Chapter 3), based on my Barwise Prize
talk at the APA.12

2 PRELIMINARY QUESTIONS
However, before investigate what computer science is, it’s
worth asking some preliminary questions.

2.1 WHAT IS THE NAME OF THIS DISCIPLINE?
Should we call the discipline “computer science” (which
seems to assume that it is the science of a certain kind
of machine), or “computer engineering” (which seems to
assume that it is not a science, but a branch of engineering),
or “computing science” (which seems to assume that it is
the science of what those machines do), or “informatics”
(which suggests that it is a mathematical discipline
concerned with information)?

In this essay—but only for convenience—I call it “computer
science.” However, by doing so, I do not presuppose
that it is the science of computers. Think of the subject
as being called by a 15-letter word “computerscience”
that may have as little to do with computers or science as
“cattle” has to do with cats. Or, to save space and suppress
presuppositions, just think of it as “CS.”

2.2 WHY ASK WHAT CS IS?
There are both academic and philosophical motivations for
trying to define CS.

2.2.1 ACADEMIC MOTIVATIONS
There is the political question of where to locate a CS
department: In a college, faculty, or school of (arts and)
science? Of engineering? Or in its own college, faculty, or
school (perhaps of informatics, along with communications
and library science)?

There is the pedagogical question of what to teach in an
introductory course: Programming? Computer literacy? The
mathematical theory of computation? Or an introduction to
several different branches of CS, including, perhaps, some
of its history?

And there is the publicity question: How should a
CS department advertise itself so as to attract good
students? How should the discipline advertise itself so as
to encourage primary- or secondary-school students to
consider it as something to study in college or to consider
it as an occupation? How should it advertise itself so as to
attract more women and minorities to the field? How should
it advertise itself to the public at large, so that ordinary
citizens might have a better understanding of what CS is?

Different motivations may yield different definitions.

2.2.2 PHILOSOPHICAL MOTIVATIONS
The philosophical question concerns what CS “really” is.
Is it like some other academic discipline (mathematics,
physics, engineering)? Or is it sui generis?

To illustrate this difference, consider two very different
comments by two Turing-award–winning computer
scientists:13 Marvin Minsky, a founder of artificial
intelligence, once said:

Computer science has such intimate relations
with so many other subjects that it is hard to see
it as a thing in itself.14

On the other hand, Juris Hartmanis, a founder of
computational complexity theory, has said:

Computer science differs from the known sciences
so deeply that it has to be viewed as a new species
among the sciences.15

3 TWO KINDS OF DEFINITIONS

3.1 AN EXTENSIONAL DEFINITION OF CS
As with most non-mathematical concepts, there are
probably no necessary and sufficient conditions for being
CS. At best, the various branches of the discipline share
only a family resemblance. If no intensional definition can
be given in terms of necessary and sufficient conditions,
perhaps an extensional one can: Perhaps CS is simply
whatever computer scientists do: “Computing has no
nature. It is what it is because people have made it so.”16

So, what do computer scientists do? Ordered from the most
to the least abstract, this might range from the abstract
mathematical theories of computation, computational
complexity, and program development; through software
engineering, operating systems, and AI; to computer
architecture, chip design, networks, and social uses of
computers. But this is less than satisfactory as a definition.

3.2 INTENSIONAL DEFINITIONS
In the absence of necessary and sufficient conditions or an
extensional definition, we can ask what the methodology of
CS is: Is it a methodology used elsewhere? Or is it a new
methodology? And then we can ask what its object of study
is: Does it study something that other disciplines also
study? Or does it study something new? And is its object of
study unique to CS?

As for methodology, CS has been said to be:

•	 an art form
(Knuth has said that programs can be beautiful17),

•	 an art and science
(“Science is knowledge which we understand so
well that we can teach it to a computer; and if we
don’t fully understand something, it is an art to
deal with it. . . . [T]he process of going from an art
to a science means that we learn how to automate
something”18),

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 3

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

•	 a liberal art
(along the lines of the classical liberal arts of logic,
math, or astronomy19),

•	 a branch of mathematics,20

•	 a natural science,21

•	 an empirical study of the artificial,22

•	 a combination of science and engineering,23

•	 just engineering,24

•	 or—generically—a “study”

But a study of what? Here is an alphabetical list of some of
the objects that it

“traffics” in (to use Barwise’s term25): algorithms, automation,
complexity, computers, information, intelligence, numbers
(and other mathematical objects), problem solving,
procedures, processes, programming, symbol strings.

It is now time to look at some answers to our title question
in more detail.

4 CS IS THE SCIENCE OF COMPUTERS
Allen Newell, Alan Perlis, and Herbert Simon argued that CS
is exactly what its name suggests:

Wherever there are phenomena, there can be a
science to describe and explain those phenomena.
. . . There are computers. Ergo, computer science
is the study of computers.26

This argument is actually missing a premise to the effect
that the science of computers (which the first two premises
imply the existence of) is CS and not some other discipline.

Loui has objected to the first premise, noting that there
are toasters, but no science of toasters.27 Another objection
to the first premise, explicitly considered by Newell,
Perlis, and Simon, is that science studies only natural
phenomena, but that computers are non-natural artifacts.
They replied that there are also sciences of artifacts. But
one could respond in other ways: Where is the dividing
line between nature and artifice, anyway? Are birds’ nests
artificial? As Mahoney observes, not only are artifacts part
of nature, we use them to study nature; indeed, nature
itself might be computational in nature (so to speak).28

Another objection that they consider is to the missing
premise, that the science of computers is not CS but some
other subject: electrical engineering, or math, or, perhaps,
psychology. They reply that CS overlaps each of these, but
that no single discipline subsumes all of CS. Of course, this
reply assumes that CS itself is a cohesive whole, which the
extensional characterization in §3.1 seems to belie.

One of my department’s deans once suggested that CS
would eventually dissolve: The computer engineers would
rejoin the EE department, the complexity theorists would

join the math department, my AI colleagues might go
into psychology, I would go back into philosophy, and
so on. (In much the same way, microscopy dissolved into
microbiology, optical engineering, etc.29).

The most significant objection that they consider is that CS
studies something besides computers, namely, algorithms.
Their reply is also significant: They change their definition!
They conclude that CS is the science of computers and
surrounding phenomena, including algorithms.

5 CS STUDIES ALGORITHMS
Donald Knuth starts his definition, largely without any
argument other than a recitation of its history, roughly
where Newell, Perlis, and Simon end theirs: “[C]omputer
science is . . . the study of algorithms.”30 He cites,
approvingly, a statement by the computer scientist George
E. Forsythe that the central question of CS is: What can be
automated? (On that question, see §14.1.1.1, below.)

Knuth goes on to point out, however, that you need
computers in order to properly study algorithms, because
“human beings are not precise enough nor fast enough to
carry out any but the simplest procedures.”31 Are computers
really necessary? Do you need a compass and straightedge
to study geometry? (Hilbert probably didn’t think so.) Do
you need a microscope to study biology? (Watson and
Crick probably didn’t think so.) On the other hand, “deep
learning” algorithms do seem to need computers in order
to determine if they will really do what they are intended to
do, and do so in real time.32

(We’ll return to this in §11.)

So, just as Newell, Perlis, and Simon said that CS is the
study of computers and related phenomena such as
algorithms, Knuth says that it is the study of algorithms and
related phenomena such as computers! Stated a bit more
bluntly, Newell, Perlis, and Simon’s definition comes down
to this: CS is the science of computers and algorithms.
Knuth’s definition comes down to this: CS is the study of
algorithms and computers. Ignoring for now the subtle
difference between “science” and “study,” what we have
here are extensionally equivalent, but intensionally distinct,
definitions. Shades of the blind men and the elephant!

To be fair, however, some ten years later, Knuth backed
off from the “related phenomena” definition, more
emphatically defining CS as “primarily the study of
algorithms,” because he “think[s] of algorithms as
encompassing the whole range of concepts dealing with
well-defined processes, including the structure of data
that is being acted upon as well as the structure of the
sequence of operations being performed,” preferring the
name ‘algorithmics’ for the discipline.33 He also suggested
that what computer scientists have in common (and that
differentiates them from people in other disciplines) is
that they are all “algorithmic thinkers.”34 (We’ll return to this
notion in §13.4.)

6 CS STUDIES INFORMATION
Others say “A plague on both your houses”: CS is not the
study of computers or of algorithms, but of information:

PAGE 4	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Forsythe said that CS is “the art and science of representing
and processing information and, in particular, processing
information with the logical engines called automatic
digital computers.”35 Peter J. Denning defined it as “the
body of knowledge dealing with the design, analysis,
implementation, efficiency, and application of processes
that transform information.”36 Jon Barwise said that
computers are best thought of as “information processors,”
rather than as numerical “calculators” or as “devices which
traffic in formal strings . . . of meaningless symbols.”37 And
Hartmanis and Lin define CS this way:

What is the object of study [of CS and engineering]?
For the physicist, the object of study may be an
atom or a star. For the biologist, it may be a cell
or a plant. But computer scientists and engineers
focus on information, on the ways of representing
and processing information, and on the machines
and systems that perform these tasks.38

Presumably, those who study “the ways of representing
and processing” are the scientists, and those who study
“the machines and systems” are the engineers. And, of
course, it is not just information that is studied; there are
the usual “related phenomena”: Computer science studies
how to represent and (algorithmically) process information,
as well as the machines and systems that do this.

Simon takes an interesting position on the importance of
computers as information processors:39 He discusses two
“revolutions”: The first was the Industrial Revolution, which
“substitut[ed] . . . mechanical energy for the energy of man
[sic] and animal.” The second was (were?) the Information
Revolution(s), beginning with “written language,” then
“the printed book,” and now the computer. He then points
out that “The computer is a device endowed with powers
of utmost generality for processing symbols.” So, pace
Barwise, the computer is an information processor because
information is encoded in symbols.

But here the crucial question is: What is information?
The term “information” as many people use it informally
has many meanings: It could refer to Claude Shannon’s
mathematical theory of information;40 or to Fred Dretske’s
or Kenneth Sayre’s philosophical theories of information;41

or to several others.42

As I noted in §1, the philosophy of information is really a
separate (albeit closely related!) topic from the philosophy
of computer science. But, if “information” isn’t intended
to refer to some specific theory, then it seems to be
merely a vague synonym for “data” (itself a vague term!).
As Michael Rescorla observes, “Lacking clarification [of
the term ‘information’], the description [of “computation
as ‘information processing’ ”] is little more than an empty
slogan.”43

And Gualtiero Piccinini has made the stronger claim that
computation is distinct from information processing in
any sense of ‘information’. He argues, e.g., that semantic
information requires representation, but computation does
not; so, computation is distinct from semantic information
processing.44

7 CS IS A NATURAL SCIENCE (OF PROCEDURES)
Then there are those who agree that CS is a natural science,
but not of computers, algorithms, or information: Stuart C.
Shapiro agrees with Newell, Perlis, and Simon that CS is
a science, but he differs on what it is a science of, siding
more with Knuth, but not quite: “Computer Science is
a natural science that studies procedures.”45 Procedures
are not natural objects, but they are measurable natural
phenomena, in the same way that events are not (natural)
“objects” but are (natural) “phenomena.” On this point,
Denning cites examples of the “discovery” of “information
processes in the deep structures of many fields”: biology,
quantum physics, economics, management science, and
even the arts and humanities, concluding that “computing
is now a natural science,” not (or no longer?) “a science of
the artificial.”46 So, potential objections that sciences only
study natural phenomena are avoided.

For Shapiro, procedures include, but are not limited to,
algorithms. Whereas algorithms are typically considered
to be precise, to halt, and to produce correct solutions,
the more general notion allows for variations on these
themes: (1) Procedures (as opposed to algorithms) may
be imprecise, such as in a recipe. Does CS really study
things like recipes? According to Shapiro (personal
communication), the answer is “yes”: An education in CS
should help you write a better cookbook, because it will
help you understand the nature of procedures better!4 7

(2) Procedures need not halt: A procedure might go into
an infinite loop either by accident or, more importantly,
on purpose, as in an operating system or a program that
computes the infinite decimal expansion of π. (3) Nor do
they have to produce a correct solution: A chess procedure
does not always play optimally.

And CS is a science, which, like any science, has both
theoreticians (who study the limitations on, and kinds of,
possible procedures) as well as experimentalists.

And, as Newell and Simon suggest in their discussion of
empirical results (see §8, below), there are “fundamental
principles” of CS as a science.48 Newell and Simon cite
two: (1) The Physical Symbol System Hypothesis (a theory
about the nature of symbols in the context of computers)
and (2) Heuristic Search (a problem-solving method).
Shapiro cites two others: (1) the Computability Thesis and
(2) the Boehm-Jacopini Theorem that codifies “structured
programming.”49

Moreover, Shapiro says that computer science is not just
concerned with algorithms and procedures that manipulate
abstract information, but also with procedures that are
linked to sensors and effectors that allow computers to
operate in the real world. Procedures are, or could be,
carried out in the real world by physical agents, which
could be biological, mechanical, electronic, etc. Where do
computers come in? According to Shapiro, a computer is
simply “a general-purpose procedure-following machine.”
(But does a computer “follow” a procedure, or merely
“execute” it?)

Several pleas for elaboration can be urged on Shapiro:
Does his view de-emphasize the role of computers in CS,

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 5

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

or is it merely a version of the “surrounding phenomena”
viewpoint (as with Knuth’s view that CS is the study of the
phenomena surrounding algorithms)?50 Does the emphasis
on procedures (rather than algorithms) lead us into the
fraught territory of “hypercomputation”?51 (We’ll return to
procedures in §13.3.)

8 CS IS NOT A NATURAL SCIENCE
In 1967, Simon joined with Newell and Perlis to argue that
CS was the natural science of (the phenomena surrounding)
computers. Two years later, in his classic book The Sciences
of the Artificial, he said that it was a natural science of the
artificial: Natural science studies things in the world, but he
was careful not to say that the “things” must be “natural”!
“The central task of a natural science is . . . to show that
complexity, correctly viewed, is only a mask for simplicity;
to find pattern hidden in apparent chaos.”52 Indeed, “The
world we live in today is much more a[n] . . . artificial
world than it is a natural world. Almost every element in
our environment shows evidence of human artifice.”53 So,
(natural) science can study artifacts; the “sciences of the
artificial” are natural sciences.

And then, in a classic paper from 1976, Newell and Simon
updated their earlier characterization. Instead of saying
that CS is the science of (the phenomena surrounding)
computers, they now said that it is the “empirical”
“study” of those phenomena, “not just the hardware, but
the programmed, living machine.”54

The reason that they say that CS is not a science (in
the classic sense) is that it doesn’t always strictly follow
the scientific (or “experimental”) method. E.g., often
one experiment will suffice to answer a question in CS,
whereas in other sciences, numerous experiments have to
be run. However, CS, like science, is empirical—because
programs running on computers are experiments, though
not necessarily like experiments in other experimental
sciences. In fact, one difference between CS and other
experimental sciences is that, in CS, the chief objects of
study (the computers and the programs) are not “black
boxes.”55 Most natural phenomena are things whose
internal workings we cannot see directly but must infer
from experiments we perform on them. But we know
exactly how and why computers and computer programs
behave as they do (they are “glass boxes,” so to speak),
because we (not nature) designed and built them. So, we
can understand them in a way that we cannot understand
more “natural” things. (However, although this is the case
for “classical” computer programs, it is not the case for
artificial-neural-network programs: “A neural network,
however, was a black box”;56 see the comments about
Google Translate in §11, below.)

By “programmed, living machines,” they meant computers
that are actually running programs—not just the static
machines sitting there waiting for someone to use them
(computers without programs), nor the static programs just
sitting there on a piece of paper waiting for someone
to load them into the computer, nor the algorithms just
sitting there in someone’s mind waiting for someone to
express them in a programming language—but processes
that are actually running on a computer. A program might

be a static piece of text or the static way that a computer is
hardwired. A process is a dynamic entity—the program in
the “process” of actually being executed by the computer.

However, to study “programmed living machines,” we
certainly do need to study the algorithms that they are
executing. After all, we need to know what they are doing—
i.e., it seems to be necessary to know what algorithm a
computer is executing. On the other hand, in order to study
an algorithm, it does not seem to be necessary to have
a computer around that can execute it or to study the
computer that is running it. It can be helpful and valuable
to study the computer and to study the algorithm actually
being run on the computer, but the mathematical study
of algorithms and their computational complexity doesn’t
need the computer. That is, the algorithm can be studied as
a mathematical object, using only mathematical techniques,
without necessarily executing it. It may be very much more
convenient, and even useful, to have a computer handy,
as Knuth notes, but it does not seem to be necessary.
If that’s so, then it would seem that algorithms are really
the essential object of study of CS: Both views require
algorithms, but only one requires computers. (We’ll see a
counterargument in §11.)

9 CS IS ENGINEERING, NOT SCIENCE
The software engineer Frederick P. Brooks, Jr., says
that CS isn’t science—which he calls “analytic”—
because, according to him, it is not concerned with the
“discovery of facts and laws.”57 Instead, he argues that
it is “an engineering discipline.” Computer scientists are
“concerned with making things”: with physical tools such
as computers and with abstract tools such as algorithms,
programs, and software systems for others to use; the
computer scientist is a toolmaker. Computer science, he
says, is concerned with the usefulness and efficiency of the
tools it makes; it is not, he says, concerned with newness
for its own sake (as scientists are). So, “the discipline we
call ‘computer science’” is really the “synthetic”—i.e., the
engineering—discipline that is concerned with computers.

Here is his argument:58

1.	 “[A] science is concerned with the discovery of
facts and laws.”

2.	 “[T]he scientist builds in order to study; the
engineer studies in order to build.

3.	 The purpose of engineering is to build things.

4.	 Computer scientists “are concerned with making
things, be they computers, algorithms, or software
systems.”

5.	 ∴ “the discipline we call ‘computer science’ is in
fact not a science but a synthetic, an engineering,
discipline.”

Let’s accept premise 1 for now; it seems reasonable
enough.59

PAGE 6	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

The point of the second premise is this: If a scientist’s
goal is to discover facts and laws—i.e., to study rather
than to build—then anything built by the scientist is only
built for that ultimate purpose. But building is the ultimate
goal of engineering, and any studying (or discovery of
facts and laws) that an engineer does along the way
to building something is merely done for that ultimate
purpose. For science, building is a side-effect of studying;
for engineering, studying is a side-effect of building. Both
scientists and engineers, according to Brooks, build and
study, but each focuses more on one than the other. (Does
this remind you of the algorithms-vs.-computers dispute in
§§4–5?)

The second premise supports the third, which defines
engineering as a discipline whose goal is to build things,
i.e., a “synthetic”—as opposed to an “analytic”—discipline.
“We speak of engineering as concerned with ‘synthesis,’
while science is concerned with ‘analysis’.”60 “Where
physical science is commonly regarded as an analytic
discipline that aims to find laws that generate or explain
observed phenomena, CS is predominantly (though not
exclusively) synthetic, in that formalisms and algorithms are
created in order to support specific desired behaviors.”61

As with his claim about the nature of science in the first
premise, the accuracy of Brooks’s notion of engineering is a
topic for another day.62 So, let’s also assume the truth of the
second and third premises for the sake of the argument.

Clearly, if the fourth premise is true, then the conclusion
will follow validly (or, at least, it will follow that computer
scientists belong on the engineering side of the science–
engineering, or studying–building, spectrum). But is it really
the case that computer scientists are (only? principally?)
concerned with building or “making things”? And, if so,
what kind of things?

Moreover, computer scientists do discover and analyze
facts and laws: Consider the theories of computation
and of computational complexity, and the “fundamental
principles” cited at the end of §7, above. Computer
scientists devise theories about how to build things, and
they try to understand what they build. All of this seems to
be more science than engineering.

Interestingly, Brooks seems to suggest that computer
scientists don’t build computers, even if that’s what he
says in the conclusion of his argument! He says that
“Even when we build a computer the computer scientist
designs only the abstract properties—its architecture and
implementation. Electrical, mechanical, and refrigeration
engineers design the realization.”63 I think this passage is
a bit confused: Briefly, I think the “abstract properties”
are the design for the realization; the engineers build the
realization (they don’t design it).64 But it makes an interesting
point: Brooks seems to be saying that computer scientists
only design abstractions, whereas other (real?) engineers
implement them in reality. This is reminiscent of the
distinction between the relatively abstract specifications
for an algorithm (which typically lack detail) and its
relatively concrete (and highly detailed) implementation
in a computer program. Brooks (following Zemanek65) calls
CS “the engineering of abstract objects”: If engineering is

a discipline that builds, then what computer-science-qua­
engineering builds is implemented abstractions.

10 SCIENCE XOR ENGINEERING?
So, is CS a science of some kind (natural or otherwise), or
is it not a science at all, but some kind of engineering?
Here, we would be wise to listen to two skeptics about the
exclusivity of this choice:

Let’s remember that there is only one nature—
the division into science and engineering, and
subdivision into physics, chemistry, civil and
electrical, is a human imposition, not a natural
one. Indeed, the division is a human failure; it
reflects our limited capacity to comprehend the
whole. That failure impedes our progress; it builds
walls just where the most interesting nuggets of
knowledge may lie.66

Debates about whether [CS is] science or
engineering can . . . be counterproductive, since
we clearly are both, neither, and more. . . .67

11 CS AS “BOTH”
Could CS be both science and engineering—perhaps the
science of computation and the engineering of computers—
i.e., the study of the “programmed living machine”?

It certainly makes no sense to have a computer without a
program. It doesn’t matter whether the program is hardwired
(in the way that a Turing machine is); i.e., it doesn’t matter
whether the computer is a special-purpose machine that
can only do one task. The program is not separable from
the machine; it is built into its structure. And it doesn’t
matter whether the program is a piece of software (like a
program inscribed on a universal Turing machine’s tape)—
i.e., it doesn’t matter whether the computer is a general-
purpose machine that can be loaded with different “apps”
allowing the same machine to do many different things. It
is simply the case that, without a program, the computer
wouldn’t be able to do anything. So, insofar as CS is about
computers and hence is engineering, it must also be about
computation and hence a science (at least, a mathematical
science).

But it also makes little sense to have a program
without a computer to run it on. Yes, you can study the
program mathematically (e.g., try to verify it) or study its
computational complexity.68

The ascendancy of logical abstraction over
concrete realization has ever since been a guiding
principle in computer science, which has kept
itself organizationally almost entirely separate from
electrical engineering. The reason it has been able
to do this is that computation is primarily a logical
concept, and only secondarily an engineering
one. To compute is to engage in formal reasoning,
according to certain formal symbolic rules, and
it makes no logical difference how the formulas
are physically represented, or how the logical
transformations of them are physically realized.69

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 7

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

But what good would it be (for that matter, what fun would
it be!) to have, say, a program for passing the Turing test
that never had an opportunity to pass it? Thus, without a
computer, the program wouldn’t be able to actually do
anything. So, insofar as CS is about computation and hence
is science, it should (must?) also be about computers and
hence an engineering discipline.

So, computers require programs in order for the computer
to do anything, and programs require computers in order
for the program to actually be able to do anything. This
is reminiscent of Kant’s slogan that “Thoughts without
content are empty, intuitions without concepts are blind. . . .
The understanding can intuit nothing, the senses can think
nothing. Only through their union can knowledge arise.”70

Similarly, we can say, “Computers without programs are
empty; programs without computers are blind. Only through
the union of a computer with a program can computational
processing arise.” A good example of this is the need for
computers to test certain “deep learning” algorithms that
Google used in their Translate software: Without enough
computing power, there was no way to prove that their
connectionist programs would work as advertised.71 So,
CS must be both a science (that studies algorithms) and an
engineering discipline (that builds computers).

But we need not be concerned with these two fighting
words, because, fortunately, there are two very convenient
terms that encompass both: ‘scientific’ and ‘STEM’. Surely,
not only natural science, but also engineering, not to mention
“artificial science,” “empirical studies,” and mathematics
are all scientific. And, lately, NSF and the popular press
have taken to referring to “STEM” disciplines—science,
technology, engineering, and mathematics—precisely in
order to have a single term to emphasize their similarities
and interdependence, and to avoid having to try to spell
out differences among them.72

So let’s agree for the moment that CS might be both
science and engineering. What about Freeman’s other two
options: neither and more?

12 CS AS “MORE”

12.1 CS IS A NEW KIND OF ENGINEERING
Michael Loui defines CS as “the theory, design, and
analysis of algorithms for processing [i.e., for storing,
transforming, retrieving, and transmitting] information,
and the implementations of these algorithms in hardware
and in software.”73 He argues that CS is “a new species of
engineering.”74 He first argues that CS is an engineering
discipline on the grounds that engineering (1) is concerned
with what can exist (as opposed to what does exist), (2) “has a
scientific basis,” (3) is concerned with “design,” (4) analyzes
“trade-offs,” and (5) has “heuristics and techniques.”
“Computer science has all the significant attributes of
engineering”; therefore, CS is a branch of engineering.75

Let’s consider each of these “significant attributes”: First,
his justification that CS is not “concerned with . . . what
does exist” is related to the claim that CS is not a natural
science, but a science of human-made artifacts. We have
already considered two possible objections to this: First,

insofar as procedures are natural entities, CS—as the study
of procedures—can be considered a natural science.
Second, insofar as some artifacts—such as bird’s nests,
beehives, etc.—are natural entities, studies of artifacts can
be considered to be scientific.

Next, according to Loui, the “scientific basis” of CS is
mathematics. The scientific basis of “traditional engineering
disciplines such as mechanical engineering and electrical
engineering” is physics. This is what makes it “new”; we’ll
come back to this.

According to Loui, engineers apply the principles of the
scientific base of their engineering discipline to “design” a
product: “[A] computer specialist applies the principles of
computation to design a digital system or a program.”76 But
not all computer scientists (or “specialists”) design systems
or programs; some do purely theoretical work. And, in any
case, if the scientific basis of CS is mathematics, then
why does Loui say that computer “specialists” apply “the
principles of computation”? I would have expected him to
say that they apply the principles of mathematics. Perhaps
he sees “computation” as being a branch of mathematics.
Or perhaps he doesn’t think that the abstract mathematical
theory of computation is part of CS, but that seems highly
unlikely, especially in view of his definition of computer
science as including the theory and analysis of algorithms.
It’s almost as if he sees computer engineering as standing
to computer science in the same way that mechanical or
electrical engineering stand to physics. But then it is not
computer science that is a branch of engineering.

Let’s turn briefly to trade-offs: “To implement algorithms
efficiently, the designer of a computer system must
continually evaluate trade-offs between resources” such
as time vs. space, etc.77 This is true, but doesn’t support
his argument as well as it might. For one thing, it is not
only system designers who evaluate such trade-offs; so
do theoretical computer scientists—witness the abstract
mathematical theory of complexity. And, as noted above,
not all computer scientists design such systems. So,
at most, it is only those who do who are doing a kind of
engineering.

Finally, as for heuristics, Loui seems to have in mind rough­
and-ready “rules of thumb” rather than formally precise
theories in the sense of Newell and Simon.78 (See §14.1.3,
below, for more on this kind of heuristics.) Insofar as
engineers rely on such heuristics,79 and insofar as some
computer scientists also rely on them, then those computer
scientists are doing something that engineers also do. But
so do many other people: Writers surely rely on rule-of­
thumb heuristics (“write simply and clearly”); does that make
them engineers? This is probably his weakest premise.

The second part of Loui’s argument is to show how CS is a
“new” kind of engineering:80

1.	 “[E]ngineering disciplines have a scientific basis.”

2.	 “The scientific fundamentals of computer science
. . . are rooted . . . in mathematics.”

PAGE 8	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

3.	 “Computer science is therefore a new kind of
engineering.” (italics added) This argument can be
made valid by adding two missing premises:

A. Mathematics is a branch of science.

B. No other branch of engineering has mathematics as its
basis.

We can assume from his first argument that CS is a kind
of engineering. So, from that and 1, we can infer that CS
(as an engineering discipline) must have a scientific basis.
We need premise A so that we can infer that the basis of
CS (which, by 2, is mathematics) is indeed a scientific
one. Then, from B, we can infer that CS must differ from
all other branches of engineering. It is, thus, mathematical
engineering.

However, despite these arguments, Loui also says this: “It
is impossible to define a reasonable boundary between
the disciplines of computer science and computer
engineering. They are the same discipline.”81 But doesn’t
that contradict the title of his essay (“Computer Science Is
an Engineering Discipline”)?

12.2 CS IS A NEW KIND OF SCIENCE

Recall that Hartmanis said that “computer science differs
from the known sciences so deeply that it has to be viewed
as a new species among the sciences.”82 First, Hartmanis
comes down on the side of CS being a science: It is a
“new species among the sciences.” A chimpanzee is a
different species from a tiger “among the animals,” but
they are both animals.

But what does it mean to be “a new species” of science?
Both chimps and tigers are species of animals, and both
lions and tigers are species within the genus Panthera. Is
the relation of computer science to other sciences more like
the relation of chimps to tigers (relatively distant) or lions
to tigers (relatively close)? A clue comes in Hartmanis’s next
sentence:

This view is justified by observing that theory and
experiments in computer science play a different
role and do not follow the classic pattern in
physical sciences.83

This strongly suggests that CS is not a physical science
(such as physics or biology), and Hartmanis confirms this
suggestion on page 5: “computer science, though not a
physical science, is indeed a science.”84 The non-physical
sciences are typically taken to include at least the social
sciences (such as psychology) and mathematics. So, it
would seem that the relation of CS to other sciences is
more like that of chimps to tigers: distantly related species
of the same, high-level genus. And, moreover, it would
seem to put computer science either in the same camp
as (either) the social sciences or mathematics, or else in a
brand-new camp of its own, i.e., sui generis.

Hartmanis offers this definition of CS:

At the same time, it is clear that the objects of
study in computer science are information and the
machines and systems which process and transmit
information. From this alone, we can see that
CS is concerned with the abstract subject of
information, which gains reality only when it has
a physical representation, and the man-made
devices which process the representations of
information. The goal of computer science is to
endow these information processing devices with
as much intelligent behavior as possible.85

Although it may be “clear” to Hartmanis that information
(an “abstract subject”) is (one of) the “objects of study in
computer science,” he does not share his reasons for that
clarity. Since, as we have seen, others seem to disagree
that CS is the study of information (e.g., it could be the
study of computers or the study of algorithms), it seems
a bit unfair for Hartmanis not to defend his view. But he
cashes out this promissory note when he says that “what
sets [CS] apart from the other sciences” is that it studies
“processes [such as information processing] that are not
directly governed by physical laws.”86 And why are they not
so governed? Because “information and its transmission” are
“abstract entities.”87 This makes computer science sound
very much like mathematics. That is not unreasonable,
given that it was this aspect of CS that led Hartmanis to
his ground-breaking work on computational complexity, an
almost purely mathematical area of CS.

But it’s not just information that is the object of study; it’s
also information-processing machines, i.e., computers.
Computers, however, don’t deal directly with information,
because information is abstract, i.e., non-physical. For one
thing, this suggests that, insofar as CS is a new species of
non-physical science, it is not a species of social science:
Despite its name, the “social” sciences deal with pretty
physical things: societies, people, speech, etc.

Hartmanis explicitly says that CS is a science and is not
engineering, but his comments imply that it is both. I don’t
think he can have it both ways. This is remiscent of the
dialogue between Newell, Perlis, and Simon on the one
hand, and Knuth on the other. Both Loui and Hartmanis agree
that computer science is a new kind of something or other;
each claims that the scientific and mathematical aspects of
it are central; and each claims that the engineering and
machinery aspects of it are also central. But one calls it
“science,” while the other calls it “engineering.” Again, it
seems to be a matter of point of view.

A very similar argument (that does not give credit to
Hartmanis!) that CS is a new kind of science can be found in
Denning and Rosenbloom.88 We’ll look at some of what they
have to say in §13.1.

13 CS AS “NEITHER”
And now for some things completely different . . .

13.1 CS HAS ITS OWN PARADIGM
Hartmanis argued that CS was sui generis among the
sciences. Denning and Peter A. Freeman offer a slightly
stronger argument to the effect that CS is neither

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 9

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

science, engineering, nor math; rather CS has a “unique
paradigm.”89

But their position is somewhat muddied by their claim that
“computing is a fourth great domain of science alongside
the physical, life, and social sciences.”90 That implies that
CS is a science, though of a different kind, as Hartmanis
suggested.

It also leaves mathematics out of science! In a related
article published three months earlier in the same journal,
Denning and Paul S. Rosenboom assert without argument
that “mathematics . . . has traditionally not been considered
a science.”91 Denying that math is a science allows them to
avoid considering CS as a mathematical science.92

In any case, to justify their conclusion that CS is truly sui
generis, Denning and Freeman need to show that it is not
a physical, life, or social science. Denning and Rosenbloom
say that “none [of these] studies computation per se.”93

This is only half of what needs to be shown; it also needs
to be shown that CS doesn’t study physical, biological,
or social entities. Obviously, it does study such things,
though that is not its focus. As they admit, CS is “used
extensively in all the domains”;94 i.e., computation is used
by scientists in these domains as a tool.

So, what makes CS different? Denning and Freeman give a
partial answer:

The central focus of the computing paradigm
can be summarized as information processes—
natural or constructed processes that transform
information. . . . [T]he computing paradigm . . . is
distinctively different because of its central focus
on information processes.95

This is only a partial answer, because it only discusses the
object of study (which, as we saw in §6, is somewhat vague).

The rest of their answer is provided in a table showing
the methodology of CS (Table 2, p. 29), which comes
down to their version of “computational thinking.”96 We’ll
explore what that is in §13.4.

Denning and Freeman’s version of it is close to what I will
present as “synthetic” computational thinking in §14.1.1.1.

13.2 CS IS THE STUDY OF COMPLEXITY
It has been suggested that CS is the study of complexity—
not just the mathematical subject of “computational
complexity,” but complexity in general and in all of
nature. Ceruzzi ascribes this to Jerome Wiesner.97 But all
Wiesner says is that “Information processing systems are
but one facet of . . . communication sciences . . . that is,
the study of . . . t̀he problems of organized complexity’.”98

But even if computer science is part of a larger discipline
(“communication sciences”?) that studies complexity, it
doesn’t follow that CS itself is the study of complexity.

According to Ceruzzi, Edsgar Dijkstra also held this view:
“programming, when stripped of all its circumstantial
irrelevancies, boils down to no more and no less than very

effective thinking so as to avoid unmastered complexity.”99

It is hierarchical structure that “offers a standard way to
handle complexity”:100

[P]rograms are built from programs. . . . Programs
are compilations in another sense as well. Even
the smallest sub-program is also a compilation
of sub-components. Programmers construct sub-
programs by assembling into a coherent whole
such discrete program elements as data, data
structures, and algorithms. The “engineering”
in software engineering involves knowing how
to assemble these components to produce the
desired behavior.101

The idea that a complex program is “just” a construction
from simpler things, each of which—recursively—can
be analyzed down to the primitive operations and data
structures of one’s programming system (for a Turing
machine, these would be the operations of printing and
moving, and data structures constructed from ‘0’s and ‘1’s)
is, first, the underlying way in which complexity can be
dealt with and, second, where engineering (considered as
a form of construction) comes into the picture.

But, again, at most this makes the claim that part of
computer science is the study of complexity. CS certainly
offers many techniques for handling complexity: structured
programming, abstraction, modularity, hierarchy, top-
down design, stepwise refinement, object-oriented
programming, recursion, etc. So, yes, CS is one way—
perhaps even the best way—to manage (or avoid)
complexity, not that it is the study of it. What’s missing
from Dijkstra’s argument, in any case, is a premise to the
effect that computer science is the study of programming,
but Dijkstra doesn’t say that, either in “EWD 512: Comments
at a Symposium” (1975) or in “EWD 611: On the Fact that
the Atlantic Ocean has Two Sides” (1976), the document
that Ceruzzi says contains that premise.102

But Denning et al. point out that viewing “‘computer
science [as] the study of abstraction and the mastering
of complexity’ . . . also applies to physics, mathematics, or
philosophy”;103 no doubt many other disciplines also study
complexity. So defining CS the study of complexity doesn’t
seem to be right.

13.3 CS IS THE PHILOSOPHY(!) OF PROCEDURES
Could CS be the study of procedures, yet be a branch
of philosophy instead of science? One major introductory
CS text claims that CS is neither a science nor the study
of computers.104 Rather, it is what they call “procedural
epistemology,” which they define (italics added) as:

the study of the structure of knowledge from an
imperative point of view, as opposed to the
more declarative point of view taken by classical
mathematical subjects. Mathematics provides a
framework for dealing precisely with notions of
“what is.” Computation provides a framework for
dealing precisely with notions of “how to.”

PAGE 10 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

And, of course, epistemology is, after all, a branch of
philosophy.

“How to” is certainly important, and interestingly distinct
from “what is.” But this distinction is hard to make
precise. Many imperative statements can be converted
to declarative ones; e.g., each “ p :- q” rule of a Prolog
program can be interpreted either procedurally (“to achieve
p, execute q”) or declaratively (“ p if q”).

Or consider Euclid’s Elements; it was originally written in
“how to” form: To construct an equilateral triangle using
only compass and straightedge, follow this algorithm.105

(Compare: To compute the value of this function using only
the operations of a Turing-machine, follow this algorithm.)106

But today it is expressed in “what is” form: The triangle
that is constructed (using only compass and straightedge)
by following that algorithm is equilateral: “When Hilbert
gave a modern axiomatization of geometry at the beginning
of the present century, he asserted the bald existence
of the line. Euclid, however, also asserted that it can
be constructed.”107 Note that the declarative version of a
geometry theorem can be considered to be a formal proof
of the correctness of the procedural version. This is closely
related to the notion of program verification.

But even if procedural language can be intertranslated
with declarative language, the two are distinct. And surely
CS is concerned with procedures! There is a related issue
in philosophy concerning the difference between knowing
that something is the case (knowing that a declarative
proposition is true) and knowing how to do something
(knowing a procedure for doing it). This, in turn, may
be related to Knuth’s view of programming as teaching
a computer (perhaps a form of knowing-that), to be
contrasted with the view of a machine-learning algorithm
that allows a computer to learn on its own by being trained.
The former can easily gain declarative “knowledge” of what
it is doing so that it can be programmed to explain what it
is doing; the latter not so easily.

13.4 CS IS COMPUTATIONAL THINKING
A popular way to describe CS is as a “way of thinking,” that
“algorithmic thinking” (about anything!) is what makes CS
unique:

CS is the new “new math,” and people are beginning
to realize that CS, like math, is unique in the sense
that many other disciplines will have to adopt
that way of thinking. It offers a sort of conceptual
framework for other disciplines, and that’s fairly
new. . . . Any student interested in science and
technology needs to learn to think algorithmically.
That’s the next big thing.

– Bernard Chazelle108

Jeannette Wing’s notion of “computational thinking”109

is thinking in such a way that a problem’s solution “can
effectively be carried out by an information-processing
agent.”110 Here, it is important not to limit such “agents”
to computers, but to include humans! It may offer
compromises on several controversies: It avoids the

procedural-declarative controversy, by including both
concepts, as well as others. Her definition of CS as “the
study of computation—what can be computed and how
to compute it” is nice, too, because the first conjunct
clearly includes the theory of computation and complexity
theory (“can” can include “can in principle” as well as “can
efficiently”), and the second conjunct can be interpreted to
include both software programming as well as hardware
engineering. “Study” is nice, too: It avoids the science-
engineering controversy.

“[T]o think computationally [is] to use abstraction,
modularity, hierarchy, and so forth in understanding and
solving problems”111—indeed, computational thinking
involves all of those methods cited in §13.2 for handling
complexity! Five years before Perlis defined CS as the
science of computers, he emphasized what is now called
computational thinking:

[T]he purpose of . . . [a] first course in programming
. . . is not to teach people how to program a specific
computer, nor is it to teach some new languages.
The purpose of a course in programming is to teach
people how to construct and analyze processes. . . .

A course in programming . . . , if it is taught properly,
is concerned with abstraction: the abstraction of
constructing, analyzing, and describing processes.
. . .

This, to me, is the whole importance of a course
in programming. It is a simulation. The point is
not to teach the students how to use ALGOL, or
how to program the 704. These are of little direct
value. The point is to make the students construct
complex processes out of simpler ones (and this
is always present in programming) in the hope
that the basic concepts and abilities will rub off.
A properly designed programming course will
develop these abilities better than any other
course.112

Here is another characterization of CS, one that also
characterizes computational thinking:

Computer science is in significant measure all
about analyzing problems, breaking them down
into manageable parts, finding solutions, and
integrating the results. The skills needed for this
kind of thinking apply to more than computer
programming. They offer a kind of disciplined
mind-set that is applicable to a broad range of
design and implementation problems. These skills
are helpful in engineering, scientific research,
business, and even politics!113 Even if a student
does not go on to a career in computer science
or a related subject, these skills are likely to prove
useful in any endeavor in which analytical thinking
is valuable.114

But Denning finds fault with the notion of “computational
thinking,” primarily on the grounds that it is too narrow:

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 11

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Computation is present in nature even when
scientists are not observing it or thinking about
it. Computation is more fundamental than
computational thinking. For this reason alone,
computational thinking seems like an inadequate
characterization of computer science.115

Note that, by “computation,” Denning means Turing-
machine computation. For his arguments about why it is
“present in nature,” see the discussion in §7, above.116

13.5 CS IS AI
[Computer science] is the science of how machines
can be made to carry out intellectual processes.117

The goal of computer science is to endow these
information processing devices with as much
intelligent behavior as possible.118

Computational Intelligence is the manifest destiny
of computer science, the goal, the destination, the
final frontier.119

These aren’t exactly definitions of CS, but they could be
turned into ones: CS is the study of (choose one): (a) how
to get computers to do what humans can do; (b) how to
make computers (at least) as “intelligent” as humans; (c)
how to understand (human) cognition computationally.

The history of computers supports this: It is a history
that began with how to get machines to do some human
thinking (certain mathematical calculations, in particular),
then more and more. Indeed, the Turing machine, as a
model of computation, was motivated by how humans
compute: Turing analyzes how humans compute, and then
designs a computer program that does the same thing.120

But the branch of CS that analyzes how humans perform a
task and then designs computer programs to do the same
thing is AI. So, the Turing machine was the first AI program!

But, as I will suggest in §14.1, defining CS as AI is probably
best understood as a special case of its fundamental task:
determining what tasks are computable.

13.6 CS IS MAGIC
Any sufficiently advanced technology is
indistinguishable from magic.

– Arthur C. Clarke121

Could it be that the advanced technology of CS is not only
indistinguishable from magic, but really is magic? Not
magic as in tricks, but magic as in Merlin or Harry Potter? As
one CS student put it,

Computer science is very empowering. It’s kind of
like knowing magic: you learn the right stuff and
how to say it, and out comes an answer that solves
a real problem. That’s so cool.

– Euakarn (Som) Liengtiraphan122

Brooks makes an even stronger claim than Clarke:

The programmer, like the poet, works only slightly
removed from pure thought-stuff. He [sic] builds
castles in the air, creating by the exertion of the
imagination. . . . Yet the program construct, unlike
the poet’s words [or the magician’s spells?], is real
in the sense that it moves and works, producing
visible outputs separate from the construct itself. .
. . The magic of myth and legend has come true
in our time. One types the correct incantation on
a keyboard, and a display screen comes to life,
showing things that never were nor could be.123

Of course, the main difference between “the magic of myth
and legend” and how computers work is that the former
lacks (or at least fails to specify) any causal connection
between incantation and result, whereas computation is
quite clear about the connection: Recall our emphasis on
algorithms (and see the discussion in §14.1.1.2, below).

What is “magic”? One anthropologist defines magic as
the human “use of symbols to control forces in nature.”124

Clearly, programming involves exactly that kind of use of
symbols.125

How is magic supposed to work? The anthropologist James
G. Frazer “had suggested that primitive people imagine
magical impulses traveling over distance through ‘a kind
of invisible ether’.”126 That sounds like a description of
electromagnetic waves: Think of electrical currents running
from a keyboard to a CPU, information traveling across the
Internet, or text messaging.

According to another anthropologist, Bronisław Malinowski,

The magical act involves three components:
the formula, the rite, and the condition of the
performer. The rite consists of three essential
features: the dramatic expression of emotion
through gesture and physical attitude, the use
of objects and substances that are imbued with
power by spoken words, and, most important, the
words themselves.127

A “wizard,” gesturing with a “wand,” performs a “spell”
consisting of a formula expressed in the words of an arcane
language; the spell has real-world effects, imbuing objects
with power.

Abstracting away from “the dramatic expression of
emotion,” use of a computer involves gestures, perhaps
not with a wand, but with a mouse, a trackpad, or a
touchscreen: The computer itself can be thought of as
“imbued with power” when we issue, perhaps not a spell,
but a command, either spoken or typed. And the words
(of a programming language, or even English; think: Siri)
used by the programmer or user are surely important, so
the “rite” criterion is satisfied. Computer programs can be
thought of as formulas, and only those programmers who
know how to use appropriate programming languages, or
those users who have accounts on a computer, might be
considered to be in the right “condition.”

PAGE 12 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

[A symbol] can take on the qualities of the thing it
represents, and it can take the place of its referent;
indeed, as is evident in religion and magic, the
symbol can become the thing it represents, and
in so doing, the symbol takes on the power of its
referent.128

We see this happening in computers when we treat icons on
a desktop (such icons are symbols) or the screen output of
a WYSIWYG word processor (such as a page of a Microsoft
Word document) as if they were the very things they
represent. Perhaps more significantly, we see this in the
case of those computer simulations in which the simulation
of something really is that (kind of) thing: In online banking,
the computational simulation of transferring funds between
accounts is the transferring of funds; (simulated) signatures
on online Word or PDF documents carry legal weight; in
AI, computationally simulated cognition (arguably) is
cognition.129 And an NRC report talks about user interfaces
as “illusions”:130

Unlike physical objects, the virtual objects created
in software are not constrained to obey the laws of
physics. . . . In the desktop metaphor, for example,
the electronic version of file folders can expand,
contract, or reorganize their contents on demand,
quite unlike their physical counterparts.131

So, perhaps computers are not just metaphorically magic
(as Arthur C. Clarke might have said); they are magic!

But, of course, the main difference between “the magic
of myth and legend” and how computers work is that
the former lacks (or at least fails to specify) any causal
connection between incantation and result, whereas
computation is quite clear about the connection: Recall
our emphasis on algorithms (and see the discussion in
§14.1.1.2, below).

14 SO, WHAT IS COMPUTER SCIENCE?
Our exploration of the various answers suggests that there
is no simple, one-sentence answer to our question. Any
attempt at one is no better than the celebrated descriptions
of an elephant by the blind men: Many, if not most or all,
such attempts wind up describing the entire subject, but
focusing on only one aspect of it. Recall Newell, Perlis,
and Simon’s and Knuth’s distinct but logically equivalent
definitions.

CS is the scientific study of a family of topics surrounding
both abstract (or theoretical) and concrete (or practical
computing)—a “portmanteau” discipline.132

Charles Darwin said that “all true classification . . . [is]
genealogical.”133 CS’s genealogy involves two historical
traditions: (1) the study of algorithms and the foundations
of mathematics (from ancient Babylonian mathematics,134

through Euclid’s geometry, to inquiries into the nature of
logic, leading ultimately to the Turing machine) and (2) the
attempts to design and construct a calculating machine
(from the Antikythera Mechanism of ancient Greece; through
Pascal’s and Leibniz’s calculators and Babbage’s machines;
to the ENIAC, iPhone, and beyond). So, modern CS is the

result of a marriage between (or merger of) the engineering
problem of building better and better automatic calculating
devices with the mathematical (hence, scientific) problem
of understanding the nature of algorithmic computation.
And that implies that modern CS, to the extent that it is a
single discipline, has both engineering and science in its
DNA. Hence its portmanteau nature.

The topics studied in contemporary CS roughly align
along a spectrum ranging from the mathematical theory
of computing, at one end, to the engineering of physical
computers, at the other, as we saw in §3.2. Newell, Perlis,
and Simon were looking at this spectrum from one end;
Knuth was looking at it from the other end. The topics share
a family resemblance (and perhaps nothing more than that,
except for their underlying DNA), not only to each other, but
also to other disciplines (including mathematics, electrical
engineering, information theory, communication, etc.), and
they overlap with issues discussed in the cognitive sciences,
philosophy (including ethics), sociology, education, the
arts, and business.

14.1 FIVE CENTRAL QUESTIONS OF CS
In this section, I want to suggest that there are five central
questions of CS. The single most central question is:

1. A. What can be computed?

But to answer that, we also need to ask:

1. B. How can it be computed?

Several other questions follow logically from that central
one:

2. What can be computed efficiently, and how?

3. What can be computed practically, and how?

4. What can be computed physically, and how?

5. What should be computed, and how?

Let’s consider each of these in a bit more detail.

14.1.1 COMPUTABILITY
14.1.1.1 What Is Computable? “What can be
computed?” (or: “What is computable?”) is the central
question, because all other questions presuppose it. The
fundamental task of any computer scientist—whether
at the purely mathematical or theoretical end of the
spectrum, or at the purely practical or engineering end—is
to determine whether there is a computational solution to
a given problem, and, if so, how to implement it. But those
implementation questions are covered by the rest of the
questions on our list, and only make sense after the first
question has been answered. (Alternatively, they facilitate
answering that first question; in any case, they serve the
goal of answering it.)

Question 1 includes the question of computability vs.
non-computability. It is the question that Church, Turing,
Gö del, and others were originally concerned with—Which

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 13

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

mathematical functions are computable?—and whose
answer has been given as the Church-Turing Computability
Thesis: A function is computable if and only if it is
computable by a Turing machine (or any formalism logically
equivalent to a Turing machine, such as Church’s lambda
calculus or Gödel’s general recursive functions). It is
important to note that not all functions are computable. If
they were, then computability would not be an interesting
notion. (A standard example of a non-computable function
is the Halting Problem.)

Various branches of CS are concerned with identifying
which problems can be expressed by computable
functions. So, a corollary of the Computability Thesis is that
a task is computable if and only if it can be expressed as a
computable function.

Here are some examples:

•	 Is cognition computable? The central question of
AI is whether the functions that describe cognitive
processes are computable. (This is one reason why I
prefer to call AI “computational cognition.”135) Given
the advances that have been made in AI to date, it
seems clear that at least some aspects of cognition
are computable, so a slightly more precise question
is: How much of cognition is computable?136

•	 Consider Shannon’s 1950 paper on chess: The
principal question is: Can we mathematically
analyze chess? In particular, can we computationally
analyze it (suggesting that computational analysis
is a branch or kind of mathematical analysis)—i.e.,
can we analyze it procedurally? I.e., can we play
chess rationally?

•	 Is the weather computable?137

•	 Is fingerprint identification computable?138

•	 Is final-exam-scheduling computable? Faculty
members in my department recently debated
whether it was possible to write a computer
program that would schedule final exams with no
time conflicts and in rooms that were of the proper
size for the class. Some thought that this was a
trivial problem; others thought that there was no
such algorithm (on the (perhaps dubious!) grounds
that no one in the university administration had
ever been able to produce such a schedule); in
fact, this problem is NP-complete.139

This aspect of question 1 is close to Forsythe’s famous one:

The question “What can be automated?” is one
of the most inspiring philosophical and practical
questions of contemporary civilization.140

Although similar in intent, Forsythe’s question can be
understood in a slightly different way: Presumably, a process
can be automated—i.e., done automatically, by a machine,
without human intervention—if it can be expressed as an
algorithm. That is, computable implies automatable. But

automatable does not imply computable: Witness the
invention of the direct dialing system in telephony, which
automated the task of the human operator. Yes, direct
dialing is computable, but it wasn’t a computer that did
this automation.141

14.1.1.2 How Is It Computable? The “how” question is also
important: CS cannot be satisfied with a mere existence
statement to the effect that a problem is computable; it also
requires a constructive answer in the form of an algorithm
that explicitly shows how it is computable.

In a Calvin and Hobbes cartoon,142 Calvin discovers that if
you input one thing (bread) into a toaster, a different thing
(toast) is output. Hobbes wonders what happened to the
input. It didn’t disappear, of course, nor did it “magically”
turn into the output:

Everything going on in the software [of a computer]
has to be physically supported by something
going on in the hardware. Otherwise the computer
couldn’t do what it does from the software
perspective—it doesn’t work by magic. But usually
we don’t have to know how the hardware works—
only the engineer and the repairman do. We can
act as though the computer just carries out the
software instructions, period. For all we care, as
long as it works, it might as well be magic.143

Rather, the toaster did something to the bread (heated it).
That intervening process is the analogue of an algorithm
for the bread-to-toast function. Finding “intervening
processes” requires algorithmic thinking, and results in
algorithms that specify the transformational relations
between input and output. (Where behaviorism focused
only on inputs and outputs, cognitive psychology focused
on the intervening algorithms.144)

So, just as, for any x, there can be a philosophy of x, so we
can ask, given some x, whether there is a computational
theory of x. Finding a computational solution to a problem
requires “computational thinking,” i.e., algorithmic (or
procedural) thinking (see §13.4, above).

Computational thinking includes what I call the four Great
Insights of CS:145

1.	 The representational insight:
Only 2 nouns are needed to represent information
(‘0’, ‘1’).

2.	 The processing insight:
Only 3 verbs are needed to process information
(move(left or right), print(0 or 1), halt)

3.	 The structural insight:
Only 3 grammar rules are needed to combine
actions
(sequence, selection, repetition)

4.	 The “closure” insight: Nothing else is needed.
(This is the import of the Church-Turing
Computability Thesis.)146

PAGE 14	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Computational thinking involves both synthesis and
analysis:

Synthesis: Given a problem P,

1.	 express P as a mathematical function FP
(or a collection of interacting functions;
i.e., give an input-output specification of P);

2.	 try to find an algorithm AFP for computing FP
(i.e., for transforming the input to the output;
then try to find an efficient and practical version
of AFP);

3.	 implement AFP on a physical computer.

Note the similarity of synthetic computational thinking to
David Marr’s analysis of information processing.147

Analysis:

Given a real-world process P (physical, biological,
psychological, social, economic, etc.), try to find a
computational process AP that models (describes,
simulates, explains, etc.) P.

Note that, once found, AP can be re-implemented; this is
why computers can (be said to) think!148

14.1.2 EFFICIENT COMPUTABILITY
Question 2 is the question studied by the branch of
computer science known as computational complexity
theory. Given an algorithm, one question is how much time
it will take to be executed and how much space (memory)
it will need. A more general question is this: Given the set
of computable functions, which of them can be computed
in, so to speak, less time than the age of the universe
or less space than the size of the universe. The principal
distinction is whether a function is in the class called P (in
which case, it is “efficiently” computable) or in the class
NP (in which case it is not efficiently computable but it is
efficiently “verifiable”):149

Even children can multiply two primes, but the
reverse operation—splitting a large number
into two primes—taxes even the most powerful
computers. The numbers used in asymmetric
encryption are typically hundreds of digits long.
Finding the prime factors of such a large number
is like trying to unmix the colors in a can of paint,
. . . “Mixing paint is trivial. Separating paint isn’t.”150

Almost all practical algorithms are in P. By contrast, one
important algorithm that is in NP is the Boolean Satisfiability
Problem: Given a molecular proposition of propositional
logic with n atomic propositions, under what assignment of
truth-values to those atomic propositions is the molecular
proposition true (or “satisfied”)? Whether P = NP is one
of the major open questions in mathematics and CS; most
computer scientists both hope and believe that P = NP.151

14.1.3 PRACTICAL COMPUTABILITY
Question 3 is considered both by complexity theorists as
well as by more practically-oriented software engineers.
Given a computable function in P (or, for that matter, in
NP) what are some practically efficient methods of actually
computing it? E.g., under certain circumstances, some
sorting algorithms are more efficient in a practical sense
(e.g., faster) than others. Even a computable function that
is in NP might be practically computable in special cases.
And some functions might only be practically computable
“indirectly” via a “heuristic”: A heuristic for problem p can
be defined as an algorithm for some problem p’, where the
solution to p’ is “good enough” as a solution to p.152 Being
“good enough” is, of course, a subjective notion; Oommen
and Rueda call the “good enough” solution “a sub-optimal
solution that, hopefully, is arbitrarily close to the optimal.”153

The idea is related to Simon’s notion of bounded rationality:
We might not be able to solve a problem p because of
limitations in space, time, or knowledge, but we might be
able to solve a different problem p’ algorithmically within
the required spatio-temporal-epistemic limits. And if the
algorithmic solution to p’ gets us closer to a solution to p,
then it is a heuristic solution to p. But it is still an algorithm.154

A classic case of this is the Traveling Salesperson Problem,
an NP-problem for which software like Google Maps solves
special cases for us every day (even if their solutions are
only “satisficing” ones155).

14.1.4 PHYSICAL COMPUTABILITY
But since the only (or the best) way to decide whether
a computable function really does what it claims to do
is to execute it on a computer, computers become an
integral part of CS. Question 4 brings in both empirical
(hence scientific) and engineering considerations. Even
a practically efficient algorithm for computing some
function might run up against physical limitations. Here is
one example: Even if, eventually, computational linguists
devise practically efficient algorithms for natural-language
“competence” (understanding and generation,156 it
remains the case that humans have a finite life span, so
the infinite capabilities of natural-language competence
are not really required (a Turing machine isn’t needed;
a push-down automaton might suffice). This is also the
question that issues in the design and construction of real
computers (“computer engineering”) are concerned with.
And it is where investigations into alternative physical
implementations of computing (quantum, optical, DNA,
etc.) come in.

14.1.5 ETHICAL COMPUTABILITY
Bruce Arden, elaborating Forsythe’s question, said that “the
basic question [is] . . . what can and should be automated.”157

Question 5 brings in ethical considerations.158 Actually, the
question is slightly ambiguous. It could simply refer to
questions of practical efficiency: Given a sorting problem,
which sorting algorithm should be used; i.e., which one
is the “best” or “most practical” or “most efficient” in the
actual circumstances? But this sense of “should” does not
really differentiate this question from question 3.

It is the ethical interpretation that makes this question
interesting: Suppose that there is a practical and efficient
algorithm for making certain decisions (e.g., as in the

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 15

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

case of autonomous vehicles). There is still the question
of whether we should use those algorithms to actually
make decisions for us. Or let us suppose that the goal of
AI—a computational theory of cognition—is practically and
efficiently computable by physically plausible computers.
One can and should still raise the question whether such
“artificial intelligences” should be created, and whether we
(their creators) have any ethical or moral obligations towards
them, and vice versa!159 And there is the question of implicit
biases that might be (intentionally or unintentionally) built
into some machine-learning algorithms.

14.2 WING’S FIVE QUESTIONS
It may prove useful to compare my five questions with
Wing’s “Five Deep Questions in Computing”:160

1.	 P = NP ?

2.	 What is computable?

3.	 What is intelligence?

4.	 What is information?

5.	 (How) can we build complex systems simply?

All but the last, it seems to me, concern scientific (abstract,
mathematical) issues: If we consider Wing’s second question
to be the same as our central one, then her first question
can be rephrased as our “What is efficiently computable?,”
and her third can be rephrased as “How much of (human)
cognition is computable?” (a special case of our central
question). Her fourth question can then be seen as asking
an ontological question about the nature of what it is that is
computed (an aspect of our central question): numbers (0s
and 1s)? symbols (‘0’s and ‘1’s)? information in some sense
(and, if so, in which sense)?

Wing’s last question is ambiguous between two readings
of “build”: On a software reading, it can be viewed in
an abstract (scientific, mathematical) way as asking a
question about the structural nature of software (the issues
concerning the proper use of the “goto” statement [Dijkstra,
1968] and structural programming would fall under this
category). As such, it concerns the grammar rules; it is then
an aspect of our central question. But it can also be viewed
on a hardware reading as asking an engineering question:
How should we—literally—build computers?

Interpreted in this way, Wing’s five questions can be boiled
down to two:

•	 What is computation such that only some things
can be computed? (And what can be computed
(efficiently), and how?)

•	 (How) can we build physical devices to perform
these computations?

The first is equivalent to our questions 1–3, the second to
our question 4. And, in this case, we see once again the
two parts of the discipline: the scientific (or mathematical,
or abstract) and the engineering (or concrete).

It is interesting and important to note that none of Wing’s
questions correspond to the ethical question 5.

15 CONCLUSION
To sum up, computer science is the (scientific, or STEM)
study of:

•	 what problems can be solved,

•	 what tasks can be accomplished, and

•	 what features of the world can be understood . . .

. . . computationally, i.e., using a language with only:

•	 2 nouns (‘0’, ‘1’),

•	 3 verbs (‘move’, ‘print’, ‘halt’),

•	 3 grammar rules (sequence, selection, repetition;
or just recursion), and

•	 nothing else,

and then to provide algorithms to show how this can be
done:

•	 efficiently,

•	 practically,

•	 physically, and

•	 ethically.

I said that our survey suggests that there is no simple,
one-sentence answer to the question: What is computer
science? My definition above is hardly a simple sentence.

But our opening quotation—from an interview with a
computational musician—comes closer, so I will end where
I began:

The Holy Grail of computer science is to capture
the messy complexity of the natural world and
express it algorithmically.

– Teresa Marrin Nakra161

NOTES

1.	 Quoted in J. Davidson, “Measure for Measure: Exploring the
Mysteries of Conducting,” The New Yorker, August 21, 2006, 66.

2.	 W. J. Rapaport, “Philosophy of Computer Science: An
Introductory Course,” Teaching Philosophy 28, no. 4 (2005):
319–41. See syllabus and supporting documents at http://
www.cse.buffalo.edu/~rapaport/510.html

3.	 W. J. Rapaport, Philosophy of Computer Science, 2017, http://
www.cse.buffalo.edu/~rapaport/Papers/phics.pdf

4.	 Ibid., Ch. 8, is a close, line-by-line reading of sections of A.
M. Turing, “On Computable Numbers, with an Application
to the Entscheidungsproblem,” Proceedings of the London
Mathematical Society, Ser. 2, 42 (1936): 230–65.

PAGE 16	 SPRING 2017 | VOLUME 16 | NUMBER 2

http://www.cse.buffalo.edu/~rapaport/510.html
http://www.cse.buffalo.edu/~rapaport/510.html
http://www.cse.buffalo.edu/~rapaport/Papers/phics.pdf
http://www.cse.buffalo.edu/~rapaport/Papers/phics.pdf

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

5.	 See R. I. Soare, “Turing Oracle Machines, Online Computing,
and Three Displacements in Computability Theory,” Annals of
Pure and Applied Logic 160 (2009): 368–99, §12, on this name.

6.	 As discussed in B. C. Smith, “Limits of Correctness in
Computers,” ACM SIGCAS Computers and Society 14-15
(1985): 18–26; see also W. J. Rapaport, “On the Relation of
Computing to the World,” in Philosophy and Computing: Essays
in Epistemology, Philosophy of Mind, Logic, and Ethics, ed. T. M.
Powers, Springer, forthcoming).

7.	 A. Newell, “Response: The Models Are Broken, the Models Are
Broken,” University of Pittsburgh Law Review 47 (1985-1986):
1023–31.

8.	 J. H. Fetzer, “Program Verification: The Very Idea,”
Communications of the ACM 31, no. 9 (1988): 1048–63.

9.	 A. M. Turing, “Computing Machinery and Intelligence,” Mind
59, no. 236 (1950): 433–60; J. R. Searle, “Minds, Brains, and
Programs,” Behavioral and Brain Sciences 3 (1980): 417–75.

10.	 J. H. Moor, “Are There Decisions Computers Should Never
Make?” Nature and System 1 (1979): 217–29.

11.	 Computer Science Curricula 2013 covers precisely these
sorts of argument-analysis techniques under the headings
of Discrete Structures [DS]/Basic Logic, DS/Proof Techniques,
Social Issues and Professional Practice [SP] (in general), and
SP/Analytical Tools (in particular). Many other CS2013 topics
also overlap those in the philosophy of computer science. See
http://ai.stanford.edu/users/sahami/CS2013/

12.	 I am grateful to Thomas M. Powers and Richard M. Rubin for
comments and discussion at the 2017 APA Eastern Division
session where I presented the material in the present essay.
And I am especially grateful to the American Philosophical
Association Committee on Philosophy and Computers for
this distinct honor, which recognizes “contributions to
areas relevant to philosophy and computing” (http://www.
apaonline.org/?barwise). Because of my philosophy interests in
philosophy of mind, I was inspired—by Hofstatder’s review of
Aaron Sloman, The Computer Revolution in Philosophy (1978),
which quoted Sloman (p. 5) to the effect that a philosopher of
mind who knew no AI was like a philosopher of physics who
knew no quantum mechanics—to study AI at SUNY Buffalo with
Stuart C. Shapiro. This eventually led to a faculty appointment
in computer science at Buffalo. Along the way, my philosophy
colleagues and I at SUNY Fredonia published one of the first
introductory logic textbooks to use a computational approach
(Schagrin et al., Logic: A Computer Approach, 1985). At Buffalo,
I was amazed to discover that my relatively arcane philosophy
dissertation on Meinong was directly relevant to Shapiro’s
work in AI, providing an intensional semantics for his SNePS
semantic-network processing system (Shapiro and Rapaport,
“SNePS Considered as a Fully Intensional Propositional
Semantic Network,” 1987; Shapiro and Rapaport, “Models
and Minds: Knowledge Representation for Natural-Language
Competence,” 1991). And then I realized that the discovery
of quasi-indexicals (“he himself,” “she herself,” etc.) by my
dissertation advisor, Hector-Neri Castañeda (“‘He’: A Study in
the Logic of Self-Consciousness,” 1966), could repair a “bug” in
a knowledge-representation theory that Shapiro had developed
with another convert to computer science (from psychology),
Anthony S. Maida [Maida and Shapiro, “Intensional Concepts
in Propositional Semantic Networks,” 1982]. This work was
itself debugged with the help of yet another convert (from
English), my doctoral student Janyce M. Wiebe (Rapaport et
al., “Quasi-Indexicals and Knowledge Reports,” 1997]. My
work with Shapiro and our SNePS Research Group at Buffalo
enabled me to rebut Searle (“Minds, Brains, and Programs”)
using “syntactic semantics” (Rapaport, “Philosophy, Artificial
Intelligence, and the Chinese-Room Argument,” 1986; Rapaport,
“Syntactic Semantics: Foundations of Computational Natural-
Language Understanding,” 1988; Rapaport, “Understanding
Understanding: Syntactic Semantics and Computational
Cognition,” 1995; Rapaport, “How to Pass a Turing Test:
Syntactic Semantics, Natural-Language Understanding,
and First-Person Cognition,” 2000; Rapaport, ““Semiotic
Systems, Computers, and the Mind: How Cognition Could Be
Computing,” 2012). Both of these projects, as well as one of
my early Meinong papers (Rapaport, “How to Make the World
Fit Our Language: An Essay in Meinongian Semantics,” 1981),
led me, together with another doctoral student (Karen Ehrlich)
and (later) a colleague from Buffalo’s Department of Learning

and Instruction (Michael W. Kibby), to develop a computational
and pedagogical theory of vocabulary acquisition from context
(Rapaport and Kibby, “Contextual Vocabulary Acquisition as
Computational Philosophy and as Philosophical Computation,”
2007; Rapaport and Kibby, “Contextual Vocabulary Acquisition:
From Algorithm to Curriculum,” 2014).

13.	 As cited in J. Gal-Ezer and D. Harel, “What (Else) Should CS
Educators Know?” Communications of the ACM 41, no. 9 (1998):
79.

14.	 M. Minsky, “Computer Science and the Representation of
Knowledge,” in The Computer Age: A Twenty Year View, ed.
L. Dertouzos and J. Moses (Cambridge, MA: The MIT Press,
1979), 392–421. My italics.

15.	 J. Hartmanis, “Some Observations about the Nature of
Computer Science,” in Foundations of Software Technology
and Theoretical Computer Science, volume 761 of Lecture
Notes in Computer Science, ed. R. Shyamasundar (Berlin/
Heidelberg: Springer, 1993), 1; my italics. Cf. J. Hartmanis,
“ On Computational Complexity and the Nature of Computer
Science,” ACM Computing Surveys 27, no. 1 (1995): 10.

16.	 M. S. Mahoney, Histories of Computing, ed. Thomas Haigh
(Cambridge, MA: Harvard University Press, 2011), 109.

17.	 D. E. Knuth, “Computer Programming as an Art,” Communications
of the ACM 17, no. 12 (1974a): 670.

18.	 Ibid., 668.

19.	 A. Perlis, “The Computer in the University,” in Management and
the Computer of the Future, ed. M. Greenberger (Cambridge,
MA: The MIT Press, 1962), 210; S. Lindell, “Computer Science
as a Liberal Art: The Convergence of Technology and Reason,”
talk presented at Haverford College, January 24, 2001, http://
www.haverford.edu/cmsc/slindell/Presentations/Computer%20
Science%20as%20a%20Liberal%20Art.pdf

20.	 E. W. Dijkstra, “Programming as a Discipline of Mathematical
Nature,” American Mathematical Monthly 81, no. 6 (1974): 608–12.

21.	 J. McCarthy, “A B asis for a Mathematical Theory of
Computation,” in Computer Programming and Formal Systems,
ed. P. Braffort and D. Hirschberg (North-Holland, 1963), page
references to PDF version at http://www-formal.stanford.
edu/jmc/basis.html; A. Newell, A. J. Perlis, and H. A. Simon,
“Computer Science,” Science 157, no. 3795 (1967): 1373–74;
S. C. Shapiro, “Computer Science: The Study of Procedures,”
Technical report, Department of Computer Science and
Engineering, University at Buffalo, Buffalo, NY, 2001, http://
www.cse.buffalo.edu/~shapiro/Papers/whatiscs.pdf

22.	 H. A. Simon, The Sciences of the Artificial, Third Edition
(Cambridge, MA: The MIT Press, 1996).

23.	 Hartmanis, “Some Observations about the Nature of Computer
Science”; Hartmanis, “On Computational Complexity and the
Nature of Computer Science; M. C. Loui, “Computer Science Is
a New Engineering Discipline,” ACM Computing Surveys 27, no.
1 (1995): 31–32.

24.	 F. P. Brooks, Jr., “The Computer Scientist as Toolsmith II,”
Communications of the ACM 39, no. 3 (1996): 61–68.

25.	 J. Barwise, “For Whom the Bell Rings and Cursor Blinks,”
Notices of the American Mathematical Society 36, no. 4 (1989):
386–88.

26.	 Newell et al., “Computer Science, 1373.

27.	 M. C. Loui, “Computer Science Is an Engineering Discipline,”
Engineering Education 78, no. 3 (1987): 175.

28.	 Mahoney, Histories of Computing, 159ff.

29.	 D. Boorstin, The Discoverers (New York: Random House, 1983),
376. See further discussion in Rapaport, Philosophy of Computer
Science, §3.5.3.

30.	 D. E. Knuth, “Computer Science and Its Relation to Mathematics,”
American Mathematical Monthly 81, no. 4 (1974): 323.

31.	 Ibid.

32.	 G. Lewis-Kraus, “The Great A.I. Awakening,” New York Times
Magazine, December 14, 2016, http://www.nytimes.
com/2016/12/14/magazine/the-great-ai-awakening.html

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 17

http://www.haverford.edu/cmsc/slindell/Presentations/Computer%2520Science%2520as%2520a%2520Liberal%2520Art.pdf
http://www.haverford.edu/cmsc/slindell/Presentations/Computer%2520Science%2520as%2520a%2520Liberal%2520Art.pdf
http://www.haverford.edu/cmsc/slindell/Presentations/Computer%2520Science%2520as%2520a%2520Liberal%2520Art.pdf
http://www-formal.stanford.edu/jmc/basis.html
http://www-formal.stanford.edu/jmc/basis.html
http://www.cse.buffalo.edu/~shapiro/Papers/whatiscs.pdf
http://www.cse.buffalo.edu/~shapiro/Papers/whatiscs.pdf
http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
http://ai.stanford.edu/users/sahami/CS2013/
http://www.apaonline.org/%3Fbarwise
http://www.apaonline.org/%3Fbarwise

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

33.	 D. E. Knuth, “Algorithmic Thinking and M athematical Thinking,”
American Mathematical Monthly 92, no. 3 (1985): 170–71.

34.	 Ibid., 172.

35.	 G. E. Forsythe, “A University’s Educational Program in Computer
Science,” Communications of the ACM 10, no. 1 (1967): 3. My
italics.

36.	 P. J. Denning, “What Is Computer Science?” American Scientist
73 (1985): 16. My italics.

37.	 Barwise, “For Whom the Bell Rings and Cursor Blinks,” 386–87.

38.	 J. Hartmanis and H. Lin, eds. “What Is Computer Science and
Engineering?” in Computing the Future: A Broader Agenda for
Computer Science and Engineering (Washington, D.C.: National
Academy Press, 1992), 164.

39.	 H. A. Simon, “What Computers Mean for Man and Society,”
Science 195, 4283 (1977): 1186.

40.	 C. E. Shannon, “A Mathematical Theory of Communication,” The
Bell System Technical Journal 27 (1948): 379–423, 623–56.

41.	 F. Dretske, Knowledge and the Flow of Information (Oxford:
Blackwell, 1981); K. M. Sayre, “Intentionality and Information
Processing: An Alternative Model for Cognitive Science,”
Behavioral and Brain Sciences 9, no. 1 (1986): 121–65.

42.	 For a survey, see G. Piccinini, G. Physical Computation: A
Mechanistic Account (Oxford: Oxford University Press, 2015),
Ch. 14.

43.	 M. Rescorla, “The Computational Theory of Mind,” in The
Stanford Encyclopedia of Philosophy, winter 2015 edition, ed.
E. N. Zalta, http://plato.stanford.edu/archives/win2015/entries/
computational-mind/, §6.1.

44.	 Piccinini, Physical Computation, Ch. 14, §3.

45.	 Shapiro, “Computer Science: The Study of Procedures.” My
italics.

46.	 P. J. Denning, “Computing Is a Natural Science,”
Communications of the ACM 50, no. 7 (2007): 13–18.

47.	 M. Sheraton, “The Elusive Art of Writing Precise Recipes,”
The New York Times, May 2, 1981 (http://www.nytimes.
com/1981/05/02/style/de-gustibus-the-elusive-art-of-writing­
precise-recipes.html), discusses the difficulties of writing
recipes.

48.	 A. Newell and H. A. Simon, “Computer Science as Empirical
Inquiry Symbols and Search,” Communications of the ACM 19,
no. 3 (1976): 113–26.

49.	 C. Böhm and G. Jacopini, “Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules,” Communications of
the ACM 9, no. 5 (1966): 366–71.

50.	 Knowing Shapiro, I strongly suspect that it is the latter.

51.	 Rapaport, Philosophy of Computer Science, Ch. 11.

52.	 Simon, The Sciences of the Artificial, 1.

53.	 Ibid., 2.

54.	 Newell and Simon, “Computer Science as Empirical Inquiry
Symbols and Search,” 113, 114. My italics.

55.	 Ibid., 114.

56.	 Lewis-Kraus, “The Great A.I. Awakening,” §4.

57.	 Brooks, “The Computer Scientist as Toolsmith II.”

58.	 Ibid., 61–62.

59.	 I discuss this issue in more detail in Rapaport, Philosophy of
Computer Science, Ch. 4.

60.	 Simon, The Sciences of the Artificial, 4.

61.	 J. Hendler, N. Shadbolt, W. Hall, T. Berners-Lee, and D. Weitzner,
“Web Science: An Interdisciplinary Approach to Understanding
the Web,” Communications of the ACM 51, no. 7 (2008): 63.

62.	 Covered in Rapaport, Philosophy of Computer Science, Ch. 5.

63.	 Brooks, “The Computer Scientist as Toolsmith II,” 62, col. 1.

64.	 W. J. Rapaport, “Implementation Is Semantic Interpretation,”
The Monist 82 (1999): 109–30; W. J. Rapaport, “Implemention
Is Semantic Interpretation: Further Thoughts,” Journal of
Experimental and Theoretical Artificial Intelligence 17, no. 4
(2005): 385–417.

65.	 FollowingH.Zemanek, “Was ist informatik? (What Is Informatics?),”
Elektronische Rechenanlagen (Electronic Computing Systems) 13,
no. 4 (1971): 157–71.

66.	 W. Wulf, “Are We Scientists or Engineers?” ACM Computing
Surveys 27, no. 1 (1995): 56. My italics.

67.	 P. A. Freeman, “Effective Computer Science,” ACM Computing
Surveys 27, no. 1 (1995): 27. My italics.

68.	 M. C. Loui, “Computational Complexity Theory,” ACM
Computing Surveys 28, no. 1 (1996): 47–49; S. Aaronson, “Why
Philosophers Should Care about Computational Complexity,”
in Computability: Turing, Gö del, Church, and Beyond, ed. B. J.
Copeland, C. J. Posy, and O. Shagrir (Cambridge, MA: The MIT
Press, 2013), 261–327.

69.	 J. Robinson, “Logic, Computers, Turing, and von Neumann,” In
Machine Intelligence 13: Machine Intelligence and Inductive
Learning, ed. K. Furukawa, D. Michie, and S. Muggleton
(Oxford: Clarendon Press, 1994), 12. My italics.

70.	 I. Kant, Critique of Pure Reason (New York: St. Martin’s Press,
1781/1787), 93 (A51/B75).

71.	 Lewis-Kraus, “The Great A.I. Awakening,” §2.

72.	 Nothing should be read into the ordering of the terms in the
acronym: The original acronym was the less mellifluous “SMET”!
And educators, perhaps with a nod to Knuth’s views, have been
adding the arts, to create “STEAM” (http://stemtosteam.org/).

73.	 Loui, “Computer Science Is an Engineering Discipline,” 176.

74.	 Loui, “Computer Science Is a New Engineering Discipline,” 1.

75.	 Loui, “Computer Science Is an Engineering Discipline,” 176.

76.	 Ibid.

77.	 Ibid., 177.

78.	 Newell and Simon, “Computer Science as Empirical Inquiry
Symbols and Search.”

79.	 B. V. Koen, “Toward a Definition of the Engineering Method,”
European Journal of Engineering Education 13, no. 3 (1988):
307–15.

80.	 Loui, “Computer Science Is a New Engineering Discipline,” 31.

81.	 Loui, “Computer Science Is an Engineering Discipline,” 178. My
italics.

82.	 Hartmanis, “Some Observations about the Nature of Computer
Science,” 1.

83.	 Ibid.

84.	 My italics; cf. Hartmanis, “Some Observations about the Nature
of Computer Science,” 6; Hartmanis, “On Computational
Complexity and the Nature of Computer Science,” 11.

85.	 Hartmanis, “Some Observations about the Nature of Computer
Science,” 5; my italics. Cf. Hartmanis, “On Computational
Complexity and the Nature of Computer Science,” 10.

86.	 Hartmanis, “On Computational Complexity and the Nature of
Computer Science,” 10.

87.	 Ibid., 8.

88.	 P. J. Denning and P. S. Rosenbloom, “Computing: The Fourth
Great Domain of Science,” Communications of the ACM 52, no.
(2009): 27–29.

89.	 P. J. Denning and P. A . Freeman, “Computing’s Paradigm,”
Communications of the ACM, 52, no. 12 (2009): 28.

90.	 Ibid., 29. My italics.

91.	 Denning and Rosenbloom, “Computing: The Fourth Great
Domain of Science,” 28.

92.	 An option that we explore in Rapaport, Philosophy of Computer
Science, Ch. 3, §3.10.2.

PAGE 18	 SPRING 2017 | VOLUME 16 | NUMBER 2

http://stemtosteam.org/
http://plato.stanford.edu/archives/win2015/entries/computational-mind/
http://plato.stanford.edu/archives/win2015/entries/computational-mind/
http://www.nytimes.com/1981/05/02/style/de-gustibus-the-elusive-art-of-writing-precise-recipes.html
http://www.nytimes.com/1981/05/02/style/de-gustibus-the-elusive-art-of-writing-precise-recipes.html
http://www.nytimes.com/1981/05/02/style/de-gustibus-the-elusive-art-of-writing-precise-recipes.html

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

93.	 Denning and Rosenbloom, “Computing: The Fourth Great
Domain of Science,” 28.

94.	 Ibid.

95.	 Denning and Freeman, “Computing’s Paradigm,” 29–30.

96.	 Ibid., 30.

97.	 P. Ceruzzi, “Electronics Technology and Computer Science,
1940–1975: A Coevolution,” Annals of the History of Computing
10, no. 4 (1988): 268–70; J. Wiesner, “Communication Sciences
in a University Environment,” IBM Journal of Research and
Development 2, no. 4 (1958): 268–75.

98.	 Quoted in Ceruzzi, “Electronics Technology and Computer
Science, 1940–1975: A Coevolution,” 269.

99.	 E. W. Dijkstra, “EWD 512: Comments at a Symposium,” in
Selected Writings on Computing: A Personal Perspective (New
York: Springer-Verlag, 1975), §4, p. 3.

100. L. Lamport, “How to Write a 21st Century Proof,” 	Journal of
Fixed Point Theory and Applications 11, no. 1 (2012): 16, http://
research.microsoft.com/en-us/um/people/lamport/pubs/
proof.pdf

101.	 P. Samuelson, R. Davis, M. D. Kapor, and J. Reichman, “A
Manifesto Concerning the Legal Protection of Computer
Programs,” Columbia Law Review 94, no. 8 (1994): 2326–27.

102. Khalil and Levy, however, do make that claim. H. Khalil and L. S.
Levy, “The Academic Image of Computer Science,” ACM SIGCSE
Bulletin 10, no. 2 (1978): 31–33.

103.	 P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker,
A. J. Turner, and P. R. Young, “Computing as a Discipline,”
Communications of the ACM 32, no. 1 (1989): 11.

104. H. Abelson, G. J. Sussman, and J. Sussman, 	Structure and
Interpretation of Computer Programs (Cambridge, MA: The MIT
Press, 1996), “Preface to the First Edition.”

105.	 G. Toussaint, “A New Look at Euclid’s Second
Proposition,” The Mathematical Intelligencer 15, no. 3
(1993): 12–23. http://www.perseus.tufts.edu/hopper/
text?doc=Perseus:text:1999.01.0086:book=1:type=Prop:number=1

106. For further discussion of “to accomplish goal G, do procedure
P,” see Rapaport, “On the Relation of Computing to the World.”

107.	 N. D. Goodman, “Intensions, Church’s Thesis, and the
Formalization of Mathematics,” Notre Dame Journal of Formal
Logic 28, no. 4 (1987): §4.

108. Bernard Chazelle, interviewed in G. Anthes, “Computer Science
Looks for a Remake,” Computerworld, May 1, 2006, http://
www.computerworld.com/s/article/110959/Computer_Science_
Looks_for_a_Remake

109.	 J. M. Wing, “Computational Thinking,” Communications of the ACM
49, no. 3 (2006): 33–35, echoing S. Papert, Mindstorms: Children,
Computers, and Powerful Ideas (New York: Basic Books, 1980).

110. J. M. Wing, “Computational Thinking: What and Why?” The Link
(Carnegie-Mellon University), November 17, 2010, https://www.
cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf. See also
M. Guzdial, “A Definition of Computational Thinking from
Jeannette Wing,” Computing Education Blog, March 22, 2011,
https://computinged.wordpress.com/2011/03/22/a-definition­
of-computational-thinking-from-jeanette-wing/

111.	 J. Scott and A. Bundy, “Creating a New Generation of Computational
Thinkers,” Communications of the ACM 58, no. 12 (2015): 37.

112. Perlis, “The Computer in the University,” 209–210. My italics.

113.	 And even the humanities (C. Ruff, “Computer Science, Meet
Humanities: In New Majors, Opposites Attract,” Chronicle of
Higher Education 62, no. 21 [2016]: A19—WJR footnote).

114. V. 	G. Cerf, “Computer Science in the Curriculum,”
Communications of the ACM 59, no. 3 (2016): 7.

115.	 P. J. Denning, “Beyond Computational Thinking,” Communications
of the ACM 52, no. 6 (2009): 30.

116. For more on computational thinking, see the homepage for
the Center for Computational Thinking, http://www.cs.cmu.
edu/~CompThink/

117.	 McCarthy, “A Basis for a Mathematical Theory of Computation,”
1. My italics.

118. Hartmanis, “Some Observations about the Nature of Computer
Science,” 5. My italics. Cf. “On Computational Complexity and
the Nature of Computer Science,” 10.

119.	 E. A. Feigenbaum, “Some Challenges and Grand Challenges
for Computational Intelligence,” Journal of the ACM 50, no.
1 (2003): 39. Also: “Understanding the activities of an animal
or human mind in algorithmic terms seems to be about the
greatest challenge offered to computer science by nature.”
J. Wiedermann, “ Simulating the Mind: A Gauntlet Thrown to
Computer Science,” ACM Computing Surveys 31, 3es (1999): 1.

120. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” §9.

121.	 http://en.wikipedia.org/wiki/Clarke’s_three_laws

122. Euakarn (Som) Liengtiraphan, quoted in S. Hauser, “Computing
and Connecting,” Rochester Review 79, no. 3 (2017): 16.

123.	 F. P. Brooks, Jr., The Mythical Man-Month (Reading, MA:
Addison-Wesley, 1975), 7–8. My emphases.

124. Phillip Stevens, 	 Jr., “Magic,” in Encyclopedia of Cultural
Anthropology, ed. D. Levinson and M. Ember (New York: Henry
Holt, 1996), 721.

125.	 Rapaport, “On the Relation of Computing to the World.”

126. J. G. Frazer, The Golden Bough: A Study in Magic and Religion,
3rd ed. (London: Macmillan, 1911–1915), 722.

127.	 Stevens, “Magic,” 722, citing Malinowski.

128. Ibid., 724. My italics.

129.	 For further discussion, see W. J. Rapaport, “Semiotic Systems,
Computers, and the Mind: How Cognition Could Be Computing,”
International Journal of Signs and Semiotic Systems 2, no. 1
(2012): §8.

130. Cited by Samuelson et al., “A Manifesto Concerning the Legal
Protection of Computer Programs,” 2324, notes 44 and 46;
2325, note 47.

131.	 Ibid. 2334.

132. L. Carroll, Through the Looking-Glass, available at http://www.
gutenberg.org/files/12/12-h/12-h.htm

133.	 C. Darwin, The Origin of Species. [1872] (New York: Signet
Classics, 1958), Ch. 14, § “Classification,” p. 437.

134. D. E. Knuth, “ Ancient Babylonian Algorithms,” Communications
of the ACM 15, no. 7 (1972): 671–77.

135.	 W. J. Rapaport, “Understanding Understanding: Syntactic
Semantics and Computational Cognition,” in Philosophical
Perspectives, Vol. 9: AI, Connectionism, and Philosophical
Psychology, ed. J. E. Tomberlin (Atascadero, CA: Ridgeview
Publishing, 1995), 49–88; W. J. Rapaport, “What Did You
Mean By That? Misunderstanding, Negotiation, and Syntactic
Semantics,” Minds and Machines 13, no. 3 (2003): 397–427.

136. W. J. Rapaport, “Semiotic Systems, Computers, and the Mind:
How Cognition Could Be Computing,” International Journal of
Signs and Semiotic Systems 2, no. 1 (2012): §2, pp. 34–35.

137.	 See B. Hayes, “Calculating the Weather,” American Scientist 95,
no. 3 (2007).

138. See S. N. Srihari, “Beyond C.S.I.: The Rise of Computational
Forensics,” IEEE Spectrum, 2010, http://spectrum.ieee.org/
computing/software/beyond-csi-the-rise-of-computational­
forensics

139.	 http://www.cs.toronto.edu/~bor/373s13/L14.pdf

140. G. E. Forsythe, “ Computer Science and Education,” Information
Processing 68: Proceedings of IFIP Congress 1968, 1025.

141.	 “Strowger Switch,” https://en.wikipedia.org/wiki/Strowger_switch

142.	 http://www.gocomics.com/calvinandhobbes/2016/03/09,
originally published March 12, 1986.

143.	 R. Jackendoff, A User’s Guide to Thought and Meaning (Oxford:
Oxford University Press, 2012), 99. Original italics, my boldface.

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 19

http://en.wikipedia.org/wiki/Clarke%E2%80%99s_three_laws
http://www.gutenberg.org/files/12/12-h/12-h.htm
http://www.gutenberg.org/files/12/12-h/12-h.htm
http://spectrum.ieee.org/computing/software/beyond-csi-the-rise-of-computational-forensics
http://spectrum.ieee.org/computing/software/beyond-csi-the-rise-of-computational-forensics
http://spectrum.ieee.org/computing/software/beyond-csi-the-rise-of-computational-forensics
http://www.cs.toronto.edu/~bor/373s13/L14.pdf
https://en.wikipedia.org/wiki/Strowger_switch
http://www.gocomics.com/calvinandhobbes/2016/03/09
http://research.microsoft.com/en-us/um/people/lamport/pubs/proof.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/proof.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/proof.pdf
http://www.perseus.tufts.edu/hopper/text%3Fdoc%3DPerseus:text:1999.01.0086:book%3D1:type%3DProp:number%3D1
http://www.perseus.tufts.edu/hopper/text%3Fdoc%3DPerseus:text:1999.01.0086:book%3D1:type%3DProp:number%3D1
http://www.computerworld.com/s/article/110959/Computer_Science_Looks_for_a_Remake
http://www.computerworld.com/s/article/110959/Computer_Science_Looks_for_a_Remake
http://www.computerworld.com/s/article/110959/Computer_Science_Looks_for_a_Remake
https://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
https://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
http://www.cs.cmu.edu/~CompThink/
http://www.cs.cmu.edu/~CompThink/
https://www

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

144. G. 	A. Miller, E. Galanter, and K. H. Pribram, Plans and the
Structure of Behavior (Henry Holt, New York, 1960).

145.	 http://www.cse.buffalo.edu/~rapaport/computation.html

146. The exact number of nouns, verbs, or grammar rules depends
on the formalism. E.g., some presentations add “read” or
“erase” as verbs, or use recursion as the single rule of grammar,
etc. The point is that there is a very minimal set and that nothing
else is needed. Of course, more nouns, verbs, or grammar rules
allow for greater ease of expression.

147.	 D. Marr, Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information (New
York: W. H. Freeman, 1982). See discussion in Rapaport, “On the
Relation of Computing to the World.”

148. W. J. Rapaport, “How to Pass a Turing Test: Syntactic Semantics,
Natural-Language Understanding, and First-Person Cognition,”
Journal of Logic, Language, and Information 9, no. 4 (2000):
467–90.

149.	 Technically, P is the class of functions computable in “Polynomial
time,” and NP is the class of functions computable in “Non­
deterministic Polynomial time.”

150. T. Folger, 	 “The Quantum Hack,” Scientific American 314, no. 2
(2016): 52.

151. L. Fortnow, 	The Golden Ticket: P, NP, and the Search for the
Impossible (Princeton, NJ: Princeton University Press, 2013).

152. W. J. Rapaport, “How Minds Can Be Computational Systems,”
Journal of Experimental and Theoretical Artificial Intelligence 10
(1998): 406.

153.	 B. J. Oommen and L. G. Rueda, “A Formal Analysis of Why
Heuristic Functions Work,” Artificial Intelligence 164, nos. 1-2
(2005): 1.

154. For more on heuristics, see M. H. Romanycia and F. J. Pelletier,
“What Is a Heuristic?” Computational Intelligence 1, no. 2 (1985):
47–58; and S. J. Chow, “Many Meanings of ‘Heuristic’,” British
Journal for the Philosophy of Science 66 (2015): 977–1016.

155.	 H. A. Simon, “Computational Theories of Cognition,” in The
Philosophy of Psychology, ed. W. O’Donohue and R. F. Kitchener
(London: SAGE Publications, 1996), 160–72.

156. S. C. Shapiro, “The Cassie Projects: An 	 Approach to N atural
Language Competence,” In EPIA 89: 4th Portugese Conference
on Artificial Intelligence Proceedings, ed. J. Martins and E.
Morgado (Berlin: Springer-Verlag, 1989), 362–80. Lecture
Notes in Artificial Intelligence 390. http://www.cse.buffalo.edu/
sneps/epia89.pdf; Shapiro and Rapaport, “SNePS Considered
as a Fully Intensional Propositional Semantic Network.”

157.	 B. W. Arden, ed. What Can Be Automated? The Computer
Science and Engineering Research Study (COSERS) (Cambridge,
MA: The MIT Press, 1980), 29. My italics.

158. M. Tedre, 	The Science of Computing: Shaping a Discipline
(Boca Raton, FL: CRC Press/Taylor and Francis, 2015), 167–68.

159.	 M. Delvaux, “Draft Report with Recommendations to the Commission
on Civil Law Rules on Robotics,” European Parliament Committee
on Legal Affairs, 2016, http://www.europarl.europa.eu/sides/
getDoc.do?pubRef=-//EP//NONSGML%2BCOMPARL%2BPE­
582.443%2B01%2BDOC%2BPDF%2BV0//EN

160. J. 	M. Wing, “Five Deep Questions in Computing,”
Communications of the ACM 51, no. 1 (2008): 58–60.

161.	 Teresa Marrin Nakra, quoted in Davidson, “Measure for Measure:
Exploring the Mysteries of Conducting,” 66. My italics.

REFERENCES

Aaronson, S. “Why Philosophers Should Care about Computational
Complexity.” In Computability: Turing, Gö del, Church, and Beyond,
edited by B. J. Copeland, C. J. Posy, and O. Shagrir, 261–327. Cambridge,
MA: The MIT Press, 2013.

Abelson, H., G. J. Sussman, and J. Sussman. Structure and Interpretation
of Computer Programs. Cambridge, MA: The MIT Press, 1996.

Anthes, G. “Computer Science Looks for a Remake.” Computerworld,
May 1, 2006. http://www.computerworld.com/s/article/110959/
Computer_Science_Looks_for_a_Remake

Arden, B. W., ed. What Can Be Automated? The Computer Science and
Engineering Research Study (COSERS). Cambridge, MA: The MIT Press,
1980.

Barwise, J. “For Whom the Bell Rings and Cursor Blinks.” Notices of the
American Mathematical Society 36, no. 4 (1989): 386–88.

Böhm, C. and G. Jacopini. “Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules.” Communications of the
ACM 9, no. 5 (1966): 366–71.

Boorstin, D. The Discoverers. New York: Random House, 1983. Ch. 49:
”The Microscope of Nature.”

Brooks, Jr., F. P. “The Computer Scientist as Toolsmith II.” Communications
of the ACM 39, no. 3 (1996): 61–68.

———. The Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.

Carroll, L. Through the Looking-Glass. 1871. Available at http://www.
gutenberg.org/files/12/12-h/12-h.htm

Castañeda, H.-N. “‘He’: A Study in the Logic of Self-Consciousness.”
Ratio 8 (1966): 130–57.

Cerf, V. G. “Computer Science in the Curriculum.” Communications of
the ACM 59, no. 3 (2016): 7.

Ceruzzi, P. “Electronics Technology and Computer Science, 1940–1975:
A Coevolution.” Annals of the History of Computing 10, no. 4 (1988):
257–75.

Chow, S. J. “Many Meanings of ‘Heuristic’.” British Journal for the
Philosophy of Science 66 (2015): 977–1016.

Darwin, C. The Origin of Species. [1872]. New York: Signet Classics,
1958.

Davidson, J. “Measure for Measure: Exploring the Mysteries of
Conducting.” The New Yorker, August 21, 2006, 60–69.

Davis, R., P. Samuelson, M. Kapor, and J. Reichman. “A New View of
Intellectual Property and Software.” Communications of the ACM 39, no.
3 (1996): 21–30.

Delvaux, M. “Draft Report with Recommendations to the Commission
on Civil Law Rules on Robotics.” European Parliament Committee
on Legal Affairs, 2016. http://www.europarl.europa.eu/sides/
getDoc .do?pubRef=- / /EP/ /NONSGML%2BCOMPARL%2BPE ­
582.443%2B01%2BDOC%2BPDF%2BV0//EN

Denning, P. J. “What Is Computer Science?” American Scientist 73
(1985): 16–19.

———. “Computing Is a Natural Science.” Communications of the ACM
50, no. 7 (2007): 13–18.

———. “Beyond Computational Thinking.” Communications of the ACM
52, no. 6 (2009): 28–30.

Denning, P. J., D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J.
Turner, and P. R. Young. “Computing as a Discipline.” Communications
of the ACM 32, no. 1 (1989): 9–23.

Denning, P. J., and P. A. Freeman. “Computing’s Paradigm.”
Communications of the ACM, 52, no. 12 (2009): 28–30.

Denning, P. J., and P. S. Rosenbloom. “Computing: The Fourth Great
Domain of Science.” Communications of the ACM 52, no. (2009): 27–29.

Dijkstra, E. W. “Go To Statement Considered Harmful.” Communications
of the ACM 11, no. 3 (1968): 147–48.

———. “Programming as a Discipline of Mathematical Nature.”
American Mathematical Monthly 81, no. 6 (1974): 608–12.

———. “EWD 512: Comments at a Symposium.” In Selected Writings on
Computing: A Personal Perspective, 161–64. New York: Springer-Verlag,
1975.

———. “EWD 611: On the Fact that the Atlantic Ocean has Two Sides.”
In Selected Writings on Computing: A Personal Perspective, 268–76.
New York: Springer-Verlag, 1976.

Dretske, F. Knowledge and the Flow of Information. Oxford: Blackwell,
1981.

Feigenbaum, E. A. “Some Challenges and Grand Challenges for
Computational Intelligence.” Journal of the ACM 50, no. 1 (2003): 32–40.

Fetzer, J. H. “Program Verification: The Very Idea.” Communications of
the ACM 31, no. 9 (1988): 1048–63.

Folger, T. “The Quantum Hack.” Scientific American 314, no. 2 (2016):
48–55.

PAGE 20	 SPRING 2017 | VOLUME 16 | NUMBER 2

http://www.gutenberg.org/files/12/12-h/12-h.htm
http://www.gutenberg.org/files/12/12-h/12-h.htm
http://www.europarl.europa.eu/sides/getDoc.do%3FpubRef%3D-//EP//NONSGML%252BCOMPARL%252BPE-582.443%252B01%252BDOC%252BPDF%252BV0//EN
http://www.europarl.europa.eu/sides/getDoc.do%3FpubRef%3D-//EP//NONSGML%252BCOMPARL%252BPE-582.443%252B01%252BDOC%252BPDF%252BV0//EN
http://www.europarl.europa.eu/sides/getDoc.do%3FpubRef%3D-//EP//NONSGML%252BCOMPARL%252BPE-582.443%252B01%252BDOC%252BPDF%252BV0//EN
http://www.cse.buffalo.edu/~rapaport/computation.html
http://www.cse.buffalo.edu/sneps/epia89.pdf
http://www.cse.buffalo.edu/sneps/epia89.pdf
http://www.europarl.europa.eu/sides/getDoc.do%3FpubRef%3D-//EP//NONSGML%252BCOMPARL%252BPE-582.443%252B01%252BDOC%252BPDF%252BV0//EN
http://www.europarl.europa.eu/sides/getDoc.do%3FpubRef%3D-//EP//NONSGML%252BCOMPARL%252BPE-582.443%252B01%252BDOC%252BPDF%252BV0//EN
http://www.europarl.europa.eu/sides/getDoc.do%3FpubRef%3D-//EP//NONSGML%252BCOMPARL%252BPE-582.443%252B01%252BDOC%252BPDF%252BV0//EN
http://www.computerworld.com/s/article/110959/Computer_Science_Looks_for_a_Remake
http://www.computerworld.com/s/article/110959/Computer_Science_Looks_for_a_Remake

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Forsythe, G. E. “A University’s Educational Program in Computer
Science.” Communications of the ACM 10, no. 1 (1967): 3–8.

———. “Computer Science and Education.” Information Processing 68:
Proceedings of IFIP Congress 1968, 1025–39.

Fortnow, L. The Golden Ticket: P, NP, and the Search for the Impossible.
Princeton, NJ: Princeton University Press, 2013.

Frazer, J. G. The Golden Bough: A Study in Magic and Religion, 3rd ed.
London: Macmillan, 1911–1915.

Freeman, P. A. “Effective Computer Science.” ACM Computing Surveys
27, no. 1 (1995): 27–29.

Gal-Ezer, J., and D. Harel. “What (Else) Should CS Educators Know?”
Communications of the ACM 41, no. 9 (1998): 77–84.

Goodman, N. D. “Intensions, Church’s Thesis, and the Formalization of
Mathematics.” Notre Dame Journal of Formal Logic 28, no. 4 (1987):
473–89.

Guzdial, M. “A Definition of Computational Thinking from Jeannette
Wing.”Computing Education Blog. March 22, 2011. https://computinged.
wordpress.com/2011/03/22/a-definition-of-computational-thinking­
from-jeanette-wing/

Hartmanis, J. “Some Observations about the Nature of Computer
Science.” In Foundations of Software Technology and Theoretical
Computer Science, volume 761 of Lecture Notes in Computer Science,
edited by R. Shyamasundar, 1–12. Berlin/Heidelberg: Springer, 1993.

———. “On Computational Complexity and the Nature of Computer
Science.” ACM Computing Surveys 27, no. 1 (1995): 7–16. Reprinted
from Communications of the ACM 37, no. 10 (October 1994): 37–43.

Hartmanis, J., and H. Lin, eds. “What Is Computer Science and
Engineering?” In Computing the Future: A Broader Agenda for Computer
Science and Engineering, 163–216. Washington, D.C.: National Academy
Press, 1992.

Hauser, S. “Computing and Connecting.” Rochester Review 79, no. 3
(2017): 16–17.

Hayes, B. “Calculating the Weather.” American Scientist 95, no. 3 (2007).

Hendler, J., N. Shadbolt, W. Hall, T. Berners-Lee, and D. Weitzner. “Web
Science: An Interdisciplinary Approach to Understanding the Web.”
Communications of the ACM 51, no. 7 (2008): 60–69.

Hofstatder, D. R. “Review of [Sloman, 1978].” Bulletin of the American
Mathematical Society 2, no. 2 (1980): 328–39.

Jackendoff, R. A User’s Guide to Thought and Meaning. Oxford: Oxford
University Press, 2012.

Kant, I. Critique of Pure Reason. New York: St. Martin’s Press, 1781/1787.
Norman Kemp Smith translation published 1929.

Khalil, H., and L. S. Levy. “The Academic Image of Computer Science.”
ACM SIGCSE Bulletin 10, no. 2 (1978): 31–33.

Knuth, D. E. “Ancient Babylonian Algorithms.” Communications of the
ACM 15, no. 7 (1972): 671–77.

———. “Computer Programming as an Art.” Communications of the
ACM 17, no. 12 (1974a): 667–73.

———. “Computer Science and Its Relation to Mathematics.” American
Mathematical Monthly 81, no. 4 (1974b): 323–43.

———. “Algorithmic Thinking and Mathematical Thinking.” American
Mathematical Monthly 92, no. 3 (1985): 170–81.

Koen, B. V. “Toward a Definition of the Engineering Method.” European
Journal of Engineering Education 13, no. 3 (1988): 307–15. Reprinted
from Engineering Education (December 1984): 150–55.

Lamport, L. “How to Write a 21st Century Proof.” Journal of Fixed
Point Theory and Applications 11, no. 1 (2012): 43–63. http://research.
microsoft.com/en-us/um/people/lamport/pubs/proof.pdf

Lewis-Kraus, G. “The Great A.I. Awakening.” New York Times Magazine.
December 14, 2016. http://www.nytimes.com/2016/12/14/magazine/
the-great-ai-awakening.html

Lindell, S. “Computer Science as a Liberal Art: The Convergence of
Technology and Reason.” Talk presented at Haverford College. January
24, 2001. http://www.haverford.edu/cmsc/slindell/Presentations/
Computer%20Science%20as%20a%20Liberal%20Art.pdf

Loui, M. C. “Computer Science Is an Engineering Discipline.”
Engineering Education 78, no. 3 (1987): 175–78.

———. “Computer Science Is a New Engineering Discipline.” ACM
Computing Surveys 27, no. 1 (1995): 31–32.

———. “Computational Complexity Theory.” ACM Computing Surveys
28, no. 1 (1996): 47–49.

Mahoney, M. S. Histories of Computing, edited by Thomas Haigh.
Cambridge, MA: Harvard University Press, 2011.

Maida, A. S., and S. C. Shapiro. “Intensional Concepts in Propositional
Semantic Networks.” Cognitive Science 6 (1982): 291–330.

Marr, D. Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. New York: W. H.
Freeman, 1982.

McCarthy, J. “A Basis for a Mathematical Theory of Computation.” In
Computer Programming and Formal Systems, edited by P. Braffort and
D. Hirschberg. North-Holland, 1963. Page references to PDF version at
http://www-formal.stanford.edu/jmc/basis.html

Miller, G. A., E. Galanter, and K. H. Pribram. Plans and the Structure of
Behavior. Henry Holt, New York, 1960.

Minsky, M. “Computer Science and the Representation of Knowledge.”
In The Computer Age: A Twenty Year View, edited by L. Dertouzos and J.
Moses, 392–421. Cambridge, MA: The MIT Press, 1979.

Moor, J. H. “Are There Decisions Computers Should Never Make?”
Nature and System 1 (1979): 217–29.

Newell, A. “Physical Symbol Systems.” Cognitive Science 4 (1980):
135–83.

———. “Response: The Models Are Broken, the Models Are Broken.”
University of Pittsburgh Law Review 47 (1985-1986): 1023–31.

Newell, A., A. J. Perlis, and H. A. Simon. “Computer Science.” Science
157, no. 3795 (1967): 1373–74.

Newell, A., and H. A. Simon. “Computer Science as Empirical Inquiry
Symbols and Search.” Communications of the ACM 19, no. 3 (1976):
113–26.

Oommen, B. J., and L. G. Rueda. “A Formal Analysis of Why Heuristic
Functions Work.” Artificial Intelligence 164, nos. 1-2 (2005): 1–22.

Papert, S. Mindstorms: Children, Computers, and Powerful Ideas. New
York: Basic Books, 1980.

Perlis, A. “The Computer in the University.” In Management and
the Computer of the Future, edited by M. Greenberger, 181–217.
Cambridge, MA: The MIT Press, 1962.

Piccinini, G. Physical Computation: A Mechanistic Account. Oxford:
Oxford University Press, 2015.

Rapaport, W. J. “How to Make the World Fit Our Language: An Essay
in Meinongian Semantics.” Grazer Philosophische Studien, 14 (1981):
1–21.

———. “Philosophy, Artificial Intelligence, and the Chinese-Room
Argument.” Abacus: The Magazine for the Computer Professional, 3
(1986): 6–17. Correspondence, Abacus 4 (Winter 1987): 6–7; 4 (Spring):
5–7; http://www.cse.buffalo.edu/~rapaport/Papers/abacus.pdf

———. “Syntactic Semantics: Foundations of Computational Natural-
Language Understanding.” In Aspects of Artificial Intelligence, edited
by J. H. Fetzer, 81–131. Dordrecht, The Netherlands: Kluwer Academic
Publishers, 1988.

———. “Understanding Understanding: Syntactic Semantics and
Computational Cognition.” In Philosophical Perspectives, Vol. 9: AI,
Connectionism, and Philosophical Psychology, edited by J. E. Tomberlin,
49–88. Atascadero, CA: Ridgeview Publishing, 1995.

———. “How Minds Can Be Computational Systems.” Journal of
Experimental and Theoretical Artificial Intelligence 10 (1998): 403–19.

———. “Implementation Is Semantic Interpretation.” The Monist 82
(1999): 109–30.

———. “How to Pass a Turing Test: Syntactic Semantics, Natural-
Language Understanding, and First-Person Cognition.” Journal of Logic,
Language, and Information 9, no. 4 (2000): 467–90.

———. “What Did You Mean By That? Misunderstanding, Negotiation,
and Syntactic Semantics.” Minds and Machines 13, no. 3 (2003): 397–
427.

———. “Implemention Is Semantic Interpretation: Further Thoughts.”
Journal of Experimental and Theoretical Artificial Intelligence 17, no. 4
(2005a): 385–417.

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 21

http://www-formal.stanford.edu/jmc/basis.html
http://www.cse.buffalo.edu/~rapaport/Papers/abacus.pdf
https://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
https://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
https://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
http://research.microsoft.com/en-us/um/people/lamport/pubs/proof.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/proof.pdf
http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
http://www.haverford.edu/cmsc/slindell/Presentations/Computer%2520Science%2520as%2520a%2520Liberal%2520Art.pdf
http://www.haverford.edu/cmsc/slindell/Presentations/Computer%2520Science%2520as%2520a%2520Liberal%2520Art.pdf

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

———. “Philosophy of Computer Science: An Introductory Course.”
Teaching Philosophy 28, no. 4 (2005b): 319–41.

———. “Semiotic Systems, Computers, and the Mind: How Cognition
Could Be Computing.” International Journal of Signs and Semiotic
Systems 2, no. 1 (2012): 32–71. http://www.cse.buffalo.edu/~rapaport/
Papers/Semiotic_Systems,_Computers,_and_the_Mind.pdf

———. “On the Relation of Computing to the World.” Forthcoming in
Philosophy and Computing: Essays in Epistemology, Philosophy of Mind,
Logic, and Ethics, edited by T. M. Powers. Springer. Paper based on
2015 IACAP Covey Award talk; preprint available at http://www.cse.
buffalo.edu/~rapaport/Papers/covey.pdf

———. Philosophy of Computer Science. 2017. Available at
http://www.cse.buffalo.edu/~rapaport/Papers/phics.pdf

Rapaport, W. J., and M. W. Kibby. “Contextual Vocabulary Acquisition as
Computational Philosophy and as Philosophical Computation.” Journal
of Experimental and Theoretical Artificial Intelligence 19, no. 1 (2007):
1–17.

———. “Contextual Vocabulary Acquisition: From Algorithm to
Curriculum.” In Castañeda and His Guises: Essays on the Work of Hector-
Neri Castañeda, edited by A. Palma, 107–50. Berlin: Walter de Gruyter,
2014.

Rapaport, W. J., S. C. Shapiro, and J. M. Wiebe. “Quasi-Indexicals and
Knowledge Reports.” Cognitive Science 21 (1997): 63–107.

Rescorla, M. “The Computational Theory of Mind.” In The Stanford
Encyclopedia of Philosophy, winter 2015 edition, edited by E. N. Zalta.
http://plato.stanford.edu/archives/win2015/entries/computational-mind/

Robinson, J. “Logic, Computers, Turing, and von Neumann.” In Machine
Intelligence 13: Machine Intelligence and Inductive Learning, edited
by K. Furukawa, D. Michie, and S. Muggleton, 1–35. Oxford: Clarendon
Press, 1994.

Romanycia, M. H., and F. J. Pelletier. “What Is a Heuristic?” Computational
Intelligence 1, no. 2 (1985): 47–58.

Ruff, C. “Computer Science, Meet Humanities: In New Majors, Opposites
Attract.” Chronicle of Higher Education 62, no. 21 (2016): A19.

Samuelson, P., R. Davis, M. D. Kapor, and J. Reichman. “A Manifesto
Concerning the Legal Protection of Computer Programs.” Columbia
Law Review 94, no. 8 (1994): 2308–431.

Sayre, K. M. “Intentionality and Information Processing: An Alternative
Model for Cognitive Science.” Behavioral and Brain Sciences 9, no. 1
(1986): 121–65.

Schagrin, M. L., W. J. Rapaport, and R. R. Dipert. Logic: A Computer
Approach. New York: McGraw-Hill, 1985.

Scott, J., and A. Bundy. “Creating a New Generation of Computational
Thinkers.” Communications of the ACM 58, no. 12 (2015): 37–40.

Searle, J. R. “Minds, Brains, and Programs.” Behavioral and Brain
Sciences 3 (1980): 417–57.

Shannon, C. E. “A Mathematical Theory of Communication.” The Bell
System Technical Journal 27 (1948): 379–423, 623–56.

Shapiro, S. C. “The Cassie Projects: An Approach to Natural Language
Competence.” In EPIA 89: 4th Portugese Conference on Artificial
Intelligence Proceedings, edited by J. Martins and E. Morgado, 362–80.
Berlin: Springer-Verlag, 1989. Lecture Notes in Artificial Intelligence
390. http://www.cse.buffalo.edu/sneps/epia89.pdf

———. “Computer Science: The Study of Procedures.” Technical
report, Department of Computer Science and Engineering, University
at Buffalo, Buffalo, NY, 2001. http://www.cse.buffalo.edu/~shapiro/
Papers/whatiscs.pdf

Shapiro, S. C., and W. J. Rapaport. “SNePS Considered as a Fully
Intensional Propositional Semantic Network.” In The Knowledge
Frontier: Essays in the Representation of Knowledge, edited by N.
Cercone and G. McCalla, 262–315. New York: Springer-Verlag, 1987.

———. “Models and Minds: Knowledge Representation for Natural-
Language Competence.” In Philosophy and AI: Essays at the Interface,
edited by R. Cummins and J. Pollock, 215–59. Cambridge, MA: The MIT
Press, 1991.

Sheraton, M. “The Elusive Art of Writing Precise Recipes.” The New York
Times. May 2, 1981. http://www.nytimes.com/1981/05/02/style/de­
gustibus-the-elusive-art-of-writing-precise-recipes.html

Simon, H. A. “What Computers Mean for Man and Society.” Science 195,
4283 (1977): 1186–91.

———. “Computational Theories of Cognition.” In The Philosophy
of Psychology, edited by W. O’Donohue and R. F. Kitchener, 160–72.
London: SAGE Publications, 1996a.

———. The Sciences of the Artificial, Third Edition. Cambridge, MA: The
MIT Press, 1996b.

Sloman, A. The Computer Revolution in Philosophy: Philosophy, Science
and Models of Mind. Atlantic Highlands, NJ: Humanities Press, 1978.

Smith, B.C. “Limits of Correctness in Computers.” ACM SIGCAS
Computers and Society 14–15, nos. 1–4 (1985): 18–26.

Soare, R. I. “Turing Oracle Machines, Online Computing, and Three
Displacements in Computability Theory.” Annals of Pure and Applied
Logic 160 (2009): 368–99.

Srihari, S. N. “Beyond C.S.I.: The Rise of Computational Forensics.”
IEEE Spectrum. 2010. http://spectrum.ieee.org/computing/software/
beyond-csi-the-rise-of-computational-forensics

Stevens, Jr., Phillip. “Magic.” In Encyclopedia of Cultural Anthropology,
edited by D. Levinson and M. Ember, 721–26. New York: Henry Holt, 1996.

Tedre, M. The Science of Computing: Shaping a Discipline. Boca Raton,
FL: CRC Press/Taylor and Francis, 2015.

Toussaint, G. “A New Look at Euclid’s Second Proposition.” The
Mathematical Intelligencer 15, no. 3 (1993): 12–23.

Turing, A. M. “On Computable Numbers, with an Application to the
Entscheidungsproblem.” Proceedings of the London Mathematical
Society, Ser. 2, 42 (1936): 230–65.

———. “Computing Machinery and Intelligence.” Mind, 59, no. 236
(1950): 433–60.

Wiedermann, J. “Simulating the Mind: A Gauntlet Thrown to Computer
Science.” ACM Computing Surveys 31, 3es (1999): Paper No. 16.

Wiesner, J. “Communication Sciences in a University Environment.” IBM
Journal of Research and Development 2, no. 4 (1958): 268–75.

Wing, J. M. “Computational Thinking.” Communications of the ACM 49,
no. 3 (2006): 33–35.

———. “Five Deep Questions in Computing.” Communications of the
ACM 51, no. 1 (2008): 58–60.

———. “Computational Thinking: What and Why?” The Link (Carnegie-
Mellon University). November 17, 2010. https://www.cs.cmu.
edu/~CompThink/resources/TheLinkWing.pdf

Wulf, W. “Are We Scientists or Engineers?” ACM Computing Surveys 27,
no. 1 (1995): 55–57.

Zemanek, H. “Was ist informatik? (What Is Informatics?).” Elektronische
Rechenanlagen (Electronic Computing Systems) 13, no. 4 (1971): 157–71.

ARTICLES
Why Think That the Brain Is Not a
Computer?

Marcin Miłkowski
INSTITUTE OF PHILOSOPHY AND SOCIOLOGY, POLISH ACADEMY
OF SCIENCES

ABSTRACT
In this paper, I review the objections against the claim
that brains are computers, or, to be precise, information-
processing mechanisms. By showing that practically all
the popular objections are either based on uncharitable
interpretation of the claim, or simply wrong, I argue that
the claim is likely to be true, relevant to contemporary
cognitive (neuro)science, and non-trivial.

Computationalism is here to stay. To see why, I will review
the reasons why one could think that the brain is not a
computer. Although more reasons can be brought to bear

PAGE 22 SPRING 2017 | VOLUME 16 | NUMBER 2

http://spectrum.ieee.org/computing/software/beyond-csi-the-rise-of-computational-forensics
http://spectrum.ieee.org/computing/software/beyond-csi-the-rise-of-computational-forensics
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
http://www.cse.buffalo.edu/~rapaport/Papers/Semiotic_Systems%2C_Computers%2C_and_the_Mind.pdf
http://www.cse.buffalo.edu/~rapaport/Papers/Semiotic_Systems%2C_Computers%2C_and_the_Mind.pdf
http://www.cse.buffalo.edu/~rapaport/Papers/covey.pdf
http://www.cse.buffalo.edu/~rapaport/Papers/covey.pdf
http://www.cse.buffalo.edu/~rapaport/Papers/phics.pdf
http://plato.stanford.edu/archives/win2015/entries/computational-mind/
http://www.cse.buffalo.edu/sneps/epia89.pdf
http://www.cse.buffalo.edu/~shapiro/Papers/whatiscs.pdf
http://www.cse.buffalo.edu/~shapiro/Papers/whatiscs.pdf
http://www.nytimes.com/1981/05/02/style/de-gustibus-the-elusive-art-of-writing-precise-recipes.html
http://www.nytimes.com/1981/05/02/style/de-gustibus-the-elusive-art-of-writing-precise-recipes.html

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

on the issue, my contention is that it’s less than likely that
they would make any difference. The claim that the brain
is a specific kind of an information-processing mechanism,
and that information-processing is necessary (even if
not sufficient) for cognition, is non-trivial and generally
accepted in cognitive (neuro)science. I will not develop
the positive view here, however, as it was already stated
sufficiently clearly to my tastes in book-length accounts.1

Instead, I will go through the objections, and show that
they all fail just because they make computationalism a
straw man.

SOFTWARE AND NUMBER CRUNCHING
One fairly popular objection against computationalism is
that there is no simple way to understand the notions of
software and hardware as applied to biological brains. But
the software/hardware distinction, popular as the slogan
“the mind to the brain is like the software to hardware,”2

need not be applicable to brains at all for computationalism
to be true. There are computers that are not program-
controllable: they do not load programs from external
memory to internal memory to execute them. The most
mundane example of such a computer is a logical gate
whose operation corresponds to a logical connective, e.g.,
disjunction or conjunction. In other words, while it may
be interesting to inquire whether there is software in the
brain, there may as well be none, and computationalism
could still be true. Hence, the objection fails, even if it is
repeatedly cited in popular press.

Another intuitive objection, already stated (and defeated)
in the 1950s, is that brains are not engaged in number-
crunching, while computers, well, compute over numbers.
But if this is all computers do, then they don’t control
missiles, send documents to printers, or display pictures
on computer monitors. After all, printing is not just number
crunching. The objection rests therefore on a mistaken
assumption that computers can only compute numerical
functions. Computer functions can be defined not only
on integer numbers but also on arbitrary symbols,3 and as
physical mechanisms, computers can also control other
physical processes.

SYMBOLS AND MEANING
The notion of a symbol is sometimes interpreted to
say that symbols in computers are, in some sense,
abstract and formal, which would make computers
strangely dis-embodied.4 In other words, the opponents
of computationalism claim that it implies some kind of
dualism.5 However, computers are physical mechanisms,
and they can be broken, put on fire, and thrown out of
the window. These things may be difficult to accomplish
with a collection of abstract entities; the last time I tried,
I was caught red-handed while committing a simple
category mistake. Surely enough, computers are not just
symbol-manipulators. They do things, and some of the
things computers do are not computational. In this sense,
computers are physically embodied, not unlike mammal
brains. It is, however, a completely different matter whether
the symbols in computers mean anything.

One of the most powerful objections formulated against
the possibility of Artificial Intelligence is associated with

John Searle’s Chinese Room thought experiment.6 Searle
claimed to show that running of a computer program is not
sufficient for semantic properties to arise, and this was in
clear contradiction to what was advanced by proponents
of Artificial Intelligence who assumed that it was sufficient
to simulate the syntactic structure of representations for
the semantic properties to appear; as John Haugeland
quipped: “if you take care of syntax, the semantics will take
care of itself.”7 But Searle replied: one can easily imagine
a person with a special set of instructions in English who
could manipulate Chinese symbols and answer questions
in Chinese without understanding it at all. Hence,
understanding is not reducible to syntactic manipulation.
While the discussion around this thought experiment is
hardly conclusive,8 the problem was soon reformulated by
Stevan Harnad as “symbol grounding problem”:9 How can
symbols in computational machines mean anything?

If symbol grounding problem makes any sense, then one
cannot simply assume that symbols in computers mean
something just by being parts of computers, or at least
they cannot mean anything outside the computer so easily
(even if they contain instructional information10). This is an
assumption made also by proponents of causal-mechanistic
analyses of physical computation: representational
properties are not assumed to necessarily exist in physical
computational mechanisms.11 So, even if Searle is right
and there is no semantics in computers, the brain might
still be a computer, as computers need no semantics to be
computers. Maybe something additional to computation is
required for semantics.

Let us make the record straight here. There is an important
connection between the computational theory of mind and
the representational account of cognition: they are more
attractive when both are embraced. Cognitive science
frequently explains cognitive phenomena by referring to
semantic properties of mechanisms capable of information­
processing.12 Brains are assumed to model reality, and these
models can be computed over. While this seems plausible
to many, it’s important to remember than one can remain
computationalist without assuming representationalism, or
the claim that cognition requires cognitive representation.
At the same time, a plausible account of cognitive
representation cannot be couched merely in computational
terms as long as one assumes that the symbol grounding
problem makes sense at least for some computers. To make
the account plausible, most theorists appeal to notions of
teleological function and semantic information,13 which
are not technical terms of computability theory nor can be
reduced to such. So, computers need something special to
operate on inherently meaningful symbols.

What made computationalism so strongly connected to
cognitive representations was the fact that it offered a
solution to the problem of what makes meaning causally
relevant. Many theorists claim that just because the syntax in
computer programs is causally relevant (or efficacious), so
is the meaning. While the wholesale reduction of meaning
to syntax is implausible, the computational theory of mind
makes it clear that the answer to the question includes the
causal role of the syntax of computational vehicles. Still, it
is not an objection to computationalism itself that it does

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 23

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

not offer a naturalistic account of meaning. That would be
indeed too much.

The debate over the meaning in computers and animals
abounds in red herrings, however. One recent example
is Robert Epstein’s essay.14 While the essay is ridden with
confusion, the most striking mistake is the assumption
that computers always represent everything with arbitrary
accuracy. Epstein cites the example of how people remember
a dollar bill, and assumes that computers would represent
it in a photographic manner with all available detail. This is
an obvious mistake: representation is useful mostly when
it does not convey information about all properties of the
represented target (remember that the map of the empire
is useful only when it is not exact?15). If Epstein is correct,
then there are no JPEG files in computers, as they are not
accurate, and they are based on lossy compression. And
there are no MP3 files. And so on. No assumption of the
computational theory of mind says that memory should be
understood in terms of the von Neumann architecture, and
only some controversial theories suggest that it should.16

Epstein also presses the point that people are organisms.
Yes, I would also add that water is (mostly) H2O. It’s true
but just as irrelevant as Epstein’s claim: physical computers
are, well, physical, and they may be built in various ways.
It’s essential that they are physical.

A related objection may be phrased in terms of James J.
Gibson’s ecological psychology. Ecological psychologists
stress that people do not process information, they just
pick it up from the environment.17 This is an interesting
idea. But one should make it more explicit what is meant
by information processing in the computational theory of
mind. What kind of information is processed? It should be
clear enough that the information need not be semantic,
as not all symbols in computers are about something.
The minimal notion that should suffice for our purposes
is the notion of structural information: a vehicle can bear
structural information just in case it has at least one degree
of freedom, that is, may vary its state.18 The number
of degrees of freedom, or yes-no questions required
to exactly describe its current state, is the amount of
structural information. As long as there are vehicles with
multiple degrees of freedom and they are part of causal
processes that cause some other vehicles just like some
model of computation describes these processes,19 there
is information processing. This is a very broad notion, as
all physical causation implies information transfer and
processing in this sense.20

Right now it’s important to note that the Gibsonian notion
of information pickup, interesting as it is, requires vehicles
of structural information as well. There needs to be some
information out there to be picked up, and organisms
have to be so structured to be able to change their state in
response to information. Gibsonians could, however, claim
that the information is not processed. Frankly, I do not
know what is meant by this: for example, Chemero seems
to imply that processing amounts to adding more and more
layers of additional information, like in Marr’s account of
vision.21 Why information processing should require
multiple stages of adding more information is beyond me.

Even uses of Gibsonian information in, say, simple robots,
are clearly computational, and insisting otherwise seems
to imply that the dispute is purely verbal. To sum up: the
Gibsonian account does not invalidate computationalism
at all.

CONSCIOUSNESS
Some people find (some kinds of) consciousness to be
utterly incompatible with computationalism, or at least,
unexplainable in purely computational terms.22 The
argument is probably due to Leibniz with his thought
experiment in Monadology.23 Imagine a brain as huge as a
mill, and enter it. Nowhere in the interplay of gears could
you find perceptions, or qualitative consciousness. Hence,
you cannot explain perception mechanically. Of course,
this Leibnizian argument appeals only to some physical
features of mechanisms, but some still seem to think that
causation has nothing to do with qualitative consciousness.
Notice also that the argument, if cogent, is applicable more
broadly, not just to computationalism; it is supposed to
defeat reductive physicalism or materialism.

For example, David Chalmers claims that while awareness,
or the contentful cognitive states and processes, can be
explained reductively by appealing to physical processes,
there is some qualitative, phenomenal consciousness that
escapes all such attempts. But his own positive account
(or one of his accounts) is panpsychism, and it states
that whenever there is physical information, there is
consciousness. Qualitative consciousness. So how is this
incompatible with computationalism, again? According
to Chalmers, qualitative consciousness supervenes on
information with physical necessity (not conceptual one).
So be it, but it does not invalidate computationalism, of
course.

Notice also that virtually all current theories of
consciousness are computational, even the ones that
appeal to quantum processes.24 For example, Bernard
Baars offers a computational account in terms of the
global workspace theory,25 David Rosenthal an account in
terms of higher-level states,26 and Giulio Tononi in terms
of minimal information integration.27 Is there any theory of
consciousness that is not already computational?

Let us turn to Searle. After all, he suggests that only a non-
computational theory of consciousness can succeed. His
claim is that consciousness is utterly biological.28 Fine,
but how does this exactly contradict computationalism?
You may build a computer of DNA strands,29 so why claim
that it’s metaphysically impossible to have a biological
computer? Moreover, Searle fails to state which biological
powers of brains specifically make them conscious. He
just passes the buck to neuroscience. And neuroscience
offers computational accounts. Maybe there’s a revolution
behind the corner, but as things stand, I would not hold
my breath for a non-computational account of qualitative
consciousness.

TIME AND ANALOG PROCESSING
Proponents of dynamical accounts of cognition stress that
Turing machines do not operate in real time. This means
that this classical model of computation does not appeal

PAGE 24 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

to real time; instead, it operates with the abstract notion
of the computation step. There is no continuous time flow,
just discrete clock ticks in a Turing Machine.30 This is true.
But is this an objection against computationalism?

First, there are models of computation that appeal to real
time.31 So one could use such a formalism. Second, the
objection seems to confuse the formal model of computation
with its physical realization. Physical computers operate
in real time, and not all models of computation are made
equal; some will be relevant to explaining cognition, and
some may be only useful for computability theory. What
is required for explanatory purposes is a mechanistically-
adequate model of computation that describes all relevant
causal processes in the mechanism.32

Universal Turing machines are crucial to computability
theory. But one could also appeal to models of analog
computation if required. These are still understood as
computational in computability theory, and some theorists
indeed claim that the brain is an analog computer, which is
supposed to allow them to compute Turing-incomputable
functions.33 While this is controversial (others claim that
brains compute in a more complex fashion34), it shows that
one cannot dismiss computationalism by saying that the
brain is not a digital computer, as Gerald Edelman did.35

There are analog computers, and an early model of a neural
network, Perceptron, was analog.36 The contention that
computers have to be digital is just dogmatic.

ARTIFICIAL INTELLIGENCE
There are a number of arguments with a form:

1. People ψ.
2. Computers will never ψ.

So, artificial intelligence is impossible (or
computationalism is false).

This argument is enthymematic, but the conclusion follows
with a third assumption: if artificial intelligence is possible,
then computers will ψ. The plausibility of the argument
varies from case to case, depending on what you fill for ψ.
For years, people thought that winning in chess is ψ,37 but it
turned out to be false, which makes the argument instance
unsound. So, unless there is a formal proof, it’s difficult to
treat premise 2 seriously.

So what could be plausibly substituted for ψ? Obviously,
not sexual reproduction, even if it is humanly possible.
There are many properties of biological organisms
that simply seem irrelevant to this argument, including
exactly the same energy consumption, having proper
names, spatiotemporal location, and so on. The plausible
candidate for substitution is some capacity for information-
processing. If there is such capacity that humans have but
computers cannot, then the argument is indeed cogent.

So what could be the candidate capacity? The classical
argument pointed to the human ability to recognize the
truth of logical statements that cannot be proven by a
computer.38 It is based on the alleged ability of human
beings to understand that some statements are true,

which is purportedly impossible only for machines (this
argument is based on the Gödel proof of incompleteness
of the first-order predicate calculus with basic arithmetic).
The problem is that this human understanding has to be
non-contradictory and certain. But Gödel has shown that
it’s undecidable in general whether a given system is
contradictory or not; so either the argument states that
it’s mathematically certain that human understanding
of mathematics is non-contradictory, which makes the
argument inconsistent (it cannot be mathematically certain
because it’s undecidable); or it just dogmatically assumes
consistency, which means that the argument is implausible,
and even unsound because we know that people commit
contradictions unknowingly.39

Another argument points to common sense. Common
sense is a particularly difficult capacity, and the trouble
with implementing common sense on machines is
sometimes called (somewhat misleadingly) the frame
problem.40 Inferential capacities of standard AI programs
do not seem to follow the practices known to humans,
and that was supposed to hinder progress in such fields
as high-quality machine translation,41 speech recognition
(held to be immoral to fund by Weizenbaum42), and so
on. Even if IBM Watson wins in Jeopardy!, one may still
think it’s not enough. Admittedly, common sense is a
plausible candidate in this argument. Notice that even if
the proponent of the computational theory of cognition
could reject the necessity of building genuine AI that is
not based on a computer simulation of human cognitive
processes, he or she still has the burden of showing that
human common sense can be simulated on a computer.
Whether it can or not is still a matter of debate.

COMPUTERS ARE EVERYWHERE (OR DON’T
REALLY EXIST)

Still another argument against computationalism brings
pretty heavy artillery. The argument has two versions.
The first version is the following: at least some plausible
theories of physical implementation of computation lead to
the conclusion that all physical entities are computational.
This stance is called pancomputationalism. If this is the case,
then the computational theory of mind is indeed trivial, as
not only brains are computational, but also cows, black
holes, cheese sandwiches, and what not, are computers.
However, a pancomputationalist may reply by saying that
there are various kinds (and levels) of computation, and
brains do not execute all kinds of computation at the same
time.43 So it’s not just computation that is specific to brains,
but there is some non-trivial kind of computation specific to
brains. Only the kind of pancomputationalism that assumes
that everything computes all kinds of functions at the same
time is catastrophic, as it makes physical computation
indeed trivial. But this is what Hilary Putnam claims—he
even offered a proof that one can ascribe arbitrary kinds of
computation to any open physical system.44

Another move is to say that computers do not really exist;
they are just in the eyes of beholder. John Searle has
made both moves: the beholder decides whether a given
physical system is computational, and therefore may make
this decision for virtually everything. But the body of work

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 25

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

on physical computation in the last decade or so has been
focused on showing why Putnam and Searle were wrong.45

The contemporary consensus is that computational models
can adequately describe causal connections in physical
systems, and that these models can be also ascribed
wrongly. In other words, computational models are not
different in kind from any mathematical model used in
science. If they are mere subjective metaphors and don’t
describe reality, then mathematical models in physics are
subjective as well.46

Intuitively, arguments presented by Searle and Putnam are
wrong for a very simple reason: nobody would buy a new
computer if it was just easier to think that an old computer
simply implemented new software. I could stare at my
old laptop and think that it’s a brand new smartphone. It’s
obvious that it doesn’t work this way. Therefore, there must
be a flaw in these arguments somewhere, and even if the
technicalities involved are indeed interesting, they fail to
establish the conclusion.

A popular strategy to defeat triviality arguments is to
show that it is ad hoc: the ascriptions of computational
states to physical systems wouldn’t support relevant
counterfactuals.47 In other words, they couldn’t, for example,
accurately predict what kind of computation would run on a
physical system, were things slightly different. While this is
intuitive, I have argued that one can strengthen the triviality
strategies to deal with counterfactuals.48 As long as one is
poised to predict the evolution of a physical process, one
can invent a computational ascription. Thus, instead, one
should look for a systematic solution that presupposes that
computational models are not different in kind from other
causal models in science. This is the move recommended
by David Chalmers, who has stressed that computational
models should be understood causally.49 However, his
strategy requires all computational models to be rephrased
to use his favorite mathematical model of computation,
combinatorially structured finite-state machine (CFSA), and
then matched to a causal structure of a physical system.
But rephrasing has an important disadvantage: the states
of an original model of computation may turn out to be
causally inefficacious. This is why, in reply to Chalmers, I
suggested that computation should be modeled directly in
a mechanistically-adequate model of computation whose
causal organization matches the organization of a physical
mechanism, and appeal to standard explanatory norms.50

The norms of mechanistic explanation, which should be
followed when explaining a computational system causally,
are sufficient to block triviality arguments. (For example,
ascriptions will turn out to be extremely non-parsimonious,
and will not offer any new predictions except the ones
already known from a physical description of a system,
which suggests that the model is based on so-called over-
fitting.)

All in all, triviality arguments required theorists to spell out
the account of physical computation much more clearly but
are not a real danger to computationalism. This is not to say
that more often than not, empirical evidence is insufficient
to decide between vastly different hypotheses about the
computational organization of a given mechanism. But
again, this is not in any way special for computational

hypotheses, since theories are generally underdetermined
by evidence.

CONCLUSION
Let me wrap up. In this paper, I have listed and summarized
a number of arguments against computationalism. The
only objection that does not seem to be implausible at the
first glance is the one that states that common sense is
impossible or extremely difficult to implement on a machine.
However, more and more commonsensical capacities are
being implemented on machines. For example, in the 1990s
and early 2000s, I used to work as a technical translator
for software companies. We used to laugh at machine
translation, and nobody would use it professionally. But it’s
the machine that translates the Microsoft Knowledge Base,
which was extremely difficult for professionals to deal with.
While the quality of machine translation is still behind the
best human beings for complex literary translations, it is no
longer something that translators laugh at. We use machine
translation at work and merely post-edit it.

The point is that there’s no good reason to think that the brain
is not a computer. But it’s not just a computer. It is, of course,
physically embedded in its environment and interacts
physically with it with its body, and for that, it also needs a
peripheral nervous system51 and cognitive representations.
But there’s nothing that denies computationalism here.
Most criticisms of computationalism therefore fail, and
sticking to them is probably a matter of ideology rather
than rational debate.

ACKNOWLEDGEMENTS

The work on this paper was funded by a National Science Centre
(Poland) research grant under the decision DEC-2014/14/E/HS1/00803.
The author wishes to thank Piotr Bołtuć, Tomasz Korbak, Martin Hughes,
Panu Raatikainen, and Błażej Skrzypulec, as well as the anonymous
referees of this paper for their comments.

NOTES

1.	 Piccinini, Physical Computation: A Mechanistic Account;
Miłkowski, Explaining the Computational Mind.

2.	 Block, “The Mind as the Software of the Brain”; Piccinini, “The
Mind as Neural Software?”

3.	 Newell, “Physical Symbol Systems.”

4.	 Lakoff, Women, Fire, and Dangerous Things; Barrett, “Why Brains
Are Not Computers, Why Behaviorism Is Not Satanism, and
Why Dolphins Are Not Aquatic Apes”; Barrett, Pollet, and Stulp,
“From Computers to Cultivation: Reconceptualizing Evolutionary
Psychology.”

5.	 Searle, “Is the Brain’s Mind a Computer Program?”

6.	 Searle, “Minds, Brains, and Programs.”

7.	 Haugeland, Artificial Intelligence: The Very Idea, 106.

8.	 Preston and Bishop, Views into the Chinese Room: New Essays on
Searle and Artificial Intelligence.

9.	 Harnad, “The Symbol Grounding Problem.”

10. Fresco and Wolf, “The Instructional Information Processing
Account of Digital Computation.”

11.	 Fresco, “Explaining Computation Without Semantics: Keeping
It Simple”; Piccinini, “Computation without Representation”;
Miłkowski, Explaining the Computational Mind.

12. Shagrir, “Brains as Analog-Model Computers.”

13.	 Millikan, Language, Thought, and Other Biological Categories:
New Foundations for Realism; Dretske, “Misrepresentation”;

PAGE 26	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Bickhard, “The Interactivist Model”; Cummins and Roth, “Meaning
and Content in Cognitive Science.”

14. Epstein, “The Empty Brain.”

15. Borges, A Universal History of Infamy.

16. Gallistel and King, Memory and the Computational Brain.

17.	 Gibson, The Ecological Approach to Visual Perception; cf.
Chemero, “Information for Perception and Information
Processing.”

18. MacKay, Information, Mechanism, and Meaning.

19.	 Miłkowski, “Computational Mechanisms and Models of
Computation.”

20. Collier, “Causation Is the Transfer of Information.”

21.	 Chemero, “Information for Perception and Information
Processing,” 584; cf. Marr, Vision. A Computational Investigation
into the Human Representation and Processing of Visual
Information.

22. Chalmers, 	The Conscious Mind: In Search of a Fundamental
Theory.

23. Leibniz, The Monadology.

24. Hameroff, “The Brain Is Both Neurocomputer and Quantum
Computer.”

25.	 Baars, A Cognitive Theory of Consciousness; cf. also Dennett,
Sweet Dreams. Philosophical Obstacles to a Science of
Consciousness.

26. Rosenthal, 	 Consciousness and Mind; cf. Cleeremans,
“Computational Correlates of Consciousness.”

27.	 Tononi, “An Information Integration Theory of Consciousness.”

28. Searle, The Rediscovery of the Mind.

29.	 Zauner and Conrad, “Parallel Computing with DNA: Toward the
Anti-Universal Machine.”

30. Bickhard and Terveen, Foundational Issues in Artificial Intelligence
and Cognitive Science: Impasse and Solution; Wheeler,
Reconstructing the Cognitive World.

31.	 Nagy and Akl, “Computations with Uncertain Time Constraints:
Effects on Parallelism and Universality.”

32. Miłkowski, 	“Computational Mechanisms and Models of
Computation.”

33. Siegelmann, “Analog Computation via Neural Networks.”

34. Piccinini and Bahar, “Neural Computation and the Computational
Theory of Cognition.”

35. Edelman, Bright Air, Brilliant Fire.

36. Rosenblatt, “The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain.”

37.	 Dreyfus, What Computers Still Can’t Do: A Critique of Artificial
Reason.

38. Lucas, “Minds, Machines and Gödel”; Penrose, 	The Emperor’s
New Mind.

39.	 Krajewski, “On Gödel’s Theorem and Mechanism: Inconsistency
or Unsoundness Is Unavoidable in Any Attempt to ‘Out-Gödel’
the Mechanist”; Putnam, “Minds and Machines.”

40. Dreyfus, What Computers Can’t Do: A Critique of Artificial Reason;
Wheeler, Reconstructing the Cognitive World.

41.	 Bar-Hillel, “A Demonstration of the Nonfeasibility of Fully
Automatic High Quality Translation.”

42. Weizenbaum, 	Computer Power and Human Reason: From
Judgment to Calculation.

43. Miłkowski, “Is Computationalism Trivial?”

44. Putnam, Representation and Reality; Searle, The Rediscovery of
the Mind.

45.	 Chalmers, “A Computational Foundation for the Study of
Cognition”; Piccinini, Physical Computation: A Mechanistic
Account; Miłkowski, Explaining the Computational Mind; Shagrir,
“Towards a Modeling View of Computing”; Scheutz, “When
Physical Systems Realize Functions…”; Chrisley, “Why Everything
Doesn’t Realize Every Computation”; Copeland, “What Is
Computation?”

46. McDermott, Mind and Mechanism.

47.	 Copeland, “What Is Computation?”

48. Miłkowski, Explaining the Computational Mind.

49.	 Chalmers, “A Computational Foundation for the Study of
Cognition.”

50. Miłkowski, “Beyond Formal Structure: A Mechanistic Perspective
on Computation and Implementation.”

51. Aranyosi, The Peripheral Mind.

REFERENCES

Aranyosi, István. The Peripheral Mind: Philosophy of Mind and the
Peripheral Nervous System. New York, NY: Oxford University Press,
2013.

Baars, Bernard J. A Cognitive Theory of Consciousness. Cambridge/New
York: Cambridge University Press, 1988.

Bar-Hillel, Yehoshua. “A Demonstration of the Nonfeasibility of Fully
Automatic High Quality Translation.” In Language and Information,
174–79. Reading, MA: Addison-Wesley, 1964.

Barrett, Louise. “Why Brains Are Not Computers, Why Behaviorism Is
Not Satanism, and Why Dolphins Are Not Aquatic Apes.” The Behavior
Analyst, 2015, 1–15. doi:10.1007/s40614-015-0047-0.

Barrett, Louise, Thomas V. Pollet, and Gert Stulp. “From Computers to
Cultivation: Reconceptualizing Evolutionary Psychology.” Frontiers in
Psychology 5 (January 2014). doi:10.3389/fpsyg.2014.00867.

Bickhard, Mark H. “The Interactivist Model.” Synthese 166, no. 3 (2008):
547–91. doi:10.1007/s11229-008-9375-x.

Bickhard, Mark H., and L. Terveen. Foundational Issues in Artificial
Intelligence and Cognitive Science: Impasse and Solution. North-
Holland, 1995.

Block, Ned. “The Mind as the Software of the Brain.” In An Invitation to
Cognitive Science, edited by D. Osherson, L. Gleitman, and S. Kosslyn.
Cambridge, MA: The MIT Press, 1995.

Borges, Jorge Luis. A Universal History of Infamy. Translated by Norman
Thomas di Giovanni. Harmondsworth: Penguin, 1981.

Chalmers, David J. “A Computational Foundation for the Study of
Cognition.” Journal of Cognitive Science, no. 12 (2011): 325–59.

———. The Conscious Mind: In Search of a Fundamental Theory. New
York: Oxford University Press, 1996.

Chemero, Anthony. “Information for Perception and Information
Processing.” Minds and Machines 13 (2003): 577–88.

Chrisley, Ronald L. “Why Everything Doesn’t Realize Every Computation.”
Minds and Machines 4, no. 4 (November 1994): 403–20. doi:10.1007/
BF00974167.

Cleeremans, Axel. “Computational Correlates of Consciousness.”
Progress in Brain Research 150 (2005): 81–98. doi:10.1016/S0079­
6123(05)50007-4.

Collier, John D. “Causation Is the Transfer of Information.” In Causation,
Natural Laws and Explanation, edited by Howard Sankey, 279–331.
Dordrecht: Kluwer, 1999.

Copeland, B. Jack. “What Is Computation?” Synthese 108, no. 3 (1996):
335–59.

Cummins, Robert, and Martin Roth. “Meaning and Content in Cognitive
Science.” In Prospects for Meaning, edited by Richard Schantz, 365–82.
Berlin and New York: de Gruyter, 2012.

Dennett, Daniel C. Sweet Dreams. Philosophical Obstacles to a Science
of Consciousness. Cambridge, MA: The MIT Press, 2005.

Dretske, Fred I. “Misrepresentation.” In Belief: Form, Content, and
Function, edited by Radu Bogdan, 17–37. Oxford: Clarendon Press, 1986.

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 27

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Dreyfus, Hubert. What Computers Can’t Do: A Critique of Artificial
Reason. New York: Harper and Row, Publishers, 1972.

———. What Computers Still Can’t Do: A Critique of Artificial Reason.
Cambridge MA: The MIT Press, 1979.

Edelman, Gerald M. Bright Air, Brilliant Fire: On the Matter of the Mind.
New York, NY: BasicBooks, 1992.

Epstein, Robert. “The Empty Brain.” Aeon, May 18, 2016. https://aeon.
co/essays/your-brain-does-not-process-information-and-it-is-not-a­
computer

Fresco, Nir. “Explaining Computation Without Semantics: Keeping
It Simple.” Minds and Machines 20, no. 2 (June 2010): 165–81.
doi:10.1007/s11023-010-9199-6.

Fresco, Nir, and Marty J. Wolf. “The Instructional Information Processing
Account of Digital Computation.” Synthese 191, no. 7 (September
2013): 1469–92. doi:10.1007/s11229-013-0338-5.

Gallistel, C. R., and Adam Philip King. Memory and the Computational
Brain. Chichester: Wiley-Blackwell, 2010.

Gibson, James J. The Ecological Approach to Visual Perception. Hove:
Psychology Press, 1986.

Hameroff, Stuart R. “The Brain Is Both Neurocomputer and Quantum
Computer.” Cognitive Science 31 (2007): 1035–45.

Harnad, Stevan. “The Symbol Grounding Problem.” Physica D 42 (1990):
335–46.

Haugeland, John. Artificial Intelligence: The Very Idea. Cambridge, MA:
The MIT Press, 1985.

Krajewski, Stanisław. “On Gödel’s Theorem and Mechanism:
Inconsistency or Unsoundness Is Unavoidable in Any Attempt to ‘Out-
Gödel’ the Mechanist.” Fundamenta Informaticae 81, no. 1 (January
2007): 173–81.

Lakoff, George. Women, Fire, and Dangerous Things: What Categories
Reveal about the Mind. Chicago: University of Chicago Press, 1987.

Leibniz, Gottfried Wilhelm. The Monadology. Translated by Robert
Latta. Raleigh, NC; Boulder, CO: Alex Catalogue; NetLibrary, 1991.

Lucas, J. R. “Minds, Machines and Gödel.” Philosophy 9, no. 3 (April
1961): 219–27.

MacKay, Donald MacCrimmon. Information, Mechanism, and Meaning.
Cambridge, MA: The MIT Press, 1969.

Marr, David. Vision. A Computational Investigation into the Human
Representation and Processing of Visual Information. New York: W. H.
Freeman and Company, 1982.

McDermott, Drew V. Mind and Mechanism. Cambridge, MA: The MIT
Press, 2001.

Miłkowski, Marcin. “Beyond Formal Structure: A Mechanistic Perspective
on Computation and Implementation.” Journal of Cognitive Science 12,
no. 4 (2011): 359–79.

———. “Computational Mechanisms and Models of Computation.”
Philosophia Scientae 18, no. 18–3 (2014): 215–28. doi:10.4000/
philosophiascientiae.1019.

———. Explaining the Computational Mind. Cambridge, MA: The MIT
Press, 2013.

———. “Is Computationalism Trivial?” In Computation, Information,
Cognition – The Nexus and the Liminal, edited by Gordana Dodig Crnkovic
and Susan Stuart, 236–46. Newcastle: Cambridge Scholars Press, 2007.
http://marcinmilkowski.pl/downloads/is-computationalism-trivial.pdf

Millikan, Ruth Garrett. Language, Thought, and Other Biological
Categories: New Foundations for Realism. Cambridge, MA: The MIT
Press, 1984.

Nagy, Naya, and Selim Akl. “Computations with Uncertain Time
Constraints: Effects on Parallelism and Universality.” In Unconventional
Computation, edited by Cristian Calude, Jarkko Kari, Ion Petre, and
Grzegorz Rozenberg, 6714:152–63. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642­
21341-0_19

Newell, Allen. “Physical Symbol Systems.” Cognitive Science: A
Multidisciplinary Journal 4, no. 2 (1980): 135–83. doi:10.1207/
s15516709cog0402_2.

Penrose, Roger. The Emperor’s New Mind. London: Oxford University
Press, 1989.

Piccinini, Gualtiero. “Computation without Representation.”
Philosophical Studies 137, no. 2 (September 2008): 205–41. doi:10.1007/
s11098-005-5385-4.

———. Physical Computation: A Mechanistic Account. Oxford: Oxford
University Press, 2015.

———. “The Mind as Neural Software? Understanding Functionalism,
Computationalism, and Computational Functionalism.” Philosophy and
Phenomenological Research 81, no. 2 (September 1, 2010): 269–311.
doi:10.1111/j.1933-1592.2010.00356.x.

Piccinini, Gualtiero, and Sonya Bahar. “Neural Computation and the
Computational Theory of Cognition.” Cognitive Science 37, no. 3 (April
2013): 453–88. doi:10.1111/cogs.12012.

Preston, John, and Mark Bishop. Views into the Chinese Room: New
Essays on Searle and Artificial Intelligence. Oxford; New York: Clarendon
Press, 2002.

Putnam, Hilary. “Minds and Machines.” In Dimensions of Mind, edited
by Sidney Hook. New York University Press, 1960.

———. Representation and Reality. Cambridge, MA: The MIT Press,
1991.

Rosenblatt, F. “The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain.” Psychological Review 65, no. 6
(1958): 386–408. doi:10.1037/h0042519.

Rosenthal, David. Consciousness and Mind. Oxford, New York: Oxford
University Press, 2005.

Scheutz, Matthias. “When Physical Systems Realize Functions….” Minds
and Machines 9, no. 2 (1996): 1–34. doi:10.1023/A:1008364332419.

Searle, John R. “Is the Brain’s Mind a Computer Program?” Scientific
American, no. January (1990): 26–31.

———. “Minds, Brains, and Programs.” Behavioral and Brain Sciences 3,
no. 03 (February 1980): 1–19. doi:10.1017/S0140525X00005756.

———. The Rediscovery of the Mind. Cambridge, MA: The MIT Press,
1992.

Shagrir, Oron. “Brains as Analog-Model Computers.” Studies In History
and Philosophy of Science Part A 41, no. 3 (September 2010): 271–79.
doi:10.1016/j.shpsa.2010.07.007.

———. “Towards a Modeling View of Computing.” In Information and
Computation, edited by Gordana Dodig-Crnkovic and Mark Burgin.
Singapore: World Scientific Publishing, 2010.

Siegelmann, H. “Analog Computation via Neural Networks.”
Theoretical Computer Science 131, no. 2 (September 1994): 331–60.
doi:10.1016/0304-3975(94)90178-3.

Tononi, Giulio. “An Information Integration Theory of Consciousness.”
BMC Neuroscience 5, no. 1 (November 2004). doi:10.1186/1471-2202­
5-42.

Weizenbaum, Joseph. Computer Power and Human Reason: From
Judgment to Calculation. San Francisco: W. H. Freeman, 1976.

Wheeler, Michael. Reconstructing the Cognitive World. Cambridge, MA:
The MIT Press, 2005.

Zauner, Klaus-Peter, and Michael Conrad. “Parallel Computing with
DNA: Toward the Anti-Universal Machine.” In Parallel Problem Solving
from Nature - PPSN IV, edited by Hans-Michael Voigt, Werner Ebeling,
Ingo Rechenberg, and Hans-Paul Schwefel, 1141:696–705. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1996. http://
dx.doi.org/10.1007/3-540-61723-X_1033

PAGE 28 SPRING 2017 | VOLUME 16 | NUMBER 2

http://dx.doi.org/10.1007/3-540-61723-X_1033
http://dx.doi.org/10.1007/3-540-61723-X_1033
https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
http://marcinmilkowski.pl/downloads/is-computationalism-trivial.pdf
http://dx.doi.org/10.1007/978-3-642-21341-0_19
http://dx.doi.org/10.1007/978-3-642-21341-0_19

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

From Biological to Synthetic
Neurorobotics Approaches to
Understanding the Structure Essential to
Consciousness (Part 2)

Jun Tani1

DEPARTMENT OF ELECTRICAL ENGINEERING, KOREAN ADVANCED
INSTITUTE OF SCIENCE AND TECHNOLOGY (KAIST), OKINAWA
INSTITUTE OF SCIENCE AND TECHNOLOGY (OIST),
TANI1216JP@GMAIL.COM

Jeff White
COMPUTATIONAL NEUROSYSTEM LABORATORY, KAIST

ABSTRACT
This paper reviews research in “predictive coding” that
ultimately provides a platform for testing competing
theses about specific dynamics inherent in consciousness
embodied in both biological and artificial systems.

1 INTRODUCTION
We have been left with a big challenge, to articulate
consciousness and also to prove it in an artificial agent
against a biological standard. After introducing Boltuc’s
h-consciousness in the last paper, we briefly reviewed
some salient neurology in order to sketch less of a standard
than a series of targets for artificial consciousness, “most­
consciousness” and “myth-consciousness.” With these
targets on the horizon, we began reviewing the research
program pursued by Jun Tani and colleagues in the isolation
of the formal dynamics essential to either. In this paper,
we describe in detail Tani’s research program, in order to
make the clearest case for artificial consciousness in these
systems. In the next paper, the third in the series, we will
return to Boltuc’s naturalistic non-reductionism in light of
the neurorobotics models introduced (alongside some
others), and evaluate them more completely.

1.1 PREDICTIVE CODING
In this section, we will review a research program into
artificial consciousness that demonstrates the potential for
computational experiments to isolate the formal dynamics
of consciousness including the sense of time. Our focus is
on the capacity for agents like human beings to project and
to act towards possible futures by reflecting on the past.
Studies in biological cognition have set out this capacity in
terms of “predictive coding.”2 With predictive coding, the
results of actions—common “experience”—are integrated
into an agent in terms of “prediction error.”

Prediction error informs the agent about how far from an
intended target a prior action has led it, with the agent’s
implicit aim being the minimization of this error signal. That
said, minimization of error is not absolute. Optimizing for
long-term ends may result in a relative detachment from the
immediate perceptual reality, and conversely overt attention
on immediate rewards may result in mounting error over
the long run. Because predictive coding makes this form
of future-oriented proactive agency based on effortful past
regression possible within a mathematically embodied

agent, it offers a promising formal framework within which
the relationship between the subjective mind and the
objective world may be instantiated in an artificial agent.

Predictive coding is an important development in artificial
consciousness research in two important ways. One, it
provides a direct way to model subjective intention within
the objective world. And two, it provides an equally direct
way to project back the reality of the objective world as
perceived by and as consequent on the actions of embodied
and embedded cognitive agents.3 The result is a fully
accessible dynamical mirror into the operations essential
to consciousness in more complex systems, a promise that
merely biological approaches to the study of consciousness
cannot match. Tani was the first to successfully instantiate
predictive coding in artificial agents, e.g., robots, in a
deterministic domain, i.e., where intended outcomes are
stable attractors.4 Alternatively, Friston explored Bayesian
predictive coding in a probabilistic domain and generalized
it under the name of the “free energy minimization
principle” (FEMP).5

In the next section, we will briefly review a dynamic neural
network model, the recurrent neural network (RNN),6

because it is a basic component of contemporary intelligent
systems, and central to Tani’s deterministic dynamics which
is the subject of the subsequent section. This review should
serve as a primer on the dynamic system’s approach to
embodied cognition. After reviewing Tani and colleagues’
formulation using RNN models, we will examine Bayesian
predictive coding as formulated by Friston and colleagues.

2. PREDICTIVE CODING IN DYNAMIC NEURAL
NETWORK MODELS

2.1 THE RNN MODEL
The essential characteristic of the RNN7 is that it can generate
temporal sequence patterns as targets embedded in its
internal dynamic structure. It “learns” to imitate exemplar
sequence patterns, and when properly organized even
to creatively compose its own8 by extracting underlying
regularity. An example of an RNN is shown in Figure 1.
This figure shows an RNN used in the predictive learning
scheme to be described later (section 2.2).

Figure 1. RNN model of
predictive learning with
teaching target. The
dotted line represents a
closed-loop copy from the
output to the input.

An RNN consists of a set of neural units including input
units representing the input state, internal (context) units
representing the internal state and output units representing
the output state. These are variously interconnected by
synaptic connectivity weights. These connections can
be unidirectional, bidirectional, or recurrent. The time

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 29

mailto:tani1216jp%40gmail.com?subject=

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Fig. 1 RNN model of predictive learning with teaching target. The dotted line
represents a closed-loop copy from the output to the input.

An RNN consists of a set of neural units including input units representing the
input state, internal (context) units representing the internal state and output
units representing the output state. These are variously interconnected by
synaptic connectivity weights. These connections can be unidirectional,
bidirectional, or recurrent. The time development of each neural unit output
activation in discrete time can be written as:

𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡+1𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖 +𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (1-a)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖= f (𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) (1-b)

Where is the internal state of the ith neural unit at time step t, 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is its output
activation, 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is synaptic connection weight from the jth unit to the ith unit,

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is the bias of the ith unit. f() is a sigmoid function. The time development of

the neural activation of the whole network can generate different types of
dynamic attractor patterns depending on the synaptic weights adopted in the
network. Fig.2 shows typical attractors including a fixed point attractor, a limit
cycle attractor, a limit torus, and chaotic attractor.

Fig. 1 RNN model of predictive learning with teaching target. The dotted line
represents a closed-loop copy from the output to the input.

An RNN consists of a set of neural units including input units representing the
input state, internal (context) units representing the internal state and output
units representing the output state. These are variously interconnected by
synaptic connectivity weights. These connections can be unidirectional,
bidirectional, or recurrent. The time development of each neural unit output
activation in discrete time can be written as:

𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡+1𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖 +𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (1-a)

𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖= f (𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) (1-b)

Where 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is the internal state of the ith neural unit at time step t, is its output
activation, 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is synaptic connection weight from the jth unit to the ith unit,

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is the bias of the ith unit. f() is a sigmoid function. The time development of

the neural activation of the whole network can generate different types of
dynamic attractor patterns depending on the synaptic weights adopted in the
network. Fig.2 shows typical attractors including a fixed point attractor, a limit
cycle attractor, a limit torus, and chaotic attractor.

Fig. 1 RNN model of predictive learning with teaching target. The dotted line
represents a closed-loop copy from the output to the input.

An RNN consists of a set of neural units including input units representing the
input state, internal (context) units representing the internal state and output
units representing the output state. These are variously interconnected by
synaptic connectivity weights. These connections can be unidirectional,
bidirectional, or recurrent. The time development of each neural unit output
activation in discrete time can be written as:

Where 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is the internal state of the ith neural unit at time step t, 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is its output
activation, 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is synaptic connection weight from the jth unit to the ith unit,

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is the bias of the ith unit. f() is a sigmoid function. The time development of

the neural activation of the whole network can generate different types of
dynamic attractor patterns depending on the synaptic weights adopted in the
network. Fig.2 shows typical attractors including a fixed point attractor, a limit
cycle attractor, a limit torus, and chaotic attractor.

development of each neural unit output activation in
discrete time can be written as:

𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡+1= ∑𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 +𝑏𝑏𝑏𝑏 (1-a)
𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡= f (𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡) (1-b)

𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡Where is the internal state of the ith neural unit at time
𝑖𝑖𝑖𝑖step t, 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 is its output activation, wij is synaptic connection

weight from the jth unit to the ith unit, bi is the bias of
the ith unit. f() is a sigmoid function. Over time, the neural
activation of the whole network can generate different
types of dynamic attractor patterns depending on the
synaptic weights adopted in the network. Figure 2 shows
typical attractors including a fixed point attractor, a limit
cycle attractor, a limit torus, and chaotic attractor.

Figure 2. Four different

types of attractors. (a) fixed

point attractor, (b) limit

cycle attractor, (c) limit

torus characterized by two

periodicities P1 and P2 which

form an irrational fraction,

and (d) chaotic attractor.

The simplest attractor is a fixed point attractor in which all
dynamic states converge to a point (Fig. 2 (a)). The second
one is a limit cycle attractor (Fig. 2 (b)) in which the trajectory
converges to a cyclic oscillation pattern with constant
periodicity. The third one is a limit torus that appears when
there is more than one frequency involved in the periodic
trajectory of the system and two of these frequencies form
an irrational fraction. In this case, the trajectory is no longer
closed and it exhibits quasi-periodicity (Fig. 2(c)). The fourth
one is a chaotic attractor in which the trajectory exhibits
infinite periodicity and thereby forms fractal structures
(Fig. 2 (d)).

These different types of attractor dynamics can account
for the autonomous generation of different types of agent
action patterns. For example, fixed point attractor dynamics
account for a hand reaching movement, from an arbitrary
hand posture to its end point, while limit cycle attractor
dynamics account for a rhythmical hand waiving pattern
with a certain periodicity, and chaotic attractor dynamics
account for non-periodic, seemingly random movement.

RNNs can learn to generate such attractor dynamics through
predictive learning. Each specific attractor pattern can be
developed in an RNN by optimizing the synaptic weights
and biases through a process of error minimization. In
predictive learning, the network receives current time step
perceptual input and outputs a prediction of the next time
step (see Fig.1). Error is computed between the predicted
output and the target (e.g., teaching exemplar), and
synaptic weights and biases are updated in the direction of
minimizing this error using error back-propagation through
time (BPTT).9 After learning, the RNNs internal dynamics
converge on a stable pattern, and the learned attractor can
be generated from a given initial state through “closed­
loop” (off-line) operation in which the predicted output of

the current time step is copied to the input of the next time
step in a closed-loop (see the dotted line in Fig.1). This
closed-loop operation corresponds to mental simulation,
as will be described later sections.

An RNN can be regarded as a dynamical system with
adaptive parameters including synaptic weights and biases
which can be described in the following generalized form

xt+1 = F(xt, w) (2a)

yt+1 = G(xt+1, W) (2b)

In these expressions, xt and yt represent the current
internal state and the output state, respectively, and w
stands for the adaptive parameter. The internal state xt is
important, because it represents the current context or
situation for the system as a whole and develops by means
of an iterative learning process. The system can exhibit
contextual information processing through which the
output of the system reflects not merely the immediately
perceived inputs but the context accumulated over past
experiences of inputs. Formally speaking, this system
embodies temporality, entrained according to patterns that
extend beyond the immediate context and, as we shall see,
reaches—even creatively, and inferentially—toward goal
states.

The conventional RNN model can learn to generate only a
single attractor pattern except special cases of developing
multiple attractors. So, a natural question arises: How can
the model be advanced such that it can learn to generate
multiple attractor patterns, each specific to a different
context? This question motivated an investigation into the
possibility of applying the framework of predictive coding
in the advancement of RNN models, as described next.

2.2 MIXRNNS AND RNNPB
Tani and colleagues investigated how a network model
can retrieve and generate a particular sequential pattern
from long-term memory of multiple patterns. Two versions
of RNN models resulted, namely a mixture of RNN experts
(MixRNNs)10 and a recurrent neural network with parametric
bias (RNNPB).11 MixRNNs use a local representation scheme,
and RNNPBs use a distributed representation scheme, in
order to learn to generate and to recognize sequences
of primitive action patterns. Moreover, these movement
patterns are temporal patterns requiring active self-
entrainment through online information by another’s live
and more-or-less similarly embodied example, recalling the
mechanism of “mirror neurons.”12 In this section, we look
more closely at how the MixRNN and the RNNPB capture
aspects of consciousness typically associated with more
complex biological systems.

MixRNNs13 consist of sets of local RNNs internally associated
through gates where the global output of the whole
network model is computed as the weighted sum of the
gate opening ratio for all local RNN outputs (see Figure 3).

During learning, local RNNs compete to predict the next
perceptual state as the gate opens most for the local RNN
with the least prediction error. Because the learning rate of

PAGE 30 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Figure 3. Description of MixRNNs. (a) Generation mode (b)
recognition mode, and (c) segmentation of perceptual flow
into a sequence of chunked sub-patterns by inferencing gate
openings.

each RNN is proportional to the gate opening ratio, the
more that the gate of a particular RNN opens, the more this
local RNN is able to learn the current perceptual sequence
pattern. The goal of learning is to obtain optimal synaptic
weights for all modular RNNs as well as optimal openings of
the all gates at each time step, and by “optimal” we mean
those which minimize the reconstruction error between the
global output and the target output.14 Through a competitive
learning process, i.e., error regression training with BPTT
for the optimal gate opening sequence between RNNs, as
well as for optimal synaptic weights in
all local RNNs, each local RNN becomes
an expert for a particular perceptual
sequence pattern. Intuitively then,
MixRNNs can learn a set of frequently
apparent primitive patterns with each
consolidated in a corresponding local
RNN simply through the iterative and
collective experience of those patterns.

After learning, a MixRNN model
can generate a particular intended
perceptual sequence by opening the
gate of the corresponding RNN expert
(Fig. 3(a)). In this way, current gate
openings represent the current top-
down intention designating the pattern
to be generated. Additionally, MixRNNs
can recognize a given perceptual
sequence pattern through competition
between local RNNs by reconstructing
the target pattern with the least error by
means of the error regression scheme
optimizing the gate openings (Fig. 3
(b), with synaptic weights fixed in this
case). When error is minimal, a gate
associated with a particular local RNN
opens in a winner-take-all manner, and the target pattern
is recognized as belonging to this expert RNN. In other
words, the target pattern of the current perception can be
recognized by means of reconstructing it in a particular
local RNN with minimum error whereby the current gate
opening states represent the inferred intention.

When the currently perceived sequential pattern changes,
gate opening is shifted toward minimizing prediction error
arising at this moment. An important point here is that the
continuous perceptual flow is segmented into chunks by
means of gate openings during these moments. Tani and
Nolfi argue that this suddenly required effort for minimizing
the error by inferring appropriate gate openings should
accompany momentary consciousness.15 Next, we look at
a further advance on RNNs in this direction, the recurrent
neural network with parametric bias, or RNNPB.

The RNNPB16 is a single RNN model employing parametric
bias (PB) units (see Figure 4).

PB represents the current intention as it projects a particular
perceptual sequential pattern onto the external world,
analogous to the gate dynamics in MixRNNs. PB does this
job by playing the role of bifurcation parameter modulating
the dynamical structure of the RNN.

In simple terms, an RNNPB learns to predict or generate
a set of perceptual sequence patterns associated with
corresponding PB vector values. During learning, the optimal
synaptic weights for all different sequence patterns as well
as the optimal PB vector value for each sequence pattern
can be obtained. After learning, an RNNPB can generate a
learned perceptual sequence pattern by adopting the PB
with the corresponding vector value (Fig. 4(a)). It can also
recognize a perceptual sequence pattern given as a target
by inferring the optimal PB vector by way of which the

target sequence can be reconstructed
and output with the minimum error
(Fig. 4(b)). Fig. 4(c) shows how the
continuous perceptual stream can be
segmented into a sequence of prior-
learned patterns in terms of attractor
dynamics by tracking modulations in PB
vector bifurcation parameters at each
time step.

In the end, switching between chunks
in the RNNPB is analogous to the
segmentation mechanism employed
in MixRNNs which use gates between
local RNNs to recruit the appropriate
expert or combination of experts given
immediate perceptual reality. One
limitation common to both is that each
consists of a single level. But, when
they are organized into a hierarchy,
they can exhibit higher-order cognitive
competencies such as creative
compositionality.

Such an extension is the subject of the
next section.

2.3 FUNCTIONAL HIERARCHY IN THE MTRNN
Both MixRNNs and the RNNPB have been developed
into multiple-level architectures.17 The basic idea is that
higher levels attempt to control lower levels by projecting
control parameters (such as gate openings or PB vector
modulations) onto lower levels based on current higher

Figure 4. Description of RNNPB. (a)
Generation mode, (b) recognition mode,
and (c) segmentation of perceptual flow
by PB vector into chunked patterns.

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 31

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Fig. 5 MTRNN model. (a) MTRNN architecture consisting of 3 levels, and (b) its
top-down compositional generation of different intended actions.

The MTRNN shown in Fig. 5(a) consists of 3 subnetworks (slow, intermediate,
fast dynamics networks; note that the numbers of levels can vary depending on
application) each consisting of leaky integrator neural units that are assigned
different time constants. The activation dynamics of a leaky integrator neuron
can be described as a differential equation:

where 𝜏𝜏𝜏𝜏 represents the time constant of the neuron. When 𝜏𝜏𝜏𝜏 is set with a larger
value, the time development of the neural activation becomes slower. With a
smaller value, it becomes faster. Eq.3 is integrated over time using the
difference method. The fast dynamics network in the lower level consists of two
modular RNNs, one for predicting the proprioceptive state in the next step from

order intention. And in turn, during normal operation the
prediction error generated against the perceptual reality
in the lower level is back-propagated to the higher level,
where the control parameters for the lower level as well
as the intention state in the higher level is adjusted in the
direction of minimizing the error, i.e., by conforming to that
state which would have resulted in least error.18

Tani and Nolfi demonstrate that hierarchically organized
MixRNNs can learn to generate and recognize a set of
sequential combinations of movement primitives in a
simulated indoor robot navigation space.19 The analysis
showed that a set of chunks related to movement primitives
such as turning to the right/left at a corner, going straight
along a corridor, and passing through a T-branch developed
in local lower level RNNs, while different sequential
combinations of these primitives developed in the higher-
level RNNs, e.g., traveling through different rooms. When
the simulated robot, for example, turns left at a corner
from a straight corridor in a particular room, the continuous
perceptual flow of its range sensor is segmented into the
corresponding two movement primitives in the lower level.
On the other hand, when it travels from a familiar room to
another, segmentation related to the room transition can
take a place in the higher level.

Tani achieved similar results in a real robotic arm with a
similarly hierarchically organized RNNPB, which was able
to deal with primitives and their sequential combinations
during a simple object manipulation task. It is important
to note that what begins as raw experience of the
continuous perceptual flow becomes a manipulable object
for the higher level after segmentation into chunks.
Thus, the hierarchical structure adopted by Tani enables
the objectification of perceptual experience, as will be
described in greater detail later.20

Building on this work in hierarchically organized RNNs,
Yamashita and Tani21 demonstrated the learning of
compositional action generation by a humanoid robot
employing a novel multiple timescale RNN (MTRNN)
(Figure 5). This MTRNN model uses multiple timescale
constraints, with higher-level activity constrained by

Figure 5. MTRNN model. (a) MTRNN architecture consisting
of 3 levels, and (b) its top-down compositional generation
of different intended actions.

slower timescale dynamics, and with lower level activity
proceeding according to faster timescale dynamics. The
basic idea is that higher-level information processing
becomes more abstract as constrained by its slower
dynamics, whereas lower level information processing
is more sensitive to immediate details as constrained by
faster dynamics.

The MTRNN shown in Fig. 5(a) consists of 3 subnetworks
(slow, intermediate, fast dynamics networks; note that the
numbers of levels can vary depending on application) each
consisting of leaky integrator neural units that are assigned
different time constants. The activation dynamics of a
leaky integrator neuron can be described as a differential
equation:

̇ 𝚤𝚤𝚤𝚤 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝜏𝜏𝜏𝜏𝑢𝑢𝑢𝑢 = −𝑢𝑢𝑢𝑢 + ∑𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (3a)

⁄𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 1 (1 + 𝑒𝑒𝑒𝑒 −𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖) (3b)

where τ represents the time constant of the neuron. When
τ is set with a larger value, the time development of the
neural activation becomes slower. With a smaller value,
it becomes faster. Eq.3 is integrated over time using the
difference method. The fast dynamics network in the lower
level consists of two modular RNNs, one for predicting the
proprioceptive state in the next step from current joint angle
information, and the other for predicting low dimensional
visual features in the next time step from current visual
information.

During these humanoid robot learning experiments, the
MTRNN was trained to generate a set of different visuo­
proprioceptive trajectories corresponding to supervised
targets by optimizing connectivity weights as well as
the intention state corresponding to each trajectory. The
intention state here is analogous to the PB value in the
RNNPB, and corresponds with the initial states of neural
units in the slow dynamics network of the MTRNN (see Fig.
5(a)). When learning begins, for each training sequence the
initial state of the intention units is set to a small random
value. The forward top-down dynamics initiated with this
temporarily set initial state generates a predictive sequence.
The error generated between the training sequence and
the output sequence is back-propagated along the bottom-
up path through the subnetworks with fast and moderate
dynamics to the subnetwork with slow dynamics. This
back-propagation is iterated backward through time steps
via recurrent connections, whereby the connection weights
within and between these subnetworks are modified in the
direction of minimizing the error signal (at each time step).
The error signal is also back-propagated through time steps
to the initial state of the intention units, where these initial
state values are modified.

Here, we see that learning proceeds through dense
interactions between the top-down regeneration of training
sequences and the bottom-up regression through these
sequences by way of error signals, just as in the RNNPB.
And as a result of this interaction, the robot learns a set of
behavior primitive patterns such as reaching for an object,
lifting the object up and down, or moving it left and right.
These develop as distributed activation patterns in fast
and intermediate dynamics networks while various control
sequences for manipulating these primitive constructs

PAGE 32 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

represent the estimated accuracy of a prediction, as a form of second-order
prediction.56

Now, the exact formula for representing this idea is derived from the principle of
free energy maximization (Friston, 2005). Free energy can be computed by
addition of Gibbs energy part G and Entropy part E as:

F = G + E (4-a)
Then, F can be written in the following form.

Where 𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧) represents t e pr or str on o t ntent on state, 𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃൫𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧൯
represents joint probability distribution of observation x and the intention state Z
parameterized by parameterθ. Then, free energy F can be transformed as:

F = න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃(𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 − න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋,𝑍𝑍𝑍𝑍;𝜃𝜃𝜃𝜃)]− 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧)]
= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋,𝑍𝑍𝑍𝑍;𝜃𝜃𝜃𝜃) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑍𝑍𝑍𝑍|𝑋𝑋𝑋𝑋;𝜃𝜃𝜃𝜃) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑍𝑍𝑍𝑍|𝑋𝑋𝑋𝑋;𝜃𝜃𝜃𝜃) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧)]
= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋;𝜃𝜃𝜃𝜃)]− 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾[𝑙𝑙𝑙𝑙(𝑍𝑍𝑍𝑍)||𝑃𝑃𝑃𝑃(𝑍𝑍𝑍𝑍|𝑋𝑋𝑋𝑋;𝜃𝜃𝜃𝜃)] (4-b)

5 It is important here to bear in mind that these are systems enabling agency,
and so an action that ends very far from a target is much worse than one which
ends close enough. It is not as innocuous as simply getting something wrong. If
variance is high, then a prediction which hits its target is extremely accurate.
Such that in the real world it may not be believed, e.g. “too good to be true.”
However, when variance is high, it also means that average values do not
effectively inform action. Acting on the basis of an average will always in the long
run result in error proportional to variance. Once this is understood, then an
agent may apply estimated variance in the prediction of optimal next actions, as
this value may inform the agent what to expect given prior instances, reducing
error over the long run.
6 This formal model recalls Plato’s concern with the science of science that is
ultimately knowledge of good and bad, a second-order understanding that for
example directs sight but never sees a thing, c.f. Charmides, as set out in the third
paper.

represent the estimated accuracy of a prediction, as a form of second-order
prediction.56

Now, the exact formula for representing this idea is derived from the principle of
free energy maximization (Friston, 2005). Free energy can be computed by
addition of Gibbs energy part G and Entropy part E as:

F = G + E (4-a)
Then, F can be written in the following form.

F = න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃(𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 − න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

Where 𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧) represents the prior distribution of the intention state, 𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃൫𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧൯
represents joint probability distribution of observation x and the intention state Z
parameterized by parameterθ. Then, free energy F can be transformed as:

5 It is important here to bear in mind that these are systems enabling agency,
and so an action that ends very far from a target is much worse than one which
ends close enough. It is not as innocuous as simply getting something wrong. If
variance is high, then a prediction which hits its target is extremely accurate.
Such that in the real world it may not be believed, e.g. “too good to be true.”
However, when variance is high, it also means that average values do not
effectively inform action. Acting on the basis of an average will always in the long
run result in error proportional to variance. Once this is understood, then an
agent may apply estimated variance in the prediction of optimal next actions, as
this value may inform the agent what to expect given prior instances, reducing
error over the long run.
6 This formal model recalls Plato’s concern with the science of science that is
ultimately knowledge of good and bad, a second-order understanding that for
example directs sight but never sees a thing, c.f. Charmides, as set out in the third
paper.

The last form obtained in (4-b) is equal to the lower bound, L which is well known
in machine learning field. The first term represents the likelihood of
reconstructing X by parameterθand the second term represents minus KL
divergence between the prior probability distribution of the intention state and
the posterior distribution after observation of X with parameter θ. It can be seen
that maximizing the free energy is equal to maximization of the lower bound.
This lower bound L can be rewritten as:

where 𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠,𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 is the ith dimension of the prediction output at time step t in the sth
sequence, 𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠,𝑡𝑡𝑡𝑡,𝚤𝚤𝚤𝚤തതതതതത is its teaching target, and 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 is its estimated variance, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 is
ith dimension of the intention state for sth sequence, and 𝛿𝛿𝛿𝛿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is its predefined
deviation.

The generation, recognition and learning of complex action sequences are
possible through the maximization of free energy in the probabilistic domain just
as the minimization of error performs similarly in the deterministic domain.
According to the first term in the right-hand side of equation (4-c), the likelihood
part can be maximized if variance is taken to be large even if the prediction
square error is large. In this case, the agent has no reliable guide to anticipated
future situations, so it simply relaxes any expectation of oncoming events. This
would correspond with a reactive posture in a biological consciousness, for
example. On the other hand, the likelihood might be small even though the
prediction square error is small if the estimated variance is smaller than reality.
In this case, an agent acts from intentions as if ends are predetermined, e.g. as if
he has plotted all the necessary dimensions and their internal deviations so that
action is facilitated and success presumed guaranteed. But, the agent ends up
wrong about this, and suffers the correction. In human experience, having failed
to adequately account for the world while having proceeded with laid plans in
confidence is called “surprise”. Similarly, according to Friston’s free energy
maximization principle (FEMP), the prediction square error divided by estimated
variance represents the degree of surprise with interesting implications for
inquiry into consciousness. For one thing, the measure of surprise may correlate
with a measure of consciousness as the top-down accommodation of perceptual
inputs at each time step.

develop in the slow dynamics network (according to its
initial sensitivity characteristics, see Fig. 5 (b)).

What explains the success of these models in performing
such complex cognitive tasks? In the MTRNN, neural
activity output from the higher level plays the role of
bifurcation parameter for the lower level, like the PB vector
in the RNNPB. Building from this work, Yamashita and
Tani concluded that the decomposition of complex visuo­
proprioceptive sequences into sequences of reusable
primitives is achieved within this functional hierarchy due
to subnetwork timescale differences.22 Further experiments
by Nishimoto and Tani and Arie and colleagues showed
that MTRNNs can not only generate actual movements, but
also diverse mental simulations of various intention states
by performing closed-loop look ahead (so-called “off­
line”) prediction.23 So, the question now becomes how to
understand such functional hierarchies.

The development of functional hierarchies is captured
in a well-known concept central to the study of complex
adaptive systems, “downward causation,” the causal
relationship from global to local parts of a system.24

A functional hierarchy develops by means of upward
causation in terms of collective neural activity, both in
forward activation dynamics and in error back-propagation.
In the other direction, this development is subject to
downward causation in terms of timescale difference,
network topology, and environmental interaction. Note
that these are strictly deterministic features of the system.
Target conditions are determined. Current states are
determined, and thereby optimal sequences of action
are inferred. Next, we will look at an effort to articulate
these temporal dynamics nondeterministically, in Friston’s
Bayesian predictive coding scheme formulated according
to the free energy minimization principle.

3. THE FREE ENERGY MINIMIZATION PRINCIPLE
From the subjective perspective of an agent in the world,
phenomena may be better described probabilistically than
deterministically. Where upcoming anticipated optimal
conditions are not pre-determined or perhaps even pre­
determinable, the aforementioned models by Tani and
colleagues can be extended into the probabilistic domain,
as Friston has done.25 Friston’s main idea is to predict the
next time step’s perceptual states in terms both of their
averages and their variances (or estimated accuracy). The
average is a value arrived at according to prior instances,
and actions undertaken on the basis of averages succeed
best when deviations from the average are minimal.
Variance, on the other hand, is a measure of the amount
of difference between instances, and so can represent the
accuracy of a prediction. Specifically, it can represent the
estimated accuracy of a prediction, as a form of second-
order prediction.26

Now, the exact formula for representing this idea is derived
from the principle of free energy minimization.27 Negative
free energy F can be computed by the addition of Gibbs
energy G and Entropy E:

F = G + E (4-a)

Then, F can be written in the following form.

F = න 𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃 (𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 − න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

h i di ibuti f he i i

Where q(z) represents the prior distribution of the intention
state, Pθ (x, z) represents joing probability distribution of
observation x and the intention state Z parameterized
by parameter θ. Then, negative free energy F can be
transformed as:

F = න 𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝜃𝜃𝜃𝜃 (𝑥𝑥𝑥𝑥, 𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧 − න𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧

= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞 [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑋𝑋𝑋𝑋, 𝑍𝑍𝑍𝑍 ; 𝜃𝜃𝜃𝜃)] − 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞 [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧)]
= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞 [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑋𝑋𝑋𝑋, 𝑍𝑍𝑍𝑍 ; 𝜃𝜃𝜃𝜃) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑍𝑍𝑍𝑍 |𝑋𝑋𝑋𝑋; 𝜃𝜃𝜃𝜃) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑍𝑍𝑍𝑍 |𝑋𝑋𝑋𝑋; 𝜃𝜃𝜃𝜃) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧)]
= 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞 [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃 (𝑋𝑋𝑋𝑋; 𝜃𝜃𝜃𝜃)] − 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾[𝑙𝑙𝑙𝑙(𝑍𝑍𝑍𝑍)||𝑃𝑃𝑃𝑃 (𝑍𝑍𝑍𝑍 |𝑋𝑋𝑋𝑋; 𝜃𝜃𝜃𝜃)] (4-b)

The last form obtained in (4-b) is equal to the lower bound,
L which is well known in the machine learning field. The
first term represents the likelihood of reconstructing X
by parameter θ and the second term represents minus
KL divergence between the prior probability distribution
of the intention state and the posterior distribution
after observation of X with parameter θ. It can be seen
that maximizing the negative free energy is equal to
maximization of the lower bound. This lower bound L can
be rewritten as:

) + ൫𝑜𝑜𝑜𝑜തത𝑠𝑠𝑠𝑠ത,ത𝑡𝑡𝑡𝑡ത,𝚤𝚤𝚤𝚤ത−𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠 ,𝑡𝑡𝑡𝑡 ,𝑖𝑖𝑖𝑖൯
2

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) + ൫𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 ,𝑖𝑖𝑖𝑖൯
2

L = ∑ ∑ ∑ 𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 −1/2(ln(𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖) 𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 2)+ ∑ ∑ −1/2(ln(𝑣𝑣𝑣𝑣 (4-c)
𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠 ,𝑖𝑖𝑖𝑖 𝛿𝛿𝛿𝛿 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

where o is the ith dimension of the prediction output ats,t,i
time step t in the sth sequence, o is its teaching target,s,t,i
and vsi is its estimated variance, ISsi is the ith dimension
of the intention state for the sth sequence, and δIS is its
predefined deviation.

The generation, recognition, and learning of complex
action sequences are possible through the maximization of
negative free energy in the probabilistic domain just as the
minimization of error performs similarly in the deterministic
domain. According to the first term on the right-hand side
of equation (4-c), the likelihood part can be maximized if
variance is taken to be large even if the prediction square
error is large. In this case, the agent has no reliable guide
to anticipated future situations, so it simply relaxes any
expectation of oncoming events. This would correspond
with a reactive posture in a biological consciousness, for
example. On the other hand, the likelihood might be small
even though the prediction square error is small if the
estimated variance is smaller than reality. In this case, an
agent acts from intentions as if ends are predetermined,
e.g., as if he has plotted all the necessary dimensions
and their internal deviations so that action is facilitated
and success presumed guaranteed. But, the agent ends
up wrong about this, and suffers the correction. In human
experience, having failed to adequately account for the
world while having proceeded with laid plans in confidence
is called “surprise.” Similarly, according to Friston’s free
energy minimization principle (FEMP), the prediction
square error divided by estimated variance represents the
degree of surprise with interesting implications for inquiry
into consciousness. For one thing, the measure of surprise
may correlate with a measure of consciousness as the top-
down accommodation of perceptual inputs at each time
step.

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 33

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

perceptual sequence. The likelihood part exists to minimize the square error
divided by estimated variance at each step. This means that the prediction error
at a particular time step is pressured to be minimized more strongly when its
estimated variance is smaller. Otherwise, the pressure to minimize prediction
error is less.

Another development is that the intention state 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 in the part of KL divergence
between the prior probability distribution of the intention state and the posterior
distribution in Eq. (4-c) is now represented by the initial states of context units in
all levels. The KL divergence part in Eq. (4-c) puts specific probabilistic
distribution constraints on optimal initial states for all sequences with the
parameter 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2 . If is set with a large value, the distribution of initial states
becomes wide. Ot wise, it becomes tight. By maximizing the free energy
during the learning process, optimal connectivity weights common to all teaching
sequences, probability distribution of the initial state for each teaching target
sequence (recognition density in (Friston, 2010)), and the estimates of
time-dependent variance for each sequence are obtained.

Fig. 6 (a) shows the architecture of the S-MTRNN. The difference from the
original MTRNN is that the S-MTRNN contains output units for predicting
variances for all sensory dimensions at each time step.

perceptual sequence. The likelihood part exists to minimize the square error
divided by estimated variance at each step. This means that the prediction error
at a particular time step is pressured to be minimized more strongly when its
estimated variance is smaller. Otherwise, the pressure to minimize prediction
error is less.

Another development is that the intention state 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 in the part of KL divergence
between the prior probability distribution of the intention state and the posterior
distribution in Eq. (4-c) is now represented by the initial states of context units in
all levels. The KL divergence part in Eq. (4-c) puts specific probabilistic
distribution constraints on optimal initial states for all sequences with the
parameter 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2 . If is set with a large value, the distribution of initial states
becomes wide. Ot wise, it becomes tight. By maximizing the free energy
during the learning process, optimal connectivity weights common to all teaching
sequences, probability distribution of the initial state for each teaching target
sequence (recognition density in (Friston, 2010)), and the estimates of
time-dependent variance for each sequence are obtained.

Fig. 6 (a) shows the architecture of the S-MTRNN. The difference from the
original MTRNN is that the S-MTRNN contains output units for predicting
variances for all sensory dimensions at each time step.

According to the second term on the right-hand side of Eq.
(4-c), the distance from the prior to the posterior can be
minimized when the intention state of each sequence is
distributed by following the Gaussian distribution with the
predefined deviation δIS. The recognition of the intention
in FEMP is to infer the optimal probabilistic distribution of
the intention state for a given target sequence, maximizing
negative free energy rather than infer a single optimal
value minimizing the prediction error as in the RNNPB.
Instantiating such a process in a model dynamic system is
subject of the next section.

3.1 THE STOCHASTIC MTRNN MODEL
Because the original FEMP by Friston28 was not implemented
in any trainable neural network models, it was not clear how
maximizing negative free energy in Eq.(4-a) might lead to
successful learning of internal predictive models extracted
from perceptual sequence data experienced in reality.
For this reason, Murata and colleagues proposed a novel
dynamic neural network, referred to as the stochastic-MTRNN
(S-MTRNN) model.29 This model incorporates Friston’s (2010)
FEMP into the deterministic learning model described in
the last section, the MTRNN. The S- extends the original as
it earns to predict subsequent inputs taking into account
not only their means but also their “variances,” or range of
anticipated values. This means that if some segments of
input sequences are more variable than others, then the
time-dependent variances over these periods become larger.
On the other hand, if some parts are less fluctuated, their
variances are smaller. In effect, then, the S-MTRNN predicts
the predictability of its own prediction for each dimension
of the input sequences in a time-dependent manner. When
variances are estimated as zero, then the S-MTRNN becomes
a deterministic dynamic system like the original MTRNN,
i.e., it anticipates zero variance. Therefore, it can be said
that—depending on context—S-MTRNNs can develop either
deterministic or stochastic dynamics, at which point arises
the notion of probability and so some valuation of possible
future states accordingly.

The model operates by means of maximizing the negative
free energy described in Eq. (4) in all phases of learning,
recognizing, and generating perceptual sequence patterns.
An important development in the current model is that vs,i
as estimated variance in the likelihood part of Eq. (4-c) is
changed to a time variable valuable v because its estimates,t,i
can change at each time step of a perceptual sequence. The
likelihood part exists to minimize the square error divided
by estimated variance at each step. This means that the
prediction error at a particular time step is pressured to
be minimized more strongly when its estimated variance
is smaller. Otherwise, the pressure to minimize prediction
error is less.

Another development is that the intention state ISs,i in the part
of KL divergence between the prior probability distribution
of the intention state and the posterior distribution in Eq.
(4-c) is now represented by the initial states of context units
in all levels. The KL divergence part of Eq. (4-c) puts specific
probabilistic distribution constraints on optimal initial states
for all sequences with the parameter 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼2𝐼𝐼𝐼𝐼 . If 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼2𝐼𝐼𝐼𝐼 is set with

herher a large value, the distribution of initial states becomes
wide. Otherwise, it becomes tight. By maximizing the

negative free energy during the learning process, optimal
connectivity weights for all teaching sequences, the
probability distribution of the initial state for each teaching
target sequence,30 and the estimates of time-dependent
variance for each sequence are obtained.

Figure 6 (a) shows the architecture of the S-MTRNN. The
difference from the original MTRNN is that the S-MTRNN
contains output units for predicting variances for all sensory
dimensions at each time step.

Figure 6. S-MTRNN model and the robotic experiment with the
model. (a) The S-MTRNN contains additional output units for
predicting variances for all sensory dimensions at each time step.
(b) The “self-robot” learns to generate cooperative behaviors with
the “other-robot.”31

The next section reviews how the S-MTRNN performs in a
particular robot task in the probabilistic domain.

3.2 LEARNING TO COOPERATE WITH OTHERS
A robotic experiment was conducted utilizing the S-MTRNN
described in the preceding section (see Fig. 6).32 The
objective of this robot experiment was to examine how one
robot can generate “cooperative” behavior by adapting
to another robot’s behavior, even though its predictions
occasionally fail. The experiment used two “NAO” humanoid
robots. One NAO robot, the “self-robot,” attempted to
generate cooperative behaviors with the “other” NAO
robot. The other-robot’s behavior was pre-programmed.
The self-robot was controlled by the S-MTRNN model.

During the experiment, the other-robot repeated movement
patterns and the self-robot was tutored to generate
corresponding “cooperative” behaviors as it perceived
the other’s object movements. In order to do this, the self-
robot needed to proactively initiate its own arm movement
before sensing the actual movement initiated by the other-
robot. The self-robot acquired this cooperative behavior
skill through direct tutoring from the experimenter.33 The
self-robot observed the other-robot perform sequences of
five movements, moving a colored object either to the left
or to the right in all possible combinations (25 sequences).
Then, the self-robot was required to generate cooperative
behaviors by simultaneously moving its arm in the same
direction as the other-robot. As it generated movements
and adjusted to the other-robot’s movements, differences
emerged in the dynamics involved in predicting as well as

PAGE 34 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

perceptual sequence. The likelihood part exists to minimize the square error
divided by estimated variance at each step. This means that the prediction error
at a particular time step is pressured to be minimized more strongly when its
estimated variance is smaller. Otherwise, the pressure to minimize prediction
error is less.

Another development is that the intention state 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖 in the part of KL divergence
between the prior probability distribution of the intention state and the posterior
distribution in Eq. (4-c) is now represented by the initial states of context units in
all levels. The KL divergence part in Eq. (4-c) puts specific probabilistic
distribution constraints on optimal initial states for all sequences with the
parameter 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2 . If is set with a large value, the distribution of initial states
becomes wide. Ot wise, it becomes tight. By maximizing the free energy
during the learning process, optimal connectivity weights common to all teaching
sequences, probability distribution of the initial state for each teaching target
sequence (recognition density in (Friston, 2010)), and the estimates of
time-dependent variance for each sequence are obtained.

Fig. 6 (a) shows the architecture of the S-MTRNN. The difference from the
original MTRNN is that the S-MTRNN contains output units for predicting
variances for all sensory dimensions at each time step.

generating behavior between the two conditions of the
wide and narrow initial states. The following explains how
we tested these results in greater detail.

During the test phase of the experiment, the S-MTRNN was
trained with 25 visuo-proprioceptive (VP) sequences during
the tutoring process. This training was repeated twice,
once with a small value for 𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼2𝐼𝐼𝐼𝐼 and then again with a large

her value in order to generate a narrow initial state distribution
(Narrow-IS) and a wide initial state distribution (Wide-IS),
respectively. Other-robot object movement (either to the
left or to the right) was randomly determined from amongst
the same 25 sequences so that the self-robot (S-MTRNN)
would be unable to predict next movements reliably.

After training, closed-loop generation of “mental” imagery
was performed for both wide and narrow training cases
(i.e., offline rehearsal). During closed-loop operation,
Gaussian noise corresponding to the estimated variance at
each step was applied to the feedback from the previous
step prediction output, and was input to the current step
(see Figure 7 (a)).

Figure 7. Generation of mental imagery via closed loop. (a) Closed-
loop generation by S-MTRNN, generated sequences (b) in Narrow-IS
case and (c) in Wide-IS case.34

In this way, mental imagery increasingly fluctuates as
uncertainty of a prediction, i.e., the estimated variance,
increases. In the example pictured in Fig. 7, the initial
states were set with the values obtained upon learning
the “RRLLR” trial sequence as performed by the other-
robot. Fig. 7 (b) and (c) illustrate mental imagery in terms
of prediction of VP sequences associated with estimated
variance and internal neural activities in the fast and the
slow subnetworks as generated by the S-MTRNNs trained
under both Narrow-IS or Wide-IS conditions. In the Narrow-
IS case, diverse decision sequences were generated even
though all trials began from the same initial state. As the
figure shows, estimated variance sharply peaks at decision
points, but remains almost zero at other time steps. This
implies that during training the S-MTRNN develops action
primitives for moving left or right as two distinct chunks,
and employs a probabilistic switching mechanism at
decision points.

On the other hand in the Wide-IS case, the same decision
sequence was repeatedly generated for the same given
initial state. Fig. 7 (c) shows that the VP sequence for
“RRLLR” was generated which seemed to be mostly the

same as the target VP sequence. Here, it is important
to note that the variance is estimated as almost zero for
all steps including at decision points. This implies that
mental imagery is generated as a deterministic predictive
dynamics in the Wide-IS condition. Interestingly, for more
than 20 branching instances before finally converging to
cyclic branching, the robots’“mental imagery” (predictive
dynamics) of next-movements was generated pseudo-
randomly by means of transient chaos that developed in
the slow dynamics part in the model network. This result
is analogous to that of Namikawa et al., where complete
chaos (with a positive Lyapunov exponent) instead of
transient chaos appeared in the neural dynamics of an
MTRNN.35

In the end, neural activity internal to the Narrow-IS and Wide-
IS systems was quite different. In the Narrow-IS case, the
neural activities in both the slow and the fast subnetworks
showed the same values at all decision points. In the Wide-
IS case, slow and fast neurons exhibited different activation
patterns at each decision point through which the system
was able to attempt to predict the subsequent move, left or
right. There appears to be no such bias in activity at decision
points in the Narrow-IS case, whereas there are top-down
predictive biases imposed by specific top-level neural
activation patterns at decision points in the Wide-IS case.

Let’s look more closely at how the self-robot interacted
with the other robot using the network trained in these two
conditions, Wide-IS and Narrow-IS. Starting with arbitrary
initial states, S-MTRNN generated one-step predictions for
subsequent VP states upon perceiving current visual states
via open-loop generation, while the other robot randomly
moved a colored object sequences of five (see Figure 8 (a)).

Figure 8. The results of the self-robot interacting with the other-
robot by open-loop generation. (a) The scheme of the open-loop
generation, (b) a sequence generated by the network trained with
the Narrow-IS condition and (c) with the Wide-IS condition.36

Fig. 8 (b) and (c) show the results of open loop processing
with the self-robot reacting to the other-robot as it
generated the “RRLR” sequence for the Narrow-IS and the
Wide-IS cases, respectively. Here, we observe that one-
step prediction of VP states in the Narrow-IS case is quite
successful, generating only a small error at each decision
point. In contrast, one-step prediction in the Wide-IS case
is much worse. In fact, the prediction error is significantly
large at many decision points. Interestingly, at this juncture
of the trials, the movement of the self-robot became erratic.

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 35

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

determined simply by following the other-robot by means of sensory reflex
without any top-down bias.7 In contrast, in the Wide-IS case, the top-down bias
of internal neural activity at decision points is too strong to be modified by
sensory input and incorrect movements are initiated and carried through.

3.3 Introducing bottom-up error regression

Next, consider an experiment that examines the effects of introducing an
additional mechanism of bottom-up error regression into the learned neural
dynamics during the course of behavior generation. This is a modified model
which maximizes the likelihood LHreg for the time window of the immediate past
by modifying the neural activation profile in this past window while fixing the
connectivity weights (Fig. 9 (a)) as shown in Eq. (5).

where the time window is defined from t-W to t at the current time step and the
activation states of the slow units at time step t-W which is the onset of the
window is updated by back propagating the error signal generated. This error
regression in terms of updating the activation state at the onset of the window
and forward computation through the window is iterated multiple epochs during
each time step in behavior generation. Again, as shown in Eq. 5, error
back-propagates more strongly when the estimated variance (as the square
error divided by the variance) is smaller.8 An intuitive explanation is that in this
scheme the internal representation in the immediate past window is rewritten for
the sake of maximizing the likelihood for the on-going perception.

7 Recall that the slow and fast networks showed the same dynamics at each
point.
8 In terms of human experience, it feels worse being wrong when sure that he/she
is right than when it is a recognized matter of chance.

For example, in the fourth decision as illustrated in Fig. 8
(c), the self-robot moved its arm in the direction opposite
to that of the other robot. And, although the self-robot
seemed to try to follow the movements of the other-robot,
its movements were significantly delayed.

The difference observed between the Wide-IS and Narrow-
IS cases is best understood in terms of the different neural
dynamic structures developed in these cases. In the case
of the probabilistic dynamic structure developed in the
Narrow-IS case, the behavior of moving either to the left
or to the right is determined simply by following the other-
robot by means of sensory reflex without any top-down
bias.37 In contrast, in the Wide-IS case, the top-down bias
of internal neural activity at decision points is too strong to
be modified by sensory input and incorrect movements are
initiated and carried through.

3.3 INTRODUCING BOTTOM-UP ERROR
REGRESSION

Next, consider an experiment that examines the effects of
introducing an additional mechanism of bottom-up error
regression into the learned neural dynamics during the
course of behavior generation. This is a modified model
which maximizes the likelihood LHreg for the time window
of the immediate past by modifying the neural activation
profile in this past window while fixing the connectivity
weights (Fig. 9 (a)) as shown in Eq. (5).

𝑡𝑡𝑡𝑡) + ൫𝑜𝑜𝑜𝑜തത𝑠𝑠𝑠𝑠ത,ത𝑡𝑡𝑡𝑡ത,𝚤𝚤𝚤𝚤ത−𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠 ,𝑡𝑡𝑡𝑡 ,𝑖𝑖𝑖𝑖൯
2

𝐾𝐾𝐾𝐾𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑𝑡𝑡𝑡𝑡 ′=𝑡𝑡𝑡𝑡−𝑊𝑊𝑊𝑊
∑𝑖𝑖𝑖𝑖 −1/2(ln(𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠,𝑡𝑡𝑡𝑡 ,𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠 ,𝑡𝑡𝑡𝑡 ,𝑖𝑖𝑖𝑖

) (5)

where the time window is defined from t-W to t at the
current time step and the activation states of the slow units
at time step t-W (which is the onset of the window) are
updated by back propagating the error signal generated.
This error regression in terms of updating the activation
state at the onset of the window and forward through the
window is iterated multiple epochs during each time step
in behavior generation. Again, as shown in Eq. 5, error back-
propagates more strongly when the estimated variance
(as the square error divided by the variance) is smaller.38

An intuitive explanation is that in this scheme the internal
representation in the immediate past window is rewritten
for the sake of maximizing the likelihood for the ongoing
perception.

Fig. 9 (b) shows an example of developments during on-
line behavior generation in the trained Wide-IS network
using the present error regression scheme.

Clearly, neural activity in the gray area changes in a
discontinuous manner with the generation of a sharp peak
in prediction error only upon encountering unpredicted
action by the other even though this error was rapidly
reduced. Note that this sharp peak in prediction error is
larger than that generated during on-line prediction in
the case of the Narrow-IS as shown in Fig. 8 (b). In short,
modulating higher-level neural activity by using error
regression caused drastic changes in lower-level network
activity including sensory predictions, and in this way
prediction errors were rapidly minimized. Ultimately thus,
the self-robot was able to re-situate its behavioral context

Figure 9. The results of
on-line interaction using
the error regression
mechanism. (a) The on-
line error regression
scheme, (b) a sequence
generated by the
network trained with the
Narrow-IS condition.39

immediately after encountering unpredictable events
through dense interactions between top-down intentional
prediction and bottom-up recognition of actual results.

How can we interpret these experimental results? First,
let us summarize what we have just seen. In the Narrow-
IS condition, probabilistic network dynamics develop
generating actions in a sensory reflex manner. In contrast,
proactive behaviors pursuant from deterministic predictions
of next actions develop from the Wide-IS condition. It can
be said that the Narrow-IS condition develops only weak
top-down prior states while the Wide-IS condition develops
strong top-down prior states. During the interaction of the
self robot with the other robot, the self robot trained under
the Narrow-IS condition could easily follow the action
sequences arbitrarily determined by the other robot because
it simply reacted to sensory inputs, with neural activity at
decision points. On the other hand in the Wide-IS condition,
the self-robot could not follow the action sequences of the
other robot according to sensory inputs, because the top-
down bias originating from the initial state was too strong.
However, when the error regression scheme was applied
utilizing the prediction error generated, the actions of the
Wide-IS self robot were modified immediately by means
of rapid changes in internal neural states. This bottom-up
modulation can be quite strong because the variance is
estimated as small in the case of the Wide-IS. This is due to
the development of a deterministic dynamic structure, one
that plans its next action, and that can be said to “have”
a future toward which it has effectively committed itself
through proactive cognitive agency given strong top-down
prior states. On the other hand, the same force is not so
strong in the probabilistic (Narrow-IS) case because the
estimated variance at decision points is large. This is to say
that the Narrow-IS has plotted no future condition beyond
immediate reaction, and has thus cannot be said to “have”
a future in this same way.

Consider these Wide and Narrow conditions from the
Bayesian viewpoint. In the Bayesian framework, the S-MTRNN
represents a likelihood function which maps intention
state to a probability distribution of up-coming perceptual
states. In these experiments, the distribution of intention
states (initial states) was constrained by either the Wide
distribution or the Narrow distribution, and the experiments
show that the Wide distribution of intention states develops
a deterministic dynamics with strong top-down prior states,
whereas the Narrow distribution develops a probabilistic
process which is a purely reactive process.

PAGE 36 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

3.4 TIME PERCEPTION BY “EMBODIED” RNNS
Now, we come back the main issue of consciousness. This
section briefly looks at the problem of time perception in
light of Francisco Varela’s “present-time consciousness.”40

Tani and Nolfi postulated that “consciousness” arises at the
very moment of segmenting the perceptual flow by means
of error regression.41 Varela’s “present-time consciousness”
arises similarly.42 First, Varela considered that the immediate
past does not belong to a representational conscious
memory, but just to an impression consistent with Husserl’s
idea of retention.43 So, his question was how the immediate
past, experienced just as an impression, could slip into a
distant past which can be retrieved through a conscious
memory operation later on. And, in response, he proposed
that nonlinear dynamics theory could be used as the
formal descriptive tool for this phenomenon. By using the
phenomenon of the spontaneous flipping of a Necker cube
as an example, he explained that the dynamic properties of
intermittent chaos characterized by its spontaneous shifts
between static and rapid transition modes could explain the
paradox of continuous, yet also segmented, time perception.

On his consideration, we may still ask how such
spontaneous shifts as those realized by intermittent chaos
can be linked to conscious experience. Although Thompson
and Varela explain that such shifts are accompanied by
shifts in neuronal bias, what is the formal mechanism of
this process?44 Tani proposes that consciousness arises
in the correction and modification of dynamic structures
which, in biological cognition, are generated in higher
cortical areas.45 The following attempts to account for the
development of levels of conscious experience in terms of
the development of the predictive RNN models described
so far in the current paper.

In subjective terms, firstly an agent experiences a continuous
perceptual flow without this flow being articulated in any
way, that is without this flow representing any discernible
thing or event. However, there should be retention and
protention in this primordial level, as explained by Husserl
(see the last footnote).46 Retention and protention are used
to designate the experienced sense of the immediate past
and the immediate future. They are a part of automatic
processes and cannot be controlled consciously. Husserl
believed that the subjective experience of “nowness”
is extended to include fringes both in the experienced
sense of the past and the future in terms of retention and
protention. This description of retention and protention
at the so-called “pre-empirical”level by Husserl seems to
directly correspond to what the basic RNN (as illustrated
in Fig. 1 in the earlier section) is performing. The RNN
predicts its next state by retaining the past flow in a
context dependent way as has been described. This self-
organized contextual flow in the forward dynamics of
RNNs could account for the phenomenon of retention,
whereas prediction based on this contextual flow naturally
corresponds to protention.

With Husserl’s idea of “nowness” in terms of retention
and protention, the following question arises: Where is
the “nowness” bounded? Husserl and Varela believe that
the immediate past does not belong to a representational

conscious memory but just to an impression, as suggested
above. This led Varela to wonder what kind of mechanism
qualitatively changes an experience from just an impression
to an episodic consciously retrievable event.47 Husserl’s
goal was to explain the emergence of objective time from
the pre-empirical level of retention and protention,48 and
he seems to think that the sense of objective time should
emerge as a natural consequence of organizing experience
into one consistent linear sequence. Still, the question
remains: What is the underlying mechanism for this?

One way of approaching this question is to consider
first that “nowness” can be bounded where the flow of
experience is segmented. Imagine that “Re Fa La” and
“Do Mi So” are frequently heard phrases. The sequential
notes of “Do Mi So” constitute a chunk within the sound
stimulus flow, because the sequence can be predicted
perfectly by developing coherence between the predictive
neural dynamics and the perceptual flow. Within the
chunk, everything proceeds smoothly, automatically, and
unconsciously. However, when we hear a next phrase of “Re
Fa La” after “Do Mi So” (considering that this second phrase
is not necessarily predictable from the first one) a temporal
incoherence emerges as prediction error is generated in
the transition between the two phrases. The central thesis
here is that consciousness arises as the agent attempts to
deal with the uncertainty or open possibility between the
two.

In Tani and colleagues’ RNN models, the winner module is
switched from one to another in MixRNNs or PB is shifted
in RNNPB by means of error regression when the external
perceptual flow does not match with the internal flow
of the prediction. This matching is primarily occurring in
the window of the immediate past, as described above.
When the prediction is betrayed, the perceptual flow is
segmented into chunks associated with shifts of gates
or PBs, minimizing prediction error. Those segmented
chunks are no longer just parts of the flow, but events
that are identified by an activated local module or a PB
vector value, e.g., as one of the NAO robot’s behavior
primitives. Because of delays in the error minimization
process for optimizing gate openings or PB vector, this
identification process can be time consuming. This might
explain the phenomenological observation that the flow of
the immediate past is experienced only as an impression,
which later becomes a consciously retrievable object after
being segmented. This may correspond to an observation
of postdiction evidenced in neuroscience.49 See Figure 10
for an illustration of the idea.

The higher level RNN in MixRNNs, RNNPBs, or MTRNNs
learns the sequences of the identified events and becomes
able to regenerate them as a narrative.

During memory retrieval however, the perceptual flow
can be reconstructed only in an indirect way since the
flow is now represented by combining a set of commonly
used behavior primitives. Although such reconstructions
provide for compositionality as well as generalization
in representing perceptual flow, they might lose subtle
differences or uniqueness in each instance of experience
depending on the capacities to retain perceptual dynamics.

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 37

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Figure 10. Prediction of future based on the
postdiction of the past.

Consequently, we presume that the sense of objective
time appears when experience of the perceptual flow is
reconstructed as a narrative in a compositional form, while
losing its peculiarity.

From the Bayesian perspective of Friston’s FEMP, the agent
becomes able to reflect on the episodic sequence with
self-estimated certainty when the Narrow-IS condition
is applied to S-MTRNN, as shown in the aforementioned
experiments by Murata and colleagues.50 At this stage, the
agent finally becomes able to represent its own episodic
sequence in terms of a probabilistic model by inferring
that each chunk (moving left or right) simply arises with
a certain probability. This is a crucial transition from first
reflecting on its own experience as a deterministic “one
time only” episodic sequence occurring only in that way,
to viewing it as a probability which could have taken place
in other ways. From the latter point of view, the agent is
successful in ultimately objectifying its own experience by
reconstructing it into a generalized model accounting for
possible interactions between its self and others. However,
it is interesting to note that the agent in this stage does not
maintain anymore the subjectivity of naively intending for
an uncertain future, because all it maintains is ultimately
objectified models of probable futures. Together, these
stages of development should begin to account for the
process of an agent attaining a reflective self which is
only then potentially maintained, for example through
inner discourse and conscious narration and which only
then results in truly direct subjective experience, the
characteristic “mineness” of h-consciousness as revealed
in our last paper.

3.5 DISCUSSION
With the composition of intentional sequences, we may
understand surprise as their unexpected correction
resulting in consciousness. To this, one may object
that one becomes conscious of many things without
surprise, but this objection is easily answered. Let us
consider that intentional processes drive the whole neural
network dynamics including the peripheral subnetworks
by means of chaos or transient chaos developed in the
higher cognitive brain area in order to act on the world in
achieving some end of agency such as in Murata’s robot
experiment and in Namikawa et al.51 At this moment of
acting, some prediction errors may be generated at the
very least because the world is inevitably unpredictable
due to its openness relative for instance human cognitive
agency. Then, at the very moment when the intention state
is modulated by those errors back-propagated from the

peripheral to the higher level, the agent becomes conscious
of the formulation of intention upon which it has acted and
only in a “postdictive” manner,52 i.e., when the intention in
the past window is rewritten for the sake of accounting for
the current perception, there is consciousness.

With this, we may ask if we can apply the aforementioned
analysis to account for the delayed awareness of “free
will” as for example evidenced in the famous Libet
experiments?53 One might imagine that no prediction
errors are to be associated with decisions about pressing
a button as in Libet’s experiments. However, in order to
initiate a particular movement, internal neural activity in
peripheral areas including muscle potential states must
prepare for action. With this in mind, prediction errors
may arise when the higher cognitive level such as the
prefrontal cortex (PFC) or supplementary motor area (SMA)
suddenly attempts to drive the lower peripheral processes
such as the motor area and somatosensory area through
the parietal area, possibly by chaos, to generate a specific
movement when the lower parts are not yet prepared for it
(see Figure 11).

Figure 11. Explanation of how free will can be initiated
unconsciously and how one can become consciously aware
of it with delay.54

In such a situation, a gap may appear between the higher
level with the sudden urge for generating the movement
and lower level processes which are not yet ready for it.
This gap appears in the system as a sort of prediction error,
with the intention to act confounded by factors internal to
the system as a whole but still external to the intentional
processes, themselves. This difference, then, between what
is ideally intended and its practical exercise may then cause
the conscious awareness of one’s own intention, again with
a delay as described by Libet, Gleason and Wright,55 and as
having been conjectured by Tani.56 To sum up, we consider
that free will may originate unconsciously by means of the
cortical deterministic chaos which can become an object
of conscious awareness only after a certain delay under
embodiment constraint in terms of postdiction.57

Before concluding the current paper, give a close look
at the process of error regression at the moment that
prediction error increases due to unexpected perception.
This error regression process involves the nontrivial
phenomena of circular causality, analysis of which reveals
subtle characteristics of the conscious process. In simple
situations such as shown in the experiments by Murata and

PAGE 38 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

colleagues wherein possible actional decisions are only
two, either moving an arm to the left or to the right, the
conflictive situation can be resolved instantly by sudden
modulation of the intention by error regression.58 However,
realistic situations are more complex, for example, when
a system has to perform online modification of a goal-
directed plan by searching among various possible
combinations of behavior primitives by means of error
regression, while retaining immediate integrity in the face
of environmental forces, i.e., adapting to rapid changes of
the current situation until the newly formulated intention
can be carried forward.

4. CONCLUSION
The current paper reviewed a series of neurorobotics
studies conducted by Jun Tani and colleagues that attempt
to provide a purely formal, structural account of dynamical
processes essential for consciousness. The core ingredients
of Tani’s models are prediction and postdiction through
predictive coding and implemented in different recurrent
neural network (RNN) models that together represent a
progression from reflexive to proactive, self-reflective and
creative agency. The review moved from simple to more
complex model hierarchies.

Robotics experiments employing these models clarified
dynamics inherent in levels of consciousness from
momentary self-consciousness (surprise) to narrative
self and reflective self-consciousness (the “chunking”
of experience and the articulation of perceptual flow
according to developing action potentials). The paper
concluded with a brief phenomenological analysis of time
perception within this family of models, including model
extensions accounting for free will and its characteristic
postdictive conscious awareness. In the next paper, we
will begin with some of Tani and colleagues’ work on these
model extensions into more complex situations, before
returning to Boltuc’s naturalistic non-reductionism and a
philosophical analysis of any claim to consciousness of
artificial systems.

NOTES

1.	 The correspondence should be sent to tani1216jp@gmail.com

2.	 Here it is interesting to note that predictive coding is inspired
by studies on biological systems, so computational architectures
employing predictive coding are by definition instances of
a biological approach. R. N. Rao and D. H. Ballard, “Predictive
Coding in the VIsual Cortex: A Functional Interpretation of Some
Extra-Classical Receptive-Field Effects,” Nature Neuroscience 2
(1999): 79–87; J. Tani and S. Nolfi, “Learning to Perceive the World
as Articulated: An Approach for Hierarchical Learning in Sensory-
Motor Systems,” Neural Networks 12, no. 7 (1999): 1131–41;
K. Friston, “A Theory of Cortical Responses,” Philosophical
Transactions of the Royal Society B: Biological Sciences 360, no.
1456 (2005): 815–36.

3.	 J. Tani, “Autonomy of ‘Self’ at Criticality: The Perspective from
Synthetic Neuro-Robotics,” Adaptive Behavior 17, no. 5 (2009):
421–43; A. Clark, Surfing Uncertainty: Prediction, Action, and
the Embodied Mind (NY: Oxford University Press, 2015); J. Tani,
Exploring Robotic Minds: Actions, Symbols, and Consciousness
as Self-Organizing Dynamic Phenomena (New York: Oxford
University Press, 2016).

4.	 J. Tani, “Learning to Generate Articulated Behavior Through
the Bottom-Up and the Top-Down Interaction Process,” Neural
Networks 16 (2003): 11–23.

5.	 Friston, “A Theory of Cortical Responses”; K. Friston, “The
Free-Energy Principle: A Unified Brain Theory?” Nature Reviews
Neuroscience 11 (2010): 127–38.

6.	 M. I. Jordan, “Serial Order: A Parallel Distributed Processing
Approach,” Technical Report, California University, San Diego,
1986; J. L. Elman, “Finding Structure in Time,” Cognitive Science
14 (1990): 179–211; R. J. Williams and D. Zipser, “Finding Structure
in Time,” Institute for Cognitive Science Report, University of
California, San Diego, 1990.

7.	 Ibid.

8.	 C.f. J. Tani and N. Fukumura, “Embedding a Grammatical
Description in Deterministic Chaos: An Experiment in Recurrent
Neural Learning,” Biological Cybernetics 72, no. 4 (1995): 365–70.

9.	 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal
Representations By Error Propagation,” in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, ed. D.
E. Rumelhart and J. L. Mclelland (Cambridge, MA: The MIT Press,
1986).

10. J. Tani and S. Nolfi, “Self-Organization of Modules and Their
Hierarchy in Robot Learning Problems: A Dynamical Systems
Approach,” News Letter on System Analysis for Higher Brain
Function Research Project 2, no. 4 (1997): 1–11; Tani and Nolfi,
“Learning to Perceive the World as Articulated: An Approach for
Hierarchical Learning in Sensory-Motor Systems.”

11.	 Tani, “Learning to Generate Articulated Behavior Through the
Bottom-Up and the Top-Down Interaction Process”; J. Tani and
M. Ito, “Self-Organization of Behavioral Primitives as Multiple
Attractor Dynamics: A Robot Experiment,” Systems, Man, and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
33, no. 4 (2003): 481–88.

12. Rizzolatti et al. (“Mirror Neuron: A Neurological Approach to
Empathy,” in Neurobiology of Human Values [Springer-Verlag
Berlin Heidelberg, 1995]) as explored in J. Tani, M. Ito, and Y.
Sugita, “Self-Organization of Distributedly Represented Multiple
Behavior Schemata in a Mirror System: Reviews of Robot
Experiments Using RNNPB,” Neural Networks 17 (2004): 1273–89.

13.	 Tani and Nolfi, “Self-Organization of Modules and Their Hierarchy
in Robot Learning Problems”; Tani and Nolfi, “Learning to Perceive
the World as Articulated.”

14.	 Here, recall that it is the object of the network to minimize error
through the error back-propagation through time (BPTT) algorithm.

15. Tani and Nolfi, “Learning to Perceive the World as Articulated.”

16. Tani, “Learning to Generate Articulated Behavior Through the
Bottom-Up and the Top-Down Interaction Process”; Tani and Ito,
“Self-Organization of Behavioral Primitives as Multiple Attractor
Dynamics: A Robot Experiment.”

17.	 Tani and Nolfi, “Self-Organization of Modules and Their Hierarchy
in Robot Learning Problems”; Tani and Nolfi, “Learning to Perceive
the World as Articulated”; and Tani, “Learning to Generate
Articulated Behavior Through the Bottom-Up and the Top-Down
Interaction Process.”

18. It is interesting to note here a formal similarity with “abductive”
agent-level evolutionary models.

19.	 Tani and Nolfi, “Self-Organization of Modules and Their Hierarchy
in Robot Learning Problems”; Tani and Nolfi, “Learning to Perceive
the World as Articulated.”

20. Tani, “Learning to Generate Articulated Behavior Through the
Bottom-Up and the Top-Down Interaction Process.”

21.	 Y. Yamashita and J. Tani, “Emergence of Functional Hierarchy
in a Multiple Timescale Neural Network Model: A Humanoid
Robot Experiment,” PLoS Computational Biology 4, no. 11 (2008):
e1000220.

22. Ibid.

23.	 R. Nishimoto and J. Tani, “Development of Hierarchical Structures
for Actions and Motor Imagery: A Constructivist View from
Synthetic Neuro-Robotics Study,” Psychological Research 73,
no. 4 (2009): 545–58; and H. Arie, T. Endo, T. Arakaki, S. Sugano,
and J. Tani, “Creating Novel Goal-Directed Actions at Criticality:
A Neuro-robotic Experiment,” New Mathematics and Natural
Computation 5, no. 01 (2009): 307–34.

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 39

mailto:tani1216jp%40gmail.com?subject=

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

24. D. 	T. Campbell, “‘Downward Causation’ in Hierarchically
Organized Biological Systems,” in Studies in the Philosophy of
Biology (Macmillan Education UK, 1974), 179–86; E. Thompson
and F. J. Varela, “Radical Embodiment: Neural Dynamics and
Consciousness,” Trends in Cognitive Sciences 5, no. 10 (2001):
418–25.

25.	 Friston, “A Theory of Cortical Responses”; K. Friston, “Hierarchical
Models in the Brain,” PLoS Computational Biology 4, no. 11
(2008): e1000211.

26. It is important here to bear in mind that these are systems
enabling agency, and so an action that ends very far from a
target is much worse than one which ends close enough. It is not
as innocuous as simply getting something wrong. If variance is
high, then a prediction which hits its target is extremely accurate,
such that in the real world it may not be believed, e.g., “too good
to be true.” However, when variance is high, it also means that
average values do not effectively inform action. Acting on the
basis of an average will always in the long run result in error
proportional to variance. Once this is understood, then an agent
may apply estimated variance in the prediction of optimal next
actions, as this value may inform the agent what to expect given
prior instances, reducing error over the long run.

This formal model recalls Plato’s concern with the science of
science that is ultimately knowledge of good and bad, a second-
order understanding that for example directs sight but never
sees a thing, c.f. Charmides.

27.	 Friston, “A Theory of Cortical Responses.”

28. Friston, “The Free-Energy Principle: A Unified Brain Theory?”

29.	 S. Murata, Y. Yamashita, H. Arie, T. Ogata, S. Sugano, and J. Tani,
“Learning to Perceive the World as Probabilistic or Deterministic
via Interaction with Others: A Neuro-robotics Experiment,”
IEEE Trans. on Neural Networks and Learning Systems. 2015.
doi:10.1109/TNNLS.2015.2492140

30. Recognition density in Friston, “The Free-Energy Principle: A
Unified Brain Theory?”

31.	 Redrawn from Murata et al., “Learning to Perceive the World as
Probabilistic or Deterministic via Interaction with Others.”

32. Ibid.

33.	 C.f. Yamashita and Tani, “Emergence of Functional Hierarchy
in a Multiple Timescale Neural Network Model: A Humanoid
Robot Experiment”; J. Namikawa, R. Nishimoto, and J. Tani,
“A Neurodynamic Account of Spontaneous Behavior,” PLoS
Computational Biology 7, no. 10 (2011): e1002221.

34. Redrawn from Murata et al., “Learning to Perceive the World as
Probabilistic or Deterministic via Interaction with Others.”

35.	 Namikawa et al., “A Neurodynamic Account of Spontaneous
Behavior.”

36. Redrawn from Murata et al., “Learning to Perceive the World as
Probabilistic or Deterministic via Interaction with Others.”

37.	 Recall that the slow and fast networks showed the same
dynamics at each point.

38. In terms of human experience, it feels worse being wrong when
sure that he/she is right than when it is a recognized matter of
chance.

39.	 Redrawn from Murata et al., “Learning to Perceive the World as
Probabilistic or Deterministic via Interaction with Others.”

40. F. 	J. Varela, “Present-Time Consciousness,” Journal of
Consciousness Studies 6, nos. 2-3 (1999): 111–40.

41. Tani and Nolfi, “Learning to Perceive the World as Articulated.”

42. Varela, “Present-Time Consciousness.”

43.	 E. Husserl, “The Phenomenology of Internal Time Consciousness,”
trans. J. S. Churchill (Bloomington, IN: Indiana University Press,
1964). Husserl introduced the famous idea of “retention” and
“protention” for explaining the paradoxical nature of “nowness.”
He used an example of hearing a sound phrase such as “Do Mi
So” for explaining the idea. When we hear the note “Mi,” we
would still perceive a lingering impression of “Do,” and at the
same time we would anticipate hearing the next note of “So.” The
former is called retention and the latter protention. These terms

are used to designate the experienced sense of the immediate
past and the immediate future.

44. E. Thompson and F. J. Varela, “Radical Embodiment: Neural
Dynamics and Consciousness,” Trends in Cognitive Sciences 5,
no. 10 (2001): 418–25.

45.	 J. Tani, “An Interpretation of the ‘Self’ from the Dynamical
Systems Perspective: A Constructivist Approach,” Journal of
Consciousness Studies 5, nos. 5/6 (1998): 516–42; Tani and Nolfi,
“Learning to Perceive the World as Articulated: An Approach for
Hierarchical Learning in Sensory-Motor Systems”; Tani, “Learning
to Generate Articulated Behavior Through the Bottom-Up and the
Top-Down Interaction Process.”

46. Husserl, “The Phenomenology of Internal Time Consciousness.”
See footnote 51.

47.	 Varela, “Present-Time Consciousness.”

48. Husserl, “The Phenomenology of Internal Time Consciousness.”

49.	 D. M. Eagleman and T. J. Sejnowski, “Motion Integration and
Postdiction in Visual Awareness,” Science 287, no. 5460 (2000):
2036–38; S. Shimojo, “Postdiction: Its Implications on Visual
Awareness, Hindsight, and Sense of Agency,” Frontiers in
Psychology 5 (2014): 196.

50. Murata et al., “Learning to Perceive the World as Probabilistic or
Deterministic via Interaction with Others.”

51.	 Ibid. and in Namikawa et al., “A Neurodynamic Account of
Spontaneous Behavior.”

52. Shimojo, “Postdiction: 	Its Implications on Visual Awareness,
Hindsight, and Sense of Agency.”

53.	 C.f. B. Libet, E. W. Wright, and C. A. Gleason, “Preparation-
or Intention-to-Act, in Relation to Pre-event Potentials
Recorded at the Vertex,” Electroencephalography and Clinical
Neurophysiology 56, no. 4 (1983): 367–72; B. Libet, “Unconscious
Cerebral Initiative and the Role of Conscious Will in Voluntary
Action,” Behavioral and Brain Sciences 8 (1985): 529–39.

54. Redrawn from J. Tani, Exploring Robotic Minds: Actions, Symbols,
and Consciousness as Self-Organizing Dynamic Phenomena (New
York: Oxford University Press, 2016) with permission from Oxford
University Press.

55.	 Libet, Gleason, and Wright, “Preparation- or Intention-to-Act, in
Relation to Pre-event Potentials Recorded at the Vertex.” The
preceding interpretation accords with recent work in the sense
of self-agency as it changes due to feedback. In short, the more
that an agent perceives itself to be in control of outcomes, the
more it feels the sense of ownership of actions performed (c.f.
N. Kumar, J. A. Manjaly, and K. P. Miyapuram, “Feedback about
Action Performed Can Alter the Sense of Self-Agency,” Frontiers
in Psychology, February 25, 2014).

56. Tani, 	 Exploring Robotic Minds: Actions, Symbols, and
Consciousness as Self-Organizing Dynamic Phenomena.

57.	 Eagleman and Sejnowski, “Motion Integration and Postdiction
in Visual Awareness”; Shimojo, “Postdiction: Its Implications on
Visual Awareness, Hindsight, and Sense of Agency.”

58. Murata et al., “Learning to Perceive the World as Probabilistic or
Deterministic via Interaction with Others.”

REFERENCES

Arie, H., T. Endo, T. Arakaki, S. Sugano, and J. Tani. “Creating Novel
Goal-Directed Actions at Criticality: A Neuro-robotic Experiment.” New
Mathematics and Natural Computation 5, no. 01 (2009): 307–34.

Boltuc, P. “The Philosophical Issue in Machine Consciousness.”
International Journal of Machine Consciousness 1, no. 1 (2009): 155–76.

Campbell, D. T. “‘Downward Causation’ in Hierarchically Organized
Biological Systems.” In Studies in the Philosophy of Biology, 179–86.
Macmillan Education UK, 1974.

Clark, A. Surfing Uncertainty: Prediction, Action, and the Embodied
Mind. NY: Oxford University Press, 2015.

Eagleman, D. M., and T. J. Sejnowski. “Motion Integration and Postdiction
in Visual Awareness.” Science 287, no. 5460 (2000): 2036–38.

Elman, J. L. “Finding Structure in Time.” Cognitive Science 14 (1990):
179–211.

PAGE 40	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Friston, K. “A Theory of Cortical Responses.” Philosophical Transactions
of the Royal Society B: Biological Sciences 360, no. 1456 (2005): 815–36.

———. “Hierarchical Models in the Brain.” PLoS Computational Biology
4, no. 11 (2008): e1000211.

———. “The Free-Energy Principle: A Unified Brain Theory?” Nature
Reviews Neuroscience 11 (2010): 127–38.

Husserl, E. “The Phenomenology of Internal Time Consciousness.”
Translated by J. S. Churchill. Bloomington, IN: Indiana University Press,
1964.

Jordan, M. I. “Serial Order: A Parallel Distributed Processing Approach.”
Technical Report. California University, San Diego, 1986.

Kumar, N., J. A. Manjaly, and K. P. Miyapuram. “Feedback about Action
Performed Can Alter the Sense of Self-Agency.” Frontiers in Psychology,
February 25, 2014. doi:10.3389/fpsyg.2014.00145

Libet, B. “Unconscious Cerebral Initiative and the Role of Conscious Will
in Voluntary Action.” Behavioral and Brain Sciences 8 (1985): 529–39.

Libet, B., E. W. Wright, and C. A. Gleason. “Preparation- or Intention-
to-Act, in Relation to Pre-event Potentials Recorded at the Vertex.”
Electroencephalography and Clinical Neurophysiology 56, no. 4 (1983):
367–72.

Murata, S., Y. Yamashita, H. Arie, T. Ogata, S. Sugano, and J. Tani.
“Learning to Perceive the World as Probabilistic or Deterministic
via Interaction with Others: A Neuro-robotics Experiment.” IEEE
Trans. on Neural Networks and Learning Systems. 2015. doi:10.1109/
TNNLS.2015.2492140

Namikawa, J., R. Nishimoto, and J. Tani. “A Neurodynamic Account of
Spontaneous Behavior.” PLoS Computational Biology 7, no. 10 (2011):
e1002221.

Nishimoto, R., and J. Tani. “Development of Hierarchical Structures for
Actions and Motor Imagery: A Constructivist View from Synthetic Neuro-
Robotics Study.” Psychological Research 73, no. 4 (2009): 545–58.

Rao, R. N., and D. H. Ballard. “Predictive Coding in the VIsual Cortex:
A Functional Interpretation of Some Extra-Classical Receptive-Field
Effects.” Nature Neuroscience 2 (1999): 79–87.

Reed, E. S., and D. Schoenherr. “The Neuropathology of Everyday Life:
On the Nature and Significance of Microslips in Everyday Activities.”
Unpublished manuscript. 1992.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. “Learning Internal
Representations By Error Propagation.” In Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, edited by D.
E. Rumelhart and J. L. Mclelland. Cambridge, MA: The MIT Press, 1986.

Shimojo, S. “Postdiction: Its Implications on Visual Awareness,
Hindsight, and Sense of Agency.” Frontiers in Psychology 5 (2014): 196.
10.3389/fpsyg.2014.00196.

Tani, J. “An Interpretation of the ‘Self’ from the Dynamical Systems
Perspective: A Constructivist Approach.” Journal of Consciousness
Studies 5, nos. 5/6 (1998): 516–42.

———. “Learning to Generate Articulated Behavior Through the Bottom-
Up and the Top-Down Interaction Process.” Neural Networks 16 (2003):
11–23.

———. “The Dynamical Systems Accounts for Phenomenology of
Immanent Time: An Interpretation By Revisiting a Robotics Synthetic
Study.” Journal of Consciousness Studies 11, no. 9 (2004): 5–24.

———. “Autonomy of ‘Self’ at Criticality: The Perspective from Synthetic
Neuro-Robotics.” Adaptive Behavior 17, no. 5 (2009): 421–43.

———. Exploring Robotic Minds: Actions, Symbols, and Consciousness
as Self-Organizing Dynamic Phenomena. New York: Oxford University
Press, 2016.

Tani, J., and N. Fukumura. “Embedding a Grammatical Description in
Deterministic Chaos: An Experiment in Recurrent Neural Learning.”
Biological Cybernetics 72, no. 4 (1995): 365–70.

Tani, J., and S. Nolfi. “Self-Organization of Modules and Their Hierarchy
in Robot Learning Problems: A Dynamical Systems Approach.” News
Letter on System Analysis for Higher Brain Function Research Project 2,
no. 4 (1997): 1–11.

———. “Learning to Perceive the World as Articulated: An Approach for
Hierarchical Learning in Sensory-Motor Systems.” Neural Networks 12,
no. 7 (1999): 1131–41.

Tani, J., and M. Ito. “Self-Organization of Behavioral Primitives as
Multiple Attractor Dynamics: A Robot Experiment.” Systems, Man, and

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 33, no.
4 (2003): 481–88.

Tani, J., M. Ito, and Y. Sugita. “Self-Organization of Distributedly
Represented Multiple Behavior Schemata in a Mirror System: Reviews
of Robot Experiments Using RNNPB.” Neural Networks 17 (2004): 1273–
89.

Thompson, E., and F. J. Varela. “Radical Embodiment: Neural Dynamics
and Consciousness.” Trends in Cognitive Sciences 5, no. 10 (2001):
418–25.

Varela, F. J. “Present-Time Consciousness.” Journal of Consciousness
Studies 6, nos. 2-3 (1999): 111–40.

Williams, R. J., and D. Zipser. “Finding Structure in Time.” Institute for
Cognitive Science Report. University of California, San Diego, 1990.

Yamamoto, J., J. Suh, D. Takeuchi, and S. Tonegawa. “Successful
Execution of Working Memory Linked to Synchronized High-Frequency
Gamma Oscillations.” Cell 157, no. 4 (2014): 845–57.

Yamashita, Y., and J. Tani. “Emergence of Functional Hierarchy in
a Multiple Timescale Neural Network Model: A Humanoid Robot
Experiment.” PLoS Computational Biology 4, no. 11 (2008): e1000220.

Kant on Constituted Mental Activity
Richard Evans
IMPERIAL COLLEGE, UK

1 INTRODUCTION
Consider the following functionalist claim:

There is an architecture, describable in the
language of computer science, such that any
creature or machine that realises this architecture
thereby counts as a cognitive agent, an agent with
original (non-derivative) intentionality.

Some of the more practically minded among us will be
dissatisfied with this existentially quantified assertion:
rather than just saying that there is some such architecture,
it would be much more helpful to know exactly what this
architecture is. What sort of architecture could satisfy such
a claim?

I believe the answer to this question has been hiding in
plain sight for over two hundred years: in The Critique of
Pure Reason, Kant provides a detailed description of just
such an architecture.

At the heart of Kant’s vision is the self-legislating agent:
an agent who constructs rules that he then solemnly
follows. The Kantian cognitive architecture is a particular
type of computational process: a rule-induction process.
If this rule-induction process satisfies certain constraints,
then—Kant claims—the process’ internal activities count as
cognitive activities.

This paper sketches the philosophical background behind
this architecture. It attempts to motivate and defend Kant’s
vision of a self-legislating computational agent.1

2 MENTAL ACTIVITY AS CONSTITUTED ACTIVITY
We are familiar with the idea that social activity is constituted
activity. Pushing the wooden horse-shaped piece forward
counts, in the right circumstances, as moving the knight to

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 41

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

king’s bishop three. Jones’ running away counts, in the right
circumstances, as desertion. An utterance of the words “I
do” counts, in the right circumstances, as an acceptance of
marriage vows. These social actions are things we can only
do indirectly, by doing something else. A social action is
not something we can just do.

Kant’s cardinal innovation, as I read him, is to see mental
activity as constituted activity. This plurality of sensory
perturbations counts, in the right circumstances, as my
representing a red triangle. This activity of rule application
counts, under the right circumstances, as my seeing an
apple. This activity of rule construction counts, under the
right circumstances, as my forming the belief that Caius is
mortal. The surprising Kantian claim is that mental activity
is itself constituted. We have to perform a certain type of
ritual in order to experience a world at all.

2.1 FROM COUNTS-AS TO COUNTING-AS
Let us start by considering the activity of counting-as:

•	 Jones counts Smith’s contortion of the lips as a
delighted smile

•	 The sergeant counts Jones’ running away as
desertion

•	 The teacher counts the boy’s squiggle as an “s”

•	 The vicar counts the utterance of the words “I do”
as an acceptance of the marriage vows

Notice that these examples describe the activity of
counting-as, rather than the mere relation of counts-as. The
counts-as relation is commonly formulated as:

x counts as y (in context c)

This sentence, ascribing a three-place relation between
x, y and c, ignores the person who is doing the counting-
as, and the business of counting itself, and focuses solely
on the resulting judgment. If we want to acknowledge
the individual performing the counting, and the activity of
counting itself, we would write it as:

agent a counts x as y (in context c)

This sentence describes the activity of counting-as, and
makes explicit the person who is doing the counting.

Under what circumstances would it be ok to forget about
the person doing the counting? Perhaps it would be ok to
suppress the agent and the activity of counting-as in cases
where everyone agreed about what counted-as what, where
massive agreement in counting-as was taken for granted.
Throughout the Investigations, Wittgenstein repeatedly
asks us to stop taking this mass communal agreement for
granted. He demands “what if one person reacts in one
way and another in another?”2 For example, he considers
the case where:

a person naturally reacted to the gesture of
pointing with the hand by looking in the direction

of the line from finger-tip to wrist, not from wrist
to finger-tip.3

The divergence here is a difference in what activity the
deviant person is counting the gesture as. The deviant is
counting the gesture as pointing in the opposite direction
from what “we”4 count the gesture as.

Whenever Wittgenstein talks about counts-as, he is careful
to talk about the activity of counting-as, rather than an
abstract relation of counts-as that presupposes communal
agreement:

But now imagine a game of chess translated
according to certain rules into a series of actions
which we do not ordinarily associate with a game—
say into yells and stamping of feet. ... Should we
still be inclined to count them as playing a game?
What right would one have to say so?5

Wittgenstein focuses on edge cases like these, cases
where we are no longer sure that everybody agrees about
what counts as what, in order to help us stop treating this
mass agreement as given. In a shared culture, there is
indeed mass agreement in what counts as what. But this
mass agreement is an achievement, something painfully
accomplished by constant communication and teaching, a
fragile accomplishment that is always in need of renewal.
For Wittgenstein, as Cavell reads him, mass agreement
in counting-as activity is not something that should be
presupposed at the beginning of philosophical activity, but
is instead rather something to be explained.

I find my general intuition of Wittgenstein’s view
of language to be the reverse of the idea many
philosophers seem compelled to argue against
in him: it is felt that Wittgenstein’s view makes
language too public, that it cannot do justice to
the control I have over what I say, to the innerness
of my meaning. But my wonder, in the face of
what I have recently been saying, is rather how
he can arrive at the completed and unshakable
edifice of shared language from within such
apparently fragile and intimate moments—private
moments—as our separate counts and out-calls of
phenomena, which are after all hardly more than
our interpretations of what occurs, and with no
assurance of conventions to back them up.6

Instead of an abstract “x-counts-as-y” relation that suppresses
the agent performing the counting-as activity and that
presupposes communal agreement, Wittgenstein wishes
us to start with an individual agent counting something as
something. It is this same counting-as activity that is needed,
I claim, to understand Kant’s project in the First Critique.

2.2 FROM DERIVATIVE TO ORIGINAL
INTENTIONALITY

Consider the humble barometer, a simple sensory device
that can detect changes in atmospheric pressure. If the
mercury rises, this means the atmospheric pressure is
increasing; if the mercury goes down, the pressure is

PAGE 42	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

decreasing. Now we count the mercury’s rising as the
machine responding to the atmospheric pressure. We count,
in other words, a process that is internal to the instrument
(the mercury rising) as representing changing properties
of an external world (atmospheric pressure increasing). But
although we count the internal process as representing
an external process, the barometer itself does not. The
barometer is incapable of counting the internal process
as a representing because—of course—it is incapable of
counting anything as anything. The barometer does not, in
other words, have original intentionality. We might interpret
some of its activities as representations, but it does not.

The distinction between original and derivative
intentionality comes from Haugeland.7 Intentionality is
derivative if something has it because it is conferred on it
by something else (by the agent who is doing the counting-
as):

At least some outward symbols (for instance, a
secret signal that you and I explicitly agree on)
have their intentionality only derivatively—that is,
by inheriting it from something else that has the
same content already (e.g., the stipulation in our
agreement). And, indeed, the latter might also
have its content only derivatively, from something
else again; but obviously, that can’t go on forever.
Derivative intentionality, like an image in a
photocopy, must derive eventually from something
that is not similarly derivative; that is, at least some
intentionality must be original (non derivative).8

We can distinguish between derivative and original
intentionality using the activity of counting-as:9

•	 x has derivative intentionality in representing p if
an agent y (distinct from x) counts x’s activity as x’s
representing p

•	 x has original intentionality in representing p if x
himself counts x’s activity as x’s representing p

What distinguishes an agent with original intentionality from
a mere sensory instrument is that the former counts its own
sensings as representations of a determinate external world:

There is no doubt whatever that all our cognition
begins with experience; for how else should the
cognitive faculty be awakened into exercise if not
through objects that stimulate our senses and in
part themselves produce representations, in part
bring the activity of our understanding into motion
to compare these, to connect or separate them,
and thus to work up the raw material of sensible
impressions into a cognition of objects that is
called experience?10

Original intentionality, in other words, is a type of activity
interpretation. Just as I can count his moving the horse-
shaped wooden piece from one square to another as his
moving his knight to king’s bishop three, just so I can
count the perturbations of my sensory instruments as my
representing a determinate world.11

Searle makes a similar distinction between intrinsic and
derived intentionality.12 He claims that only a certain type of
biological organism can achieve original intentionality. This
paper argues, by contrast, that a computational agent built
to satisfy a Kant-inspired cognitive architecture is capable
of achieving original intentionality. It doesn’t matter what it
is made of as long as it achieves the necessary structural
organization.

2.3 FROM SENSORY AGENTS TO COGNITIVE
AGENTS

A sensory agent is some sort of animal or device, equipped
with sensors, whose actions depend on the state of its
sensors. It might have a temperature gauge, a camera with
limited resolution, or a sonar that can detect distance. The
sensory agent is continually performing what roboticists
call the sense-act cycle: it detects changes to its sensors,
and responds by bodily movements.

A thermostat, for example, is a simple sensory agent. When
it notices that the temperature has got too low, it responds
by increasing the temperature. The thermostat has a
sense-act cycle, but it does not experience the world it is
responding to. We count the perturbations of its gauge as
representations of the temperature in the room it is in, but
it does not. The gauge movements count as temperature
representations for us, but not for the thermostat. Nothing
counts as anything for the thermostat. It just responds
blindly.

By contrast, a cognitive agent is a sensory agent with
original intentionality, who counts his sensings as his
representing an external world. He interprets his own
sensory perturbations as his representation of a coherent
unified world of external objects, interacting with each
other. This world contains one particular distinguished
object, with sensors, that the cognitive agent counts as his
body, and he counts his sensings as the stimulation of his
body’s sensors by interaction with the other objects.

One of Kant’s fundamental questions in the First Critique is:

What does a sensory agent have to do, in order
for it to count its own sensory perturbations as
experience, as a representation of an external
world?

What, in other words, must a sensory agent do to be a
cognitive agent?

Note that this is a question about intentionality—not about
knowledge. Kant’s question is very different from the
standard epistemological question:

Given a set of beliefs, what else has to be true of
him for us to count his beliefs as knowledge?

Kant’s question is pre-epistemological: he does not assume
the agent is “given” a set of beliefs. Instead, we see his
beliefs as an achievement that cannot be taken for granted,
but has to be explained:

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 43

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Understanding belongs to all experience and its
possibility, and the first thing that it does for this
is not to make the representation of the objects
distinct, but rather to make the representation of
an object possible at all.13

Kant asks for the conditions that must be satisfied for the
agent to have any possible cognition (true or false).14

2.4 CLARIFICATIONS
Kant’s question, in the first person, is

What must I do, in order to count these sensory
perturbations as my experience?

I wish to make two clarifying points. First, counting-as
can be applied to objects or activities. We can count this
wooden-shaped piece as a knight (counting an object as
another object), or we can count this physical pushing
movement as moving one’s knight to king’s bishop three
(counting an activity as another activity). In what follows, I
am talking primarily about counting-as applied to activities,
not objects. It is not that we count this group of sensors
as a red triangle, but rather that we count this plurality of
sensor activity as representing a red triangle.

Second, the activity that is counted-as is not an individual
sensor’s activity, but is typically a large plurality of sensory
perturbations. We have a huge array of independent sensors
(including 6 to 7 million cone cells in each eye). When we
count sensory perturbations as representing something,
we are interpreting a large plurality of such sensings.
Consider, by way of analogy, a beginner dance-class: under
what circumstances does this flurry of bodily movements,
this plurality of limb activities, count as waltzing?

2.5 THE AMBITION OF THE KANTIAN QUESTION
Some activity can be explained in terms of other activity.
Getting married, for example, is not a fundamental primitive
form of activity. Instead, we count saying “I do,” under
certain wedding-related circumstances, as getting married.
We do not treat castling in chess as a fundamental primitive
form of activity. Instead, we count moving two pieces,
under certain chess-related circumstances, as castling.
We explain activity a by counting activity b, under certain
circumstances, as performing activity a.

An ingrained assumption of pre-critical philosophy was
that the having of thoughts is a fundamental activity that
is not in need of a count-as explanation. There may be (at
some future time) a physical explanation of this activity in
terms of neuronal firings etc.—but there is no counts-as
explanation of this activity. This is what it means to say that
thoughts are “given”: we do not need to worry about the
origin of these thoughts—we just assume that they are
handed to us somehow.

Both empiricism and rationalism subscribe to a version of
this pre-critical assumption. Empiricists assume that the
mind is already capable of having intuitions (constructing
pre-conceptual representations of objects), and tell a story
explaining how the mind is able to get from intuitions to
conceptual thoughts. Rationalists assume that the mind is

already capable of thinking conceptual thoughts, and tell
a story explaining how the mind is capable of getting from
conceptual thoughts to empirical intuitions. Both strategies
treat some form of thinking as primitive: as not needing a
counts-as explanation.

Kant denies this assumption. He claims, to anticipate, that
all thought can be explained by a rule-constructing agent
following a procedure that satisfies certain constraints. If
the agent constructs and applies rules in a certain manner,
satisfying certain constraints, then his rule-following
activity counts as his having intuitions, forming concepts,
judging, and thinking about an external world.

Kant’s core claim is

I count this plurality of sensings as my experience if
I combine them together in the right way

What, then, does Kant mean by “combine,” and what does
he mean by “the right way”?

In section 3, I will describe what Kant means by combining.
To anticipate, there are two types of combination, achieved
by applying two types of rules (rules of composition and
rules of connection).

3 COMBINATION AS RULE APPLICATION
The activity at the heart of Kant’s theory is the activity of
combination, of bringing cognitions together, “running
through and holding together this manifoldness.”15

Now this activity of mental combination may seem
frustratingly metaphorical or ill-defined. As Wolff notes:

The inadequacies of such locutions as “holding
together” and “connecting” are obvious, and need
little comment. Perceptions do not move past the
mind like parts on a conveyor belt, waiting to be
picked off and fitted into a finished product. There
is no workshop where a busy ego can put together
the bits and snatches of sensory experience,
hooking a color to a hardness, and balancing the
two atop a shape.16

Similarly, Wittgenstein writes:

How does one teach a child (say in arithmetic)
“Now take these things together!” or “Now these
go together”? Clearly “taking together” and
“going together” must originally have had another
meaning for him than that of seeing in this way or
that.17

There are two types of combination activity.18 The first is
composition: combining intuitions using the part-of relation.
For example: if this configuration of sensors is turned on,
then I count their being-on as representing a nose. Or: if
this pattern of sensors counts as representing a nose, and
this other pattern counts as representing an eye, then the
aggregate pattern of sensors counts as representing a face.
The second type of combination activity is connection:
subsuming intuitions under marks.19 For example: if this is

PAGE 44 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

a nose, then it cannot be an ear. Or: if this is a dog, then it
must be an animal.

3.1 COMBINATION CAN ONLY BE PERFORMED
INDIRECTLY VIA THE CONSTRUCTION AND AP­
PLICATION OF RULES
But, although this combining activity is fundamental,
it cannot, according to Kant, be performed directly by
the agent. The agent cannot just bring representations
together willy-nilly. Combining is not something he can
just do. On the contrary, the only way, according to Kant,
that the agent can perform the activity of combination is
by applying general rules that it has constructed. This is
Kant’s surprising claim. We are used to thinking of social
activity as constituted (e.g., a certain set of sounds counts,
under the right conditions, as the request to shut the door).
But we are not so used to thinking of fundamental mental
activity as similarly constituted.

There are two types of rule corresponding to the two
types of combination.20 Rules of composition are rules for
combining parts into wholes, producing a part-whole graph
united under one element: the totality. A rule of composition
produces, if it applies, a defeasible rule permitting the agent
to group intuitions together.21 For example, if you count this
group of sensings as representing an ear, and this group
of sensings as representing a nose, then you may count
this aggregate group of sensings as representing a face.
Whether or not the rule-following agent makes use of this
permission will depend on his concomitant commitments.

Rules of composition are described by defeasible
conditionals. Wittgenstein stresses the defeasibility of such
conditionals when discussing what counts as a friendly
face:

When we notice the friendly expression of a face,
our attention, our gaze, is drawn to a particular
feature in the face, the “friendly eyes,” or the
“friendly mouth etc. . . . It is true that other traits in
this face could take away the friendly character of
this eye, and yet in this face it is the eye which is
the outstanding friendly feature.22

This is defeasibility in action. In this situation, the features of
this eye counts as his having a friendly face; but in another
situation, the same features plus some other additional
facial features might count as something entirely different:
mocking cruelty, for instance.

Rules of connection produce obligations to group
representations under a mark.23 So, for example, if we
count this structure as a nose, then we must also count it
as a facial part—and if we count it as a nose, then we must
not count it as an ear.

The activities of combination, then, are themselves
constituted activity:

•	 Composing (combining intuitions together using
part-of) just is applying a rule of composition

•	 Connecting (subsuming intuitions under marks)
just is applying a rule of connection

The striking Kantian claim is that this activity of combination
is not a self-sufficient action. Rather, it is like moving your
knight to king’s bishop three: it is something you can
only do indirectly by doing something else—by pushing a
wooden object in a certain direction. Similarly, requesting
Bob to shut the door is not something you can just do: you
can only do it by doing something else (perhaps by uttering
a sequence of sounds, or by pointing at the door; there are
an infinite number of different actions that could constitute
such a request, but you have to do one of them—requesting
is not something primitive you can do on your own).

All the agent can do is construct general rules of the
above form, permitting or obligating him to combine
representations in a certain way, and then apply these
rules, thus indirectly performing combinations via the
construction and application of rules.

This claim appears throughout the First Critique:

all empirical time determination must stand under
rules of general time determination.24

In other words, the activity of time-determination can only
be performed indirectly by applying a general rule:

everything (that can even come before us as an
object) necessarily stands under rules, since,
without such rules, appearances could never
amount to cognition of an object.25

Again:

Thus we think of a triangle as an object by being
conscious of the composition of three straight
lines in accordance with a rule according to which
such an intuition can always be exhibited.26

In other words, the activity of seeing the three lines as a
triangle is only achieved indirectly by the application of a
general rule for counting certain connected triads of lines
as triangles.

Why can’t a cognitive agent perform the activity of
combination directly, without needing to construct and then
apply a rule? The answer is that combining without rules
would not satisfy the condition of unification at the heart of
K’s theory. The unification condition is a set of constraints on
the construction and application of rules, and so can only be
applied to a rule-following agent. Arbitrary combination of
cognitions that was unguided by rules would not produce a
unity of experience that I could call mine. If I could combine
representations into intuitions without rules, then there
would be no self to have the intuitions.

At the beginning of the B Deduction, Kant writes:

all combination, whether we are conscious of it or
not, whether it is a combination of the manifold
of intuition or of several concepts, and in the first

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 45

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

case either of sensible or non-sensible intuition, is
an action of the understanding.27

If we recall that the understanding is the capacity for
constructing and applying rules,28 then it follows that the
only way in which we can combine representations together
is via the construction and application of rules. Again:

Thus the original and necessary consciousness
of the identity of oneself is at the same time a
consciousness of an equally necessary unity of the
synthesis of all appearances in accordance with
concepts, i.e., in accordance with rules that not
only make them necessarily reproducible, but also
thereby determine an object for their intuition,
i.e., the concept of something in which they
are necessarily connected; for the mind could
not possible think of the identity of itself in the
manifoldness of its representations, and indeed
think this a priori, if it did not have before its
eyes the identity of its action, which subjects all
synthesis of apprehension (which is empirical) to
a transcendental unity, and first makes possible
their connection in accordance with a priori
rules.29

In other words: the unity of the self is not something that
we perceive. What we perceive are objects. If we are going
to achieve unity of the self, it must be through something
that persists through the sensory flux. What persists are the
constraints on the rules we apply.

Suppose, to take the contrapositive, that we combine our
sensings together without using rules. Suppose we just
combine representations willy-nilly. Then the combined
representations will just be a “mere play,” “less even than
a dream.”30

The Kantian rule-following agent is continually constructing
the very software that it will then execute.31 It is always
constructing rules, and then interpreting those rules. In fact,
the only way that it can perceive anything is by applying
rules it has already constructed in order to make sense of
the incoming barrage of sensations.32

Instead of having a primitive ability to combine
representations at will, the rule-following agent can only do
so when it has a rule which says that it may or must do so.

The Kantian rule-follower, then, is a norm-giving agent
who solemnly sets down rules that he will then obediently
follow. He only allows himself to perform acts of mental
combination if these acts are shown to be permitted33 by
rules he has antecedently accepted.

4 CONCERNS WITH RULE-FOLLOWING
ACCOUNTS OF INTENTIONALITY

4.1 WHAT DOES KANT MEAN BY A “RULE”?
What does a sensory agent have to do to count his sensings
as representations of an external world? Kant’s answer
is that he must construct and apply rules of combination
satisfying various constraints. At the very center of Kant’s
theory is the notion of a rule-following agent.

But Kant’s appeal to rule-following has been criticized in
multiple ways. Rules have been seen as too explicit, or too
rigid, to do the work that Kant requires of them. At the very
least, we need a clear sense of what Kant means by “rule”
if we are to make sense of his theory. What does Kant mean
by “rule”?

Let us start by stating what a rule is, and then clarifying by
emphasising what it is not. A rule, for Kant, is something
general, something that applies in many different
situations.34 When it does apply, a rule results in a norm
becoming operative: a certain activity is now permitted or
obligatory. For example, if such and such circumstances
hold, you may combine this sensor and that sensor under
the mark EAR-14.

A rule, then, is a norm, operating under a condition:

Now, however, the representation of a universal
condition in accordance with which a certain
manifold (of whatever kind) can be posited is
called a rule, and if it must be so posited, a law.35

Here, Kant is clear about the generality in the “universal
condition” and the normative status (permission/obligatory)
in the “can”/“must.”

Next, let us look at what a rule is not. Firstly, a rule is not
an explicit, linguistically formulated conditional. In order to
describe a rule, we have to use language—but that does
not mean, of course, that the rule is essentially linguistically
formulated. The rule is not an explicit sentence, but an
implicit “procedure for generating a sensible intuition” that
the sentence describes.36 If the rule was merely an explicit,
linguistically-formulated conditional, then there would be
a further question of whether the linguistically formulated
antecedent itself applies. If answering this further question
itself required a rule, then we would have a regress of rule­
application.37

Secondly, a rule is not a disposition. A disposition is some
sort of probabilistic counterfactual, formulated as: if such
and such conditions hold, there is a certain probability
that a particular action will be performed. But when a rule
applies, there is a norm stating that the action must (or
may) be performed.

Much of Wittgenstein’s Investigations is concerned with
showing the problems with various inadequate conceptions
of rules. I hope I have said enough to distinguish Kant’s
sense of rule from explicit conditionals and from mere
regularities.38

PAGE 46 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

One Wittgenstinian concern with rules is that they are too
rigid and inflexible to capture real inferential patterns.
Suppose, for instance, we want to formulate a general rule
that birds fly.—Well, not all birds fly. Penguins don’t fly.—
But not all penguins don’t fly: magic penguins do fly.—But
not all magic penguins fly: magic penguins who have been
trapped in a cage don’t fly. There are an infinite number
of exceptions for any rule. If we have to specify all the
exceptions manually, our task will never be completed.39

The proper response to this is to admit that yes, of course,
a rule has an indefinite number of exceptions, but to deny
that these exceptions need to be stated explicitly in the
antecedent of the rule. A rule should be defeasible—it
states that, everything else being equal, if the antecedent
holds, then the consequent holds. But the conditional is
not strict implication but defeasible implication. We can
capture the way some rules override others by placing a
partial ordering on the defeasible rules. If our rules are
defeasible, and we can specify which rules override which
others using a partial ordering, then we don’t need to
specify all the exceptions.

Another Wittgenstinian concern with rules is that they
seem incapable of capturing penumbral concepts. Take, for
example, Wittgenstein’s famous example of “game.” What
it is to be a game is not captured once and for all by a set
of definite rules. Rather, it is a family resemblance concept:
some paradigms (chess, baseball) are central, while others
(patience, ring-a-ring-a-roses) are peripheral. Patience is
less of a game than baseball, but a game nonetheless.
How can we capture penumbral concepts in a rule-based
architecture? If we cannot capture them, this would be
a serious problem for the account proposed. But it has
recently been pointed out that a Bayesian mixture model
over discrete rule sets can capture penumbral concepts
rather well.40 The idea is that the inductive learner is trying
to construct a set of rules that best explains the data he
has received. There are various sets of rules that capture
the data with different degrees of success. The Bayesian
mixture model applies the various rule-sets in proportion
to their posterior probabilities. So if, say, there are just
three sets of rules that explain the data, and rule-set R1 has
posterior probability 0.7 and says that the newly observed
instance is a game, and rule-set R2 has posterior probability
0.2 and says the new instance is not a game, and rule-set
R3 has posterior probability 0.1 and says the new instance is
a game, then the mixture model says that the new instance
is a game with probability 0.7 + 0.1 = 0.8.

4.2 WHAT DOES KANT MEAN BY A “RULE­
FOLLOWING PROCESS”?

But Wittgenstein has another fundamental concern with a
rule-following account of intentionality that we need to
address head-on. This is the worry that a rule-following
account cannot accommodate the fact that no set of
rules can cover all possible cases. Wittgenstein draws our
attention, again and again, to cases where our rules give out:

I say “There is a chair.” What if I go up to it,
meaning to fetch it, and it suddenly disappears
from sight?—“So it wasn’t a chair, but some kind
of illusion.”—But in a few moments we see it again

and are able to touch it and so on.—“So the chair
was there after all and its disappearance was some
kind of illusion.”—But suppose that after a time it
disappears again—or seems to disappear. What
are we to say now? Have you rules ready for such
cases—rules saying whether one may use the word
“chair” to include this kind of thing? But do we
miss them when we use the word “chair”; and are
we to say that we do not really attach any meaning
to this word, because we are not equipped with
rules for every possible application of it?41

Our rules for the identification of chairs cannot anticipate
every eventuality, including their continual appearance
and disappearance—but this does not mean we cannot
recognize chairs. Or, to take another famous example, we
have rules for determining the time in different places on
Earth. But now suppose someone says:

“It was just 5 o’clock in the afternoon on the sun.”42

Again, our rules for determining the time do not cover
all applications, and sometimes just give out. They do
not cover cases where we apply time of day on the sun.
Wittgenstein’s vision is that, since any set of rules is
inevitably limited and partial, we must always continually
improvise and update. But this vision is fully compatible
with the rule-following Kantian agent, as I have described
him. Such an agent is continually constructing a new set of
rules that makes best sense of his sensory perturbations. It
is not that he constructs a set of rules, once and for all, and
then applies them rigidly and unthinkingly forever after.
Rather the process of rule construction is a continual effort.

Kant describes an ongoing process of constructing and
applying norms to make sense of the barrage of sensory
stimuli:

There is no unity of self-consciousness or
“transcendental unity of apperception” apart
from this effort, or conatus towards judgement,
ceaselessly affirmed and ceaselessly threatened
with dissolution in the “welter of appearances.”43

Kant’s rule-following agent is continually constructing such
norms, so as to best make sense of the barrage of sensory
stimuli. If he were to cease constructing these rules, he
would cease to be a rule-following agent, and would be
merely a machine.

In What is Enlightenment? Kant is emphatic that the cognitive
agent must never be satisfied with a statically defined set
of rules—but must always be modifying existing rules and
constructing new rules. He stresses that adhering to any
statically defined set of rules is a form of self-enslavement:

Precepts and formulas, those mechanical
instruments of a rational use, or rather misuse, of
his natural endowments, are the ball and chain of
an everlasting minority.44

Later, he uses the term “machine” to describe a cognitive
agent who is no longer open to modifications of his rule-set.

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 47

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

He defines “enlightenment” as the continual willingness to
be open to new and improved sets of rules. He imagines
what would happen if we decided to fix on a particular set
of rules, and forbid any future modifications or additions
to that rule-set. He argues that this would be disastrous for
society and also for the self.

In The Metaphysics of Morals, he stresses that the business
of constructing moral rules is an ongoing never-ending
task:

Virtue is always in progress and yet always starts
from the beginning. It is always in progress
because, considered objectively, it is an ideal and
unattainable, while yet constant approximation to
it is a duty. That it always starts from the beginning
has a subjective basis in human nature, which is
affected by inclinations because of which virtue
can never settle down in peace and quiet with its
maxims adopted once and for all but, if it is not
rising, is unavoidable sinking.45

Just as for moral rules, just so for cognitive rules: Kant’s
cognitive agent is always constructing new rules to make
sense of the pattern, a pattern that is new in every moment.

This sort of rule-following model has its critics. Some of
Wittgenstein’s remarks, for example, are often interpreted
as denying the possibility of any sort of rule-following
account:

We can easily imagine people amusing themselves
in a field by playing with a ball so as to start various
existing games, but playing many without finishing
them and in between throwing the ball aimlessly
into the air, chasing one another with the ball and
bombarding one another for a joke and so on.
And now someone says: The whole time they are
playing a ball-game and following definite rules at
every throw.46

Now there is a crucial scope ambiguity here. Is Wittgenstein
merely denying that there is a set of rules that captures
the ball-play at every moment? Or is he making a stronger
claim, claiming that there is some moment during the ball-
play that cannot be captured by any set of rules at all? I think
the weaker claim is more plausible: we make sense of the
world by applying rules, but we need to continually modify
our rules as we progress through time. Wittgenstein’s
passage in fact continues:

And is there not also the case where we play and
make up the rules as we go along? And there is
even one where we alter them, as we go along.

Here, he does not consider the possibility of there being
activity that cannot be explained by rules—rather, he is
keen to stress the diachronic nature of the rule-construction
process.

We have considered various interpretations of “rule” and
“rule-following” that are too rigid and inflexible to serve as
the foundation for a model of intentionality.

I have claimed that, suitably interpreted, a rule-following
account can survive the accusations of inflexible rigidity, as
long as the rules are interpreted as:

•	 conditional norms, rather than explicit linguistically
formulated conditionals

•	 conditional norms, rather than probabilistic
dispositions

•	 defeasible conditionals, rather than strict
entailments

•	 defeasible conditionals under a partial ordering,
rather than conditionals with explicit exceptions

I have further argued that our rule-following agent must
be continually expanding and modifying his rule-set: the
construction of rules is an ongoing activity that we must
continue forever.

5 CONSTRUCTING AND APPLYING RULES
The rule-following agent can perform just two types of
basic activity. He can construct a rule, and he can apply a
rule he has already constructed. I shall consider these two
activities in turn.

5.1 CONSTRUCTING RULES
Kant says it is the job of the faculty of understanding to
construct rules:

We have above explained the understanding in
various ways—through a spontaneity of cognition
(in contrast to the receptivity of the sensibility),
through a faculty of thinking, or a faculty of concepts,
or also of judgements—which explanations, if one
looks at them properly, come down to the same
thing. Now we can characterise it as the faculty of
rules. This designation is more fruitful and comes
closer to its essence. Sensibility gives us forms (of
intuition), but the understanding gives us rules. It
is always busy poring through the appearances
with the aim of finding some sort of rule in them.
. . . The understanding is thus not merely a faculty
for making rules through the comparison of the
appearances; it is itself the legislation for nature.47

Recall that there are two types of rule (rules of composition,
and rules of connection), so there are two types of rule
construction. Constructing rules of composition is forming
perceptual rules, rules of apprehension for counting
particular configurations as parts of objects. For example,
the agent adds a new rule that, if some of its sensors
satisfy such and such a condition, it may count them as
representing an ear.

Constructing rules of connection is forming concepts or
making judgments. Forming a concept is constructing a set
of rules that describe the inferential connections between
this concept and others. So, for example, to form the
concept of “tree,” we need rules of composition for saying
under what sensory conditions we can count an intuition as
a tree. But we also need rules of connection for linking this

PAGE 48	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 49

Kant argues convincingly that it cannot be a further rule
that tells us which to apply:

Now if it [general logic] wanted to show generally
how one ought to subsume under these rules, i.e.,
distinguish whether something stands under them
or not, this could not happen except once again
through a rule. But just because this is a rule, it
would demand another instruction for the power of
judgement, and so it becomes clear that although
the understanding is certainly capable of being
instructed and equipped through rules, the power
of judgement is a special talent that cannot be
taught but only practiced. Thus this is also what is
specific to so-called mother-wit, the lack of which
cannot be made good by any school.50

If we needed rules to determine which rules to apply, then
those determining rules would themselves need further
rules to determine their application, and so on, generating
a vicious regress.

Kant defines the imagination as the faculty responsible for
applying the rules that the understanding has constructed.
As the duck-rabbit picture shows, the imagination has
some choice about how to apply the rules of composition:

Now since all of our intuition is sensible, the
imagination, on account of the subjective condition
under which alone it can give a corresponding
intuition to the concepts of understanding, belongs
to sensibility; but insofar as its synthesis is still an
exercise of spontaneity, which is determining, and
not, like sense, merely determinable, and can thus
determine the form of sense a priori in accordance
with the unity of apperception, the imagination
is to this extent a faculty for determining the
sensibility a priori.51

The imagination belongs to sensibility because the only
things it can operate on are the sensings that sensibility
has provided. But it belongs to spontaneity in that it has a
choice about which rules of composition to apply.

This is why Kant says that both understanding and
imagination involve spontaneity—the understanding has a
choice about which rules to construct; and then, once it
has constructed them, the imagination has a further choice
about which rules of composition to apply:

It is one and the same spontaneity that, there
under the name of imagination and here under the
name of understanding, brings combination into
the manifold of intuition.52

Note that it is only when applying rules of composition that
the imagination has choice about which to apply. When it
comes to applying rules of connection, the rule-following
agent is obligated to perform the required mental activity.

concept with others. So if we count it as a tree, we must
also count it as a plant, and must not count it as a biscuit.
Some of the connection rules involved in characterising a
concept do more than simply state that one concept is a sub-
concept of another, or that one concept excludes another.
Some of them relate the concept to another concept only
conditionally—dependent on the existence of external
factors. For example: “If the weather gets cold, trees lose
their leaves,” “If a tree gets no water, it perishes.”48 Some
of the conceptual inference rules, in Kantian terms, are
hypothetical rather than categorical.

Constructing rules of connection is also what is involved in
making judgments. If we form the judgment that “All men
are mortal,” this is just to adopt the rule of connection:
if I count a cognition as a man, then I must also count it
as mortal. But this inferential understanding of judgment
applies to categorical statements just as much as to
hypothetical ones: to form the judgment that “Caesar is a
general” just is to adopt the rule: if I count a cognition as
Caesar, then I must also count it as a general.

This is why Kant says that the faculty of constructing rules
is also the faculty of concept-formation and judging: both
concept-formation and judging are just special cases of the
more general ability to construct rules.49

5.2 APPLYING RULES
Next, I shall turn to the process of applying the rules that
the understanding has constructed. Kantian rules, as
defined above, are norms operating under a condition.
Rules are not explicit linguistic conditionals, where there
is a further question whether the antecedent applies.
Rather, the rule is itself responsible for determining when
it applies. It contains a procedure for determining whether
or not it applies. The rule-as-procedure applies itself. If the
rule applies in a particular situation, a norm is operative:
either the agent must combine the representations under
a certain mark (if the rule is a rule of connection), or
it may do so (if it is a rule of composition). If it is a rule
of composition, then all the agent knows is that he may
perform the combination activity—he does not have to do
so. Consider, for example, Jastrow’s famous duck-rabbit
(Figure 1). Focus on the lines on the left of the image. We
have two rules of composition that apply to these lines: we
can count these lines as a mouth, or as a pair of ears. Now
there is a rule of connection that prevents us from applying
both: if something is a mouth, then it is not a pair of ears.
We may apply either rule of composition—but we must not
apply both. What makes us decide which to apply?

16 Richard Evans

that one concept excludes another. Some of them relate the concept to another con-
cept only conditionally - dependent on the existence of external factors. For example:
“If the weather gets cold, trees lose their leaves”, “If a tree gets no water, it perishes”
(Kant and the Capacity to Judge, p.145). Some of the conceptual inference rules, in
Kantian terms, are hypothetical rather than categorical.

Constructing rules of connection is also what is involved in making judgements.
If we form the judgement that “All men are mortal”, this is just to adopt the rule of
connection: if I count a cognition as a man, then I must also count it as mortal. But
this inferential understanding of judgement applies to categorical statements just as
much as to hypothetical ones: to form the judgement that “Caesar is a general” just
is to adopt the rule: if I count a cognition as Caesar, then I must also count it as a
general.

This is why Kant says ([A126], quoted above) that the faculty of constructing
rules is also the faculty of concept-formation and judging: both concept-formation
and judging are just special cases of the more general ability to construct rules.

5.2 Applying rules

Next, I shall turn to the process of applying the rules that the understanding has
constructed. Kantian rules, as defined above, are norms operating under a condi-
tion. Rules are not explicit linguistic conditionals, where there is a further question
whether the antecedent applies. Rather, the rule is itself responsible for determining
when it applies. It contains a procedure for determining whether or not it applies. The
rule-as-procedure applies itself. If the rule applies in a particular situation, a norm is
operative: either the agent must combine the representations under a certain mark (if
the rule is a rule of connection), or it may do so (if it is a rule of composition). If it
is a rule of composition, then all the agent knows is that he may perform the combi-
nation activity - he does not have to do so. Consider, for example, Jastrow’s famous
duck-rabbit (Figure 1). Focus on the lines on the left of the image. We have two rules

Fig. 1 Jastrow’s duck-rabbit

of composition that apply to these lines: we can count these lines as a mouth, or as a
pair of ears. Now there is a rule of connection that prevents us from applying both:

Figure 1. Jastrow’s famous duck-rabbit.

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

 5.3 HAVING AN INTUITION VERSUS FORMING A
JUDGMENT

The rule-following agent has two distinct types of thought:

•	 Thinking an object (having an intuition)

•	 Thinking a proposition (forming a judgment)

These two distinct types of representation are achieved by
two distinct types of activity:

•	 An intuition is the representation formed by the
activity of combination, by applying rules it has
already constructed

•	 A judgment is the representation formed by
constructing a rule

Sellars clarifies the distinction between the two types
of representation by using different types of syntactic
units: an intuition (thinking an object) is represented by a
noun-phrase, while a judgment (thinking a proposition) is
represented by a sentence. He starts by noting that some
philosophers interpret “seeing as” in terms of a conjunction
of a perception and a thought:

This suggested to some philosophers that to see a
visual object as a brick with a red and rectangular
facing surface consists in seeing the brick and
believing it to be a brick with a red and rectangular
facing surface:

This is a brick which has a red and rectangular
facing surface

Notice that the subject term of the judgement was
exhibited above as a bare demonstrative, a sheer
this, and that what the object is seen as was placed
in an explicitly predicate position, thus “is a brick
which has a red and rectangular facing surface.”53

He prefers instead to characterize intuitions by noun-
phrases:

I submit, on the contrary, that correctly represented,
a perceptual belief has the quite different form:

This brick with a red and rectangular facing
surface

Notice that this is not a sentence but a complex
demonstrative phrase. In other words, I suggest
that in such a perceptually grounded judgement
as:

This brick with a red and rectangular facing
surface is too large for the job at hand

the perceptual belief proper is that tokening of a
complex Mentalese demonstrative phrase which
is the grammatical subject of the judgement as
a whole. This can be rephrased as a distinction

between a perceptual taking and what is believed
about what is taken.54

In my terms, there are two activities:

•	 combining/apprehending/intuiting (i.e., applying
rules)

•	 forming judgments (i.e., constructing rules)

Combining produces an intuition (thinking an object) which
is described by a noun-phrase, such as

This brick with a red and rectangular facing surface

Constructing a rule produces a judgment (thinking a
proposition) which is described by a sentence, such as

This brick with a red and rectangular facing surface
is too large for the job at hand

The underlying rule that is adopted for a judgment such as
this could be expressed as something like

For any intuition, if you count it as the same brick
as this brick with a red and rectangular facing
surface then you must also count it as too large for
the job at hand

Kant believed that all judgment-formation is rule-adoption:

Judgements, when considered merely as the
condition of the unification of given representations
in a consciousness, are rules.55

This claim is easiest to see in the case of universally
quantified judgments. Judging that “All metals are
divisible” just is adopting the conditional norm

If you count an intuition as a metal, then you must
also count it as divisible.

But Kant did not just analyse universally quantified
judgments in terms of rule-adoption—he applied this
account of judging as rule-formation consistently across
the board to all types of judgment. Forming the singular
judgment that “Caius is mortal” just is adopting the rule

If you count an intuition as Caius, then you must
also count it as mortal

This applies equally to sentences involving demonstratives:
forming the judgment that “This brick with a red and
rectangular facing surface is too large for the job at hand”
just is adopting the rule

For any intuition, if you count it as the same object
as this brick with a red and rectangular facing
surface then you must also count it as too large for
the job at hand

If, later, I have another intuition of the brick (perhaps from
another angle, and further away), and count this intuition as

PAGE 50	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

representing the same object as my earlier intuition, then
I must apply the rule I have adopted, and also count this
new intuition as representing a brick that is too large for
the job at hand. This new combination, which I am forced
to perform because of the rule I have adopted, is a new
intuition, that would be described by a noun-phrase rather
than a sentence:

This brick, with a red and rectangular facing surface,
which is too large for the job at hand

5.4 CONSTRAINTS ON THE CONSTRUCTION AND
APPLICATION OF RULES

Kant’s cognitive agent is a rule induction system that makes
sense of its sensory perturbations by constructing and
applying rules. Given that there are two types of activity
(constructing and applying rules), and two types of rule
(rules of composition and rules of connection), we have a
square of operations:

Rules of Composition Rules of Connection

Constructing Forming perceptual Forming concepts and
rules judgments

Applying Forming intuitions Inferring further
properties of objects

Recall our original questions:

What must I do, in order to count these sensory
perturbations as my experience?

The rule-following agent is a central part of Kant’s answer:

•	 A sensory agent is a cognitive agent if he counts
his sensings as representing an external world

•	 He counts these sensings as representing an
external world if he combines those sensings
together in the right way

•	 He combines his sensings together in the right
way if he constructs and applies a set of rules that
satisfy a set of (as yet unspecified) constraints

The next question, then, is what set of constraints on
the construction and application of rules are severally
necessary and jointly sufficient for counting this plurality
of sensory perturbations as representing an external world
(and thereby achieving original intentionality)?

In the Schematism and the Principles, Kant provides a list
of constraints on the self-legislating agent, and argues
that these are all and only the constraints that need to be
satisfied for the agent to achieve original intentionality.
These arguments are difficult and dense. I attempt to
summarize them in A Kantian Cognitive Architecture. The
basic idea is that an agent can only achieve intentionality
if it combines its cognitions together into a unity. The only
relation in which all cognitions can be unified is time.

Unifying our cognitions in time involves four aspects:
constructing moments in time, generating intermediate
moments of time, providing a total ordering on moments
of time, and generating the totality of time (by excluding
moments that are impossible). Each of these four aspects
of time determines constraints on the construction and
application of rules. We move from one top-level constraint
(Kant calls it the “supreme principle”), that our cognitions
be unified, into four sub-constraints (the four aspects of
time-determination), and from each of these four sub-
constraints, we generate specific constraints on the types
of rules that can be constructed and further constraints on
the results of applying these rules.56

6 CONCLUSION
Some of the most exciting and ambitious work in recent
philosophy57 attempts to re-articulate Kantian (and post-
Kantian) philosophy in the language of analytic philosophy.
Now this re-articulation is not merely window-dressing.—It
is not merely dressing up old ideas in the latest fashionable
terminology.—Rather, analytic philosophy, when done well,
achieves a new level of perspicuity. Saying it again, at this
level of clarity and precision, is worth saying again.

My aim is to re-articulate Kant’s theory at a further level
of precision, by reinterpreting it as a specification of a
computational architecture.

Why descend to this particular level of description? What
could possibly be gained? The computational level of
description is the ultimate level of precise description.
There is no more precise you can be: even a mere computer
can understand a computer program. Computers force us to
clarify our thoughts. They admit no waffling or vagueness.
Hand-waving is greeted with a compilation error, and a
promissory note is returned, unread.

The advantage of re-articulating Kant’s vision in
computational terms is that it gives us a new level of
specificity. This is, in fact, the final level of specificity. There
is no more precise we can be.

The danger is that, in an effort to shoe-horn Kant’s theory into
a particular implementable system, we distort his original
ideas to the point where they are no longer recognisable.
Whether this is indeed the unfortunate consequence, the
gentle reader must decide.

I have formalized (a particular interpretation of the first half
of) the First Critique as a specification of a computational
architecture. I have implemented this architecture as a
computer program and tested it in two domains.

In one domain, the sensory agent has to make sense of
its sensory readings in a simple two-dimensional grid
world. The rule-induction agent is forced to construct rules
that make sense of the barrage of sensory data. In doing
so, it creates a unified cognition, combining momentary
apprehensions into persisting objects that change over
time, objects that change according to intelligible rules,
and interact with other objects according to intelligible
rules.

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 51

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

The second experimental domain is a verbal reasoning task.
The Kantian machine is given a sequence of symbols and
has to predict the next element in the series. For example:
find the next element in the sequence:

a, k, b, k, k, c, k, k, k, ...

The Kantian machine makes sense of these sequences by
constructing rules that, when applied, satisfy the various
Kantian constraints. Surprisingly, the Kantian machine is
able to achieve human-level performance in these verbal
reasoning tasks.58

ACKNOWLEDGEMENTS

I am grateful to Barnaby Evans, Joel Smith, Marek Sergot, Murray
Shanahan, Peter Boltuc, and Tom Smith for helpful discussions.

NOTES

1.	 This paper is a companion to Richard Evans, A Kantian Cognitive
Architecture (IACAP, 2016), which goes into the technical details.

2.	 Wittgenstein, Investigations, §206.

3.	 Ibid., §185.

4.	 For Wittgenstein, the community of “we” just is the set of
individuals who count-as in the same way.

5.	 Wittgenstein, Investigations, §200. My emphasis.

6.	 Stanley, Cavell, The Claim of Reason (Oxford: Oxford University
Press, 1979), 36.

7.	 John Haugeland, “The Intentionality All-stars,” Philosophical
Perspectives (1990): 383–427.

8.	 Ibid., 385.

9.	 Note that I am not defining intentionality in terms of the activity
of counting-as (which would be uninformative). Rather, I am
using counting-as to distinguish between original and derivative
intentionality. Later, counting-as will itself be explicated in terms
of the construction and application of rules.

10. Immanuel Kant, 	The Critique of Pure Reason, B Edition, 1. My
emphasis.

11.	 In other words, we can only represent a world because we can
count some activity as mental activity. Therefore, the ability
to count activity as intentional (representational) behavior is
necessary to be able to think a world at all. This has interesting
consequences for scepticism about others’ minds. The sceptic
suggests it is possible for us to be able to make sense of a purely
physical world of physical activity, and asks with what right we
assume that some of this activity is mental activity. But if the
above is right, the capacity to count activity as mental activity is
necessary to think anything at all—there is no intentionality-free
representation of the world, in terms of bare particulars. There
is always already the ability to see activity as intentional activity
before we can see anything.

12. John Searle, The Rediscovery of the Mind (Cambridge, MA: The
MIT Press, 1992).

13. Kant, The Critique of Pure Reason, A Edition, 199; B Edition, 244–
45.

14. Ibid., A158, B197.

15. Ibid., A99.

16. Robert P. Wolff, Kant’s Theory of Mental Activity: A Commentary
on the Transcendental Analytic of the Critique of Pure Reason
(Harvard University Press, 1964), 126.

17.	 Wittgenstein, Investigations, §208e.

18. See Kant, The Critique of Pure Reason, B201n.

19.	 Kant says little about what a “mark” is, given its load-bearing
role in his theory. “Merkmal” is typically translated as “mark,”
but it can also be translated as “feature.” A mark is not a shared

linguistic symbol. It is rather what computer scientists call a
“gen-sym”: a generated symbol, an atomic identifier. A mark is
an uninterpreted symbol, on which the only primitive operation
that you are given is a procedure for testing identity: the agent
can tell, when given two marks m1 and m2, whether or not
m1 = m2. A mark, on its own, is just an uninterpreted symbol. But
by constructing inferential rules that relate this mark to others,
we can elevate it into a concept.

20. Kant, The Critique of Pure Reason, B201n.

21.	 See ibid.: “the synthesis of a manifold of what does not
necessarily belong to each other.”

22. Brown Book, 145–46.

23.	 See Kant, The Critique of Pure Reason, B201n: “the synthesis of a
manifold of what does not necessarily belong to each other.”

24. Ibid., A177, B220.

25. Ibid., B198, A159.

26. Ibid., A105.

27.	 Ibid., B130.

28. Ibid., A126.

29.	 Ibid., A108.

30. Ibid., A112.

31.	 In computational terms, think of a meta-interpreter that is able
to construct pieces of code as data, and then execute these new
pieces of code.

32. Kant makes the same point in the Metaphysical Deduction: “The
same function that gives unity to the different representations in
a judgement also gives unity to the mere synthesis of different
representations in an intuition, which, expressed generally,
is called the pure concept of the understanding. The same
understanding, therefore, and indeed by means of the very same
actions through which it brings the logical form of a judgement
into concepts by means of the analytical unity, also brings a
transcendental content into its representations by means of the
synthetic unity of the manifold” [A79, B104-5]. In other words,
there is only one process (a process of constructing and applying
rules) which explains both how we form judgments and how we
form intuitions.

33.	 An activity is shown to be permitted if there is a rule that applies
that shows that you may or must do it. Must implies may.

34. Kant, The Critique of Pure Reason, A106.

35. Ibid., A113.

36. Beatrice Longuenesse, Kant and the Capacity to Judge (Princeton
University Press, 1998), 50.

37.	 See, e.g., Robert B. Brandom, Making It Explicit: Reasoning,
Representing, and Discursive Commitment (Harvard University
Press, 1994), 20 ff.

38. Thereby steering between the Scylla of regulism (rules as
linguistically explicit conditionals) and the Charybdis of
regularism (rules as mere statistical regularities). See Brandom’s
Making It Explicit, Chapter 1, Section 3.

39.	 In AI, this is called the qualification problem.

40. Joshua B. Tenenbaum, Rules and Similarity in Concept Learning
(NIPS, 1999).

41. Wittgenstein, Investigations, §80.

42. Ibid., §351.

43. Longuenesse, Kant and the Capacity to Judge, 394.

44. Immanuel Kant, “What Is Enlightenment?” 	On History (1784):
3–10.

45. Kant, The Metaphysics of Morals (1797) 6:409. My emphasis.

46. Wittgenstein, Investigations, 83.

47.	 Kant, The Critique of Pure Reason, A126.

48. Longuenesse, Kant and the Capacity to Judge, 145.

PAGE 52	 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

49.	 Kant, The Critique of Pure Reason, A126, quoted above.

50. Ibid., A133, B172.

51. Ibid., B151.

52. Ibid., B162n.

53.	 Wilfrid Sellars, “The Role of Imagination in Kant’s Theory of
Experiencei” in Categories: A Colloquium, ed. H. W. Johnstone,
Jr. (Pennsylvania State University, 1978), 455.

54. Ibid., 456.

55. Kant, Prologomena to Any Future Metaphysics, 1783, §23.

56. For details of the precise constraints involved, see Evans, 	A
Kantian Cognitive Architecture; Longuenesse, Kant and the
Capacity to Judge; and Wayne Waxman, Kant’s Anatomy of the
Intelligent Mind (Oxford University Press, 2013).

57.	 Robert B. Brandom, Between Saying and Doing: Towards an
Analytic Pragmatism (Oxford University Press, 2008); Robert B.
Brandom, From Empiricism to Expressivism (Harvard University
Press, 2015); Wilfrid Sellars, Science and Metaphysics: Variations
on Kantian Themes (New York: Humanities Press, 1968); Sellars,
“The Role of Imagination in Kant’s Theory of Experience”; and
Tenenbaum, Rules and Similarity in Concept Learning.

58. For more details of the approach and the experiments, please
see Evans, A Kantian Cognitive Architecture.

REFERENCES

Brandom, Robert B. Making It Explicit: Reasoning, Representing, and
Discursive Commitment. Harvard University Press, 1994.

———. Between Saying and Doing: Towards an Analytic Pragmatism.
Oxford University Press, 2008.

Brandom, Robert B. From Empiricism to Expressivism. Harvard University
Press, 2015.

Cavell, Stanley. The Claim of Reason. Oxford: Oxford University Press,
1979.

Evans, Richard. A Kantian Cognitive Architecture. IACAP, 2016. To
appear in Philosophical Studies, 2017.

Haugeland, John. “The Intentionality All-stars.” Philosophical
Perspectives (1990): 383–427.

Heidegger, Martin. Kant and the Problem of Metaphysics. Indiana
University Press, 1997.

Kant, Immanuel, and Arnulf Zweig. Correspondence. Cambridge
University Press, 1999.

Kant, Immanuel, and Paul Guyer. The Critique of Pure Reason.
Cambridge University Press, 1781 and 1787.

Kant, Immanuel. “What Is Enlightenment?” On History, 1784: 3–10.

Longuenesse, Beatrice. Kant and the Capacity to Judge. Princeton
University Press, 1998.

———. Kant on the Human Standpoint. Cambridge University Press,
2005.

Mulhall, Stephen. Inheritance and Originality: Wittgenstein, Heidegger,
Kierkegaard. Oxford University Press, 2001.

———. On Being in the World: Wittgenstein and Heidegger on Seeing
Aspects. Routledge, 2014.

Parsons, Charles. “The Transcendental Aesthetic.” The Cambridge
Companion to Kant 3 (1992): 62.

Searle, John. The Rediscovery of the Mind. Cambridge, MA: The MIT
Press, 1992.

Sellars, Wilfrid. Science and Metaphysics: Variations on Kantian Themes.
New York: Humanities Press, 1968.

———. “Some Remarks on Kant’s Theory of Experience.” The Journal of
Philosophy (1967): 633–47.

———. “The Role of Imagination in Kant’s Theory of Experience.” In
Categories: A Colloquium, edited by H. W. Johnstone, Jr. Pennsylvania
State University, 1978.

Tenenbaum, Joshua B. Rules and Similarity in Concept Learning. NIPS.
1999.

Waxman, Wayne. Kant’s Anatomy of the Intelligent Mind. Oxford
University Press, 2013.

Wittgenstein, Ludwig, and Peter Docherty. The Blue and Brown Books:
Preliminary Studies for the “Philosophical Investigations.” Wiley-
Blackwell, 1991.

Wittgenstein, Ludwig. Philosophical investigations. John Wiley and
Sons, 2010.

Wolff, Robert P. Kant’s Theory of Mental Activity: A Commentary on
the Transcendental Analytic of the Critique of Pure Reason. Harvard
University Press, 1964.

I Am, Therefore I Think
Don Perlis
UNIVERSITY OF MARYLAND

ABSTRACT
I argue that reflexive self-knowledge is the basis of all
knowledge, and that a reflexive-self formulation of mind
and consciousness—perhaps unlike formulations couched
in more vague in terms of subjectivity, felt experience, or
what it’s like to be—appears that it might be studied fairly
directly as a kind of engineering problem.

INTRODUCTION
Much has been written on the nature of knowledge, and its
relation to mind. And the same term—knowledge—is used
with abandon in artificial intelligence. In the fall of 2015 I
gave a series of three talks in Birmingham and Lyon, on a
variety of topics including mind, meaning, and the history
of AI. In subsequent discussions with Peter Boltuc, I came
to think that knowledge is a powerful unifying theme to
all three talks, and Peter suggested that I might turn those
talks into a paper with such a focus.

As a result this paper may take what might seem like a
curiously rambling back-and-forth tour covering many
areas, which I hope the reader will forgive. In addition, the
paper is deliberately of a rather impressionistic style, not
a formal analytic argument. My view is that the ideas and
concepts are in many cases vague enough (and likely will
remain so until such time as we actually scientifically solve
much of the mind-body problem) that the most fruitful
approach is to suggest promising avenues for research
rather than precise definitions and sharp derivations. So
hopefully my paper can be read as providing suggestive
hints; and that is why I employ a rather loose style that jams
together what traditionally are taken as distinct topics. But
I think the evidence points to a promising synthesis and
unifying direction for investigation across the cognitive
sciences. My conclusions will be that while knowledge is
an especially narrow kind of thing (essentially a form of
self-knowledge), it is also very specially at the center of
cognition; and that this can be studied computationally.

PART I: AI RETURNS TO ITS ROOTS; BUT WITH A
GLARING CHASM

Artificial intelligence currently is a vast field largely fueled
by its eye-catching applications, from the chess-playing

SPRING 2017 | VOLUME 16 | NUMBER 2 	 PAGE 53

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

prowess of Deep Blue to the growing presence of robots
in many walks of life.

But I think AI may now—with some very major advances
under its belt—be returning to its roots as the science of
cognitive agents, with the exalted aim of a computational
understanding of the mind. Here is a brief history:

1960–1985: Youthful ambitions, during which were
introduced the situation calculus, the frame problem,
SHAKEY the robot, and nonmonotonic reasoning, among
other advances; but also during which there was a keen
interest in building agents with fairly general cognitive
abilities (but which proved vastly harder than anticipated).

1985–2010: Age of specialization, in which AI splintered
into many separate areas with their own conferences and
journals, major applications appeared, and little was heard
about cognition. Still, there was also beginning work on
time-sensitive reasoning and metacognition.

2010–present: Renewed interest in cognitive agents;
natural-language processing (NLP) and robotics and vision
and reasoning and planning and learning starting to come
together.

But something key still seems missing. Without further ado,
I give my view: we need to get a computational grasp on
reflexive self. In fact, most AI systems have no notion of self
at all—no metacognition, for instance. They simply perform,
and do not take themselves into account. Thus, most NLP
dialog programs are not able to answer questions about
what they just said, or what their words mean; they do
not model themselves as agents with purposes. Yet some
research does incorporate such constructs, and there does
not seem to be any fundamental puzzle about this effort;
metareasoning is the principal method.

Reflexive self, however, is something even more: it is the
immediate present “I,” the self-knowing self. One doesn’t
experience pain and then come to know one is in pain. The
having of the pain is the knowing it. This is controversial,
but not without supporters. It is to be distinguished from
reflective or introspective or biographical self. We will
return to reflexive self later; but notice that the notion of
knowledge has crept in.

And in fact one construct central to most of AI—the so-
called knowledge base (KB)—leaves much to be desired.
Most AI systems have no way to relate items in their KB
to what those items supposedly stand for in the world;
any such relation is in the minds of the human designers.
Thus in some strong sense, AI systems today do not know
anything.

So this leads us to ask what knowledge is, and how it might
be seen as a kind of computational process. We close this
section with an aside on the holy grail of cognitive science:
what is it to be conscious? From the Latin, conscious (of) =
with knowledge (of). I suggest that a (reflexive) conscious
state of a subject S is a state that S knows itself to be in,
where that very knowing is part of that same state. (Here
state is to be regarded as a kind of process, rather than an

instantaneous instant.) A not uncommon view is that self-
knowledge is a more complex form of knowledge that is
preceded by knowledge of things more generally. But, as
will unfold later, I think this is exactly backwards.

PART II: WHAT DOES IT TAKE FOR A PIECE OF
DATA TO BE KNOWN?

A knowledge base is a repository. Without something
additional, there is no more reason to regard a KB item as
something known (to be true) than as something false or as
a mere syntactic entity without meaning. What is missing,
it would seem, is a knower that relates the symbolic item
to its meaning in the world. (This of course is the famous
issue of intentionality, the directedness of cognitive items.)
Boxology—putting items in boxes and labeling them as
knowledge, goals, intentions, and so on—does not settle
or explain anything; yet sadly it is the current standard in AI.

So, what constitutes a knower, and how can anything be
known? Can one know anything? It seems easy (e.g., Hume)
to doubt anything—yet Descartes insists that there is one
thing one can know for sure: that one is carrying out an act
of thinking. (To my mind, his further claim that therefore
he exists pales by comparison.) One cannot think and not
know it.

As an aside, here is a related kind of argument due to
Kripke (in Naming and Necessity, pp 153-4): pain requires a
subject, an entity that can feel, can know the pain. But mere
C-fiber firings cannot supply such a feeler/knower. Thus
pain (and by extension, consciousness) is more than firing
of C-fibers. But (pace Kripke), a whole brain-full of fibers
firing in the right ways might be able to supply a feeling
subject. That after all is the whole question. The reason the
C-fibers argument works is that no one imagines C-fibers in
themselves—sending signals in one direction—is enough.
Kripke’s argument—if applied to the whole brain—is close
in spirit to zombie-arguments, which we return to at the
end.

But back to knowing, especially since consciousness seems
to be a kind of knowing.

PART III: PLATO TO GETTIER AND BACK TO
DESCARTES

The nature of knowledge has been discussed and argued
about for millennia. The JTB—justified true belief—theory
is attributed to Plato and was held in wide acceptance until
Gettier’s bombshell counterexamples in the 20th century.
By now others have extended this almost to a cottage
industry for creating such cases. The underlying issue is
this: knowledge seems to require some kind of actual
connection (or acquaintance, in Russell’s terms) with the
facts; it cannot be a lucky guess to count as knowledge.
And this is supposed to be provided by the justification.
But standard sorts of justifications seem to fail, surprisingly.

The best example I know of is due to Mason Remaley (who
at the time was an undergraduate in my Intro to AI class). It
goes like this: You have parked your car outside your office
building. While you are at work in the office, unknown to

PAGE 54 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

6

In the figure, both H and the green hand (encircled in red) are internal
representations, and the agent takes H to stand for that hand, which in turn is
mapped neuronally and uniquely to the actual hand. So Searle is right in a way: the
standard sort of symbol processing cannot supply meaning; it takes a special sort,
that has self-representations.

What has this to do with knowledge? Everything! Knowledge requires meaning,
hence self. And what is self? I am suggesting it is special kind of processing (that
perhaps it is even like something for it to be underway): it knows itself immediately,
as part of that very processing. It is the most basic form (and perhaps definition) of
knowing – the self. What the self (always) knows is itself as that very process of
knowing.

Part VI: Mysteries, or engineering?

Have we just replaced one mystery (or two: knowledge and consciousness)
with another? I think there is some progress here. For the reflexive-self formulation
– perhaps unlike formulations in terms of subjectivity, felt experience, or what it’s like
to be – appears that it might be studied fairly directly as a kind of engineering
problem (pace Chalmers 1996, who insists consciousness has no function). By
analogy, consider James Watt’s governor that self-regulates.

you a landslide occurs in the parking lot and carries away
many of the cars, but not yours. You still believe your car
is parked there, and you have excellent reason to believe
this, and it is true. Yet we would be loathe to say you know
your car is parked there.

Such Gettier-style examples have led some (e.g., Dretske) to
suggest that perhaps there is no such thing as knowledge,
only beliefs of varying degrees of plausibility. This may
seem convincing: isn’t all so-called knowledge inferred,
concluded on reflection, and thus error-prone?

We return to Descartes.

Some have argued that his premise “I think”—or cognize—
is flawed: How does he conclude he thinks? Isn’t he instead
merely justified in concluding that “there is thinking”? But
how can he conclude this unless he somehow knows about
that thinking; and how can he know about it other than by
the very doing of the thinking? Consider what it would mean
for there to be thinking going on, but no one at all knows
about it; this would not seem to be thinking. (Indeed, one
might go further and claim that the present thinking act is
the I/self of that moment.1) And this does not seem to be
introspective knowing—the thinking
directly and immediately involves
the act of knowing about itself going
on. And a form of reflexive self has
returned.

PART IV: PERRY AND “I”
John Perry gives a famous example
of coming to realize it is he himself
whose shopping cart has a torn bag of
sugar making a mess. (He is wheeling
his shopping-cart along the aisles
of a store, going faster and faster
in an attempt to notify an unknown
shopper ahead of him—following the
trail of sugar that is getting thicker
and thicker—until he red-facedly
understands.) This experience leads
him to ask what knowledge he has gained in coming to
this realization. And he finds it very difficult to explain the
“I”—the self-known self—in terms not involving that same
construct. It seems irreducible.

Are we then stuck? Is this perhaps much the same as the
explanatory gap between consciousness and physical
causation? In a later section I propose a way out.

PART V: BELIEF AND MEANING
Again from Descartes, whatever knowledge is, it is self-
knowledge that precedes other forms. And it is a strong
form of knowledge, not mediated by reflection, inference,
perception.

So self-knowledge precedes JTB; one first knows (oneself)
and then infers regarding justifications and so on. But
then what is belief? This brings us right back to boxology:
a belief-box settles nothing. There has to be meaning for
there to be belief. One cannot believe mere symbols; a
belief is always about something.

Figure 1.

This recalls the problem of intentionality, and also that of
external reference. But Putnam’s Theorem shows that there
is no unique truth-preserving mapping between words/
sentences and the world.2 For any such mapping, many
others do just as well. This seems to rule out any sensible
account of meaning (despite Putnam’s own earlier work,
see below). But this argument leaves out a key component:
meaning is given by meaners—individuals who ascribe
meaning to their words and sentences. We are connected
to the world via our bodies; and (at least some of) our words
and thoughts are canonically connected to our bodies via
specific neuronal pathways.

Indeed earlier on, both Putnam and Kripke—in the so-
called causal-history theory of reference—refer to dubbers,
namers, baptisers, who assign word-meanings that are
then later borrowed by other members of a linguistic
community.3 They do not provide a detailed account of
such initial dubbing/naming activities; but such an account
would seem to be far more fundamental to language
and meaning than the borrowings that flow from them. I
suggest that the same bodily connection referred to above
may be the basis for naming and meaning overall.

Now this is what Searle said cannot
be done (by a computational system).
Mere symbol processing (which is
syntactic) cannot provide semantics.
Unless it can. But how can it? What is
being suggested here is that a self
(embedded in the world) is what is
needed, to supply the canonical
connections.

In Figure 1, both H and the green
hand (encircled in red) are internal
representations, and the agent takes
H to stand for that hand, which in turn
is mapped neuronally and uniquely
to the actual hand. So Searle is right
in a way: the standard sort of symbol
processing cannot supply meaning;

it takes a special sort, that has self-representations.

What has this to do with knowledge? Everything! Knowledge
requires meaning, hence self. And what is self? I am
suggesting it is special kind of processing (that perhaps it
is even like something for it to be underway): it knows itself
immediately, as part of that very processing. It is the most
basic form (and perhaps definition) of knowing—the self.
What the self (always) knows is itself as that very process
of knowing.

PART VI: MYSTERIES, OR ENGINEERING?
Have we just replaced one mystery (or two: knowledge and
consciousness) with another? I think there is some progress
here. For the reflexive-self formulation—perhaps unlike
formulations in terms of subjectivity, felt experience, or
what it’s like to be—appears that it might be studied fairly
directly as a kind of engineering problem.4 By analogy,
consider James Watt’s governor that self-regulates (see
Figure 2).

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 55

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

Figure 2. Watt governor.

As increased steam-flow causes
the arms to rotate with increased
speed, they are pushed upwards
by the vector sum of a force
pulling along the arms (upward
and inward) and an outward
effective centrifugal force; and the
new higher position then results
in a steam-opening being partially
closed thereby reducing the
flow of steam and thus slowing
the rotation, leading to an up-
down cycle until a steady state
is achieved. This seems magical,
sense-defying, until one studies
it. It does indeed have a kind of
self-control. To be sure, it is not
reflexive (or reflective) in any relevant sense. But it provides
a compelling metaphor and food for thought. It does have
dual causality—the steam causes the rotation, which also
reduces the steam.

What might be a similarly practical example of reflexivity?
How about the utterance, “I am now speaking English”?
Note the difference from “This sentence is in English.” The
latter does not refer to a speaker; there is no performance
relevant to its meaning. But the former is uttered by an
agent as it reasons about its very same uttering-in-progress.
It might be tricky to implement this in a computer or robot;
but it is something one can work on.

Here is another example: how can one tell one is speaking?
It surely is not by hearing ones own voice. We might hear
our voice and take it to be a recording. We know we are
speaking by the mere fact of engaging in the action (e.g.,
issuing the commands to our vocal cords). The actual
speech might be impeded (say by an overly dry throat), but
we still know we are engaged in the process, because we
are (voluntarily) undertaking it.

This too can be implemented in a robot—in fact, a robot
inadvertently taught my research team this lesson. We had
programmed it so that whenever it heard the word “Julia”
it would look for her, point, and say “I see Julia.” Yet often
it would perform this as expected, and then go on to do it
over and over every few seconds. It took us several minutes
to figure out that it was responding to hearing itself say
“Julia.” We had not thought to provide it with a way to
distinguish self-utterances from others. In fact, it had no
notion of self at all. But there was ready-to-hand a solution,
from neuroscience: efference copy.5

Efference copy is a copy of a motor command (sent to
muscles) from the brain; the copy is kept in the brain,
providing a kind of working memory of what the agent
is doing, and which can be used to make corrections if
performance deviates from goals. The most famous example
is VOR—vestibular-ocular reflex—in which ones eyes rotate
in their socket as ones head turns, so that one retains a
stable image on the retina when gaze is fixed on an object.
A similar mechanism is hypothesized to be at work in all
voluntary actions. We were able to build efference copy
into our robot, so that it now can distinguish between cases

of hearing its own utterances and
those of others; or more precisely,
between cases of its undertaking
or not undertaking utterances. Is
this then a conscious robot, or a
“self-knowing” robot in any serious
sense? Surely not. But it seems
headed in the right direction.

Again, if we are able to get an NLP
program simply to use “I” correctly
in a wide range of circumstances,
we might then be a lot further along.
And again, this does not seem
fundamentally mysterious, rather
a tough engineering problem. But
this too will not be enough.

PART VII: IMAGINATION
One needs a real-time and real-space connection with the
world, in order to have meaning (and thus in order to have
knowledge). This is implicit in what was said above, but it
needs to be brought out. Here is an example due to Patrick
Winston.6

Consider a table-saw with the warning “Do not wear gloves
when using this saw.” This might be puzzling—after all,
gloves are usually protective—until we visualize what
might happen: in our mind’s eye we see the glove being
caught by a saw-tooth and then pulled (along with our
hand) into the spinning blade. This inner eye is key to our
ability to anticipate possibilities. Essentially it amounts to
imagination, without which we would not be able to think,
hence not to understand, and thus not to have knowledge
(except in the unhelpful boxology sense).

This notion of thinking is not ordinary logic.7 It combines
symbolic processing with perceptual processing, perhaps
akin to virtual/augmented reality and even a kind of
internal self-modeling activity (e.g., seeing oneself pushing
ones hand forward). Knowledge then might amount to a
Cartesian awareness of self-in-mental-action. And yet, this
may turn into a (self-based) engineering problem.

Perhaps then a reflexive-self based process is our only real
knowledge—we can’t be wrong about our own ongoing
imaginative acts (Descartes; not his dualism but simply
his cogito in reverse: in knowing ourselves—i.e., in self­
predicating—we can be sure that we know). A so-called
knowledge base is a mere storehouse of codes, not known
in any useful sense until triggered into imaginative acts of
anticipation.

PART VIII: SOME TENTATIVE CONSEQUENCES
A number of consequences seem to follow from the above
perspective.

For one, we can suggest a conclusion about Frank Jackson’s
color-deprived Mary. She is supposed to know “all physical
facts” about the brain, and yet never have actually been in
the presence of anything red. Does she then know what
it is like to see red? On the theory of knowledge being
proposed here, if she knows all facts about the brain then

PAGE 56 SPRING 2017 | VOLUME 16 | NUMBER 2

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

her brain actually triggers codes for all such facts into her
imagination. And then plausibly yes, she will know the
actual experience of seeing red.8

If this is hard to swallow, consider the following variant:
Suppose you have never seen a regular pentagon, living in
a world of right angles. You have read (un-illustrated) books
about pentagons, describing them verbally in detail. Now
will you know what a pentagon looks like? That depends on
your brain’s imaginative powers, which in turn depends on
connections between different envisioning capacities and
abilities to retain envisioned information (e.g., up to five
linear elements) at once. It is a fact about pentagons and
suitable brains that a certain “look” of the former can be
imagined by the latter with never an external pentagon to
look at; and other brains cannot. Those latter brains then do
not have all the facts about brains and pentagons.

Second: In an online video, Kevin O’Regan poignantly asks
(of any proposed theory that consciousness consists in X):
what is it about X that makes it conscious? This is a powerful
question, that leaves many theories in the dust (they offer
no explanation of felt experience). But without intending
to sound facile or glib, I suggest: self-knowingness is
consciousness, and what makes it conscious is that very
self-knowingness. This at least is not obviously lacking in
plausibility. Self-knowingness does seem tightly linked to
consciousness, and has been so linked going back at least
to Descartes. Moreover, it is the sort of thing that gives
us handles to work with, and might allow an engineering
approach that could shine much light.

Third: Block’s P-consciousness and A-consciousness now
become the same thing.9 One cannot be a knowing self
and yet not know that.10

Fourth: In Davidson’s “Knowing One’s Own Mind” there is a
thought-experiment in which a creature suddenly is formed
in a swamp by random accident, but coincidentally molecule­
for-molecule identical to an actual human (Davidson
himself).11 The Swampman will have consciousness,
thoughts, feelings, etc, right off the bat in virtue of its
having the identical self-engineering as a human. But (in
agreement with Davidson) many of its thoughts will fail
to refer externally (in the customary sense), at least until
Swampman has gone on to have relevant experiences (such
as meeting Davidson’s friends, etc.); and some thoughts
might never completely refer as long as Swampman takes
himself to have Davidson’s past history. But this is no great
oddity; all of us have misconceptions about ourselves and
the world, including failed reference.

Fifth: Determinism and freedom and time. Physics is what
it is: either deterministic or not (e.g., quantum-mechanical
uncertainty). But our decisions do result from a complex
(physical) process that includes (and depends on) our
deliberations. Thus we are indeed (partially) the makers of
our own fate. This is not independent of physical law but
rather part and parcel of it: we too are the physics, and
our deliberations are no illusion; without our deliberative
activity, our behavior would be far different. This may be
less so in the case of minor short-term decisions such as
whether to lift a finger as a clock-hand sweeps by during

an experiment;12 but for instance in deciding on whether
to buy a house a great many things enter in over a long
time-period, and the final moment of “choice” is a result of
all the previous efforts (conscious and otherwise). We are
as determined as the world (which may be determined or
not), but our choices are real and effective internal parts of
ourselves and of that world. And this brings us to zombies.

PART IX: ZOMBIES AND SUMMARY OF THE
OUTLOOK BEING PRESENTED

We can also draw conclusions about zombies, and this will
perhaps dramatize the nature of the view being presented
here. To set the stage, here is a simple argument that
zombies cannot exist (but I note that the literature on
zombies is large and sophisticated, and it is unlikely that
those who have studied this topic will be swayed by my
rendering): When we say (honestly) that we are feeling a
throbbing pain in our toe, it normally is the case that (this
is premise #1) we are in fact feeling such a pain, and also
that (this is premise #2) our saying so is based causally on
that felt experience itself (that is, we would not have said
so had we not been feeling the pain). But then our zombie
equivalent will also say the same thing while not having
any such experience (by definition, being a zombie). So its
saying so cannot have that same causal basis.

But this is a contradiction: its neural firings are identical
to ours, and since its firings are a sufficient cause for its
utterance then they must also be so for ours. If we accept
the two premises above, then we are forced to conclude
that there can be no zombies.

Now, a zombie-loving philosopher may complain about
premise #2 and say that is the issue: whether our felt
experiences can cause anything physical, as opposed
to being mere epiphenomena, feely-freebies, so to
speak. Yet we do consult our experience—hmm, does my
toe hurt? Let me attend to how my toe feels—ah, yes—there
it is, that throbbing pain, and gosh, it’s getting worse. To
deny that such a statement is in part due to the existence
of such a felt experience appears to deny that words have
their ordinary meaning. As indeed they do not for zombies.
A zombie cannot mean anything by its words, since it has
no self, no “I” to take itself to intend something. And thus
a zombie also cannot know anything. (This of course is a
modest conclusion since we already argued that there can
be no zombies.)

The above is contentious—in that it hinges on intuitions. But
on the self-knowing theory discussed here, a self-knowing
physical process is its own experience, hence again there
can be no zombies. Any physical arrangement of the
proposed sort already involves any associated feelings, and
it will be inconceivable (once we know the details) that it
could be otherwise. Pace Kripke (again), pain is like heat:
the physics is what it is. It simply is that we do not yet have a
clear enough grasp on the kind of complex interactions that
can occur in a brain—any more than in 1900 chemists had
a clear (or even dim) sense of self-reproducing molecules.
Thus the outlook I am presenting is this: Argument is not
needed; all (!) we need to do is the (hard) engineering work
to discover how self-knowingness occurs.13

SPRING 2017 | VOLUME 16 | NUMBER 2 PAGE 57

APA NEWSLETTER | PHILOSOPHY AND COMPUTERS

ACKNOWLEDGEMENTS

I wish to thank the following for many helpful comments in the writing
of this paper (but no errors or misconceptions are to be attributed to
them—I stubbornly ignored some of their advice!): Peter Boltuc (and
various of his students), Justin Brody, Jean Dickason, Nick Humphrey.

NOTES

1.	 See D. Perlis, “Consciousness as Self-Function,” Journal of
Consciousness Studies 4, nos. 4-5 (1997): 509–25; and D. Perlis,
“Five Dimensions of Reasoning in the Wild,” AAAI, 2016.

2.	 H. Putnam, “Models and Reality,” Journal of Symbolic Logic 45,
no. 3 (1980): 464–82.

3.	 H. Putnam, “Meaning and Reference,” Journal of Philosophy 70,
no. 19 (1973): 699–711; and S. Kripke, Naming and Necessity
(Harvard University Press, 1980).

4.	 Pace Chalmers (D. Chalmers, The Conscious Mind [Oxford
University Press, 1996]), who insists consciousness has no
function.

5.	 J. Brody, D. Perlis, and J. Shamwell, “Who’s Talking—Efference
Copy and a Robot’s Sense of Agency,” AAAI Fall Symposium, 2015.

6.	 P. Winston, “The Strong Story Hypothesis and the Directed
Perception Hypothesis,” AAAI Fall Symposium, 2011; see also N.
Humphrey, A History of the Mind (Simon and Schuster, 1992) for
a related view.

7.	 Perlis, “Five Dimensions of Reasoning in the Wild.”

8.	 See P. Boltuc, “Mary’s Acquaintance,” APA Newsletter on
Philosophy and Computers (Fall 2014): 25–31; and D. Perlis,
“Consciousness and Complexity,” Annals of Mathematics and
Artificial Intelligence 14 (1995): 309–21, for related views.

9.	 N. Block, “On a Confusion about a Function of Consciousness,”
Behavioral and Brain Sciences 18 (1995): 227–87.

10. See N. Humphrey, “A Riddle Written on the Brain,” 	Journal of
Consciousness Studies 23, nos. 7-8 (2016): 278–87, for a similar
view; but compare P. Boltuc, “The Philosophical Issue in Machine
Consciousness,” International Journal on Machine Consciousness
1, no. 1 (2009): 155–76.

11.	 D. Davidson, “Knowing One’s Own Mind,” Proceedings and
Addresses of the American Philosophical Association 60 (1987):
441–58.

12. B. Libet, C. A. Gleason, E. W. Wright, and D. K. Pearl, “Time of
Conscious Intention to Act in Relation to Onset of Cerebral
Activity (Readiness-Potential). The Unconscious Initiation of a
Freely Voluntary Act,” Brain 106 (1983): 623–42.

13.	 J. Brody, M. Cox, and D. Perlis, “The Processual Self as Cognitive
Unifier,” Proceedings, Annual Meeting of the International
Association for Computing and Philosophy, 2013.

REFERENCES

Block, N. “On a Confusion about a Function of Consciousness.”
Behavioral and Brain Sciences 18 (1995): 227–87.

Boltuc, P. “The Philosophical Issue in Machine Consciousness.”
International Journal on Machine Consciousness 1, no. 1 (2009): 155–76.

Boltuc, P. “Mary’s Acquaintance.” APA Newsletter on Philosophy and
Computers (Fall 2014): 25–31.

Brody, J., M. Cox, and D. Perlis. “The Processual Self as Cognitive
Unifier.” Proceedings, Annual Meeting of the International Association
for Computing and Philosophy, 2013.

Brody, J., D. Perlis, and J. Shamwell. “Who’s Talking—Efference Copy
and a Robot’s Sense of Agency.” AAAI Fall Symposium, 2015.

Chalmers, D. The Conscious Mind. Oxford University Press, 1996.

Davidson, D. “Knowing One’s Own Mind.” Proceedings and Addresses

of the American Philosophical Association 60 (1987): 441–58.

Gettier, E. “Is Justified True Belief Knowledge?” Analysis 23 (1963):

121–23.

Humphrey, N. A History of the Mind. Simon and Schuster, 1992.

Humphrey, N. “A Riddle Written on the Brain.” Journal of Consciousness

Studies 23, nos. 7-8 (2016): 278–87.

Jackson, F. “Epiphenomenal Qualia.” Philosophical Quarterly 32 (1982):

127–36.

Kripke, S. Naming and Necessity. Harvard University Press, 1980.

Libet, B., C. A. Gleason, E. W. Wright, and D. K. Pearl. “Time of Conscious

Intention to Act in Relation to Onset of Cerebral Activity (Readiness-

Potential). The Unconscious Initiation of a Freely Voluntary Act.” Brain

106 (1983): 623–42.

Perlis, D. “Consciousness and Complexity.” Annals of Mathematics and

Artificial Intelligence 14 (1995): 309–21.

Perlis, D. “Consciousness as Self-Function.” Journal of Consciousness

Studies 4, nos. 4-5 (1997): 509–25.

Perlis, D. “Five Dimensions of Reasoning in the Wild.” AAAI, 2016.

Putnam, H. “Meaning and Reference.” Journal of Philosophy 70, no. 19

(1973): 699–711.

Putnam, H. “Models and Reality.” Journal of Symbolic Logic 45, no. 3

(1980): 464–82.

Searle, J. “Minds, Brains, and Programs.” Behavioral and Brain Sciences

3, no. 3 (1980): 417–57.

Winston, P. “The Strong Story Hypothesis and the Directed Perception

Hypothesis.” AAAI Fall Symposium, 2011.

CALL FOR PAPERS
It is our pleasure to invite all potential authors to submit to the
APA Newsletter on Philosophy and Computers. Committee
members have priority since this is the newsletter of the
committee, but anyone is encouraged to submit. We
publish papers that tie in philosophy and computer science
or some aspect of “computers”; hence, we do not publish
articles in other sub-disciplines of philosophy. All papers
will be reviewed, but only a small group can be published.

The area of philosophy and computers lies among a number
of professional disciplines (such as philosophy, cognitive
science, computer science). We try not to impose writing
guidelines of one discipline, but consistency of references
is required for publication and should follow the Chicago
Manual of Style. Inquiries should be addressed to the
editor, Dr. Peter Boltuc, at pboltu@sgh.waw.pl

PAGE 58	 SPRING 2017 | VOLUME 16 | NUMBER 2

mailto:pboltu%40sgh.waw.pl?subject=

	From the Editor
	From the Chair
	Featured Article
	What Is Computer Science?

	Articles
	Why Think That the Brain Is Not a Computer?
	From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to C
	Kant on Constituted Mental Activity
	I Am, Therefore I Think

	Call for Papers

