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Studies have long indicated that effort increases focus on the attentional target and increases
distraction inhibition and this type of cognitive control enhances performance (Kahneman,
1973). However, more evidence also shows that a reduction in effortful control can also improve
performance, such as in creativity, implicit learning and sensorimotor skills, consistent with the
multi-action plan (MAP) model in sport performance (Beilock et al., 2002; Bortoli et al., 2012; Ding
et al., 2014a; Stillman et al., 2014; Bertollo et al., 2015, 2016; Amer et al., 2016). We use one form
of mindfulness meditation - integrative body-mind training (IBMT) in our series of randomized
studies. IBMT emphasizes no effort or less effort to control mind and opening awareness to internal
and external stimuli with an attitude of acceptance and equanimity. Our results show that as few as
5 sessions of IBMT (20–30 min per session) can improve attention, positive emotion and diverse
cognitive performance including creativity, working memory, conflict resolution and learning
(Tang et al., 2007, 2014, 2015; Posner et al., 2010; Ding et al., 2014a,b; Fan et al., 2014, 2015; Tang,
2017). This raises the possibility that less effortful attention or effortless attention can contribute to
performance in activities involving creativity, sensorimotor skills or implicit learning.

Based on recent findings, we propose a framework for a relationship among attention, effort
and optimal performance, as shown in Figure 1. Optimal performance often refers to an effortless
and automatic, flow-like state of performance. Mindfulness (mindful acceptance) regulates the
focus of attention to optimal focus (balanced attention) on the core component of the action,
avoiding too much attention that could be detrimental for elite performance (Bertollo et al., 2016).
Balanced attention is a trained state that can optimize any particular attentional activity on the
dual-process spectrum. One can exert minimal effort to maintain balanced attention, resulting in a
large impact on performance in cognition, positive emotion, health and quality of life. To optimize
tasks that require high effort and explicit processing such as working memory, one can reallocate
attentional resources, resulting in more efficiently focused attention and less effort. To optimize
tasks that require low effort and implicit processing such as creativity or sensorimotor skills, one can
bring diffused attention to the task, resulting in more control and monitoring. Through balanced
attention, different activities with different cognitive demands can be optimized with a balance of
implicit and explicit processing, the appropriate level of attention and effort. Balanced attention has
also been called the “being” state (Tang and Posner, 2009, 2014; Tang et al., 2015; Tang, 2017).

What are the underlying mechanisms supporting these distinct processes? Neuroimaging
research has suggested that explicit processing with more effort, such as working memory
tasks, often recruits the frontoparietal network (Takeuchi et al., 2010; Tang and Posner, 2009,
2014; Ekman et al., 2016; Nissim et al., 2017). The frontoparietal network mainly includes
the lateral frontal and parietal cortex and supports continuous effort. It should be noted that
it is impossible to maintain a steady and continuous effort because attention states are in
constant fluctuation regardless of ongoing task demands (Petersen and Posner, 2012; Tang, 2017;
Tang et al., 2017). Studies have shown that attentional lapses lead to poor performance on
the task and are associated with midline frontal areas such as anterior cingulate cortex (ACC)
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FIGURE 1 | Attention, effort, and optimal performance. Balanced

attention improves performance in both high effort, explicit processing tasks

and low-effort, implicit processing tasks.

(Adam et al., 2015; Chang et al., 2015). In contrast, implicit
processing with less effort, such as creativity and sensorimotor
tasks, also involves the ACC, insula and striatum (Tang and
Posner, 2009, 2014; Ding et al., 2014a,b). The ACC is involved
in monitoring and maintaining a state by reducing conflict with
other states; the insula involves switching between states; and the
striatum is associated with the reward experience and habitual
responses to make state maintenance easier (Tang et al., 2012,
2015; Tang and Tang, 2013). Meanwhile, the ACC and insula
also collaborate to support the role of the autonomic nervous
system (ANS) in maintaining the effortless state, which has
parasympathetic dominance indexed by lower skin conductance
response (SCR) and greater high frequency heart rate variability
(HRV) (Tang et al., 2009; Tang, 2017). In contrast, sympathetic
dominancemore often occurs in effortful processing that requires
alertness and activation of the frontoparietal network (Tang et al.,
2012, 2009; Tang and Posner, 2014). These findings are consistent
with the results of optimal and suboptimal performance in sports
(Bertollo et al., 2013, 2015).

Studies have elucidated the interaction and dynamics between
the central nervous system (CNS) and ANS (Critchley et al.,
2003; Tang and Posner, 2009; Tang et al., 2009; Critchley and
Harrison, 2013; Tang, 2017). For example, we examined the
brain and physiological changes at rest before, during, and
after 5 sessions of IBMT and active control—relaxation training.
During and after training, compared to the relaxation control,
the IBMT group showed significantly greater parasympathetic
activity in each of these measures including heart rate,
respiratory amplitude and rate, HRV and SCR. During and
after IBMT, differences in HRV and EEG power suggested
greater involvement of the ANS. Imaging data showed greater
ACC, striatum and insula activity in the IBMT group. Most

importantly, frontal midline ACC theta was also correlated
with high-frequency HRV, suggesting control by the ACC over
parasympathetic activity (Tang et al., 2009; Tang, 2017). These
results indicate that brief IBMT induces better regulation of the
ANS by a midline ACC brain system, suggesting the interaction
and coordination of body and mind following IBMT, a form of
mindfulness that optimizes activities for maximal self-control,
attention and efficiency with minimal effort (Tang, 2017). Other
studies have shown that parasympathetic activity is associated
with the flow state (de Manzano et al., 2010; Keller et al., 2011;
Thomson and Jaque, 2011; Jacobs, 2014), a prime example of
balanced attention in which high control is achieved with low
subjective mental effort (Bruya, 2010). We call this mechanism
“parasympathetic-attentional interaction” or “PA mind-body
interaction.”

In summary, growing empirical evidence indicates that PA
mind-body interaction often triggers optimal performance and
is one possible mechanism for optimizing performance (Tang
and Posner, 2009, 2014; Bruya, 2010; Tang et al., 2012; Tang,
2017). PA mind-body interaction can also have a large impact on
positive emotion, health benefits, quality of life and self-growth.
The field of body-mind practice is rapidly growing. However
the majority of research focuses on health and behavior effects
(and related brain changes) from training (Lutz et al., 2008; Tang
et al., 2015). There has been less effort to scientifically investigate
the underlying mechanisms (e.g., key biomarkers) of mind-body
interaction and optimal performance when practitioners engage
and maintain an effortless state. The current perspective aims
to address this research gap. By integrating evidence from
neuroimaging with evidence from physiology we propose the
key brain markers in the ACC-insula-striatum network and the
key physiological markers in the parasympathetic regulation of
HRV and SCR. This effort will also shed light on how humans
learn and practice physical and mental training effectively.
Future studies can examine the relationship between PA mind-
body interaction and short-term or long-term training such as
mindfulness and its underlying mechanisms, using psychosocial,
physiological, multimodal neuroimaging, and genetic
methods.
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