Mathematical Concepts: Fruitfulness and Naturalness !

Jamie Tappenden

[Speaking of a hypothetical mineralogist who rejects color as a
basis for classification, preferring crystalline structure or chemi-
cal composition:] The introduction of such a concept as a motif
for the arrangement of the system is, as it were, a hypothesis
which one puts to the inner nature of the science; only in fur-
ther development does the science answer; the greater or lesser
effectiveness of a concept determines its worth or worthlessness.
(Dedekind [1854] p.429)

1 Introduction

The preceding paper urged the “Port Royal Principle”: “nothing is more
important in science than classifying and defining well... [though] it depends
much more on our knowledge of the subject matter being discussed than on
the rules of logic.” This paper will present, in broad outline, a position on
mathematical “classification and definition” that is true to the principle and
that is interesting both as history and as independently defensible philosophy.
An orienting reference is a seemingly innocent passage from an 1899 textbook
on elliptic functions:

...the peculiarities of Riemann’s treatment lie first in the abun-
dant use of geometrical presentations, which bring out in a flex-
ible way the essential properties of the elliptic functions and at
the same time immediately throw light on the fundamental val-
ues and the true relations of the functions and integrals which
are also particularly important for applications. Second, in the
synthetic treatment of analytic problems which builds up the ex-
pression for the functions and integrals solely on the basis of their
characteristic properties and nearly without computing from the

'I'm grateful to Paolo Mancosu for comments and patience. Some of this material, in
an early form, was discussed in a talk at the Kansas State University philosophy depart-
ment, and I'm grateful to the participants for helpful discussion. The influence of Hilary
Putnam’s paper “What is Mathematical Truth?” (Putnam (1975)) runs throughout the
discussion of evidence for conjectures. Some of this material was presented to a conference
in Princeton in honor of Paul Benacerraf; I'm grateful to the participants - especially Paul
Benacerraf, Steven Wagner, John Collins, John Balfe and Hilary Putnam - for comments.



given element and thereby guarantees a multifaceted view into
the nature of the problem and the variety of its solutions. (Stahl
[1899] p.III italics mine)

We expect to encounter such seemingly generic motivational writing in
the prefaces of textbooks, and we tend to flip past to get to the meat. But
these words are worth pausing over: through the topic (Riemann’s lectures),
the means of expression (especially the phrases in italics, which were recog-
nized, red-letter clichés), and the orientation toward “essential properties”
gained through the “synthetic presentation” the author displays his alle-
giance to a methodology and tacit metaphysics of concepts that had been
percolating and crystalizing for fifty years, beginning with the revolutionary
techniques of Riemann, and winding through the work of his followers (no-
tably Dedekind).? These principles of method were widely enough known
that Hilbert needed no further explication for every mathematician to know
what he meant when he said that in his approach to higher reciprocity laws:
“I have tried to avoid Kummer’s elaborate computational machinery so that
here too Riemann’s principle may be realized and the proofs driven not by
calculations but by thought alone.” (Hilbert [1897/1998] p.X)

Though the occasional methodological asides are helpful as benchmarks,
it is really in the mathematics itself that the power and scope of the revolu-
tion in method is manifest. The core idea was that the decision about what
to regard as a fundamental property should be seen as part of the problem to
be solved rather than as antecedentently evident. (For example, it might be
held as evident that + and x are fundamental concepts and others should be
reduced to them. (This was basically Weierstrass’ view.) By contrast on the
revolutionary view it is possible, and indeed in many cases was concluded,
that other concepts should be taken to be basic and representations in terms
of + and x treated as relatively accidental.) The evidence that the selection
of basic categories was correct was grounded in the fruitfulness of the rele-
vant formulations for subsequent research. The theoretical outlook and the
resulting mathematics have had a profound effect on the emergence of the
styles of mathematical reasoning that evolved in the subsequent century.

2Riemann’s basic point of view was interpreted quite differently by different follow-
ers. Inspired by Riemann, Felix Klein/Sophus Lie, Alfred Clebsch/Ludwig Brill/Max
Noether and Dedekind initiated distinct traditions of mathematics, with different implicit
conceptions of method. I believe that the features of Riemann’s understanding that I'm
describing here are common coin among Riemann’s followers, but I will restrict attention
here to Riemann as Dedekind understood him, postponing some scholarly subtleties for
another time.



My goal here is to describe the Riemann - Dedekind approach to “essential
characteristic properties” and indicate some of the mathematics that gives
it substance. Along the way, I'll spell out why I regard this as a promising
and philosophically profound strategy for arriving at an account of natu-
ralness in mathematical classification that can coalesce with an account of
properties and definitions in general. To set the stage, I'll first discuss the
current situation in the general metaphysics of properties as it pertains to
the naturalness of mathematical properties. The point of the context-setting
will be to explain why the way things currently stand - especially the role of
metaphysical intuitions, and the stock of examples used as reference points
(plus the potential examples that are not used) - make it difficult to address
mathematical properties in an illuminating way.

2 Analytic Metaphysics: The “Rules of the
Game” and the Method of Intuitions

Even if we acknowledge the Port Royal principle of the first essay, and en-
sure that our account of mathematical “classification and definition” pays
due heed to “the subject matter being discussed”, we should work toward
a synoptic treatment of mathematical and non-mathematical cases. It’s un-
likely that mathematical and non-mathematical reasoning are so disjoint as
to exclude interesting points of overlap. In recent decades there has been a
revival of old-fashioned metaphysical debates about the reality of universals,
the artificial /natural distinction, and cognate topics. It might seem initially
promising to draw on these debates to illuminate the questions appearing
in the survey essay. In this section I'll illustrate why the methods accepted
as defining the “rules of the game” in the relevant areas of contemporary
analytic metaphysics are unlikely to help us as things currently stand. This
will force a different perspective on the problem; I'll explore one possibility
that centers on inductive practices of conjecture and verification in the sub-
sequent section.

Consider again the example from the survey essay: In algebraic number
theory, the definition “a # 1 is prime if, whenever a | bc then a | b or a | ¢”
is, in an important way, the “correct”, or “proper” definition of “prime num-
ber”, and the school definition “n # 1 is prime if it is evenly divided by only
1 and n.” is comparatively accidental. As in the suggested comparison - the
change in the definition of kinetic energy made necessary by relativity theory



- we need to explain what kind of advance in knowledge it is to replace one
definition with another for reasons of the relevant kind. Similarly, we need to
clarify what we learn when we arrive at a proper choice of basic categories.
Two hundred years of research into number theory reveal that the Legendre
symbol determines a central number-theoretic function, carving the subject
at its joints, despite the disjunctiveness of the definition that introduces it.
But just what it it we are learning when we learn this?

Implicit in the suggestion that finding the right definition or arriving at
the proper choice of basic categories can be an advance in knowledge, is the
rider that the choice of definition (or of primitive concepts to be defined)
can be in some sense “objectively” correct. We are really learning something
about the subject we are studying - not just something about ourselves and
our cognitive peculiarities - when we learn the “best” definition of “prime”,
or when we learn that the concept of scheme forms the basis of “the language
of algebraic geometry”.®> What we are learning may be difficult to spell out
with precision, of course. To spell it out we may need in addition to clarify
some of the other ideas this volume is devoted to (such as mathematical un-
derstanding or explanation or purity of method). But the suggestion is that
there is some tenable idea of objective correctness to be spelled out.

Of course, this sets a stumbling block: to clarify the suggestion of the last
paragraph, we need to flesh out what we mean by “objective”. And to be
sure, both in the present narrow context and in general, this is not easy to
do. Much of the discussion of the objectivity of classifications seems to draw
more on some unanalyzed intuitive idea of what “objectivity” must involve,
and less on a clearly worked out doctrine or principled analysis. I am in no
position to give anything like a principled, general account of a useful concept
of “objectivity” here, so my goal will be more modest: to come up with some
tangible sufficient conditions for judging a classification to be “objectively
correct” in a way that will allow mathematical and non-mathematical cases
to be treated uniformly.

For orientation, we’ll need to look to the ways that the intuitive idea is
unpacked in general metaphysics. The work of David Lewis is useful at this
point because it helps bring out what is at stake. Lewis famously adopted a
striking change in direction in the early 1980’s when he argued that we need

3Here I am echoing a common way of speaking of schemes, as incorporated for example
in the title of the Eisenbud and Harris monograph Schemes: The Language of Modern
Algebraic Geometry



to accept a class of properties distinguished as universals.* Lewis’ mode of
argument is characteristic of his style: he points to the amount of work that
the recognition of distinguished properties does, which would be threatened
if they were to be given up. This work includes the entries in this list (of
course, many of these are close relatives):

1. Underwriting the intuitive natural/artificial distinction in clear cases.

2. Founding judgements of simplicity and similarity (which in turn informs
the selection of referents of variables for Ramsey sentences.)

3. Evaluations of general truths as lawlike or not.
4. Supporting assignments of content (for example in “Kripkenstein” cases”).

5. Underwriting a distinction between intrinsic and non-intrinsic proper-
ties.

6. Singling out “intended” interpretations in cases of underdeterminacy
(for example in connection with Léwenheim - Skolem indeterminacy
arguments).

7. Distinguishing correct from incorrect inductive predictions in “grue”
type examples.

As noted in the introductory essay, there don’t appear to be significant
differences in the listed respects between selecting distinguished properties in
mathematics and in areas dealing with contingent properties of contingently
existing things. Two of the cases Lewis treats (Lowenheim - Skolem indeter-
minacy and “Kripkenstein”) directly address mathematical examples. The
“Kripkenstein” problem is, in a simple form, the problem of explaining how
we come to mean the regular 4+ function when we say “plus”, since the spe-
cific computations a speaker has performed in a lifetime will always also be
compatible with infinitely many other bizarre “quus” functions from pairs of
numbers to numbers. Lewis’ suggestion is that an answer can begin with the
simple observation that interpretations tend to pick out natural candidates
rather than wacky ones. The case of inductive prediction might appear to
indicate a disanalogy, but as I noted in the introduction, this isn’t so. We'll
revisit induction in more detail later in this paper. Causation, of course, is a
potential spoiler, but it’s complicated for reasons indicated in the first essay,
and so we'll set it aside here.

4See Lewis [1983] and [1984].



It is worth making a remark about terminology, to avoid the appearance
of prejudging any issues, since “natural” has an unfortunate dual connota-
tion. A choice of categories can be “natural” if it possesses a certain kind
of appropriateness or correctness, (as when one says “¢ is the natural map”,
or “this interpretation is the natural way to understand Kant’s remarks on
page 177), or if it pertains to the physical world (as when one speaks of
reducing talk of mental properties to talk of natural properties). Discussion
of “natural properties” in metaphysics seem to me most, well, naturally un-
derstood as drawing on the former meaning in the cases that are relevant
here (such as when “plus” is counted as more natural than “quus”, or “grue”
less natural than “green”) and so it would be natural to speak of “natural
properties” in mathematics as well. But it might be objected that speaking
of “natural” mathematical functions, definitions, domains, proofs, general-
izations, etc. gains rhetorical effect misleadingly from the “pertaining to
nature” meanings.> This is a fair complaint, but here I'll have to simply
note it as something to keep in mind. It would be difficult to adequately
introduce new terminology to disambiguate until we have a clearer sense of
what we want the terminology to do. So at this early stage, I'll stick with
the common use of the word “natural” and its cognates - ambiguities and all
- while keeping alert to the potential for fallacies of equivocation.

If course, part of what gives force to the Lewis treatment is the sheer
intuitive umph of some simple common-sense cases. It is hard to deny the
prima facie pull of the suggestion that however we understand “objective” it
is an objective fact that two electrons A and B are more like one another than
either of them is like the moon, or the Eiffel Tower, or a moose. This gives
urgency to the quest to find an account to either underwrite this intuitive
judgement or explain it away. Something like this immediate intuitive force
attends the suggestion that “plus” is somehow objectively natural or simple
in a way that “quus” isn’t. However, such an appeal to the intuitive force of
a judgement can hardly suffice for more than preliminary orientation. This
is true not just because it is inadequate, in general, to rely solely on brute
intuition in philosophical argument, but because the force of some of the bet-
ter mathematical examples of prospective natural categories ( like “genus”
or “scheme”) and definitions (“prime”) requires training to appreciate. If we
can make sense of the idea that categories can be “objectively mathemati-
cally natural” in a way that relates to ongoing mathematical investigation

°I'm grateful to conversations with David Hilbert (the Chicago philosopher, not the
Gottingen mathematician) and Hartry Field for helping me see that the ambiguities in
the word “natural” could become a distraction in this context.



we’ll need to make room for the fact that we can discover that a category is
in fact natural even if it seemed to lack intuitive naturalness at the outset.
Indeed, in some cases (like the Legendre symbol) the prima facie impression
may be that the definition is an obvious disjunctive gerrymander.

Some of the presuppositions about mathematical activity that appear to
frame the discussion in the general metaphysics literature present a system-
atic obstacle to incorporating the relevant mathematical details. It is difficult
to arrive at a compelling diagnosis with just vague handwaving about name-
less authors. For illustration, I'll look at one representative treatment by Ted
Sider [1996] in which mathematical examples are taken to support metaphys-
ical conclusions about the naturalness of properties. Of course, restricting
attention to one article gains concreteness but has the potential to sacrifice
scope. However, it seems fair to take Sider’s paper as a paradigm. Sider
is recognized as a significant researcher in the field, the paper appears in a
major journal and is widely cited, and my impression is that the intuitions
it appeals to are on the whole regarded as acceptable moves by contributors
to these debates. TI'll leave much of the intricacy of Sider’s careful article
unmentioned since my concern here is just to use certain aspects of his ar-
guments to illustrate ways in which the presuppositions and accepted moves
of current analytic metaphysics make it difficult to address mathematical
judgements informatively. In particular, I want to bring out that a general
problem with the method of appealing to intuitions about the objectivity of
judgements and theories - the extreme context-sensitivity of these intuitions
- is especially acute here because of the isolation of metaphysical speculation
about mathematics from ongoing mathematics.

Sider sets out to refine an argument of Armstrong ([1986], [1989]) and
Forrest [1986] against Lewis. The resulting objection speaks less to the idea
of naturalness and more to a further position (called “class nominalism”)
Lewis endorsed: properties, functions and relations are constructed out of
sets. I have reservations about class nominalism, but for orientation it will
be useful to accept it and follow out Sider’s refinements.’

The basic Armstrong - Forrest argument runs as follows: Begin (for the
sake of reductio ad absurdum) with the assumption that some relations are

6Sider suggests that he is not addressing positions that take functions and ordered pairs
to be unreduced, sui generis entities. However, Sider’s argument against the variation
suggested by Phillip Bricker appeals to a premise sufficiently broad as to apply also to any
view that takes (unreduced) functions to be distinguished at least in part because of their
centrality for mathematical practice.



natural, and choose one natural relation R. The class nominalist reduces re-
lations to sets of ordered pairs, and ordered pairs to sets. There are different
ways to do this. The reductions considered explicitly are Kuratowski’s def-
inition < z,y >= {z,{z,y}} and Weiner’s < z,y >= {{z,0},{y}}. If R is
natural, then the collections of sets corresponding to R should be natural.
The objection is: It is arbitrary which reduction of ordered pairs is adopted,
which conflicts with the sought - after objective, non-arbitrary character of
the assignment of naturalness to the set that represents R. The point, as
so distilled, needs fleshing out and strengthening, but the core idea is clear
enough. Sider’s paper suggests a sequence of such fleshings out and strength-
enings, followed by his criticisms of these proposals, before arriving at what
he takes to be tenable final results.

Sider considers this reply to Armstrong - Forrest: perhaps one of the
reductions should be counted as the right one. Sider suggests that there
couldn’t be a reason for preferring one over the other, which seems plausible
in the specific case of these reductions of ordered pairs. It’s less clear what
to say about another example Sider considers: the well-known “multiple re-
duction problem” first broached in Benacerraf’s “What Numbers Could not
Be” [1965]. It is observed that the natural numbers can be reduced to either
of two series: Zermelo’s {0, {0}, {{0}}, ...} where each member of the series
is the unit set of the previous one, or Von Neumann’s {0, {0}, {0,{0}},...}
where each member of the series is the set of its predecessors. The suggestion
that one reduction or the other might be correct is rejected on the grounds
that a reason to prefer one over the other is inconceivable: “Perhaps one
line of our thought here is that we don’t see what could possibly count as a
reason” ([1996] p.289) and “The only features that distinguish one method
from another involve mathematical convenience, and so seem irrelevant to
the existence of an ontologically distinguished method.” ([1996] p.289)

Sider addresses another variation on the Armstrong-Forrest point. Say
that instead of arguing for a single distinguished method, we accept that there
will be many, and maintain that all of them are equally natural. Sider rejects
this on the (reasonable) ground that some methods are obviously unnatu-
ral, and he produces a grotesquely gerrymandered case to witness the point.
Thus we come to what seems to me the best option (given an antecedent
acceptance of class nominalism): Say that there is a class C containing more
than one method, such that no method is more natural than any member
of C, every member of C is equally natural, and every method as natural
as a member of C is in C. Say also that there is at least one method that
is less natural than the members of C. That is, C is the class of methods



such that nothing is any better than a member of C. Why shouldn’t we just
pick an arbitrary member of C and stick with it, so long as we avoid the less
natural methods not in C?” The fact that there are several winners in equal
first place doesn’t take away our ability to distinguish more and less natural.®

Sider’s only grounds to reject this option is to amplify the claim noted
above: “While a class of distinguished methods may be less implausible than
the single distinguished method... it is still implausible. [This| theory seems
to mistake a pragmatic distinction (Kuratowski’s method is more mathemat-
ically convenient than method X) for an ontological one. Thus, I continue
to reject the idea that any method of constructing ordered pairs is onto-
logically more distinguished from any other.” (1996 p.292) Given that the
“method X”’s at issue include the obviously gerrymandered case whose in-
tuitive unnaturalness Sider appealed to, and indeed any reduction however
artificial and clumsy, Sider’s claim will only do the work he needs if it is un-
derstood broadly enough that any distinction between natural and unnatural
mathematical reductions, if made on the basis of an assessment of mathemat-
ical naturalness, is counted as based on merely “mathematical convenience”,
which is to be counted as merely “pragmatic” and not an objective guide to
the way things are.

Two related suggestions underwrite Sider’s stance: the purported incon-
ceivability of any reason to prefer one reduction (of numbers, and by implica-
tion of ordered pairs), and the claim that any reason that could be adduced
could only be a matter of “mathematical convenience”, and consequently a
“pragmatic” distinction rather than an “objective” /“ontological” one. Many
theoretical choices made in the course of successful mathematical reasoning
would be thereby shrugged onto the “merely pragmatic” scrapheap, so we
should pause and take stock. The plausibility of these claims rests signif-
icantly on the examples taken as paradigmatic. If we restrict ourselves to
ordered pairs, it does indeed seem inconceivable that there could be a sub-
stantial, non-pragmatic reason to prefer Kuratowski over Weiner. But it is a

"The situation would be like the one we face when choosing a coordinate scheme for
Euclidean space. Of course, there is no uniquely reasonable choice. Does this mean that
every choice is equally good? Of course not: some assignments of algebraic objects to
geometric ones are terrible. Say, for instance that we have Cartesian coordinates and
polar coordinates in alternating octants. Then the mathematical description of (say) a
sphere centered at the origin would be wild indeed despite the mathematical simplicity of
the figure described, and that would be the fault of the choice of unnatural coordinates.
Here it seems right to say that there are a class of distinguished coordinatizations, all more
or less equally acceptable, and all superior to a range of unacceptable ones.

8Sider attributes this alternative to Phillip Bricker.



mistake to generalize this impression, because of the mathematical insignif-
icance of the example. If “mathematical convenience” means “convenience
for the practice of mathematics” then the reduction of ordered pairs to sets is
at best valueless. In mathematical practice, reduction for the sole purpose of
paring down the number of basic entities is regarded with indifference or even
distaste. (Reductions can be valued, of course, but only if they bring some
kind of mathematical benefit, as measured by, for example, improved under-
standing or enhanced potential for discovering proofs, or “purity of method”
considerations of the sort considered in Mic Detlefsen’s contribution.) The
reduction of ordered pairs to sets has been used by analytic metaphysicians as
a paradigm of mathematics since Quine singled it out as one of his canonical
examples. But it is not a paradigm of mathematics. In fact, the reduction of
ordered pairs to sets has become a stock example in philosophical discussions
because it fits with widely shared and well-entrenched philosophical assump-
tions. Quine took it as a paradigm of ontological economy, and ontological
economy was proposed as a core methodological objective. Through an unno-
ticed philosophical metamorphosis, ontological economy came to be counted
as a measure of simplicity, with simplicity of the relevant kind counted as a
virtue of scientific theories.

Of course, even those who hold that some preferences for one representa-
tion over another are based on reasons of more than “mere convenience” will
grant that some such preferences are just based on relatively trivial prag-
matic grounds. Recall that, as noted in the introductory essay, we can cite
several reasons for not counting 1 as a prime number. Some of these involve
deep facts about the behavior of units in general fields, others can reason-
ably be seen as minor improvements in streamlined bookkeeping, such as
the availability of a compact statement of the prime decomposition theorem.
It’s plausible that any reason for preferring the Weiner reduction over Kura-
towski or conversely could only cite bookkeeping advantages. But the tacit
suggestion that this comparison is paradigmatic of mathematical choices of
this type masks just what a range of distinct, subtle considerations will get
shrugged onto the “pragmatic” heap.

The point comes out more pressingly in connection with Sider’s example
of the natural numbers. Though the accepted philosophical folklore holds
otherwise, there are mathematically important differences between the Von
Neumann and Zermelo representations. Thanks to these differences, Von
Neumann’s series has long been accepted by set theorists as the most nat-
ural, canonical representation of N and Zermelo’s is a forgotten historical
curiosity. It is important to recognize that substantive reasons can be cited
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for this; it is not just a contingent historical accident. (The Von Neumann
ordinals are not merely VHS to Zermelo’s Betamax.) It would be distracting
to dissect all the reasons (some of them are rather involved), so I'll concen-
trate on just a particularly clear and simple one: The principle generating
the finite Von Neumann ordinals generalizes naturally to infinite numbers
while the one generating Zermelo’s ordinals doesn’t. Take w, the ordinal of
the series {0,1,2,3,...}. A von Neumann ordinal is the set of its von Neu-
mann predecessors, so the principle generating the finite ordinals gives us
immediately the representation w = {0, {0}, {0,{0}},...} A Zermelo ordinal
is the unit set containing its predecessor, which for w is... well, w has no
predecessor. So there is no Zermelo w.

We'd need to jigger up something else to regard the Zermelo ordinals
as the finite initial segment of all the ordinals. Of course, isn’t too hard
to come up with something. For example, we could make every successor
ordinal the unit set of its predecessor, and every limit ordinal the set of all
its predecessors. But this would evidently be an artificial patch job, and a
uniform account would be preferable. Though the von Neumann/Zermelo
hybrid might occasionally be clumsy to work with, the problem with it is
not inconvenience but rather unnaturalness. A proper account of the ordi-
nals should display finite and infinite ordinal numbers as the same kind of
thing, with ordinals in general as a natural generalization of the finite ordi-
nals. Whether or not finite and infinite numbers should be generated by the
same or different principles is the sort of thing that should be regarded as a
fundamental question, contributing to an at least potentially objective case
for one representation over the other.

This serves up a striking example of the context-sensitivity of the meta-
physical intuitions at work in this debate. If the debate is carried out in
isolation from the ongoing mathematical research that is ostensibly its sub-
ject, we should expect situations like this to arise: The non-existence, and
indeed the inconceivability of a kind of mathematical argument is put for-
ward as a central datum, when such arguments are not only possible but are
widely, if tacitly, acknowledged in practice. In addition, with the reduction of
ordered pairs taken as a mathematical paradigm, the student of mathemati-
cal method is put in a difficult dialectical position: the reduction that is put
forward as fulfilling mathematical desiderata does indeed seem arbitrary and
artificial. It is indeed hard to see how either reduction of ordered pairs could
contribute to our view of what reality really is like. But from the point of
view of mathematical method, it is appropriate to think this: the reductions
are mathematically artificial, whatever their philosophical virtues may be.
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One reason that informal mathematical reasoning of this type has stayed
off of philosophy’s radar is hinted at in a remark Sider quotes as sympathetic
to his position:

In awaiting enlightenment on the true identity of 3 we are not
awaiting a proof of some deep theorem. Having gotten as far as
we have without settling the identity of 3, we can go no farther.
We do not know what a proof of that could look like. The notion
of “correct account” is breaking loose from its moorings if we ad-
mit of the possible existence of unjustifiable but correct answers
to questions such as this. (Benacerraf (1965) p. 58)

Certainly proving theorems is the canonical means of obtaining knowledge
of mathematical facts. If we narrow our picture of the cognitive activity in-
forming mathematical reasoning to include just deductively valid arguments
from indubitable premises, then we won’t have any access to the sorts of
reasons that we are interested in here. The arguments that can be given to
justify counting one definition as “correct” or one reduction as “natural” are
not going to be theorems. (Of course, sometimes central theorems can be
crucial to making a case for the naturalness of one definition or function over
another. This was the case for the Legendre symbol: its claim to the status
of natural rather than artificial was buttressed when the Artin Reciprocity
Theorem was proven, and it turned out to be the special case of a more gen-
eral fundamental concept.) But the fact that this reasoning is “softer” than
what we are accustomed to finding in mathematics textbooks doesn’t mean
it is an insignificant contributor to mathematical knowledge. The principles
provide reasons for mathematical expectations, guide conjectures and inform
problem-solving strategies. The reasons can be debated, and those debates
can be resolved by further investigation. Why shouldn’t we count this as
rational activity producing objective knowledge?

At its crucial points, Sider’s argument seems to amount to simply ap-
pealing to the perceived plausibility of the suggestion that mathematical
judgements of more or less natural can never be more than judgements of
“mathematical convenience” that cannot be reasonably taken as a guide to
the way things are objectively. Part of what gives initial appeal to this claim
is the example of the reduction of ordered pairs, which I've suggested is mis-
leading as a guide to the judgements informing mathematical practice. A
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mathematically insignificant case is taken as paradigmatic, which colors the
intuitions about the other cases it is meant to illustrate. Of course, this
observation puts the ball in my court: I'll need to lay out other examples
which will turn the intuitions around. The examples developed in the first
essay can take some steps in the right direction. Given the extensiveness, in-
tricacy, and multiplicity of connections exhibited by the reasoning at issue it
doesn’t seem nearly so obvious that we can devalue as a judgement of “mere
mathematical convenience” the claim that the proof of quadratic reciprocity
using cyclotomic extensions is especially natural because it provides a con-
ceptual stepping stone to more general Artin reciprocity, or that the Legendre
symbol, despite the artificial-seeming initial definition, can be seen to carve
things at the joints when it is recognized as a special case of the Artin symbol.

Of course, the topic of context-sensitivity is a double-edged sword here.
It is open to the defender of the thesis that judgements of mathematical
naturalness are all (“merely”) pragmatic to suggest that familiarity with
mathematical details distorts intuitions as well. Immersion in the details
of any rich theory with a range of systematic interconnections can foster a
sense that certain facts that may seem soft from the outside are hard and in-
escapable. This is true for systematic theology, chess theory, and the theory
of what Harry Potter would do under hypothetical circumstances consistent
with, but not occurring in, the Harry Potter books. Enough immersion in
the Potter books, discussion groups with other fans, fan fiction groups on
the internet etc. might give a fan the sense that it is an objective fact that
one continuation of the story is natural and another is artificial, and the fan
might be able to provide an extensive and ingenious rationale. A well devel-
oped theory of the Potter stories could provide explanations of the actions
of the characters, and could be assessed for simplicity, elegance, and Potter -
theoretic analogues of “purity of method” considerations, to mention just a
few cognitive virtues. But a skeptic could maintain, quite plausibly, that this
doesn’t make the naturalness of one storyline versus another anything but
an artifact of the cognitive peculiarities of the enthusiastic fan, and perhaps
of human cognitive particularities generally. Not unreasonably, the defender
of the thesis that judgements of mathematical naturalness are all pragmatic
could point to such analogies, to argue that it is just irrelevant that Sider
considers a trivial example instead of richer cases with complex details.

At bottom, this reply could run, the preference for one mathematical for-
mulation over another, in principle logically equivalent one, is a pragmatic
matter, however detailed the rationale, however intricately the preferences
may be bound up with attributions of mathematical understanding or ex-
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planation or simplicity or [insert your favorite virtue of theories here|, and
however subtlely the preferences may interact with problem - solving poten-
tial. The mere fact that the judgements are deeply embedded in the practice
of mathematics does not change their nature. It may make the pragmatic
judgements more complicated, and they may “feel” differently to people fa-
miliar with the subject, but they remain ultimately pragmatic, just as artistic
judgements about musical works are not changed into something other than
aesthetic judgements if they are complex and involved.

However, as other strands of the Sider article bring out, the context-
sensitivity of intuitions about objectivity is a universal concern. Following
out a different cluster of options, Sider takes up the possibility that the idea
of naturalness might admit of many subgenres, depending on what reduction
is accepted. (So, there could be “Kuratowski - natural” relations, “Weiner
- natural” relations, and so on, but no generally definable class of natural
relations.) The sole grounds given for rejecting this option are appeals to
intuitions about complexity and the aesthetics of theories: “[This is not]
a knockdown objection, but [it is|] a forceful one nonetheless: [The theory]
would require an infinitude of primitive properties, with no hope of subsump-
tion under a single formula or explanation. If [the theory| requires such an
unlovely menagerie to do its work, we’d do better to look elsewhere for a
theory of naturalness.” (p.293) This objection is redescribed later as an ap-
peal to “theoretical economy” (1986 p.295) and later still as an appeal to
“prohibitive cost in complication of theory” (1986 p.299). The obvious ques-
tion presents itself: why are offhand intuitive assessments of simplicity and
aesthetic appeal reliable guides to the way things really are for philosophical
theories but pragmatic matters of “mere convenience” for mathematical dis-
criminations? It is hard to see any principled basis motivating the distinction
in the cases at hand.

This draws us to a deep problem to be sure, but it is a problem for every-
one: why should theoretical virtues serve as a guide to the way things are?
How can we justify an appeal to relative simplicity of one account over an-
other, or the fact that one account explains or confers understanding better
than another, or some other cognitive advantage, when there would seem to
be no a priori reason to expect that objective reality must be so considerate
as to conform to the particularities of human cognitive makeup. There is no
generally accepted response to the suggestion that every choice of a theory -
in mathematics, philosophy, or any other field - on the grounds of theoreti-
cal virtues like simplicity or apparent naturalness or “loveliness” is “merely
pragmatic”. So for any particular, local appeal to such theoretical reasons,
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the charge that these reasons are “merely pragmatic” is available. If we want
to maintain that even so, some apparently pragmatic judgements are guides
to the way things objectively are and others are not, we need a solid basis for
distinguishing the cases. The problem with the method of appealing to intu-
itions about what is and isn’t “pragmatic” is that these intuitions are simply
too context-sensitive to afford an informative distinction between cases where
a preference motivated by theoretical virtues is “objective” and when it isn’t.

In the end, it is hard to make any progress beyond a wheel-spinning clash
of intuitions without more information about what “objective” means, or
some harder criteria of objectivity. But if our intuitions are too fluid to ad-
judicate whether or not some discrimination is objective, what else is there?

3 Conjecture and Verification: a Foothold on
Objectivity

As I've said, I am in no position to propose a general theory of, or criterion
for, the objectivity of a judgement. Rather, I'll borrow a practical strategy
from mathematical research: if you can’t solve the general problem, find a
tractable special case and solve that. The foothold will be the interaction
between finding the proper definitions or concepts and the practice of suc-
cessfully verifying conjectures. This won’t be the whole story but it can be
the beginning of one. In particular, I'll concentrate on one orienting mark: it
is a prima facie sign that a judgement is objective if it has consequences that
can be confirmed or refuted and whose truth or falsehood is independent of
the original conjecture. In the simple cases that we know from discussions of
the “grue” paradox, these consequences are successful empirical predictions.
As noted in the introductory essay, such predictions are made in mathe-
matics as well, as witness the inductive reasoning Euler exploited to arrive
at quadratic reciprocity. Euler’s argument for quadratic reciprocity forms a
pleasingly clear-cut analogy to Goodman’s New Riddle of Induction. In each
case we are dealing with simple enumerative induction, and the correctness
of the prediction depends upon hitting on the proper category. The fact that
one is a prediction about a contingent fact and the other a necessary truth
about prime numbers makes no difference to the reasoning itself.

One of the reasons that the Goodman’s “New Riddle” is such a compelling
philosophical set-piece is that it links - in a simple and clear way - the ques-
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tion of whether or not a category is homogeneous with a judgement whose
rightness or wrongness is outside the control of the judger. No amount of
reclassifying or pragmatic revision of conceptual schemes will make the next
emerald examined be (what is called in the current vocabulary) blue. The
color of an emerald is a contingent empirical fact, but as noted the reason-
ing doesn’t turn on contingency. Euler’s records of the computations that
prompted his conjecture of the law of quadratic reciprocity display the same
pattern.’ He examined cases, made conjectures and then tested them against
an expanding series of examples. As with induction about the physical world,
Euler’s analyses of the data were, of course, not unreflectively mechanical. It
took considerable ingenuity and pattern - spotting before Euler recognized
that (what amounted to) quadratic reciprocity was the pattern to project.
After he hit on the proper way to classify the cases he had examined, he
was able to predict the correct theorem, which was then verified through
examination of further specific values. It is remarkable how well the patterns
of computation, and conjecture, refute conjecture with more computations,
refine concepts and make new conjecture,. .. look like textbook examples of
enumerative induction. (Find some green rocks. Conjecture all rocks are
green. Find some non-green rocks, re-analyze situation, note that the green
rocks are emeralds. Conjecture all emeralds are green .. .) To the extent that
the naturalness of a property plays a role in the correctness of a projection,
it has to play a role here, which would lead us to the conclusion that the
properties like “x is a quadratic residue” supporting Fuler’s correct induc-
tive reasoning should have the same claim to “naturalness” deriving from
projectibility that “green” has. The elementary inductive pattern is in no
way altered by the fact that the theorem could also be directly proven, or
that the relevant facts about numbers aren’t contingent, and the pattern
is perfectly consistent with the observation that the concept of causation
doesn’t have any obvious application in connection to mathematical prop-
erties. The correctness or otherwise of the categories Euler used was tested
by a hard, objective criterion: will the values still to be computed be the
predicted ones? And further down the road: if the conjecture is resolved by
a proof, will it be proven true or false?

Of course, the Euler case is unusual, in that elementary enumerative in-
duction of the form “ayis P, ayis, P,...,a,is P, therefore a,, .1 will be P” is
as rare in mathematics as it is in ordinary reasoning about the physical world:

9There are several excellent treatments of the inductive reasoning that led Euler to
his conjecture. Edwards (1983), Cox (1988) and (1989 p. 9 - 20), and Weil (1984) are
all worth consulting. Sandifer (2005) is a particularly beginner-friendly discussion at the
online Euler archive.
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both ordinary and mathematical conjectures are typically more subtle.!’ In
both empirical and mathematical cases, the simple enumerative induction is
an artificially simplified touchstone that distills certain essential features of
more formless kinds of prediction and conjecture that inform ongoing math-
ematical and empirical thinking.

The practice of conjecturing and then striving to ascertain whether or
not the conjecture is correct is ubiquitous in mathematical practice.!! Even
without the formality of explicitly announcing a conjecture, the practice of
forming expectations about what will turn out to be correct, grounded in
prior discoveries, is an indispensible component of mathematical reasoning.
These expectations guide the choice of directions to search for proofs, for
example. The concepts that are marked out as mathematically natural sup-
port further inductive practice: on the basis of similarities that are evaluated
using these concepts, conjectures are made about what further investigations
will discover. If it is discoved that these conjectures are true, it reinforces
the judgment that the concepts regarded as mathematically natural really
are mathematically natural. In at least some cases the expectations are
sufficiently well-grounded in computations or other quasi-empirical data or
plausibility considerations that it seems right to say that the theorems are
known to be true even without a proof. (This seems to be a reasonable thing
to say about Euler’s justified belief in quadratic reciprocity, for example.)

Inductive reasoning doesn’t just appear in the direct form of conjectures
or specific expectations that are then ideally refuted or verified. Broader
methodological virtues like “significance” and “fruitfulness” have a kind of
quasi-empirical inductive character.!? Singling out a property as central tac-
itly makes a prediction that it will reappear in unexpected contexts, and
serve as support to unanticipated proofs. It need not be obvious at the out-
set what shape the proofs will take or what the “unexpected contexts” will
be for this to be a prediction that can succeed or fail. This supports a re-

0Though there are significant examples in which an approach is initially validated
through its ability to make verifiable predictions. Perhaps the most famous is the Schubert
calculus for counting intersections of curves. Long before the system could be rigorously
formulated and demonstrated, Schubert was making astonishing predictions of intersection
numbers. See Kleiman and Laksov (1972)

1A good recent discussion of conjecture as an aspect of mathematical reasoning is in
Mazur (1997). The classic investigations of inductive reasoning in mathematics are of
course Polya (1968) and Lakatés (1976). Putnam (1975) is an illuminating reflection on
the philosophical angles. Corfield ((2003) chapters 2-6) contains some valuable discussion.

12«Quasi-empirical” is the expression coined by Hilary Putnam for this sort of mathe-
matical evidential support in his “What is Mathematical Truth” (Putnam (1975)
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sponse to the suggestion that these evaluations are “merely pragmatic” or
“subjective” or “merely psychological” or otherwise lacking objectivity in a
way that makes them uninteresting to epistemology. Just as with more nar-
rowly circumscribed conjectures, the predictive character of an evaluation
of “fruitfulness” brings a degree of independence from the attitudes of the
person making the judgement. To judge that a program, theorem, or defi-
nition is “fruitful” is to make a prediction that solutions to given problems
will in fact be found by means of the program, theorem or definition. Such
judgements involve previsions that can be found to be mistaken in light of
subsequent investigation. Not all predictions are as unequivocal and precise
as Fuler predicting quadratic reciprocity, but they can still be confirmed or
disconfirmed. There is, of course, a social component to the prediction that
some approach will yeild research deemed to be valuable and informative.
But a prediction like " The Weil conjectures will be solved using the concept
of scheme and not with the concepts available earlier.” is not just a forcast
of social facts. It turns both on what mathematicians will choose to do and
on what proofs are objectively there to be found.

In stating that inductive and plausible arguments in mathematics can se-
cure knowledge, I am not echoing the suggestion one occasionally encounters
that the mathematical community ought to relax its emphasis on rigorous
proof. Something can be known without being established to the degree re-
quired for the mathematical community to count it as officially in the bank.
(Analogously, I would not be suggesting that criminal trial procedure should
relax the standard of “proof beyond a reasonable doubt” if I were to point
out that we know certain former defendants to be guilty even though they
were ruled not guilty at their trial.) I am suggesting no revisions at all to reg-
ular practice. I am rather urging that we extend the range of mathematical
reasoning that we take to generate knowledge and to be material for episte-
mological study. Forming expectations on the grounds of plausible reasoning
and using these expectations as a guide is an integral part of mathematical
practice. My point has been that if we expand our epistemological horizons
to include these varieties of mathematical knowledge, it brings with it an ad-
ditional bonus: A foothold on the study of the naturalness of mathematical
concepts and definitions.

I should also make clear that in urging the importance and quasi-empirical
character of the tacit predictions informing mathematical reasoning, I am not
suggesting that our study of mathematical concepts must be linked to direct
applications in physical science and commonsense reasoning about the phys-
ical world. (Of course, in some cases there will be close connections, but this
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isn’t necessary to the point.)!® Whether or not the conjectures in question
have any obvious connection to any direct applications makes no difference
to our assessment of the patterns of reasoning informing the making and
supporting of conjectures. It may well be that in an ideal epistemology, the
status of mathematics as knowledge must ultimately appeal to physical ap-
plications, or it may not; we can be neutral on that point here.

4 Fruitfulness, Conjecture and Riemannian
Mathematics

The Riemann-Dedekind methodology mentioned in the introduction incor-
porates exactly the connection between identification of core properties and
mathematical fecundity discussed in the previous section. In this section I'll
say a bit more about the Riemann-Dedekind approach. First consider these
Riemannian remarks. They seem innocuous and even dull, but understood
in context they are the first shot in a revolution.

Previous methods of treating [complex| functions always based
the definition of the function on an expression that yields its
value for each value of the argument. Our study shows that, be-
cause of the general nature of a function of a complex variable, a
part of the determination through a definition of this kind yields
the rest... This essentially simplifies the discussion...

A theory of these functions on the basis provided here would de-
termine the presentation of a function (i.e. its value for every
argument) independently of its mode of determination by op-
erations on magnitudes, because one would add to the general
concept of a function of a variable complex quantity just the at-
tributes necessary for the determination of the function, and only
then would one go over to the different expressions the function
is fit for. The common character of a class of functions formed

BThough I'm not exploring the point here, a closeness to physical applications was in
fact recognized as a feature of Riemann’s mathematics. (This is touched on in the opening
quotation from Stahl.) For example, Helmholtz found Riemann’s complex analysis conge-
nial, presumably in part because Riemann’s classification of functions by their singularities
fit smoothly with Helmholtz’s approach to potential flow. (cf. Darrigol [2005] p.164)
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in a similar way by operations on quantities, is then represented
in the form of boundary conditions and discontinuity conditions
imposed on them. (Riemann [1851] p.38)

Riemann’s point is simple. We are wondering how to characterize a well-
behaved complex function or a class of them. How should we proceed? One
possibility would be to appeal to a formula that would explicitly display the
relation between every argument and every value in terms of elementary op-
erations like plus or times. For example, one could write down a polynomial
or power series. But this uses more information than necessary: the function
can be uniquely determined (up to a constant multiple) by just a fragment
of this information (the “boundary conditions and discontinuity conditions”).

I'll illustrate with an example where the conditions are particularly straight-
forward: elliptic functions, the subject of the Stahl textbook quoted in the
introduction.’ These are (defined today as) well-behaved (i.e. meromor-
phic) functions & satisfying the condition that there are complex numbers
wy and we such that for any z € C and n,m € Z, ®(z) = ®(z + nw; + mws)
(i.e. @ is doubly periodic.) Given periods w; and wy, how should we single
out specific functions? We could give an explicit rule for computing every
value for every argument, but we have a sparer alternative. Fixing the nat-
ural domain (period lattice) corresponding to the periods w; and wq, given
any two functions f and g on this domain with the same zeros and poles
(counted with the same multiplicities) there is a constant ¢ such that for
every z, f(z) = cg(z). That is, the function is essentially fixed by its zeros
and poles; the remaining values need be pulled up only if necessary for some
specific purpose. Though I am restricting attention to a simple case to avoid
discussion of Riemann surfaces, the fact holds more generally: we lose no
important information about a well-behaved function if we just know the
zeros and certain singularities.!®

With such results in hand, Riemann opts to characterize functions by
their singularities. There are too many ramifications of this preference to
discuss here. TI’ll restrict attention to the one that is directly relevent to
our present topic: getting the concepts right allows you to see results more

14Here I'll only be able to gesture at some of the relevant information. I explore elliptic
functions in connection with Riemann’s conception of mathematical method in more detail
in Tappenden [2007].

15Given any compact Riemann surface R, a meromorphic function defined on R is
characterized up to a constant by its zeros and poles (with multiplicities).
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easily.' For example, concerning one application of his methods, Riemann
deploys the language that gave rise to the clichés echoed by Stahl: Rie-
mann’s reconceptualizations make it easy to recognize at a glance what had
previously required effort and laborious computations.

[My method yields| almost immediately from the definition results
obtained earlier, partly by rather tedious computations. (Rie-
mann [1857] p.67)

[My method is one] by means of which all the results found ear-
lier can be obtained virtually without computation. (Riemann

[1857a] p.85)

Not only does the reconceptualization allow you to see easily what had
previously been established with difficulty, but also as Dedekind explicitly
notes, the temporal order can be reversed. The formulation “based imme-
diately on fundamental characteristics” supports the effective anticipation
of the results of as yet unfinished computations. Dedekind sees “almost all
areas of mathematics” as requiring the choice between essential (“internal”)
and accidental (“external”):

It is preferable, as in the modern theory of [complex| functions
to seek proofs based immediately on fundamental characteristics,
rather than on calculation, and indeed to construct the theory
in such a way that it is able to predict the results of calculation
...Such is the goal I shall pursue in the chapters of this memoir
that follow. (Dedekind [1877/1996] p. 102)

[Gauss remarks in the Disquisitiones Arithmeticae]: “But neither
[Waring nor Wilson| was able to prove the theorem, and Waring
confessed that the demonstration was made more difficult by the
fact that no notation can be devised to express a prime num-
ber. But in our opinion truths of this kind ought to be drawn

16 Among the other considerations Riemann cites are purity of method considerations
arising from his sense that it isn’t proper for language-independent properties of objects
to be characterized in ways that essentially involve language:

By one of the theorems quoted above, this property of single-valuedness in
a function is equivalent to that of its developability in a series...However,
it seems inappropriate to express properties independent of the mode of
representation by criteria based on a particular expression for the function.
(Riemann [1857b])
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out of notions not out of notations.” In these last words lies, if
they are taken in the most general sense, the statement of a great
scientific thought: the decision for the internal in contrast to the
external. This contrast also recurs in mathematics in almost all
areas; [For example, complex| function theory, and Riemann’s
definition of functions through internal characteristic properties,
from which the external forms of representation flow with neces-
sity. (Dedekind [1895] p. 54 - 55)

In some cases, such as the zeros and poles of a complex function, the “in-
ternal characteristic properties” at issue are already familiar, so the cognitive
success involved in identifying them is just the recognition of their impor-
tance. In other cases, it requires substantial reformulation and analysis even
to be in a position to notice and define the properties. Thus, for example,
Riemann recognized the importance of the property we now call the genus
of a surface in connection with complex functions. (In the simplest cases,
the genus is the “number of holes” in the surface.) Riemann showed how to
associate with each well-behaved complex function a surface (now called a
Riemann surface) serving as the natural domain of definition for the func-
tion. The genus is then defined in terms of the topological properties of this
surface. This sets the context for a core result proven partly by Riemann
and partly by his student Roch (called, reasonably, the Riemann - Roch the-
orem) that had incalculable importance in the mathematics of the twentieth
century. Here again I can hardly give more than a vague impression, so I'll
just state the punchline for this paper: The result links together the number
of linearly independent functions with given collections of poles defined on a
Riemann surface with the genus of the surface. The subsequent importance
of the theorem, and the fact that it links together the properties that would
have been understood as the kinds of things being seen as “inner character-
istic properties” makes it one of the many examples that give mathematical
content and force to Riemann’s and Dedekind’s methodological asides. The
characterization of poles and genus as essential properties is tacitly a pre-
diction that the Riemann-Roch theorem, among others, will prove fruitful
in solving additional problems and supporting new conjectures. This is a
chancy prediction, since the theorem may have led nowhere. Had the research
jumping off from core theorems about genus and poles of functions petered
out without interesting consequences, this would have forced a reassessment
of the original evaluation of these properties as “internal characteristic” ones.

The most salient example of his own work that Dedekind is alluding to in
the above remarks is the concept of an ideal. Once again there is much more
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to discuss than I can address here, so I'll just stick to the immediately rele-
vant punchlines.!” It will suffice to think of an ideal as a kind of generalized
number that secures the possibility of factoring otherwise irreducible num-
bers. Among the discoveries that gave impetus to Dedekind’s introduction
was an analogy between fields of numbers and fields of functions unveiled in
the classic paper by Dedekind and Weber [1882].'% (Riemann’s character-
ization of functions by their zeros and poles was a crucial building block.)
Among other things, Dedekind and Weber interpreted Riemann surfaces as
algebraic objects and proved core results such as the Riemann-Roch theorem
in this environment. Speaking informally we might say that Dedekind and
Weber revealed that a family of structures were genuinely, rather than just
superficially similar. The analogy between fields of numbers and fields of
functions is very deep.

It is possible to lay out an extensive rationale for the judgement of similar-
ity.1? As just one illustration of how layered the judgement of similarity can
be, consider the property of ramification for complex functions and general-
ized numbers.?’ Among the singularities Riemann recognized to be especially
important are branch points (a.k.a. ramification points). With proper stage
setting, these can be understood as points where the function behaves locally
like z — 2¢, with e > 1. When dealing with number fields, the idea of prime
decomposition can be generalized so that generalized numbers (ideals) can
be written as products of generalized primes 3;:

n
%
(2
=1

The generalized number is said to ramify if e; > 1 for any ¢. This point of
contact between complex analysis and algebraic number theory was already
pointed out by Dedekind and Weber.

Fortunately for any readers hungry for more, the relevant details are well covered
by historians, in particular Harold Edwards. See for example Edwards [1980]. Recently
philosophers have begun to reflect on the methodology described in Dedekind’s remarks
and displayed in his mathematics. See for example Avigad [2006] and my [2005].

18This analogy, with specific reference to ramification, is explored with a philosophical
eye in Corfield [2003] (p.90-96)

19 An illustration can be found in a letter of 1940 from André Weil to his sister Simone,
containing a strikingly detailed discussion of the many consequences of this analogy, what
matters in the analogy, what is needed for the analogy to be complete, etc.. (Weil also
spells out connections to quadratic reciprocity and the Artin reciprocity theorem.) See
Weil [1940/2005])

20’'m indebted to Brian Conrad for illuminating conversations on this point.
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Of course, in one sense this particular connection is laying on the sur-
face of the algebraic representations. In both cases you have exponents -
either greater than one or equal to one - sitting right there just waiting to
be noticed. But if all we know is that some exponent is greater than one,
we have no reason to get excited, or judge there to be a point of similarity
robust enough to warrant the introduction of new terminology. The point
of similarity could be a superficial accident of the representation, or a math-
ematically inert coincidence. The bedrock support for the claim that this
is a genuine point of deep similarity is the fact that powerful general theo-
rems can be proven which exploit the analogy. Had it turned out that, at
a more advanced point of reckoning, no interesting theorems emerged, the
shared terminology would stand like the word “elliptic” in the phrase “ellip-
tic curve” as a quaint reminder of a connection that once seemed to matter.
As always, the aesthetic judgements, assessments of the depth of a similarity,
judgements about appropriateness of techniques, evaluations of relative sim-
plicity, etc. are subordinated to the fundamental bottom - line consideration:
does it lead to genuinely interesting new results? Without the sine qua non
of fruitfulness, the other considerations are counted as ultimately incidental.

Riemann’s envisioned connection between correct definition and fruitful-
ness was revolutionary at the time, but now seems familiar, even banal.
Indeed, it is fair to say that it is the dominant attitude among contemporary
mathematicians. It is hardly profound or surprizing that mathematicians
typically have a hardheaded, bottom-line orientation that ties the ultimate
validity of softer judgements of “naturalness” or “depth” to the facilitation
of far-reaching general results. This piece of rudimentary empirical sociol-
ogy is obvious to anyone after a few department lounge conversations. Of
course, for Riemann and Dedekind, and even more for most contemporary
mathematicians, the attitude is more often displayed in the practice of math-
ematical research than articulated as something like a philosophical theory
of the natural/artificial distinction. But there is a tacit theory behind the
pronouncement that (say) genus is a natural property and as philosophers
we’d be wise to work it out.

5 Summing up

The introductory essay made a descriptive observation and posed a prob-
lem. The descriptive observation is that mathematical practice is colored
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and guided by a kind of normative judgement: it can be counted as an ad-
vance in knowledge to identify a “natural” definition (or “deep” analogy, or
“proper” context for investigation, or “correct” formulation of a question ...).
The problem is to find a way for epistemology to explore how such acts of
recognition can be what mathematical practice seems to treat them as be-
ing. This paper has been an extended prospectus for a program to address
the problem. On a quick pass through Lewis’ reckoning of the some of the
work done by discriminations of natural and non-natural properties there
appeared to be enough affinity between, and overlap among mathematical
and non-mathematical cases to give us hope. My first task in this paper
was to illustrate, with reference to a representative instance, that appealing
to metaphysical intuition (either directly or as coded into theoretical mea-
sures such as “simplicity” or “theoretical economy”) to separate the cases
where such choices of preferred “natural” categories are “merely pragmatic”
and the cases where the choices are genuinely “objective” is unlikely to help
us realize that hope, because of the fluidity and context-sensitivity of the
relevant intuitions. We need some rough ground. The second goal was to
point to one domain - the interaction between concept choice and successful
prediction - where some such rough ground might be secured. A key point
is that induction, as a pattern of reasoning under uncertainty, does not de-
pend for its cogency on the predicted outcomes being contingent. Hence the
link between assessments of the naturalness of properties and the correctness
of predictions exhibited in “green” /“grue” cases carry over to mathemati-
cal cases. (The model of enumerative induction is just a handy orienting
and simplifying device; the key foothold is the ubiquitous interaction in
mathematical practice between choices of basic categories and the success
of predictions (where the predictions may be clearly stated conjectures or
less specific expectations of “fruitfulness”)). Finally, I sketched the Riemann
- Dedekind account of “inner characteristic properties” as a promising ex-
ample of a method, and a methodology, incorporating this insight. This
methodology has the additional attractive feature that in its details it res-
onates with the Port Royal principle, since identifiable mathematical cases
drive it and give it substance. Of course, so far I've given only the roughest
sketch of the Riemann - Dedekind account and the mathematics informing
it, and I've given only unargued hints about its relationship to contemporary
mathematical practice. In part this has been a function of space, but in part
it is a necessity arising from the texts themselves. Riemann and Dedekind
doled their methodological dicta out frugally. As mathematicians are prone
to do, they let their mathematics do most of the talking, which leaves the
philosopher/scribe a lot of detail to spell out. But this shouldn’t be a sur-
prize: Arnauld and Nicole warned us that this is what to expect.
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