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Abstract8

The Bayesian perspective is based on conditioning related to reported evidence that is
considered to be certain. What is called ‘Radical Probabilism’ replaces such an extreme
view by introducing uncertainty on the reported evidence. How can such equivocal ev-
idence be used in further inferences about a main hypothesis? The theoretical ground is
introduced with the aim of offering to the readership an explanation for the generaliza-
tion of the Bayes’ Theorem. This extension – that considers uncertainty related to the
reporting of evidence – also has an impact on the assessment of the value of evidence
through the Bayes’ factor. A generalization for such a logical measure of the evidence
is also presented and justified.
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[...] be the sensible man who tailors his beliefs to the available evidence.
[20] at p. 31112

1. Introduction

The core of the Bayesian perspective to the scientific method can be concisely14

described in the following terms. Scientific rationality - related to the criteria used
to check scientific hypotheses and their plausibility - should refer to a probabilistic16

framework. We fully endorse this point of view and have, as expressed by Galavotti
[14] (at p. 253), the ‘conviction that the entire edifice of human knowledge rests on18
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probability judgments, not on certainties’1. This means that to rationally assess the
plausibility of different hypotheses considered at a certain historical moment, say t,2

scientists should determine the probability of each hypothesis in the light of the totality
of information available at that time and update these probabilities as new information4

are acquired, for example through laboratory experiments or observations. The study
of the rational principles governing the attribution of probabilities to hypotheses and6

observations, and their updating according to new available information is therefore
fundamental.8

Two articles published in this journal [42, 43] have endorsed such a subjectivist
interpretation of probability. In [43] attention was stressed upon the fact that such sub-10

jective probabilities can be correctly informed by relative frequencies, whenever avail-
able, though this does not equate at all to the acceptance of a frequentist interpretation12

of probability.2. Briefly, given a subjectivist interpretation of probability, opinions of
a given subject at a given time can be represented in probabilistic form by specifying14

their degrees of belief; these beliefs must obey the principles of probability calculus in
order to be called coherent. This is generally illustrated through the so-called Dutch16

Book argument, that is, based on the idea that a given subject can avoid bets that would
make him suffer a certain loss if, and only if, his degrees of belief are probabilities and18

therefore managed by the rules of probabilities. Nevertheless, the requirement of co-
herence at a particular time says nothing about how a given individual should modify20

their beliefs in light of newly acquired evidence.
The study of the rational principles underlying the updating of personal beliefs can22

be seen as complementary and a natural consequence to the arguments developed in
[42, 43]. One’s probabilities should be updated on the basis of appropriate principles24

in order to guarantee a rational approach. Please note that updating one’s mind in the
light of newly acquired evidence does not mean changing one’s opinion. de Finetti [8]26

illustrated this aspect in the following terms:

If we reason accordingly to Bayes’ theorem we do not change opinion. We28

keep the same opinion and we update it to the new situation. If yesterday
I said ‘Today is Wednesday’, today I say ‘It is Thursday ’. Yet, I have not30

changed my mind, for the day following Wednesday is indeed Thursday.
(at p. 100)32

The cardinal principle for the updating of personal beliefs is the one known under the
name of Conditioning principle which - broadly speaking - states that if the initial34

opinions of a subject are represented by a probability function Pr(·), subsequently, the
subject acquires empirical evidence or observations, say E, then their final opinions36

should be represented by the conditional probability function Pr(· | E). The conditional

1As reported by [14] (at p. 253) the origin of such a view can be found in de Finetti’s pragmatism: ‘First
of all, this involves a rejection of the notion of ‘absolute truth’. Such a rejection is the origin of probabilism,
taken as the attitude according to which we can only attain knowledge that is probable.’ For a historical
discussion on ’probabilism’, see [34]

2As de Finetti wrote [7]: ‘[...] subjectivism does not mean ignoring or neglecting objective data, but rather
using them as a sensible responsible way, instead of appealing to oversimplified and stereotyped schemes.’
(at p. 97)
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probability depends on the evidence E that has been acquired, and not on what could
have been observed, but, in fact, it has not.2

This principle, which will be described in Sections 3 and 4, can only be applied
if the acquired information is made up of certain evidence. In many cases, in truth,4

very often, this information is made up of uncertain evidence, so we should speak of
acquisition of soft evidence3 compared to hard evidence4. The problem is well posed6

by Schum [38] who wrote:

If we contemplate using Bayes’ rule, how are we to revise our own prior8

belief about [hypotheses] H and H̄, based upon evidence it is not a propo-
sition but a probability distribution? (at p. 352)10

This aspect is strictly related to a doctrine called Radical Probabilism that holds that
no facts are known for certain.12

In most forensic and judicial literature related to probabilistic approaches to evi-
dence evaluation and interpretation, it can be noticed that a discussion about the quan-14

tification of degrees of belief in the presence of soft evidence is completely missing.
It is therefore a question of exposing how a rational individual can govern the rational16

update of his state of mind when the acquired information is not constituted by certain
evidence (also called hard evidence). This paper is devoted to considering how ratio-18

nal individuals ought to revise probability judgments in reaction to their experiences in
presence of soft evidence.20

The paper provides a comprehensive discussion on this issue and is structured as
follows. Section 2 gives an overview of fundamental definitional aspects for the repre-22

sentation of beliefs. Section 3 and Section 4 cover the aspects related to the revision of
beliefs in presence of hard and soft evidence, respectively, by introducing the concept24

of probability kinematics, with a simple example developed in Section 5. Section 6
highlights the connection between probability kinematics and Schum’s cascaded infer-26

ence. Section 7 and 8 extends further the discussion to evidence evaluation through the
use of Bayes’ factor for unequivocal testimony (Section 7) and a Bayes’ factor adapted28

to take into account for uncertainty on the reported evidence: equivocal evidence (Sec-
tion 8). Section 9, finally, concludes the paper.30

2. Logic for reasoning under uncertainty: representation of beliefs and relevant
propositions32

Let us briefly recall some fundamental definitional aspects suitable for describing
how it is possible to ‘measure’ degrees of belief that a certain fact occurred. It is first34

necessary to be precise about what a ‘degree of belief’ is. A degree of belief is personal,
it is the judgement of a given person at a given time about the truth of a given event36

3Soft evidence can be interpreted as evidence of uncertainty, sometimes called ‘probable knowledge’.
There is uncertainty about the specific state of a variable of interest but there is a probability assignment
associated with in.

4Hard evidence is knowledge that some state of a variable definitely occurred, so that information arrives
in the form of a proposition stating that event, say E, occurred.
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or proposition. ‘Evidence’ bearing on that proposition is expressed by means of other
propositions. Therefore, it shall be said, on first approximation, that a proposition,2

say B, is relevant, according to an opinion, for another proposition A if, and only if,
knowing the truth (or the falsity) of B would change the degree of belief in the truth of4

A.
There is, however, an important distinction between defining the general concept6

of representation of beliefs and the evaluation of a particular case. It can be established
that coherent, quantitative measures of uncertainty about events or propositions of in-8

terest must take the form of probabilities [2]. These probabilities are subjective, since
they are based on personal judgements, they are a personal numerical representation10

of the uncertainty relation between events. Consider a probability function, denoted
by the symbol Pr(·) where the (·) contains the event or proposition, the probability of12

which is of interest. Numerical degrees of belief must satisfy, for any propositions
A and B, the laws of probability theory. De Groot [9] proved that the acceptance of14

certain assumptions concerning the uncertainty relation between events (e.g. the com-
plete comparability of events) implies that for any event (or proposition) A there exist16

a unique probability Pr(A) satisfying the laws of probability theory (axioms of proba-
bility). Briefly, it can be proved that (i) if it is known that a proposition is true (false),18

then the degree of belief should take the maximum (minimum) numerical value, that is
Pr(A) = 1 (Pr(A) = 0); (ii) coherent quantitative degrees of belief have a finitely addi-20

tive structure (i.e., if A and B are incompatible, then Pr(A ∪ B) = Pr(A) + Pr(B)); (iii)
events which are practically possible but non certain should be assigned a probability22

in the interval (0, 1), 0 < Pr(A) < 1. The degrees of belief in events not known to be
true, are somewhere between the certainty that the event is true and the certainty that it24

is false. Some more results follow from these axioms. A straightforward consequence
of the axiomatic formulation is that if the probability of an event A is assessed, the26

probability of its complement Ā (i.e. the event that takes place when A is not true) can
be simply obtained as Pr(Ā) = 1 − Pr(A).28

This is the simplest example of how probability calculus works as a logic for rea-
soning under uncertainty. The logic places constraints on the ways in which numerical30

degrees of belief may be combined. Notice that the laws of probability require the de-
grees of belief in any two mutually exclusive and exhaustive events A and in B to be32

such that they are non-negative and their sum is equal to one. Within these constraints,
there is not an obligation for A to take any particular value. Any value between the34

minimum (0) and the maximum (1) is allowed by the probability axioms. The question
is: how is a subjective probability to be determined? How is newly available knowl-36

edge to be incorporated? We will focus now on the first question, while the second
one will be addressed later in Section 3 and in Section 4. The simplest way to measure38

a subjective probability is a direct measurement technique based on comparison with
standard events with given probabilities [35]:40

A formal derivation of subjective probability based on this approach would
need to assume that any two events can be compared to say which You re-42

gard as the more probable, and also that there exists a set of standard events
with given probabilities against which any other event can be compared to44

determine its probability. (at p. 98)
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A subject is entitled to its own measures of belief, but must be consistent with them.
The appropriateness of a set of probabilities held by a particular subject needs to be2

checked [36]. Probability values need to be expressed in an operational way that will
also make clear what coherence means and what coherent conditions are. de Finetti [6]4

framed the operational perspective as follows:

However, it must be stated explicitly how these subjective probabilities are6

defined, i.e., in order to give an operative (and not an empty verbalistic)
definition, it is necessary to indicate a procedure, albeit idealized but not8

distorted, an (effective or conceptual) experiment for its measurement. (at
p. 212)10

Therefore, one should keep in mind the distinction between the definition and the as-
signment of probability. A description of de Finetti’s perspective has been published12

by [5].
Note that coherence on degrees of beliefs is the only condition that should be guar-14

anteed. Assignments that violate the laws of probability are incoherent in the sense that
they will lead to a sure loss, no matter which proposition turns out to be true (see, for16

example, [25]).
Another fundamental aspect for the definition of one’s degree of belief is that of18

relevance. A proposition B is said to be relevant for another proposition A if and only
if the answer to the following question is positive: if it is supposed that B is true, does20

that supposition change the degree of belief in the truth of A? A judgment of relevance
is an exercise in hypothetical reasoning. There is a search for a certain kind of evidence22

because it is known in advance that it is relevant; if someone submits certain findings
maintaining that they constitute relevant evidence, a hypothetical judgment has to be24

made as to whether or not to accept the claim. In doing that, a distinction has to be
drawn, not only between the proposition A and the evidence B for the proposition A,26

but also between that particular evidence B and whatever else is known.
When a proposition’s degree of belief is assigned, there is always exploitation of28

available background information, even though it is not explicit. An assessment of the
degree of belief in the proposition ‘this coin lands heads after it is tossed’ is made on30

the basis of some background information that has been taken for granted: if the coin
looks like a common coin from the mint, and there is no reason for doubting that, then32

it is usually assumed that it is well balanced. Should it be realized, after inspection,
that the coin is not a fair coin, this additional information is ‘evidence’ that changes the34

degree of belief about that coin, even though it is still believed that coins from the mint
are well balanced.36

A relevant proposition is taken to mean a proposition which is not included in the
background information. The distinction between ‘evidence’ and ‘background infor-38

mation’ is important, because sometimes it has to be decided that certain propositions
are to be considered as evidence, while others are to be considered as part of the back-40

ground information. For example, suppose a DNA test has been evaluated. Assume
that all scientific theories which support the methodology of the analysis are true, that42

the analysis has been done correctly, and that the chain of custody has not been broken.
These assumptions all form part of the background information. Relevant evidence is44

is made up of only those propositions which describe the result of the test, plus some
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other propositions reporting statistical data about the reliability of the evidence. Al-
ternatively, propositions concerning how the analysis has been done, and/or the chain2

of custody can also be taken to be part of the evidence whilst scientific theories are
to be considered background information. Therefore, as said before, it is useful to4

make a clear distinction between what is considered, in a particular context, to be ‘evi-
dence’, and what is considered to be ‘background’. The importance of this aspect will6

be discussed further in Sections 3 and 4. For this reason, background information is
introduced explicitly in the notation.8

Let Pr(A | I) denote ‘the degree of belief that proposition A is true, given back-
ground information I’, and let Pr(A | B, I) denote ‘the degree of belief that proposition10

A is true, given that proposition B is assumed to be true, and given background infor-
mation I’. Given that a probability - the measure of uncertainty - as a degree of belief, is12

conditional on the status of information of a given subject who assigns it5, Pr(A | B, I)
should be written as Prs,t(A | B, I) where s and t are the information available to subject14

s at time t, respectively. For ease of notation, in what follows, the subscripts s and t are
omitted. In Section 3, it will be shown why time t plays an important role in the beliefs16

updating procedure.
The purpose here is only to emphasize the point that all subjective probabilities are18

conditional on available knowledge. It is obvious that personal beliefs depend upon the
particular knowledge one has. If the choice is made to represent degrees of belief by20

means of probabilities, then it must be kept in mind that it will always be the case that
probabilities are necessarily relative to the available knowledge and to the assumptions22

made. Note that the term I for background information is often omitted, and it is solely
reported Pr(A). This probability expresses the personal degree of belief that the event24

A is true, given all available knowledge I. Note that, as expressed in [45]:

It should be emphasized that logically speaking - and contrary to many26

textbook expositions - this conditional probability has nothing to do with
learning or opinion change or ‘updating’ on new information. Literally,28

that my conditional probability Pr(A | I) equals 1/3, for example [...]
clearly expresses only my present opinion about two eventualities. (at p.30

18)6.

Once the occurrence of another event or proposition B (e.g., the scientific evidence)32

is observed, the degrees of belief can be updated by incorporating the newly available
knowledge. This is usually indicated by Pr(A | B), though what is really meant is34

Pr(A | B, I). The letter I is suppressed for simplicity of notation, but Pr(A | B) must be
read as the current degrees of belief about the truth of A, given the evidence B and all36

5Galavotti [14], by quoting de Finetti, wrote: ‘[...] probability can only be taken as the expression of
the feelings of the subjects who evaluate it. Being matter for subjective opinions, probability evaluations are
always definite and known. Put differently, ‘unknown probabilities’ taken as objective ‘true’ probabilities
pertaining to phenomena do not exist; in their place we have subjective evaluations which can always be
formulated, insofar as they are the expression of the feelings of evaluating subjects.’ (at p. 259).

6Note that in the original quote the background information was denoted by B. The letter B has been
replaced here by I for homogeneity with the text where the background information is denoted by I, while
the letter B is used to denote the evidence.
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background knowledge.

3. Logic for reasoning under uncertainty: probabilities’ updating with certain2

evidence

Section 2 served the purpose of discussing both definitional and operational aspects4

relative to the representation of beliefs. It has been clarified that degrees of belief must
take the form of subjective probabilities, and that these must obey the laws of proba-6

bility calculus in order to be considered a coherent representation of beliefs. But there
is another question that must be answered: how is a new item of evidence to be incor-8

porated in one’s knowledge? The answer is in some cases given by the well known
Bayes’ Theorem, as it will be recalled in the current section, but there are instances for10

which there is not an immediate answer. This will be addressed in Section 4.
Consider a proposition A and another proposition B, relevant for A. As it was12

highlighted in Section 2, a relevant proposition B, with respect to another proposition
A, is a proposition such that the supposition, if it were true, would change the degrees14

of belief in A. The new degrees of belief are given by Pr(A | B, I), that is the conditional
measure of degree of belief (with the information regarding B), to the initial measure16

of degree of belief (without the information regarding B).
The conditional probability Pr(A | B, I) can be defined as follows. For any proposi-18

tions A and B, the degree of belief that A is true, given that one assumes that B is true,
is equal to the degree of belief that A and B are both true, given background informa-20

tion I, divided by the degree of belief that B is true, given background information I,
provided that Pr(B | I) > 0:22

Pr(A | B, I) =
Pr(A, B | I)

Pr(B | I)
. (1)

Equation (1) can be rearranged as

Pr(A | B, I) =
Pr(B | A, I) Pr(A | I)

Pr(B | I)
. (2)

Equation (2) is the simplest algebraic version of the formula first proved in the24

second half of the eighteenth century by the Reverend Thomas Bayes. The importance
of Bayes’ Theorem is due to the fact that it is a rule for turning around conditional26

probabilities and updating degrees of belief on receiving new evidence.
The process of evidence acquisition may be modeled as a two-step process in time.28

At time t0 it is planned to look for evidence B because B is believed to be relevant for
proposition A. At time t0 the change in degree of belief in A, if it were to be discovered30

that B were true, may be calculated by use of Equation (2). Denote the degrees of belief
about an event · at time t0 by Pr0(·). The Bayes’ rule in (2) has a more general form32

that applies to partitions of the sample space. Let us consider the partition given by
proposition A and its complement Ā. Bayes’ Theorem may be rewritten as34

Pr0(A | B, I) =
Pr0(B | A, I) Pr0(A | I)

[Pr0(B | A, I) Pr0(A | I)] + [Pr0(B | Ā, I) Pr0(Ā | I)]
. (3)
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The result in the denominator is an expression of the law of total probability also known
as ‘Extension of the conversation rule’ [31]). The probability Pr0(A | B, I) is also called2

the probability of A, conditional on B (at time t0) or the posterior probability of A.
Pr0(A | I) and Pr0(Ā | I) are called prior, or initial, probabilities. Pr0(B | A, I) is called4

the likelihood of A given B (at time t0). Analogously, Pr0(B | Ā, I) is the likelihood of
Ā given B (at time t0).6

At time t1 it is discovered that B is true. Denote the degree of belief at time t1 by
Pr1(·): what is the degree of belief in the truth of A at time t1, i.e., what is Pr1(A | I)?8

A reasonable answer seems to be that, if it has been learned at time t1 that B is true,
and no further information is available, then knowledge that B is true has become part10

of the background knowledge at time t1; therefore, the overall degree of belief in A at
time t1 is equal to the degree of belief in A, conditional on B, at time t0:12

Pr1(A | I) = Pr0(A | B, I). (4)

This process is called Simple conditioning principle [33, 12]; it represents the pro-
cess in which the prior probability of each proposition A is replaced by a posterior14

probability that coincides with the prior probability of A conditional on B at time t1.
Jeffrey [26] noticed that:16

In the unlikely event that your judgmental states today and tomorrow are
both representable by definite probability distributions - say, P for today’s18

distribution and Q for tomorrow’s - it may be that tomorrow’s uncondi-
tional probabilities Q(H) for hypothesis H are simply today’s conditional20

probabilities P(H | A) for those hypotheses given the answer A to some
question. This is the prized special case of Conditioning Q(H) = P(H | A)22

(or ‘conditionalization’). (at p. 215)

In order to clarify the general mechanism underlying probabilistic updating, it may24

be helpful to consider Equation (4) in another way.
Consider all the possible scenarios that can be derived from the combination of26

two logically compatible propositions A and B at time t0: Pr0(A, B | I),Pr0(A, B̄ |
I),Pr0(Ā, B | I), and Pr0(Ā, B̄ | I). These scenarios can be represented graphically28

by means of a probability tree, as shown in Figure 1. At time t0, it is not known if
proposition A is true or not; the same for proposition B. Four exclusive and exhaustive30

scenarios do exist but we do not know which one is true. We just know that the proba-
bilities related to this scenario must sum up to 1, Pr0(A, B | I)+Pr0(A, B̄ | I)+Pr0(Ā, B |32

I) + Pr0(Ā, B̄ | I) = 1.
A probability tree is a type of graphical model which consists of a series of branches34

stemming from nodes, usually called random nodes, which represent uncertain events
[40]. At every random node there are as many branches as the number of the possible36

outcomes of the uncertain event. In this context, outcomes of uncertain events are de-
scribed by propositions and branches containing more than one node correspond to the38

logical conjunction of as many propositions as the number of nodes. Branches have
associated with them probabilities of the corresponding conjunctions of propositions40

calculated via the multiplication rule, and the probability of each proposition is given
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Figure 1: The probability tree for propositions A and B at time t0, given background information I.

by the sum of the probabilities of the branches containing it (extension of the conver-
sation). Following the axioms of probability, the sum of the probabilities of all the2

branches must add to one.
Consider now time t1, where proposition B is known to be true. The probability4

tree at time t1 is shown in Figure 2. Since B is known to be true, only two scenarios are
possible in the new state of knowledge and thus two of the probability nodes in Figure6

2, inconsistent with B, must be assigned a probability equal to zero: Pr1(A, B̄ | I) =

Pr1(Ā, B̄ | I) = 0.8

Again, the sum of the probabilities of the branches in Figure 2 must add up to 1.
The original probabilities of the branches must be amended in such a way that their10

sum turns out to be one: Pr1(A, B | I) + Pr1(Ā, B | I) = 1.
How can we redistribute these new probabilities? Considering that the only change12

in the state of information that has occurred is the probability of B, and no new in-
formation has been given about the probability ratios of different branches, then it is14

reasonable to redistribute beliefs in such a way that the ratio between the new and the
old probabilities of the branches containing B is the same as the ratio between the new16

and the old probabilities of B:

Pr1(A, B | I)
Pr0(A, B | I)

=
Pr1(B | I)
Pr0(B | I)

. (5)

Equation (5) can be called Principle of symmetry (see, for example, [15] for historical18

comments and [16] for applications). In this way, the new information B is distributed
symmetrically and neither of the two scenarios is privileged. A simple manipulation of20

9



Figure 2: The probability tree for propositions A and B at time t1, given background information I.

(5), as well as the fact that Pr1(B | I) = 1, allows us to express Pr1(A, B | I) as:

Pr1(A, B | I) = Pr0(A, B | I) ×
Pr1(B | I)
Pr0(B | I)

=
Pr0(A, B | I)

Pr0(B | I)
. (6)

Analogously, it can be obtained Pr1(Ā, B | I) as:2

Pr1(Ā, B | I) = Pr0(Ā, B | I) ×
Pr1(B | I)
Pr0(B | I)

=
Pr0(Ā, B | I)

Pr0(B | I)
. (7)

Indeed, addition of the terms in Equation (6) and (7) gives the desired result, that is

Pr1(A, B | I) + Pr1(Ā, B | I) =
Pr0(A, B | I)

Pr0(B | I)
+

Pr0(Ā, B | I)
Pr0(B | I)

=
Pr0(B | I)
Pr0(B | I)

= 1.

The new probability of A is now equal to the probability of the branch containing4

both A and B. Since it is known that B is true, Pr1(A, B̄ | I) = 0 and hence Pr1(A |
I) = Pr1(A, B | I). Therefore, substitution of this result in Equation (6) and (7) gives6

Equation (4), in fact

Pr1(A | I) = Pr0(A | B, I) =
Pr0(A, B | I)

Pr0(B | I)
;

Pr1(Ā | I) = Pr0(Ā | B, I) =
Pr0(Ā, B | I)

Pr0(B | I)
, (8)
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where evidence B at time t0 becomes background knowledge at time t1 as previously
discussed in Section 2.2

Results in (6) and (7) allow us to show that the use of Bayes’ Theorem for probabil-
ity updating is equivalent to the redistribution of probabilities among possible scenarios4

in a symmetric way; given that the state of information has changed on learning only
that B is true, Pr1(B | I) = 1, and nothing else, there is no reason to make a change6

biased for or against certain particular scenarios.

4. Logic for reasoning under uncertainty: probabilities updating with uncertain8

evidence

The Simple conditioning principle (Section 3) is not widely applicable. Suppose10

that a given report expresses some uncertainty and we cannot be certain of evidence
B as truth. We wish to use this ‘equivocal’ report in a further inference about propo-12

sitions A and Ā given that B is not known to be true but there is instead a probability
distribution expressing uncertainty about it [38] (at p. 352). The problem is well posed14

by Jeffrey [23]7 and reiterated in [24]:

H is the hypothesis that it’s hot out. Smith and Jones have each testified as16

to H’s truth or falsity, but you don’t regard their testimony as completely
reliable. Perhaps you’re not even quite sure what either of them said. (You18

are deep in a tunnel, into which they have shouted their report.) Let E
and F be the propositions that Smith and Jones, respectively, said that it20

is hot. How can you represent your judgment about E and F, and your
consequent judgment about H? (at p. 391)22

We are so often faced with uncertain evidence. We can more drastically say that exam-
ples of this type are the norm in real life situations as in forensic science and in judicial24

settings where things are partially perceived or remembered. An illustrative example
in medicine is described in [26].26

Consider a forensic situation in which our previous propositions A and Ā are sub-
stituted with H and H̄ (for Hypotheses) as routinely used in legal literature. Notation28

B is also updated by using letter E (for Evidence) to take into account the scientific
information delivered by a forensic scientist through his report.30

Assume, for the sake of argument, that the scientist’s degree of belief in the truth
of proposition E at time t1 is higher than his initial degree of belief at time t0, but it32

falls short of certainty, that is Pr0(E | I) < Pr1(E | I) < 1. What is the effect of this
uncertain evidence upon the hypotheses H and H̄?34

The problem is that the scientist cannot take the probability of H conditional on
E as his new degree of belief, because he does not know E for certain. If there is any36

uncertainty left in the report, the best that the scientist can do is to assess directly the
effect of such imperfect information on his degrees of belief, and, indeed, this is all38

that the scientist is reasonably entitled to do. A probabilistic rule can be formulated

7The first edition of [23] dated back to 1965.
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that allows him to update directly his degrees of belief once dealing with uncertain
evidence E.

Figure 3: The probability tree for the hypothesis H and the evidence E at time t1, given background infor-
mation I.

2

Consider, for the sake of clarity, the probability tree of the scientist’s problem given
in Figure 3, i.e., a probability tree containing the nodes H (Hypothesis) and E (Evi-4

dence). The difference with the probability tree in Figure 2 is that the probabilities of
all four scenarios at time t1 are now greater than zero. The problem is thus: how can6

a decision-maker redistribute the probabilities of the four different scenarios in such a
way that they add up to 1?8

Taking the same arguments illustrated in Section 3, it is entirely reasonable to re-
distribute probabilities so that the ratio between the new and the old probabilities of10

the scenarios is the same as the ratio between the new and the old probabilities of E as
expressed in Section 3 through the Principle of symmetry:12

Pr1(H, E | I)
Pr0(H, E | I)

=
Pr1(E | I)
Pr0(E | I)

. (9)

From Equation (9) the rule for calculating the new probability Pr1(H, E | I) is then
derived:14

Pr1(H, E | I) = Pr0(H, E | I) ×
Pr1(E | I)
Pr0(E | I)

. (10)

In this way, the change in the scientist’s state of information between time t0 and time
t1 is taken into account about event E. The other probabilities corresponding to all16

branches of the probability tree can be calculated analogously. It can be easily verified
that they sum up to 1.18
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Equation (10) obeys the same principle as Equation (6). The constant factor now
is Pr1(E | I)/Pr0(E | I) instead of 1/Pr0(B | I), but the probabilities have been redis-2

tributed among the possible scenarios in a symmetric way as before: given that the state
of information has changed on learning the new probability Pr1(E | I), and nothing else4

happened, there are no reasons to make a change biased for or against certain particular
scenarios.6

The probability of hypothesis H at time t1 can be obtained as:

Pr1(H | I) = Pr1(H, E | I) + Pr1(H, Ē | I)

= Pr0(H, E | I)
Pr1(E | I)
Pr0(E | I)

+ Pr0(H, Ē | I)
Pr1(Ē | I)
Pr0(Ē | I)

= Pr0(H | E, I)Pr0(E | I)
Pr1(E | I)
Pr0(E | I)

+ Pr0(H | Ē, I)Pr0(Ē | I)
Pr1(Ē | I)
Pr0(E | I)

= Pr0(H | E, I)Pr1(E | I) + Pr0(H | Ē, I)Pr1(Ē | I). (11)

Equation (11) is a straightforward generalization of Bayes’ Theorem, known in the8

philosophical literature under the name of Jeffrey’s rule because it was the philosopher
of science Richard Jeffrey who first argued it was a reasonable general updating rule10

[23]. The approach is also known as Generalized conditioning, Jeffrey conditioning or
Probability Kinematics. Jeffrey conditioning can be formally expressed in the follow-12

ing terms under a dichotomous situation:

If a person with a prior such that 0 < Pr0(E | I) < 1 has a learning experi-14

ence whose sole immediate effect is to change their subjective probability
for E to Pr1(E | I), then their post-learning posterior for H should be16

Pr1(H | I) = Pr1(E | I) × Pr0(H | E, I) + [1 − Pr1(E | I)] × Pr0(H | Ē, I).

Note that Jeffrey conditioning reduces to Simple conditioning rule (Section 3) when18

Pr1(E | I) = 1; so, note that the Simple conditioning rule is a special case of Jef-
frey’s rule. So, as expressed by [21], Jeffrey conditionalization offers ‘a consistent and20

certainly convenient release from the apparent dogmatism implicit in ordinary condi-
tionalization. If we regard probabilities of 1 as in practice unattainable, we can view22

ordinary conditionalization merely as a convenient approximation of Jeffrey condition-
alization for a proposition whose probability shifts to almost 1.’ (at p. 204)24

Schum ([38]) explains Jeffrey’s rule of conditioning in the following terms:

According to Jeffrey’s rule, we determine Pr(H | W’s probabilistic report)26

as follows: We first determine Pr(H | E), as if E did occur; this requires
the priors Pr(H), Pr(H̄) and the likelihoods Pr(E | H),Pr(E | H̄). We then28

determine Pr(H | Ē), as if E did not occur. This requires the above priors
and the likelihoods Pr(Ē | H),Pr(Ē | H̄). The final step involves taken the30

weighted average of Pr(H | E) and Pr(H | Ē), where the weights are W’s
assessments of the likeliness that he observed E or Ē. (at p. 352)32

In the discussion above, it has been considered to be a case where the evidence can
take the form of a feature correspondance and its complement. There are occasions34

however where the evidence does not have such a dichotomic structure. For example,
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consider a car traffic accident and one’s interest in paint flakes colors. Jeffrey’s rule can
be extended for any partition E1, . . . , En (where n explicits, e.g., the number of paint2

flake colors that are taken into consideration). The degree of belief about the truth of
H in presence of uncertain evidence E1, . . . , En can be expressed as4

Pr1(Hi | I) =

n∑
j=1

Pr0(Hi | E j, I)Pr1(E j | I) (12)

= Pr0(Hi)
n∑

j=1

Pr0(E j | Hi)
Pr0(E j)

Pr1(E j | I).

Comments and discussions on Formula (12) can be found in [18, 10, 41, 22, 25, 3] and
a brief historical discussion is presented in Section 6.6

5. A simple numerical example

Consider, just for sake of illustration, a simple case involving a medical diagnosis8

taken from [1]. A medical blood test detects certain symptoms of a disease, but un-
fortunately, the test may not always register the symptoms when they are present, or10

it may register them when they are absent. Therefore there is the need to evaluate the
accuracy of the test; this can be done by assessing the sensitivity and the specificity of12

the performed test.
Letting H be the event that a person is affected by a given disease and E stand for14

the event that the test indicates a positive result, Pr0(E | H, I) and Pr0(Ē | H̄, I) stand
for the sensitivity and the specificity of the test, respectively. Suppose now that the16

sensitivity of the test is equal to 0.95, while the specificity is equal to 0.99. This is
equivalent to assess Pr0(E | H) = 0.95 and Pr0(Ē | H̄) = 0.99. Suppose also that the18

prevalence of the disease in the relevant population is known to be 0.1, that is assume
Pr0(Hi | I) = 1.20

The posterior probability, Pr0(H | E, I), that a given member of the relevant popu-
lation has the disease given the observation of the positive result and the background22

information I, becomes

Pr0(H | E, I) =
Pr0(E | H, I) × Pr0(H | I)

Pr0(E | H, I) × Pr0(H | I) + Pr0(E | H̄, I) × Pr0(H̄ | I)
(13)

=
0.95 × 0.1

0.95 × 0.1 + (1 − 0.99) × 0.9
= 0.913.

If the scientist declares unambigously that the blood test is positive, then the proba-24

bility that the individual is effectively affected by the disease increases from a prior
probability of 0.1 to a posterior probability greater than 0.91.26

Consider now the case where for some reasons the scientist is doubtful about the
result of the test. Imagine there is just a 0.7 probability for the correctness of the28

reported result of the test. The scientist cannot present such result in an unequivocal
way. By taking Jeffrey’s rule, probabilities 0.7 and its complement 0.3 are used as30
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weights Pr1(E | I) and Pr1(Ē | I) for the corresponding conditional probabilities Pr1(H |
E, I) and Pr1(H | Ē, I). The posterior probability of H at time t1 becomes:2

Pr1(H | I) = Pr1(E | I) × Pr0(H | E, I) + [1 − Pr1(E | I)] × Pr0(H | Ē, I) (14)
= 0.7 × 0.913 + 0.3 × 0.006
= 0.641.

Results obtained through Jeffrey’s rule by changing prior probability on H are a linear
function. Note that once there is no uncertainty about the evidence E, Pr1(E | I) can4

be set equal to 1, and the posterior probability in (14) is equivalent to that obtained in
(13) for unequivocal evidence.6

6. Some remarks of interest for the forensic scientist

In the previous section, we approached the problem of handling either hard or soft8

evidence through the quantification of the posterior probability of the main hypothesis
of interest, say H.10

Situations involving equivocal evidence are not so rare in forensic science. See,
for example, data obtained to support classification of individuals according to an age12

threshold, given sex and the third molars’ dental maturity on a given scale as presented
in [4] in which the forensic scientist has difficulties in classifying third molars into14

one definite stage, for example due to an unclear radiographic image. Other scenarios
involve the case where there is uncertainty about the reported testimony related to the16

hair color of a person of interest, or there is uncertainty about animal hair classification
by microscopy, or about the result of a test. An example involving how to deal with18

equivocal testimony about the result of a test is provided in Section 8.
Dodson [11] gave a rule for beliefs updating based upon probabilistic equivocation20

of an evidence. He called it Modified Bayesian theorem and his solution represented
exactly Jeffrey’s conditioning rule. It seems that the model was criticized on its ax-22

iomatic aspects but it has been developed further in [17] independently from Jeffrey
(1965) [23]. Their aim was to propose24

An algorithm [...] that relaxes the requirement of Bayes’ theorem that the
true data state be known with certainty by postulating a true but unobserv-26

able elementary event, w [E in our notation], which gives rise to posterior
probabilities which reflect the uncertainty of the data. (at p. 125)28

This historical discussion was pointed out by Schum in his discussion paper [13].
It is of interest to take advantage of the works done by Schum on what he called30

‘cascade of inference’ (see, for example [39] and [38]). Schum described it in the
following form [13]:32

The point that initially stimulated our interest in cascaded inference was
that the observation of evidence about an event is not diagnostically equiv-34

alent to observation of the event itself. (at p. 235)
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In other words, Schum [38] pointed out that ‘evidence about some event and the actual
occurrence of this event are not the same’ (at p. 18). So that an event, say R, represents2

evidence that an event E happened or is true.

From evidence R, I must infer whether or not E actually happened or is4

true. Under a stipulation that all evidence is inconclusive to some degree,
this inference can only be expressed in probabilistic terms. (at p. 18)6

His work is somehow related to Jeffreys principle. Schum wrote [13]:

The Dodson and Gettys-Willke-Jeffrey formulations concern instances in8

which a source of evidence gives equivocal testimony in the form of a
probability estimate, and so we cannot be sure whether or not E occurred.10

But DuCharme and I were interested in the very many other situations
in which a source give unequivocal testimony the E occurred but we are12

still uncertain about whether or not it actually did occur. This happens
whenever the source is less than perfectly credible. So we began by dis-14

tinguishing between testimonial evidence E∗ [R in our notation] that event
E occurred and event E itself. (at pp. 235-236)16

The question that - from the Schum point of view - discriminates between the Gettys-
Willke-Jeffrey’s and his own work is ‘who does the credibility assessment of witness18

W?’ He wrote:

In the Jeffrey situation, [a witness] W provides an assessment of his own20

credibility as far as his observation was concerned. He is uncertain about
whether his observation was E or Ē, and he expresses this uncertainty22

by means of Pr1(E) and Pr1(Ē). In [Schum’s development], we make an
assessment of the credibility of W’s unequivocal testimony by means of24

[Pr(R | E) and Pr(R̄ | Ē)]. (at p. 353)

7. Bayes’ factor for unequivocal testimony26

In forensic science, it is often of interest to assess the value of the evidence. The
coherent metrics to assess the value of the evidence is the Bayes’ factor [19], often sim-28

ply called ‘likelihood ratio’ (though the two expressions are not, in general, equivalent
and the likelihood ratio just represents a special case of Bayes’ factor).30

Our first interest is focused on highlighting the link between Jeffrey’s solution for
equivocal testimony which is focused on posterior probabilities, and Schum’s works32

offering solutions for the value of unequivocal testimony through cascaded inference,
where source inaccuracy is considered in two inferential steps (R to E, and E to H). The34

potential for a parallelism between the two approaches (Jeffrey’s posterior probability
and Schum’s Bayes’ factor) is discussed in [37].36

Consider a reported testimony R of an event E. The current scenario allowing for
unequivocal testimony, but where the credibility of the source is questioned is described38

in Figure 4, reporting a probability tree containing nodes H (Hypothesis), E (Evidence)
and R (Reported testimony).40
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Figure 4: The probability tree for the hypothesis H, the evidence E and the reported testimony R at time t1,
given background information I.

Suppose that it is reported R, so that Pr1(R) = 1 (unequivocal). Taking the same
arguments illustrated in Section 3, it is entirely reasonable to redistribute probabilities2

in such a way that the Symmetry principle is satisfied:

Pr1(H, E,R) =
Pr0(H, E,R)

Pr0(R)
.

So, the probability of proposition H can be obtained as4

Pr1(H) = Pr1(H, E,R) + Pr1(H, Ē,R)

=
Pr0(H, E,R)

Pr0(R)
+

Pr0(H, Ē,R)
Pr0(R)

= Pr0(H | E,R)Pr0(E | R) + Pr0(H | Ē,R)Pr0(Ē | R)
= Pr0(H | E)Pr0(E | R) + Pr0(H | Ē)Pr0(Ē | R). (15)

Note that Equation (15) assumes that events R and H are considered as independent
conditional upon E. This assumption should be carefully considered as mentioned by6

Schum [38] (see pp. 311-312). An example of the acceptance of such an assumption is
presented in [44] dealing with errors in DNA evidence evaluation.8
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Note also that the background information I has been omitted for sake of simplicity,
though its existence must not be forgotten. This can be generalized to any partition2

E1, . . . , En as

Pr1(H) =

n∑
j=1

Pr0(H | E j)Pr0(E j | R).

Consider the posterior probability Pr1(H) in (15). Recalling that Pr0(H | E) =4

Pr0(E | H)Pr0(H)/Pr0(E), the posterior odds takes the following form

Pr1(H)
Pr1(H̄)

=

Pr0(H)Pr0(E|H)
Pr0(E) Pr0(E | R) +

Pr0(H)Pr0(Ē|H)
Pr0(Ē) Pr0(Ē | R)

Pr0(H̄)Pr0(E|H̄)
Pr0(E) Pr0(E | R) +

Pr0(H̄)Pr0(Ē|H̄)
Pr0(Ē) Pr0(Ē | R)

. (16)

Dividing (16) by the prior odds Pr0(H)/Pr0(H̄), and after a simple manipulation, it6

is possible to express the Bayes’ factor for the assessment of unequivocal testimony as

BF =
Pr0(E | H)

[
Pr0(E | R)Pr0(Ē) − Pr0(Ē | R)Pr0(E)

]
+ Pr0(Ē | R)Pr0(E)

Pr0(E | H̄)
[
Pr0(E | R)Pr0(Ē) − Pr0(Ē | R)Pr0(E)

]
+ Pr0(Ē | R)Pr0(E)

. (17)

The Bayes’ factor in (17) quantifies the value of the acquired information that is8

the result of an observation reported by a scientist or witness. It is straightforward to
show that it is equivalent to that proposed by Schum [38] for unequivocal evidence10

by adopting a cascaded inference that considers the difference between a report R,
on a given event, and the event itself E. It is suffcient to reformulate Pr0(E | R) as12

Pr0(R | E)Pr0(E)/Pr0(R) and a bit of algebra to obtain

BF =
Pr0(E | H)[Pr0(R | E) − Pr0(R | Ē)] + Pr0(R | Ē)
Pr0(E | H̄)[Pr0(R | E) − Pr0(R | Ē)] + Pr0(R | Ē)

. (18)

Probabilities in Equation (18)8 can be defined as follows:14

• Pr0(E | H) represents the sensibility of the analytical method;

• Pr0(E | H̄) represents the complement of the specificity of the analytical method;16

• Pr0(R | E), represents the probability to detect correctly a feature when the fea-
ture does exist;18

• Pr0(R | Ē) represents the probability to detect a given feature when that feature
does not exist. This can be defined as a ‘false association’.20

These probabilities specify the ‘quality’ of the performed test (points 1 and 2) and that
of a given laboratory (points 3 and 4).22

8Examples of application of such a cascaded inference can be found in, e.g. [32, 44].
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Note that if one considers that (a) the laboratory is able to detect a given feature
every time it is faced with such a feature, so that Pr0(R | E) = 1, and that (b) the
laboratory is error-free, Pr0(R | Ē) = 0, then the Bayes’ factor in (18) reduces to

BF =
Pr0(E | H)
Pr0(E | H̄)

.

This is an extreme situation, often difficult to justify and defend in front of a Court of
Justice.2

Recall the medical example presented earlier in Section 5 and consider the sensi-
bility of the test Pr0(E | H) = 0.95 and the specificity of the test, Pr0(Ē | H̄) = 0.99, so
that Pr0(E | H̄) = 0.01; the Bayes’ factor becomes 95. If one does not accept that the
laboratory is error free, one should assign values for Pr0(R | E) and Pr0(R | Ē). Suppose
that it is believed that the laboratory always reports a feature when it is supposed to,
i.e. Pr0(R | E) = 1, while a value equal to 0.04 is assigned to the probability to detect
erroneously a feature, i.e. Pr0(R | Ē) = 0.04. The Bayes’ factor in (18) becomes

BF =
0.95 × [1 − 0.04] + 0.04
0.01 × [1 − 0.04] + 0.04

= 19.2.

Clearly, whenever the possibility of a laboratory error is accounted for (i.e., Pr0(R |
E) < 1 and Pr0(R | Ē) > 0), the value of the evidence will be smaller.4

Information useful to assign values for Pr0(R | E) and Pr0(R | Ē) can be obtained
through results of internal laboratory tests or collaborative tests (i.e. proficiency tests)6

regularly performed by forensic laboratories. A discussion on the quality and relevance
of proficiency tests in forensic science is out of the scope of this paper. The interested8

reader can refer to [27, 28, 29, 30] for comments and critical discussions on the current
state of affairs.10

The fact that a scientist offers an unequivocal evidence, by saying that ‘the test
result is positive and he is 100% sure of that’, does not mean that there is no uncertainty12

around the evidence. It is matter of fact that a Court (or a patient in a medical context)
should have information on the laboratory performances, not just on the test itself to14

be able to assess the meaning of the expert’s statement. This can be done by using
Equation (18).16

8. Bayes’ factor for equivocal testimony

A slightly different situation is that of a scientist saying that he ‘supposes that the18

test is positive; he is, e.g. 70% sure that the test is positive’. Jeffrey [23] expressed this
possible scenario through the following examples:20

The agent inspects a piece of cloth by candlelight, and gets the impression
that it is green, although he conceded that it might be blue or even (but22

very improbably) violet. If G, B and V are the propositions that the cloth
is green, blue and violet, respectively, then the outcome of the observation24

might be that, whereas originally his degrees of belief in G, B and V were
.30, .30, and .40, his degrees of belief in those same propositions after the26

observation are .70, .25, and .05. (at p. 165)
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and

It is easy enough to cite examples like 1 [the previous one] for the other2

senses. Transcribing a lecture in a noisy auditorium, the agent might think
he had heard the word ‘red’, but still think it possible that the word was4

actually ‘led’. He might be unsure about whether the meat he is testing is
pork or veal [. . . ]. (at p. 166).6

The idea here is to extend the Bayes’ factor for the assessment of unequivocal
testimony to consider situations involving equivocal testimony.8

Consider the probability tree in Figure 4, where now Pr1(R) < 1. It is possible to
redistribute probabilities as10

Pr1(H, E,R) = Pr0(H, E,R) ×
Pr1(R)
Pr0(R)

= Pr0(H | E,R)Pr0(E | R)Pr0(R) ×
Pr1(R)
Pr0(R)

= Pr0(H | E)Pr0(E | R)Pr1(R).

The probabilities of all other branches can be obtained analogously.
The probability of proposition H given equivocal testimony R becomes

Pr1(H) = Pr1(H, E,R) + Pr1(H, Ē,R) + Pr1(H, E, R̄) + Pr1(H, Ē, R̄)

= Pr1(R)
[
Pr0(H | E)Pr0(E | R) + Pr0(H | Ē)Pr0(Ē | R)

]
+ Pr1(R̄)

[
Pr0(H | E)Pr0(E | R̄) + Pr0(H | Ē)Pr0(Ē | R̄)

]
= Pr1(R)Pr0(H)

[
Pr0(E | H)

Pr0(E)
Pr0(E | R) +

Pr0(Ē | H)
Pr0(Ē)

Pr0(Ē | R)
]

+ Pr1(R̄)Pr0(H)
[
Pr0(E | H)

Pr0(E)
Pr0(E | R̄) +

Pr0(Ē | H)
Pr0(Ē)

Pr0(Ē | R̄)
]

(19)

The posterior probability Pr1(H̄) of the alternative proposition can be obtained anal-12

ogously. The posterior odds can therefore be obtained as a ratio between Pr1(H) and
Pr1(H̄) (see Appendix), and the Bayes’ factor takes the following form:14

BF =

Pr1(R)
Pr0(R)

{
Pr(E | H)

[
Pr(R | E) − Pr(R | Ē)

]
+ Pr(R | Ē)

}
+

Pr1(R̄)
Pr0(R̄)

{
Pr(E | H)

[
Pr(R̄ | E) − Pr(R̄ | Ē)

]
+ Pr(R̄ | Ē)

}
Pr1(R)
Pr0(R)

{
Pr(E | H̄)

[
Pr(R | E) − Pr(R | Ē)

]
+ Pr(R | Ē)

}
+

Pr1(R̄)
Pr0(R̄)

{
Pr(E | H̄)

[
Pr(R̄ | E) − Pr(R̄ | Ē)

]
+ Pr(R̄ | Ē)

}
(20)

This expression simplifies to (17) when the testimony is unequivocal, i.e. Pr1(R) = 1.
Consider now the case described in Section 7, where16

• Pr0(E | H) = 0.95,

• Pr0(E | H̄) = 0.01,18

• Pr0(R | E) = 1,
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• Pr0(R | Ē) = 0.04.

To compute the Bayes’ factor in (20) it must be first obtained Pr0(R). Consider, for the2

sake of illustration, Pr0(H) = 0.8, then

Pr0(R) = Pr0(R | E)Pr0(E) + Pr0(R | Ē)Pr0(Ē)
= Pr0(R | E)

[
Pr0(E | H)Pr0(H) + Pr0(E | H̄)Pr0(H̄)

]
+ Pr0(R | Ē)

[
Pr0(Ē | H)Pr0(H) + Pr0(Ē | H̄)Pr0(H̄)

]
= 1 × [(0.95 × 0.8) + (0.01 × 0.2)] + 0.04 × ([0.05 × 0.8) + (0.99 × 0.02)]
= 0.77

Suppose now the practitioner is uncertain about the reported testimony, and that4

this uncertainty is quantified in a degree of belief Pr1(R) = 0.7 as illustrated in the
previous Jeffrey’s quote. The Bayes’ factor in (20) becomes:6

BF =

0.7
0.77 [0.95 × (1 − 0.04) + 0.04] + 0.3

0.23 [0.95 × (0 − 0.96) + 0.96]
0.7

0.77 [0.01 × (1 − 0.04) + 0.04] + 0.3
0.23 [0.01 × (0 − 0.96) + 0.96]

= 0.717

Table 1: Bayes’ factor BF and posterior probability Pr1(H) for various values of Pr0(H) and Pr1(R), given
Pr0(E | H) = 0.95, Pr0(E | H̄) = 0.01, Pr0(R | E) = 1 and Pr0(R | Ē) = 0.04.

Pr0(H) Pr1(R) BF Pr1(H)

0.1 0.5 4.702 0.343
0.1 0.7 8.249 0.478
0.1 0.9 14.271 0.613

0.5 0.5 0.997 0.499
0.5 0.7 2.123 0.68
0.5 0.9 6.155 0.86

0.9 0.5 0.209 0.653
0.9 0.7 0.417 0.79
0.9 0.9 1.392 0.926

- 1 95 -

It must be pointed out that the Bayes’ factor in (20) depends on the prior probability8

Pr0(H). The Bayes’ factor doesn’t in fact simplify to a likelihood ratio: it represents
a measure of change in support of competing propositions, rather than a measure of10

support.
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Figure 5: Bayes’ factor in Equation (20) for Pr0(H) = 0.5, values of Pr0(R | E) ranging from 0 until 1 in
situations involving unequivocal (Pr1(R) = 1) and equivocal evidence (Pr1(R) = 0.99, Pr1(R) = 0.9 and
Pr1(R) = 0.7). Note that the solid line indicates the neutral value of the Bayes’ factor, BF = 1.

A small Bayes’ factor doesn’t mean that the probability of the hypothesis of interest
H is low: it only means that available knowledge (e.g. the reported testimony) lowers2

the probability of the hypothesis of interest. Take the case where Pr1(R) = 0.7 and
Pr0(H) = 0.9 in Table 1. The Bayes’ factor in this case is 0.417, however the hypothesis4

H is more likely than hypothesis H̄ (Pr1(H) = 0.79). In the same way, a large value
of the Bayes’ factor does not mean that the probability of the hypothesis of interest is6

elevated. Undoubtedly, equivocal evidence drastically reduces the value of the evidence
as shown in Figure 5. In fact, the more uncertainty there is about the event R, i.e. the8

lower is Pr1(R), the more the value of the Bayes’ factor will decrease. Furthermore, the
more uncertainty there is about the event R, the lower the impact there will be on the10

laboratory’s ability to detect correctly a feature when that feature does exist (i.e. the
value of Pr0(R | E)) for the calculation of the Bayes’ factor.12
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9. Conclusion

The classical Bayesian perspective is based on conditioning related to evidence2

(laboratory experiments or observations in general) taken as certain. What is called
‘Radical Probabilism’ replaces such an extreme view by ‘the conviction that probabil-4

ities need not be based on certainties.’ [14] (at p. 254). Uncertainty related to the
reporting does exist. An extended operational perspective can be adopted. Such an6

extension (the so-called Dodson-Gettys-Willke-Jeffrey formulation) can be view as a
generalization of Bayes’ Theorem and its use should be encouraged to deal with real8

life situations as supported in [45] by strongly affirming that:

Our arguments cannot touch someone who insists that either changing10

opinion more or less by caprice, or only by rules which take into account
factors other than those occurring explicitly in Jeffrey’s problem, is no12

less rational than by such a rule as we have endeavored to discover. We
can only say: if a general rule is to be followed for all cases falling into14

the scope of the problem as posed, then Jeffrey’s rule as the required gen-
erality, and no other rule does. (at p. 23)16

Forensic scientists deal with the value of the evidence through a measure called the
Bayes’ factor. A cascaded inference taking into account what has been called equivocal18

evidence has been introduced, theoretically justified and described through a series of
examples.20

In the authors’ perspective, such a generalization for the the evidence evaluation
should be applied.22
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Appendix

Consider the posterior probability Pr1(H) in (19). The posterior probability Pr1(H̄)
can be obtained analogously, and the posterior odds takes the following form:

Pr1(H)
Pr1(H̄)

=

Pr1(R)Pr0(H)
[
Pr(E | H) Pr(R|E) Pr(E)

Pr0(R) Pr(Ē) + Pr(Ē | H) Pr(R|Ē) Pr(Ē)
Pr0(R) Pr(E)

]
+

Pr1(R̄)Pr0(H)
[
Pr(E | H) Pr(R̄|E) Pr(E)

Pr0(R̄) Pr(Ē) + Pr(Ē | H) Pr(R̄|Ē) Pr(Ē)
Pr0(R̄) Pr(E)

]
Pr1(R)Pr0(H̄)

[
Pr(E | H̄) Pr(R|E) Pr(E)

Pr0(R) Pr(Ē) + Pr(Ē | H̄) Pr(R|Ē) Pr(Ē)
Pr0(R) Pr(E)

]
+

Pr1(R̄)Pr0(H̄)
[
Pr(E | H̄) Pr(R̄|E) Pr(E)

Pr0(R̄) Pr(Ē) + Pr(Ē | H̄) Pr(R̄|Ē) Pr(Ē)
Pr0(R̄) Pr(E)

]
.

After some algebra, the posterior odds can be rewritten as:

Pr1(H)
Pr1(H̄)

=
Pr1(R)Pr0(H)

[
Pr(E | H) Pr(R|E)

Pr0(R) + Pr(Ē | H) Pr(R|Ē)
Pr0(R)

]
+ Pr1(R̄)Pr0(H)

[
Pr(E | H) Pr(R̄|E)

Pr0(R̄) + Pr(Ē | H) Pr(R̄|Ē)
Pr0(R̄)

]
Pr1(R)Pr0(H̄)

[
Pr(E | H̄) Pr(R|E)

Pr0(R) + Pr(Ē | H̄) Pr(R|Ē)
Pr0(R)

]
+ Pr1(R̄)Pr0(H̄)

[
Pr(E | H̄) Pr(R̄|E)

Pr0(R̄) + Pr(Ē | H̄) Pr(R̄|Ē)
Pr0(R̄)

] .
The Bayes factor can therefore be obtained dividing the posterior odds by the prior2

odds:

BF =
Pr1(R)

[
Pr(E | H) Pr(R|E)

Pr0(R) + Pr(Ē | H) Pr(R|Ē)
Pr0(R)

]
+ Pr1(R̄)

[
Pr(E | H) Pr(R̄|E)

Pr0(R̄) + Pr(Ē | H) Pr(R̄|Ē)
Pr0(R̄)

]
Pr1(R)

[
Pr(E | H̄) Pr(R|E)

Pr0(R) + Pr(Ē | H̄) Pr(R|Ē)
Pr0(R)

]
+ Pr1(R̄)

[
Pr(E | H̄) Pr(R̄|E)

Pr0(R̄) + Pr(Ē | H̄) Pr(R̄|Ē)
Pr0(R̄)

]
=

Pr1(R)
Pr0(R)

{
Pr(E | H)

[
Pr(R | E) − Pr(R | Ē)

]
+ Pr(R | Ē)

}
+

Pr1(R̄)
Pr0(R̄)

{
Pr(E | H)

[
Pr(R̄ | E) − Pr(R̄ | Ē)

]
+ Pr(R | Ē)

}
Pr1(R)
Pr0(R)

{
Pr(E | H̄)

[
Pr(R | E) − Pr(R | Ē)

]
+ Pr(R | Ē)

}
+

Pr1(R̄)
Pr0(R̄)

{
Pr(E | H̄)

[
Pr(R̄ | E) − Pr(R̄ | Ē)

]
+ Pr(R | Ē)

} .
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