Skip to main content
Log in

Exclusion Principles as Restricted Permutation Symmetries

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We give a derivation of exclusion principles for the elementary particles of the standard model, using simple mathematical principles arising from a set theory of identical particles. We apply the theory of permutation group actions, stating some theorems which are proven elsewhere, and interpreting the results as a heuristic derivation of Pauli's Exclusion Principle (PEP) which dictates the formation of elements in the periodic table and the stability of matter, and also a derivation of quark confinement. We arrive at these properties by using a symmetry property of collections of the particles themselves as compared for example to the symmetry property of their wave function under interchange of two particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Atiyah and P. Sutcliffe, “The geometry of point particles, ” Proc. Roy. Soc. Lond., Ser. A 458, 1089–1116 (2002).

    Google Scholar 

  2. P. A. Benioff, “Models of Zermelo Fraenkel set theory as carriers for the mathematics of physics, I and II, ” J. Math. Phys. 17, 618–649 (1976).

    Google Scholar 

  3. M. V. Berry and J. M. Robbins, “Indistinguishability for quantum particles: spin, statistics and the geometric phase, ” Proc. Roy. Soc. Lond., Ser. A 453, 1771–1790 (1997).

    Google Scholar 

  4. M. V. Berry and J. M. Robbins, “Quantum indistinguishability: Alternative constructions of the transported basis, ” J. Phys. A: Math. Gen. 33, L207-L214 (2000).

    Google Scholar 

  5. M. V. Berry and J. M. Robbins, “Quantum indistinguishability: Spin-statistics without relativity or field theory?, ” in Spin-Statistics Connection and Commutation Relations, R. C. Hilbron and G. M. Tino, eds. (American Institute of Physics, 2000).

  6. W. Boos, “Metamathematical quantum theory, I, ” J. Symbolic Logic 53, 1289–1290 (1988).

    Google Scholar 

  7. M. Born, “Physical reality, ” in Interpreting Bodies: Classical and Quantum Objects in Modern Physics, E. Castellani, ed. (Princeton University Press, Princeton, 1998).

    Google Scholar 

  8. N. Brunner, K. Svozil, and M. Baaz, “The axiom of choice in quantum theory, ” Math. Logic Quart. 42, 319–340 (1996).

    Google Scholar 

  9. P. J. Cameron, Permutation Groups (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  10. P. J. Cameron and S. Tarzi, “Group actions on amorphous sets, ” in preparation.

  11. T.-P. Cheng and L.-F. Li, Gauge Theory of Elementary Particle Physics (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  12. D. Constantini and U. Garibaldi, “Elementary particle statistics reconsidered, ” Phys. Lett. A. 134, 161–164 (1988).

    Google Scholar 

  13. G. D. Coughlan and J. E. Dodd, The Ideas of Particle Physics (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  14. P. Creed and J. K. Truss, “On o-amorphous sets, ” Ann. Pure Appl. Logic 101, 185–226 (2000).

    Google Scholar 

  15. P. Creed and J. K. Truss, “On quasi-amorphous sets, ” Archive for Mathematical Logic 40, 581–596 (2001).

    Google Scholar 

  16. J. D. Dixon and B. Mortimer, Permutation Groups (Graduate Texts in Mathematics 163) (Springer, 1996).

  17. I. Duck and E. C. G. Sudarshan, “Toward an understanding of the spin-statistics theorem, ” Amer. J. Phys. 66, 284–303 (1998).

    Google Scholar 

  18. I. Duck and E. C. G. Sudarshan, Pauli and the Spin-Statistics Theorem (World Scientific, Singapore, 1997).

    Google Scholar 

  19. P. Ehrenfest and J. R. Oppenheimer, “Note on the statistics of nuclei, ” Phys. Rev. 37, 333–338, (1931).

    Google Scholar 

  20. C. P. Enz, No Time to Be Brief: A Scientific Biography of Wolfgang Pauli (Oxford University Press, 2002).

  21. T. E. Forster and J. K. Truss, “Non-well-foundedness of well-orderable power sets, ” (University of Leeds, 2002), to appear in Journal of Symbolic Logic.

  22. S. French and D. Krause, “The logic of quanta, ” in Conceptual Foundations of Quantum Field Theory, T. Y. Cao, ed. (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  23. S. French, “Models and mathematics in physics: The role of group theory, ” in From Physics to Philosophy, J. Butterfield and C. Pagonis, eds. (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  24. C. Fuchs and A. Peres, “Quantum theory needs no 'interpretation', ” Physics Today 70 (March 2000).

  25. O. W. Greenberg, “Parafield theory, ” in Mathematical Theory of Elementary Particles, R. Goodman and I. Segal, eds. (M.I.T. Press, Cambridge, Massachusetts, 1966).

    Google Scholar 

  26. W. Heisenberg, Z. Phys. 38, 411(1926).

    Google Scholar 

  27. G. 't Hooft, “How does God play dice? (pre-)determinism at the Planck scale, ” an Essay in honour of John S. Bell. hep-th/0104219, 25 April 2001.

  28. G. 't Hooft, “Quantum mechanics and determinism, ” presented at PASCOS 2001, Eighth International Symposium on Particles, Strings and Cosmology, UNC at Chapel Hill, April 10–15, 2001. hep-th/0105105, 11 May 2001.

  29. T. J. Jech, The Axiom of Choice (North-Holland, Amsterdam, 1973).

    Google Scholar 

  30. J. Jolie, “Uncovering supersymmetry, ” Sci. Am. 287 (July, 2002).

  31. R. Kerner, “ℤ3-Graded ternary algebras, new gauge theories and quarks, ” in Topics in Quantum Field Theory: Modern Methods in Fundamental Physics, D. Tchrakian, ed. (World Scientific, Singapore, 1996).

    Google Scholar 

  32. W. Ketterle, “Experimental studies of Bose–Einstein condensation, ” Physics Today 52, 30(1999).

    Google Scholar 

  33. D. Krause, A. S. Sant'Anna, and A. G. Volkov, “Quasi-set theory for bosons and fermions: Quantum distributions, ” Found. Phys. Lett. 12(1), 51–66 (1999).

    Google Scholar 

  34. M. G. G. Laidlaw and C. Morette DeWitt, “Feynman functional integrals for systems of indistinguishable particles, ” Phys. Rev. D 3(6), 1375–1378 (1971).

    Google Scholar 

  35. A. Levy, “The independence of various definitions of finiteness, ” Fund. Math. 46, 1–13 (1958).

    Google Scholar 

  36. H. J. Lipkin, “Particle physics for nuclear physicists, ” in Physique Nucleaire, Les Houches, 1968, C. de Witt and V. Gillet, eds. (Gordon & Breach, New York, 1969).

    Google Scholar 

  37. H. J. Lipkin, “Frontiers of the quark model, ” in The Elementary Structure of Matter, J.-M. Richard, E. Aslanides, and N. Boccara, eds. (Springer, Berlin, 1988).

    Google Scholar 

  38. G. W. Mackey, The Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).

    Google Scholar 

  39. Yu. I. Manin, “Problems of present day mathematics: I (foundations), ” in Proceedings of Symposia in Pure Mathematics, Vol. 28, F. E. Browder, ed. (American Mathematical Society, Providence, 1976).

    Google Scholar 

  40. G. S. Mendick and J. K. Truss, “A notion of rank in set theory without choice, ” University of Leeds preprint, 24, 2001. To appear in Archive for Mathematical Logic.

  41. R. Mirman, “Experimental meaning of the concept of Identical Particles, ” Nuovo Cimento B 18, 110(1973).

    Google Scholar 

  42. S. Nussinov and M. A. Lampert, “QCD inequalities, ” Phys. Rep. 362(4), 193–301 (2002).

    Google Scholar 

  43. W. A. Perkins, “Quasibosons” Internat. J. Theoret. Phys. 41, 823–838 (2002).

    Google Scholar 

  44. A. Sant'Anna, J. de Souza, and D. de Freitas, “Indistinguishable particles and hidden variables: Part II, ” Found. Phys. Lett. 13, 69–77 (2000).

    Google Scholar 

  45. S. Tarzi, “Group actions on amorphous sets and reducts of coloured random graphs, ” Ph.D. thesis (Queen Mary, University of London, 2002). This can be found at http:// www.maths.qmul.ac.uk/∼st.

  46. G. Temple, 100 Years of Mathematics (Duckworth, 1981).

  47. J. Tersoff and D. Bayer, “Quantum statistics for distinguishable particles, ” Phys. Rev. Lett. 50, 553–554 (1983).

    Google Scholar 

  48. J. Truss, “Permutations and the axiom of choice” in Automorphisms of First-Order Structures, R. Kaye and D. Macpherson, eds. (Clarendon Press, Oxford, 1994).

    Google Scholar 

  49. J. K. Truss, “The structure of amorphous sets, ” Ann. Pure Appl. Logic 73, 191–233 (1995).

    Google Scholar 

  50. B. C. van Fraassen, Quantum Mechanics: An Empiricist View (Clarendon, Oxford, 1991).

    Google Scholar 

  51. H. Weyl, The Theory of Groups and Quantum Mechanics (Methuen, London, 1931).

    Google Scholar 

  52. H. Weyl, Gesammelte Abhandlungen (Springer, Berlin, 1968).

    Google Scholar 

  53. F. Wilczek, “Projective statistics and spinors in Hilbert space, ” hep-th/9806228.

  54. F. Wilczek, “Quantum field theory, ” Rev. Mod. Phys. 71, S85-S95 (1999).

    Google Scholar 

  55. F. Wilczek, “Fermi and the elucidation of matter, ” opening talk at the celebration of Fermi's 100th birthday, Chicago, September 29, 2001. To be published in Fermi Remembered, J. Cronin, ed. (University of Chicago Press).

  56. M. J. York, “Permutation symmetry for many particles, ” quant-ph/9912057.

  57. M. J. York, “Identity, geometry, permutation and the Spin-Statistics Theorem, ” quant-ph/9908078

  58. A. Zee, “Speculations on spin and statistics, ” in Spin-Statistics Connection and Commutation Relations, R. C. Hilbron and G. M. Tino, eds. (American Institute of Physics, 2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarzi, S. Exclusion Principles as Restricted Permutation Symmetries. Foundations of Physics 33, 955–979 (2003). https://doi.org/10.1023/A:1025669511908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025669511908

Navigation