
Gödel’s unpublished papers on foundations of
mathematics

W. W. Tait∗

Kurt Gödel: Collected Works Volume III [Gödel, 1995] contains a selec-
tion from Gödel’s Nachlass; it consists of texts of lectures, notes for lectures
and manuscripts of papers that for one reason or another Gödel chose not to
publish. I will discuss those papers in it that are concerned with the foun-
dations/philosophy of mathematics in relation to his well-known published
papers on this topic.1

1 Cumulative Type Theory

[*1933o]2 is the handwritten text of a lecture Gödel delivered two years after
the publication of his proof of the incompleteness theorems. The problem of
giving a foundation for mathematics (i.e. for “the totality of methods actually
used by mathematicians”), he said, falls into two parts. The first consists in
reducing these proofs to a minimum number of axioms and primitive rules
of inference; the second in justifying “in some sense” these axioms and rules.
The first part he takes to have been solved “in a perfectly satisfactory way”

∗I thank Charles Parsons for an extensive list of comments on the penultimate version
of this paper. Almost all of them have led to what I hope are improvements in the text.

1This paper is in response to an invitation by the editor of this journal to write a
critical review of Volume III; but, with his indulgence and the author’s self-indulgence,
something else entirely has been produced.

2I will adopt the device of the editors of the Collected Works of distinguishing the
unpublished papers from those published by means of a preceding asterisk, as in “ [Gödel,
*1933o]”. Page references to the papers in volume III will always be to the volume rather
than to Gödel’s manuscripts. Page references to his published papers, on the other hand,
will always be to the original paper (which are indicated in the margins of the first two
volumes of Collected Works [Gödel, 1986; Gödel, 1990]). Page references alone will always
refer to Volume III.
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by the formalization of mathematics. Let me summarize what he says about
this:

The first attempt at such a formalization, viz. Frege’s, in which the
axioms and rules of inference “were formulated in a way that seemed to be
suggested at first sight”, led to obvious contradiction.3 Only one solution had
been found that satisfies the two requirements of avoiding the set theoretic
paradoxes and of being adequate to mathematics: the theory of types. He
refers here to Russell’s simple theory of types, but with three restrictions
removed. The first is that no class may be formed containing classes of
different types. The second is that the proposition a ∈ b is to be meaningless
when a and b are not of the appropriate types, as opposed to taking it to be
meaningful but false. The third restriction to be dropped is the restriction to
finite types. When these three restrictions are removed, the theory of types
becomes the theory of aggregates as presented by Zermelo, Fraenkel and von
Neuman, as becomes clear from [von Neumann, 1929]. Gödel is presumably
referring here to von Neumann’s proof that the well-founded sets form an
inner model of set theory without the Axiom of Foundation. He is saying
that, without the above restrictions, the types become the domains T (α),
where T (0) = U is the class of urelements, T (α + 1) is the domain of subsets
of T (α), and for γ a limit, T (γ) is the domain of sets of rank γ.4 The Axiom
of Foundation implies that every set has a rank and so a type. Clearly it
doesn’t matter whether we speak of the hierarchy of T (α)’s or the simpler
cumulative hierarchy of R(α)’s, where R(α) is the set of objects (sets or
urelements) of rank < α.

But a difference between these hierarchies and Russell’s is that the totality
of sets obtained in either of the former hierarchies satisfies the Axiom of
Extensionality, whereas this is false for the totality of classes obtained in
Russell’s hierarchy. If B(n) denotes the totality of objects of Russell type n,
then B(0) = U and B(n+1) consists of all truth-valued functions over B(n);
and so classes of distinct Russell types, having different domains of definition,
are distinct. E.g. there is a null class of each type. For b ∈ B(0), set b∗ = b

3However, in his review [1885] of [Frege, 1884], Cantor had already pointed out that
not every extension of a concept is a set. It followed from his theory of transfinite numbers
in [Cantor, 1883], as he noted there, that the extension of the concept ‘x is a transfinite
number’ is not a set.

4Strangely, Gödel refers to T (γ), for limit ordinal γ, as the ‘summing up’ of the earlier
types. In [Gödel, *1939b] he modifies the hierarchy by taking T (γ) to be the union of the
T (α)’s for α < γ.

2



and for b ∈ B(n + 1), let b∗ be the set {x∗ | x ∈ B(n) ∧ b(x) = TRUE}.
Perhaps the way to understand Gödel’s assertion that lifting the first two
restrictions yields the hierarchy of T (α)’s is this: lifting the second restriction
gives meaning to propositions involving quantification over all objects (of all
types) and in particular to the Axiom of Extensionality b = c ←→ ∀x(x ∈
b ←→ x ∈ c) in Russell’s system, even for classes b and c of distinct Russell
types. Given b ∈ B(n + 1) and assuming that, on the basis of dropping
the two restrictions in question, a∗ is defined and a = a∗ for all a ∈ B(n),
then since the first restriction is dropped, we can form b∗ and on the basis of
Extensionality, b = b∗. It would follow that b = b∗ for all b ∈ B(n), breaking
down the Russell type structure and leaving only the types T (n).

The lifting of the third restriction admits transfinite ranks. Here Gödel
notes that Hilbert, for example, had pointed out the possibility of passing
to infinite types. No reference is given; but in [Hilbert, 1926] hierarchies
of types of N-valued and N1-valued (as opposed to 2-valued) functions are

introduced and extended through the second number class N1 (i.e. the set
of all countable ordinals). There is some internal evidence that Gödel had
this work in mind in that, like Hilbert, he takes limit types to be, not the
union of the preceding types, but to consist of the functions defined on this
union. Since he cites Hilbert only as an example of someone who introduced
transfinite types, the question, to which I don’t know the answer, arises as to
whether there was an earlier introduction of transfinite types. Gödel notes
a possible objection to this, which, he suggests, may have been one of the
reasons for Russell’s restriction to finite types: viz., “in order to state the
axioms for a formal system, including all the types up to a given ordinal α,
the notion of this ordinal has to be presupposed as known, because it will
appear explicitly in the axioms.5 On the other hand, a satisfactory definition
of transfinite ordinals can be obtained only in terms of the very system whose
axioms are to be set up.” (p. 47) But he believes that this objection can
be countered in the following way: “The first two or three types already

5In his introductory note to [*1939b; *1940a], Solovay (p. 118) notes that Russell had
explicitly rejected transfinite types as impossible. The reason for this was presumably
that he wanted the types to be disjoint. But if, as did Hilbert and Gödel, he took the
limit type to be, not the union of the earlier types, but the type of functions defined on
that union, disjointness would be preserved. A more natural construction, which however
would not have suited Russell’s purposes, would be to take a limit type B(λ) to be the
direct limit of the earlier types along the directed family {fαβ | α ≤ β < λ}, where fαβa
is defined to be the unique b of type B(β) such that a∗ = b∗.
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suffice to define very large ordinals.” So we may set up the formal system
which formalizes these types, i.e. second or third order predicate logic, “for
which purpose no ordinal whatsoever is needed” and in which a transfinite
ordinal α0 can be defined. Then construct the system Sα0 which formalizes
the hierarchy of R(ζ) for ζ < α0. From this system, we can define an even
greater ordinal, say β, and construct Sβ, “and so on”. What does he mean by
saying that the first two or three types suffice to define very large ordinals? It
is assumed that we begin with an axiomatic theory of a class of urelements,
which is provably infinite. We can take it to be the second-order theory of
the natural numbers.6 So at type 1 (i.e. order 2) there is an infinite set
U = N with a definable well-ordering of type ω. As we note below, Gödel is
including the second-order Axiom of Choice (i.e. the axiom that the domain
of individuals can be well-ordered) among the axioms of type theory. So,
even if a set U of urelements were not already given with a definable well-
ordering, we could prove the existence of a well-ordering of them of order type
Card(U)7 by going up a few types. Presumably, when he speaks of ‘defining’
an ordinal, he has in mind the proof that such a well-ordering exists. But it is
still somewhat puzzling that he speaks of defining ‘very large’ ordinals in this
way. Of course, by going up to still higher types we can in this sense define
e.g. the ordinals n for any n, again using Choice (but now in the form that

these higher types can be well-ordered).8 But we will see that, on the one
hand, the least upper bound of the hierarchy of ordinals that are obtained
starting with any infinite α0 by the procedure he describes for constructing
ordinals [see 1)−2) below] yields (all the ordinals less than) the least strongly
inaccessible cardinal greater than α0 and, on the other hand, his assertion
is simply that this procedure will suffice to obtain an inaccessible cardinal.
Hence, simply starting with α0 = ω would suffice. But perhaps the reference
to very large ordinals was only parenthetical, intending to indicate that n

for each n can be obtained in this way, without the implication that this is
necessary for his construction.

Gödel does not describe the systems Sα, other than to say that they
formalize the corresponding hierarchies 〈R(ζ) | ζ ≤ α〉 (p. 47). But it is
possible to fill in details that make sense of the text. Since the hierarchy
up to rank α will contain the von Neumann ordinals less than α, we needn’t

6The axioms are 0 
= x′, x′ = y′ −→ x = y and second-order mathematical induction.
7i.e. a well-ordering of U such that no proper initial segment is equipollent with U .
8

0 = ℵ0, α+1 = 2 α and for γ a limit ordinal, γ = Limα<γ α.
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treat the ordinals as a distinct sort of object in the formalization, and so
may take the universe to consist simply of the urelements and sets. So the
language of Sα will contain the unary constant U for the class of urelements,
the relation constant ∈ and, in order to speak of the hierarchy of R(α)’s, a
unary function constant denoting the rank function ran: ran(x) is the rank
of x. (Since we do not want to make any assumptions about α, we cannot
assume that the Axiom of Replacement is in general valid in Sα, and so
the symbol for ran need not be eliminable as a primitive constant in this
theory.) There is a second-order theory S0 whose models (and I will always
mean standard models, i.e. in which the second-order variables range over all
sets of individuals) for a given set of urelements U are, to within isomorphism
leaving the elements of U fixed, the structures Mα = 〈R(α), U,∈, ran〉 for
α > 0.9

It is not unreasonable to suppose that Gödel had in mind for Sα an
extension of S0 such that α is the least ordinal for which Mα is a model of it.
That he did have in mind a second-order theory is I think clear, e.g. from the
fact that the definition of an ordinal β in Sα of cardinality > α requires the
second-order Axiom of Choice. (See the next paragraph.) The Sα are to form
an open-ended hierarchy of systems of increasing strength, obtained from S0

by adding stronger and stronger axioms of infinity, a conception of set theory
which is also found in [Zermelo, 1930]. Thus, Sω would be S0 together with
the axiom that every ordinal has a successor, which is equivalent in S0 to the
Axiom of Unordered Pairs.

When he states that “in terms of the system Sα0” we can define a higher
ordinal β and then pass to Sβ and “so on”, the most reasonable interpretation
seems to be that, just as we got α0 = ω = Card(U) from the initial class
U of urelements, so we proceed from Sα for any α to the next ordinal β
by taking β = Card(R(α)). α can be characterized as the least ζ such
that Sζ

α and so Sβ can be obtained by adding to S0 the axiom that there
is a bijection from the ordinals onto the collection of sets of rank < α.10

Notice that, at least on our reading, Gödel is assuming that the Axiom of
Choice as a second-order principle (i.e. that R(α) can be well-ordered) is
in Sα, both in connection with ‘defining very large ordinals’ by going up a
few types and in connection with defining Card(R(α)) in Sα. But in any

9S0 is described in [?, p. 274] for the case in which there are no urelements.
10Sζ is obtained by restricting the first-order quantifiers to R(ζ) and the second-order

quantifiers to R(ζ + 1).
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case, Gödel seems to be explicitly including Choice later in the paper when
he is speaking of justification of the axioms and lists Choice as one of the
weak spots. Moreover, in his past discussions of the simple theory of types,
second-order Choice had been included among the axioms, and certainly it is
in the set theory of von Neumann, to which he refers, and in the set theory
of Zermelo [1930] (to which he does not).

Our reading so far finds some confirmation in Gödel’s statement about
the place of axiomatic set theory in the hierarchy of systems. He writes

The place which the system of axioms for the theory of aggregates
occupies in this hierarchy can be characterized by a certain closure
property as follows: There are two different ways of generating
types, the first consisting of going over from a given type to the
next one and the second in summing up a transfinite sequence of
given types . . . . Now the statement made by the axioms of the
theory of aggregates is essentially this, that these two processes do
not lead you out of the system if the second process is applies only
to such sequences of types as can be defined within the system
itself. [That is to say: If M is a set of ordinals definable in the
system and if to each ordinal of M you assign a type contained in
the system, then the type obtained by summing up those types
is also in the system.] (p. 47)11

So we want to consider the least ordinal δ > α0 closed under these two
operations. When he speaks of “going over from a given type to the next
one”, he can’t mean simply ordinal succession: that would have nothing to
do with the preceding discussion. Rather, he must mean the passage from
α to the β defined in Sα, i.e., to Card(R(α)). Since R(1) = N, we have

Card(R(1 + α)) = α for all α. Hence, since α0 = ω < δ, we can instead

consider the passage from α to α. Presumably Gödel means by a set M of
ordinals definable in the system that it is in R(α) for some α in the system.
So, without loss, we could take M to be itself an ordinal and the principle in
question is that, if Φ is an operation assigning to each ordinal < β an ordinal
in the system, where β itself is in the system, then

⋃
Φ[β] is in the system,

where Φ[β] = {Φ(α) | α < β}. So his two principles for generating δ from α0

are
11Unless otherwise indicated by the appearance of “(W.T.)” after the quote, square

brackets and the included text in displayed quotations are Goedel’s. In non-displayed
quotations, square brackets, as usual, indicate my modification of the quoted text.
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1) α < δ −→ α < δ (Jump)

2) If β < δ and Φ : β −→ δ, then
⋃

Φ[β] < δ (Regularity)

One thing that is clear from the above passage is that there are, as Fefer-
man suggests in his introductory note (p. 37), two hierarchies involved: one
of types or ranks, i.e. ordinals, and the other of theories. For, although we
have seen how to get from Sα to Sβ for the ‘next’ type β, obviously no con-
struction of Sα is generally available for the types α introduced by 2). What
Gödel has in mind is, first, an autonomous process for generating a hierarchy
of bigger and bigger ordinals (or types or ranks) from α0 by means of 1) and
2) and then, secondly, a sequence Sα0 , Sα1 , . . . of increasingly stronger ax-
iomatic theories corresponding to a strictly increasing ω-sequence α0, α1, . . .
of ordinals.

It follows from 1)-2) and ω < δ that δ is regular and δ = δ, i.e. that
δ is strongly inaccessible. We will denote the least δ > α which satisfies
1)-2) by F (α). So for δ = F (ω), the system Sδ can indeed be taken to
be “the system of axioms for the theory of aggregates”, Mδ being its least
(standard) model. We have here an account of ‘cumulative’ type theory or the
‘iterative concept of set’, which Gödel introduced in print in [1947; 1964]. It
is worth emphasizing that, for Gödel, both in this earlier unpublished paper,
in the unpublished [*1951] and in the later published work, as opposed to
[Shoenfield, 1967] or [Boolos, 1971], for example, the hierarchy of types is
autonomous : it does not presuppose an externally given system of ordinals
or ‘stages’.

However, Gödel is not concerned only with hierarchies generated by 1)
and 2), yielding F (α) from α. For example, replacing 1) by the new jump

β < δ −→ F (β) < δ

we obtain for any α an inaccessible cardinal δ = G(α) > α which is the limit
of inaccessible cardinals. And so on:

There is no end to this process [and the totality of all systems
thus obtained seems to form a totality of similar character to the
set of ordinals of the second number class].12 (p. 47)

12The reference to the second number class in the bracketed clause is a puzzle. It seems
to refer to the fact that the second number class is closed under least upper bounds of
countable sets of ordinals of the second number class. But clearly an increasing sequence
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It should be noted, as it effectively already was in [Zermelo, 1930], that
Gödel’s concern about constructing the infinite ordinal α0 to begin the pro-
cess was unnecessary: closing 0 under the jump operation α �→ α + 1 yields
ω. So, in particular, the assumption of an infinite class of urelements is
not needed to begin the hierarchy. In [*1951] Gödel again describes the cu-
mulative hierarchy, indicating that the Jump can be quite arbitrary: it can
be

α < δ −→ H(α) < δ

for any given ordinal-valued function H of ordinals.13

It is easy to see that each of these closure conditions, both under the vari-
ous jumps and under the Regularity operation, has the form of the reflection
principle

∀X[φ(X) −→ ∃βφβ(X)]

where φ(X) is a first-order formula of set theory containing only the second-
order variable X (i.e. ranging over classes) free. In fact, Mδ satisfies the re-
flection principle for all first-order φ(X) just in case δ is inaccessible. Applied
to Π1

1 formulas φ(X),14 the reflection principle was first used in [Lévy, 1960]
to derive Mahlo cardinals in set theory. Gödel cites this paper in [1964] and,
in particular, in footnote 20 of [Gödel, 1964],15 as establishing the existence
of Mahlo cardinals on the iterative conception. In fact, although Gödel didn’t
mention it, the condition that Mκ satisfy the reflection principle applied to Π1

1

formulas φ(X) in general was proved equivalent to κ being a weakly compact
cardinal in [Hanf and Scott, 1961].

〈Sαn | n < ω〉 is going to be bounded by a system Sα only if Mα satisfies some axiom which
implies all of the Sαn

. In particular, there can be only a countable number of Sα’s. On the
other hand, he could be referring the other hierarchy, of the ordinals themselves, noting
that this hierarchy is closed under least upper bounds of arbitrary sets of ordinals. But
there is a difference between this hierarchy and the second number class, in that, whereas,
among classes of ordinals, the notion of a countable set of ordinals is mathematically
characterizable, the notion of a set of ordinals is not: this is precisely why the sequence
of ordinals and the sequence of theories Sα are open-ended.

13He does not explicitly mention the Regularity operation 2) here; he speaks only of
iterating the jump ‘into the transfinite’. But, even when the jump is just α �→ α + 1,
taking arbitrary iterations, without the restriction at limit stages given in 2), yields the
class of ‘all’ ordinals, presupposing that this class is externally given.

14Π1
1 formulas are those of the form ∀Y ψ(X, Y ) where ψ(X, Y ) is first-order and Y

ranges over classes.
15This is a revised footnote, carrying the date: September 1966.
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But note that there is a conceptual difference between the above reflection
principle when φ(X) is first-order and when it is higher-order. When it is
first-order, the principle simply asserts, for any class A such that φ(A), the
existence of an ordinal closed under the Skolem functions for φ(A), which
is closure under a jump in the above sense. When φ(X) is Π1

1, say φ(X) =
∀Y ψ(X, Y ) where ψ(X, Y ) is first-order, the principle asserts that, for any
class A such that φ(A), there is an ordinal β such that R(β) is closed under
the Skolem functions Φ(B) for ψ(A, B) for all classes B ⊆ R(β). Here the
reflection is not on closure under a jump, but on a general logical condition
that the universe satisfies, and the principle asserts that, then, there is some
ordinal β such that R(β) also satisfies it. One might imagine that, even if the
existence of ordinals closed under given functions seems a compelling axiom,
these stronger forms of the reflection principle might become qualitatively
less compelling as φ(X) becomes logically more complex.

In the footnote cited above, Gödel mentions certain stronger axioms of
infinity (than the existence of Mahlo or weakly compact cardinals), but as-
serts “That these axioms are implied by the general concept of set in the
same sense as Mahlo’s has not been made clear yet . . . ”. The example that
he mentions asserts the existence of a measurable cardinal, which implies
that not all sets are constructible [Scott, 1961]. It remains unclear even
now whether the ‘general concept of set’ in question implies the existence of
non-constructible sets. In his introductory note to [*1939b; *1940a], Solovay
calls into question Gödel’s statement about his proof of the consistency of
V = L that “the consistency therefore holds in the absolute sense, insofar as
it makes any sense at all today to speak of absolute consistency” (p. 129), on
grounds of the existence of large cardinal axioms which are inconsistent with
V = L. But Gödel’s “therefore” refers to the fact that his proof that V = L
is consistent remains valid under the addition of “new evident axioms” (my
emphasis), which, even in his later papers on the subject, did not include
the existence of measurable cardinals. The evidence that would seem to be
demanded by him here is that the proposed axiom assert the existence of
a cardinal with some property already possessed by the totality of all ordi-
nals. (However, as [Reinhardt, 1974] points out, without a careful analysis
of what one is to mean here by such a property, this principle for introduc-
ing new axioms leads immediately to contradiction.) Solovay [Gödel, 1990,
p. 19] mentions that Gödel later on believed in the existence of measurable
cardinals; but the evidence for this belief is of a different—one might say
opposite—sort: a property possessed by ω should be shared by some bigger
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cardinal. (It is even harder to circumscribe the notion of property in this
context to avoid inconsistency.)

Returning to [*1933o], it is the formalization of one stage or another in
the hierarchy of Mα’s that constitutes for Gödel the solution to the first part
of the problem of foundations. That there is no one such formal system,
but rather an open ended hierarchy of them, does not for him detract from
it being a “perfectly satisfactory” solution. For one thing, “all the methods
and proofs hitherto developed are in [Zermelo-Fraenkel set theory], and, apart
from certain theorems of the theory of aggregates, all mathematics hitherto
developed is contained even in much weaker systems, which include just a
few of the first types” (p. 48). But, also, he thinks that the open-endedness
of the theory of types is a “strong argument in [its] favor”, because it fits
well with the phenomenon of incompleteness which he discovered for formal
systems in general and which we mentioned above: applied to a consistent
system S = Sα, where α is infinite, there is a “proposition in the arithmetic
of integers” which is provable “ if you add to the system S the next higher
type and the axioms concerning it”, in other words, it is provable in S+∃ζSζ ,
but not provable in S.16 If S is an extension of second-order set theory, for
example, then α is an inaccessible cardinal and S + ∃ζSζ is satisfied first
in Mβ, where β is the next greatest inaccessible cardinal. Presumably, the
open-endedness of the cumulative type theory is a strong argument in its
favor because the ‘natural’ proof of the undecidable proposition, i.e. the
proof underlying our conviction that it is true, involves the notion of truth
in S and so requires the system S + ∃ζSζ .

Of course, we already obtain Sβ = S + ∃ζSζ in the cumulative hierarchy
from S = Sα by reflection on the sentence φ(X) = S. But Gödel points
out that his incompleteness theorems are of interest from another point of
view regarding this hierarchy: we have a proof of an arithmetic proposition
in Sβ not obtainable in Sα, and so “the construction of higher and higher
types is by no means idle . . . ‘’ (p. 48). This result, to which Gödel refers
back in his later works (including [*1951] as well as his published works), is

16Based on his result in [*193?], Gödel sharpens his statement in [*1951] by noting
that the undecidable proposition in question can be taken to be “the solution of certain
diophantine problems” (p. 307), by which he means it has the form

∀x1 . . . xm∃y1 . . . ynP (x1, . . . , yn) = 0

where P is a polynomial.
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especially pertinent in view of the emphasis in [*1933o] on the ‘totality of
methods actually used by mathematicians”. It points to the possibility of
validating the existence of a large transfinite number by showing that it has
low-down implications, for example concerning the integers. This subject has
been taken up in more recent years, especially by H. Friedman.17

However, in [*1951] Gödel remarks that it ‘is a mere historical accident,
which is of no importance for questions of principle” that “99.9% of present-
day mathematics is contained in the first three levels of [the cumulative] hier-
archy” (p. 307). The open-ended hierarchy of types and, in particular, large
cardinals do not need for their justification low-down applications: they are
intrinsic to the concept of transfinite number as this notion was introduced
in [Cantor, 1883]. That is presumably what Gödel meant by speaking of
“questions of principle”. In this respect, also, the view drawn by some writ-
ers from the later papers [Gödel, 1947; Gödel, 1964], that Gödel’s concern
for new axioms of set theory was motivated by the desire to settle arithmetic
problems or the continuum problem,18 is at best misleading: whatever their
relation to this problem, the need for ever new axioms is intrinsic to Cantor’s
theory of transfinite numbers, with the principle that every set of numbers
has an upper bound.

As I have already mentioned in [?], Gödel actually introduces a criterion
for accepting new axioms which is not necessarily compatible with the idea
of the hierarchy arising from the idea that every ‘property’ of the totality of
ordinals must be possessed by some ordinal. On p. 265 of [1964] he writes

Secondly, however, even disregarding the intrinsic necessity of
some new axiom, and even in case it had no intrinsic necessity at
all, a probable decision about its truth is possible also in another
way, namely, inductively by studying its “success”. Success here
means fruitfulness in consequences, in particular in “verifiable”
consequences, i.e., consequences demonstrable without the new
axiom, whose proofs with the help of the new axiom, however, are
considerably simpler and easier to discover, and make it possible
to condense into one proof many different proofs.

17See for example [Friedman, 1998]. There is a fair amount of unpublished
work by Friedman on this subject, to be found at his website: www.math.ohio-
state.edu/foundations/manuscripts.html.

18For example, see [Feferman, 1997]. Feferman locates the motivation for Gödel’s “pro-
gram for new axioms” in his discovery of the incompleteness of formal systems, ignoring
the intrinsic necessity for new axioms arising from the notion of transfinite number itself.
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It is difficult to reconcile this with the iterative conception of the universe of
sets we are discussing here. On the latter conception, the ‘intrinsic necessity’
of an axiom arises from the fact that it expresses that some property pos-
sessed by the totality of ordinals is possessed by some ordinal. To introduce
a new axiom as ‘true’ on this conception because of its ‘success’, would have
no more justification than introducing in the study of Euclidean space points
and lines at infinity because of their success. One may obtain an interesting
theory in this way and one worthy of study; but it won’t be Euclidean geom-
etry. A ‘probable decision’ about the truth of a proposition from the point
of view of the iterative conception can only be a probable decision about
its derivability from that conception. Otherwise, how can we know that a
probable decision on the basis of success might not lead us to negate what
we otherwise take to be an intrinsically necessary truth?

2 Impredicativity

The second part of the problem of foundations according to [Gödel, *1933o]
is that of giving a justification for the axioms and rules of inference. Gödel
writes concerning this problem that “the situation is extremely unsatisfac-
tory” (p. 49). He cites three kinds of difficulties or “weak spots”: i) The use
of the non-constructive notion of existence in connection with ‘surveyable’
objects such as the integers. In particular, we apply the law of excluded
middle to existence statements, yielding proofs of the existence of a number,
for example, with a given property although the proof yields no algorithm
for finding such a number and, indeed, we may have no clue at all as to how
to find one, “just as if in some objective realm of ideas this question [of exis-
tence or not] were settled quite independently of any human knowledge” (p.
49). ii) The second weak spot, which is “still more serious”, is the treatment
of the notion of class in set theory; and iii) the third concerns the Axiom of
Choice.

Concerning iii), he writes that he will not go into details because “it is of
less importance for the development of mathematics.” In view of the role that
Choice plays in generating the hierarchy of types, this is a surprising remark:
without this axiom, how does one ‘define’ very large ordinals by going up
two or three types and how, in Sα, does one in general ‘define’ ordinals of
cardinality greater than α? Perhaps the solution to the problem posed by
Gödel’s remark—at any rate, I have not been able to think of another one—is

12



that suggested by Feferman in his introductory note: he points out (p. 39)
that Gödel had established the relative consistency of the axiom of choice in
Zermelo-Fraenkel set theory in 1935 (although he only announced the result
in 1938) and suggests that he may have been already thinking along these
lines in 1933. In fact, [Wang, 1987, 97] recounts Gödel’s recollection in 1976
that he thought about the continuum problem from around 1930 and that
the idea of using the ramified hierarchy occurred to him quite early: the
problem was to construct a big enough class of ordinals. It was the use
of the classical (impredicative) ordinals, presumably in 1935, that yielded
his result. But why, given his attitude towards impredicative definition in
[*1933o] (see below), did he feel in position in 1933 to wave aside the problem
of the Axiom of Choice but not the problem of impredicative definition?

In connection with ii), one problem concerns the non-constructive notion
of existence, e.g., the application of the law of excluded middle to propositions
asserting the existence of sets. But also he is concerned about the use of
impredicative definition of sets (or, what he takes to be the same, properties):
in Sα impredicative definition of sets (in R(α)) is admitted. He writes

Again, as in the case of the law of excluded middle, this process
of definition presupposes that the totality of all properties exists
somehow independently of our knowledge and our definitions, and
that our definitions merely serve to pick out certain of these pre-
viously existing properties. If we assume this, the method of
non-predicative definition is perfectly all right . . . . But the sit-
uation becomes entirely different if we regard the properties as
generated by our definitions. For it is certainly a vicious circle to
generate an object by reference to a totality in which this very
object is supposed to be already present. (p. 50)

Thus, Gödel subscribed at this time to the vicious circle principle in the sense
that he regarded what he refers to as ‘Platonism’ as its only alternative and,
as we will see, he was critical of Platonism; but he seems to have changed his
mind on the question of whether the vicious circle principle implies Platonism
by the time he composed [*1938a] and he certainly changed his attitude
towards Platonism by the time he wrote [1944].

In [*1938a, p. 94], in discussing what constraints should be imposed
on extensions of primitive recursive arithmetic in order that they meet the
demands of constructivity, Gödel not only imposes no restriction to pred-
icative definitions, but he introduces as the extension best satisfying those
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constraints a theory of computable functions of finite type, subsequently de-
veloped in [*1941] and [1958], and he explicitly admits in this theory impred-
icative definitions of functions—e.g. defining a function f of some type A in
terms of a function Φ of type A −→ N (p. 95). The finite types can be taken

to be built up from N by means of the operation −→, where A −→ B is the
type of the calculable functions from A to B. We will discuss this theory be-
low in §5; but the thing to be noticed here is that, by 1938, he was willing to
accept impredicative definition of functions as constructive. Gödel remarks
that this is not circular, because the functions are computable. Thus, on this
conception, functions do not enter in as objects, but only through their roles
in the computation, ultimately, of numerical terms. But it is certainly so
that, even though the value Φ(f) may be defined by a computation without
reference to the whole function Φ, the element 〈f, φ(f)〉 of the graph of Φ in
general cannot; and so on the conception of functions as graphs, the vicious
circle principle is literally violated. We will discuss the question of the com-
putability of these functions in §5 and will see that there is a circle, too, in
the argument for their computability.

In [1944], in response to the necessity for impredicative definitions in
classical mathematics, he writes

I would consider this rather as a proof that the vicious circle
principle is false than that classical mathematics is false, and
this is indeed plausible also on its own account. For, first of
all one may, on good grounds, deny that reference to a totality
necessarily implies reference to all single elements of it or, in other
words, that ‘all’ means the same as an infinite logical conjunction.
(pp. 135-6)

In order to understand the “in other words” here, it should be noted that in
ramified type theory, finite or transfinite, as opposed to simple type theory,
we can assign ordinal ranks to formulas in such a way that the rank of a
formula is always greater than the ranks of its components. The components
of φ∧ψ and φ∨ψ are φ and ψ and the components of ∀ζφ(ζ) and ∃ζφ(ζ) are
the formulas φ(τ), where τ is a term of the appropriate sort. We can assume
that the logical constants are ∧, ∨, ∀ and ∃ and that negations are applied
only to atomic formulas. Thus, ¬φ in general is obtained by successively
moving negations inside the scope of other logical constants, using the De
Morgan laws, and dropping double negations. ¬φ has the same rank as φ.
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A ∧- or ∀-formula, called a
∧

-formula, is thus expressed by the conjunction
of its components and a ∨- or ∃-formula, called a

∨
-formula, is expressed

by the disjunction of them; and so, by induction on its rank, it follows that
every sentence can be represented as an infinitary propositional formula built
up from atomic and negated atomic sentences concerning the urelements.

Gödel then goes on in [1944] to essentially repeat what he wrote in the
quotation above from [*1933o]: “all” can mean infinite conjunction, even in
the presence of impredicative definitions, providing the objects in question
are understood to be sui generis and not our creatures. Thus, the τ such
that ψ(τ) is a component of ∀Xφ(X) and ∃Xφ(X), where X ranges over sets
of numbers, for example, are not definitions, but simply all of the names of
sets of numbers, so that the formulas n ∈ τ and n 
∈ τ are taken to be atomic
sentences with well-defined truth-values. In this case, too, every formula will
have a rank such that the step from formula to component always lowers rank:
the rank of a formula is just the finite maximum number of nested logical
constants in it. So the formulas are ‘infinitary propositional formulas’; but of
course in this case they are not really syntactical objects, since their atomic
parts involve the names of arbitrary sets of numbers.

In analogy with Gödel’s attitude towards his functions of finite type, one
might feel that the vicious circle principle is not the issue. Just as in the case
of these functions, sets may be defined by formulas involving quantification
over their types: we only need to know that from those definitions the truth-
values of sentences involving these quantifications are determined. In the
above cases in which “all” means conjunction, this is easily seen. We define
the game T (φ) played by

∨
and

∧
. Each stage of the game consists of

exactly one sentence on the board, with φ on the board at the first stage.
Let ψ be on the board at a given stage. If ψ is an atomic or negated atomic
sentence, then the game is over and is won by

∨
if the sentence is true and

by
∧

otherwise. If ψ is a
∧

-sentence, then
∧

chooses one of its components
and puts it on the board at the next stage; and if it is a

∨
-sentence, then∨

chooses one of its components and puts it on the board at the next stage.
The truth of φ consists in the existence of a winning strategy for

∨
in T (φ).

Since successive moves in T (φ) lower the rank of the sentence on the board,
all games are all finite: there are no draws. By induction on the height of
the well-founded tree of all games, i.e. the rank of φ, one easily shows that∨

has a winning strategy in precisely one of T (φ) and T (¬φ); and so, in
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particular, φ ∨ ¬φ is true.19

But if we try to apply this conception to impredicative mathematics, say
to number theory of some finite or infinite order > 1, where the components
of ∀Xφ(X) and ∃Xφ(X) are φ(τ), where τ is a closed term {x | ψ(x)},
we notice, first, that “all” cannot mean conjunction: for example, let φ(X)
be 0 ∈ X, where X is a second-order variable, and let τ = {y | ∀X(y ∈
X)}. Then the attempt to represent ∀Xφ(X) as the conjunction of all of
its components is circular, since the component φ(τ) is just ∀Xφ(X) itself.
(I am treating the expression t ∈ {x | φ(x)} as an abbreviation for the
corresponding φ(t).) It then follows that there are in general infinite games
of T (φ) in this system, as when φ is ∀X(0 ∈ X) and dumb

∧
keeps choosing

φ itself at each stage. There is indeed a circle here; and the effect of such
circles or, more generally, of infinite games is that it is no longer possible, by
an elementary proof such as we have in the predicative case, to establish the
logical law φ∨¬φ. To establish this, we need to invoke ‘Platonism’, at least
to the extent of assuming the existence of a (Henkin) ω-model for the theory
in which every set is defined by a formula of the theory. We might think to
replace the game T (φ) with Gentzen’s game G({φ}), described below in §7,
in the definition of truth, since with this definition, the validity of the law of
excluded middle becomes trivial. The difficulty is that another logical law,
modus ponens, requires this same ‘Platonistic’ assumption.

In connection with the “good grounds” for the alternative of rejecting
logical conjunction as the meaning of “all”, Gödel mentions as an example
only the suggestion of Carnap and Langford that “all” means “analyticity
or necessity or demonstrability”. He indicates that there are difficulties with
this view, and so one might conjecture that the ‘good grounds’ lie in another
direction; but, if so, there is no indication where. As for the difficulties with
Carnap’s suggestion, it is reasonable to assume that they are revealed in his
unpublished “Is mathematical syntax of language?”; and I will discuss them
in the next section.

3 ‘Platonism’

In any case, Gödel concludes in [*1933o] that

19Providing the rank of φ is a ‘predicative ordinal’ in the sense of [?] and [Schütte, 1965],
transfinite induction up to this rank is deducible in predicative analysis involving only
formulas of lower rank; and so there is no circle here.
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. . . our axioms, if interpreted as meaningful statements, neces-
sarily presuppose a kind of Platonism, which cannot satisfy any
critical mind and which does not even produce the conviction
that they are consistent. (p. 50)

This refers back to his earlier comments on non-constructive existence (“just
as if in some objective realm of ideas this question [of existence or not] were
settled quite independently of any human knowledge”) and impredicativity
(“ this process of definition presupposes that the totality of all properties
exists somehow independently of our knowledge and our definitions, and that
our definitions merely serve to pick out certain of these previously existing
properties.”) The remark is surprising in view of Gödel’s avowed Platonism,
both in his published papers [1944; 1964] and in some of his unpublished
work. For example, in [*1951, pp. 322-23] he writes

I am under the impression that after sufficient clarification of the
concepts in question it will be possible to conduct these discus-
sions with mathematical rigor and that the result then will be
that (under certain assumptions which can hardly be denied [in
particular the assumption that there exists at all something like
mathematical knowledge]) the Platonistic view is the only one
tenable. Thereby I mean the view that mathematics describes
a non-sensual reality, which exists independently of the human
mind and is only perceived, and probably perceived very incom-
pletely, by the human mind.

One explanation given, for example in [Davis, 1998], for the conflict between
these passages is that Gödel’s philosophical position evolved from an earlier
anti-Platonism to the explicit Platonism of [1944; 1947]. One difficulty with
this view arises from a questionnaire sent to Gödel by B.D. Grandjean in
1974,20 which Gödel partially filled out but never sent. He states in response
to the question of whether he held the view “described by some as ‘mathe-
matical realism’, whereby mathematical sets and theorems are regarded as
describing objects of some kind” in the 1920’s and early 1930’s, that he held
this view since 1925. In a typed but unsigned and unsent letter to Grand-
jean, he wrote “I was a mathematical and conceptual realist since about
1925.” Davis was aware of this response, but seems to discount it in the face

20See [Wang, 1987, pp. 16-21] for a description of the questionnaire and of Gödel’s
response.
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of the remark from [Gödel, *1933o] just quoted and other evidence that “It
was some years before Gödel’s own mind was satisfied by this very ‘kind of
Platonism’ ”. In particular, he refers to Gödel’s expression of regret as late
as 1938 over the failure of Hilbert’s program, quoting from [Gödel, *1938a,
113] “If the original Hilbert program could have been carried out, that would
have been without any doubt of enormous epistemological value.” But one
could believe that (as I do) and still be a Platonist (as, in one sense, I am).
Moreover, this remark is in the context of summing up the progress made in
the extended Hilbert program, and Gödel is comparing its achievements with
what might have been (in some funny sense of “might have been”). Note that
Gödel retained interest in constructive foundation for classical mathematics
throughout his life: for example, he was thinking about the Dialectica in-
terpretation in the 1970’s, long after the explicit expression of Platonism in
[1944]. One challenge for the evolutionary view of Davis is to explain what
the evolution was in reaction to. Gödel’s later arguments for Platonism were,
as we shall see, based primarily on the failure of alternatives. But the data
upon which he pronounced this failure, in particular his own incompleteness
theorems, were known to him by 1933. Perhaps an answer is that in 1933
he still thought, as he did in 1931, that his incompleteness theorems did
not necessarily undermine Hilbert’s program (although by that time he did
identify finitism with primitive recursive arithmetic); but then his expression
of regret over its failure in 1938 cannot be taken as evidence of a continued
anti-Platonism. I don’t mean by this to say that Davis is wrong; but for
me at least, there is still no entirely convincing explanation of the conflict
between Gödel’s different statements about his Platonism.

Some light may be shed on the historical question of Gödel’s commitment
to ‘Platonism’ and, at the same time, some reinforcement might be gained
for the view that the terms “Platonism”, “realism”, “objectivism”, etc., all
lack the precision to be useful labels for philosophical positions, by distin-
guishing two quite different positions, one weaker than the other, involved in
the discussion of Gödel’s Platonism.21 It is not clear that Gödel himself did
distinguish between them; but, as we shall see, the arguments that he actu-
ally gives for Platonism support the weaker position but not the stronger.22

The weaker sense of ‘Platonism’ or ‘realism’ is the view that terms in math-

21[Parsons, 1995b] contains an extensive and penetrating discussion of Gödel’s Platonism
and his concept of mathematical intuition.

22On the other hand, it could be the distinction between realism about objects and
realism about concepts, which he mentions in the response to Grandjean. See below.
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ematical propositions, such as propositions in number theory or set theory,
denote sui generis objects, i.e. which are not physical objects, nor mental
objects nor fictions, for example, and are not analyzable way. Gödel seems
to be subscribing to ‘mathematical realism’ in the response to Grandjean’s
questionnaire in at least this sense. Much of what is commonly ascribed to
the Platonist point of view follows from Platonism in this sense. For exam-
ple, it follows that mathematical objects such as numbers, functions and sets
are outside space and time (or, as some writers express this, are abstract),
are independent of the human mind and are not created (since otherwise they
would be in time), etc.. It sometimes makes sense on this view to say that
these objects are discovered, namely when, as in the case of Cantor’s trans-
finite numbers, there is a more or less definite act of creating their theory.
But were the finite whole numbers discovered? If so when and by whom?23

In his introductory note (p. 303), Boolos writes concerning the above
quote from [Gödel, *1951, pp. 322-23] “What is surprising here is not the
commitment to Platonism, but the suggestion, which recalls Leibniz’s project
for a universal characteristic, that there could be a mathematically rigorous
discussion of these matters, of which the correctness of any such view could
be a ‘result’.” But if we understand “Platonism” in the above sense, then
I find neither the Platonistic position nor the view that it could be rigor-
ously demonstrated surprising. For Platonism in this sense is the default
position. Defending it on the assumption that the theorems of arithmetic
and analysis, for example, are true (“that there exists at all something like
mathematical knowledge”) requires only showing that there is no alternative
way of construing arithmetical or analytic propositions, so that the appar-
ent reference to numbers, sets and the like is analyzed away. In fact, in
many cases, Gödel’s affirmations of Platonism have been in the context of
criticizing such alternatives and so his argument in these contexts is simply
an argument for Platonism in this default sense. In particular, this is so in
[*1951], although he notes there that his discussion does not yet constitute
a proof of Platonism:

Of course I do not claim that the forgoing considerations amount
to a real proof of this view about the nature of mathematics.
The most I could assert would be to have disproved the nomi-

23There is a more extensive discussion in [Tait, 2001, §II] of the extent to which many
Platonist claims about mathematics may be understood as remarks about the grammar
of mathematical propositions, when these are taken at face-value.
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nalist view, which considers mathematics to consist solely in syn-
tactical conventions and their consequences. Moreover, I have
adduced some strong arguments against the more general view
that mathematics is our own creation. There are, however, other
alternatives to Platonism, in particular psychologism and Aris-
totelian realism. In order to establish Platonistic realism, these
theories would have to be disproved one after the other, and then
it would have to be shown that they exhaust all possibilities. I
am not in a position to do this now; . . . [pp. 321-22]

It seems entirely plausible that Gödel is right that the alternatives to realism
in this sense are refutable.

Another way to try to refute Platonism in the default sense, that is, other
than attempting some kind of reduction, would be to provide a convincing
and non-question-begging analysis of what it means to exist and then to show
that mathematical objects don’t exist in this sense. Given the extensive anti-
Platonist literature, it is striking that no serious attempt has been made to
establish such a criterion for existence; but in any case, it does not seem
likely that a plausible one can be found. What is common to the notion of
existence across different domains of discourse is purely formal, expressed by
the logical rules of quantification.

From this point of view, the assertion that mathematical objects don’t
exist makes no sense: as a mathematical assertion, it has trivial counterex-
amples. As an assertion external to mathematics, it depends on a univocal
notion of existence which is simply not forthcoming. So, in a sense, real-
ism in the default sense is not a substantive philosophical position: if it is
meaningless to deny the existence of mathematical objects in the external
sense, then it is also meaningless to affirm their existence in this sense. It is
only as a meta-theoretical stance that realism is substantive, defending the
legitimacy of ordinary mathematical practice against scepticism.

For this reason, too, Platonism in this default sense does not require for
its justification the elimination of alternatives—that it be proved in Gödel’s
sense. For example, the reduction of number theory to something else should
not lead us to reject numbers as objects; indeed, it should just increase our
confidence in the coherence of what we say about them.

Platonism in the default sense does not imply, as it is often assumed
to, classical as opposed to constructive mathematics. Indeed, it does im-
ply the rejection of certain conceptions of constructive mathematics, includ-
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ing Brouwer’s, according to which mathematical objects are rejected as sui
generis and are to be understood in terms of mental constructions. But this
does not seem to be the position of many present-day constructivists who,
whatever the validity of their grounds for restricting mathematics, do not
really attempt to reduce the mathematical ontology to something else. (In-
deed, if truth is replaced by existence of a proof, then proofs, too, are part
of the ontology and are not to be analyzed away.)

One may feel that the first passage in [*1951] quoted above commits
Gödel to Platonism in more than the default sense, because he speaks of
‘perception’ of mathematical reality. But even in sense perception there is a
conceptual element: perceiving a physical object or a person, for example,
means perceiving it as such. In the Supplement to [1964], Gödel is explicit
about this: he writes

That something besides the sensations actually is immediately
given follows (independently of mathematics) from the fact that
even our ideas referring to physical objects contain constituents
qualitatively different from sensations or mere combinations of
sensations, e.g. the idea of object itself, whereas, on the other
hand, by our thinking we cannot create any qualitatively new
elements, but only reproduce and combine those that are given.
[p. 271-2]

Objects are ‘given’ to us in perception only against a conceptual background.
In the case of the ‘non-sensual reality’ of mathematics, only the conceptual
element is present and, in the sense that numbers or sets or the like are given
to us, it is entirely conceptual. I am not anxious to defend the use of the
word “perception” in this connection; but I don’t see it as having in itself
implications that go beyond Platonism in the default sense.

On the other hand, that passage is followed by

It by no means follows, however, that the data of this second
kind [the ‘given’ underlying mathematics], because they cannot
be associated with actions of certain things on our sense organs,
are something purely subjective, as Kant asserted. Rather they,
too, may represent an aspect of objective reality, but, as opposed
to sensations, their presence in us may be due to another kind of
relationship between ourselves and reality. (W.T.)
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He goes on to assert that “the question of the objective existence of the
objects of mathematical intuition” is “an exact replica of the question of
the objective existence of the outer world.” This latter remark is of course
compatible with realism in the default sense: one need only hold that both
questions are, as Wittgenstein put it, merely questions about the natural
form of expression and are devoid of real substance. But one begins to have
the sense from the preceding quote that, for Gödel, there is a real question of
objective existence—that the whole of arithmetic and analysis, for example,
although internally consistent, might nevertheless be false because there does
not happen to be anything in objective reality which supports their truth; and
this clearly goes beyond the default sense of Platonism described above. The
comparison of the physical and mathematical realms in the above passage
somewhat echoes his earlier discussion in [1944]

It seems to me that the assumption of such objects [viz. classes
and concepts] is quite as legitimate as the assumption of physi-
cal bodies and that there is quite as much reason to believe in
their existence. They are in the same sense necessary to obtain
a satisfactory system of mathematics as physical bodies are nec-
essary for a satisfactory theory of our sense perceptions and in
both cases it is impossible to interpret the propositions one wants
to assert about these entities as propositions about the “data”,
i.e., in the latter case the actually occurring sense perceptions.
(W.T.)

Here, too, the evidence is mixed. The last clause can be understood as an
argument for realism in the default sense. But the earlier part of the passage
seems to imply that a belief in the existence of physical or mathematical
objects in general is something that could be wrong in a non-trivial sense—
e.g. that it could be the case, not that this or that physical object fails
to exist, but that physical objects in general fail to exist. So, too, in the
mathematical case, classes and concepts in general (and not just classes or
concepts with this or that particular property) could fail to exist. Such
a view goes beyond realism in the default sense; for it is compatible with
the latter that the question of whether or not numbers, functions, sets, etc.
in general exist, as a question external to mathematics and challenging its
validity, simply has no real content.

As was noted in [Tait, 1986, note 3], the passage quoted above from
[Gödel, 1964] and, in particular, the sentence “Rather they, too, may rep-
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resent an aspect of objective reality, but, as opposed to sensations, their
presence in us may be due to another kind of relationship between ourselves
and reality” is clear evidence that Gödel’s realism does go beyond the de-
fault sense.24 Perhaps the most conclusive evidence for this is in [*1953/9]
and [*1961/?]. The former consists of two versions, number III and a much
more concise V, out of six of a paper entitled “Is mathematics the syntax of
language?” that Gödel intended for the Schilpp volume on Carnap but in
fact never published. In this paper, he argues against the view that math-
ematics is the syntax of language on the grounds such a view would entail
a commitment to prove the rules of language in question to be consistent,
which can’t be done without invoking further mathematics, not encompassed
by these rules. An excellent evaluation of this argument in relation to Car-
nap’s own aims is contained in Goldfarb’s introductory note to the paper.
But the point that I want to make here is that Gödel regarded his realism
as an antidote for this problem: the axioms of mathematics are true of the
objective domain of mathematical objects, and so they cannot imply a con-
tradiction. Now, for realism in the default sense, we may indeed talk about
domains of mathematical objects, e.g. the system of natural numbers or of
all pure sets, and we would certainly say that the axioms of arithmetic or set
theory, respectively, are true in these systems. But we may also hold that
these systems are constructed within mathematics. On this view, we cannot
conclude that the axioms of mathematics are consistent because they hold
in these structures: if the axioms are inconsistent, then our conception of
these structures is just incoherent. Of course, within mathematics we can
conclude consistency of some set of axioms, e.g. the axioms of ZF from
the existence of a model. But the conclusion is based on just the axioms
in question together with some new ones, e.g., the assumption that there is
an inaccessible cardinal; and so this would not satisfy Gödel’s quest for an
external guarantee of consistency.

24Parsons [1995b, p.67, footnote 44] suggests that I rejected in that paper the interpre-
tation of Gödel as an “archetypical Platonist”. In my note I was concerned to correct a
misreading of Gödel’s Supplement; but I think that it is clear that I indicated that this
very passage was evidence that Gödel’s realism went beyond realism in the sense that I
defended in that paper and which I am now referring to as the default sense. However,
I would say that, in all of Gödel’s published work (as opposed to the unpublished papers
which we are now discussing), the passage in question is the only one which conclusively
commits him to realism in a stronger sense.
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When we ask how we are to know that our axioms are true of the ob-
jective domain of mathematical objects, Gödel’s answer is that we have an
intuitive grasp of truth in this domain. As we have sense perception in the
case of empirical facts, we have intuition in the case of mathematical facts.
As Parsons points out in [Parsons, 1995b], Gödel’s notion of intuition here
is not the Kantian notion which is reflected in Brouwer’s use of the term or
in Hilbert’s use of it in, say, [Hilbert, 1926] when describing the finitist con-
ception of mathematics: intuition for Gödel yields new axioms of set theory.
Also, for the same reason, it differs from what we often express when we
say something is intuitively true, meaning that we ought to be able to prove
it—the intuition providing some indication of how to prove it. For Gödel
intuition provides evidence of truth of propositions to be taken as axioms,
i.e. as the basis of proof. The role that mathematical intuition plays for him
is clear from [*1961/?, p.385], where he writes

I would like to point out that this intuitive grasping of ever newer
axioms that are logically independent from the earlier ones, which
is necessary for the solvability of all problems even within a very
limited range, agrees in principle with the Kantian conception of
mathematics. The relevant utterances by Kant are, it is true, in-
correct if taken literally, since Kant asserts that in the derivation
of geometrical theorems we always need new geometrical intu-
itions, and that therefore a purely logical derivation from a finite
set of axioms is impossible. This is demonstrably false. However,
if we replace the term “geometrical” by “mathematical” or “set
theoretical”, then it becomes a demonstrably true proposition.

In the case of set theory, what is ‘demonstrably true’ is that, whatever axioms
S we have accepted as true of the universe of sets, there will be propositions
undecided by these axioms. When the engine producing these propositions
is Gödel’s incompleteness theorems, so that the proposition undecided by S
is for example Consis(S), then it seems right that we are led immediately to
accept this proposition; and we can call this an act of intuition. But when
the engine is Lévy’s reflection principle or some extension of it, then, as I
argued in §1, there may well be some difference of opinion about accepting
the undecidable proposition produced. So it is not clear that this more
powerful engine for producing undecidable sentences really does lead us to
new axioms on which we would have even consensus agreement. Kant grossly
overestimated the amount of hard-wiring in the common human mind in
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connection with geometry; it seems possible that Gödel commits the same
error in connection with set theory.

Nevertheless, Gödel is committed to the view that intuition is a means
of discovering new truths, where these truths are somehow already implicit
in our concepts, but not logically derivable from the axioms we have already
accepted concerning these concepts. This would seem to be an instance of
Gödel’s ‘conceptual realism’. There is a discussion of it in [Wang, 1974, pp.
84-85].25 I quote Wang:

‘If we begin with a vague intuitive concept, how can we find a
sharp concept to correspond to it faithfully?’ The answer Gödel
gives is that the sharp concept is there all along, only we did not
perceive it clearly at first.

The context of this quote is the discussion of Turing’s analysis of the notion
of mechanical computation; but the view expressed seems quite general. In
particular, applied to the present case, the concept of ordinal number is al-
ready determined in the sense that it is already determined what totalities
of ordinals are bounded.26 It follows that new axioms that we introduce to
give upper bounds to such totalities are already contained in that concept.
So realism about concepts, so understood, claims that mathematical truth
is prior to the adoption of axioms rather than founded on them. If this is
the right way to understand Gödel, then in recognizing the distinction be-
tween realism about mathematics (i.e. mathematical objects) and realism
about concepts, he in fact did make our distinction between realism in the
default sense and realism in the wider sense. Also, understood this way,
the distinction between Gödel’s realism about mathematics and his realism
about concepts would seem to coincide with Parson’s distinction between ob-
ject Platonism and truth Platonism [Parsons, 1995a], although it is not clear
to me that Parsons himself in [1995b] or [n.d.] identifies Gödel’s realism
about concepts with truth Platonism. On the other hand, Parsons writes
“Although I can’t defend this claim here, I don’t think Gödel has as good an
argument for the claim that the assumption of concepts on his conception
of them is ‘necessary for a satisfactory system of mathematics’ as he has for

25In his response to the Grandjean questionnaire, Gödel explicitly cites this passage as
an expression of his views.

26[Parsons, n.d.] quotes from Wang’s reconstruction of his conversations with Gödel:
“To say that the universe of all sets is an unfinished totality does not mean objective
indeterminateness, but merely a subjective inability to finish it.” [Wang, 1996, 8.3.4].
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the corresponding more straightforward claim about sets” [n.d.]. This cor-
responds very well to the situation as we see the distinction: the argument
for the default position, although not completely given, is that no alterna-
tive preserves mathematical knowledge. No argument is really given for the
stronger position, that there is a transcendental notion of truth to which our
axioms must conform. Indeed, there is a strong argument against this view:
if the new axioms we might introduce could be false, then that should be the
case also for the axioms that we have already introduced.27 Thus, the axioms
do not define the subject matter; rather, they are merely an expression of
our grasp of it and could be false. It follows that mathematics is a specu-
lative science and Gödel’s comparison of it with physical science takes on a
sharper—and to my mind, unfortunate— meaning, and perhaps his second
criterion for accepting new axioms [1964, 265], mentioned above in §1, makes
better sense.

The view that the axioms do define the subject matter is perfectly com-
patible with realism in the default sense, in spite of the fact that it is often
identified with formalism or with the view that ‘mathematics is the syntax
of language’. It is the conception of mathematics of Hilbert: we establish a
system of objects when we specify, in the form of an axiomatic theory, how
to reason about them. Of course, Hilbert demanded of his axiom system
that it be complete and consistent and we know now both that no system
Sα is complete and that there is no elementary proof of its consistency. But,
in spite of Gödel’s attack on Carnap in “Is mathematics the syntax of lan-
guage?” because of the impossibility of an elementary consistency proof, it
seems to me that the axiomatic point of view remains viable and, indeed, is
the only viable one. I won’t discuss this further here, but[Tait, 2001] contains
an extensive discussion of it.

4 Extensions of Finitism

Having criticized the non-constructive and impredicative methods expressed
by the axioms of set theory in [*1933o], “which, if interpreted as meaningful
statements, necessarily presuppose a kind of Platonism, which . . . does not

27Here I am ignoring the special problem that the new—or old—axioms could turn out
to be inconsistent. If this should happen, then on one view, it would entail a more or less
serious revision of our concepts. But on Gödel’s view, apparently, it would only mean that
we falsely analyzed the concepts.
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even produce the conviction that they are consistent”, Gödel turns to the
question of giving consistency proofs for the “objectionable methods”, where
they are regarded purely formally and without regard for their meaning—in
other words, he turns to Hilbert’s program. He writes “Of course, the chief
point in the desired proof of freedom from contradiction is that it must be
conducted by perfectly unobjectionable methods . . . ” and goes on to identify
constructive mathematics as what remains when we drop the objectionable
methods. He notes that there are different layers of constructive mathemat-
ics, beginning with the “strictest form of constructive mathematics”, which
he refers to as the “system A”, and converging towards non-constructive
mathematics. The system A appears to be just primitive recursive arith-
metic PRA, and in both [*1933o, p. 52] and [*1938a, p. 93], he explicitly
identifies it with Hilbert’s finitism.28 Later, in [1958], he distinguishes this
lowest level of finitism from its extensions:

Since finitary mathematics is defined as the mathematics of con-
crete intuition, this seems to imply that abstract concepts are
needed for the proof of consistency of number theory. . . . By ab-
stract concepts, in this context, are meant concepts which are
essentially of second or higher level, i.e., which do not have as
their content properties or relations of concrete objects (such as
combinations of symbols), but rather of thought structures or
thought contents (e.g. proofs, meaningful propositions, and so
on), where in the proofs of propositions about these mental ob-
jects insights are needed which are not derived from a reflection
upon the combinatorial (space-time) properties of the symbols

28In [*1938a, p. 105], moreover, he identifies ωω as the ‘ordinal’ of “finititary number
theory”, i.e. as the bound on the ordinals α such that definition of functions by recursion on
α can be finitistically justified. ωω is in fact the ordinal of PRA. It was known at the time
that recursion and (suitably formulated) induction up to any ωn was derivable in PRA;
but, as the editors point out (p. 79), it was only in the early 1960’s that a detailed proof
was available that recursion and induction up to ωω is not derivable in PRA. On the other
hand, it was well-known in the 1930’s (e.g. see [Hilbert and Bernays, 1934, §7] that the
enumerating function (of two variables) of the primitive recursive functions of one variable,
which is clearly not primitive recursive, can be defined by a double nested recursion (i.e.
a nested ω2-recursion). But it is rather easy to see, by considering its computations, that
this function is definable by recursion on ωω. Moreover, using methods utilized in [Hilbert
and Bernays, 1934], the consistency of PRA can be proved in PRA together with this
enumerating function.

27



representing them, but rather from a reflection upon the mean-
ings involved.29

But I don’t like this characterization of the difference between finitism and its
extensions: speaking from the propositions-as-types point of view, functions
and proofs are simply objects of higher types than the type N of the numbers;
and this is a logical, not an epistemological difference (see [Tait, 1981]).
Perhaps Gödel sees the difference in the fact that we recognize a number sign,
a numeral, purely in terms of its syntactical structure, whereas this is not so
for functions and proofs. Thus, we may be given some defining equations or
a Turing machine for a numerical function, but determining whether or not it
really defines a (total) function is not a matter of inspecting it syntactically:
we must appeal to its meaning. But one may take the position in constructive
mathematics that functions of a given type and proofs of a given proposition,
too, are given by definite syntactical rules of construction, analogous to the
rules ⇒ 0, n ⇒ S(n) for constructing numbers, such that objects constructed
by such rules are immediately recognized for what they are. That we may
define a function by means of a Turing machine, where there is then a burden
of proving that a function is actually determined (and where the proof itself
amount to representing it in the canonical notation), is not different from
defining a number by means of some property, with the additional burden of
extracting from that definition a numeral. There remains only this difference
between the case of numbers and higher type objects: the above rules for
constructing numbers are given once and for all. In the case of functions or
proofs, the rules are (in analogy with the axioms of set theory) essentially
incomplete: the addition of new types can (using, for example, impredicative
primitive recursion) lead to the construction of new functions or proofs of a
given type (e.g. where that type may be a consistency statement for some
formal system).

Although Gödel identified Hilbert’s finitism with PRA in [*1933o; *1938a],
he writes immediately following the passage just quoted that “Due to the lack
of a precise definition of either concrete or abstract evidence there exists,
today, no rigorous proof for the insufficiency (even for the the consistency
proof of number theory) of finitary mathematics.” Moreover, as we have
already noted, he explicitly denies in his paper on incompleteness that his
results undermine Hilbert’s program to obtain finitary consistency proofs.
Of course, one explanation for the discrepancy might be that he recognized

29I have actually taken this quote from the slightly revised text of [1972, pp. 272-3].
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the difference between the conceptual question of how “finitism” should be
understood and the historical question of what Hilbert meant; and, while he
felt that PRA has a special claim to be called “finitism”, he was leaving it
open whether or not that is the sense of finitism that Hilbert had in mind.30

In [*1933o] the only extension of finitism that he discusses, and that
negatively, is Brouwer’s intuitionism and its formalization by Heyting; but
he ends with the expression of hope that “in the future one may find other and
more satisfactory methods of construction beyond the limits of the system
A.” In [*1938a] he again takes up the question. But by that time, other
possibilities for extending finitism had emerged: he explicitly mentions three
extensions: (i) The use of functions of higher type. This idea is developed in
some detail in [*1941] and then later in [1958]. (ii) The use of modal logic.
Here Gödel is again referring to intuitionism and in particular to Heyting’s
interpretation of the logical operations in terms of the notion ‘it is provable
that. . . ’. (iii) The use of transfinite induction and recursion. Gentzen [1936]
had by that time given a proof of the consistency of Peano Arithmetic PA
which is formalizable in PRA extended by a quantifier-free version of the
principle of induction on an ordering of the natural numbers of type ε0.

In [*1938a, p. 91], Gödel lays down four requirements which he regards as
necessary, if not sufficient, for a formal system to be constructive. The first
is that the primitive operations and relations should be computable. The
second is that ∃ should not occur among the primitive signs (the assertion of
∃xF (x) being introduced as a shorthand for having a proof of F (t) for some
particular term t) and ∀ should not occur in the scope of the propositional
connectives. The third concerns axioms and rules of inference, which may
include those of A, but he leaves it open that there may be others. The last
requirement is that “objects should be surveyable (that is, denumerable)”.
The first three requirements would seem to be closely connected: presumably,
the computation of the primitive operations and the deciding of the primitive
relations will be according to the defining axioms for these objects. And the
second requirement, concerning the quantifiers, may be seen as a consequence
of a more far-reaching requirement that, not only the primitive, but also
the definable operations and relations should be computable and decidable.
These requirements seem less than compelling, even from a constructive point
of view. Although, certainly since Kronecker, it has been a part of the

30For a further discussion of the conceptual question, see [Tait, 1981] and for discussions
of the historical question, see in addition [Tait, n.d.; Zach, 1998].
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finitist creed that all concepts must be decidable, there is after all room for
the more expansive constructivism that admits undecidable concepts, but
rejects applying the law of excluded middle to them. This already throws the
first three requirements into question. It will be useful to discuss the fourth
requirement after a discussion, in the next section, of Gödel’s contention that
his theory of functions of higher type satisfies it.

Speaking personally, reading [*1938a] was something of a shock. In 1958-
9, at the beginning of my teaching career, I attended a course of lectures
by G. Kreisel at Stanford.31 I recently looked through Kreisel’s thermofaxed
hand-written notes for the lectures and realized that they could have been an
extended commentary on [*1938a], containing essentially no new ideas and
reflecting remarkably little progress in the intervening twenty years. [*1938a]
consists of notes, sometimes rather cryptic, for a lecture. The editors, Charles
Parsons and Wilfried Sieg, making use of an earlier draft of notes for the
lecture, have done a good job of piecing together a coherent text, as well as
producing in the editors’ introduction a scholarly analysis of the text and its
historical context.

5 The Dialectica Interpretation

The main result in direction (i), Gödel’s so-called Dialectica interpretation,
which was first published in [1958], is already essentially contained in [*1941],
the text of a lecture delivered at Yale. In his introductory note, Troelstra
refers to a lecture at Princeton in the same year on intuitionistic logic and
the Dialectica interpretation. A later version of the Dialectica paper, [Gödel,
1972], was not published by Gödel but appears in [Gödel, 1990].

The interpretation associates with each formula φ of first order intuition-
istic arithmetic HA a formula

∃u · · · v∀x · · · yF (u, . . . , v, x, . . . , y, �z)(1)

31I don’t remember how many students started out in the course; but after a week or
so there were two students, and then one student, in addition to me, meeting finally in
Kreisel’s closet-cum-office. I don’t really remember the surviving students either, but that
they lasted so long was, I think, due simply to stubbornness: I don’t believe that they
understood much of the lectures at all. As for me—I won’t speak for Kreisel—I doubt
that I really understood more than seventy percent of the material either, although the
course and my discussions with Kreisel at that time were invaluable to me.
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where each of the variables u, . . . , v, x, . . . , y ranges over some finite type, �z is
a list of the free variables in φ, and F (u, . . . , v, x, . . . , y, �z) is quantifier-free.
Gödel’s result is that, from a deduction of φ in HA, we may read off constant
terms s, . . . , t of suitable type and a deduction of formula

F (s, . . . , t, x, . . . , y, �z)

in a certain quantifier-free theory T of the impredicative primitive recursive
(ipr) functions of finite type, where the atomic formulas are equations be-
tween terms of the same type.32 The ipr functions are closely related to
Hilbert’s hierarchy [1926], except that Hilbert’s hierarchy extends through
the second number class. Both admit precisely those functions built up from 0
and the successor function by means of explicit definition and primitive recur-
sive definition. We speak of the impredicative primitive recursive functions,
because, as we noted in §2, one may define functions Φ of some type by prim-
itive recursion which can then be used to define functions of lower type and,
indeed, arguments for Φ.33 If φ is quantifier-free, then F (s, . . . , t, x, . . . , y, �z)
is just φ, and so the interpretation yields a consistency proof for HA relative
to T . This extends to a consistency proof for classical first-order arithmetic
PA, since, as Gödel had already shown in [1933e], PA can be regarded as a
subsystem of HA by eliminating ∨ and ∃ in favor of their de Morgan equiva-
lents. In [*1941, p. 200], he suggests the possibility of extending his result to
analysis (second-order number theory) by using transfinite types. This has
never been realized. [Spector, 1962] extended the interpretation to analysis
by adjoining to T the clearly non-constructive principle of bar recursion of
arbitrary finite type; but the types remain finite. An excellent survey of the

32[*1941] is not explicit about what types are admitted for these equations. In [1958],
equations of arbitrary type are admitted, where the equality of objects of higher type
is understood to be intensional or definitional equality. Troelstra states that, in the
Princeton lecture, Gödel explicitly restricts the equations to numerical terms. As far as
the interpretation of HA in T is concerned, however, it doesn’t matter whether or not
equations of higher type are admitted.

33Thus the hierarchy of ipr functions is distinct from the hierarchy of predicative prim-
itive recursive functions of finite type, introduced in [Kleene, 1959]. It had been noted
already in [Hilbert, 1926] that the Ackermann function, which is not Kleene primitive
recursive, is ipr. Actually, Hilbert indicates that his types are those built up from N by
means of the operation A �→ A −→ N; but it is clear from his examples that he intends
functions of more than one variable or, what amounts to the same thing, the types built
up from N by means of the operation −→.
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Dialectica interpretation and its subsequent development can be found in
[Avigad and Feferman, 1998].

Concerning the four requirements that constructive formal systems should
satisfy, Gödel states in [*1938a, p. 94] that, among the three extensions of
PRA that he listed, only the extension obtained by adding functions of finite
type, i.e. presumably the system T , meets all four requirements. (In [*1941]
he mentions only the first two of the requirements on constructive systems.)
But there are problems with this assessment, concerning the first and fourth
requirements.34

Taking the fourth requirement first, in what sense are the objects of finite
types other than N surveyable, i.e. denumerable? Gödel, himself, remarks
(p. 97) that the fourth requirement is problematic because of the notion of
function. About the first requirement, he says that it is not ‘sharp’. Both
in [*1938a] and in [1958], Gödel justifies the definitional axioms of T on the
grounds that they define computable functions. In the later paper, he gives
the following definition: the computable functions of type N are the natural
numbers. A computable function of type A −→ B is an “operation, always
performable (and constructively recognized as such), that to every [function
of type A] assigns a function of type [B]”.35 Presumably what is not sharp
is the notion of an ‘operation, always performable (and constructively recog-
nized as such)’. Thus, the totality of functions of a given type is denumerable,
because each function is given by a rule of computation, but this is problem-
atic because we cannot give, once and for all, a list of definitions which will
yield all and only computable functions of that type. So the editors must be
correct in supposing that, when Gödel states that only the first extension,
namely by functions of finite types, satisfies all the requirements, he has in
mind the relativization of the notion of a computable function of finite type
to some restricted class of definitions, containing at least those formalized
in T itself—for example, we can relativize it to precisely those definitions
formalized in T . Now the objects of T are indeed surveyable, in the sense
that we can effectively enumerate the closed terms of T of any given type.
But of course this enumeration, as an enumeration of the objects, will involve
repetitions. In order to eliminate these, we would need to know when two
terms denote the same object, i.e. when they are definitionally equal. In

34See the discussion of this in the introductory note on pp. 69-70.
35The paraphrases are because Gödel considered types of functions of several variables,

whereas I am speaking only of functions of one variable, which in the presence of higher
types is sufficient, as essentially noted in [Schönfinkel, 1924].
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fact, in [1958], the formulas of T are built up from equations between objects
of arbitrary finite type; so in this case, the first requirement already requires
that this relation be decidable.

The question of the decidability of definitional equality is closely related
to that of Gödel’s first requirement for constructivity. We noted that in
[1958] Gödel defined a computable function of type A −→ B to be an “op-
eration, always performable (and constructively recognized as such), that to
every [computable function of type A] assigns a computable function of type
[B]”. But surely the relative virtue of a system such as T will depend on
what constructive methods are needed to see that the operations involved
are always performable. [*1941, 195] waives this question after noting sim-
ply that, if f is a computable function of type N −→ [A −→ A] and b is an

object of type A (i.e. a numeral if A = N and a computable function of type

A otherwise), and if g of type N −→ A is defined by primitive recursion:
g0 = b, g(x + 1) = fx(gx), then it immediately follows from the definition
of computability that go, and so g1, and so g2, etc., are all defined and
computable.36 Although he writes “A closer examination of the question in
which manner the functions obtained by these two schemes [i.e., explicit and
primitive recursive definition] are really computable is pretty complicated,”
in [1958, p. 283, footnote 5] he emphasizes the fact that we must immediately
see that these operations are “always performable”; otherwise, the notion of
computability will depend upon the notion of proof, and it is the latter no-
tion that he is attempting to dispense with in giving his interpretation of
HA. But it is hard to see how proof is to be avoided. Gödel did not, in the
above example, appeal to immediate insight that primitive recursive defini-
tion is justified: he gave the argument, as he must. And the argument is by
mathematical induction, concluding that gz is computable for all numbers
z, from the premises g0 is computable and, if gz is computable, then so is
g(z + 1). Moreover, depending on the type A of gn, this property of being
computable is logically quite complex. Thus, in terms of the term model,
Gödel’s definition of the computable functions takes the form

CN(t) := t is a closed term definitionally equal to a numeral

CA−→B(t) := ∀x[CA(x) −→ CB(tx)]37

36Gödel’s example is actually only the special case g0 = b, g(z + 1) = f(gz) of iteration.
37If we replace the definition of C

N
(t) by the condition that t is a well-founded closed
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So the proof that the above function g is computable is by mathematical
induction applied to the predicate CA(gz), which, coding the terms of T
by their Gödel-numbers, we may regard as an arithmetical predicate. Now
define the level of the type A to be l(A) = Max{l(Ai) + 1 | i < n}, where A
is uniquely of the form A1 −→ (. . . −→ (An−1 −→ N) . . .). Let

∃u · · · v∀x · · · yF (u, . . . , v, x, . . . , y, z)

be the Dialectica interpretation of CA(gz). Then the level of A is precisely
the maximum of the levels of the types of u, . . . , v, say it is the level of the
type B of one of these variables. Using the Dialectica interpretation to justify
mathematical induction applied to CA(gz) requires defining a function h of
type N −→ B by primitive recursion, and so we are back to a need to prove
CB(gz) for all z. Thus, to justify primitive recursive definition at a given
level, we need to apply mathematical induction to a certain formula, and to
justify mathematical induction via the Dialectica interpretation applied to
that formula, we need primitive recursive definition at that same level. As
we mentioned above in §2, there is a circle here, too.

In a sense, Gödel was certainly aware of this circularity: in the intro-
ductory note to [*1941] Troelstra quotes from the Princeton lecture, where
Gödel indicates that CA(t) can be proved in HA for all types A and closed
terms t of type A.38 There, Gödel rightly dismisses the argument as circular;
but I believe that “a closer examination” of the question of computability
has to lead precisely to this circle. In later years, Gödel was interested in the

term of type N, meaning that every sequence t = t0, t1, t2, . . ., where ti+1 is obtained from
ti by replacing some definiens by the corresponding definiendum, is finite, then (i) for
closed terms of type N, well-foundedness implies definitional equality with a numeral, and
(ii) the property CA(t), for any type A, implies that t is well-founded. Well-foundedness of
every term implies that every term reduces to an irreducible term, which is unique by the
Church-Rosser Theorem. So then definitional equality is decidable: reduce two terms to
their unique irreducible form. They are definitionally equal just in case these irreducible
terms are identical. With this definition of computability, CA(t) is deducible in HA for
every term t of T of type A. With the original definition, this is true for all closed terms.

38This is part of the content of [Tait, 1967], a widely circulated version of which is in
[Tait, 1963]. Troelstra’s remark on this is too modest on behalf of Gödel: “This is strongly
reminiscent of the computability method of Tait (1967).” I would rather say of Gödel:
been there, done that. There is evidence that Gödel already knew this result in 1938.:
once one knows that the computability of all terms of T can be deduced in HA, one easily
obtains the interpretation of T in HA given in [Tait, 1967]. On p. 97 of [*1938a], he writes
“With finite types one cannot prove the consistency of number theory. Very likely, this
remark is based on the knowledge of that interpretation.
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problem of assigning ordinals less than ε0 to closed terms of T such that, if
the term s reduces to the term t, then the ordinal of t is less than that of s.
He speaks about the existence of such an assignment in the passage from the
Princeton lecture quoted by Troelstra, but it seems clear that he never actu-
ally found one.39 [?] solved this problem for a special class of reductions (but
such that every reducible term can be reduced in the special way). But in
any case, given such an assignment, the proof that every closed term of type
N reduces to a numeral requires PRA together with transfinite induction up
to ε0, and so the argument that this extension of finitism satisfies even the
first requirement of a constructive system would already require Gentzen’s
extension. Charles Parsons has pointed out to me that, although Gödel, in a
draft of a letter Frederick Sawyer in 1974, continued to hold that T is more
constructive than intuitionistic arithmetic (see [Gödel, 1990, p. 236, note
k]), the letter was never sent. I agree entirely with Parsons’ suggestion that
this, together with his continuing work on the 1972 version of the Dialec-
tica paper, might indicate that Gödel was not entirely comfortable with the
position expressed in [*1938a; *1941] and in the letter to Sawyer.

6 Modal Logic/ Intuitionism

To some extent, perhaps, Gödel’s negative view of intuitionistic logic rests
on an overestimation of the scope of his interpretation of classical logic in
intuitionistic logic using de Morgan equivalents (and double negating atomic
formulas). Thus in [*1941] he writes “So intuitionistic logic, as far as the
calculus of propositions and of quantifiers is concerned, turns out to be rather
a renaming and reinterpretation than a radical change of classical logic.” (p.
3) But even though the interpretation extends to the predicate calculus of
finite type and as the editors’ note, to a “(carefully formulated) set theory”
(p. 72), it is not really the case that classical logic can be embedded in
intuitionistic logic—at least for those of us who regard the axiom of choice
in the second-order form

∀x∃yF (x, y) −→ ∃g∀xF (x, gx)

39For example, my own last contact with him was a phone conversation in 1974 in which
he expressed the desire to have this problem solved.
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as a law of mathematical logic. For, although this is itself perfectly valid
intuitionistically, its interpretation

∀x¬∀y¬F ′(x, y) −→ ¬∀g¬∀xF ′(xgx)

where F ′ denotes the interpretation of F , is invalid. So the interpretation of
the classical second-order predicate calculus in the corresponding intuition-
istic system fails as soon as we add this principle.

But, Gödel’s rejection of intuitionistic logic as a legitimate extension of
the constructive point of view does not really depend on the his interpretation
of classical logic in it: he takes the latter as merely a symptom of it. He
objects to it on the grounds that it fails to satisfy all but the first of his
requirements on a constructive theory. We have already discussed grounds
for rejecting the first three of there requirements. As to the fourth, he seems
to me to be invoking a double standard in relation to his theory T . Not
all functions of finite type are defined in T : he explicitly notes that new
ones are obtained by going to transfinite types. So his theory satisfies the
fourth requirement only when we draw a line on what particular methods of
defining functions we will admit. I think that his charge that intuitionism
fails to satisfy the fourth requirement is based on a refusal to allow it the
same freedom.

The real grounds for his rejection of intuitionism are revealed by his
description of intuitionism as “the modal-logical route”, where the modal
operator in question is of course the provability operator B, with BA meaning
that A is provable. Again in [*1941] he writes

the primitive terms of intuitionistic logic lack the complete per-
spicuity and clarity which should be required for the primitive
terms of an intuitionistic system. E.g., P −→ Q in intuitionistic
logic means that Q can be derived from P , and ¬P means that
a contradiction can be derived from P . But the term “derived”
cannot be understood in the sense of “derived in a definite formal
system”. (For this notion the axioms of intuitionistic logic would
not hold.) So the notion of derivation or of proof must be taken
in its intuitive meaning as something directly given by intuition,
without any further explanation being necessary. This notion of
an intuitionistically correct proof or constructive proof lacks the
desirable precision. In fact one may say that it furnishes itself
a counterexample against its own admissibility, insofar as it is
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doubtful whether a proof utilizing this notion of a constructive
proof is constructive or not.

The most reasonable interpretation of his parenthetical remark that “de-
rived” cannot mean “derived in a definite formal system” is obtained from
his paper “An interpretation of the intuitionistic propositional logic” [Gödel,
1933f] in which, reading the necessity operator B as meaning “it is prov-
able that”, he gives a translation of Heyting’s propositional calculus into the
modal system S4 such that every theorem of Heyting’s system translates into
a theorem of S4 and, for example, the translation of p∨¬p is not a theorem.

B[Bp −→ p]

is a theorem of S4, and so when he writes that B cannot be understood as
provability in a formal system, he is referring to the fact that, if the formal
system is consistent and includes HA, say, then the above theorem is false
when we take p to be the formula 0 = 1.

Heyting himself had introduced BA in a 1931 paper [Heyting, 1930b] as a
meaningful proposition which, at least in some cases, is distinct from A itself.
He gives as an example a universal arithmetical proposition A = ∀xF (x). In
this case BA asserts the existence of a construction, a proof, whereas A itself
does not. He goes on to say that, in those cases in which A itself requires
a construction, its meaning coincides with that of BA. His example of this
is any negation ¬B; for he takes the meaning of this to be that “B can
be reduced to a contradiction”. But in his later, more mature discussions
of intuitionistic logic, Heyting asserts that every intuitionistic proposition A
requires a construction: the assertion of A is warranted only on the basis of a
proof, which is a construction of a certain type. So, on his later conception, he
gave up the view that A and BA can be distinct propositions. Presumably he
did do because, if A requires a construction, then what other construction
could BA possibly require? The notion of proof is no more an ingredient
of intuitionistic propositions than is the notion of truth an ingredient of
propositions of classical mathematics.

In the lecture at Zilsel’s, noting the non-constructive character of S4
as he interpreted it, Gödel goes on to say that this non-constructivity can
be avoided by replacing provability as the basic notion by the proof relation
‘z � A’ or ‘z � A, B′, meaning that z is a proof of B from A. However, he did
not ‘ really develop the treatment of intuitionism in terms of the provability
relation, and in particular he neither specifies the range of the variable z in
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“z � A” nor tries to define the meanings of the logical constants in terms of
the provability relation. But later on, in Kreisel’s 1958-59 lectures mentioned
above in §4, this idea looms large: z is to range over all constructions and
so what is needed for a foundation of intuitionism is a general logic-free
theory of constructions. Thus, we are to begin with the primitive notion of a
construction and, in terms of this, define the logical constants in such a way
that intuitionistic theorems are valid. But, although Kreisel himself [1962;
1965], Nicolas Goodman, e.g., [1970], and others obtained limited results in
this direction, in the sense that, given some particular formal intuitionistic
system such as PA, one can give a theory of constructions that is adequate
for it, the program in general was abandoned. One problem, even in the
restricted cases in which it has been carried out, is that it seems necessary
to assume that there is a decidable notion of proof of a Π0

2 sentence. The
argument for such a notion seems to be that, if one sees clearly that an
intuitive argument for the sentence is correct, then it is a proof; if one does
not see this clearly, then it is not. Perhaps not many people would be satisfied
with that idea.

So the idea of starting with a given domain of constructions and then
trying to define what it means for a particular construction to be a proof of
a given proposition seems to have been abandoned. On the other hand, the
foundations of intuitionistic logic do not require this idea. All that is needed
is a specification of what counts as a construction or proof of a particular
proposition A. And this differs in no essential way from a foundation for
Gödel’s theory T , where what is required is that, for any given finite type
A, we know what it is to be an object of type A. The foundation of HA no
more needs a general notion of construction than the foundation of T does.
Indeed, as the Curry-Howard theory of propositions-as-types [Howard, 1980]
makes clear, the formulas of HA constitute a natural generalization of the
finite types of T , especially if we add to the latter the new type-forming
operation A ∧ B of forming pairs of objects of types A and B, respectively.
(Gödel himself suggests this extension in [*1941, p. 196] as a means of
simplifying the details of his interpretation.) In fact the natural rules for
constructing objects of this type (pairing and projections) are precisely the
rules of inference for conjunction A ∧ B, just as the rules for A −→ B in
T (λ-abstraction and evaluation of a function) are precisely the rules (−→-
introduction and -elimination) of implication. Moreover, the type-forming
operations N −→ B and N∧B generalize to ∀xB(x), the type of all functions
of a numerical argument whose value for n is of type B(n), and ∃xB(x), the
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type of all pairs (n, b) where b is of type B(n), respectively. The natural
rules for constructing objects of these types again are precisely the rules of
quantification and induction in HA. (To complete the description of the
sentences of HA as types, ⊥ and all false equations denote the null type and
all true equations denote the one-element type.)

Of course, there is a certain incompleteness in this conception: by the
introduction of new propositions/types into a particular system of types, say
HA, with their corresponding introduction and elimination rules, we shall
new proofs of propositions in the original system, in some cases of propo-
sitions which are unprovable in the original system. But this is the precise
analogue of the incompleteness of the theory T , which Gödel explicitly noted:
by going to higher types, we obtain functions of finite type not definable in
T .

Viewed in this way, it is difficult to see why one should regard intuitionistic
arithmetic as less constructive than T . Just as T is a theory of propositional
combinations of equations between terms of the same finite type, so we can
describe an extension of it, T ∗, which is a theory of propositional combina-
tions of equations between types and between terms of the same type in our
extended sense of type. If it is the case that, for the intuitionist, the content
of a proposition consists in what counts as a proof of it, then it is T ∗ that for-
malizes the content of intuitionistic arithmetic. I do not see where one could
draw a principled line on the basis of which to call T more constructive than
T ∗.

7 Gentzen’s Proof Theory

The last sections of [Gödel, *1938a] concern Gentzen’s first version of his
consistency proof for arithmetic [1936], which is founded on his notion of a
reduction. We may express his idea in terms of a game G(Γ), which, unlike the
game T (φ) of §2, is played with finite sets of formal sentences of arithmetic
rather than a single sentence. The game starts with the non-empty Γ on
the board. Let ∆ be on the board at a given stage. If it contains a true
atomic sentence or a sentence together with its negation, then

∨
wins. If it

consists entirely of false atomic sentences, then
∧

wins. Assume neither is
true. Then the game continues for at least one more stage. If ∆ contains
any

∧
sentences, then

∧
moves and replaces ∆ on the board by the result

of replacing each
∧

-sentence in ∆ by one of its components. If there are no
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∧
-sentences in ∆, then it contains a

∨
-sentence and

∨
moves by adding to

∆ a component of one of the
∨

-sentences in it, say ψ. (Gentzen allows that∨
be given the choice also of dropping ψ; but that is an inessential difference.

What is essential—and this is what distinguishes G({φ}) from T (φ)—is that∨
is allowed to keep ψ, so that if he makes a bad choice of a component

the first time, he has a chance later on to choose a different one.) Gentzen’s
consistency proof consists in constructing, from each formal deduction of a
sentence φ in PA, a winning strategy for

∨
in the game G({φ}). Moreover,

such a strategy may be given as a well-founded tree, whose paths consist of
all the games played according to the strategy. In his proof, he, in effect,
assigns to each such tree an ordinal < ε0 which is a bound on its height.
[Schütte, 1951], at the cost of slightly obscuring the constructive content of
Gentzen’s result, recasts the construction as a cut-elimination, in which the
cut-free deduction obtained from the given deduction is precisely the winning
strategy.40

Gödel describes Gentzen’s proof in [*1938a] in a way that avoids both
the sequent calculus (of which the formulation above is a simplification, us-
ing finite sets of formulas instead of sequents) and the use of ordinals. He
considers deductions of single formulas in an ordinary Hilbert-style formaliza-
tion of PA. Assume that with each formula φ in the deduction, we associate
a certain prenex normal form

∃x1∀y1 · · · ∃xn∀ynA(xi, yj)

of φ, with A quantifier-free and denoting a decidable formula. (For example,
in ¬φ ∨ ψ, bring out all the quantifiers in φ first.) Then we may regard
sentences of the form A(ki, mj) as atomic in playing the game G({φ}). In this
game, if we restrict

∧
’s moves to those given by functions fj(x1, . . . , xj) = yj

of the preceding existentially quantified variables, the winning strategy for
∨

yields functionals F1, . . . , Fn such that, taking f to be a code for (f1, . . . , fn),

A[Fi(f), fj(F1(f), . . . , Fj(f))]

(
∨

gets to let his choices xi = Fi(f) depend on all of the fj because, as we
noted, he can go back at any stage of the game and introduce a new com-

40Or, almost. A cut-free deduction which contains an application of a
∧

-introduction
(i.e., a ∧- or a ∀-introduction) followed by a

∨
-introduction applied to a different formula

does not correspond to a winning strategy: it violates the condition that, when ∆ contains
a

∧
-sentence, then

∧
moves. But these applications can be commuted, transforming

Schütte’s cut-free proof into a winning strategy.
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ponent of a
∨

-sentence, depending on what
∧

has already chosen.) Parsons
and Sieg observe in their introductory note that this is the so-called no-
counterexample interpretation, NCI, first published by Kreisel [1951], who
obtained it by means of Ackermann’s consistency proof for arithmetic using
the ε-substitution method [1940]. It is easy to see that, if there is a NCI for
a formula, then there is one in standard form, i.e. such that∧
i<k

fi(F1(f), . . . Fi(f)) = gi(F1(g), . . . , Fi(g))∧
∧
i<k

Fi(f) = Fi(g) −→ Fk(f) = Fk(g).

To obtain the no-counterexample interpretation directly, we need to obtain
the NCI, F1, . . . , Fn, of the conclusion of each inference in the given deduc-
tion from the NCI’s of its premises. Gödel observes that the crucial case is
modus ponens, from φ and ¬φ ∨ ψ, to ψ. (The case of mathematical induc-
tion is obtained from the case of modus ponens by iteration.) To see how
he handles this inference, consider the case that φ and ψ have the prenex
forms ∃x∀y∃z∀uA(x, y, z, u) and ∃v∀wB(v, w), respectively, so that ¬φ ∨ ψ
has the form ∀x∃y∀z∃u∃v∀w[¬A(x, y, z, u)∨B(v, w)]. Thus the NCI’s of φ
and ¬φ ∨ ψ are of the form

A[F1(f), f1(F1(f)), F2(f), f2(F1(f), F2(f)]

¬A[g1, G1(g), g2(G1(g)), G2(g)] ∨ B[G3(g), g3(G1(g), G2(g)), G3(g)]

where we may assume these are in standard form. We may take for g3 a
function that depends only on its last argument, so that the second formula
can be written as

¬A[g1, G1(g), g2(G1(g)), G2(g)] ∨ B[G3(g), g3(G3(g))]

We can solve the equations

g1 = F1(f), f1(g1) = G1(g), g2(f1(F1(f))) = F2(f), f2(g1, g2(G1(g))) = G2(g)

one-by-one from the left, substituting the solution in the subsequent equa-
tions, obtaining g1 as a function of f1, g2, f2, g3, then f1 as a function of
g2, f2, g3, then g2 as a function of f2, g3 and, finally, f2 as a function G(g3)
of g3. Then B[G(g3), g3(G(g3))], a NCI for ψ, is obtained by modus ponens.
The first equation is an explicit definition. The remaining ones, ignoring
parameters and coding pairs of numbers by numbers, have the form

h(L(h)) = K(h)
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where, because the NCI’s are in standard form, L(h) = L(h′) −→ K(h) =
K(h′). We solve these equations one-by-one as follows: define the sequence
〈hn | n < ω〉 of approximations to a solution for this equation by h0(m) = 0
for all m and

hn+1(m) =

{
K(hn) if m = L(hn)
hn(m) otherwise

It is easy to show that hn(m) 
= 0 implies that hn(m) = hn+k(m) for all k.
We need to infer from this property that, for some n,

L(hn) = L(hn+1)

For then h = hn+1 is the desired solution for the equation. Of course, n itself
is a functional n = N(b) of the remaining parameters b.

It is for the existence of such a functional N that Gödel appeals to
“Souslin’s schema” (a.k.a. Brouwer’s Bar Theorem). To describe this, it
suffices to consider functionals, such as we have represented L, whose ar-
guments are numerical functions of one numerical value. For, as we al-
ready noted, numerical functions of several numerical variables can be rep-
resented by one of a single numerical variable, and a functional L of ar-
guments f1, . . . , fm, x1, . . . , xn can be regarded as a functional of one argu-
ment f , where f(k) is the code for the sequence f0(k), . . . , fm(k), x1, . . . , xn.
When f is a numerical function, then f̄(n) is the code for the sequence
〈f(0), . . . , f(n−1)〉. Now the functionals L that we are considering—“functionals
that are defined in a finitary way”, as Gödel expresses it (p. 111)—have this
property: we can associate with them numerical functions ΦL and ΨL and a
well-ordering ≺L of the natural numbers such that

ΦL(f̄(n)) = 0 −→ ΨL(f̄(n + 1)) ≺L ΨL(f̄(n))

ΦL(f̄(n)) 
= 0 −→ L(f) = ΦL(f̄(n + m)) − 1, for all m.

The definition of N is by so-called Bar Recursion, which amounts in this
case to a nested recursion on ≺L or a (simple) recursion on ω≺L . It is this
exponentiation that is responsible for the bound ε0 of the ordinals of the ≺H

for functionals H which occur in the NCI’s of formulas in formal deductions
in PA.

Finally, to see the connection between the NCI and winning strategies
in Gentzen’s game, consider the simple case ∃v∀wB(v, w) and its NCI,
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B[G(f), f(G(f))], which we have just considered. Here is the strategy that
G determines for

∨
: the latter simply chooses successively

∀wB(0, w),∀wB(1, w), . . . ,∀wB(n, w)

so that at stage n + 1 a set of the form

{∃v∀wB(v, w), B(0, b0), B(1, b1), . . . , B(n, bn)}

is on the board.
∨

continues with these choices until ΦG(〈b0, b1, . . . , bn〉) >
0. At that point it chooses ∀wB(G(f), w), where f is any function with
f̄(n + 1) = 〈b0, b1, . . . , bn〉. No matter how

∧
chooses bn+1, B(G(f), bn+1)

will be true. Thus, the ordinal of ≺G is the length of this winning strategy.
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Gödel, K. [*1953/9]. Is mathematics syntax of language?, [Gödel, 1995].
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Lévy, A. [1960]. Axiom schemata of strong infinity in axiomatic set theory,
Pacific Journal of Mathematics 10: 223–238.

Parsons, C. [1995a]. A distinction in platonism, Under Tall Trees: A Tribute
to Dirk van de Kaa pp. 9–10.

Parsons, C. [1995b]. Platonism and mathematical intuition in kurt gödel’s
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Schütte, K. [1951]. Beweisetheoretische Erfassung der unendlichen Induktion
in der Zahlentheorie, Mathematische Annalen 122: 369–389.
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Wang, H. [1996]. A Logical Journey: From Gödel to Philosophy, Cambridge:
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Zermelo, E. [1930]. Über Grenzzahlen und Mengenbereiche. Neue Unter-
suchungen über die Grundlagen der Mengenlehre, Fundamenta Mathe-
maticae 16: 29–47. Translated in [?, 1219-1233].

47


