WOUTER TEEPE

PROVING POSSESSION OF ARBITRARY SECRETS
WHILE NOT GIVING THEM AWAY:
NEW PROTOCOLS AND A PROOF IN GNY LOGIC

ABSTRACT. This paper introduces and describes new protocols for proving
knowledge of secrets without giving them away: if the verifier does not know the
secret, he does not learn it. This can all be done while only using one-way hash
functions. If also the use of encryption is allowed, these goals can be reached in
a more efficient way. We extend and use the GNY authentication logic to prove
correctness of these protocols.

1. INTRODUCTION

In zero-knowledge protocols, two players play a game in which the
prover (player one) proves to the verifier (player two) that the prover
has some special knowledge. This special knowledge could be for
example knowing a Hamiltonian tour for a graph, or a password
to Ali Baba’s cave. The verifier (player two) does not possess the
special knowledge, nor does he learn it by means of the protocol.
Thus, zero-knowledge protocols are convincing but yield nothing
beyond the validity of the assertion proven (in the example “the
prover knows a Hamiltonian tour”) (Goldwasser et al. 1985; Blum
et al. 1988; Bellare and Goldreich 1993; Goldreich 2002).

The type of knowledge that can be proven in zero-knowledge
protocols, is limited to knowledge within a mathematical context:
the two players in a protocol know some x « priori, and the prover
proves his knowledge of some special object y. The object x may
be a public key and y the corresponding private key, or x may
be a graph and y the Hamiltonian tour of it, as in the example.
The required mathematical relation between x and y is, speaking
loosely, that it is NP-hard to compute y from x. It might seem
that the requirement of a specific mathematical relation between x
and y somehow restricts the possible applications of zero-knowledge
protocols.

Synthese (2006) 149: 409-443 © Springer 2006
Knowledge, Rationality & Action 155-189
DOI 10.1007/s11229-005-3879-4

410 WOUTER TEEPE

In this paper we show that we can create an NP-hard “puzzle”
on the fly to prove knowledge of any y, provided that the verifier
also knows y a priori. If the verifier does not know y a priori, he
does not gain any information which helps him to compute y. Or
equivalently: this paper presents the first zero-knowledge protocols
in which possession of any kind of knowledge can be proven. The
knowledge need not be special in any mathematical or contextual
way. The assertion “the prover knows y” can only be verified if
the verifier also knows (all of) y. The verifier never learns anything
more than the prover’s knowledge of y.

This new type of protocols has applications where securely com-
paring secrets allows transactions which could not be allowed oth-
erwise. For example, secret agents might like to test each other’s
knowledge without exposing their own. Many examples can be
found where privacy requirements or non-disclosure requirements
are an obstruction for performing righteous tasks.

The type of problem that our protocol solves is similar to, but
different from, the problem described in Fagin et al. (1996). We will
first give a description which is broad enough to cover both prob-
lems, after which we will describe why our new type of protocols
solves a fundamentally different problem.

By a secret, we mean information possessed by an agent a, of
which agent a is not willing to share it with another agent. Whether
other agents indeed possess this information as well is not relevant
for it being a secret (of agent a). Here follows the problem “Com-
paring Information Without Leaking It” (CIWLI):!

Two players want to test whether their respective secrets are the same, but they
do not want the other player to learn the secret in case the secrets do not match.

Not specified yet is which secrets are to be compared, and how it
is decided which secrets are to be compared. Do the two players
each take a specific secret into their mind which they compare? For
example, is “the person I voted for” equal to “the person you voted
for”? Or does one player take a secret “The General will attack
tomorrow at noon” and does the other player see whether he knows
this specific secret as well? In the former case, the two players first
have to agree upon what they want to compare. I call this CIWLI
“with reference”. In the latter case, no « priori agreement is needed
and I call it CIWLI “without reference”, because of its lack of an
agreement which refers to a secret.

[156]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 411

CIWLI “with reference” is symmetric in the sense that both play-
ers have a specific secret in mind while performing the protocol,
whereas in CIWLI “without reference”, only one of the players has
one specific secret in mind.

An example of CIWLI with reference is the Socialist Millionaires’
problem, in which two players want to test their riches for equal-
ity, but do not want to disclose their riches to the other player
(Jakobsson and Yung 1996; Boudot et al. 2001). Another example
is that two managers each have received a complaint about a sen-
sitive matter, know this of one another, and would like to compare
whether the complainer is the same person (without contacting the
complainer) (Fagin et al. 1996). Solutions exist for CIWLI with ref-
erence (Fagin et al. 1996; Jakobsson and Yung 1996; Boudot et al.
2001). In Fagin et al. (1996) a series of interesting applications is
listed where protocols solving this problem could be used.

It could also be the case that it is not clear what the secret is
about. In that case, we have CIWLI without reference. For example,
Alice could have a file on her hard disk, and would like to know
whether Bob possesses the same file as well. Alice cannot naively
show the file to Bob and ask him to search for a matching file,
because this will obviously result in Bob obtaining the file (though
Bob could be honourable and delete it voluntarily). In cases of CI-
WLI with reference, it is common that two specific secrets are tested
for equality, whereas in cases without reference, one specific secret
is tested against numerous secrets for equality. The file-comparison
problem would be a case with reference if the two players would like
to know whether two specific files are equal. (“Are the instructions
you got from Carol the same as the instructions I got from Carol?”)

This paper presents a solution for CIWLI without reference.
It assumes the existence of collision-free one-way hash functions
(Damgérd 1988; Goldreich et al. 1991). A more efficient solution,
which depends on encryption as well as on collision-free one-way
hash functions, is also shown. In a forthcoming paper, we will pres-
ent results on CIWLI without reference in which the intersection of
two or more groups of secrets can be computed, without leaking the
secrets. This is also called the list intersection problem (Naor and
Pinkas 1999). This will make it possible to create indexes on dis-
tributed, secured databases, which can be searched without leaking
information on the contents of the databases. This will be similar to,
but much more advanced than the approaches in Feigenbaum et al.
(1991, 1992).

[157]

412 WOUTER TEEPE

In CIWLI with reference, a commitment is required of both par-
ties that their inputs to the protocol satisfy the reference, i.e. they
are truthful. (For example, in the socialist millionaires’ problem this
means that the inputs correspond to the wealth of the players.)
In fact, these protocols can only be used to test whether the two
inputs are equal, and only assuming truthfulness one can say some-
thing about, for example, the riches of the players. Furthermore, it is
required that player A cannot infer anything on the input of player
B, in case their inputs do not match. This includes that it should
not be possible for player A to test the input of player B for likely
values, that is to guess and verify whether the guess is correct. This
is called semantic security (Yao 1982, 1986).> The semantic secu-
rity is important in CIWLI with reference, because what is tested
is not whether the other player can imagine or guess some input
(Watanabe et al. 2003), but whether he actually states the input.
Thus, cases with reference should withstand guessing attacks.

In case of CIWLI without reference, there is no need to with-
stand guessing attacks of the players. Basically this is because cases
without reference test whether the other player possesses a spe-
cific file, which is roughly equivalent to being able to imagine or
guess it within the limits of its storage capacity and computational
resources. In fact, the protocol we describe in this paper is based
on the fact that a player can verify the other player’s knowledge of
a file by correctly “guessing” it. Semantic security is still required
in the sense that if a player cannot guess the complete input of the
other player, he should not be able to infer anything of the input of
the other player. And, of course, there must be full semantic secu-
rity with respect to eavesdroppers, third persons other than the two
players.

Regarding truth for CIWLI without reference, a player can
always fake not possessing a certain file, while he actually does pos-
sess the file. A player can however never fake possessing something
which he does not possess (or only with negligible probability).

It may need notice that CIWLI problems are very different from
card deal problems such as Van Ditmarsch’s Russian cards problem
(van Ditmarsch 2003). Firstly, in CIWLI the number of “cards” is
unlimited, and it is not publicly known which “cards” exist. Sec-
ondly, in CIWLI there is no such thing as exclusive possession of a
“card”.

Throughout this paper we will often loosely use the verb “know-
ing X where we technically mean “possessing information X, which

[158]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 413

may be false”, because knowledge is a more intuitive notion for the
examples. The protocols we describe assume that the players volun-
tarily want to prove their knowledge to the other player.

In Section 2, we present our new protocols for CIWLI without
reference, and informally explain how and why they work. In Sec-
tion 3, we introduce authentication logics, explain why we use GNY
logic (Gong et al. 1990), why we need to extend GNY logic, and
how we extend GNY logic. Section 4 contains a proof of our pro-
tocols in GNY logic.

2. NEW PROTOCOLS

In this section, we will introduce our solution to the problem of
CIWLI without reference. First, we will sketch a scenario in Sec-
tion 2.1, and explain what primitives we use in our solution in Sec-
tion 2.2. We describe two solutions in Sections 2.3 and 2.4, the
former using only hash functions, the latter also using encryption.

2.1. Problem Description

Victor is a secret agent, and keeping secret his intelligence has a
high priority. However, his mission is to protect Peggy from great
dangers, so when needed, protecting Peggy takes priority over keep-
ing his information secret. Now he is confronted with the following
situation: Victor does not know whether certain information known
to him, is also known to Peggy. (“Peggy is kindly invited for a din-
ner at the Mallory’s place.”)® Victor knows that Mallory is a very
malicious person. If Peggy does know that she is kindly invited, Vic-
tor would like to send her a warning message (“Don’t go there, it is
a trap. You will get killed in case you go there.”). However, if Peggy
has somehow not received the invitation, Victor would like to keep
his warning for himself, as well as his knowledge of Peggy’s invi-
tation. Therefore, Victor asks Peggy to prove her knowledge of the
invitation. Only after the proof, Victor will disclose his warning to
Peggy. In the protocol, Peggy does not learn whether Victor actually
knew about the invitation, other than from his possible next actions,
such as sending a warning.

Peggy is willing to prove her knowledge of the invitation, but
only if she can make sure that Victor does not cheat on her, and
actually finds out about the invitation because he tricks her into

[159]

414 WOUTER TEEPE

telling him that she has been invited. That is, she only wants to
prove her knowledge of the invitation if Victor actually knew about
the invitation beforehand.

Actually, this description only describes one of three possible
configurations of the protocol.

1. The verifier initiates (“can you prove to me that you know X?7).

2. The prover initiates (“I’'ll show you that I know X!”).

3. Mutual proof: both players simultaneously prove to one another
that they possess X.

A situation where such mutual verification could be used in real life
is “cautious gossip”. Alice and Bill would like to gossip about the
pregnancy of Georgia, but wouldn’t want to be the one to tell the
other that Georgia is indeed pregnant. Therefore, it is not allowable
just to ask “Did you know Georgia is pregnant?”. Only after mutu-
ally establishing both Alice and Bill know of Georgia’s pregnancy,
they can start gossiping.

In this paper we will mainly focus on case 1, though we stress
that the proof for case 1 can easily be modified to prove the pro-
tocols for the other cases. For a more extended description of the
protocols for all three configurations, see Teepe (2004a).

From here on I will call pieces of information “information
blocks”, or IB’s for short. Here follows a somewhat more formal
description:

Peggy has a certain IB y. If and only if Victor also possesses this IB y, she
wants to prove her possession of it to Victor. Furthermore, Peggy need not know
whether Victor indeed possesses IB y, in order to execute the protocol safely.

Thus, if Victor has the same IB, he can verify that Peggy indeed has
it, but if Victor does not have the same IB, he does not learn any-
thing.

2.2. Protocol Prerequisites and Assumptions

We assume that the communication channel cannot be modified by
an adversary, and that it is authenticated (Damgard 1988; Tsudik
1992; Bakhtiari et al. 1995; Schneier 1996). It is not relevant in what
way the authentication is established. However, in Section 4, we will
fill in a means for authentication, since GNY logic does not allow
us to simply assume authentication without explicitly providing it.

[160]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 415

Apart from authentication purposes, the only cryptographic pri-
mitive we use is the one-way collision-free hash function. This is a
primitive that is one-way: it transforms a message into a fingerprint
of fixed size in such a way that it is infeasible to infer any property
of the message from the fingerprint. Moreover, this primitive is colli-
sion-free, which means that it is hard to find two inputs X,Y, X #Y
where H(X)=H(Y) (Damgard 1988; Naor and Yung 1989; Zheng
et al. 1990; Bakhtiari et al. 1995; Schneier 1996; Canetti et al. 1998).

When we apply a hash function in a formula, we use the nota-
tion H(-). We often loosely use a notation where H(-) has multiple
arguments, in those cases we mean the hash of the concatenation of
the arguments.*

An extra requirement is that for any two inputs X, Y, if X #Y,
it should be hard to compute H(Y), if H(X) and the difference
between X and Y is given. Thus, any modification to the input of
the hash function, requires computations with a time complexity of
at least the size of the input. Only the slightest modification in the
input should force a full recomputation of the hash function.

Standard cryptographic hash functions, like MD5 and SHA-I1
(National Institute of Standards and Technology 1992) do not sat-
isfy this requirement. In fact, some cryptographic hash functions are
even designed to be efficiently recomputable if only a small part of
the input changes, like MDx-MAC (Bellare et al. 1995). However,
using standard cryptographic hash functions, we can build crypto-
graphic hash functions that do satisfy the extra requirement of nec-
essary recomputation.

The solution is to perform some padding of the input of the hash
function. What type of padding is required depends on the details
of the hash function that is used. For hash functions based on a
compression function, it suffices to repeat the message twice, and
to use this as the input to the hash function. For other classes of
cryptographic hash functions, it may be necessary to modify at least
one in every few bits, by applying an XOR to the input. A detailed
description of how to achieve this for different classes of crypto-
graphic hash functions is out of the scope of this paper.

The way in which such an “extra secure” hash is used is i} =
H(M,n), i.e. to compute hash of the concatenation of a message
M and some information n. If a player claims to know the M
which corresponds to 4, the player will be asked to compute Ay =
H(M,n"), where n#n'. Since n#n’, the player has to fully recom-
pute the function, and therefore the player must know M. It is

[161]

416 WOUTER TEEPE

precisely this property that will be exploited in the protocols. (The
parameter n serves as a way to enforce recomputation.)

This use may seem equivalent to the notion of a message authen-
tication code (MAC), or of a keyed hash (Bakhtiari et al. 1995), but
H(M,n) is a stronger notion. Many MAC’s allow a player to com-
pute i, =MAC(M,n’) from certain intermediate states of the com-
putation of hy = MAC(M, n), without knowing M. Hereby players
would be allowed to bypass the strict requirement to know M.

2.3. Protocol Description

There are three configurations of the protocol, as mentioned in Sec-
tion 2.1. The corresponding protocols are shown in Figures 1 (the
verifier initiates), 2 (the prover initiates), and 3 (mutual proof).

1. Victor chooses an IB Iy € KBy of which he wants to test Peggy’s know-
ledge

2. Victor computes Iyx C KBy and generates a random challenge C such

that it discriminates within Iy*

Victor sends Peggy the message {h=H(ly, N),C}

Peggy generates IpxC KBp

For each Ip €Ipx of which Peggy is willing to prove her knowledge to

Victor, Peggy sends Victor the message {h,=H(Ip,,N,P,C)}

6. For each h, received from Peggy, Victor verifies whether 4, is equal to
any H(ly;, N, P,C), where Iy, € Iyx (locally computed). If they are equal,
Victor concludes that Ip, equals the matching Iy, and thereby verifies that
Peggy knows the matching Iv,.

nbk W

Figure 1. The protocol where Victor the verifier initiates.

1. Peggy chooses an IB I € KBp of which she wants to prove her know-
ledge to Victor

2. Peggy sends Victor the message {h;=H(Ip, N)}

3. Victor computes IyxC KBy, and does one of the following:

— If Iyx is nonempty, Victor generates a random challenge C such that
it discriminates within Iy, and sends Peggy the message {C}

— If Iy is empty, Victor sends Peggy the message {halt} and the protocol
is halted

4. Peggy sends Victor the message {ho=H(Ip, N, P,C)}

5. Victor verifies whether h, (received from Peggy) is equal to any
H(ly;, N, P,C), where Iy, € Iyx (locally computed). If they are equal,
Victor concludes that [» equals the matching Iy;, and thereby verifies
that Peggy knows Iy,.

Figure 2. The protocol where Peggy the prover initiates.

[162]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 417

1. Alice chooses an IB I, € KB4 of which she wants to prove her knowledge
to Bob, and of which she wants to test Bob’s possession

2. Alice computes I, C KB, and generates a random challenge C, such
that it discriminates within 4

3. Alice sends Bob the message {h;=H (4, N),C4}

4. Bob computes IzxC KBp, and does one of the following:

— If Izx is nonempty, Bob generates a random challenge Cp such that it
discriminates within Ip%, and sends Alice the message {Cp}

— If Ipx is empty, Bob sends Alice the message {halt} and the protocol
is halted

5. Alice sends Bob the message {h,, =H(I4,N,A,Cg)}

6. Bob verifies whether #h,, (received from Alice) is equal to any
H(Ig,,N, A, Cg), where Ip € Igx (locally computed). If they are equal,
Bob concludes that I, equals the matching I, and thereby verifies that
Alice knows the matching Iz (which we will call 7z from here on)

7. If Bob is willing to prove his knowledge of Ip to Alice, Bob sends Alice
the message {h,, =H(I5,N,B,C,)}

8. Alice verifies whether h,, (received from Bob) is equal to H(I4, N, B, Cy)
(locally computed). If they are equal, Alice concludes that I, equals I,
and thereby verifies that Bob knows the matching /,.

Figure 3. The symmetric protocol. Since both players both prove and verify,
their names are changed into the more role-neutral names Alice and Bob. A And
B are unique representations of Alice’s and Bob’s identity.

The collections of IB’s possessed by Peggy the Prover and Victor
the Verifier are KBp and KBy, respectively. P is a unique represen-
tation of Peggy’s identity, such as her full name and birth date, or
something like her passport number. Peggy and Victor have agreed
upon a commonly known secret nonce N beforehand. In this arti-
cle, a nonce is a piece of information with the sole purpose to be
unpredictable to anybody but Peggy and Victor.

The protocol in the configuration we analyse in this paper, where
Victor initiates the protocol, is shown in Figure 1. The set I, is the
set of IB’s I in possession of agent a, for which H(I, N) is equal to
hy. Thus, I,x={I € KB,|H(I,, N)=h,}. If a set I,x is empty, agent
a has no IB to prove or verify knowledge of. If there is one IB in
the set, the agent may prove or verify knowledge of this IB.

It is extremely unlikely that there will be more than one IB in the
set I;x. However, the protocol can easily cope with the situation if it
would occur.’ If this protocol is widely adopted and applied, it can
be expected that somewhere this situation will occur. If the protocol
could not handle this situation well, data corruption would be the
result. Therefore, the ability to handle such unlikely situations still
is an important feature.

[163]

418 WOUTER TEEPE

Note that without the challenge C in the protocol, the prover
could fool the verifier if the prover could somehow obtain #; and
hy without ever knowing [p. Therefore, the challenge C should be
unpredictable to the prover, because it makes such a scenario infea-
sible. The challenge is there to prevent that the prover can store and
present precomputed, stored values.

Without the nonce N in the protocol, any eavesdropper who hap-
pens to know I, can analyse and interpret the protocol, which is
undesirable. When the eavesdropper does not know the N, this anal-
ysis and interpretation is no longer possible. In the next section we
further elaborate on eavesdroppers and their abilities to interpret
messages of this protocol.

In typical applications of one-way hashes, the input to the hash
is more or less public knowledge. This protocol on the other hand
exploits the fact that the input may not be publicly known. Suc-
cessful completion depends on one of the players being able to
“invert” the one-way hash, since it knows the original input to the
hash function. To make sure that eavesdroppers cannot learn from
observing the protocol, it has to be ensured that eavesdroppers do
not know the full input to the hash function. That is the purpose
of the nonce N: to achieve semantic security.

2.4. Making the Protocol more Efficient by Encryption

The computation of I, has a time complexity of O(size(KB,) +
|KB,|), where size(KBa):Z,aeKBa size(l,), size(I,) is the number
of bits in I,, and |KB,| is the number of I,’s in KB,. Note that this
time complexity essentially is the space required to store all IB’s.
This process of computing I, can be divided into two steps:

1. Precomputing a look-up table of size O(|KB,|) once, which can
be used in all runs of the protocol which share the same nonce.
Generating the look-up table still has computational complexity
O(size(KB,)+|KB,|).

2. Looking up received hashes hi; in the table. When an efficient
storage technique for the look-up table is used, this has a time
complexity of only O(*log|KB,|).

If an agent learns a new IB [,, this agent has to update the look-
up table, which has a time complexity of O(’log|KB,|+ size(l,)).
How to initialise and maintain the look-up table is described in
Figure 4.

[164]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 419

1. Create the look-up table, with the columns hash and IB location. IB loca-
tion is some information on how to locate the IB on the local system. (If
IB’s are files, this would typically be the file name.) Make the table effi-
ciently searchable on at least the hash column.

2. For each IB I, € KB,, compute H(I,,N), and insert (H(I,, N),
location(l,)) into the table. (Computing the hash value has a time
complexity of size(l,).)

3. With each modification of personal knowledge, update the look-up table:
a) For each added IB I, insert (H(I,, N),location(l,)).

b) For each removed IB I, remove (H(I,, N),location(l,)).
¢) Consider each modified IB as an old IB to be removed, and a new IB
to be added.

Figure 4. The initialisation and maintenance of the look-up table, needed by
any non-initiating player of the protocol.

Computing a look-up table and performing the protocol once,
has the same time complexity as performing the protocol with-
out any precomputations. Doing precomputations has two bene-
fits. Firstly, the speed of execution of the protocol is much higher,
because there are no expensive computations to wait for. Secondly,
we can re-use the look-up table as far as it is safe to re-use the
nonce that was used to construct the look-up table. However, for
each distinct nonce used, the player still needs to generate such a
look-up table, which is by far the most expensive part of the proto-
cols described in this paper so far.

Therefore, we can improve dramatically on speed if we can find
a way to safely re-use nonces, or to use no nonces at all. The rea-
son to use nonces was to make sure we have semantic security
with respect to any third party observing the conversation. Seman-
tic security can also be achieved by means of encryption of some
crucial parts of the protocol. The adjusted protocol is shown in
Figure 5.

The parts that need to be encrypted are those of which an eaves-
dropper could either infer the IB,% or could verify the proof. To
prevent inferral of the IB, #; should be encrypted. To prevent veri-
fication of the proof, or the possibility to infer IB by a brute-force
attack, at least one of C and h, should be encrypted. Since C and
h, are always sent by opposing players, we may choose to encrypt
the one sent by the player that also sent 4, i.e. the player that ini-
tiated the protocol. Thus only the initiator needs to be able to send
encrypted messages.

[165]

420 WOUTER TEEPE

1. Victor chooses an IB Iy € KBy of which he wants to test Peggy’s knowl-
edge

2. Victor computes Iy C KBy and generates a random challenge C such
that it discriminates within Iy *

3. Victor sends Peggy the message {encrypt({hy=H(ly),C})}

4. Peggy decrypts the message from Victor and obtains i; and C

5. Peggy generates IpxC KBp

6. For each Ip €Ipx of which Peggy is willing to prove her knowledge to

Victor, Peggy sends Victor the message {h,=H(Ip, P,C)}

7. For each h, received from Peggy, Victor verifies whether 4, is equal to
any H(ly;, P,C), where Iy, € Iyx (locally computed). If they are equal,
Victor concludes that I, equals the matching Iy;, and thereby verifies that
Peggy knows the matching Iv,.

Figure 5. The protocol where Victor the verifier initiates, and encryption is used.

By using encryption and no nonce (or a constant nonce), any
responding player of the protocol needs to generate the look-up
table only once. The need to establish a common nonce is no longer
there, but the need for key exchange has come in its place. Since the
protocol requires authentication, it may well be that key exchange is
required anyway.

3. THE GNY AUTHENTICATION LOGIC

In this section, we explain what tools we use to prove our solution
to CIWLI without reference correct. Section 3.1 introduces BAN
logic (Burrows et al. 1990) and its enhancement GNY logic (Gong
et al. 1990), and explains what these logics can offer and what they
cannot offer us. Section 3.2 explains in what ways we will apply
GNY, and introduces the concepts of knowledge preconditions and
invalidators, which are central parts of our proof. Section 3.3 sum-
marizes the language of GNY logic. Section 3.4 elaborates on infer-
ence rules of the GNY logic for knowledge authentication, and adds
new inferences rules to GNY logic which will be needed in our
proofs. Finally, Section 3.5 addresses the issue of how to prove that
principals can not learn specific things during a protocol run.

3.1. BAN, AT and GNY Logic, and its Value

BAN logic (Burrows et al. 1990), introduced by Burrows, Abadi
and Needham, is a means for analysing security protocols, and

[166]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 421

especially authentication protocols. Using BAN logic helps to deter-
mine the subtle assumptions a protocol depends on, and to investi-
gate whether the protocol is correct. BAN logic has succesfully been
applied to find undetected flaws in protocols. Unfortunately, BAN
logic has no well-defined semantics. Abadi and Tuttle (1991) have
introduced a slightly modified version of this logic (AT logic), which
has a semantics. However, in both BAN logic and AT logic, there
is no clear distinction between possession and belief: an agent can-
not possess a formula without believing it. Gong, Needham and
Yahalom (Gong et al. 1990) modified the BAN logic into an elegant
logic which, among other features, clearly distinguishes between
possession and belief. This logic is commonly referred to as GNY
logic. Unfortunately, GNY logic does not have a clear semantics
as AT logic does. These three logics are generally considered sound
(detected flaws are indeed flaws) but certainly not complete (some
flaws may remain undetected).

Proving that authentication protocols meet their specification
generally involves proving three properties of a protocol:

1. the participating principals do learn what they should learn,
2. what the participating principals learn is indeed true, and
3. no principal learns facts he ought not know.

All three of the abovementioned logics mainly address properties 1
and 2. If an analysis of a protocol using one of the mentioned log-
ics does not expose a flaw, this means that no flaws exist that vio-
late properties 1 and 2, of course assuming that the logic itself is
“correct”, whatever that may be. However, some silly protocols that
for example disclose keys to the public, are not tagged defective by
these logics (see for example, Nessett 1990).

If one wants to prove property 3, that principals can not infer
specific facts, one has to model the limitations of these agents, and
show that the limitations effectively obstruct principals from infer-
ring these facts. To model the inference limitations of principals, we
need to model what inference rules are available to an agent. This
is where a nasty property of the abovementioned logics comes in:
none of the authors of these logics claim that the list of inference
rules provided in the logic is indeed complete in the sense that no
more inference rules can be added. Assuming that the list of given
inference rules is complete is a necessary step in proving property 3
of a protocol. We do not believe nor claim that completeness of the

[167]

422 WOUTER TEEPE

inference rule list is sufficient for proving property 3 of a protocol.
This issue will be discussed in Section 3.5.

Lacking a means to prove property 3, the meaning of a correct-
ness proof in one of the mentioned logics is only limited. If the use
of one of these logics exposes a flaw in a protocol, the protocol will
indeed be flawed. However, not finding any errors does not guaran-
tee that the protocol is correct. Therefore, we say that proving a pro-
tocol correct using one of these logics, only proves that the protocol
has passed a first test of some not-so-obvious flaws. Nevertheless,
we deem a proof in a BAN-style logic an important step in defend-
ing correctness of protocols. For ease of speech, from here on we
use “correctness” as an abbreviation for “correct regarding to BAN-
style logic”.

3.2. Our Use of GNY Logic

In this paper, we will use and extend GNY logic to prove the secret
prover protocols correct. The secret prover protocols are different
from normal authentication protocols in that the outcome of the
protocol should depend on the knowledge precondition of the prin-
cipals: if one of the principals does not know the secret before
the protocol run, he will not learn (any part of) the secret during
the protocol. Thus, the correctness of the protocol should critically
depend on the truth value of the knowledge precondition. This kind
of proof assumes the list of inference rules in the logic is not only
sound, but also more or less complete. To be more precise, the list
of rules should be so complete that whatever “undiscovered” rules
exist, they do not change the knowledge precondition dependency.

We argue that the list of inference rules of GNY logic is how-
ever not complete enough to prove any of the secret prover proto-
cols correct. Due to the rather unprecedented use of hash functions,
we need an inference rule to reflect this use.

The main issue of the protocols is whether the prover can cheat
by asking someone else to compute the proof in name of the prover,
and just forward this proof. Making someone different from the
prover compute the actual proof can be achieved by either a suc-
cessful man-in-the-middle attack by the prover, or by a willing assis-
tant of the prover which does have the knowledge referred to in
the knowledge precondition. We should design protocols in such a
way that successful man-in-the-middle attacks do not exist. BAN-
like logics help in analysing the existence of such attacks. However,

[168]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 423

we cannot fight willing assistants of provers. In some sense, this is
also unnecessary, since the goal of the secret prover protocols is to
test whether the prover has effective access to the secret, and one
may reasonably claim the prover indeed has such access if she has
an assistant who will perform computations on the secrets on behalf
of the prover.

The secret prover protocols are protocols that by design should
fail to complete if the knowledge precondition assumptions are
untrue at the start of a protocol run. Normally in GNY logic a pro-
tocol is proven correct if we can infer the desired endstate using the
assumptions, inference rule and communication steps. However, for
a protocol to fail if an assumption is not met, means there should
not exist proofs that do not depend on the critical assumptions.
This leads to the possibly somewhat counterintuitive observation
that some GNY correctness proofs prove the incorrectness of a pro-
tocol. Exactly the proofs that do not depend on all the knowledge
precondition assumptions indicate that a protocol is incorrect. I call
these proofs invalidators. Non-existence of invalidators can only be
proven if we assume that we know all applicable inference rules, or
at least all rules that can lead us to a proof of a protocol (some of
which may be invalidators).

It should be noted that the absence of invalidators does not
prove correctness of a protocol in a strict sense. Just as with nor-
mal BAN-like logics, it only shows that the protocol has passed a
test of some not-so-obvious flaws.

3.3. Summary of GNY Logic

In this section, we summarize the logic as presented in Gong et al.
(1990). Parts of the logic we do not use are omitted. When describ-
ing a protocol, we adhere to the notation P — Q: message, denoting
that the principal P sends the message and that principal Q receives
it. The message consists of a formula in GNY logic.

3.3.1. Formulae in GNY Logic

A formula is a name used to refer to a bit string, which would have
a particular value in a run. Let X and Y range over formulae, and
+K and —K over public keys and private keys respectively. The fol-
lowing are also formulae:

(X, Y): conjunction of two formulae. We treat conjunctions as sets
with properties such as associativity and commutativity.

[169]

424 WOUTER TEEPE

{X},x and {X}_g: public-key encryption and public-key decryp-
tion. We assume a cryptosystem for which {{X},x}_x =X holds (i.e.
encryption), and for which also {{X} x}.x = X holds (i.e. signa-
tures, e.g. RSA).

H(X): a one-way cryptograpic hash function of X.

*X: a not-originated-here formula. A formula X is a not-originated-
here formula if a principal receives X without having sent X itself
before. Thus, a formula is a not-originated-here formula for a prin-
cipal P, if it is not a replay of one of P’s previously sent messages.

3.3.2. Statements in GNY Logic

Statements reflect properties of formulae. Let P and Q be princi-
pals. The following are basic statements:

P < X: P is told formula X. P receives X, possibly after performing
some computation such as decryption.

P> X: P possesses, or is capable of possessing, formula X. At a par-
ticular state of a run, this includes all the formulae P has been told,
all the formulae he started the session with, and all the ones he has
generated in that run. In addition P possesses, or is capable of pos-
sessing, everything that is computable from the formulae he already
possesses.

P~ X: P once conveyed formula X. X can be a message itself or
some content computable from such a message, i.e. a formula can
be conveyed implicitly.

P =1(X): P believes, or is entitled to believe, that formula X is
fresh. That is, X has not been used for the same purpose at any time
before the current run of the protocol.

PE¢(X): P believes, or is entitled to believe, that formula X is rec-
ognizable. That is, P would recognize X if P has certain expecta-
tions about the contents of X before actually receiving X. P may
recognize a particular value or a particular structure.

PEP 5N Q: P believes, or is entitled to believe, that S is a suit-
able secret for P and Q. They may properly use it to mutually prove
identity. They may also use it as, or derive from it, a key to commu-
nicate. S will never be discovered by any principal except P and Q.
P |EJrr—I>< Q: P believes, or is entitled to believe, that +K is a suitable
public key for Q, i.e. the matching secret key —K will never be dis-
covered by any principal except Q.

Let C range over statements. The following are also statements:

[170]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 425

P=C: P believes, or is entitled to believe, that formula C holds.
C1, Cy: conjunctions. We treat conjunctions as sets with properties such as asso-
ciativity and commutativity.

3.4. New Inference Rules

In this section we will discuss several methods for knowledge authen-
tication, proving that you know something. For these methods, we
show and discuss the corresponding inference rules in GNY logic,
and where necessary introduce new inference rules that we add to
GNY logic. A well known method for knowledge authentication is
to sign the message you want to prove knowledge of, and then to
show this signed message. Obviously this method cannot be used in
a setting where the message itself should be kept secret, because the
message will be disclosed when showing the signed message. Never-
theless it is interesting to look at the inference rule corresponding to
interpreting signed messages, shown below (from Gong et al. 1990).

P<{X) k., P>3+K, PEIS 0, PEHX)
PEORNX,PEQOK{X} k

14

What the rule says is this: If P sees a signed message {X} g,
knows the public key +K, knows the corresponding private key —K
belongs to Q, and recognises X to be a message, then P is enti-
tled to believe that Q once conveyed the signed message {X}_ g, and
thus also once conveyed the message X itself (see Gong et al. 1990).

Important to note are two silent assumptions of this inference
rule:

1. For any X, no principal Q will convey {X}_x where Q # P. Thus,
Q’s private key —K is only known to Q and Q will never convey
—-K.7

2. Q will, in a sense, be conservative in what he signs: Q will only
sign intentionally and with consent.® Q will never sign unseen
messages.

The reason for assumption 2 is that a signature counts as an irre-
futable commitment.
Making similar assumptions, we could introduce a new identity-
related inference rule:’
V<axH(X, P),V>(X,P)
VEPK~X,P),VEPKHX,P)

[171]

426 WOUTER TEEPE

If V sees a message H (X, P), and also possesses (X, P), he is enti-
tled to believe that P once conveyed (X, P) and H(X, P).
The assumptions under which this rule is justified are these:

For any X, no principal Q will convey H (X, P) where Q # P.

. P will, in a sense, be conservative in the set of X’s for he conveys
H (X, P). More specifically, he will only convey H(X, P) for X’s
of which he wants to show other principals he possesses X.

DN —

These two assumptions tie together just like the two assumptions of
rule I4: the first assumption states that only one principal is capable
of sending certain messages, and the second states that this principal
will only do so with informed consent.

However, assumption 1 of inference rule H1 is not justifiable.
Using rule H1, a malicious principal, knowing any secret X, can
“commit” any principal P to conveying the secret X by broadcast-
ing H(X, P). To prevent malicious principals from creating havoc
in this way, we should require the message sent to be authentic, i.c.
that it is known who sent the message H (X, P). Using such authen-
tication, a verifier can distinguish proofs of knowledge by malicious
principals from proofs by intended principals.

Assuming authentication, we would be able to introduce a more
moderate rule like this one:

ViEPR*H(X,P),V>(X,P)
V=P (X, P)

H2

If V sees a message H(X, P) from P, and also possesses (X, P), he
is entitled to believe that P once conveyed (X, P). This effectively
eliminates assumption 1 from rule HI1.

Rule H2 is justified under the following assumption:

1. P will, in a sense, be conservative in the set of X’s for which he
conveys H(X, P) in an authenticated manner. More specifically,
he will only convey H(X, P) for X’s of which he wants to show
other principals that he possesses X.

This assumption is very reasonable, when one takes into account
that it is a minor variation of assumption 2 of rule 14: P will not
sign just any message, but only if she really intends to sign a mes-
sage.

There is a slight technical issue with rule H2, which also applies
to rule H1: How can a principal P make sure that he is not sending
H(X, P) in an authenticated way without actually knowing that he

[172]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 427

is sending H (X, P)? For example, in a concurrently running proto-
col of a different kind, P might be required to sign a challenge. P
cannot verify whether this challenge in fact is equal to a H(X, P) if
he does not possess X. This problem can be solved by adding some-
thing like a recognizable speech act token to the hash value that has
to be signed: P would have to sign (“I know”, H(X, P)) instead of
just H(X, P). The inference rule needs to be adjusted to reflect this,
giving rule H3 shown below. In such a way, P can make sure that he
never accidentally signs a value that may be interpreted using infer-
ence rule H3.

V=Pl know”, *sH(X, P)),V>(X, P)
VEPKX,P)

H3

This rule has the same assumption as H2, except that for this rule,
P can really make sure the assumption is true. This rule requires
that the language of the GNY logic be extended with tokens. We
decide not to do this (yet), and use rule H2, knowing that we can
easily modify protocols to reflect rule H3 instead of rule H2.

3.5. Proving that Principals Do not Learn too much

BAN-style logics focus on establishing whether the principals inter-
acting in a protocol draw correct conclusions in a security pro-
tocol. However, for security protocols, it is also crucial to prove
that certain principals do not draw some specific conclusions. This
should be proven for both active and passive attackers. The litera-
ture about BAN-style logics generally addresses the case of active
attackers (like in the NSPK protocol, Lowe 1996), but not the case
of passive attackers. A passive attack is an attack where a principal
learns something that should be kept secret, while the only capabil-
ities available to the attacker are eavesdropping and reasoning.

In this work we demonstrate a novel approach to proving that
principals do not learn specific facts in the course of a protocol run.
We believe that this is a significant contribution to establishing a
proof of property 3 as mentioned in Section 3.1. Our approach is
a new way of using BAN-style logics.

Normally, when proving a protocol using BAN-style, assump-
tions about the principals are stated. We introduce an extra princi-
pal and show that the principal cannot infer what should be kept
secret. We call this principal Eve the eavesdropper. Just as with
any other principal, we list assumptions about what Eve possesses

[173]

428 WOUTER TEEPE

and believes at the beginning of the protocol. The meaning of
the assumptions is somewhat different, however. When we state an
assumption for a principal participating in the protocol, this is in
some sense a weakness of the protocol: it has to be met in order for
the protocol to be correct. When we state an assumption about Eve,
this is a strength of the protocol: even if Eve knows or possesses
this a priori, the protocol is still correct in the sense that Eve can-
not deduce the secret. Thus, we establish the maximum amount of
a priori beliefs and possessions Eve may have under which it is still
impossible for Eve to infer the secret facts.! Just as with normal
BAN-style proofs, the list of assumptions allows to reason about
subtleties concerning the quality and applicability of a protocol.

In fact we model two properties of a passive attacker, namely
(1) its beliefs and possessions, and (2) its reasoning capabilities. The
reasoning capabilities are modeled by the inference rules of the logic
under the assumption that this list is complete.

We make no assumptions on what role Eve takes in the protool:
Eve may either be one of the participants or an external observer.

4. PROTOCOL PROOFS

In the protocols described in Section 2.3 we have two participating
principals, V' the verifier and P the prover. We assert that our pro-
tocols satisfy the following properties:

1. “The verifier learns whether P knows I, iff the verifier knows I
and the prover wants to prove her knowledge of I
V |= P> 1 holds after the protocol run, iff P>1,V >1 holds and
P wants to prove possession of I before the protocol run.

2. “Only the verifier learns whether anybody knows 7 in course of
the protocol”:
For any principal Q, except V:

(a) Q=P >1 holds after the protocol run, iff Q =P 1 holds
before the protocol run.

(b) 0 =V >1 holds after the protocol run, iff Q =V 1 holds
before the protocol run.

3. “Nobody learns I in the course of the protocol”:
For any principal Q, Q > holds after the protocol run, ifft 0>1
holds before the protocol run.

[174]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 429

The < part of property 1 will be proven using a formal proof,
which will span Sections 4.2 and 4.3. The = part of property 1 and
property 3 will be proven in Section 4.4. Proving property 2 requires
us to make some assumptions on the beliefs and possessions of an
attacker. This will be done in Section 4.5.

We will give the idealised versions of the secret prover protocols.
However, due to limited space we only concentrate on one configu-
ration of the protocol: the one where the verifier asks the prover to
prove possession of a specific secret. The configurations in which the
prover initiates the protocol and where a mutual proof is exercised do
not shed new light on the security analysis of the protocols. For the
chosen configuration, two protocols exist: one which uses no encryp-
tion but depends on a shared nonce between the prover and the verifier,
and one which depends on encryption from the verifier to the prover.
(For an overview of what configurations exist, see Sections 2.1 and 2.4.)

In Section 4.2 we give an analysis of the protocol without
encryption up to the point where the newly introduced inference
rules of Section 3.4 are needed. A comparision of how these rules
help to complete the proof, including the proof completion itself, is
shown in Section 4.3.

In Section 2.2, it has been noted that the communication chan-
nel should be authenticated and cannot be modified by an adversary.
The most important is that the last message of the protocol is clearly
bound to its sender, more precisely that the receiver can verify who
is the sender. For our protocols, it is not really relevant in what way
this authentication is established. To keep the proofs of the protocols
as simple as possible, we simply assume a specific way of authenti-
cation of the sender. We choose a public-key signature for this. This
choice is not essential and if we change this authentication method,
the protocol proofs can easily be adjusted to reflect this.

It may seem counter-intuitive to prove a protocol that does not
use encryption by assuming signatures, which essentially is a spe-
cial case of encryption. However we would like to stress that this is
just the easiest way to prove the protocol. The issue is that we do
not have to assume encryption for our protocols to work, but only
sender authentication.

4.1. Notation

When referring to inference rules, we use as rule identifier the let-
ter-cipher combination of the rule as used in the appendix of Gong

[175]

430 WOUTER TEEPE

et al. (1990). These rules are repeated in this paper in Appendix A.
When performing inferences using rules, we state the rule identifier,
and refer to its satisfied preconditions by mentioning the line num-
bers of the preconditions between parentheses.

We also test whether the principal is indeed able to perform the
actions prescribed in the protocol. Obviously we need this, because
we want to show that the prover cannot convey a valid proof if he
does not know the secret. Therefore, we also annotate the proto-
col communication steps with (1) the communication step number
between square brackets, and (2) the line number in which it was
shown that the performing principal indeed possesses the informa-
tion he utters, between parentheses.

4.2. Protocol Idealisation of the Secret Prover Protocol without
Encryption

In this and the next section, we will give a constructive correctness
proof of the protocol as described in Section 2.3 and Figure 1. Due
to space considerations, the proof for the protocol that uses encryp-
tion, as described in Section 2.4 and Figure 5, is omitted. That
proof is very similar to the proof we will give here. The only essen-
tial differences are that all references to the nonce N are removed,
and that a few steps are inserted which take care of encryption and
decryption of the first message of the protocol.

When we idealise the protocol as described in Section 2.3 and
Figure 1, we get to the following description and output of the pro-
tocol parser (Gong et al. 1990, 237).

idealised protocol output of the protocol parser
1 V—>P:H(,N),C P<a(xH(I,N), xC)
2 P—>V:{HU,N,P,C)}_x V<x{xH(I,N,P,C)}_g

The protocol assumptions are these:

Al P> A5 P>-K A8 VaC
A2 Vsl A6 Vs4+K A9 ViELC)

A3 P3P A7 VESP AI0 P3N
A4 V>SP A.ll V>N

Assumptions A.1 and A.2 express that the principals do indeed
know the secret. Thus, these are the knowledge preconditions.
Assumptions A.3 and A.4 reflect that both principals know the
identity of P. Assumption A.5 expresses that the prover knows her

[176]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 431

private key, and assumption A.6 expresses that the verifier knows
the corresponding public key. Assumption A.7 reflects that the
verifier believes this public key indeed corresponds to the prover’s
private key. Assumptions A.8 and A.9 reflect respecively that the
verifier knows his own challenge and that the verifier believes its
freshness. Assumptions A.10 and A.11 reflect that both principals
know the nonce.

Just using these assumptions we can already infer a few lines
which will be needed later on in the protocol. Namely the verifier
can send message 1 of the protocol, and he can verify message 2
which the prover ought to send.

B1 Vs(,N) P2(A.2, A.11)

B2 V3H(,N) P4(B.1)

B3 V3 (H(,N),C) P2(B.2, A.8)

B4 V3(I,N,P,C) P2(A.2, A.11, A4, A.8)
B.5 V4, N, P,C) FI1(A.9)

B6 V3H(I,N,P,C) P4(B.4)

B7 V>H(H(,N,P,C)) P4(B.6)

B8 VE¢HU,N,P,C)) R6(B.7)
Now we start the actual protocol. The verifier sends a message to
the prover. Thus, the verifier learns nothing new yet. The prover

however can calculate the proof which she will send later on in mes-
sage 2. The conveyed message is shown in line C.1.

C.1 P<(xH(I,N),*C) [1](B.3)

C2 P<axH(,N) T2(C.1)
C3 P<xC T2(C.1)
C4 PaC TI1(C.3)
C5 P>C P1(C.4)
C6 P>(I,N,P,C) P2(A.1, A.10, A.3, C.5)
C.7 P>H(,N,P,C) P4(C.6)

C8 P>{H(,N,P,C)}_x P8A.S5, CT7)

4.3. Different Options to Complete the Proof

So far, the protocol analysis is plain and rather simple. There is
a way to prove correctness in GNY logic of this protocol without
introducing new inference rules. In that case, a rather appealing but
weak assumption would have to be added:

A2 vevSe

[177]

432 WOUTER TEEPE

This assumption states that V believes that only V and P know the
secret N. Using this assumption, the proof goes as follows. The con-
veyed message is shown in line D.1.

D.1 V<x{xH(I,N,P,C)l_x [2](C.8)
D2 V<a{xH(,N,P,C)}_x TI(D.l)

D3 V<xH(,N,P,C) T6(D.2, A.6)

D4 VEPRK,N,P,C) I3(D.3, B4, A.12, B.5)
D5 VEP>(,N,P,C) 16(D.4, B.5)

D6 VP>l P3(D.5)

Note that in this proof, neither the identity of P, nor P’s signature
are used. Though the above proof is a correct GNY logic proof,
it does not help us because it depends on assumption A.12. This
assumption essentially states that the verifier should trust the prover
on not disclosing the secret to someone e¢lse, since the verifier has
no control over the truth value of this assumption. If the prover
does disclose the secret, this opens up possiblities for a successful
man-in-the-middle attack: the prover can use the same nonce with
multiple different principals, and use a proof given by principal A
to prove to principal B that she knows the secret.

In order to prove correctness without relying on assumption
A.12, we need new inference rules. In Section 3.4 we have discussed
various rules, and we will apply them here. Using rule H1, we can
finish the protocol proofs. The proof is as follows:

D.1 V<x{xH(I,N,P,C)}_x [2](C.8)
D2 V<{xH(,N,P,C)l_x TID'.])

D3 V<axH(,N,P,C) T6(D'.2, A.6)
D4 ViEPRU,N,P,C) HI(D'.3, B4)
D5 VEP>(,N,P,C) 16(D' 4, B.5)
D6 ViEP>I P3(D'.5)

Note that in this proof, P’s identity is not used. As discussed in Sec-
tion 3.4, rule H1 is dubious. Using the better-justified rule H2, we
can also finish the protocol proofs. The proof is as follows:

D1 V<as{«H(,N,P,C)}_x [2)(C.8)
D2 V<{«H(I,N,P,C)}_x TI(D".1)
D’3 VEPR+H(,N,P,C) I4D"2, A6, A.7, BS)

D'4 VEPK,N,P,C) H2(D".3, B.4)
D5 ViEP>(U,N,P,C) 16(D" 4, B.5)
D6 ViEP>I P3(D".5)

[178]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 433

Note that changing this proof to use rule H3 is trivial: P only needs
to insert “I know” into its signed messages, and V only needs to
verify that this token is indeed present in the message.

4.4, Proving Principals Do not Learn too much

So far, of the properties stated in Section 4, we have only proven the
< part of property 1. In this section, we will prove the the = part
of property 1, and we will prove property 2.

1. “The verifier learns whether P knows I, iff the verifier knows I
and the prover wants to prove her knowledge of I, = part: We
assume V |= P > 1 holds after the protocol run (the verifier has
been convinced of prover’s possession of 7).

For the prover to be able to actually prove possession of 7, she
has to use it while constructing message 2. If she does not possess
I, she cannot perform step C.6, which is necessary for C.8, which
states message 2. Thus, P > holds before the protocol run.

If the prover would not want the verifier to possibly learn that
the prover knows I, the prover would not have sent message 2.
Thus, the prover wants to prove her knowledge of I.

For the verifier to be able to verify the proof, he has to pos-
sess I as well. More specifically, the verifier has to verify whether
the message he sees in line D”.3 (or equivalently, in D.3 or D’.3)
equals the value the verifier computed at line B.6.!' Thus, V31
holds before the protocol run.

2. “Nobody learns I in course of the protocol”: We prove this by
contradiction. Let us that assume principal Q does learn I by
means of the protocol, and that by analysing messages Q man-
aged to reconstruct I. I itself is never conveyed except as an
argument to a one-way hash function. Thus, Q managed to invert
a one-way hash function. Obviously, this is impossible. This is
reflected by the fact that no inference rules exist that allow to
infer that someone conveyed the arguments of a one-way hash
function without knowing the arguments beforechand. Any infer-
ence rule which has P <«H (I) as a precondition and Vi=Q |~ 1
as a conclusion, always also has P> 1 as a precondition.

Except that the protocol works, it is also very efficient. Both the

verifier and the prover only need to perform a bounded number
of steps. The prover will, upon seeing «H (I, N), look whether she

[179]

434 WOUTER TEEPE

has a matching secret /. Only after establishing that she actually
does, she will start further computations. The bottleneck of course
is recognizing an / which matches the sent H(I, N). A principal
can in fact generate a look-up table in advance, which stores for
each possible I the corresponding H (I, N) value. This is a one-time
operation whose cost is proportional to the total size of all secrets
that a player wants to be able to look up. This has to be done for
each value of N the principal is interested in. If however the proto-
col which uses encryption is used, this dependency on N disappears.

4.5. Modeling the Beliefs and Possessions of an Attacker

In the previous section we have shown that no principal can learn
I itself from observing the protocol. However, we are also inter-
ested in anything that an eavesdropper could learn. Could an eaves-
dropper become convinced that the prover or the verifier knows 1?
This is what property 2 of Section 4 is about. Or, less bad but still
undesirable: could an eavesdropper learn about what secret / the
protocol is run?

Let us assume that, at the start of the protocol, Eve the eaves-
dropper knows everything the participating principals know, except
P’s private key, the nonce N and the challenge C, but including the
secret I:

El EsI E3 EESP ES5 EE:O)

E2 E>+K E4 E>P
In the course of the protocol, E will learn {H(I, N, P,C)}_g, C and
H(I, N). Since Eve does not know N, she will never be able to infer
what secret I the protocol is run about, since in all messages where
I is communicated, it is “mixed” with N in a one-way hash func-
tion. For the same reason Eve cannot verify P’s proof. Thus, all
three values Eve learns are indistinguishable from random noise. In
the case of the protocol that uses encryption instead of a nonce, E
will learn {H(I),C},x and {H(I, P,C)}_g. E cannot decrypt the
first message, and therefore never learns C, which is needed to be
able to interpret {H(I, P,C)} k.

An eavesdropper knowing everything except private keys and the
shared nonce does not learn anything sensible from observing the
protocol. This is a strong result. One of its implications is that N
may be known to any principal who is either (1) trusted by the veri-
fier, or (2) not capable of intercepting messages from or to any prin-
cipal using the nonce N.

[180]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 435

One last question is whether one of the participants could be a
passive attacker. In that case, the attacker would also possess N. For
the case the attacker is the verifier, the proof is trivial, since the goal
of the protocol is that the verifier does learn. For the case where the
attacker is the prover, the prover wil/ indeed learn what secret
the protocol is about. However, the prover will not learn whether
the verifier really possesses [7: the verifier might have learned
H(I, N) from someone else.

5. DISCUSSION

We have built an implementation of our new protocols. It allows
users to test one another’s possession of files over the internet
(Teepe 2004Db).

The protocols described use one-way hash functions in a way
that has not been shown before, namely to identify files, i.e. to
“point at them”. We also use one-way hash functions for verification
of possession. This latter use is also described in Schneier (1996):

“If you want to verify someone has a particular file (that you also have), but you
don’t want him to send it to you, then you ask him for the hash value. If he sends
you the correct hash value, then it is almost certain that he has that file.”

An equivalent claim is made in Agray et al. (2001). Unfortunately
the procedure described above does not guarantee possession of the
particular file: it is trivial to inform someone about hash values
of numerous files, without giving the person the files. This person
can now “prove” possession of the files he does not have, by pre-
senting the hash values as “proofs”. Of course this is very undesir-
able, and that is what the challenges C in the described protocols
are for: the proving player can only prove possession by computing
H(M,C,...). Maintaining hash value look-up tables for all possible
challenges is not feasible, and therefore presenting a value equal to
H(M,C,...) proves the possession of a file by a player.

The quote above does not mention how to determine which file is
the particular file. Verification of possession can only be done if the
file has been pointed at. Sending h; in the protocols can be inter-
preted as pointing at a file of which possession will or should be
proved.

Maintaining a look-up table with only one, or only a few possi-
ble values for n, is feasible. This feasibility can be used to compute

[181]

436 WOUTER TEEPE

I,x, which is “finding out which file has been pointed at by the
other player”.

The need for a strong nonce has also been acknowledged for
message authentication, specially by Tsudik (1992). In his paper
he describes an authentication protocol which has some similarities
with the protocols presented in this paper. However, his protocol
does not include pointing at a file, since the file is supposed to be
known publicly. He also thoroughly elaborates on some keyed pad-
ding functions to be used in a message authentication code (MAC),
though the functions he proposes have been shown insufficient in
Preneel and van Oorschot (1995). In Bellare et al. (1995) this prob-
lem is more or less solved. It should nevertheless be stressed that the
notion of a MAC is not strong enough for the purposes presented
in this paper. More elaboration on the requirements and design con-
siderations of keyed padding functions is required.

In Naor and Pinkas (1999), Naor and Pinkas present a way to
solve the list intersection problem, and a way to solve a special case
of it: the one-to-many intersection. This one-to-many intersection
problem is very similar though not equivalent to CIWLI without
reference. The protocol they present is very expensive, and it leaks
some meta-information. The amount of communication required
has a complexity of O(JKBy|), and the protocol leaks |KBy| to
the other player. (|JKB,| is the number of secrets held by player
a) Moreover, the precomputations required have a complexity of
O(|KB,|*size(KB,)), which is dramatically worse than our solu-
tion. It effectively prohibits |KB,| to be large.

Freedman, Nissim and Pinkas also present a way to solve the
list intersection problem (Freedman et al. 2004). The cryptograph-
ical primitive their solution uses is the homomorphic asymmetric
encryption scheme. Their solution requires the expensive computa-
tion of many polynomials, and becomes infeasible if the secrets to
be compared are large, say thousands or millions of bytes long.

6. CONCLUSION

We have given protocols which allow a player to prove his knowl-
edge of a secret to another player, without leaking the secret in case
the verifier did not know the secret.

The protocols require a precomputation by one of the two par-
ticipants of the protocol. The precomputation has a time complexity

[182]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 437

equal to the space required to store all that player’s secrets. The pro-
tocol which only uses one-way hashes requires one precomputation
for each different communication partner. The protocol which also
uses encryption requires only one single precomputation.

The protocols themselves take a constant number of communica-
tion steps, and require computations by each player of a time com-
plexity of at most O(size([)), where I is the secret being proven or
verified.

We have proven these protocols correct using an extended version
of GNY logic (Gong et al. 1990), for which we had to introduce
new inference rules H2 and H3. The latter rule is a slight modi-
fication of the former, but requires a small extension of the GNY
language. H3 has a sound justification to add it to the list of infer-
ence rules of GNY logic. Protocols and proofs using H2 can how-
ever easily be modified to use H3 instead of H2. Moreover, we have
shown that the protocol does not leak any valuable information to
observers, assuming completeness of the list of available inference
rules in the logic.

The relevance of this paper is fourfold. First, we have presented
protocols that solve the problem of comparing information without
leaking it. Secondly, we have extended the list of allowable infer-
ence rules in GNY logic. Third, making a few assumptions, we have
introduced a way to prove that some facts cannot be learned by
active and passive principals. Fourth, we have used these results to
prove correctness of the secret prover protocols.

In our ongoing work, we plan to make our results presented here
more generically applicable to security protocols. Moreover, we will
extend the GNY language to include speech act tokens. Also, we
intend to use the described protocols as a means to solve the list
intersection problem (Naor and Pinkas 1999) in a very efficient way.

The Dutch police offers us a very interesting application area for
our protocols. Police investigation teams typically want to keep their
files secret, but do want to know whether other teams are investigat-
ing on the same persons or locations. It is intended that our proto-
cols will be used in this application area.

APPENDIX A: LOGICAL POSTULATES

For completeness, we repeat all inference rules from Gong et al.
(1990) used in this paper. The rule names correspond to the names

[183]

438 WOUTER TEEPE

used in the original article. Some of the inference rules (P2, F1,
I3) have more allowable conclusions than used in this paper. These
unused conclusions are omitted.

A postulate that applies to formula X also applies to X, though

o Ccl . .
not necessarily vice versa. If) is a postulate, then for any princi-
PECI
P=C2

pal P, so is

A.1. Being-told Rules

P <axX

PaX
Being told a “not-originated-here” formula is a special case of being
told a formula.
P<a(X,Y)

P<X
Being told a formula implies being told each of its concatenated
components.
P <{X}_x,P>5+K
P<X

If a principal is told a formula encrypted with a private key and he
possesses the corresponding public key then he is considered to have
also been told the decrypted contents of that formula. This rule only

holds for public-key systems with the property {{X}_x}.x =X (e.g.
RSA).

T1

T2

T6

A.2. Possession Rules

PaX
1 P———
P>X
A principal is capable of possessing anything he is told.
P>X,P>Y
P2 oD
P>(X,Y)

If a principal possesses two formulae then he is capable of possess-
ing the formula constructed by concatenating the two formulae. This
rule used is inductively.

[184]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 439

P>(X,Y)
P>X

P3

If a principal possesses a formula then he is capable of possessing
any one of the concatenated components of that formula.
P>X
P>H(X)
If a principal possesses a formula then he is capable of possessing a
one-way computationally feasible hash function of that formula.
P>—K, P>X

P8
P>{X} g

If a principal possesses a formula and a private key then he is capa-
ble of possessing the decryption of that formula with that key.

A.3. Other Rules

PELX)

F1 —_—
PEiX,Y)

(Freshness) If a principal believes a formula X is fresh, then he is
entitled to believe that any formula of which X is a component is
fresh.

P>HX)

PEX)
(Recognizability) If P possesses a formula H(X), then he is entitled
to believe that X is recognizable.

P<xH(X,S), P>(X,S),

PEPS O, PELX,S)

I3
PEOK(X,S)

(Message Interpretation) Suppose that for principal P all of the
following hold: (1) P receives a formula consisting of a one-way
function of X and § marked with a not-originated-here mark; (2)
P possesses S and X; (3) P believes that S is a suitable secret for
himself and Q; (4) P believes that either X or S is fresh. Then P
is entitled to believe that Q once conveyed the formula X concate-
nated with S.

[185]

440 WOUTER TEEPE

It should be noted that rule I3 as given here differs slightly from
the definiton in Gong et al. (1990), which uses the notation (S) in
some places instead of § to denote that S is used for identifica-
tion. This is only syntactic sugar. For readability of the proofs, these
brackets have been omitted thoughout this article.

Rule I4 has been explained in Section 3.4, and will not be
repeated here.

PEQRX, PEIX)
P=03X

16

(Message Interpretation) If P believes that Q once conveyed for-
mula X and P believes that X is fresh, then P is entitled to believe
QO possesses X.

ACKNOWLEDGEMENTS

The author would like to thank Hans van Ditmarsch, Sieuwert van
Otterloo, the anonymous referees and my supervisor Rineke Verb-
rugge, for all the fruitful discussions and feedback on earlier ver-
sions of this paper.

NOTES

! This is a slight variation from Fagin et al. (1996).

2 Informally, an encryption scheme is semantically secure, if cyphertexts leak no
information about the plaintext.

3 For clarity, this information could be possession of a computer file stating the
invitation. This sets apart the matter whether the information is truthful.

4 In this procedure, there are some technical caveats which should be obeyed when
concatenating the individual arguments to one another. The concatenation should
fully contain all arguments, and keep the individual arguments identifiable as such.
5 If there is more than one IB in the set I;*, an “external” collision of the hash
function has occurred (Preneel and van Oorschot 1995). This is highly improba-
ble, but not impossible. In such a case Victor wants to discriminate between the
members of the set. He can do this by making sure his challenge C yields a
different hash H(Iy, N, P,C) for each element Iy of Iy*. Ensuring this is easy
because it is extremely unlikely for two IB’s A and B that both H(A) and H(B)
clash and that H(A, C) and H(B, C) clash as well. If this would not be extremely
unlikely, this would be a very severe problem of the supposedly one-way hash
function. In practice, Victor may choose a C at random and check for security’s
sake whether there are new clashes, and choose another C if this would be the
case. This whole process of generating the challenge makes sure that each possible

[186]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 441

hy corresponds to exactly one Iy, in Iy*. In the figures, we summarize this pro-
cess as “generating a random challenge such that it discriminates”.

¢ With “infer”, we mean “properly guess” as described in Section 1.

7 More precisely, we mean that no Q will send {X}_x before receiving {X}_g:
Thus, Q could perform replays of messages, but cannot generate messages signed
with the key —K.

8 For example, Q will not sign his own death penalty.

® Newly introduced inference rule’s names will start with H, for hash. Moreover,
we will use V and P to denote principals, V to represent the verifier and P to
represent the prover.

10 This “maximum belief set” is not necessarily unique.

I Note that this protocol does not depend on the recognizability constraint of
rule 14, as used in line D".3 of the last proof. Even if the verifier can always rec-
ognize the message sent by the prover, as needed for verification of the signature,
the verifier still cannot verify the proof, as the verifier has nothing to compare
the message with. If we change the protocol to use rule H3, introduction of the
“I know”-token will lead to immediate recognizability of the signed message. This
will not invalidate the proof.

REFERENCES

Abadi, M. and M. Tuttle: 1991, ‘A Semantics for a Logic of Authentication’, in Pro-
ceedings of the Tenth Annual ACM Symposium on Principles of Distributed Com-
puting. Montreal, pp. 201-216.

Agray, N., W. van der Hoek, and E. P. de Vink: 2001, ‘On BAN Logics for Industrial
Security Protocols’, in B. Dunin-Kgplicz and E. Nawarecki (eds.), Proceedings of
the Second International Workshop of Central and Eastern Europe on Multi-Agent
Systems, Cracow, pp. 29-36.

Bakhtiari, S., R. Safavi-Naini, and J. Pieprzyk: 1995, ‘Cryptographic Hash Func-
tions: A Survey’, Technical Report 95-09, Department of Computer Science, Uni-
versity of Wollongong.

Bellare, M. and O. Goldreich: 1993, ‘On Defining Proofs of Knowledge’, in
E. Brickell (ed.), Advances in Cryptology: Crypto '93 Proceedings, Vol. 740,
Springer Verlag, Berlin, pp. 390-420.

Bellare, M., R. Guerin, and P. Rogaway: 1995, ‘XOR MACs: New Methods for Mes-
sage Authentication Using Finite Pseudorandom Functions’, in D. Coppersmith
(ed.), Advances in Cryptology: Crypto '95 Proceedings, Lecture Notes in Computer
Science, Vol. 963, Springer Verlag, Berlin, pp. 15-28.

Blum, M., P. Feldman, and S. Micali: 1988, ‘Non-Interactive Zero-Knowledge and
Its Applications (Extended Abstract)’, in Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, Chicago, IL, pp. 103-112.

Boudot, F., B. Schoenmakers, and J. Traoré: 2001, ‘A Fair and Efficient Solution to the
Socialist Millionaires’ Problem’, Discrete Applied Mathematics 111(1-2), 23-36.

Burrows, M., M. Abadi, and R. Needham: 1990, ‘A Logic of Authentication’, ACM
Transactions on Computer Systems 8(1), 18-36.

Canetti, R., D. Micciancio, and O. Reingold: 1998, ‘Perfectly One-way Probabilis-
tic Hash Functions (Preliminary Version)’, in Proceedings of the 30th Annual ACM
Symposium on the Theory of Computing, Dallas, pp. 131-140.

[187]

442 WOUTER TEEPE

Damgard, 1.: 1988, ‘Collision Free Hash Functions and Public Key Signature
Schemes’, in D. Chaum and W. Price (eds.), EUROCRYPT, Lecture Notes in
Computer Science, Vol. 304, Springer Verlag, Berlin, pp. 203-216.

Fagin, R., M. Naor, and P. Winkler: 1996, ‘Comparing Information Without Leak-
ing It’, Communications of the ACM 39(5), 77-85.

Feigenbaum, J.,, M. Liberman, and R. Wright: 1991, ‘Cryptographic Protection of
Databases and Software’, in J. Feigenbaum and M. Merritt (eds.), Distributed
Computing and Cryptography, Vol. 2, pp. 161-172.

Feigenbaum, J., E. Grosse, and J. Reeds: 1992, ‘Cryptographic Protection of Mem-
bership Lists’, Newsletter of the International Association for Cryptologic Research
9(1), 16-20.

Freedman, M. J., K. Nissim, and B. Pinkas: 2004, ‘Efficient Private Matching and
Set Intersection’, in C. Cachin and J. Camenisch (eds.), Advances in Cryptology —
EUROCRYPT 2004, Lecture Notes in Computer Science, Vol. 2037, Springer Ver-
lag, Berlin, pp. 1-19.

Goldreich, O.: 2002, ‘Zero-knowledge Twenty Years after its Invention’, Technical
report, Department of Computer Science, Weizmann Institute of Science.

Goldreich, O., S. Micali, and A. Wigderson: 1991, ‘Proofs that Yield Nothing But
their Validity or All Languages in NP have Zero-Knowledge Proofs’, JACM 38,
691-729.

Goldwasser, S., S. Micali, and C. Rackoff: 1985, ‘The Knowledge Complexity of
Interactive Proof-systems’, in Proceedings of the Seventeenth Annual ACM Sympo-
sium on Theory of Computing, Providence, RI, pp. 291-304.

Gong, L., R. Needham, and R. Yahalom: 1990, ‘Reasoning About Belief in Crypto-
graphic Protocols’, in D. Cooper and T. Lunt (eds.), Proceedings 1990 IEEE Sym-
posium on Research in Security and Privacy, IEEE Computer Society Press, Los
Angeles, pp. 234-248.

Jakobsson, M. and M. Yung: 1996, ‘Proving without Knowing: On Oblivious,
Agnostic and Blindfolded Provers’, in N. Koblitz (ed.), Advances in Cryptology:
Crypto °96 Proceedings, Lecture Notes in Computer Science, Vol. 1109, Springer
Verlag, Berlin, pp. 186-200.

Lowe, G.: 1996, ‘Breaking and Fixing the Needham-Schroeder Public-key Protocol
Using FDR’, in Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Vol. 1055, Springer-Verlag, Berlin, pp. 147-166.

Naor, M. and B. Pinkas: 1999, ‘Oblivious Transfer and Polynomial Evaluation’, in
Proceedings of the Thirty-First Annual ACM Symposium on the Theory of Comput-
ing, ACM Press, New York, pp. 245-254.

Naor, M. and M. Yung: 1989, ‘Universal One-way Hash Functions and their Cryp-
tographic Applications’, in Proceedings of the Twenty First Annual ACM Sympo-
sium on Theory of Computing, May 15-17 1989: Seattle, WA, USA, ACM Press,
New York, pp. 33-43.

National Institute of Standards and Technology: 1992, ‘Proposed Federal Infor-
mation Processing Standard for Secure Hash Standard’, Federal Register 57(21),
3747-3749.

Nessett, D. M.: 1990, ‘A Critique of the Burrows, Abadi and Needham Logic’,
ACM SIGOPS Operating Systems Review 24(2), 35-38.

Preneel, B. and P. van Oorschot: 1995, ‘MDx-MAC and Building Fast MACs from
Hash Functions’, in D. Coppersmith (ed.), Advances in Cryptology: Crypto '95

[188]

NEW PROTOCOLS FOR PROVING KNOWLEDGE OF SECRETS 443

Proceedings, Lecture Notes in Computer Science, Vol. 963, Springer Verlag, Berlin,
pp. 1-14.

Schneier, B.: 1996, Applied Cryptography, John Wiley & Sons, New York.

Teepe, W.: 2004a, ‘New Protocols for Proving Knowledge of Arbitrary Secrets while
not Giving them away’, in P. McBurney, W. van der Hoek, and M. Wooldridge
(eds.), Proceedings of the First Knowledge and Games Workshop, University of Liv-
erpool, Liverpool, pp. 99-116.

Teepe, W.: 2004b, ‘The Secret Prover’, http://www.ai.rug.nl/~woutr/provingsecrets.

Tsudik, G.: 1992, ‘Message Authentication with One-Way Hash Functions’, in Pro-
ceedings of IEEE INFOCOM 1992, IEEE Computer Society Press, Los Angeles,
pp. 2055-2059.

van Ditmarsch, H.: 2003, ‘The Russian Cards Problem’, Studia Logica 75, 31-62.

Watanabe, Y., J. Shikata, and H. Imai: 2003, ‘Equivalence between Semantic Secu-
rity and Indistinguishability against Chosen Ciphertext Attacks’, in Y. Desmedt
(ed.), Proceedings of International Workshop on Practice and Theory in Public
Key Cryptosystems (PKC 2003), Lecture Notes in Computer Science, Vol. 2567,
Springer-Verlag, Berlin, pp. 71-84.

Yao, A.: 1982, ‘Protocols for Secure Computations’, in Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Angeles, pp. 160-164.

Yao, A.: 1986, ‘How to Generate and Exchange Secrets’, in Proceedings of the 27th
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Angeles, pp. 162-167.

Zheng, Y., T. Mashumoto, and H. Imai: 1990, ‘Provably Secure One-Way Hash
Functions’, in 1990 Workshop on Cryptography and Information Security, Hiro-
shima.

University of Groningen,
Dept. of Artificial Intelligence,
Grote Kruisstraat 2/1,

9712 TS Groningen,

The Netherlands

E-mail: wouter@teepe.com

[189]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

