Skip to main content

The Information-Theoretic and Algorithmic Approach to Human, Animal, and Artificial Cognition

  • Chapter
  • First Online:

Part of the book series: Studies in Applied Philosophy, Epistemology and Rational Ethics ((SAPERE,volume 28))

Abstract

We survey concepts at the frontier of research connecting artificial, animal, and human cognition to computation and information processing—from the Turing test to Searle’s Chinese room argument, from integrated information theory to computational and algorithmic complexity. We start by arguing that passing the Turing test is a trivial computational problem and that its pragmatic difficulty sheds light on the computational nature of the human mind more than it does on the challenge of artificial intelligence. We then review our proposed algorithmic information-theoretic measures for quantifying and characterizing cognition in various forms. These are capable of accounting for known biases in human behavior, thus vindicating a computational algorithmic view of cognition as first suggested by Turing, but this time rooted in the concept of algorithmic probability, which in turn is based on computational universality while being independent of computational model, and which has the virtue of being predictive and testable as a model theory of cognitive behavior.

Nicolas Gauvrit and Hector Zenil authors contributed equally

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    See, e.g. http://www.scottaaronson.com/blog/?p=1799, as accessed on December 23, 2015, where Tononi himself provided acceptable, even if not definite, answers.

References

  1. Aaronson, S.: Why philosophers should care about computational complexity. In: Copeland, B.J., Posy, C., Shagrir, O. (eds.) Computability: Turing, Gödel, Church, and Beyond. MIT Press, pp. 261–328 (2013)

    Google Scholar 

  2. Atran, S., Norenzayan, A.: Religion’s evolutionary landscape: counterintuition, commitment, compassion, communion. Behav. Brain Sci. 27, 713–770 (2004)

    Google Scholar 

  3. Baddeley, A.: Working memory. Science 255(5044), 556–559 (1992)

    Article  Google Scholar 

  4. Barrett, J.L., Nyhof, M.A.: Spreading non-natural concepts: the role of intuitive conceptual structures in memory and transmission of cultural materials. J. Cogn. Culture 1(1), 69–100 (2001)

    Article  Google Scholar 

  5. Barrouillet, P., Bernardin, S., Camos, V.: Time constraints and resource sharing in adults’ working memory spans. J. Exp. Psychol. Gen. 133(1), 83 (2004)

    Article  Google Scholar 

  6. Barrouillet, P., Gavens, N., Vergauwe, E., et al.: Working memory span development: a time-based resource-sharing model account. Dev. Psychol. 45(2), 477 (2009)

    Article  Google Scholar 

  7. Bennett, C.H.: Logical depth and physical complexity. In: Herken, R. (ed.) The Universal Turing Machine. A Half-Century Survey. pp. 227–257. Oxford University Press, Oxford (1988)

    Google Scholar 

  8. Boysen, S.T., Hallberg, K.I.: Primate numerical competence: contributions toward understanding nonhuman cognition. Cogn. Sci. 24(3), 423–443 (2000)

    Article  Google Scholar 

  9. Brenner, S.: Turing centenary: life’s code script. Nature 482, 461 (2012)

    Article  Google Scholar 

  10. Bronner, G.: Le succès d’une croyance. Ann. Soc. 60(1), 137–160 (2010)

    Google Scholar 

  11. Casali, A.G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K.R., Casarotto, S., Bruno, M.-A., Laureys, S., Tononi, G., Massimini, M.: A theoretically based index of consciousness independent of sensory processing and behaviour. Sci. Transl. Med. 5(198) (2013)

    Article  Google Scholar 

  12. Chaitin, G.J.: On the length of programs for computing finite binary sequences. J. ACM 13(4), 547–569

    Article  MathSciNet  MATH  Google Scholar 

  13. Chater, N.: The search for simplicity: A fundamental cognitive principle? The Q. J. Exp. Psychol. 52(A), 273–302 (1999)

    Article  Google Scholar 

  14. Church, A., Rosser, J.B.: Some properties of conversion. Trans. Am. Math. Soc. 39(3), 472–482 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cowan, N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24(1), 87–114 (2001)

    Article  Google Scholar 

  16. Dehaene, S., Izard, V., Pica, P., Spelke, E.: Core knowledge of geometry in an Amazonian indigene group. Science 311(5759), 381–384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehaene, S.: The Number Sense: How the Mind Creates Mathematics. Oxford University Press, Oxford (2011)

    MATH  Google Scholar 

  18. Delahaye, J.-P., Zenil, H.: Numerical evaluation of algorithmic complexity for short strings: a glance into the innermost structure of randomness. Appl. Math. Comput. 219(1), 63–77 (2012)

    MATH  Google Scholar 

  19. Dodig-Crnkovic, G.: Where do new ideas come from? how do they emerge? epistemology as computation (information processing). In: Calude, C. (ed.) Randomness & Complexity, from Leibniz to Chaitin (2007)

    Chapter  MATH  Google Scholar 

  20. Douglas, H.: I am a strange Loop. In: Basic Books (2008)

    Google Scholar 

  21. Dowe, D.L., Hájek, A.R.: A computational extension to the Turing test. Technical Report 97/322, Department of Computer Science, Monash University (1997)

    Google Scholar 

  22. Dowe, D.L, Hájek, A.R.: A non-behavioural, computational extension to the Turing Test. In: Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, pp. 101–106, Gippsland, Australia (1998)

    Google Scholar 

  23. Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegnér, J., Compte, A.: Mechanism for top-down control of working memory capacity. Proc. Nat. Acad. Sci. USA 106(16), 6802–6807 (2009)

    Article  Google Scholar 

  24. Gauvrit, N., Singmann, H., Soler-Toscano, F., Zenil, H.: Algorithmic complexity for psychology: a user-friendly implementation of the coding theorem method. Behav. Res. Methods 148(1), 314–329 (2014b)

    Article  Google Scholar 

  25. Gauvrit, N., Zenil, H., Delahaye, J.-P., et al.: Algorithmic complexity for short binary strings applied to psychology: a primer. Behav. Res. Methods 46(3), 732–744 (2014a)

    Article  Google Scholar 

  26. Gauvrit, N., Soler-Toscano, F., Zenil, H.: Natural scene statistics mediate the perception of image complexity. Vis. Cogn. 22(8), 1084–1091 (2014c)

    Article  Google Scholar 

  27. Gauvrit, N., Morsanyi, K.: The equiprobability bias from a mathematical and psychological perspective. Adv Cogn. Psychol. 10(4), 119–130 (2014)

    Google Scholar 

  28. Gauvrit, N., Zenil, H., Soler-Toscano, F., Delahaye, J. P., Brugger, P.: Human behavioral complexity peaks at age 25. PLoS Comp. Biol. 13(4), e1005408 (2017)

    Article  Google Scholar 

  29. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I; On formally undecidable propositions of Principia Mathematica and related systems I in Solomon Feferman, ed., 1986. Kurt Gödel Collected works, vol. I, pp. 144–195. Oxford University Press (1931)

    Google Scholar 

  30. Hsu, A.S., Griffiths, T.L., Schreiber, E.: Subjective randomness and natural scene statistics. Psychon. B. Rev. 17(5), 624–629 (2010)

    Article  Google Scholar 

  31. http://blogs.wsj.com/digits/2012/03/15/work-on-causality-causes-judea-pearl-to-win-prize/ Accessed 27 Dec 2014

  32. Kahneman, D., Slovic, P., Tversky, A.: Judgment under uncertainty: Heuristics and biases. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  33. Kempe, V., Gauvrit, N., Forsyth, D.: Structure emerges faster during cultural transmission in children than in adults. Cognition 136, 247–254 (2015)

    Article  Google Scholar 

  34. Kersten, A.W., Earles, J.L.: Less really is more for adults learning a miniature artificial language. J. Mem. Lang. 44(2), 250–273 (2001)

    Article  Google Scholar 

  35. Kirby, S., Cornish, H., Smith, K.: Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language. Proc. Nat. Acad. Sci. USA 105(31), 10681–10686 (2008)

    Article  Google Scholar 

  36. Kirchherr, W., Li, M., Vitányi, P.: The miraculous universal distribution. Math. Intell. 19(4), 7–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kirk, R.: How is consciousness possible? In: Metzinger, T. (ed.) Conscious Experience, Ferdinand Schoningh (English edition published by Imprint Academic), pp. 391–408 (1995)

    Google Scholar 

  38. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Prob. Inform. Transm. 1(1), 1–7 (1965)

    MathSciNet  MATH  Google Scholar 

  39. Kryazhimskiy, S., Rice, D.P., Jerison, E.R., Desai, M.M.: Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344(6191), 1519–22 (2014)

    Article  Google Scholar 

  40. Lecoutre, M.P.: Cognitive models and problem spaces in “purely random” situations. Educ. Stud. Math. 23(6), 557–568 (1992)

    Article  Google Scholar 

  41. Levin, L.A.: Laws of information conservation (non-growth) and aspects of the foundation of probability theory. Probl. Inf. Transm. 10(3), 206–210 (1974)

    Google Scholar 

  42. Maguire, P., Moser, P., Maguire, R., Griffith, V.: Is consciousness computable? Quantifying integrated information using algorithmic information theory. In: Bello, P., Guarini, M., McShane, M., Scassellati, B. (eds.) Proceedings of the 36th Annual Conference of the Cognitive Science Society. Cognitive Science Society, Austin, TX (2014)

    Google Scholar 

  43. Mandler, G., Shebo, B.J.: Subitizing: an analysis of its component processes. J. Exp. Psychol. Gen. 111(1), 1 (1982)

    Article  Google Scholar 

  44. Mathy, F., Chekaf, M., Gauvrit, N.: Chunking on the fly in working memory and its relationship to intelligence. In: Abstracts of the 55th Annual meeting of the Psychonomic Society. Abstract #148 (p. 32), University of California, Long Beach (2014), pp. 20–23 Nov 2014

    Google Scholar 

  45. Mathy, F., Feldman, J.: What’s magic about magic numbers? Chunking and data compression in short-term memory. Cognition 122(3), 346–362 (2012)

    Article  Google Scholar 

  46. Matthews, W.J.: Relatively random: context effects on perceived randomness and predicted outcomes. J. Exp. Psychol. Learn. 39(5), 1642 (2013)

    Article  Google Scholar 

  47. Ma, L., Xu, F.: Preverbal infants infer intentional agents from the perception of regularity. Dev. Psychol. 49(7), 1330 (2013)

    Article  Google Scholar 

  48. McDermott, D.: On the claim that a table-lookup program could pass the turing test. Minds Mach. 24(2), 143–188 (2014)

    Article  Google Scholar 

  49. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81 (1956)

    Article  Google Scholar 

  50. Oberauer, K., Lange, E., Engle, R.W.: Working memory capacity and resistance to interference. J. Mem. Lang. 51(1), 80–96 (2004)

    Article  Google Scholar 

  51. Oizumi, M., Albantakis, L., Tononi, G.: From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0. PLoS Computational Biology 10(5), (2014)

    Article  Google Scholar 

  52. Parberry, I.: Knowledge, Understanding, and computational complexity. In: Levine, D.S., Elsberry, W.R. (eds.) Optimality in Biological and Artificial Networks?, chapter 8, pp. 125–144, Lawrence Erlbaum Associates (1997)

    Google Scholar 

  53. Peng, Z., Genewein, T., Braun, D.A.: Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences. Front. Hum. Neurosci. 8, 168 (2014)

    Article  Google Scholar 

  54. Penrose, R.: The Emperor’s New Mind: Concerning Computers, Minds and the Laws of Physics. Vintage, London (1990)

    MATH  Google Scholar 

  55. Pepperberg, I.M.: Grey parrot numerical competence: a review. Anim. Cogn. 9(4), 377–391 (2006)

    Article  Google Scholar 

  56. Perlis, D.: Hawkins on intelligence: fascination and frustration. Artif. Intell. 169, 184–191 (2005)

    Article  Google Scholar 

  57. Reznikova, Z., Ryabko, B.: Ants and Bits. IEEE Inf. Theor. Soc. Newsl. (2012)

    Google Scholar 

  58. Reznikova, Z., Ryabko, B.: Numerical competence in animals, with an insight from ants. Behaviour 148, 405–434 (2011)

    Article  Google Scholar 

  59. Ryabko, B., Reznikova, Z.: The use of ideas of information theory for studying "language" and intelligence in ants. Entropy 11, 836–853 (2009). doi:10.3390/e1104083

    Article  Google Scholar 

  60. Searle, J.: Minds. Brains Progr. Behav. Brain Sci. 3, 417–457 (1980)

    Article  Google Scholar 

  61. Smith, K., Wonnacott, E.: Eliminating unpredictable variation through iterated learning. Cognition 116(3), 444–449 (2010)

    Article  Google Scholar 

  62. Soler-Toscano, F., Zenil, H., Delahaye, J.-P., Gauvrit, N.: Calculating kolmogorov complexity from the output frequency distributions of small turing machines. PLoS ONE 9(5), e96223 (2014)

    Article  Google Scholar 

  63. Solomonoff, R.J.: A formal theory of inductive inference: Parts 1 and 2. Inf. Control 7, 1–22 and 224–254, (1964)

    Google Scholar 

  64. Spelke, E.S., Kinzler, K.D.: Core knowledge. Dev. Sci. 10(1), 89–96 (2007)

    Article  Google Scholar 

  65. Téglás, E., Vul, E., Girotto, V., et al.: Pure reasoning in 12-month-old infants as probabilistic inference. Science 332(6033), 1054–1059 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Turing, A.M.: On Computable numbers, with an application to the entscheidungsproblem: a correction. Proc. Lon. Math. Soc. 2, 43(6), 544–6 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  67. Turing, A.M.: Computing machinery and intelligence. Mind LIX 236, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  68. Wang, Z., Li, Y., Childress, A.R., Detre, J.A.: Brain entropy mapping using fMRI. PLoS ONE 9(3), e89948 (2014)

    Article  Google Scholar 

  69. Xu, F., Spelke, E.S., Goddard, S.: Number sense in human infants. Dev. Sci. 8(1), 88–101 (2005)

    Article  Google Scholar 

  70. Xu, F., Garcia, V.: Intuitive statistics by 8-month-old infants. Proc. Nat. Acad. Sci. USA 105(13), 5012–5015 (2008)

    Article  Google Scholar 

  71. Zenil H (to appear), Quantifying Natural and Artificial Intelligence in Robots and Natural Systems with an Algorithmic Behavioural Test. In Bonsignorio FP, del Pobil AP, Messina E, Hallam J (eds.), Metrics of sensory motor integration in robots and animals, Springer

    Google Scholar 

  72. Zenil, H., Delahaye, J.-P.: On the algorithmic nature of the world. In: Dodig-Crnkovic, G., Burgin, M. (eds.) Information and Computation. World Scientific Publishing Company (2010)

    Chapter  Google Scholar 

  73. Zenil, H., Hernandez-Quiroz, F.: On the possible computational power of the human mind. In: Gershenson, C., Aerts, D., Edmonds, B. (eds.) Worldviews, Science and US, Philosophy and Complexity. World Scientific (2007)

    Google Scholar 

  74. Zenil, H., Marshall, J.A.R., Tégner, J.: Approximations of algorithmic and structural complexity validate cognitive-behavioural experimental results (submitted, preprint available at http://arxiv.org/abs/1509.06338)

  75. Zenil, H., Villarreal-Zapata, E.: Asymptotic behaviour and ratios of complexity in cellular automata rule spaces. Int. J. Bifurcat. Chaos 13(9) (2013)

    Google Scholar 

  76. Zenil, H.: Algorithmic Complexity of Animal Behaviour: From Communication to Cognition. In: Theory and Practice of Natural Computing Second International Conference Proceedings, TPNC 2013. Cáceres, Spain, 3–5 Dec (2013)

    Google Scholar 

  77. Zenil, H.: Algorithmicity and programmability in natural computing with the game of life as an in silico case study. J. Exp. Theor. Artif. Intell. 27, 109–121 (2015)

    Google Scholar 

  78. Zenil, H.: Compression-based Investigation of the dynamical properties of cellular automata and other systems. Complex Syst. 19(1), 1–28 (2010)

    MathSciNet  MATH  Google Scholar 

  79. Zenil, H., Gershenson, C., Marshall, J.A.R., Rosenblueth, D.: Life as thermodynamic evidence of algorithmic structure in natural environments. Entropy 14(11), 2173–2191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  80. Zenil, H., Soler-Toscano, F., Dingle, K., Louis, A.A.: Correlation of automorphism group size and topological properties with program-size complexity evaluations of graphs and complex networks. Phys. A Stat. Mech. Appl. 404, 341–358 (2014)

    Article  MathSciNet  Google Scholar 

  81. Zenil, H.: What is nature-like computation? Behav. Approach Notion Programmability Philos. Technol. 27(3), 399–421 (2014)

    Google Scholar 

  82. Zenil, H., Soler-Toscano, F., Delahaye, J.-P., Gauvrit, N.: Two-dimensional kolmogorov complexity and validation of the coding theorem method by compressibility. PeerJ Comput. Sci. 1, e23 (2015)

    Article  Google Scholar 

  83. Zenil, H., Marshall, J.A.R.: Some aspects of computation essential to evolution and life. Ubiquity (ACM) 2013, 1–16 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous referees and to the hard work of the members of the Algorithmic Nature Group, LABORES (http://www.algorithmicnaturelab.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Zenil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gauvrit, N., Zenil, H., Tegnér, J. (2017). The Information-Theoretic and Algorithmic Approach to Human, Animal, and Artificial Cognition. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds) Representation and Reality in Humans, Other Living Organisms and Intelligent Machines. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-43784-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43784-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43782-8

  • Online ISBN: 978-3-319-43784-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics