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Abstract
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the impact of ascertaining one event on the credibility of another. We report an experiment
that compares the adequacy of several such measures as descriptions of confirmation judgment
in a probabilistic context.
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1. Evidential impact and measures of confirmation

Perhaps the reader will concur that owning a laptop is better evidence for a phys-
ics diploma than for a taxi license. Judgments like these seem central to inductive
logic, so epistemologists have attempted to quantify them via scales that relate evi-
dence e(owning a laptop) to hypotheses H (having a physics diploma). The measured
quantity is known as the degree of support or confirmation that e brings to H. Most
confirmation measures are embedded in a Bayesian framework, and thus involve pri-
or and posterior probabilities, and likelilhoods. Among the candidates are the
following.'

RivaL CONFIRMATION MEASURES:

d(e,H) = Pr(H|e) — Pr(H) (Eells, 1982; Jeffrey, 1992),

r(e,H) =log [%] (Keynes, 1921; Horwich, 1982),

n(e,H) = Pr(e|H) — Pr(e|-H) (Nozick, 1981),

l(e,H) =log {%} (Good, 1984),

c(e,H) = Pr(H Ne) — (Pr(e) x Pr(H)) (Carnap, 1962),

_ Pr(e|H) — Pr(e|-H)

- K heim, 1952).
Pr(e|H) + Pr(e|—~H) (Kemeny & Oppenheim, 1952)

k(e,H)

Each measure maps given evidence e and hypothesis H into a number meant to indi-
cate the impact of e on the credibility of H. Values can be either positive or negative,
corresponding to confirmation and disconfirmation, respectively (zero indicates neu-
trality). Note that evidential impact is not the same as the ultimate credibility of H,
usually taken to be its posterior probability Pr(H|e). To illustrate, select a man from
New York City at random and suppose he owns a laptop. This is better evidence for
him possessing a physics diploma than a taxi license even though the probability of
the latter might be greater (because there are so many taxi-drivers in New York).
In a pioneering study, Briggs and Krantz (1992) investigated the combined effect
of distinct items of evidence on overall belief, using scenarios drawn from common
experience (e.g., predicting compatibility of roommates). Their participants were
able to judge the influence of each piece of evidence independently of the others.
In contrast, the present study focusses on individual evidence in a standard chance
set-up. We attempt to identify the confirmation measure that best predicts the psy-
chological impact of samples drawn from an urn on beliefs about the urn’s compo-
sition. Success in this enterprise might ultimately allow the appropriate rule of

' We rely on Eells and Fitelson (2002) for some literature citations.
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combination to predict the overall confidence in an hypothesis supported by a mul-
tiplicity of evidence (as in Shafer, 1976).

Information about psychologically correct confirmation measures might be
expected from the extensive literature on causal induction (see Perales & Shanks,
2003). The iterated trials that arise in the study of causal induction, however, seem
not to be adapted to the single-case perspective of evidential confirmation. Thus, the
“probabilistic contrast model” of causal induction (Cheng & Novick, 1990) offers n
(defined above) to measure the strength of H as a cause of evidence e. (In the causal
induction literature, the notation AP is used in place of n.) But suppose an urn con-
tains 100 balls labeled 1 --- 100, and consider the events:

H = the label belongs to {1 ---20},
e; = the label belongs to {1 ---10},

e, = the label belongs to {1---11} U {100}.

Then n(e;,H) = .5 and n(e,,H) = .54 which seems to reverse the intuition that e; con-
firms H more than e, does (since ¢; implies H whereas e, does not). The same prob-
lematic predictions arise if n is normalized through division by 1 — Pr(e|—H), as
suggested by the power PC model of Cheng (1997).%
Power PC MODEL:
% if n(e,H) = 0,
ple.H) =1 ,.m

Aem  Otherwise.

Similar difficulties afflict other measures in our list. For example, r and ¢ are symmet-
ric in their arguments e, H whereas simple examples suggest that e may confirm H to
a different extent than H confirms e (see below). We are nonetheless inclined to leave
in play all the measures exhibited above since ordinary judgment sometimes contra-
dicts the intuitions of experts.’

The measure ¢ may be stated in the equivalent (but less intuitive) form:

Pr(e|H)Pr(H)
H=——-""-
e = pe)
With this adjustment, all the measures are functions of Pr(H), Pr(H|e), Pr(e|H), and
Pr(e|—H).

x [Pr(Hle) — Pr(H)].

2 So far as we know, researchers in the area of causal induction have advanced no claims about
confirmation. It is worth noting that easy examples show “X confirms Y’ to imply neither that X causes ¥’
nor that Y causes X. (Thus, a rash on the left arm and the right arm may be evidence for each other
without either causing the other.) It is also easy to see that ““X causes Y’ does not imply that ¥ confirms X
more than slightly. (For example, a meteor strike might cause the shattering of a tea cup whereas the
shattered tea cup is not much evidence for a meteor strike.) On the other hand, “X causes Y’ does seem to
imply that X confirms Y.

3 An illustration is the “conjunction fallacy”. See Tentori, Bonini, and Osherson (2004).
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Table 1
Correlations between confirmation measures in a Monte Carlo test
d 1 .822 930 936 939 970 901 736
r .822 1 181 .883 770 .857 .805 .686
n 930 181 1 884 987 941 954 694
.936 .883 .884 1 871 .970 .847 77
939 770 987 871 1 927 940 700
k 970 .857 941 970 927 1 916 .91
P 901 .805 954 847 940 916 1 671
pst 136 .686 .694 177 .700 791 671 1
d r n l ¢ k P pst

Note. The correlations represent 10,000 selections of a joint distribution over the variables e, H (chosen
uniformly randomly with no zero probabilities). pst is the posterior probability Pr(H|e).

The following Monte Carlo procedure was used to evaluate the agreement of dif-
ferent measures. On 10,000 trials, we uniformly randomly assigned nonzero proba-
bilities (summing to one) to each of e A H, e A —H, —e A H, and —e A —H. These
numbers imply a value of x(e, H) for each of our seven confirmation measures, x.
The Pearson correlation over the 10,000 trials was then computed for all pairs of
measures; the posterior probability Pr(H]|e) was included for comparison. The cor-
relations are shown in Table 1 and reveal considerable agreement among some pairs
of measures. Appropriately, the least agreement is with Pr(Hle). One of the high cor-
relations seen in Table 1 has an algebraic basis. Indeed, k are ¢ are ordinally equiv-
alent inasmuch as k(e, H) = tanh(}¢(e, H)) which is a monotone transformation.”

2. The normative appeal of different measures

Confirmation measures are often deployed to solve philosophical puzzles, e.g.,
why verifying diverse consequences lends a theory more credibility than verifying
similar consequences (see Earman, 1992; Horwich, 1982). Different measures appear
to be needed, however, to resolve different puzzles, which undermines the hope for a
unitary analysis of confirmation (Fitelson, 1999). Confirmation measures nonethe-
less vary in their conformity to standards advocated by epistemologists. Eells and
Fitelson (2002) defend four standards that we summarize now.

Let x be a given measure of confirmation. Then x satisfies evidence symmetry (ES)
if the confirmation that evidence e bestows upon hypothesis H is the same as the dis-
confirmation that the negated evidence bestows upon H. [If e is initially disconfirma-
tory then its negation should be equally confirmatory, according to (ES).] To
illustrate, (ES) requires that spots confirm the diagnoses of measles to the same
extent that the absence of spots disconfirms measles. The principle is abbreviated
as follows

4 We thank Branden Fitelson for this observation.
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(ES) x(e,H) = —x(—e, H).

Although the spots/measles example may accord with (ES), other examples defi-
nitely do not. Thus, drawing a Jack maximally confirms the hypothesis that a face
card was drawn (indeed, implies it) but failing to draw a Jack only partially discon-
firms the same hypothesis. Eells and Fitelson (2002) therefore conclude that an
adequate measure of confirmation should violate (ES) for at least some choices
of e and H.

Similarly, elementary examples discredit both of the following principles, render-
ing their violation (for some choices of ¢ and H) a virtue for confirmation
measures.

(CS) x(e,H) =x(H,e),

(TS) x(e, H) = x(—e,—H).

The first is commutativity symmetry, the second total symmetry. Both succumb to the
Jack/face-card example used earlier. In contrast, the following principle of hypothesis
symmetry is immune to any counterexample that Eells and Fitelson (and the present
authors) have been able to devise, and plausibly relates confirmation/disconfirma-
tion to hypothesis polarity.

(HS) x(e,H) = —x(e, —H).

Eells and Fitelson (2002) therefore advocate conformity to (HS). They go on to clas-
sify confirmation measures in terms of agreement with their recommendations.
Extending their analysis to k and p, the following fact may be demonstrated.

FIRST NORMATIVE COMPARISON: Of the seven confirmation measures described
above, only d, £, and k conform to (HS) but not to (ES), (CS), and (TS). That
is, only d, ¢, and k agree with the recommendations that Eells and Fitelson
(2002) offer for confirmation measures.

Although d and ¢ are endorsed by the foregoing comparison, they are question-
able on other grounds. Thus, d(e, H) need not assume a maximal value even if e
implies H. For example, let e represent drawing the ace of spades, and let H; and
H, represent drawing a black suit and a spade, respectively. Then
d(e,H)) =.50<.75=d(e, H>) even though e entails H;. This behavior is strange
inasmuch as entailment seems to underwrite optimal confirmation of H; by e. Mea-
sure /£ is likewise unsatisfactory since it is not even defined when e entails H. In con-
trast, k(e,H;) = k(e,H,) = 1.0, the maximum possible value for k. More generally:

SEcoND NORMATIVE COMPARISON: Of the seven confirmation measures described
above, only k reaches a maximal value when e entails H (the same value for all
hypotheses H).

Combining the two comparisons suggests a normative preference for k. We are
thus in a position to ask whether the most normatively justified confirmation measure
is among the most psychologically descriptive. This will be the case if k predicts the
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felt impact of evidence as well as any other confirmation measure. At issue are the
feelings arising in philosophically “naive” individuals; the intuitions of experts mere-
ly set the normative stage.

3. Experimental test of the confirmation measures

Our experiment relied on a chance set-up familiar from early experiments on
probability judgment (notably, Philips & Edwards, 1966). All of the evidence
presented to participants was “designated”, to use the terminology of Briggs
and Krantz’ (1992) study of confirmation; that is, none was meant to be
ignored.

3.1. Materials and procedure

Participants were interviewed individually. Two opaque urns were presented and
their contents described. The two urns were composed as follows.

Urn Number of black balls Number of white balls
A 30 10
B 15 25

A diagrammatic reminder of this information was left in view throughout the
procedure.

It was explained that a coin toss would be used to choose one of the urns, but that
the outcome would remain hidden. The coin was tossed, one urn was covertly select-
ed, the other set aside. Ten random extractions without replacement from the chosen
urn were then carried out in front of the participant. All random events in the pro-
cedure were genuine results of chance; different participants thus faced different urns
and different extractions. The extracted balls remained in view, lined up on the table
in their order of selection.

To construct an impact scale, strips of paper were printed with a dotted line below
the following labels, spaced evenly from left to right. (All materials are translated
from Italian.)

weakens my conviction extremely
weakens my conviction a lot
slightly weakens my conviction

has no effect on my conviction
slightly strengthens my conviction
strengthens my conviction a lot
strengthens my conviction extremely
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The dotted line extended beyond the labels, allowing judgments of arbitrary
extremity. Note that our scale represents strengthening and weakening of belief sym-
metrically (unlike the scale used in Briggs & Krantz, 1992, for somewhat different
purposes). After each extraction, six tasks were performed.

Task 1. Participants marked a position on the impact scale to indicate the influ-
ence of the latest draw on their current conviction that urn 4 had been selected.
Fresh copies of the scale were used for each extraction, with successive scales left
on the table through the 10 extractions. To underline that the judgments concerned
changes in the participant’s current conviction (not his conviction before the first
extraction), the neutral point on the scale used in trial n + 1 was vertically aligned
with the mark made in trial n. On a given scale, the signed distance from the neutral
point was used to quantify impact.

The instructions accompanying use of the scale stated that it was continuous and
unbounded in both directions. We also emphasized that the distances among the
marks left by the 10 successive evaluations would be compared, hence were
meaningful.

Task 2. A fresh copy of the scale was then used to indicate the evidential impact
for urn B. (Our rival confirmation measures do not generally impose a simple rela-
tion between the answers for the two urns.)

Tasks 3 and 4. Participants next responded to the following questions.

In view of the color of the extracted ball, what probability do you now assign
to urn A having been selected?
In view of the color of the extracted ball, what probability do you now assign
to urn B having been selected?

The format of the response (decimal, fraction or percentage) was at the discretion
of the participant. It was pointed out each time that the sum of their responses had to
equal one.

Tasks 5 and 6. Finally, participants responded to these questions:

Assuming that urn 4 was selected, what was the probability of extracting a ball
of this color [the color actually observed] in the current trial?

Assuming that urn B was selected, what was the probability of extracting a ball
of this color in the current trial?

Again, the format of the response was left open. It was pointed out that there was
no need for the two numbers to sum to one.

The first two tasks measure the impact of the latest extraction on the hypothesis
that A versus B was initially selected. These numbers will be denoted Judged (e,A)
and Judged(e,B) in what follows. Tasks 3 and 4 assess the participant’s (subjective)
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probability for the hypothesis 4 versus B given the latest extraction. These numbers
will be denoted Prypi(Ale) and Prgui(Ble). Tasks 5 and 6 assess the likelihood of the
latest extraction assuming that 4 versus B was selected. These numbers will be denot-
ed Pryuvi(el4) and Prgypi(e|B). The procedure yields 10 values for each of Judged(e,A),
Pryuvi(Ale), and Pry, (e|4), and similarly for B. In each case, “e” refers to the evi-
dence that issues from the latest extraction.

We use Pry,,i(A) and Prg,i(B) to denote the answers to the questions in Tasks 3
and 4 of the preceding trial. That is, Preyu,;(A) and Prg,i(B) measure confidence in 4
and B prior to the latest extraction; for the first extraction, we verified that the par-
ticipant recognized the probability of both 4 and B to be one-half. Hence, for each
participant, there are 10 values of Prgi(4) and 10 values of Prg,(B), one for each
extraction.

The objective probabilities corresponding to Prgyni(Ale), Preyvi(e|ld), Prsuvi(A) will
be denoted Proni(Ale), Provi(eld), Provi(A), respectively, and similarly for B. These
are the probabilities implied by the randomness of the coin flip and urns. Again,
for each participant there are 10 sets of these six numbers, one for each extraction.

3.2. Participants

Twenty-six students from the University of Trento and the University of Milan-
Bicocca completed the procedure. Mean age was 24 years. There were 14 men and 12
women.

4. Results
4.1. Correspondence of subjective and objective probabilities

Before considering Judged(e,A) and Judged(e,B), let us compare Prg,pi(Ale) with
Probj(A|e), Prsubj(e|A) with Probj(e|A), and Prsubj(e|B) with Probj(e|B). There is no
need to consider Pry,pi(Ble) since Tasks 3 and 4 constrained it to equal 1 — Prypi(Ale).

Concerning the first contrast, for each participant we compared the probability
assigned to A after the 10th extraction [denoted Prq,,;(A|e1o)] with the corresponding
objective probability [Proi(Ale1o)]. It is often reported in settings like ours that sub-
jective posterior probabilities are conservative in the sense of lagging behind their
objective counterparts; such estimates are smaller when objective posteriors rise
and larger when they fall (Edwards, 1968; Slovic & Lichtenstein, 1971). Since all par-
ticipants agreed that the prior probability (before the first extraction) was .5, we
computed the following index CI, which yields a positive value for responses that
are less extreme than the objective probability, suggesting a conservative bias.

Cl— Probj(A|e10) — Prsubj(A|eIO) if Pl"obj(A|€10) > .5
Prowi(Alei) — Provj(Alerp)  otherwise.

CI was positive for 20 of the 26 participants, and its mean value of .117 (SD = .155)
was reliably greater than 0 [7(25) = 3.9]. These results might reflect “anchoring” on
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.5 (insufficient use of evidence), or the simple fact that Prqyi(Aleio) tended towards
extreme probabilities thereby leaving little room for negative values of CI. Indeed,
for 19 of the 26 participants, Propi(Alejo) was within .06 of either 0 or 1.

Next consider likelihoods. For each extraction e¢; (among the 10 extractions
ey ...ej), we computed the 26 differences Propi(eild) — Prsupi(eil4), one for each par-
ticipant. All 10 average differences are positive. The grand mean is .031 (SD = .013),
which differs reliably from zero [£(9) = 7.4, prob < .01]. Likewise, for each ¢; we com-
puted Propi(eilB) — PrsuvileilB) for each participant. In this case, 9 of the 10 average
differences were positive with the grand mean .023 (SD = .018) again reliably
different from zero [#(9) = 3.9, prob < .01]. Thus, likelihoods were systematically
underestimated. The mean discrepancies of .031 and .023 seem minor, however, inas-
much as objective likelihoods remained near .5 throughout the procedure. The aver-
age value of Propi(el4) over the 260 extractions of the experiment was .520; the
average for Propi(e|B) was .486.

4.2. Predicting subjective confirmation

We now attempt to identify which of the seven confirmation measures discussed
earlier corresponds most closely to judged evidential impact. For this purpose, we
assume that Judged(e,A) and Judged(e,B) lie on interval scales and consider their lin-
ear relation to rival confirmation measures.

Let x stand for one of the confirmation measures, and consider a given partici-
pant. For each extraction ¢;, we computed x(e;,4) on the basis of Prypi(A4), Propb-
i(Ale), prsubj(éld),and  Prgpi(e|B). [The latter number represents Prgypi(el—A4).] For
example, we computed d(e;,4) = Proui(Ale;) — Proupi(A4) for i < 10. The Pearson cor-
relation between x(e;,4) and Judged(e;,A) was then calculated (N = 10). In the same
way, we calculated the Pearson correlation between x (e;, B) and Judged(e;,B) (again,
N =10). Average correlations over the 26 participants are shown in Table 2.

The last row of the table gives the correlation between Prypi(Alei) and Judge-
d(e;A) as well as the correlation between Prg,i(Ble;) and Judged(e;,B). These two

Table 2
Average correlations between judged evidential impact and confirmation measures (confirmation
computed from subjective probabilities)

Confirmation measure  Average correlation with Judged (e,A)  Average correlation with Judged (e,B)

d 608 .603
r 605 620
n 692" 712"
¢ 722" 735"
¢ .581 .581
k 718" 734"
P 710" 715"
Proui(A[Ble) 489 499

Note. Each number is the average of 26 correlations (one per participant); each correlation involves 10
observations. Prgupi(A[B]le) denotes Pryi(Ale) or Prguwi(Ble) as appropriate. Starred averages are reliably
greater than the average for Prg,,i(A[B]le) by paired z-test (prob <.01).
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Table 3
Comparison of ¢ and k with other confirmation measures (confirmation computed from subjective
probabilities)

d r n ¢ )4
Predicting Judged (e,A)
l t=22 t=2.6 t=138 t=2.6 t=1.9
prob <.05 prob <.05 n.s. prob <.05 n.s.
17 16 20 18 19
k t=21 t=24 t=138 t=25 t=1.6
prob < .05 prob <.05 n.s. prob <.05 n.s.
17 16 18 18 17
Predicting Judged (e,B)
L t=22 t=138 t=13 t=2.5 r=13
prob <.05 n.s. n.s. prob <.05 n.s.
18 17 15 18 18
k t=21 t=138 t=14 t=24 t=15
prob <.05 n.s. n.s. prob <.05 n.s.
18 17 17 18 17

Note. Each cell reports a paired z-test between the correlations obtained with the confirmation measures in
the associated row and column. For each test, N =26 (corresponding to the 26 participants). The cor-
relations each involve 10 observations. The last row of each cell shows the number of participants (out of
26) for whom ¢ (or k) predicted better than the rival measure at the top of the column.

correlations would be close to unity if participants confused evidential impact with
posterior probability. But they do not exceed .5. Paired t-tests reveal that most of
the confirmation measures produced reliably greater correlations with judged eviden-
tial impact than did posterior probability (see Table 2). The results therefore suggest
that participants properly distinguished posteriors from impact.

The table also shows that ¢ and k yield the highest average correlations with
Judged (e,A) and Judged (e,B), reaching significance at the 2% level (¢-test for Pear-
son coefficients, 8 df). The measures p and n follow closely behind. By paired #-test,
both ¢ and k are reliably superior to d, r, and ¢ in predicting Judged(e;,A)
(prob <.05), and reliably superior to d and c¢ in predicting Judged (e;, B) (prob < .05).
No other comparisons reach significance. See Table 3, which also shows the number
of participants whose judgments were better predicted by ¢ and k.

A clearer picture emerges if the confirmation measures are computed on the
basis of Propj(Ale), Propi(eld), and Pryui(4) instead of their subjective counter-
parts (and similarly for urn B). To motivate this use of objective probabilities,
consider the participant’s confidence in 4 given the latest extraction e. The con-
fidence is expressed only indirectly by Prg(Ale) given the distortion that might
occur when underlying feelings of confidence must be quantified in an experi-
mental setting (see Windschitl, 2002). The objective probability of A4 given
e can be understood as another indirect measure of the participant’s feelings
inasmuch as she is attempting to perceive this very quantity and may succeed
at least partially.
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Table 4
Average correlations between judged evidential impact and confirmation measures (confirmation
computed from objective probabilities)

Confirmation measure  Average correlation with Judged (e,A)  Average correlation with Judged (e,B)

d 537 .589
r 658" .587
n 730" 745"
/ 743" 755"
c .586 605
k 740" 754"
p 729" 743"
Proi(A[Ble) 488 .508

Note. Each number is the average of 26 correlations (one per participant); each correlation involves 10
observations. Prqyi(A[B]le) denotes Prqyi(Ale) or Pro,i(Ble) as appropriate. Starred averages are reliably
greater than the average for Proy,i(A[B]le) by paired t-test (prob <.02).

Table 5
Comparison of ¢ and k with other confirmation measures (confirmation computed from objective
probabilities)

d r n ¢ )4

Predicting Judged (e,A)

14 t=37 t=2.6 t=26 t=33 =23
prob <.001 prob <.05 prob < .05 prob < .005 prob <.05
21 16 22 19 21

k t=37 t=25 t=3.0 t=33 t=24
prob <.001 prob <.05 prob < .01 prob <.005 prob < .05
21 16 21 19 21

Predicting Judged (e,B)

14 t=32 t=32 t=22 t=29 t=2.0
prob <.005 prob <.005 prob < .05 prob < .01 prob <.06
20 16 19 20 19

k t=32 t=32 t=28 t=29 t=23
prob <.005 prob <.005 prob < .01 prob < .01 prob <.05
20 16 20 20 19

Note. Each cell reports a paired t-test between the correlations obtained with the confirmation measures in
the associated row and column. For each test, N =26 (corresponding to the 26 participants). The cor-
relations each involve 10 observations. The last row of each cell shows the number of participants (out of
26) for whom ¢ (or k) predicted better than the rival measure at the top of the column.

Hence, for each participant, each confirmation measure x, and each extraction ¢;,
we computed x(e;,4) on the basis of Prqpi(Ale), Propj(eld), and Prqpi(A4). For each
participant the Pearson correlation was then calculated between x(e;,4) and Judged
(e;,4)(N = 10), and similarly for urn B. Averages are shown in Table 4.

Once again, ¢ and k yield the highest average correlations, and they are improved
by the use of objective compared to subjective inputs. Moreover, by paired -test,
both ¢ and k are reliably superior to every other measure. See Table 5. There is
no reliable difference between ¢ and k. This is not surprising given that they are
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monotonically related (as discussed above), and hardly discernable in the Monte
Carlo procedure described earlier.

5. Discussion

The confirmation measure k satisfies weak but apparently necessary conditions on
normative adequacy, and is sole among our candidates to do so. It is also among the
best predictors of evidential impact in our experiment, its only rival (¢) being ordi-
nally equivalent. This coincidence raises the possibility that judgments of confirma-
tion have greater normative merit than direct assessments of chance, which are often
observed to be deficient.’ Questions formulated in terms of opinion-change might
allow biases to cancel out. For example, the same multiplicative bias applied to
the likelihood of e under both H and —H would have no effect on judgment of con-
firmation if the latter conforms to k. Even in purely normative terms, the concept of
confirmation can illuminate reasoning puzzles in ways supplementary to standard
probabilistic analysis (see Bradley & Fitelson, 2003).

Further research is needed to confirm the descriptive adequacy of k. Even in our
limited urn-setting not every plausible measure of confirmation could be tested. For
example, we omitted

s(e,H) = Pr(Hle) — Pr(H|—e) (Christensen, 1999)

because of its reliance on Pr(H|—e), whose assessment we did not wish to add to the
experiment. It can be shown that s conforms to the discredited principles (ES) and
(TS) (Eells & Fitelson, 2002), and may fail to reach a maximum when e entails /.
It would therefore be interesting to compare the predictive accuracy of s with that
of k.

When people are unsure about the probabilities in play, verbally announced esti-
mates of chance may not be directly related to feelings of confidence (Fox & Tversky,
1995; Heath & Tversky, 1991). It is therefore essential to supplement experiments
like ours with more naturalistic settings that generate diverse levels of clarity about
the relevant probabilities (e.g., the scenarios employed in Briggs & Krantz, 1992).
Testing the generality of the present findings also requires that confirmation be mea-
sured in the presence of strong prior beliefs, perhaps emotionally charged (e.g., con-
cerning the effectiveness of capital punishment).

It is also worth observing that the approach taken here derives confirmation from
probability and likelihood. Yet it might turn out that evidential impact is psycholog-
ically prior to credence, or that each intuition typically constrains mental construc-
tion of the other. In all events, confirmation appears to be central to understanding
the origin of belief in our minds, as well as its transformation through time.

5 For example, when asked to translate evidence into probability, intuition often ignores basic principles
about sample size and base rates (Griffin & Tversky, 1992). The interpretation of base-rate use remains
controversial, however. See Gigerenzer and Hoffrage (1995), Koehler (1996), Stanovich (1999) for
discussion.
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