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Introduction

Stefania Centrone, Deborah Kant, and Deniz Sarikaya

The present volume originates from the conference Foundations of Mathematics:
Univalent Foundations and Set Theory (FOMUS), which was held at the Center for
Interdisciplinary Research of Bielefeld University from the 18th to the 23rd of July
2016. Within this framework approximately 80 graduate students, junior researchers
and leading experts gathered to investigate and discuss suitable foundations for
mathematics and their qualifying criteria, with an emphasis on homotopy type
theory (HoTT) and univalent foundations (UF) as well as set theory. This interdis-
ciplinary workshop, conceived of as a hybrid between summer school and research
conference, was aimed at students and researchers from the fields of mathematics,
computer science and philosophy.

A collected volume represents, it goes without saying, an excellent opportunity
to pursuing and deepening the lively discussions of a conference. This volume,
however, is not a conference proceedings in the narrow sense since it contains also
contributions from authors who were not present at FOMUS. Specifically, 6 from
the 19 contributions have been developed from presentations at the conference and
only 9 from 24 authors were present at FOMUS.

As to the conference, the concomitant consideration of different foundational
theories for mathematics is an ambitious goal. This volume integrates both univalent
foundations and set theory and aims to bring some novelty in the discussion
on the foundations of mathematics. Indeed, a comparative study of foundational
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vi S. Centrone et al.

frameworks with an eye to the current needs of mathematical practice is, even to
this day, a desideratum.

The FOMUS conference was organized with the generous support of the
Association for Symbolic Logic (ASL), the German Mathematical Society (DMV),
the Berlin Mathematical School (BMS), the Center of Interdisciplinary Research
(ZiF), the Deutsche Vereinigung für Mathematische Logik und für Grundlagen-
forschung der Exakten Wissenschaften (DVMLG), the German Academic Schol-
arship Foundation (Stipendiaten machen Programm), the Fachbereich Grundlagen
der Informatik of the German Informatics Society (GI) and the German Society for
Analytic Philosophy (GAP).

The editors received funding from the Claussen-Simon-Stiftung, Studienstiftung
des deutschen Volkes, Heinrich-Böll-Stiftung, Hamburger Stiftung zur Förderung
von Wissenschaft und Kultur, the Schotstek Network and the German Research
Foundation (Temporary Positions for Principal Investigators, Heisenberg Pro-
gramme).

Very special thanks go to the above-mentioned associations for the support of
the conference as well as of the editors. Without this support the volume as it stands
would not have been possible. The opinions in the volume do not necessarily match
with those of the agencies.

The editors warmly thank Lukas Kühne and Balthasar Grabmayr for their help
in organizing the conference. The encouragement at a decisive moment and the
friendly advice from Synthese Library’s editor-in-chief, Otávio Bueno and from
Springer’s project coordinator, Palani Murugesan, were truly invaluable. A very
special thanks goes to the authors of the contributions and to all anonymous referees
who reviewed each single contribution.

The Topic

Set theory is widely assumed to serve as a suitable framework for foundational
issues in mathematics. However, an increasing number of researchers are currently
investigating Univalent Foundations as an alternative framework for foundational
issues. This relatively young approach is based on HoTT. It links Martin-Löf’s
intuitionistic type theory and homotopy theory from topology. Such developments
show the necessity of a novel discussion on the foundation of mathematics, or so we
believe. The volume pursues two complementary goals:

1. To provide a systematic framework for an interdisciplinary discussion among
philosophers, computer scientists and mathematicians

2. To encourage systematic thought on criteria for a suitable foundation

General criteria for foundations of mathematics can be drawn from the single
contributions. Some candidates thereof are:

• Naturalness with regard to mathematical practice
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Introduction vii

• Applicability in mathematical practice
• Expressive power
• Possibility of extending the theory by justified new axioms
• Possibility of implementing the theory into formal proof systems
• Interpretability of non-classical (e.g. constructive) approaches
• Plausibility of the ontological implications

As far as set theory is concerned, the research literature is rich in perspectives and
argumentations on foundational criteria. Roughly, set theory is seen as a theory
with much expressive power, in which almost every other mathematical theory
can be interpreted and which also may very well serve as ontological foundational
framework for mathematics. However, it is not applicable in all mathematical areas
and is not easily implemented in formal proof systems.

As far as HoTT is concerned, discussion on specific foundational criteria has not
yet been properly carried out. Many scholars defend the thesis that HoTT is a very
well applicable theory, easily implemented in formal proof systems (such as Coq
and Agda) that can serve as a good foundational framework by dwelling rather on
intensional than on extensional features of mathematical objects, at a variance with
set theory.

Not least, the question about alternatives to the standard set-theoretic foundation
of mathematics seems to be relevant also in view of the last developments of
formal mathematics that appears to develop more and more in the direction of a
mathematical practice focusing on the use of automated theorem provers.

Historical Background

Foundational disputes are not new in the history of mathematics. The Grundlagen-
streit at the beginning of the twentieth century is but one ultimate example of a
controversy, sometimes acrimonious, between various schools of thought opposed
to each other.

Among the questions that mathematics poses to philosophical reflection on
mathematics, those concerning the nature of mathematical knowledge and the
ontological status of mathematical objects are central, when it comes to the
foundations of mathematics. Is mathematics a science with an own content or is it a
language, or rather, a language-schema that admits different interpretations? Does
mathematical activity describe objects that are there, or does it constitute them?
How do we explain our knowledge of mathematical objects?

If we believe that mathematics is a science with an own content, we have to say
which objects mathematics is talking about. If these objects are mind-independent,
how do we have access to them? If we constitute them, how do we explain the fact
that the same mind-dependent objects are grasped by different subjects?

Philosophy of mathematics generally distinguishes three different views as to the
foundations of mathematics: Logicism, Formalism and Intuitionism.
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viii S. Centrone et al.

Logicism. The descriptive view at the turn of the century was represented by
the Logicism of Gottlob Frege (1848–1925). Even the word “descriptive” hints
at the fact that we are confronted with a version of the traditional standpoint of
platonism. Numbers and numerical relations are abstract logical objects. Number
systems are well-determined mathematical realities. The task of the knowing subject
is to discover and to describe such realities that subsist independently of him via
true propositions about such objects. The latter, organized systematically, make up
the theory of that mathematical reality. Platonism is most often associated with
an eminently non-epistemic conception of truth: the truth value of a proposition
is independent of its being known.

The programme of logicism was to ground finite arithmetic on logic: the basic
concepts of arithmetic (natural number, successor, order relation, etc.) had to
be defined in purely logical terms, and arithmetical true propositions had to be
ideographically derived from logical principles.

The arithmetization of analysis initiated by Karl Weierstrass (1815–1897) had
concluded with the simultaneous publication in 1872 of the foundations of the
system of real numbers by Richard Dedekind (1831–1916)1 and Georg Cantor
(1845–1918)2. Since, before then, it was well known how to define rational numbers
in terms of integers and the latter in terms of natural numbers, the last question to be
answered was how to lead back natural numbers to logic. To answer such question,
Frege formulated in his Grundgesetze der Arithmetik (1901-1903) a system of
principles from which the axioms of finite arithmetic should have been derived. Just
as the second volume of the Grundgesetze was getting into print, Frege received a
letter from Bertrand Russell (1872–1970), who called his attention on an antinomy
arising by an indiscriminate use of the principle of unlimited comprehension, that
is, the assumption that each concept has an extension. Frege could only recognize
the mistake in a postscript.

Russell’s Antinomy. Russell’s antinomy, we recall it, says that class of all
classes that are not elements of themselves is and is not element of itself. Indeed,
if it is, it is not, since it is the class of all classes that do not have themselves as
elements. If it is not, it is, for the same reason. The antinomy turns out to be relevant
associated with Basic Law V of Frege’s Grundgesetze that applies to functions and
their course of values as well as to concepts (which for Frege are a special kind
of functions) and their extensions. The gap is caused by the fact that Frege takes
courses of values as well as extensions of concepts to be objects and takes Basic
Law V as an identity criterium for such objects. Basic Law V stipulates that the
extensions of two concepts (more generally the courses of values of two functions)
are the same, if and only if the concepts apply exactly to the same objects (or the
two functions have the same input-output behaviour).

1Hereto see Dedekind 1872.
2Hereto see Cantor 1872.
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Introduction ix

Basic Law V for concepts runs as follows:

Ext(P ) = Ext(Q)↔ ∀x(P (x)↔ Q(x))

while its more general version for functions runs as follows:

ε′f (ε) = ε′g (ε)↔ ∀x(f (x) = g(x)) .

Russell’s antinomy can be presented in Frege’s system thus:
Let “R(x)” stand for the predicate “x is Russellian”:

(∗) R(x)↔ ∃Y ( x = Ext(Y ) ∧ ¬Y (x)) .

That is, x is Russellian iff x is the extension of a concept that does not apply to x.
Let “r” be short for “Ext(R)”, the extension of the concept R. Then the

contradiction

R(r)↔ ¬R(r).

is easily derived as follows.

(1) ¬R(r)→ R(r). Assume ¬R(r); then, according to the definition of r:

r = Ext(R) and ¬R(r).

By existential quantifier introduction it follows thereof:

(∗∗) ∃Y. r = Ext(Y ) ∧ ¬Y (r),

and so, by (*), we get R(r).

(2) R(r)→ ¬ R(r). Assume R(r); then by (*)

∃Y ( r = Ext(Y ) ∧ ¬Y (r)) .

Let then (by ekthesis) Y be such that r = Ext(Y) and ¬Y(r).
So r = Ext(R) and r = Ext(Y), hence Ext(Y) = Ext(R). At this point Basic Law

V comes into play, yielding

∀z(Y (z)↔ R(z)) .

Therefore from ¬Y(r) we get ¬R(r).
Thus, in conclusion, r is at once Russellian and not-Russellian, and Frege’s

system is, at least without amendments, inconsistent.
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Formalism: Hilbert’s Program. At the turn of the century Hilbert was trying
to establish in Germany an interdisciplinary area of research for mathematicians,
logicians and philosophers modelled on the kind of cooperation that was in bloom
at Cambridge around Bertrand Russell. Hilbert held Russell’s and Whitehead’s
work in high esteem, and he was “convinced that the combination of mathematics,
philosophy and logic ... should play a greater role in science”.3 Hilbert’s Program
undergoes many phases. The initial phase of his reflections on foundations spans
from 1898 to ca. 1901. Hilbert aimed at an axiomatic foundation not only of
mathematics but also of physics and other sciences through the formal-axiomatic
method. As to mathematics he took to be possible to reduce the axiomatic
foundation of all mathematics to that of the arithmetic of real numbers and set
theory. More specifically, Hilbert took the complete formalization of concrete
mathematics, i.e. of the theory of natural numbers as well as analysis and set theory,
to be possible. He took Peano-Arithmetik (PA), Peano-Arithmetik at the second
order (PA2) and Zermelo-Fraenkel set theory (ZF) to be formal counterparts of the
concrete mathematical theories. Formalization, however, was only the first step of
Hilbert’s Program. For, once the concrete theories were formalized, the proper task
was to prove the consistency of the formalized theories. In this way, Hilbert thought
to avoid antinomies like the Russellian one.

Hilbert addressed the problem of a proof of consistency for arithmetic in a
conference, entitled “Mathematical Problems (Mathematische Probleme)”, held to
the second International Congress of Mathematicians in Paris in 1900. As he put it:
“But above all I wish to designate the following as the most important among the
numerous questions which can be asked with regard to the axioms: To prove that
they are not contradictory, that is, that a definite number of logical steps based upon
them can never lead to contradictory results.”

A kind of criticism is often raised against formalism, namely, that the latter
reduces mathematics to a meaningless symbolic game by investigating the logical
consequences of axiom systems set up arbitrarily. However, formalization was not
the primary goal of formalism, but was conceived of as a necessary condition for
proving the consistency of mathematics. Only then, mathematics would have been
secure.

A necessary condition for the formalization was to find for each concrete theory
a formal counterpart able to capture all its truths. In particular, all arithmetical truths
should have been provable in PA, all truths of analysis should have been provable in
(a theory equivalent to) PA2 and all set-theoretical truths should have been provable
in ZF. However, like the logicistic programme also the formalistic programme was
doomed to fail. In 1931 Kurt Gödel (1906–1978) proved his famous incompleteness
theorems. They can both be conceived as limits put to the power of formalisms. The
first theorem says that arithmetic is syntactically incomplete. More specifically, the
theorem says that each theory that is (i) consistent, (ii) effective and (iii) contains
some arithmetic (precisely, as much as Robinson’s arithmetic Q, a weak subsystem

3Cp. Hilbert et al.’s “Minoritätsgutachten” of 1917.
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Introduction xi

of PA) is syntactically incomplete: there is, at least, one sentence of the language
of the theory that is neither provable nor refutable within the theory. So, PA is not
able to capture formally all arithmetical truths. All the more so, as to the formalized
counterparts of analysis (equivalent to PA2) and set theory (ZF).

The second step of Hilbert’s Program was to make mathematics secure. In
particular, Hilbert required the use of infinitary parts of mathematics to be justified.
It must be said that Hilbert started to talk about “ideal elements” in a later phase
of the foundational research (1920–1924), in which “Hilbert’s Program” takes
its proper shape. In a paper presented in Leipzig in 1922 entitled “The Logical
Foundations of Mathematics (Die logischen Grundlagen der Mathematik)” (Hilbert
1923), Hilbert indicates finitary mathematics as that part of mathematics that “has a
concrete content”, that is, that it operates concretely with symbols and does not use
infinitary procedures and principles. It is in this context that he starts talking about
“finitary logic” (the logic of finitary procedures) and of “ideal elements”. Hilbert
presents his paper “On Infinite (Über das Unendliche)” (Hilbert 1926) in Münster
in 1925, where he explicitly speaks of “ideal elements”. Here finitary mathematics
is said to be that part of mathematics that can be rightfully considered as “secure”.
It does not need a justification but must itself serve as justification for infinitary
mathematics, which is that part of mathematics that deals with actual infinity, lacks
a concrete content and is moreover a possible source of contradictions. Infinitary
instruments are acknowledged as “useful”: they are used to prove real propositions.
However, they must be justified, that is one has to demonstrate that their use does
not lead to contradictions.

To this aim, the proof of consistency for the formalized theories PA, PA2 and ZF
turned out to be essential. But, to serve as a justification, the proof should have used
means that did not need themselves a justification. It should have used only finitary
mathematics.

However, while the first of Gödel’s theorems had shown the impossibility of
completely formalizing the concrete mathematical theories, the second theorem
showed that it was not possible to prove the consistency of an arithmetical theory
using only means formalizable in that very same theory. More exactly, Gödel’s
second incompleteness theorem says that each theory, that is (i) consistent, (ii)
effective and (iii) contains as much arithmetic as PA (actually, a weaker system
like, e.g. PRA, primitive recursive arithmetic, suffices), cannot prove (the statement
formalizing) its own consistency. Thus, if one assumes that finitary mathematics is
part of PA, is it not possible to prove the consistency of PA with finitary means.

Thus, even the formalistic approach was denied the likelihood of success.

Intuitionism. Intuitionism was first brought forward by Luitzen E. J. Brouwer
(1881–1966). Brouwer had completed his academic studies in 1907 at the University
of Amsterdam with a dissertation on the foundations of mathematics (Over de
grondslagen des wiskunde). Already at this time he had taken up a position in
direct opposition to formalism and logicism, many years before he would engage
in the attempt to construct intuitionistic mathematics. What was at issue was, once
again, to build mathematics on an absolutely secure ground with no risk to run into
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antinomies. Intuitionism is in its origin a particular way of conceiving mathematics.
Mathematics is the exact part of the thinking activity of an idealized knowledge-
subject. Such activity grounds on our Ur-intuition of the flow of time. Kant’s
conception of time explicitly works at the background. In his doctoral dissertation of
1907 Brouwer writes: “Mathematics can deal with no other matter than that which it
has itself constructed.”4 At a variance with Platonism, mathematical objects are not
objects that are there and stand in certain relations, but rather mental constructions
of an idealized knowledge-subject. At a variance with formalism, the role of the
language is only peripheral, it is useful to communicate the results of the thinking
activity of the idealized subject as well as aide-mémoire, but mathematics as a
mental construction has not to be confused with its linguistic expression.5

The basic phenomenon of intuitionism, the Ur-intuition of time, consists,
according to Brouwer, in the perception of the split-up of one moment of life into
two different things which differ qualitatively. Therein consists the “first act of
intuitionism” that is attributed, by Brouwer, to the mind and not to sensitiveness.

Mathematics arises when the subject of two-ness, which results from the passage of time,
is abstracted from all special occurrences. The remaining empty form [the relation of n
to n+1] of the common content of all these two-nesses becomes the original intuition of
mathematics and repeated unlimitedly creates new mathematical subjects.6

According to Brouwer, a mathematical proof is a mental construction. It is essential,
for the intuitionistic view, to conceive mathematical objects as results of finite
mental construction processes. This conception goes hand in hand with a strongly
epistemic view about truth: the truth of a proposition depends, in an essential way,
on the knowledge of the subject.

Another characteristic feature of intuitionism is the refusal of the actual infinite.
Only finite reasoning can be justified. Measurable infinities are admitted in the
sense that the step from n to n+1 can be repeated unlimitedly and is understood
as principle of formation of the sequence of natural numbers. As Dummett puts
it: “[T]he thesis that there is no completed infinity means, simply, that to grasp an
infinite structure is to grasp the process which generates it, that to refer to such
a structure is to refer to that process, and that to recognize the structure as being
infinite is to recognize that the process will not terminate.”7 This view contrasts
markedly with classical mathematics, which deals with the infinite process as a
whole: “It is, however, integral to classical mathematics to treat infinite structures
as if they could be completed and then surveyed in their totality.”8 To top it off, “an
infinite process is spoken of as if it were merely a particularly long finite one”.9

4Brouwer 1975, 51.
5Cp. Heyting’s Introduction to Brouwer 1975, xiv.
6Cit. in Kline 1972, 1199–2000.
7Dummett 1977, 56.
8loc.cit., 56.
9loc.cit., 57.
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Intuitionistic Logic. Arendt Heyting (1881–1996) makes intuitionistic logic sys-
tematic in his work Die Formalen Regeln der intuitionistischen Logik (1930). While
classical logic makes use of non-epistemic concepts of truth and falsehood (the truth
of a statement is independent of its being known), intuitionistic logic grounds on a
basically epistemic conception of them. Truth and falsehood are not properties that a
statement has independently of its being known. That a statement is true means that
the knowledge-subject has direct evidence for it or can exhibit a proof, i.e. a suitable
mental construction, for it. Similarly, that a statement is false means the knowledge-
subject knows that no matter how his knowledge will develop, he will never be
able to exhibit a proof for it. Thus, while intuitionism reads the sentence “that p,
is true” as “the epistemic subject is in possession of a proof for the proposition,
that p”, the assertion “that p, is false”, in symbols: “¬p”, is saying something much
stronger than “the epistemic subject is not in possession of a proof for p”. “¬p”
means “the epistemic subject is in possession of a proof of the impossibility of p”,
i.e. he knows he will never have evidence for p, no matter how his cognitive process
develops further. On the basis of these reflections, intuitionism does not include,
among others, the law of the excluded middle in the tautologies of logic. There
are statements, such as Goldbach’s Conjecture (every even, positive integer greater
than two is the sum of two primes), that are at the present undecided. Intuitionism
emphasizes the temporal aspect of knowledge. The fact that someday, it will be
perhaps possible to determine whether Goldbach’s Conjecture is true or false does
not change the current indecision. Potential truth values cannot replace actual ones.
Only if a proper mental construction lays before the epistemic subject, he or she
knows that p, or, respectively, that¬p. The excluded middle (p∨¬p) as valid logical
principle is dropped.

After this argumentation, it becomes clear that intuitionistic logic cannot admit
the formal counterpart of indirect reasoning:

[¬p]
...

⊥
p

Another point of disagreement between classical and intuitionistic (predicate) logic
is constituted by the interpretation of the quantifiers. Classical logic deals with
quantified statements as if the multiplicity of objects the quantifier ranges over
would be finite. To say it roughly: when the classical logician writes ‘∀xα(x)’ he
or she takes for granted that it is in principle possible to verify, for each single
element of the domain in question, that it has the property of being α. But this is
possible only if the quantifier ranges over a collection of only finitely many entities.
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Current Foundations

Set Theory

Set theory is rather well known to be a quite efficient framework for foundational
issues: mathematical as well as metamathematical objects can easily be represented
within it, it gives clear answers to old philosophical questions on basic assumptions,
allowed inferences and gapless proofs. Set-theoretic accounts, however, have to face
one main challenge: the independence phenomenon, or syntactic incompleteness of
set theory.

Let us recall that ZFC originated, in the first place, as an answer to the problems
arisen within the context and set of problems of Cantor’s naïve set theory. As is
well known, Zermelo suggested a first axiomatization in 1908,10 which was further
developed to ZFC. ZFC as foundational framework helps to give an answer to the
following fundamental questions:

(i) Which are the basic assumptions of mathematics?
(ii) What is an allowed inference?

(iii) What counts as a proof without gaps?

Indeed, one takes (i) the basic assumptions to be the axioms of ZFC, (ii) an
allowed inference to be such that it only employs inference rules whose premises
and conclusions are written in the language of first order logic, and (iii) a proof
without gaps to be a derivation of a sentence from the ZFC-axioms through the use
of allowed inferences.

Set theory can represent most mathematical objects from any mathematical area.
There are standard representations of simple mathematical objects such as the
following of natural numbers:

0 = ∅, 1 = {∅} , 2 = {∅, {∅}} , . . . , n+ 1 = n ∪ {n} , . . .

Functions are represented as sets of ordered pairs, groups (G, ·) as the ordered pairs
of a set G and an operation ·, and so on.

Set theory can represent metamathematical objects as well, for instance, through
Gödel’s coding.

It is worth mentioning that we do not need the full power of ZFC to formalize
a number of metamathematical concepts. In particular, for that part of mathematics
needed to set up ZFC, only some recursion theory is actually needed.

It is the representing property that makes it possible to take set theory as
foundational framework for mathematics, metamathematics and yet, as some argue,

10Zermelo 1908.
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for all mathematical reasoning. De facto “foundational framework” and “set theory”
are most often used as tantamount.11

Nonetheless, the independence phenomenon constitutes no minor problem for
any set-theoretic account. For, if set theory cannot decide every sentence of its own
language, how can it work as a suitable framework for all mathematical reasoning?
We recall that a theory T is syntactically complete when it decides every sentence
A of its language. Sentences that are neither provable nor refutable in a theory
are called “independent sentences”. Set theory happens to be more sensible to the
independence phenomenon than other mathematical areas, and it is often the use of
a set-theoretic framework that makes the independence problem come to the fore in
different mathematical fields, such as in operator algebra.12

A number of set theorists appear to be quite indifferent to the philosophical
implications of the independence phenomenon. Others consider independence to
be avoidable and search for stronger methods to decide whether an independent
sentence is true or false. Two main questions arise in this context:

(i) Are all set-theoretic sentences either true or false?
(ii) If ZFC is extended to a stronger theory which axioms should be added?

Question i. is usually referred to as “realism/pluralism debate”. “Realism”
denotes that particular position in the philosophy of mathematics that takes every
set-theoretic sentence to be either true or false, “pluralism”, at variance, denotes the
view that there are set-theoretic sentences that are true in one mathematical reality
and false in another.13 Ontological talk is often used to formulate question i.. Under
the heading “universism” one usually understands the view that set theory has a
unique model (as argued, for instance, by W. Hugh Woodin), under “multiversism”
the view that there is a multiverse of various different universes of sets (as argued,
for instance, by Joel D. Hamkins.)14

Answers to question ii. are often articulated in proposing criteria for new axioms.
Already Kurt Gödel had suggested that new axioms could be justified either
intrinsically or extrinsically.15 We can render the idea of an intrinsically justified
axiom by saying that it flows from the very nature of set or that it roots in the
concept of set. The extrinsic justification plays, nowadays, a major role in Penelope
Maddy’s approach. Roughly, an axiom is justified if it meets the practical goals of
set theorists. A further criterion welcomed by all parties (even those who are critical
towards both intrinsicality and extrinsicality) is maximality. Shortly, there exist as
many sets as there can possibly exist. A problem here is constituted by the fact
that there are different ways to formally capture this property and that, depending

11See, for instance, Caicedo et al. (eds.) 2017.
12Hereto cp. Farah 2011.
13See, among others, the symposia on Set-theoretic Pluralism (https://sites.google.com/site/
pluralset).
14See Hamkins 2012.
15Gödel 1947.
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on this formal rendering, different existence axioms are introduced, to wit, large
cardinal axioms or forcing axioms.16

The philosophy of set theory is today an active research field, in which new ideas
are regularly brought into discussion, available concepts are constantly refined and
farsighted perspectives are developed. The first chapter of the present volume gives
more detailed insights into debated topics in current philosophy of set theory.

Homotopy Type Theory/Univalent Foundations

Part II of the present volume pursues two complementary goals, namely, (i) to
explain the basic ideas of HoTT and (ii) to present special properties of it.

Classic set theory, as we saw, can represent all mathematical objects via sets,
i.e. by one kind of objects. Type theory, on the contrary, works with a hierarchy of
different kinds of objects, called “Types”. The idea of a type-sensitive foundation
has become more and more important along with the progressive development of
data-types-talk in computer science. Moreover, actual mathematical practice seems
to be aware of type differences even when single mathematicians plead for untyped
frameworks: nobody would try to differentiate a vector space!

In type theory each term has a type.
Let “nat” be the type of natural numbers. Thus, “5 is a natural number” will be

written as follows:

5 : nat .

Operations are type-sensitive too. The addition on natural numbers, e.g., takes two
objects of the kind nat as input and gives one object of the kind nat as output:

+ : nat × nat→nat .

As already said, the type-hierarchy of mathematical objects and operations makes
it possible to ascribe to each term its own type. Under “rewrite systems” is usually
meant the reduction of complex terms to their normal forms. For instance, “5 + 2”
and “7” are names of the very same object. The latter has a well-determined place
in the natural number series. We write:

5+ 2 � 7,

to indicate the reduction of the complex term “5 + 2” to its normal form “7”.

16Cp. Incurvati 2017, 162 for Large Cardinal Axioms, and 178ff. for Forcing Axioms.
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Type theory was introduced by Bertrand Russell as a way out from the difficulties
come into being within the context and set of problems of naive set theory. At a
variance with Russell’s, current type theory has the additional problem of reducing
terms to their normal form (rewrite problem). This makes it necessary to look for
a formal counterpart for the operation represented by “�”.

This operation is to be found formally implemented, for the first time, in
combinatory logic,17 a logic which was introduced by Schönfinkel with the aim to
drop quantifiers from the language of predicate logic. Combinatory logic is usually
seen as the forerunner of the λ-calculus. In this regard it is worth mentioning that
A. Church elaborated, around 1930, a framework for a paradox-free reconstruction
of mathematics based on the notion of a type-free function-in-intension. The
original theory was proved inconsistent around 1933 by S. Kleene and J.B. Rosser.
Subsequently, its sound fragment, the so-called untyped λ-calculus, was isolated
and employed in the context of the theory of computability. In this theory the
abstraction operator “λ” plays a fundamental role. Such approach is based on the
procedural conception of function, i.e. its conception as rule, prescription, algorithm
in a general sense.

Indeed, two natural ways of thinking of functions are often appealed to. The first
way is the relational way: it takes a function to be a type of relation. The second
way takes a function to be a rule, or algorithm in a general sense, as we said above.
Under the extensional reading, the concept of function and the concept of set are
interdefinable. We reduce functions to sets by means of the notion of “graph of
a function” and, conversely, we reduce sets to functions by means of the notion
of “characteristic function of a set”. This interdefinability no longer obtains when
we consider functions as rules, since the latter notion always implies the idea of
a procedure that is more or less effective. Note that an implicit type-distinction is
present in the set-theoretical account of functions: functions, on the one hand, and
arguments and values, on the other hand, live at different levels of the cumulative
hierarchy. Thus, from a set-theoretical perspective the application of a function to
itself makes no sense: from f : A → B it follows, in standard set theory with the
axiom of foundation, that f �∈ A. By contrast, in the λ-calculus it does make sense
to apply an operation to itself: intuitively, operations can be thought of as finite
lists of instructions which, therefore, do not differ in principle from the arguments
on which they act: both are, loosely speaking, finite pieces of data. The active role
(behaving as an operation) and the passive role (behaving as an argument) of certain
elements F, G of this untyped universe is only position-determined. When we write
F(G), F is a rule that is applied to the argument G; but this does not prevent us from
considering also the application G(F) of G to F, where now G is the rule.

Martin-Löf’s type theory provides an alternative foundational framework
inspired by constructive mathematics. In particular, the requirements we recalled
above as to intuitionistic logic are taken to hold; to wit, the exhibition of a
witness for any existential assumption, the existence of a proof for one of the

17Cp. Schönfinkel 1924 and Church 1932.
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horns of a disjunction, if the disjunction is taken to be true, or the exhibition
of the proof that a sentence A leads to contradiction if this sentence is taken to
be false. The implementation of such requirements within the theory is referred
to as internalization of the Brouwer–Heyting–Kolmogorov interpretation (BHK-
interpretation) of the logical operators. In addition, constructive type theory presents
the particular feature of admitting dependent types.

HoTT is a form of type theory based on constructive type theory18 endowed
with some elements from topology that can be used to construct models for logical
systems.19 One important reading of HoTT sees types as spaces and terms as points.
Dependent types correspond to fibrations in topology, and the identity between
terms is rendered by the concept of path between points. At a variance with set
theory there is here no need for a logic next to or on top of it: constructive
types already act as a formal calculus for deduction. HoTT (in the mentioned
interpretation) along with the corresponding models has properties that naturally
bring to the fore candidates for new axioms, as for instance, the univalence
axiom.20 Voevodsky’s univalent foundations programme that emerged from these
investigations is but one good example for a foundational framework, which,
moreover, turns out to be well suited as a background theory for the implementation
of modern mathematics in formal proof systems such as Coq.21

HoTT is a very promising approach. Even the Institute of Advanced Study in
Princeton has dedicated a Special Year on Univalent Foundations of Mathematics
(2012/2013), during which topologists, computer scientists, category theorists and
mathematical logicians have collaborated to jointly promote HoTT.

The Contributions

Let us now give a short overview of all contributions.

18Cp. Martin-Löf 1975.
19Hofmann and Streicher 1998 constructed a model of Martin-Löf’s type theory in the category
of groupoids. Moerdijk 2011 conjectured that there exists a general link between Quillen models
(models that contain, in particular, classical homotopy of spaces and simplicial sets) and type
theory. Awodey, Warren and Voevodsky proved fundamental connections between homotopy
theory and type theory.
20This approach interprets types as spaces or homotopy types. This makes it possible to directly
work with spaces, without having to define a set-theoretic topology. The univalence axiom
additionally holds in several possible models. Hereto see Voevodsky 2009.
21In the univalent perspective one uses a modified type theory, which is extended by certain
axioms, such as the univalence axiom. This approach can very well be implemented as theoretical
background of formal proof system, such as Agda and Coq.

claudio.ternullo@ut.ee



Introduction xix

Part I: Current Challenges for the Set-Theoretic Foundations

Mirna Džamonja and Deborah Kant attempt in their chapter “Interview with
a Set Theorist” to give insights into current set-theoretic practice with a focus
on independence and forcing. After giving some technical remarks, Džamonja
describes the introduction and adoption of the forcing method in set theory and they
present important forcing results. In a next section, they discuss the meaning of the
word “axiom”, differing between ZFC-axioms, large cardinal axioms and forcing
axioms, and mentioning the questions of existence and truth in set theory. Then,
some experience-based statements on set theory are revealed in a conversation on
surprising events. Džamonja and Kant argue that such statements are part of set-
theoretic knowledge. They give three hypotheses and encourage further research on
set-theoretic practice.

Laura Fontanella provides in her chapter “How to Choose New Axioms for
Set Theory” a mathematically highly informed overview on specific arguments
for and against new axiom candidates for set theory. First, she discusses common
justification strategies and focuses on Gödel’s and Maddy’s ideas. Second, she
considers in detail the axiom of constructibility, large cardinal axioms (small ones
and large ones), determinacy hypotheses, Ultimate-L and forcing axioms.

Claudio Ternullo considers in his chapter “Maddy on the Multiverse” Maddy’s
objections to multiverse approaches in set theory and suggests counter-arguments
to her concerns. He elaborates in particular on the role of set theory as a generous
arena, and as fulfilling the goal of conceptual elucidation, and on the issues of the
metaphysics and possible axiomatization of the multiverse. In particular, Ternullo
identifies two forms of multiversism – instrumental and ontological multiversism –
and while he agrees with Maddy that all metaphysical considerations relating to
the status and prospects of the multiverse should be disregarded, he argues that a
multiverse theory can fulfil set theory’s foundational goals, in particular generous
arena and conceptual elucidation, and that, ultimately, it might also be axiomatized.

Penelope Maddy clarifies her view on multiversism in her “Reply to Ternullo on
the Multiverse”. She points out that extrinsic reasons for new axioms cannot simply
be rejected by evaluating them as practical, since multiverse views also use extrinsic
considerations as theoretical. Categorizing important forms of multiversism, as
Ternullo did, she considers theory multiversism as an explicit form of instrumental
multiversism, and heuristic multiversism. The main problem for theory multiversism
is in her view that there is only one axiomatic multiverse theory (given by John
Steel), but this theory is not intended to replace ZFC. Maddy rejects the claim that a
multiverse theory is a better foundational theory than ZFC. However, she embraces
the heuristic value of multiverse thinking for set theory.

Philip Welch presents in his chapter “Proving Theorems from Reflection” some
open problems of analysis which are independent of ZFC. For their solution, he
suggests a global reflection principle. First, he describes important relations between
large cardinal axioms, determinacy principles and regularity properties of projective
sets of reals. Second, he explains how reflection principles can justify large cardinal
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axioms. Welch considers a family C of the mereological parts of V and formulates
the global reflection principle which states that the structure (V,∈, C) be reflected to
some (Vα , ∈ , Vα + 1). This principle justifies the existence of certain large cardinals,
which implies that all projective sets of reals have the regularity properties. This
answers the problems presented at the beginning.

Part II: What are Homotopy Type Theory and the Univalent
Foundations?

Thorsten Altenkirch motivates and explains in his chapter “Naive Type Theory”
the use of homotopy type theory. He starts his presentation from a clear position
by arguing that HoTT is a better foundation of mathematics than set theory. In
the first half of the chapter, he revises important basic notions of type theory such
as judgements, propositions, the Curry-Howard equivalence, functions, induction
and recursion. Throughout the chapter, his explanations are supplemented by many
exercises which invite the reader to use the introduced definitions. The second half
is dedicated to HoTT. While referring to set-theoretic concepts for clarification,
he literally denotes some classical principles as forms of lying and elaborates on
several type-theoretic versions of AC. Altenkirch concludes with the topic of higher
inductive types and gives an extended example of the definition of the integers.

Benedikt Ahrens and Paige Randall North focus in their chapter “Univalent
Foundations and the Equivalence Principle” on the notion of equivalence of
mathematical objects, which is one fundamental notion of the univalent foundations.
Their aim is to prove the equivalence principle for different domains D, and
defining equivalence through reference to D-properties and D-structures such that
it coheres with mathematical practice. They review the univalence principle which
holds in Voevodsky’s simplicial set model and prove the equivalence principle for
propositions, sets and monoids. Ahrens and North close their presentation with
categories and show that the equivalence principle does not hold for arbitrary
categories but for univalent categories.

Ulrik Buchholtz presents the construction of higher structures in his chapter
“Higher Structures in Homotopy Type Theory”. He distinguishes between two
aims of HoTT: On the one hand its use as a foundation of mathematics in the
univalent foundations, and on the other hand, the study of structures that are
needed in mathematics. He introduces many technicalities to show in which specific
aspects the constructions are complicated. Elementary HoTT is defined as MLTT
with univalence, pushouts and propositional resizing, and can already be most
needed. There remain, among others, the problems of constructing (∞,1)-categories
and developing a meta theory for HoTT/UF. Here, Buchholtz offers detailed and
optimistic considerations on the challenges and possible means that could solve
these problems.
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In his chapter “Univalent Foundations and the UniMath Library: The Architec-
ture of Mathematics” Anthony Bordg first explains the univalent foundations of
mathematics, the Univalence Axiom and the so-called homotopy levels. Then, he
gives insights into the UniMath library of formalized mathematics based on the
univalent foundations, underlying in the process the compatibility of this library
with classical reasoning supported by the Law of Excluded Middle and the Axiom of
Choice. Second, he analyses some challenges for large-scale libraries of formalized
mathematics. Bordg devotes his third part to an investigation of parallels between
ideas from the architect Christopher Alexander and some organic features of
mathematics. He argues that these features need to be preserved, hence they should
become desirable properties of libraries of formalized mathematics if one wants
these libraries to be scalable and a sustainable way of doing mathematics.

Andrei Rodin’s article “Models of HoTT and the constructive view of theories”
can be read in two ways: As the development of new formal tools to do philosophy
of science and as a case study of the usefulness of the new developments around the
Univalent Foundation program. On the philosophical side of things, he develops the
constructive view of (scientific) theories in contrast to axiomatic approaches and
those based on set theory. A crucial distinction here is between rules and axioms
in their role as first principles. These general thoughts find their way to precise
formal counterparts and similar to the part before both axiomatic deduction system
and model theoretic tools based on set theory are contrasted with proof-theoretic
alternatives benefitting from the tools of Martin-Löf Type Theory and Homotopy
Type Theory. While still being a first study, it offers a very detailed account of the
technical apparatus.

Part III: Comparing Set theory, Category Theory, and Type
Theory

Neil Barton and Sy Friedman deal with the problem of different foundational
perspectives – categorial and set-theoretic – in their chapter “Set theory and
Structures” by presenting a modification of set theory to better respect structural
discourse. In the first part, they respond to various concerns about both category-
theoretic and set-theoretic foundations such as the problem of a determinate subject
matter for category theory and too little isomorphism invariance in set theory.
In a second part, they present a class theory with structures (NBGS), in which
material set theory is combined with structures in such a way that a higher degree of
isomorphism invariance is provable. Barton and Friedman advocate methodological
pluralism for the foundations of mathematics and encourage further research on
combining foundational theories.

Mirna Džamonja faces in her chapter “A New Foundational Crisis in Math-
ematics, Is It Really Happening?” the question of a potential rivalry between
different foundational theories in mathematics. Her main aim is to describe the
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current situation of the foundations of mathematics and to resolve some worries.
In order to illustrate some differences, she describes type theory, elaborates on
identity and univalence and explains the topology behind the univalent foundations.
She concludes by claiming that there does not have to be a unique foundation of
mathematics. Džamonja argues for pluralism and that the univalent foundations and
set theory can well complement each other.

Ansten Klev elucidates in his chapter “A Comparison of Type Theory with Set
Theory” fundamental conceptual differences between Martin-Löf’s type theory and
set theory. He argues that type theory is better suited to clarify mathematical notions.
In a first part, he describes types to be kinds or sorts of objects. In contrast, he
explains sets as pluralities which can contain objects of arbitrary different types. In
a second part, he considers in detail the syntax of type theory and presents types,
propositions, terms, judgements and contexts (for hypothetical judgements). In his
third part on functions, the advantage of having functions as primitive notions in
type theory is highlighted. The final part is dedicated to identity, in which Klev
elaborates on the difference between propositional and judgemental identity in type
theory.

Penelope Maddy addresses in her chapter “What Do We Want a Foundation
to Do?: Comparing Set-Theoretic, Category-Theoretic, and Univalent Approaches”
the question of foundational theories by isolating rigorously the foundational jobs
that are done by a suggested theory. First, she argues that set theory does the jobs risk
assessment, generous arena, shared standard, and metamathematical corral. Second,
she analyses that the foundational job that category theory was argued to be better
suited for is essential guidance. Third, she introduces a new foundational job, proof
checking, that is done by the univalent foundations. With her new terminology,
Maddy provides a theoretic framework which is very well suited for a thorough
comparison and discussion of foundational theories in mathematics.

Part IV: Philosophical Thoughts on the Foundations
of Mathematics

In “Formal and Natural Proof: A Phenomenological Approach” Merlin Carl
elaborates on the relation between formal proofs in the sense of a derivation and
proofs in the sense we can find them in mathematical discourse. He motivates
a positive connection via Gödel’s Completeness Theorem and success of the
generation of deduction with formal mathematics.

A crucial problem is the nature of formal and natural proofs. A classical
dispute is the one between Rav and Azzouni, while the second explains the strong
agreement of mathematicians and the statements they prove with a link to underlying
derivation, the first claims that a derivation presupposes a sufficient understanding
of the natural proof, which makes it absolute.
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This is a challenge for the connection that the author answers in two ways. Via
the success of formal mathematics and especially via the Naproche system, which
tries to bridge the gap with linguistic methods including a historic case study, where
a formalization attempt would have helped to find a flaw in a proof attempt. And
via phenomenological methods, namely by enlarging Husserl’s distinction between
distinctiveness and clarity of judgements, to the mathematical proofs.

Michèle Friend provides with “Varieties of Pluralism and Objectivity in Math-
ematics” a revised version of an article published in Mathematical Pluralism,
Special Issue of the Journal of the Indian Council of Philosophical Research, Mihir
Chakraborty and Michèle Friend (Guest Editors) Springer. JICPR Vol. 34.2 pp.
425 – 442. DOI 10.1007/s40961-061-0085-3. ISSN: 0970-7794. pp. 425 – 442.

She offers an alternative to the realist and traditional accounts of objectivity in
mathematics by elaborating the pluralistic position. To be more precise, there are
several ways in which a philosophy of mathematics can be pluralistic, namely,
epistemology, foundations, methodology, ontology and truth. Friend gives an
overview on these different approaches, delivers thereby an interesting typography
and analyses how each variation can explain objectivity in mathematics.

Graham Priest’s chapter “From the Foundations of Mathematics to Mathe-
matical Pluralism” tells the story of different foundational endeavours pinned at
historically important actors, namely, Frege, Russell, Zermelo, Brouwer and Hilbert.
These more historical aspects yield to the recent history of category theory. In § 9
and 10 the author introduces paraconsistent accounts of mathematics, motivated
by impossible manifolds, which can be formalized by paraconsistent tools. This
roundtrip to the study of such different mathematical structures motivates the final
vote towards a more pluralistic philosophy of mathematics.

Roy Wagner’s chapter “Does Mathematics Need Foundations?” is an important
step back from our endeavour of the comparison of different foundational theories. It
starts with a revisit of the classical foundational enterprises: Russell, Brouwer and
Hilbert but also critical accounts like Poincaré’s and Wittenstein or the maverick
tradition. This offers insights into a variety of schools of thoughts in a broad
narrative of the problems and possibilities of foundational thinking. The chapter
ends with a very interesting case study from anti-foundationalist mathematics,
namely, Kerala mathematics in the fourteenth to sixteenth century.

The chapter offers an account which preserves a lot of positive aspects often
connected to the foundations of mathematics, like shared standards and risk
assessment, and shows that this is not only a metaphysical possibility but historical
fact.

Part V: Foundations in Mathematical Practice

Nathan Bowler’s chapter “Foundations for the Working Mathematician, and for
Their Computer” discusses the aspects of the candidates discussed in this volume
which are reflected in the mathematical practice. The chapter focuses mainly on

claudio.ternullo@ut.ee



xxiv S. Centrone et al.

ZFC but considers some advantages of categorical or type-theoretic foundations. A
key distinction is in how far we differentiate between human-friendly and machine-
friendly aspects of the foundations.

Bernhard Fisseni, Martin Schmitt, Bernhard Schröder and Deniz
Sarikaya’s Article “How to frame a mathematician: Modelling the cognitive
background of proofs” uses the tool of frame semantics, developed in linguistics
and artificial intelligence, as a basis for describing and understanding proofs. The
key idea of frames is that concepts offer some roles (also: features, attributes):
When talking about “selling” something, we know, for example, that the transfer
involves a seller, a buyer, a sold item, money, etc., and, if not given explicitly, we
assign default entities from the discourse universe to (some of) those roles. The
general argument is that we proceed similarly when comprehending proofs. As an
illustration, the authors develop a frame representation for induction proofs. They
use a formalism based on feature structures, a general data structure prominent in
formal linguistics.

Lawrence C. Paulson gives in his chapter “Formalising Mathematics in Simple
Type Theory” an intriguing insight into the formalization of mathematics. Starting
from the conviction that there will always be different formalisms that are better
suited than others for specific purposes, he carefully delineates the possibilities of
simple type theory. He shares his personal perspective, which is based on long
experience with different automated proof systems and presents the original code
of a theorem on stereographic projections in HOL Light and its translation into
Isabelle/HOL. Paulson shows here how translations from one proof system to
another are accomplished, and he emphasizes the importance of such translational
work for the future use of proof systems in mathematics.

In “Dynamics in Foundations: What Does It Mean in the Practice of Mathemat-
ics?” Giovanni Sambin gives insight in the programme of dynamic constructivism.
The first part gives a philosophical motivation and explains the interplay between
mathematical practice and the philosophy of mathematics. We learn (without too
many technical details) about a possible shared arena for classical and constructive
mathematics, the minimalist foundation (developed jointly by the Author and M.
E. Maietti). The second part offers a proof of concept for dynamic constructivism,
we learn about point free topology and other theories developed by the author in
this new paradigm. This is especially important given the motivation in the first
section asking from a foundation to foster new and creative pieces of mathematics.
The last part reflects on the benefits of the adaption to this position and draws a
parallel to fruitful developments in the sciences via the vocabulary from philosophy
of science, namely by elaborating how the adaption of this position yields a helpful
new perspective - a new paradigm.
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Chapter 1
Interview With a Set Theorist

Mirna Džamonja and Deborah Kant

Abstract The status of independent statements is the main problem in the phi-
losophy of set theory. We address this problem by presenting the perspective of
a practising set theorist. We thus give an authentic insight in the current state
of thinking in set-theoretic practice, which is to a large extent determined by
independence results. During several meetings, the second author asked the first
author about the development of forcing, the use of new axioms and set-theoretic
intuition on independence. Parts of these conversations are directly presented in
this article. They are supplemented by important mathematical results as well
as discussion sections. Finally, we present three hypotheses about set-theoretic
practice: First, that most set theorists were surprised by the introduction of the
forcing method. Second, that most set theorists think that forcing is a natural part of
contemporary set theory. Third, that most set theorists prefer an answer to a problem
with the help of a new axiom of lowest possible consistency strength, and that for
most set theorists, a difference in consistency strength weighs much more than the
difference between Forcing Axiom and Large Cardinal Axiom.

1.1 Introduction

The current situation in set theory is an exciting one. In the 1960s, set theory was
challenged by the introduction of the forcing technique, in reaction to which some
researchers might have turned their back on set theory, because it gave rise to a vast
range of independence results. Today, the independence results constitute a large
part of set-theoretic research. But how do set theorists think about them? How do
mathematicians think about provably independent statements?
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4 M. Džamonja and D. Kant

An answer to this question can be attempted through a detailed description of the
current set-theoretic practice through the eyes of set-theorists themselves, which
is an enterprise to be realised. The present article provides a step towards that
program by giving a description of some important aspects of set-theoretic practice,
formulated and observed from a joint mathematical and philosophical perspective.
During several meetings in Paris,1 the second author (PhD candidate in philosophy
of set theory) has been talking to the first author (a logician specialising in set theory
and a professor of mathematics) in order to gain insights into the current situation
in set theory, and to understand how set theorists think about their work and their
subject matter. Parts of these conversations are directly presented in this article.
They are supplemented by descriptive paragraphs of related (mathematical) facts as
well as comments and discussion sections.

The article is structured as follows. First, we argue for the relevance of this
article and our method. The second section contains facts of set theory and logic
that will be relevant in the following sections. In the third section, we present some
important forcing results, which includes mathematical details but is self-contained.
We also added many (historical and mathematical) references. We then elaborate
on classical, philosophical concepts that can be found in set-theoretic practice,
for instance platonism. The fifth section presents some general observations about
independence: Set theorists have developed some intuition which problems might
turn out independent and which ones might be solvable in ZFC, and they can
organise and differ between set-theoretic areas in this respect. Finally, we present
three hypotheses about set-theoretic practice: First, that most set theorists were
surprised by the introduction of the forcing method. Second, that most set theorists
think that forcing is a natural part of contemporary set theory. Third, that most
set theorists prefer an answer to a problem with the help of a new axiom of
lowest possible consistency strength, and that for most set theorists, a difference in
consistency strength weighs much more than the difference between Forcing Axiom
and Large Cardinal Axiom.

The intended audience of this article includes both set theorists and philosophers
of mathematics. Set theorists can skip Sect. 1.3, where some central mathematical
concepts are introduced. For philosophers of mathematics who do not focus on set
theory in their work, this section is intended to facilitate an understanding of the
following text. They can also scan Sect. 1.4 without a loss of understanding for the
subsequent sections. The aim of Sect. 1.4 is to show a variety of applications of
the forcing method, and to support the view that forcing is an integral part of set-
theoretic research.

1The first author is an Associate Member at the IHPST (Institut d’histoire et de philosophie
des sciences et des techniques) of the Université Panthéon-Sorbonne, Paris, France. The second
author is grateful for the support of the DAAD (Deutscher Akademischer Austauschdienst) and
the IHPST.
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1 Interview With a Set Theorist 5

1.2 Methodological Background

We are interested in describing and analysing what set theorists do. We adopt
Rouse’s view that “a central concern of both the philosophy and the sociology of
science [is] to make sense of the various activities that constitute scientific inquiry”,2

and apply it to set theory with a special focus on independence. In order to take a
first step in the right direction, we present one specific view in current set-theoretic
practice: the first author’s view on her discipline. We cannot generalise this view to a
description of set-theoretic practice, because other set theorists might have different
views. Thus, we see the present article as an attempt to start a discussion on set-
theoretic practice, which should lead to a more general, rigorous analysis.

1.2.1 How to Describe and Analyse Set-Theoretic Practice?

This question certainly deserves much more attention than we can devote to it in
this article.3 We briefly state our main points.

Our methods consist of a sociological method combined with philosophical
considerations. On the sociological side, we can choose between two main methods:
surveys and interviews. Surveys have the advantage of an easy evaluation of the
information. They are suitable to check clearly formulated hypotheses. But there
are two problems concerning hypotheses on set-theoretic practice: A missing theory
and the question of a suitable language.

The study of set-theoretic practice is a rather new research area. In the literature,
one can find specific views about set-theoretic practice,4 or investigations of specific
parts of set-theoretic practice,5 but there is no analysis of current set-theoretic
practice in general. This means that we do not have a theory at hand which could
be tested in a survey. But we can use interviews to find reasonable hypotheses about
set-theoretic practice.

Secondly, not only the theory has to be developed but also a suitable language for
the communication between set theorists and philosophers has to be found. There
are sometimes huge differences between the language which philosophers use and
the language which set theorists use to talk and think about set theory. Therefore,
communication between both disciplines can be difficult. There is a greater risk
of a misunderstanding in a survey formulated by a philosopher and answered by a
mathematician than in a question asked in an interview in which the possibility to
immediately clear up misunderstandings is given. Hence, based on these aims of

2Rouse (1995, p. 2).
3But it will be considered more attentively in the PhD project of the second author.
4Maddy (2011) and Hamkins (2012).
5Rittberg (2015).
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6 M. Džamonja and D. Kant

finding reasonable hypotheses and of a successful communication, we decided to
conduct interviews.

On the philosophical side, a mathematical perspective is brought together with
philosophical conceptions of mathematics. Furthermore, a mathematical perspective
is communicated to philosophers, i.e. presented in a way that makes it comprehen-
sible to other philosophers. The elaboration on our methodology in this section is
part of the philosophical side of the methodology.

1.2.2 Why Describe and Analyse Set-Theoretic Practice?

We argue here that set-theoretic knowledge is not completely captured by gathering
all theorems, lemmas, definitions, and the mathematical motivations and explica-
tions that mathematicians give to present their research. For example, when set
theorists agree that cardinal invariants are mostly independent of each other, then
we argue that this judgement, which is based on experience, is part of set-theoretic
knowledge as well. Judgements of this kind are ubiquitous in set-theoretic practice.
We extend our focus to set-theoretic practice in general. The notion of set-theoretic
practice is taken here very generously as including all mathematical activities
performed by set theorists as well as their thoughts and beliefs about mathematics
(where the latter also includes definitions and theorems because we assume that set
theorists believe what is an established definition and has been proven). In order to
learn more about set-theoretic knowledge, we think that it is valuable to present the
practices of the discipline, the similarities and differences between the views held by
set theorists, and to formulate general ideas about the current situation in set theory.

The reasons for this are at least three, as we describe.

Visions Reflecting on the practices, the historical developments, the importance
or role of specific objects and methods etc. gives rise to explicitly formulated
visions for future set-theoretic research. What do set theorists wish to find out in
the next ten years?6

Availability Set-theoretic knowledge is not easily accessible to other mathemat-
ical areas, the sciences in general and the philosophy of mathematics. With
important exceptions, such as the philosopher Alain Badiou7 or the musician
François Nicolas8 and of course many mathematicians and philosophers of
mathematics, the independence phenomenon is not sufficiently known outside

6Large research programs have already been described by some set theorists. Consider, for
example, the research programs by Hugh W. Woodin or Sy-David Friedman. For Woodin’s
program see Woodin (2017), and for Friedman’s Hyperuniverse Program, see Arrigoni and
Friedman (2013). Not everybody describes his/her program so specifically and we wish to discover
more about these unspecified programs.
7Badiou (2005) bases ontology on set-theoretic axioms and also considers forcing.
8www.entretemps.asso.fr/Nicolas/
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1 Interview With a Set Theorist 7

of the community directly studying set theory and logic. The formulation of
set-theoretic ideas in a general and simple language could make set-theoretic
knowledge available to other researchers who are interested in set theory.

Reasonable premises in philosophy In the philosophy of set theory, there is a
debate on the independence problem and new axioms. Typical questions are
Is every set-theoretic statement true or false? or Which criteria can justify
the acceptance of a new axiom?9 In some important philosophical approaches,
set-theoretic practice plays a major role. For example, in Maddy’s view, philo-
sophical questions can only be answered adequately when considering in detail
what set theorists are doing.10 Hamkins’ multiverse view is also strongly
motivated by the current situation in set-theoretic research.11 Therefore, some
existing philosophical ideas require supplementation by an analysis of set-
theoretic practice,12 and such an analysis seems in general a promising starting
point for future philosophical research.

1.3 Preliminary Facts

We summarise basic facts of logic and set theory such as the twofold use of the
concept of set, the incompleteness of an axiomatic theory, independence proofs,
the Continuum Hypothesis, forcing, and some new axioms. This section is intended
to facilitate the understanding of the following interview parts, and it contains the
necessary background for philosophical questions on set theory.

Set theory is the study of sets, and sets are determined by their elements. We
can take the union of two sets, we can take their intersection, we can form ordered
pairs and sequences. And we can consider infinite sets, like the set of all natural
numbers or the set of all real numbers. Numbers can themselves be interpreted as
certain sets,13 and so can functions and many other mathematical objects. But also a
sentence of a formal language can be interpreted as a certain set: every symbol of the
formal language is interpreted as a set and then a sentence is just a finite sequence
of these sets.14 Therefore, also a formal theory—a set of axioms and all formal
sentences that can be derived from these axioms—can be interpreted as a certain set.

9See the article by Laura Fontanella in this volume.
10See for example Maddy (2007, 2011).
11Hamkins (2012).
12Thanks to Carolin Antos for emphasising this fact.
130 = ∅, n + 1 = n ∪ {n},N = {n : n < ω},R = P(N), and so on. (These equations should not
be understood as the claim that numbers are sets.)
14For example, take the coding ’∃’=8, ’∀’=9, ’¬’=5, ’(’=0, ’)’=1, ’v0’=(2,0),
’v1’=(2,1), then the statement ’∃v0∀v1 ¬(v1 ∈ v0)’ can be coded as the sequence
〈8, (2, 0), 9, (2, 1), 5, 0, (2, 1), 4, (2, 0), 1〉.

claudio.ternullo@ut.ee



8 M. Džamonja and D. Kant

In set theory, the most commonly accepted formal theory is the Zermelo-Fraenkel
set theory with the Axiom of Choice (ZFC).

One could say that the concept of set in mathematics and in logic has an
extremely wide scope of application. Set theorists study sets, and at the same time,
they study the different models of ZFC (starting from the assumption that there is a
model of ZFC). They can use their own sophisticated, set-theoretic methods on the
models. (By contrast, when considering models of number theory, we cannot use
number theory itself to manipulate the models but instead must resort to set theory.)
Because of this twofold application of the concept of set, these two levels, which
are sometimes distinguished as mathematics and metamathematics, are closely
intertwined in today’s set-theoretic practice.

The study of different models of ZFC is also the study of the independence
phenomenon in set theory. The starting assumption to study a model is always
that there exists a model of ZFC (by Gödel’s Completeness Theorem for first order
logic, this is equivalent to the assumption that ZFC is consistent).15 This assumption
itself is not part of ZFC (it could not be because of Gödel’s second Incompleteness
Theorem), but it is a natural assumption in practice. Thus, importantly, the set-
theoretic method of building models is not a constructive method because of this
starting assumption. If then, for a sentence ϕ, set theorists can build a model of the
theory ZFC+ϕ, and they can also build a model of the theory ZFC+¬ϕ, then ϕ is
an independent sentence.

Let us give one example. In set theory, two sets have the same size if there is a
one-to-one onto correspondence between them. So, the set of the natural numbers
has the same size as the set of the even natural numbers, because f : n �→ 2n is a
one-to-one onto correspondence between them. All members of the first set can be
completely paired up with the members of the second set. But if we take the real
numbers as the second set, they cannot be completely paired up with the natural
numbers (this is Cantor’s Theorem). This gives rise to different sizes of infinite sets.

The size of sets is measured by cardinal numbers. 0, 1, 2, . . . are cardinal
numbers. For example, the empty set, ∅, has size 0, and the set that contains as
its only element the set of natural numbers, {N}, has size 1. The set of the natural
numbers itself, N, has size ℵ0, which is the first infinite cardinal number (set
theorists always start counting at 0). Of course, there are further cardinal numbers:
ℵ1, ℵ2, . . . Now, set theorists have built models in which there are exactly ℵ1 real
numbers, and they have built models in which there are exactly ℵ2 real numbers.
Thus, the sentence “there are exactly ℵ1 real numbers” (the famous Continuum
Hypothesis (CH)) is an independent sentence. This can only be shown by building
such models, and the most powerful technique to do this is forcing.

Forcing was introduced in 1963 by Paul Cohen,16 who showed by this method
that the Continuum Hypothesis is independent. The method was then adopted by
the set theorists who have since then found (and continue to find) many independent

15Of course, any stronger assumption works as well, in particular any Large Cardinal Axiom.
16Cohen (1963, 1964).
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1 Interview With a Set Theorist 9

statements. Different problems require different variations of the forcing method
so that many kinds of forcing have been developed. This led to the formulation
of Forcing Axioms. Such an axiom can be added to ZFC in order to facilitate the
application of forcing. A Forcing Axiom for a certain kind of forcing states that
any object that can be forced to exist by that kind of forcing already exists; it states
that the forcing method already has been applied. These axioms are part of the new
axioms in set theory.

It should be noted that the notion of a new axiom is not used by all set theorists.
But in the philosophy of set theory, this notion includes all the axioms which are not
part of the standard axiomatisation ZFC, but which are considered in set-theoretic
practice.

In addition to the Forcing Axioms, there is another important class of new
axioms—the Large Cardinal Axioms, which state that there exists a certain large
cardinal. The smallest known large cardinal is an inaccessible cardinal. Other impor-
tant large cardinals are measurable cardinals, Woodin cardinals, and supercompact
cardinals (ordered by increasing strength). The existence of such large cardinals is
not provable in ZFC (but for all we know, it might be that ZFC proves the non-
existence of some of them!).

There are further statements, for instance determinacy statements, which are
sometimes considered as new axioms, e.g. the Axiom of Determinacy (AD) which is
consistent with ZF but contradicts the Axiom of Choice, and Projective Determinacy
(PD) which is implied by the existence of infinitely many Woodin cardinals (Martin-
Steel Theorem, 1985).

1.4 Some Important Forcing Results

This section briefly presents important steps in the development of the forcing
technique. We first describe the first author’s perspective on the moment of the
introduction of forcing and the process of its adoption by set theorists. Second,
we give an overview on subsequent inventions of different kinds of forcing, the
conjectures they solved, and the formulation of Forcing Axioms.17

17Readers interested in the mathematical details of forcing are referred to Chow (2007) for an
introduction, or Kunen (2011) for a classical presentation of forcing, or Shelah (2017) for a
presentation of the forcing methods that are used today.
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10 M. Džamonja and D. Kant

1.4.1 Cohen’s Introduction of Forcing

Before the introduction of forcing by Paul Cohen in 1963,18 there were no
substantial independence results in set theory. It was already known that CH cannot
be refuted since Gödel had constructed a model, L, of ZFC in which CH holds. L is
an inner model of ZFC which is not obtained by the forcing method. M. Džamonja
thinks that “many practising set theorists at that time were hoping, or were assuming,
that CH or GCH19 would be proven to be true.” She points to a similar situation
today: “Maybe just like now, we think that Large Cardinal Axioms are true in a
sense, even though we cannot prove that they are.” Today, Large Cardinal Axioms
are an integral part of set-theoretic research. In comparison to other new axioms,
they appear to be the most acceptable ones for set theorists. In general, most set
theorists trust in the consistency of these axioms and do not believe that assuming
them causes any harm. In other words, if they were forced to choose between
the Large Cardinal Axioms and their negations, most set theorists would choose
the former. Imagine now that this was the case with the Continuum Hypothesis
before Cohen’s result, which would mean that most set theorists did not expect
that the negation of CH is a reasonable statement to consider.20 This would explain
why Cohen’s proof was such a surprising result. In the following dialogue, we are
speaking about this moment, the subsequent adoption of forcing by the set theorists,
and, in particular, how forcing became a natural part of set theory.

D. Kant: When Cohen’s result was published, was it regarded as unnatural?
M. Džamonja: It was regarded as something very unnatural. There were many

people who stopped working in set theory when they found out about this result.
One of them was P. Erdös. He was a most prominent set theorist who had
proved many interesting results, but he just didn’t think that forcing was an
interesting method or that it brings anything. Well, he has this famous statement
that ’independence has raised its ugly head’. So, he didn’t like it. He never
learned the method. And, I think, in general, it was regarded of course as a big
surprise. Cohen got a Fields medal for it. But it was very esoteric, and I think
that even Cohen himself did not understand it the same way that we understand
it now, after so many years, of course. Things become easier after many people
had looked at them, and, yes, forcing was unnatural, totally unnatural. It is worth
noting that one person, and one person only, had been entirely convinced that CH
was going to be proven independent, and that person was Gödel. In spite of his

18See Cohen (1963, 1964).
19General Continuum Hypothesis: For every ordinal α: ℵα+1 = 2ℵα .
20Amazingly, this was not the case of Gödel, who shortly after discovering L and proving the
relative consistency of GCH stated that he believes in the independence of GCH, see the beginning
of the interview for this. But then, Gödel was considered a logician and a philosopher, not a
mathematician, by the peers of the time.
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1 Interview With a Set Theorist 11

own proof of the relative consistency of CH he wrote as early as 1947 that CH is
most likely to be independent.21

D. Kant: And, then, people quickly understood this technique and applied it?
M. Džamonja: Some people did, yes. It started in California and, well, there was

Solovay, and there were also Dana Scott and many other people around Stanford
and Berkeley, for example Ken Kunen and Bill Mitchell among the younger ones.
Paul Cohen was in Stanford and Ken was a student in Stanford. So, I think,
forcing was localized to the United States for a while. But, then, just a year or
two later, it spread around to Israel. Yes, people did understand, but, I think, it
was rather slow. I mean, the specialists understood perhaps quickly, but it was
slow and it was not published. Cohen’s book22 took time to be published and it
is not easy to learn the method from this book.

D. Kant: What would you say, when or with which results did forcing become more
natural?

M. Džamonja: I think a subject generally becomes natural when people start writing
and reading books about it. In this case, it was quite late. For example, Kunen’s
‘Set Theory’23 came out in 1980, and that is really where people learned this
from, from a book. Jech’s book24 also came out at that time. Before that, well, if
you were at the right place at the right time you learned something about it. But
it wasn’t a well spread method. For example, I came from a country [Yugoslavia]
in which there was a considerable amount of set theory, combinatorial set theory.
But nobody was really doing forcing. I finished my undergraduate degree in
1984 and I wanted to write a thesis (we needed to write a thesis at the end of
our undergraduate studies) on forcing. But I couldn’t find an advisor for this in
Sarajevo. So, I think, this tells you that people knowing this subject were rare
from the Yugoslav perspective. Maybe Kurepa knew it, in Belgrade. I don’t even
know if he learned this method. I don’t think he published any papers on it. And
he was probably one of the greatest set theorists of the previous generation. In
Hungary, I think, it took quite a while. It was maybe only when Lajos Soukup and
Peter Komjath worked on this that it was seriously understood, and that was in
the 80s. So, it took some time. In other countries of Eastern Europe, there were
people like Bukovsky and Balcar who worked on this already in the 1960s, but it
was politically difficult for them. Their work was practically unknown to others
because of the Cold War. And, finally, in Russia, this method just didn’t came
through. Moti Gitik came from Russia to Israel thinking that he had discovered
a new method: the method of forcing. He discovered it on his own, because
he didn’t have access to the research already known in the West. Probably, for
someone of your generation, it’s very difficult to imagine that time.

D. Kant: Yes.

21Gödel (1947).
22Cohen (1966).
23Kunen (1980).
24Jech (2003).
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12 M. Džamonja and D. Kant

M. Džamonja: But literature was a really big problem. Because of the Cold War, and
the other thing was the cost of journals. It was incredibly expensive. Except for
top universities you wouldn’t find in your university library journals that publish
this kind of thing. So, it was really very restricted.

We see that there was not so much resistance to adopt the forcing method. There
was rather a kind of disappointment and resignation on the one hand, and interest
and enthusiasm on the other hand. In addition, the circumstances of that time made
the adoption of forcing a slow process. Nowadays, most set theorists know of the
forcing method, although not everyone works with it.

The forcing technique has been developed for application to many problems.

1.4.2 Important Forcing Results

This section is intended to illustrate the set-theoretic research on independence.
It contains more mathematical details than the other parts. We present important
conjectures, theorems, and Forcing Axioms such as Easton’s theorem, Suslin’s
Hypothesis, Martin’s Axiom, the Borel Conjecture and the Proper Forcing Axiom,
and we define many notions involved.

With Cohen’s original method, one can prove that 2ℵ0 —which is the size of the
continuum—can be any regular uncountable cardinal (and, even more generally,
any cardinal of uncountable cofinality). A regular cardinal κ is one which cannot be
obtained as a supremum of a sequence of cardinals of length less than κ . Conversely,
a singular cardinal κ is one that can be reached in less than κ many steps. For
example, the cardinal ℵω, which is greater than ω, can be reached in ω many steps:
ℵ0,ℵ1,ℵ2, . . . ,ℵω.25 So, given an uncountable regular cardinal κ , one can force
the statement ’2ℵ0 = κ’.

After Cohen presented this method, he did not pursue different applications of
it. Instead, other people learned the forcing method, and applied it to solve many
open problems. Robert Solovay was one of the most important pioneers in forcing
from the early 1960s on. One should, of course, also mention Jack Silver and several
other important set theorists from that time.

1.4.2.1 Easton Forcing

Solovay had many excellent students, including Matthew Foreman, Hugh W.
Woodin, and William Easton. Easton introduced a new kind of forcing in his
PhD thesis. Where Cohen only used a set of forcing conditions, Easton used a

25The correct notion to distinguish between regular and singular cardinals is the notion of
cofinality. The cofinality of a cardinal κ is the length of the shortest sequence of ordinals less
than κ which converges to κ .
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proper class of forcing conditions.26 This allowed him to show that the GCH can be
violated almost arbitrarily. The only restrictions for cardinalities of 2κ for regular
κ are given by the requirements that κ < λ implies that 2κ ≤ 2λ, and by König’s
Theorem:

König’s Theorem (for cofinalities), 1905: For every cardinal κ: cf(2κ) > κ .27

Given this, Easton was able to present what is now called Easton Forcing and
proved the following theorem.

ZFC+¬GCH, Easton’s Theorem, 1970: Let F be a non-decreasing function on the
regular cardinals, such that cf(F (κ)) > κ for every regular κ . Then, by a cofinality
and cardinality preserving forcing, we can obtain a model in which F(κ) = 2κ for
every regular κ .28

1.4.2.2 Suslin’s Hypothesis, Iterated Forcing and Martin’s Axiom

An old hypothesis about properties of the real line has become very important in set
theory. It is based on a question asked by Michaił J. Suslin.29

Suslin’s Hypothesis (SH), 1920: Every dense linear order in which there are at most
countably many disjoint open intervals is isomorphic to the real line.
Given the definition of a Suslin Tree, the Suslin Hypothesis states that there is no
Suslin Tree. This version is often used in practice.30

Suslin’s Hypothesis is independent of ZFC. It was shown, independently by
Stanley Tennenbaum in 1968 and Thomas Jech in 1967 (see Jech (2003) for
historical remarks and references) that SH cannot be proved in ZFC. Likewise,
Ronald Jensen proved that SH is false in L. He proved that the axiom V=L implies
the ♦-principle31:

26A proper class contains all sets that satisfy a given first order formula, but is itself not a set.
(Thus, a proper class is defined by unrestricted comprehension over the universe of sets.)
27König (1905).
28Easton (1970, Theorem 1, pp.140-1). It is interesting to note that this is potentially class forcing.
The Forcing Theorem of Cohen only applies to special cases of class forcing, so class forcing is
less widely spread in applications. All of the forcing notions to follow will be set forcings.
29“(3) Un ensemble ordonné (linéairement) sans sauts ni lacunes et tel tout ensemble de ses
intervalles (contenant plus qu’un élément) n’empiétant pas les uns sur les autres est au plus
dénombrable, est-il nécessairement un continu linéaire (ordinaire)?” Sierpiński et al. (1920).
Translation (by the authors): “Is a (linearly) ordered set without jumps nor gaps, such that every
set of its non-overlapping intervals (containing more than one element) is at most countable,
necessarily a linear continuum?”
30See Jech (2003, pp.114–116).
31‘Diamond-principle’.
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♦-principle, 1972: There exists a sequence of sets 〈Sα : α < ω1〉 with Sα ⊆ α,
such that for every X ⊆ ω1, the set {α < ω1 : X ∩ α = Sα} is a stationary subset of
ω1.32 The sequence 〈Sα : α < ω1〉 is called a ♦-sequence.33

Jensen proved that ♦ implies that there is a Suslin Tree:

ZFC+¬SH: In ZFC+V=L, one can prove the existence of a Suslin Tree.34

Using a new technique, iterated forcing, Solovay and Tennenbaum showed that
there is a forcing extension of ZFC+SH. This is the second part of the independence
proof for SH. Iterated forcing consists in the transfinitely iterated application of
single forcing notions. To make this work, one needs a preservation theorem which
guarantees that the iteration of single forcings all satisfying a certain important
property has still that important property. Here, that important property is the
countable chain condition:

Roughly spaking, it [the preservation theorem] says that the transfinite iteration of a
sequence of Cohen extensions satisfies the countable chain condition (c.c.c.) if every stage
satisfies c.c.c..35

To define this condition, we need to know that a forcing notion (P,<) is a partial
order, that two elements p, q ∈ P are called incompatible iff there is no r ∈ P
such that p < r and q < r , and that an antichain is a set A ⊆ P such that all of its
elements are pairwise incompatible.

Countable chain condition (c.c.c.): A forcing notion (P,<) satisfies the countable
chain condition if every antichain is at most countable.

The countable chain condition is an important property because c.c.c. forcing
notions preserve cardinals and cofinalities. In general, when using an arbitrary
forcing notion, things may happen that are undesired in the given context. Cardinals
can be collapsed, cofinalities can be changed etc. preventing the respective statement
from being forced.

Now, iterating certain c.c.c. forcing notions permitted Solovay and Tennenbaum
to construct a forcing extension in which both ZFC+SH and a Forcing Axiom,
called Martin’s Axiom (after Donald A. Martin), hold:

Martin’s Axiom (MA): For every c.c.c. forcing notion (P,<) and every family of
dense sets D such that |D| < 2ℵ0 there exists a D-generic subset G ⊆ P .36

32A subset of ω1 is called stationary if it intersects all closed and unbounded subsets C ⊆ ω1,
where C is closed if for every sequence (an)n<ω ⊆ C the limit

⋃{an : n < ω} is also an element
of C, and C is unbounded if for every a ∈ C there is a b ∈ C such that b > a.
33Jech (2003, p.191).
34Jensen actually showed a more general version of which this theorem is one instance Jensen
(1972, Theorem 6.2 and Lemma 6.5, pp.292–5).
35Solovay and Tennenbaum (1971) refer to theorem 6.3 on p.228.
36G is D-generic means that G ∩D �= ∅ for every D ∈ D.
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Given CH, Martin’s Axiom is provable, because in this case D can only be
countable, and for countably many dense sets there is always a generic set.
Therefore, when using Martin’s Axiom, it is often additionally assumed that 2ℵ0 >

ℵ1. In a footnote of their article, Solovay and Tennenbaum explain that they first
worked without Martin’s Axiom, but that Martin noticed a possible formulation in
axiomatic terms.37 However, they prefer using Martin’s Axiom because it gives rise
to a general proof scheme that is easier to apply than the repeated iteration of c.c.c.
forcings.

Most of the applications of iteration to date may be presented in the following manner.
One shows that M [MA] (or possibly M + “2ℵ0 > ℵ1”) implies a theorem T. Then the
consistency proof for ZF + AC + M yields a consistency proof for ZF + AC + T.

To follow this approach, a relative consistency proof of Martin’s Axiom is
needed. Solovay and Tennenbaum gave such a proof as well. Once they had shown
that Martin’s Axiom is relatively consistent, it was enough to show that Martin’s
Axiom implies some theorem T. For, both results combined show that T is relatively
consistent to ZFC. Solovay and Tennenbaum apply this scheme to SH and prove

ZFC+ SH: “Suppose ZF is consistent. Then so is ZF + AC + SH.”38

1.4.2.3 Laver Forcing

Laver Forcing was developed to show the independence of the Borel Conjecture
(named after Émile Borel).

Borel Conjecture, 1919: Every strong measure zero set is countable.39

Wacław Sierpiński proved in 1928 that the Borel Conjecture can be false.40 To show
that the Borel Conjecture can also be true, Richard Laver developed a forcing to add
specific reals (Laver reals), which he then iterated.

ZFC + BorelConjecture, Laver Forcing, 1976: “If ZFC is consistent, then so is
ZFC+Borel’s Conjecture.”41

37Solovay and Tennenbaum (1971, fn on p.232).
38Solovay and Tennenbaum (1971, Theorem 7.11 on p.242).
39Borel (1919). A strong measure zero set is a subset X of the reals such that for every sequence
〈εn : n < ω〉 of positive real numbers there is a sequence 〈In : n < ω〉 of intervals with
length(In) ≤ εn such that X ⊆⋃{In : n < ω}.
40Sierpiński (1928).
41Laver (1976, Theorem on p. 152), see also Jech (2003, pp.564–8).
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1.4.2.4 Proper Forcing and Proper Forcing Axiom

Proper Forcing was defined by Saharon Shelah.42 He takes proper forcings to be
well-behaved forcings, in particular because they behave nicely when they are
iterated:

When we iterate we are faced with the problem of obtaining for the iteration the good
properties of the single steps of iterations. Usually, in our context, the worst possible vice
of a forcing notion is that it collapses ℵ1. The virtue of not collapsing ℵ1 is not inherited
by the iteration from its single components. As we saw, the virtue of the c.c.c. is inherited
by the . . . iteration from its components. However in many cases the c.c.c. is too strong a
requirement. We shall look for a weaker requirement which is more naturally connected to
the property of not collapsing ℵ1, and which is inherited by suitable iterations.43

The weaker requirement Shelah is looking for is properness.

Proper Forcing: A forcing notion (P,<) is proper if forcing with P preserves, for
every uncountable cardinal λ, the stationary sets of [λ]ω.44

Many specific forcing notions can be shown to be proper. For instance, every c.c.c.
forcing is proper.45

As for c.c.c. forcing, one also needs a preservation theorem to iterate proper
forcing. This important result is due to Shelah.46 Since iterating proper forcing
works well, an axiom was formulated to simplify it.

Proper Forcing Axiom (PFA): For every proper forcing notion (P,<) and every
family of dense sets D such that |D| = ℵ1 there exists a D-generic subset G ⊆ P .

Again, once the relative consistency of the Forcing Axiom is shown,47 one can
prove theorems as consequences of the Forcing Axiom without working through the
details of the iterated forcing method. The consequences of a Forcing Axiom are
then proven relatively consistent to ZFC. One important consequence of the Proper
Forcing Axiom was proven by Boban Veličković and Stevo Todorčević:

In ZFC+ PFA: Assuming the Proper Forcing Axiom, one can prove 2ℵ0 = ℵ2.48

This means that in ZFC+PFA the Continuum Hypothesis is false.
Today, most forcings applied in practice are iterated forcings or the Forcing

Axioms obtained by consistency proofs through iterated forcing. For example, a
current research problem is to find properties of forcing notions which allow the
existence of set-theoretic universes saturated for the generics for families of dense
sets of size ℵ2.

42Shelah (1982).
43Shelah (2017, p.90).
44[λ]ω is the set of all countable subsets of λ.
45Jech (2003, Lemma 31.2 on p. 601).
46See Shelah (2017, III. §3.).
47Assuming that there is a supercompact cardinal, one can prove that there is a model of ZFC+PFA.
48Jech (2003, Theorem 31.23 on p. 609).

claudio.ternullo@ut.ee



1 Interview With a Set Theorist 17

1.5 Philosophical Thoughts in Set Theory

For someone who is interested in philosophical questions set theory is an exciting
subject matter. A question that arises in set theory is for example the truth question:
Are the independent sentences in set theory neither true nor false? What is truth
in set theory if it does not coincide with provability? The truth question is part of
traditional philosophy of mathematics. So is the question whether sets exist. If we
assume that sets exist then we can easily give an account of truth: A sentence is true
if and only if it is true in the universe of sets.

A closely related definition is the following: A set-theoretic sentence is true if
and only if it is true in the intended model of set theory. This definition does not
presuppose the existence of a universe of sets because it refers to the technical term
of an intended model. Such a model may be given formalistically, i.e., as part of a
formal theory. This definition is usually used when considering the formal number
theory PA.49 The standard model N = (N, 0, S,+, ·,<) of number theory can be
given in set-theoretic terms. So, it can be given in the formal theory ZFC. From
a formalistic point of view, one could adopt the second definition (if one believes
that there is an intended model) but not the first. And from the point of view of
a platonist, the first and the second definition would correspond to each other—the
intended model would be taken as the formal counterpart of the real universe of sets.

Such ideas about truth and existence are some of the philosophical thoughts that
we find in set-theoretic practice. They are invoked, for example, as a justification
of axioms. When the second author asked the first author about the meaning of
the word “axiom”, she had a clear answer: “For me, what it means is an obvious
property of the intended universe,” and she admitted that this “is a strong meaning
because it implies the existence of an intended universe.” This corresponds exactly
to the above mentioned view of true set-theoretic sentences. But the word “axiom” is
also used for the new axioms, which are either not generally accepted by set theorists
or their acceptance is less immediate than the acceptance of the ZFC-axioms.

M. Džamonja: When we think of axioms in the classical sense, we think of Euclid
and his geometry, and the idea there is that the axioms are statements that are
obvious. Obvious in the sense that we take some basic objects, which, I think,
in Euclid’s mind come from his intended application, which he takes as the only
one, and then the axioms are certain statements that are obviously true about
these basic objects. From these we build out further content. I think, the idea of
axiomatic set theory was to do this but with mathematics in general. The basic
objects are sets. So, certainly the Axiom of Pairing is obvious, even though, now
with the Homotopy Type Theory, it’s a complicated issue, but in the classical set
theory, this type of axioms—Pairing, Union—are somehow clear. Well, some of
the classical axioms are also less clear. Of course, an example is the notorious
Axiom of Choice. It is not clear in what sense it is an axiom. And, in fact, maybe

49PA stands for Peano Arithmetic which is the formal theory of the natural numbers.
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that situation between ZF and ZF with Choice is in some sense similar to the
situation between ZFC plus some Forcing Axiom or just ZFC because you might
say that for some people the Axiom of Choice was not natural, they refused to
work with it and they worked in ZF set theory. Or even, you can say that for
those people working with the ZFC set theory it is also interesting to understand
where one really needs the Axiom of Choice. So, to work somehow between ZF
and ZFC. Certainly, then, one doesn’t have to take an opinion of whether the
Axiom of Choice is true philosophically or not, but can work in both ZF and ZFC
and somehow take the neutral view that this is what I can do if I have the Axiom
of Choice and this is what I can do otherwise.
So, if you take that view, then the Forcing Axioms are consistent extensions of
ZFC. The first Forcing Axiom—the Martin Axiom—has the same consistency
strength as ZFC. We do not need any extra Large Cardinal Axiom to prove
its consistency. So, if we just concentrate on that one, if we look at ZFC vs.
ZFC plus Martin Axiom, then we can say: ‘Well, we don’t have to take the
view that Martin Axiom is true or not, but we could say that this is a possible
axiom to add. Is this true or not, well, we don’t know.’ So, in that sense, it is
reasonable to make this an axiom. Also, it was the first forcing-related statement
that got in any way close to being, let us say, comprehensible to a large number
of mathematicians and logicians. Once, we had the Martin Axiom, of course,
the extensions of it started coming, like the Proper Forcing Axiom. They are
extensions because, mathematically speaking, they are very similar to the Martin
Axiom. Logically speaking they are not extensions because they require Large
Cardinal Axioms, so they lose that property of equiconsistency with ZF that we
had before. Considering ZFC or ZFC plus Proper Forcing Axiom for example, we
have a much stronger consistency strength with PFA added. So, the two are not
exactly at the same level. In the end, by extending the strength of these Forcing
Axioms, we seem to get further and further from what an actual axiom might
mean.

We have seen in these paragraphs that the word “axiom” can also be used as a
rather technical term without any philosophical implications. This is also possible
regarding the ZFC-axioms, but it is even more important to emphasise the possibility
of such a neutral view regarding the new axioms. In this view, the use of the word
“axiom” does not imply that this statement is in any way accepted as a statement
itself. It is rather accepted as a reasonable, possible addition to ZFC. Thus, one can
work in the corresponding theory to address mathematical questions without taking
a stance on its acceptability.

But still, the answer that an axiom is either obviously true or just a possible
statement to assume, does not seem to give the whole story. The role of Large
Cardinal Axioms in set-theoretic practice could be a challenge to this view. Neither
are they treated as on part with the axioms of ZFC, nor as mere opportune additions.
For instance, every Large Cardinal Axiom (at least as strong as the existence
of an inaccessible) implies the consistency of ZFC. This seems to support their
acceptability.
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D. Kant: What do you say about the statement “ZFC is consistent”? Does it still
play a role in set-theoretic practice?

M. Džamonja: Well, of course, in the beginning it was hoped that we will prove
that ZFC is consistent. That was Hilbert’s Program,50 and then Gödel’s results
said: if we believe that ZFC is the basic theory, then we cannot, within that basic
theory, prove that it is consistent. So, now, we have two choices: Either we accept
just ZFC as our basic theory and then we have to take on faith that it is consistent,
or we say ‘Well, ok, I believe in large cardinals and then I get the consistency of
ZFC for free’, in the sense that, when we take the cumulative hierarchy and cut
it at a large cardinal, we get a model of ZFC.
This is actually the other side of your question of what is an axiom. If we
have an axiom scheme that is supposed to be obvious, then it is supposed to
be talking about the intended model. Now, there are people who do not believe in
the intended model. I believe that there is a universe of sets, personally, this
is my philosophical view. So, if there is such a thing, then the ZFC Axioms
are the axioms of this universe. They are not the only axioms but they are the
axioms that we accept. They describe this universe quite well, so, they have an
intended model. They have other models as well. But, somehow, believing in the
consistency comes back to thinking if there is this universe of sets or not. And, I
think, this is now a philosophical question rather than a mathematical one.

D. Kant: So, you would think that, among set theorists, the existence of a universe
of sets is somehow subjective, and some believe in it and some do not?

M. Džamonja: Yes. For example, I think, Gödel was a very strong Platonist. Woodin
confirms to be a very strong Platonist and he is searching for more complete
axioms of set theory. I think Shelah also is a Platonist. But I know people, like
Cummings for example, who told me some years ago that, for him, the question
if there is an intended model or not is not at all interesting. What is interesting
is that we get to do beautiful mathematics with these objects and if they exist or
not is not that interesting. So, one can do the same mathematics independently of
one’s philosophical view. In fact, mathematicians in general, even set theorists
who work in logic, do not always ask philosophical questions. Some do and some
don’t.

In set theory, there are mathematicians who think about philosophical concepts
such as platonism. However, it would be wrong to assume that every set theorist
thinks about independence also in philosophical terms. Džamonja suggests that it is
a matter of interest. There may be more people in set theory who are interested in
philosophical questions than there are in other mathematical disciplines. Yet, not all
set theorists are philosophically inclined.

In the above conversation, the possibility to believe in large cardinals is men-
tioned. This highlights an important difference between the Large Cardinal Axioms

50Hilbert wanted to prove the consistency of mathematics and focussed on axiomatisations of
number theory. His program can be transferred to set theory, as set theory counts as a foundation
of mathematics. Thus, of one would prove its consistency, Hilbert’s aim would be resolved.
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and the Forcing Axioms. We think that Forcing Axioms are often not seen as
candidates for acceptance.51 The function of a Forcing Axiom is not to capture a
possible truth about the universe of sets, but rather to formalise a specific fruitful
kind of forcing. The formulation of such an axiom makes the application of forcing
easier because one does not have to build up the whole forcing machinery each time.

M. Džamonja also said explicitely that she believes in the existence of a universe
of sets. She said that she believes the ZFC Axioms as well as the Large Cardinal
Axioms. However, she made clear that these beliefs are relative to set theory. Since
the universe of sets is an abstract reality, it is possible that it is not the unique reality
for all of mathematics. This view is supported by research in Univalent Foundations
and Homotopy Type Theory (HoTT). This mathematical field has its own concepts
and methods, which differ significantly from other mathematical fields; it creates
own content, and mathematics can be embedded in this theory. However, some set-
theoretic principles do not generally hold there, e.g., the Axiom of Choice. With this
in mind, M. Džamonja believes in the Axiom of Choice, but only restricted to set
theory, not with respect to all of mathematics.52 Both set theory and HoTT can serve
as a foundation for much of mathematics. In a Platonist framework, both fields can
have their own mathematical reality.

1.6 Set-Theoretic Intuition About Independence

Both the truth question and the existence question mentioned in the last section
are part of classical philosophy of mathematics. However, these questions are not
those which the second author seeks to answer by talking to set theorists. One can
observe that, in set theory, one independence result is not similarly conceived of
as another. Set theorists see differences in the value of the insights which they
provide, or in the naturalness of independent statements. For example, some set
theorists consider the axiom V = L to be less natural than the existence of infinitely
many Woodin cardinals, because V = L is not compatible with the existence of
many large cardinals. Woodin says: “[T]he axiom V = L limits the large cardinal
axioms which can hold and so the axiom is false.”53 The existence of infinitely many
Woodin cardinals imply Projective Determinacy, which is an attractive statement
for some set theorists, for example for Ralf Schindler: “The principle of projective
determinacy, being independent from the standard axiom system of set theory,
produces a fairly complete picture of the theory of ‘definable’ sets of reals.”54

51Menachem Magidor certainly is an exception because he thinks that Forcing Axioms are natural
axioms.
52For more on her view, see her article ‘A New Foundational Crisis in Mathematics, is It Really
Happening?’ in this volume.
53His italics, Woodin (2010, p.504).
54www.math.uci.edu/node/20943 (06/05/2018)
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In order to elaborate on such judgements, the authors talked about the question
whether set theorists have an intuition about their subject matter which is based on
their wide experience, but which is not necessarily backed up by proofs.

D. Kant: I imagine that set theorists have gained a good intuition about what is
provable in ZFC and what is independent. Would you say that you have a good
intuition about this?

M. Džamonja: Yes, I think we do have a good intuition. Of course, not about
everything, but about certain things, certain areas. I have a way that I see
it. I think of the line of cardinal numbers. Certain areas of that line are well
understood and we really have an intuition in that context, but other areas are
murky.

D. Kant: Is there maybe something that you can say about these borders of ZFC?
More concretely, is there something about these independent sentences that they
have in common?

M. Džamonja: To start with, there are certain things that definitely cannot be
independent because they are described by simple formulas and we have
absoluteness theorems.55 Things that are combinatorially close to them can likely
be shown to be true or not true. So, descriptive set theory and things that go with
it. We may find there some sort of mini-independence. They would be connected
with certain classes of sets whose properties would be understood within a ZF
bit which exhibits less absoluteness, such as analytic sets, or projective sets, etc.
Sometimes, we can reflect independence to truth by restricting our attention to
certain classes of sets. For example, suppose that we can use a Forcing Axiom to
prove some statement about subsets of the reals in general. We can then hope to
have the same statement hold about analytic sets without needing any additional
axioms. Certain results that are obtained under PFA for general sets turn out to
be true for analytic sets. For example, one can find this in the work of Todorcevic
about gaps.56 There are analytic gaps, there are general gaps, there is the p-ideal
dichotomy, and then there is this dichotomy applied to analytic objects. Or in the
work of Solecki. So, that is one border of independence.
Another border is, as I mentioned, the line of cardinal numbers. We know that at
successors of regular cardinals we can do a lot by forcing, especially at ℵ1. We
also know that at singular cardinals and their successors things are much more,
let us say, resistant to forcing. This is so because we have pcf theory which shows
that some things about singular cardinals are just true in ZFC, and, therefore,
many statements that are implied by pcf theory are also just true.57 So, there

55For every�0-sentence ϕ (a sentence with only bounded quantifiers) and every transitive standard
model M of ZFC, ϕ ↔ �M |� ϕ� (in ZFC). Under the assumption that there is a transitive
standard model of ZFC, this means that �0-sentences cannot be independent. They are either
provable or refutable. There are other well-known absoluteness theorems, such as the Shoenfield’s
Absoluteness.
56See for example Avilés and Todorcevic (2015, 2016).
57Shelah (2000) and Burke and Magidor (1990).

claudio.ternullo@ut.ee



22 M. Džamonja and D. Kant

are these two distinct regions on the cardinal numbers line. There are successors
of regular cardinals, which have some behaviour, and then there are singular
cardinals and their successors, which have another one, and then, of course,
there are large cardinals.58 So, we do have a good intuition when we start from
a certain kind of cardinal in which direction to try to start working. And then
we also have a good intuition about the kind of sentences as explained above.
Combinatorial set theory is almost always about unrestricted sets. So, there we
can expect to have a lot of independence.

D. Kant: About independent sentences in history: have there been some surprising
or unexpected results? So, that, at first, the sentence was thought to be true,
and then it turned out to be independent, or something like that? That really set
theorists . . .

M. Džamonja: . . . were surprised?
D. Kant: Yes, were surprised about what came out?
M. Džamonja: Well, we have already said that the independence of CH came as

a surprise to many mathematicians. But there is a recent example of just the
opposite, when a statement was thought to be independent but at the end it turned
out just to be true. I refer to a theorem by Malliaris and Shelah.59 They proved a
certain cardinal equality, that is, they proved that two cardinals, p and t, which
are cardinal invariants of the continuum, are actually just equal in ZFC. This was
totally unexpected because there are many cardinal invariants known and they
tend to be independent from each other. The independence of p and t was one
of the last open questions and everybody expected they would behave like any
other invariants, be independent—but they are not! The Malliaris-Shelah proof
is also very ingenious, it mixes many different methods. That proof obtained an
important prize in 2017, the Hausdorff medal that is given biannually by the
European Set Theory Society for the most influential work published in the last
five years.

D. Kant: But this does not happen very often?
M. Džamonja: No. That does not happen very often. Well, see, what I think is that,

in mathematics, a huge percentage of results is proving something that is not
so surprising. Everywhere in mathematics, including set theory, there are results
that everybody suspects to hold, but if you want to be sure, you have to produce
a proof. So, when somebody takes two new cardinal invariants and makes them
independent of each other, that makes an ok PhD thesis but it does not make
a huge surprise or a Hausdorff medal. Because we have seen such results very
often. The opposite is surprising.

This conversation should make clear that set theorists can say something more
about the independence phenomenon than what they can prove. They can sometimes
give probabilistic statements about the mathematical objects they work with. One

58For a philosophical discussion of these regions see Džamonja and Panza (2018).
59Malliaris and Shelah (2013).
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example was mentioned: Two cardinal invariants are often independent. Of course,
such general ideas are based on experience and could turn out to be wrong—just
imagine that there will be found many cardinal invariants such that pairs of them can
often shown to be equal. However, such probabilistic, experience-based statements
seem to play a very important role in set-theoretic research. In addition, it is an
interesting philosophical question whether and, if so, how such general ideas can be
seen as a part of set-theoretic knowledge.

For a first exploration on this question, we would argue that experience-based
statements are part of set-theoretic knowledge. Given potential future experiences,
they would have to be relativised to a time-frame in which they correspond to beliefs
of most set theorists. Describing this part of set-theoretic knowledge is valuable
because it can explain the development of the discipline. Imagine that some day, a
new axiom is accepted. Then this would be possibly seen as a surprising event when
only looking at the theorems. However, it could possibly be explained by looking
at the experience-based, probabilistic part of set-theoretic knowledge. Furthermore,
normative judgements by set theorists also play an important role in this context.
For instance, judgements concerning the naturalness or attractiveness of particular
axioms. These might also be explainable via the informal part of set-theoretic
knowledge.

1.7 Conclusion

We started with a philosophical perspective on the set-theoretic independence
phenomenon. This mathematical phenomenon raises many questions and can
appropriately be called independence problem. In mathematical terms, on the other
hand, it is not clear whether the independence phenomenon is a problem or a mere
mathematical fact.

Putting together our mathematical and philosophical perspectives, we gave an
insight in contemporary set theory. We focussed on forcing in order to illustrate
to what extent independence results determine today’s research. After that, we
presented Džamonja’s views on various topics, such as the introduction of forcing in
set theory, the use of new axioms in practice (distinguishing between ZFC-axioms,
Forcing Axioms, and Large Cardinal Axioms), the notion of the universe of sets,
and surprising events. With this, we attempted to grasp what Tao calls the “solid
intuition”60 of an expert mathematician on her/his field of expertise. This solid
intuition is grounded in many years of set-theoretic research, which seems to make
it unavailable to non-set theorists. For, it is often the set-theoretic formalism and
rigour which make it hard for philosophers and other mathematicians to acquire an
understanding of the topics of set-theoretic research. However,

60Tao (2018).
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it is only with a combination of both rigorous formalism and good intuition that one can
tackle complex mathematical problems; one needs the former to correctly deal with the fine
details, and the latter to correctly deal with the big picture.61

Given this, we can hardly hope to widely communicate the fine details of set-
theoretic research. We can hope, however, to communicate a big picture in a
comprehensible and correct way. It would be correct if it is consistent with set-
theoretic practice. Such a big picture will include different perspectives of set
theorists. They will differ on some aspects and agree on others.

To close this discussion, we want to leave the reader with a question and three
hypotheses.

Question: What are the different aims/motivations for the uses of different
axioms?

1. Hypothesis: Most set theorists were surprised by the introduction of the forcing
method.

2. Hypothesis: Most set theorists think that forcing is a natural part of contempo-
rary set theory.

3. Hypothesis: Most set theorists prefer an answer to a problem with the help of a
new axiom of lowest possible consistency strength. And for most set theorists, a
difference in consistency strength weighs much more than the difference between
Forcing Axiom and Large Cardinal Axiom.

We distinguished a neutral view toward the use of Forcing Axioms on the one
hand, and the use of accepted Large Cardinal Axioms on the other. This analysis
can certainly be refined. The hypotheses are motivated because they correspond to
Džamonja’s view, which, we think, is representative for other set theorists as well.
However, certain objections may be levelled. In contrast to the first hypothesis, one
could also support a historical view according to which time had simply come for
the forcing method to be introduced. The second hypothesis may be challenged by
views of descriptive set theorists who rarely use forcing in their research. Finally,
one might certainly find set theorists who would not agree with the third hypothesis
(for example, for many years the school of the set theory of the reals did not
accept the idea of large cardinals). Thus, we are not in the position to draw final
conclusions. Rather, we encourage further research on set-theoretic practice which
will bring further clarification.
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Chapter 2
How to Choose New Axioms for Set
Theory?

Laura Fontanella

Abstract We address the problem of the choice of new axioms for set theory.
After discussing some classical views about the notion of axiom in mathematics, we
present the most currently debated candidates for a new axiomatisation of set theory,
including Large Cardinal axioms, Forcing Axioms and Projective Determinacy
and we illustrate some of the main arguments presented in favour or against such
principles.

2.1 Introduction

The development of axiomatic set theory originated from the need for a rigorous
investigation of the basic principles at the foundations of mathematics. The classical
theory of sets ZFC offers a rich framework, nevertheless many important mathemat-
ical problems (such as the famous continuum hypothesis) cannot be solved within
this theory. Set theorists have been exploring new axioms that would allow one
to answer such fundamental questions that are independent from ZFC. Research
in this area has led to consider several candidates for a new axiomatization such
as Large Cardinal Axioms, Forcing Axioms, Projective Determinacy and others.
The legitimacy of these new axioms is, however, heavily debated and gave rise
to extensive discussions around an intriguing philosophical problem: what criteria
should be satisfied by axioms? What aspects would distinguish an axiom from a
hypothesis, a conjecture and other mathematical statements? What is an axiom after
all? The future of set theory very much depends on how we answer such questions.
Self-evidence, intuitive appeal, fruitfulness are some of the many criteria that have
been proposed. In the first part of this paper, we illustrate some classical views
about the nature of axioms and the main difficulties associated with these positions.
In the second part, we outline a survey of the most promising candidates for a new
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axiomatization for set theory and we discuss more specific arguments that were
suggested in favor of these statements. In the end, we will not answer the question
How to chose new axioms for set theory?, but we will discuss the main challenges
associated with this problem. We assume basic knowledge of the theory ZFC.

2.2 Ordinary Mathematics

Before we start our analysis of the axioms of set theory and the discussion about
what criteria can legitimate those axioms, we should address a quite radical view
based on the belief that ‘ordinary mathematics needs much less than ZFC or ZF’.
This claim suggests that strong axioms such as the Axiom of Choice, or Infinity
are not really needed for standard mathematical results, and certainly ordinary
mathematics does not need new strong axioms such as Large cardinals axioms,
Forcing Axioms etc. If so, then our goal of securing the axioms of ZFC and the
new axioms would simply be irrelevant or a mere set theoretic concern (where set
theory is not considered standard mathematics).

The issue with this view is to clarify what counts as ‘ordinary mathematics’. In
fact, the Axiom of Choice is heavily used in many fields such as algebra, general
topology, measure theory and functional analysis. For instance, the Axiom of Choice
is indispensable for the following claims and theorems (they are actually equivalent
to the Axiom of Choice):

• For every equivalence relation there is a set of representatives.
• Every surjection has a right inverse.
• Every vector space has a basis.
• Krull’s theorem: Every unital ring other than the trivial ring contains a maximal

ideal.
• Tychonoff theorem.
• In the product topology, the closure of a product of subsets is equal to the product

of the closures.
• Every connected graph has a spanning tree.

Other weaker consequences of the Axiom of Choice cannot be proven within ZF:

• Baire category theorem (which is equivalent to the Axiom of Dependent Choice).
• Hahn Banach theorem.
• Every Hilbert space has an orthonormal basis.
• The closed unit ball of the dual of a normed vector space over the reals has an

extreme point.
• Every field has an algebraic closure.
• Stone’s representation theorem for Boolean algebras.
• Nielse-Schreier theorem: every subgroup of a free group is free.
• Vitali theorem: there exists a set of reals which is not Lebesgues measurable.
• The existence of a set of reals which does not have the Baire property.
• The existence of a set of reals which does not have the perfect set property.
• Every set can be linearly ordered.
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Thus, important applications of the Axiom of Choice can be found in many areas,
hence rejecting the Axiom of Choice would come with a big price for the scope of
‘ordinary mathematics’.

The analogous claim that ordinary mathematics does not need more than ZFC
runs into a similar problem, as it is often the case that natural questions, that were
raised in what one might consider a standard mathematical framework, turned out to
be independent from ZFC, thus requiring stronger additional axioms to be settled. It
is the case, for instance, for Whitehead problem in group theory: formulated in the
1950s, Whitehead problem was considered one of the most important open problems
in algebra for many years, until S. Shelah showed in 1974 its undecidability in
ZFC (see Shelah 1974); Whitehead conjecture is true if we accept the axiom
of constructibility, namely that every set is constructible. A similar case is the
Normal Moore Space Conjecture, a topological problem whose solution was eagerly
sought for many years until strong large cardinal assumptions turned out to be
indispensable for its solution. The reader is certainly familiar with the famous
Fermat’s conjecture recently demonstrated by Wiles who won the Abel prize for
his outstanding result; what the reader might not be aware of, is that Wiles’s proof
relies on Grothendieck’s universes whose existence requires large cardinals, namely
strongly inaccessible cardinals (for more details, see McLarty 2010). It is generally
believed that eventually we will be able to prove Fermat’s conjecture in Peano
Arithmetic (at the cost of a much more complicated organization of the proof), yet
the only known proof today – more than 20 years after Wiles released it – uses
Grothendieck universes in fact.

Independence results have always caused a certain embarrassment in the commu-
nity of mathematicians. When a mathematical problem is proven to be independent
from ZFC, suddenly it is labeled as ‘just set theoretical’ or ‘vague’ and no
longer mathematical in the traditional sense. A precise definition of what ‘ordinary
mathematics’ means should then take into account this attitude towards those
problems which, at first, seem to emerge naturally as intrinsically relevant questions
for mathematical research, then are dismissed after proven to require strong axioms.
A simple move would be to claim that independent problems are legitimate
mathematical questions that yet are ‘unsolvable’. In this perspective, then, any
attempt to answer such questions with stronger assumptions can only be seen
as speculative. Surely, many mathematicians navigate these lines of thoughts.
For instance, when Nykos (1980) proved in 1980 the consistency of the Normal
Moore Space Conjecture from a strongly compact cardinal, he titled his paper
‘A provisional solution to the Normal Moore Space Conjecture’ (emphasis mine).
However, if any result assuming large cardinals were just ‘provisional’, as Nykos’
choice of words suggests, then Large Cardinals Axioms would be nothing more than
mere hypotheses. Yet, despite the general skepticism towards the legitimacy of these
principles, the mathematical community seems to acknowledge them a different
status, a stronger role. In fact, we can point out that Wiles’s proof of Fermat’s
conjecture was well accepted by the community of number theorists despite the
fact that it relies on inaccessible cardinals. Imagine that his proof were assuming
Riemann hypothesis instead, would his result even be published? The supporter of
the view that ordinary mathematics can all be done in ZFC, or in a much weaker
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system than ZF, needs to clarify what should be the status of independent problems
and of the additional assumptions needed for their solution.

2.3 Intrinsic Motivations

The word ‘axiom’ comes from the Greek αξιωμα ‘that which commends itself as
evident’. To these days, most of the mathematicians would consider axioms to be a
self-evident propositions requiring no formal demonstration to prove their truth, but
received and assented as soon as mentioned. This is the ideal meaning of the word
‘axiom’. The problem with this view is that what counts as obvious, self-evident,
intuitive or inherently true is highly subjective.

I can in no way agree to taking ‘intuitively clear’ as a criterion of truth in mathematics, for
this criterion would mean the complete triumph of subjectivism and would lead to a break
with the understanding of science as a form of social activity. (Markov 1962).

Moreover, the self-evidence criterion is quite restrictive. Not only the new axioms
considered in contemporary set theory such as Large Cardinal axioms are far from
self-evident (not even their strongest supporters claim they are self-evident), but
even the axioms of ZFC are not strictly obvious. Certainly, the Axiom of Choice
and the Axiom of Infinity were not immediately received and assented as soon as
mentioned, on the contrary they were extensively debated and a mild skepticism still
survives.

The set theoretical axioms that sustain modern mathematics are self-evident in differing
degrees. One of them – indeed, the most important of them, namely Cantor’s axiom, the
so-called axiom of infinity – has scarcely any claim to self-evidence at all. (Mayberry 2000,
p. 10)

Problems occur even if we reformulate the self-evidence requirement and
consider the following criterion that we may call ‘intrinsic necessity’:

An axioms must have some intuitive appeal, however the axiom may not be immediately
obvious, but it should ultimately occur to us that what the axiom states is true and it could
not be otherwise.

This reformulation may legitimate those controversial axioms, such as the Axiom
of Choice, that were not immediately accepted but were eventually welcomed
and employed. For instance, while the well-ordering principle mainly encountered
reluctance, the equivalent statement ‘the cartesian product of a collection of
non-empty sets is non-empty’ seems to be better accepted by the mathematical
community as a fundamental truth. Unfortunately, the criterion of intrinsic necessity
is still problematic. There is no strong reason for believing that what the Axiom
of Choice states could not be otherwise. In fact, as proven by Banach and Tarski,
the Axiom of Choice is actually paradoxical as it implies a quite counterintuitive
statement (Banach-Tarski paradox): given a solid ball in a 3-dimensional space,
there exists a decomposition of the ball into a finite number of disjoint subsets,
which can then be put back together in a different way to yield two identical copies
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of the original ball. Thus the Axiom of Choice challenges basic geometric intuition,
leaving a shadow on its alleged intrinsic necessity.

Maddy’s analysis in Maddy (1988) shows that even the less controversial axioms
of the theory ZF were not motivated by intrinsic reasons but rather practical ones.
Consider for instance the Axiom of Foundation: first introduced in the form A /∈ A
to block Russell’s paradox, it is nowadays adopted in its stronger version “every
set is well-founded”. Reasons for reformulating the axiom in this way were not
based on self-evidence, but originated from the belief that “no field of set theory or
mathematics is in any general need of sets which are not well-founded” (Fraenkel
et al. 1973, p. 88). Actually, non-well founded sets found applications in computer
science to model non-terminating computational processes; there is a whole line of
work in logic that deals with alternatives to the Axiom of Foundation, the work of
Forti, Honsell (1983) and Aczel (1988) in this area was especially influential.

Today the Axiom of Foundation is better supported by the so-called ‘Iterative
conception’. Roughly, this consists in the idea that sets must be obtained by an
iterative process where at a first stage certain sets are secured ‘immediately’, then
new sets can be obtained starting from the sets at the first level so to form a second
level, and at each stage new sets can be defined from the ones introduced at the
previous levels. Under the Axiom of Foundation, all sets can be obtained in this
way, in fact the class of all sets V coincide with the Von Neumann Universe which is
defined as follows. The level zero V0 is the empty set, then the first level V1 contains
just the empty set, at each successor stage α+ 1, the level Vα+1 is defined as the set
of all subsets of Vα (in fact V1 coincides with P(V0)), at limit stages λ,we let Vλ be
the union of all Vα for α < λ. The Von Neumann Universe is the class obtained from
the union of all Vα’s. The Axiom of Foundation is equivalent to V being equal to
the Von Neumann Universe which is the main expression of the iterative conception
just discussed. This is often considered to be an intrinsic justification for the Axiom
of Foundation, yet it is not obvious that such an iterative process would exhaust all
possible sets. On the other hand, the Von Neumann hierarchy certainly gives a very
useful and elegant description of the class of all sets, thus the Axiom of Foundation
has undoubtedly strong practical merits.

2.4 Extrinsic Motivations

We argued that intrinsic motivations such as self-evidence, intrinsic necessity
etc. are subjective and restrictive. Those considerations led Maddy to claim that
axioms are mainly supported by extrinsic motivations, namely by their success, or
fruitfulness. The roots of this idea already appeared in Gödel (1947):

Furthermore, however, even disregarding the intrinsic necessity of some new axiom, and
even in case it had no intrinsic necessity at all, a decision about its truth is possible also
in another way, namely, inductively by studying its “success”, that is, its fruitfulness in
consequences and in particular in ‘verifiable’ consequences, i.e., consequences demon-
strable without the new axiom, whose proofs by means of the new axiom, however, are
considerably simpler and easier to discover, and make it possible to condense into one proof
many different proofs. (Gödel 1947, p. 521)
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It is important to stress that Gödel and Maddy mean different things with the
term ‘fruitful’. Let us discuss first Gödel’s view. For Gödel, the fruitfulness of an
axiom is measured in terms of ‘verifiable consequences’. This is a delicate notion
that deserves several comments. How can we verify a mathematical statement? Is
this verification the result of an empirical process? Gödel believed in some sort of
perception of mathematical entities analogous to our perception of physical objects.
Thus, in Gödel’s view, the truth of certain mathematical statements imposes on
us to the extent that our intuition provides us with some sort of perception of the
mathematical objects involved; other statements are not given to us immediately
by mathematical intuition, but they are supported by the ‘evidence’ of their
consequences.

In more recent work, Magidor considers this mathematical verification to be
directly connected to our empirical knowledge of the physical world:

As far as verifiable consequences, I consider the fact that these axioms [large cardinals]
provide new �1

0 sentences which so far were not refuted. In some sense we can consider
these �1

0 sentences as physical facts about the world that so far are confirmed by the
experience. (Magidor 2012)

Whatever meaning we accord to the expressions ‘mathematical verification’ and
‘mathematical evidence’, we should note that, as for natural sciences, a plurality
of verifiable consequences cannot secure the theory with certainty, since even
inconsistent mathematical theories can, at first, appear to have many verifiable
consequences. Thus, we can only say of a given axiom or theory that it was not
refuted so far. In other words, paraphrasing Popper, mathematical theories are not
strictly speaking verifiable, they are only falsifiable; but this is not different from
physics, chemistry or other sciences.

A more challenging remark is that mutually incompatible theories can all be
‘successful’. Consider, for instance, the theory ZFC plus the axiom of measurable
cardinals versus ZF + V = L (more details about these axioms will be provided in
the second part of this paper). These two theories are incompatible, yet none of
their consequences was ‘refuted’ so far. In Gödel’s view the axiom V = L should be
rejected because it implies the continuum hypothesis which he believed was ‘false’
due to certain consequences that he considered ‘highly implausible’: for instance,
CH implies the existence of a set of size 2ℵ0 which has Lebesgue measure zero, but
is not absolute zero. Yet, his feeling that such consequences would be implausible
is not unanimously shared, thus we are left with an unclear notion of mathematical
evidence which cannot guide us in the choice of one theory over another.

Maddy developed a wider conception of extrinsic justifications that she describes
as based on practical, inter-theoretic motivations. In Maddy (2011), she explains the
success of an axiom on the basis of the ‘proper methods’ of the theory considered,
namely the fruitfulness of an axioms is measured in terms of its effectiveness
to achieve specific mathematical goals. So, for instance, Projective Determinacy
came into considerations as the result of a broader research for new axioms that
might settle certain problems in analysis and set theory that could not be solved
within ZFC, accordingly certain Large Cardinals axioms are justified as they imply
Projective Determinacy and settle other problems that are independent from ZFC.
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Once again, distinct incompatible theories can be equally successful, even in this
sense. For instance, if many strong Large Cardinals Axioms such as the axiom of
measurable cardinals can be justified in this way, even the axiom of constructibility
V = L can be viewed as an effective mean to achieve specific mathematical goals:
V = L settles the continuum problem as it implies the Continuum Hypothesis and
even GCH, it also implies the Axiom of Choice which can be used itself for
proving classical fundamental theorems in mathematics, and it settles many other
questions that are independent from ZF, for instance it implies the negation of
the Suslin’s hypothesis. Thus even this approach requires additional criteria for
choosing a specific theory over the other. Maddy’s suggestion is to appeal on
the maximality principle. Roughly, this consists in the idea that we should prefer
the theory that maximizes the concept of set. For instance, the concept of set
underlying large cardinals seems to be wider than the one associated with the
axioms of constructibility which is often ruled out as ’too restrictive’. Reference
to this ‘maximize rule’ can be found for instance in Drake (1974), Moschovakis
(1980) and Scott (1961). Nevertheless, the alleged restrictiveness of the axiom of
constructibility was recently refuted by Hamkins (2014) who proved, roughly, that
the axiom of constructibility is rich enough to allow one to talk about the concept of
sets in the sense of large cardinals within a model of V = L. We will discuss this
further in Sect. 2.5.

Finally, we can remark that the ‘extrinsic approach’ makes axioms depend on
their consequences. This conflicts with the traditional view that considers axioms
to be the starting point for demonstration from which, ideally, the truth of the
other mathematical statements can be derived. Here, the situation is reversed: the
consequences of an axiom legitimate the axiom, or they lead us to reject it when we
have some ‘counter-evidence’ for such mathematical consequences. In this picture,
then, any part of mathematics, including axioms, could be altered in the light of
‘evidence’.

2.5 The Axiom of Constructibility

We now illustrate the main candidates for new axioms considered in contemporary
set theory. We now disregard all the criticisms made so far of intrinsic and extrinsic
motivations in general and we discuss more specific arguments that were suggested
in favor or against these statements.

The oldest of these axioms is certainly the Axiom of Constructibility V = L
that asserts that every set is constructible, namely every set belongs to Gödel’s
constructible universe L. L is inductively defined as follows:

• L0 = ∅;
• Lα+1 is the set of all subsets a of Lα that are definable with parameters in Lα

(i.e. there is a formula ϕ(x, a1, . . . , an) with parameters ai ∈ Lα such that a =
{x ∈ Lα; Lα |� ϕ(x, a1, . . . , an)});
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• when λ is a limit ordinal, Lλ =⋃α<λ Lα.
Finally, L := ⋃α∈Ord Lα (L is a class). The constructible universe was introduced
by Gödel in 1938 to prove the consistency of the continuum hypothesis. In fact, the
axiom of constructibility implies the generalized continuum hypothesis. Moreover,
it implies the Axiom of Choice, and it settles many other questions that are
independent from ZF, for instance it implies the negation of the Suslin’s hypothesis.

Sentiment in favor of the Axiom of Constructibility can be found for example
in Fraenkel et al. (1973). Nevertheless, the axiom of constructibility counts very
few supporters among contemporary set theorists. We already mentioned that Gödel
himself did not consider V = L as a valid candidate axiom for set theory, as he
believed that CH was actually false. On the other hand, there is no clear evidence
for the Continuum Hypothesis or its negation that would count as a corroboration or
a falsification for the Axiom of Constructibility. Maddy suggested that V = L should
be rejected because it implies the existence of a an analytic (�1

2) non-measurable set
of reals,1 but it is not clear on what ground this consequence should be considered
implausible or unsuitable (we will discuss Lebesgue measurability in Sect. 2.8).

The strongest objections to the Axiom of Constructibility are related to its
apparent restrictiveness. In fact, L is provably the smallest inner model of ZFC (i.e.
the smallest class satisfying the axioms of ZFC and containing all the ordinals). It
follows that, if we consider other axioms such as the Axiom of Measurable cardinals
(a large cardinal axiom that establishes the existence of a measurable cardinal),
despite the incompatibility of this axiom with V = L, it is always possible to talk
about the concept of set in the sense of V = L within the theory ZFC+∃κ measurable:

we can see why most set theorists reject V = L as restrictive: adopting it restricts the
interpretative power of the language of set theory. The language of set theory as used by
the believer in V = L can certainly be translated into the language of set theory as used by
the believer in measurable cardinals, via the translation ϕ �→ ϕL. There is no translation in
the other direction. (Steel (Feferman et al. 2000))

Actually, as Hamkins showed in (2014), there is a sense in which the converse is
also possible.

even if we have very strong large cardinal axioms in our current set-theoretic universe V,
there is a much larger universe V + in which the former universe V is a countable transitive
set and the axiom of constructibility holds.

This means that, even the Axiom of Constructibility is reach enough to allow us
to talk about the concept of sets in the sense of large cardinals within a model of
V = L.

1 “There are also extrinsic reasons for rejecting V = L, most prominently that it implies the
existence of a�1

2 well-ordering of the reals, and hence that there is a�1
2 set which is not Lebesgue

measurable.” (Maddy 1988)
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2.6 Large Cardinals Axioms

Let us discuss now Large Cardinals Axioms – there is a whole hierarchy of large
cardinals axioms, we will discuss just some notions–. A large cardinal is any
uncountable cardinal κ which is at least weakly inaccessible, namely which satisfies
the following two properties:

(1) for every cardinal γ < κ, we have γ+ < κ;
(2) for every subset X ⊆ κ of size < κ, we have supX < κ.

If we replace the condition 1 with the stronger ‘for every cardinal γ < κ, we
have 2γ < κ’, then we have the notion of strong inaccessible cardinal; we will
simply call inaccessible the strong inaccessible cardinals. We can observe that the
properties above are all satisfied by ℵ0, thus the axioms of weakly and strongly
inaccessible cardinals establish that there are other cardinals than ℵ0 with those
properties. There is no precise definition of what a large cardinal axiom is, but we
can say that all large cardinals axioms establish or imply the existence of weakly
inaccessible cardinals.

The existence of a weakly inaccessible cardinal yields the consistency of ZFC, as
if κ is a weakly inaccessible cardinal, then Lk is a model of ZFC. Since, by Gödel’s
incompleteness theorem, ZFC cannot prove its own consistency, it follows that the
existence of large cardinals cannot be proven within ZFC; neither the consistency of
large cardinals axioms can be proven from the consistency of ZFC. This marks an
important difference between large cardinals axioms and other kind of axioms such
as V = L whose consistency can be proven relative to the consistency of ZFC.

The following motivations were suggested in favor of the existence of inaccessi-
ble cardinals:

• Uniformity. Roughly, this is the belief that the universe of sets should be uniform,
in the sense that “it doesn’t change its character substantially as one goes over
from smaller to larger sets or cardinals, i.e., the same or analogous states of affairs
reappear again and again (perhaps in more complicated versions)” (Wang 1974,
pp. 189–90, see also Kanamori and Magidor 1978, Solovay et al. 1978, and
Reinhardt 1974); ℵ0 is the first cardinal with the properties (1) and (2) above,
hence a cardinal with the same property must reappear at higher levels.

• Inexhaustibility. The universe of all sets is too rich to be exhausted by some basic
operations such as power set or replacement, therefore there must be a cardinal
which is not generated by those operations (see e.g. Gödel 1947, Wang 1974 or
Drake 1974); such a cardinal can be proven to be inaccessible.

• Reflection. The universe of sets is too complex to be completely described by
some property, hence anything that is true of the entire universe, must be true at
some initial segment of it, it must ‘reflect’ at some Vκ. In particular there must
be a Vκ which is also closed by the power set and replacement operations; then
κ can be proven to be inaccessible.
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All these arguments seem to rest on mathematical platonism in an essential
manner, as they appeal on some specific conception of ‘the universe of sets’ as
uniform, inexhaustible, indescribable and so on. But even assuming a platonic point
of view, what reasons do we have to believe that the universe of sets has such
features? Some issues arise, for instance, with the claim of uniformity. In fact, there
are properties that do hold at ℵ0 and do not occur at higher cardinals. For instance,
Ramsey’s theorem establishes that for every n,m < ℵ0 and for every coloring of
the n-tuples of ℵ0 into m colors, we can find a set H ⊆ ℵ0 of size ℵ0 such that all
the n-tuples ofH have the same color, this is called a homogeneous set; on the other
hand, it can be proven that no uncountable cardinal can satisfy the same property:
if we replace ℵ0 with an uncountable κ, we get a statement that is provably false in
ZFC.

Typically, large cardinals generalize properties of ℵ0. For instance, the notions
of Ramsey cardinal, Erdös cardinal, weakly compact cardinals and others can be
defined as special generalizations of the theorem of Ramsey that we just mentioned;
some limitations are necessary because as we said the direct generalization of
Ramsey Theorem to an uncountable cardinal is provably false in ZFC. We consider,
for example, the axiom of weakly compact cardinals which establishes the existence
of an uncountable cardinal κ such that for every coloring of the pairs of ordinals of
κ into less than κ many colors there is a homogeneous set of size κ. Once again, we
stress the fact that generalizations are dangerous as they may lead to inconsistencies
as in the case above.

The axiom of weakly compact cardinals can also be defined as a generalization of
Compactness theorem to the infinitary language Lκ,κ . Given two infinite cardinals
κ, λ,we denote by Lκ,λ the infinitary language that roughly allows conjunctions and
disjunctions of less than κ many formulas, and quantifications over less than λmany
variables. Thus, for instance Lω,ω corresponds to first order logic. An uncountable
cardinal κ is weakly compact if, and only if, whenever we have a theory T in Lκ,κ

with at most κ non logical symbols, if T is < κ-satisfiable (i.e. every family of
less than κ many sentences of T is satisfiable), then T is satisfiable. If we remove
the restriction to ‘theories that have at most κ non-logical symbols, we have the
notion of strongly compact cardinal. Other large cardinals axioms can be defined
as generalizations of compactness theorem. Such generalizations imply interesting
‘compactness results’, namely given some structure, we assume that all its smaller
substructures satisfy a certain property and we deduce that the whole structure
satisfy the same property. For instance assuming a strongly compact cardinal κ it is
possible to prove that every abelian group of size at least κ is free abelian whenever
all its smaller subgroups are free abelian. The axiom of constructibility on the other
hand is the ‘cemetery of compactness properties’: for instance, compactness for
the freeness of abelian groups is actually false in V = L. The analysis of such
compactness or incompactness results gives us no strong motivation to support
one theory over the other, as there is no cogent reason to deem compactness more
suitable than incompactness or the converse. Not even Uniformity helps us in this
case, as ZFC proves both compactness and incompactness results: for example,
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König’s lemma can be regarded as a compactness result,2 but on the other hand
its generalization to ℵ1 is provably false in ZFC (there are Aronszajn trees).

We can see that the notion of weakly compact cardinal can be defined both
as a combinatorial and a model-theoretic notion. The same occur for other large
cardinals, in fact it is often the case that certain mathematical problems arising in
completely different contexts and fields lead to the same large cardinal notions. This
fact is sometimes considered to be an intrinsic motivation for large cardinals, but
however remarkable this might seem, it is not clear how it can actually be considered
as evidence for these axioms, rather than just a practical advantage.

The most powerful large cardinals axioms are the ones that can be defined as
elementary embeddings of V into some inner model of ZFC. We discuss some of
these notions in the next section.

2.7 Measurable Cardinals and Elementary Embeddings

In the history of large cardinals axioms the introduction of measurable cardinals
was probably the most crucial step as it lead to the theory of elementary embeddings
that are extremely useful in solving set theoretical problems and answering other
mathematical questions. Let us discuss, then, these notions.

In 1902, Lebesgue formulated the measure problem: he asked whether there is
a function that associates to every bounded set of reals a real number between
0 and 1 such that the function is not identically 0, it is translation invariant and
countably additive. Motivated by this question, he introduced his famous Lebesgue
measure (a function with these properties) and asked whether every bounded set
of reals was Lebesgue measurable, namely whether his measure was defined over
every bounded set of reals. Vitali soon found a counterexample under the Axiom of
Choice, the problem was then reformulated by replacing the condition of translation
invariance with ‘every singleton must have measure 0’, the minimal request for
avoiding trivial solutions. The problem was still proven to be independent from
ZF, in fact a counterexample can be built under CH. At this point Banach realized
that the problem did not depend on the structure of R, and it could be reformulated
for a general set S : is there a function μ : P(S)→ [0, 1] which is not identically
0, assigns to every singleton the value 0 and is countably additive? The solution of
this problem comes down to the existence of certain large cardinal, the real valued
measurable cardinals. A cardinal κ is real valued measurable if every set of size κ
has a measure μwith the properties above which moreover is κ-additive, namely for
every family {Xα}α of less than κ many sets, μ(

⋃
α Xα) =

∑
α μ(Xα). This is an

example of how Maddy’s approach to ‘proper methods’ works, namely real valued

2Given a tree of height ω whose levels are finite, if every finite subtree has a branch of the same
length as the height subtree, then the whole tree also has a branch of the same length as the height
of the tree.
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measurable cardinals arose naturally as the solution to a specific mathematical
problem.

Now, if we require that not only every set of size κ has a measure, but also the
measure takes just two values 0 or 1, then we have measurable cardinals. In fact
this notion has an extremely powerful characterization: κ is measurable if and only
if one can define a non-trivial elementary embedding3 j : V → M where M is a
transitive class, such that κ is the least cardinal that is moved by j. By using this
characterization, Scott was able to prove that if there is a measurable cardinal, then
V �= L. Thus, measurable cardinals, as well as any other stronger large cardinal, are
incompatible with the axiom of constructibility.

Many powerful large cardinal notions can be defined in terms of elementary
embeddings where we require the transitive classM to be ‘closer’ to V. The ultimate
large cardinal notion expressible in terms of elementary embeddings is provably
inconsistent with ZFC. This is the notion of Reinhardt cardinal, an uncountable
cardinal κ for which there is a non trivial embedding j of V into itself where κ is
the least cardinal which is moved by j.

Large cardinals axioms that establish the existence of elementary embeddings
are more successfully justified by their fruitfulness, as they settle a number of
questions that are independent from ZFC. The mort remarkable application of such
cardinals is the theory of projective sets that under these cardinals gets a very
elegant and exhaustive analysis. In fact, the existence of infinitely many Woodin
cardinals implies that every projective set of reals is Lebesgue measurable, has the
perfect set property and the Baire property, the so-called regularity properties. These
considerations brings us to discuss Determinacy hypotheses, which is the object of
the next section.

2.8 Determinacy Hypotheses

The study of regularity properties dates back to the earliest twentieth century from
the work of the french analysts Borel, Baire and Lebesgue. Research in this area
led to the development of an independent discipline, known as descriptive set
theory. About 40 years later, it was shown that the open questions that descriptive
set theorists were trying to solve (namely whether every set of real has the
regularity properties above) could not be answered within ZFC (as we have seen
for Lebesgue mesurability). In 1962 Mycielski and Steinhaus introduced the Axiom
of Determinacy AD which was proven to solve such problems. AD is the assertion
that every set of reals is determined, that means that for every set of reals A, one of
the two players has a winning strategy in the following game of length ω.We regard
A as a subset of ωω (in set theory a real is an omega sequence of natural numbers),

3A function j : V → M is an elementary embedding if for every formula ϕ and parameters
a1, . . . , an one has V |� ϕ(a1, . . . , an) if and only ifM |� ϕ(j (a1), . . . , j (an)).
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the two players I and II alternatively choose natural numbers n0, n1, n2, . . . At the
end of the game a sequence 〈ni; i ∈ N〉 is generated, player I wins if and only if the
sequence belongs to A.

The Axiom of Determinacy implies that all sets of reals are Lebesgue measur-
able, have the perfect set property and the Baire property. Moreover, the statement
that every set of reals has the perfect set property implies a weak form of the
continuum hypothesis: every uncountable set of reals has the same cardinality as
the full set of reals. On the other hand, AD implies the negation of the generalized
continuum hypothesis. Despite its fruitfulness, AD was never seriously considered
as a valid candidate new axiom for set theory as it contradicts the Axiom of Choice
– here is a lucid example of the fact that often in mathematics the priority goes to
the consequences rather than the axioms; but the consequences (here the Axiom of
Choice) are themselves in need of justifications–. This led to investigate two distinct
directions. The first approach was to assume AD in a quite natural subuniverse,
namelyL(R), together with AC in the full universe V (L(R) is the smallest transitive
inner model of ZF containing all the ordinals and the reals). The second approach
was to consider a weakening of AD, called Projective Determinacy, PD. Projective
Determinacy is the statement that every projective set of reals is determined. PD
implies that every projective set of reals is Lebesgue measurable, has the perfect
set property and the Baire property, and unlike AD, Projective Determinacy is not
known to contradict the Axiom of Choice. Projective Determinacy follows from the
existence of infinitely Woodin cardinals and this is the reason why this large cardinal
assumption implies that every projective set of reals has the regularity properties
above.

2.9 Ultimate L and Forcing Axioms

As we said, the Axiom of Constructibility and the Axiom of Determinacy both
decide the continuum problem (the former implies GCH, the latter implies a
weak form of CH, but it also implies the negation of the generalized continuum
hypothesis). Large cardinals axioms, on the other hand, do not decide the size of the
continuum. In this regard, a quite promising direction of research was considered
which combine large cardinals with L and it may decide the size of the continuum,
this approach is known as V = Ultimate L.

To understand this view, consider the intuition behind the Axiom of Con-
structibility: L is build up from a cumulative process where each stage is obtained
from the previous one by a canonical operation, namely by taking the definable
subsets of the previous stage; in this process only few ‘canonical’ sets are accepted
at each stage. The idea behind V = Ultimate L is that, while we want large cardinals
to exist in the universe of sets, we only want to include sets that are canonical
or necessary after a fashion. Ultimate L, proposed by Woodin, is the alleged
inner model for supercompact cardinals. Roughly this would be an L-like model
where lives a supercompact cardinal. Such a model was not build yet and it is
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an open problem whether it can actually be found, but it can be proven that
if the construction of the Ultimate L is successful, then it would contain also
all the stronger large cardinals (i.e. stronger than supercompact cardinals). More
importantly, V = Ultimate L would imply CH.

Magidor, however, expressed some doubts about this approach:

It is very likely that the Ultimate L, like the old L, will satisfy many of the combinatorial
principles like ♦ω1 . These principles are usually the reason that “L is the paradise of counter
examples”. They allow one to construct counter examples to many elegant conjectures. (The
Suslin Hypothesis is a famous case). (Magidor 2012)

As for the Axiom of Constructibility, V = Ultimate L rests on the idea that sets
are obtained through a cumulative process which is a way to allow only canonical
sets of some sort, while other views rely on the opposite slogan that the concept
of set should be as rich as possible. The most important example of such a liberal
view is given by Forcing axioms. Forcing is the main tool for proving independence
results in set theory. There are essentially two main approaches for building models
of set theory and proving consistency results: one is through inner models which are
obtained roughly by ‘restricting’ V into a subclass; the other is by using the Forcing
technique where, conversely, V is expanded to a larger universe. Forcing axioms
roughly establish that anything that can be forced by some ‘nice’ forcing notions (a
forcing is simply a partially ordered set) is a set in the universe. For instance, the
two most fruitful Forcing Axioms, PFA and MM, are the following statements.

The Proper Forcing Axiom PFA states that if P is a forcing notion that is proper
and D is a collection of ℵ1 many dense subsets of P, then there is a generic filter that
meets all the dense sets in D.

Roughly, this says that anything that can be forced by a proper forcing is a set in
the universe.

Martin’s Maximum MM asserts that if P is a forcing notion that preserves
stationary subsets of ω1 and D is a collection of ℵ1 many dense subsets of P, then
there is a generic filter that meets all the dense sets in D.

Roughly, this says that anything that can be forced by a forcing that preserves
stationary subsets of ω1 is a set in the universe. We will not discuss these notions
in the details, we should only point out that MM is the strongest possible version
of a Forcing Axiom and it was proven to be consistent relative to the existence of a
supercompact cardinal (this was suggested as another motivation for large cardinals
axioms). Forcing Axioms settle many important questions that cannot be answered
within ZFC, but more importantly they find remarkable applications in cardinal
arithmetic. In fact, Foreman Magidor and Shelah proved in 1988 that Martin’s Max-
imum settles the size of the continuum, it implies that the 2ℵ0 = ℵ2. Later in 1992,
Todorčević and Veličkovic̀ showed that even the weaker axiom PFA implies that
the size of the continuum is ℵ2. Other remarkable applications of Forcing Axioms
include the singular cardinals hypothesis (from PFA), the Axiom of Determinacy in
L(R), the statement that any two ℵ1-dense subsets of R are isomorphic (from PFA),
every automorphism of the Boolean algebra P(ω)/f in is trivial (from PFA), the ℵ2-
saturation of the ideal of non stationary sets on ω1 (from MM), and the reflection of
stationary subsets of κ for any regular cardinal κ ≥ ω2 (from MM).
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2.10 Conclusion

We have adopted Maddy’s distinction of intrinsic and extrinsic justifications and
we have argued that both the self evidence and the ‘fruitfulness’ criterion are
problematic. We have further analyzed more specific motivations proposed in favor
of various new axioms candidates for set theory. This analysis should suggest that
none of those arguments can unquestionably justify the choice of one theory of sets
over the others.
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Chapter 3
Maddy On The Multiverse

Claudio Ternullo

Abstract Penelope Maddy has recently addressed the set-theoretic multiverse, and
expressed reservations on its status and merits (Maddy, Set-theoretic foundations.
In: Caicedo et al (eds) Foundations of mathematics. Essays in honor of W. Hugh
Woodin’s 60th birthday. Contemporary mathematics. American Mathematical Soci-
ety, Providence, pp. 289–322, 2017). The purpose of the paper is to examine her
concerns, by using the interpretative framework of set-theoretic naturalism. I first
distinguish three main forms of ‘multiversism’, and then I proceed to analyse
Maddy’s concerns. Among other things, I take into account salient aspects of
multiverse-related mathematics, in particular, research programmes in set theory for
which the use of the multiverse seems to be crucial, and show how one may provide
responses to Maddy’s concerns based on a careful analysis of ‘multiverse practice’.

3.1 The Problem

The development of set theory has progressively brought to the fore the problem of
whether set theory should be interpreted as the theory of a single universe of sets,
V , or whether it should be viewed as a theory about multiple structures (universes),
that is, about a set-theoretic ‘multiverse’.
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The universe/multiverse dichotomy is just an ontological (semantic) variant of
the pluralism/non-pluralism dichotomy. The (proof-theoretic) pluralist believes that
there is no unique, or preferred, theory T of sets, and that all theories express, to
some extent, some properties of sets. For instance, the pluralist may believe that
both ZFC+CH and ZFC+¬CH are equally valid and interesting theories of sets,
insofar as they express alternative, but, in principle, equally acceptable, properties of
sets. Multiversism is pluralism in its ontological/semantic form. It should be noted
that one may be both a pluralist and a multiversist: that is, one may both believe
that there are many, equally valid theories of sets and also that there are many,
equally valid set-theoretic structures. Non-pluralism and, at the ontological level,
universism, hold, respectively, that there is a single correct theory T of sets, or that
there is a unique structure embodying all set-theoretic truths.1

The issue of which, between universism and multiversism, suits best set theory
and its goals is crucial both for the philosophy of set theory and, more generally,
for the philosophy of mathematics, as arguments in favour of multiversism may be
taken to count as arguments in favour of the absolute undecidability of some set-
theoretic statements, and we have evidence that multiversism is precisely construed
in this way by some authors.2

The terms of the conceptions sketched above, and their relevance for the
philosophy of mathematics, are rather uncontroversial to anyone. What, however,
does seem contentious is whether the universe/multiverse dichotomy, and the
possible adoption of a specific conception of the set-theoretic multiverse, is relevant
to set-theorists and to their mathematical work. We know that set-theorists work
with a plurality of models, such as models obtained through forcing, ultrafilter
constructions, elementary embeddings, inner models like L, and many others. Now,
how does the use of one (or more) collection(s) of set-theoretic models, that is, of the
‘multiverse(s)’ of a given theory T , contribute to their work? Are there any practical
and foundational advantages in taking some collections of models, such as, say,
countable transitive models or set-generic extensions of ZFC, as being especially
relevant to set-theoretic work, and also as acting as a foundational framework for
set theory?

This paper aims to provide answers to these questions, by using a specific, and
especially authoritative, point of view, that of Maddian naturalism, and, in particular,
by responding to the concerns that, in Maddy (2017), Maddy has expressed about
the value and usefulness of a ‘multiversist’ approach.3

1I am indebted to Koellner (2014) for this articulation of the pluralist/non-pluralist positions.
2This seems to be Väänänen’s point of view in Väänänen (2014). Väänänen’s main goal is to
articulate a position which allows one to express the absolute undecidability of set-theoretic
statements which are currently undecidable in several important theories (such as ZFC plus large
cardinals). See also Sect. 3.2.1.
3It should be noted that the article mentioned is, in fact, an appraisal of different competing
foundations of mathematics, also including set theory, and of the roles such competing foundations
carry out. Only one specific section of the article is explicitly devoted to examining the prospects
of the set-theoretic multiverse.
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Over the years, Maddian naturalism has progressively, and coherently, come to
the fore as one of the most influential positions in the philosophy of set theory, and
in general, in the naturalist philosophy of mathematics. The position is generally
associated to the following views:4

1. Metaphysical issues are irrelevant to the practical development of set theory, as
well as to the justification of its internal techniques and results

2. The proper method of a naturalist philosophy of set theory consists in using
rational methodologies attentive to intra-set-theoretic practice which altogether
rule out extra-mathematical considerations

3. The justification and adoption of set-theoretic principles/axioms is also guided
by methodologies of this sort

Especially points 1. and 2. in the summary above are crucial for set-theoretic
naturalists: we ought not to evaluate mathematics, its goals and results, using extra-
mathematical views or conceptions. The professed ideal of a ‘second philosophy’,
that is of a philosophy of set theory which is especially attentive to practice, is the
central tenet of the set-theoretic naturalist.5

Now, one further view distinctively associated to Maddy’s naturalism is that our
conception of the universe, V , is justified in light of set-theoretic practice, and in
view of our set-theoretic purposes, insofar as set theory is pre-eminently guided
by the strive to find a unifying account of mathematical phenomena. Therefore,
if the ‘unification’ goal has priority over other goals, we ought to accept V as
being the most suitable foundational framework for our set-theoretic investigations.
This, in turn, sanctions the view that set theory essentially deals with proving
facts about/establishing properties of V , a view which, as is clear, places Maddian
naturalism in the universist camp.

In Maddy’s works, the set-theoretic goal of unification has progressively taken
the shape of the maxim ‘unify’. Through fostering ‘unify’, set theory is thought to
have been able to become the unique and far-reaching subject that it is today, and
the maxim also serves as a spur to pursue further the search for solutions to the open
set-theoretic problems. This point of view is articulated by Maddy as follows:

If set-theorists were not motivated by a maxim of this sort, there would be no pressure to
settle CH, to decide the questions of descriptive set theory, or to choose between alternative
axiom candidates; it would be enough to consider a multitude [my italics] of alternative set
theories. (Maddy 1997, p. 210)

4Throughout the paper, I shall use ‘Maddian naturalism’ and ‘set-theoretic naturalism’ (sometimes,
just ‘naturalism’) interchangeably. Of course, there are many other ways to spell out naturalism in
the philosophy of mathematics. An overview of all such positions is in Paseau (2016).
5Maddy herself has put forward and discussed the central aspects of set-theoretic naturalism as a
form of ‘second philosophy’ in several works, starting with Maddy (1996). Second philosophy is
further delineated in Maddy (2007), as well as in Maddy (2011).
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As we know, the ‘independence phenomenon’ has introduced a rather different
picture of the ontology of set theory, one which seems to be more compatible with
a pluralist account of set-theoretic phenomena. This poses pressing questions for
the Maddian naturalist described above: should she entirely disregard the issue of
pluralism or actively engage with it? Moreover, since ‘unification’ concerns seem
paramount in her account of set theory, on what alternative grounds may she adopt
a pluralist picture? What will be of ‘unify’ within such a picture?

The paper also aims to explore these questions, with a view to providing
arguments which may support the following two claims: the universe/multiverse
dichotomy is relevant, in many ways, to the naturalist’s approach, and, secondly, the
multiverse may be as acceptable as the universe, from a naturalist perspective, for
the foundational purposes of set theory.

The structure of the paper is as follows. I first review several conceptions of
the set-theoretic multiverse (Sect. 3.2), and provide a classification. I then proceed
to summarise Maddy’s concerns (Sect. 3.3), which, overall, will take the shape of
five main problems for the multiverse supporter. Finally, in the larger Sect. 3.4, I
discuss aspects of the multiverse and of multiverse-related mathematics which seem
to adequately respond to the issues raised in Sect. 3.3.

3.2 Multiverse Conceptions

First, we need to clarify what the set-theoretic multiverse consists in, and this
may already be a daunting task. Even based on a minimal perusal of the existing
literature, it is clear that there is no such thing as one mathematical conception
of the set-theoretic multiverse, but rather a bunch of them, and, in addition,
several, alternative research programmes which are variously connected to all such
conceptions.

One main difficulty in addressing the set-theoretic multiverse, therefore, is
precisely the absence of a shared framework wherein one may discuss results and
methodologies. In what follows, I propose a classification of multiverse conceptions,
which suits my specific goals. There is nothing compelling about the classification,
nor is there any a priori need to classify multiverse conceptions, for that matter.6

6In Antos et al. (2015), the authors adopt a classification based on the realism/non-realism divide.
Hamkins’ conception, for instance, counts as realist, whereas the Hyperuniverse Programme as
non-realist. Väänänen proposes a different classification in Väänänen (2014), pp. 191–2: he divides
conceptions into countable (Hyperuniverse Programme), full (Hamkins) and set-generic (Woodin,
Steel).
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3.2.1 Naive Multiversism

It is maybe noteworthy to mention that some form of multiverse thinking was
already at work in the characterisation of the universe, since, historically, one could
find the first description of a multiverse in Zermelo’s characterisation of V . As
is known, Zermelo proved the (quasi-)categoricity of his system of second-order
set theory by showing that Vκ , where κ must be, at least, a strongly inaccessible
cardinal, is, up to isomorphism, a model of the axioms ZFC2 (that is, ZFC with
second-order Separation and Replacement).7 However, since there is an absolutely
infinite collection of strongly inaccessible cardinals, one may generate Vκ ’s of
increasing height, a ‘tower’ of universes, each the rank initial segment of the other.
This could, in turn, be seen as a height multiverse, in which all universes have the
same width (that is, no ‘new’ subsets may be added), but different heights (‘new’
ordinals, and ordinal-indexed stages, may be added).8

Leaving history aside, the most basic way to express a multiversist attitude is
through taking note of the existence of many models of the axioms (of ZFC, for
instance). As said at the beginning, we all know that set-theorists work with several
kinds of models, through which they may, among other things, prove independence
results. ‘Naive multiversism’ is just the idea that no single model M of a theory of
sets T , should be viewed as ‘special’, as being the universe of sets, the collection of
all sets.

Saharon Shelah, for instance, has compared models of the axioms to individuals,
each, presumably, endowed with unique features, but all belonging to the same
species.9

Naive multiversism could also be characterised in a different way, that is, as
a conception which incorporates semantic pluralism in an ontologically monist

7See Zermelo (1930). An examination (and reprise) of Zermelo’s proof is in Martin (2001).
8For Zermelo’s height potentialism, see Linnebo (2013) and Ternullo and Friedman (2016). Of
course, historically, Zermelo did not construe the ideas contained in Zermelo (1930) in the
current multiversist terms. Väänänen suggests a different reason why Zermelo’s characterisation
of V ought not to be viewed as an instance of the multiverse. He notes that believing in
the existence of an inaccessible κ in V means accepting the axiom: ‘∃κ inaccessible’, which,
although clearly independent from ZFC, is not indeterminate in the same sense as, say, CH is.
According to Väänänen, the multiverse phenomenon takes place in the presence of statements
which are indeterminate in the sense specified. In other terms, if V is Vκ , where κ is the least
strongly inaccessible cardinal, then ‘∃κ inaccessible’ is just false, and there is no ‘parallel’ V
with inaccessibles. Cf. Väänänen (2014), p. 187. Finally, one could resist this interpretation of
Zermelo’s conception by asserting that the set-theoretic hierarchy is, in fact, fully actual in height
and width. For a fuller examination of the actualism/potentialism dichotomy, see Antos et al. (2015)
or Koellner (2009).
9Cf. Shelah (2003), p. 211. It is worth quoting the passage in full: ‘My mental picture is that we
have many possible set theories, all conforming to ZFC. I do not feel “a universe of ZFC” is like
“the Sun”, it is rather like “a human being” or “a human being of some fixed nationality”’.
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framework. Recently, Väänänen seems to have articulated a conception of this sort.
He says:

. . .we want two universes in order to account for absolute undecidability and at the same
time we want to say that both universes are everything. We solve this problem by thinking
of the domain of set theory as a multiverse of parallel universes, and letting variables
of set theory range intuitively over each parallel universe simultaneously. The axioms of
the multiverse are just the usual ZFC axioms and everything that we can say about the
multiverse is in harmony with the possibility that there is just one universe. But at the same
time the possibility of absolutely undecidable propositions keeps alive the possibility that,
in fact, there are several universes. The intuition that this paper is trying to follow is that the
parallel universes are more or less close to each other and differ only at the edges. (Väänänen
2014, p. 182)

The main reason for this choice is that:

..the intuition about the multiverse is not that everything that is logically possible should also
happen in some universe (which would lead to the full multiverse), but that the multiverse
is one universe the boundaries of which are verschwommen (“blurred”), as von Neumann
wrote. (Väänänen 2014, p. 199)

Väänänen distinguishes set-theoretic statements which are invariant for all
(potentially alternative, but, in fact, co-existing) V ’s, and those which are not. ZFC
belong to the first class, whereas CH to the second one. ‘Multiverse axioms’ will
capture this intuition: introducing a special logic for independence, and a special
symbol for independent statements such as CH ( �=CH), one may yield the theory
ZFC+ �=CH, which, on the one hand, expresses the truth of ZFC over all of V ’s,
and, on the other, the fact that there are V ’s which violate CH.10

3.2.2 Instrumental Multiversism

A second, more developed, approach to the multiverse may be called ‘instrumental
multiversism’. By this view, the multiverse is an important mathematical tool, whose
philosophical (ontological as well as epistemological) status may not be so relevant.

We may identify the ‘multiverse-as-a-tool’ conception with two specific, and
influential, research programmes in the foundations of set theory. The first is the
set-generic multiverse, first addressed by Hugh Woodin, and then taken up and re-
formulated by John Steel.11 The second is the Hyperuniverse Programme (HP),
initiated and investigated by Sy Friedman and his collaborators.12 I start with the
latter, which is the form of multiverse I know best.

10See Väänänen (2014), pp. 196–202.
11For Woodin’s set-generic multiverse, see Woodin (2011), although earlier instances of multiverse
thinking may also be found, as will be shown later in this paper, in Woodin (2001). Steel’s
conception of the set-generic multiverse is in Steel (2014).
12For this conception, see, essentially, Arrigoni and Friedman (2013), and Antos et al. (2015).
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The hyperuniverse, as explained by the authors, is:

. . .the collection of all transitive countable models of ZFC. Within the programme, such
models are viewed as a technical tool allowing set-theorists to use the standard model-
theoretic and forcing techniques (the Omitting Types Theorem and the existence of
generic extensions, respectively). The underlying idea is that the study of members of
the hyperuniverse allows one to indirectly examine properties of the real universe V [. . .].
(Antos et al. 2015, p. 2484)

The hyperuniverse becomes indispensable once one realises that theories T
expressing maximality principles which address ‘extensions’ of V have models if
and only if V is countable.13 The hyperuniverse, therefore, has no significance per
se, but only as a way to develop the study of: (1) alternative maximality principles;
(2) first-order consequences of maximality principles (or refinements thereof).

I now proceed to examine the set-generic multiverse. Woodin defines it as the
smallest collection of universes VM generated by a countable transitive model M
of ZFC, such that, if M ∈ VM , then also all forcing extensions of M (and generic
refinements thereof) are in VM . It should be noted, already, that Woodin, ultimately,
rejects the ‘multiverse position’, as he shows that, modulo the -conjecture and
the assumption of the existence of class-many Woodin cardinals (for which see
Sect. 3.4.2.1), reasonably formulated multiverse laws must be violated. However,
later on (again, Sect. 3.4.2.1) I will show that multiverse thinking has proved
fundamental for many of Woodin’s mathematical goals.

Steel characterises the set-generic multiverse as a collection of ‘worlds’. He uses
a two-sorted language, one sort for sets and one for worlds. Steel’s multiverse is
modelled upon Woodin’s VM , but there is a crucial difference between the two
accounts: Steel’s multiverse is expressed by a collection of axioms, which its author
calls MV.14 Now, what matters most to Steel is to ‘maximise the interpretative
power’ of his theory, therefore the MV axioms prescribe that all worlds share, as
basic multiverse truths, ZFC and large cardinals (LCs).15 Where, obviously, worlds
do not agree with each other is on the truth-value of independent statements such as
CH. Such statements are provisionally deemed not to be ‘expressible’ in multiverse
language, and one of the purposes of Steel’s MV theory is precisely to explore the
limits of ‘expressibility’ (and ‘meaningfulness’) within multiverse language (I shall
return to this in Sect. 3.4.4).

13See Sects. 3.4.1 and 3.4.2 later in this paper. Further technical details concerning the use of V -
logic and the ‘reduction to the hyperuniverse’ may be found in Antos et al. (2015) and in Friedman
(2016).
14Moreover, some of these axioms (such as Axiom 2d [Amalgamation]) are not valid in Woodin’s
multiverse. Woodin has also tried to axiomatise the generic multiverse, by introducing the
aforementioned ‘multiverse laws’. However, these laws are so very much ad hoc that one would
naturally refrain from viewing them as axioms.
15This is because, given any two theories T1 and T2 extending ZFC having the same consistency
strength as ZFC+“exist infinitely many Woodin cardinals”, then at least up to �1

ω ‘statements’
(second-order arithmetic), we have that either T1 ⊆ T2 or T2 ⊆ T1, and this result may be extended
to slightly more complex sentences.
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Overall, also the set-generic multiverse exemplifies a practice-oriented attitude
to the multiverse: in the same way as HP is guided by the goal of exploring
maximality principles in (countable) models satisfying ZFC, Steel’s set-generic
multiverse aims to capture further set-theoretic truths in all set-generic universes
which think ZFC+LCs.

3.2.3 Ontological Multiversism

The last strand of multiversism I describe is very different from all those described
so far, and may legitimately be called ‘ontological multiversism’, that is, the view
that the multiverse is a determinate reality, consisting of particular entities, the
models of set theory. Hamkins’ broad (radical) multiverse conception is such a form
of multiversism.

Hamkins characterises this view as follows:

..the fundamental objects of study in set theory have become the models of set theory, and
set-theorists move with agility from one model to another. [. . .] This abundance of set-
theoretic possibilities poses a serious difficulty for the universe view, for if one holds that
there is a single absolute background concept of set, then one must explain or explain away
as imaginary all of the alternative universes that set-theorists seem to have constructed.
(Hamkins 2012, p. 418)

As to the issue of what universes there are in the multiverse, Hamkins says:

The background idea of the multiverse, of course, is that there should be a large collection of
universes, each a model of (some kind of) set theory. There seems to be no reason to restrict
inclusion only to ZFC models, as we can include models of weaker theories ZF, ZF−, KP,
and so on, perhaps even down to second-order number theory, as this is set-theoretic in
a sense. At the same time, there is no reason to consider all universes in the multiverse
equally, and we may simply be more interested in the parts of the multiverse consisting of
universes satisfying very strong theories, such as ZFC plus large cardinals. (Hamkins 2012,
p. 436)

Thus, Hamkins’ multiverse is so broad as to include even non-well-founded
models, and models of any collection of set- and class-theoretic axioms. Therefore,
Hamkins’ view is a form both of proof-theoretic and model-theoretic (ontological)
pluralism I hinted at in the opening of the paper (p. 1). One peculiar feature of
this conception is worth stressing straight away: according to its author, universes
in the broad multiverse should be viewed as independent existents, just like more
‘standard’ mathematical entities (numbers, shapes, transfinite ordinals, etc.). The
following quote illustrates Hamkins’ full avowal of ontological realism (Platonism):

The multiverse view is one of higher-order realism–Platonism about universes–and I defend
it as a realist position asserting actual existence of the alternative set-theoretic universes into
which our mathematical tools have allowed us to glimpse. The multiverse view, therefore,
does not reduce via proof to a brand of formalism. (Hamkins 2012, p. 417)

Let’s take stock. There are at least three conceptions of the set-theoretic
multiverse at hand, ‘naive’, ‘instrumental’ and ‘ontological’. However, ‘naive
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multiversism’ does not seem to foster a sufficiently characterised notion of the set-
theoretic multiverse. Therefore, in the rest of the paper, I will only be concerned
with the other two forms of multiverse.

3.3 Maddy’s Assessment of the Multiverse

I now proceed to summarise Maddy’s concerns. For the sake of economy, I won’t
always quote Maddy’s text in full, and, in some cases, I will just provide the
references to the relevant pages in Maddy (2017).

Maddy notes that set-theoretic naturalists must acknowledge that set theory
fulfils specific foundational roles, which are consistent with, and originate from,
their picture of mathematics as being part of our best scientific theory of the world.16

However, some of these roles are seen by her as spurious, others as appropriate.17

Among the appropriate ones, Maddy lists ‘Shared Standard’, ‘Generous Arena’ and
‘Metamathematical Corral’. ‘Shared Standard’ is the idea that set-theoretic proofs
constitute the standard of ‘proof in mathematics’, whereas ‘Metamathematical
Corral’ refers to the role played by set theory in allowing mathematicians to carry
out metamathematical investigations, such as the search for consistency proofs.

‘Generous Arena’ is especially valuable to set-theoretic naturalists, insofar as it
gives rise to and fully motivates the adoption of the meta-theoretic maxims ‘unify’
and ‘maximize’, which, in turn, justify the adoption of the axioms of set theory as
our foundational theory, that is, a theory where all mathematical interactions among
all mathematical objects take place.18 Such a theory is ZFC (plus, possibly, LCs),
interpreted as the theory of V .

Now, as a very general, overarching concern, one might legitimately doubt that
the set-theoretic multiverse will fulfil the role of ‘Generous Arena’ equally well.
The concern above may be summarised as follows:

Main Problem (Unification). It is not clear whether and how the multiverse will
fulfil the foundational role of a ‘Generous Arena’ (particularly, insofar as, at least

16Some such foundational roles are also re-stated by Maddy in the paper published in the present
volume.
17Rather unsurprisingly, among the spurious ones, Maddy mentions ‘Metaphysical Insight’, that
is, the pretension that set theory provides us with an account of what mathematical objects really
are, and ‘Epistemic Source’, viz. the idea that set theory provides us with an account of what
mathematical knowledge is.
18The maxim ‘maximize’ was also introduced by Maddy in (1996). The application of the maxim
to our conception of V implies that this has as many ‘objects’ as possible. It should be noted that,
while, theoretically, maxims may be in tension with each other, they ought to be seen as having
the same foundational (normative) content (cf. Maddy 1997, pp. 211–2). Among other things, this
is shown by the fact that the iterative concept of set (which is generally taken to motivate V ) is
also naturally construed as being ‘maximal’ (for this, also see Wang 1974, Boolos 1971 or Gödel
1947). Cf. also Maddy (1996), in particular, pp. 507–12.
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prima facie, the multiverse provides us with a disconnected picture of set-theoretic
phenomena).

This concern can even become more general. Along with ‘Generous Arena’,
there are further foundational roles expressed by set theory when ‘standardly’
construed as the theory of V , that the multiverse may not be able to fulfil. Maddy
describes her further concerns as follows:

The choice between a universe approach and a multiverse approach is justified to the extent
that it facilitates our set-theoretic goals. The universe advocate finds good reasons for his
view in the many jobs that it does so well, at which point the challenge is turned back to the
multiverse advocate: given that we could work with inner models and forcing extensions
from within the simple confines of V , as described by our best universe theory, what
mathematical motivation is there to move to a more complex multiverse theory? (Maddy
2017, p. 316)

The troubles expressed in the quote above may be re-phrased as follows:

Problem 1 (Foundational Roles) While we know what the universe can do for us,
we do not know what jobs the multiverse can do for us, in particular whether it can
successfully carry out all and the same (foundational) jobs that the universe does.

As is clear, the Main Problem as well as Problem 1 strike both ‘instrumental’ and
‘ontological multiversism’.

There is, however, one issue which relates specifically to ‘ontological multi-
versism’, which Maddy sees as particularly worrisome: metaphysics is so much
involved in the characterisation of this position (one need only consider Hamkins’
statements that his own view is one of ‘higher-order realism, that is, Platonism about
universes’), as to make it highly unsuitable to the set-theoretic naturalist. Therefore,
we have:

Problem 2 (Metaphysics) Multiversism heavily relies on metaphysics, in a way
that the set-theoretic naturalist does not view as legitimate.

One further foundational role of set theory is ‘Conceptual Elucidation’, a role that
set theory has often held in replacing muddled and unclear mathematical concepts
with sharper ones. As examples of ‘Elucidation’, Maddy mentions the formulation
of the concept of ‘continuity’ in the nineteenth century, and ‘the replacement
of the imprecise notion of function with the set-theoretic version [. . .]’.19 Now,
can this foundational role also be carried out by the multiverse? The ‘ontological
multiverse’ practitioner thinks that one of the roles associated to the multiverse is
precisely that of exploring different ‘concepts of set’, by examining the structures
which instantiate them.20 But, for the Maddian naturalist, this is a sharply different

19Maddy (2017), p. 293.
20See Hamkins (2012), p. 417. Hamkins says: ‘Often the clearest way to refer to a set concept is
to describe the universe of sets in which it is instantiated, and in this article I shall simply identify
a set concept with the model of set theory to which it gives rise. By adopting a particular concept
of set, we in effect adopt that universe as our current mathematical universe; we jump inside and
explore the nature of set theory offered by that universe.’
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way of construing ‘Conceptual Elucidation’, a way which is strongly tied to the
metaphysics evoked in Problem 2, as concepts, in this case, are also taken to be
objective entities (p. 312, 315–6).

The naturalist multiversist, then, has to face up with one further problem, which,
like Problem 2, fundamentally relates to ‘ontological multiversism’:

Problem 3 (Concepts) ‘Conceptual Elucidation’, construed as elucidation of set
concepts instantiated by universes in the multiverse, should not be seen as a
legitimate foundational role of set theory.

There is one last, and fundamental, problem, with the multiverse, which strikes
both ‘instrumental’ and ‘ontological’ multiversism. We have already seen how
different multiverse conceptions are motivated by different research programmes in
set theory. Now, the mathematics is, maybe, ok, but it is not clear, to the set-theoretic
naturalist, that the multiverse construct is really essential to develop it, and, if yes,
whether it can really act as a fully formal theory of sets. Maddy says:

I’m in no position to evaluate the mathematics: my question is whether multiverse thinking
is playing more than a heuristic role, whether there’s anything that couldn’t be carried out in
our single official theory of sets. If not, then it’s not clear that these examples give us good
reason to incur the added burden of devising and adopting an official multiverse theory as
our preferred foundational framework. (Maddy 2017, p. 316)

We may re-phrase the concerns above as follows:

Problem 4 (Axioms) It is presently not clear whether the multiverse is just a useful
heuristic tool, or whether it is really instrumental for pursuing our set-theoretic
investigations and, in particular, whether it will be able to replace the currently
standard axioms of set theory.

3.4 Addressing the Problems

3.4.1 Phenomenology of the Multiverse

I start with addressing Problems 2 (metaphysics) and 3 (Concepts). As we have seen,
a recurring metaphysical claim made by ontological multiversists is that universes in
the multiverse really exist. This claim implies, among other things, that ‘extensions’
of V exist. As we shall see, this is an especially problematic claim to make.

One further, equally problematic metaphysical claim is Hamkins’ assertion that
there are different ‘concepts of set’ (as well as different concepts of ‘ordinal’,
‘cardinal’, ‘power-set’, and so on), construed, once more, as platonic objects
instantiated by other platonic objects (set-theoretic structures).
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3.4.1.1 Platonism and Existence

Hamkins’ conception seems to re-state what has been known, for some time, as Full-
Blooded Platonism (FBP), that is, that particular kind of Platonism which implies
the existence of a plenitude of mathematical (set-theoretic) objects, as many as
posited by all conceivable theories T of sets.21 Let us now try to assess whether
and how FBP really impacts on the mathematics of the multiverse. For instance, let
us take into account what Hamkins calls the ‘ontology of forcing’.

We know what the main problem with forcing is: set-theorists often use the
notation V [G] to refer to ‘forcing extensions’ of the universe, but, as is clear, V
already has all sets, so it is not clear how it could possibly be extended. Clearly,
FBP would have us view V [G] as a fully meaningful (and existent) object, provided
we can define it in a consistent way.

Surprisingly, though, Hamkins’ account of forcing does not use any consciously
FBP-inspired metaphysical principle, but rather what he calls a ‘naturalist’ account
of forcing, based on purely mathematical facts. A full mathematical analysis of this
is beyond the scope of this paper, but some details may be provided.

Hamkins proves that:

Theorem 1 (Hamkins) Given the universe of sets V , it is possible to define an
elementary embedding j : V → V̄ , where V̄ is a definable class in V , and a V̄ -
generic filter G, such that V̄ ⊆ V̄ [G], and V̄ [G] is also a definable class in V .

The crux of the theorem is that V̄ and V̄ [G] are definable classes in V and, thus,
the naturalist account of forcing consists in showing that one can code extensions of
V with subclasses of V itself. Already at this stage, the issue of the existence of such
objects as V̄ [G] becomes, in a sense, irrelevant. It is true that, given Theorem 1, one
may use FBP to re-inforce the idea that such objects as V̄ [G] really exist, but it is
clear that the metaphysical content of FBP, is not instrumental, per se, for the proof
of theorem.

Thus, the set-theoretic naturalist may simply want to take note of the method-
ology invoked by the theorem, but entirely disregard the metaphysical content
attributed to it by FBP. In Hamkins’ own words:

This method of application, therefore, implements in effect the content of the multiverse
view. That is, whether or not the forcing extensions of V actually exist, we are able to behave
via the naturalist account of forcing entirely as if they do. In any set-theoretic context,
whatever the current set-theoretic background universe V , one may at any time use forcing
to jump to a universe V [G] having a V -generic filter G, [. . .]. (Hamkins 2012, p. 425)

21FBP was introduced by Mark Balaguer in (1995). See also Balaguer (1998). Further details on
Hamkins’ use of FBP may also be found in Antos et al. (2015), pp. 2468–2470.
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3.4.1.2 Concepts

There is a way to make sense of Hamkins’/the ontological multiversist’s references
to different concepts of ‘set’, ‘ordinal’, etc., as being instantiated by different
set-theoretic structures, by bringing in a perspective wherein, ultimately, the meta-
physical status of such concepts is irrelevant. In particular, I propose to construe
the ontological multiversist’s use of concepts within the framework of ‘concept
expansion’.

An especially promising and comprehensive account of concept expansion has
recently been presented by Meir Buzaglo.22 The main features of Buzaglo’s account
are: (1) concepts are flexible constructs; (2) the expansion of a concept is a law-like,
forced process, that is, it is guided by the ‘stretching’ of some pre-established laws
(axioms) which force the concept to evolve in a way which is unavoidable and,
above all, (3) concept expansion gives rise to new objects.

Using such an account, Buzaglo shows that there are regulated ways to create new
mathematical objects in an unavoidable way. At no point throughout this process,
in Buzaglo’s view, the mathematician has to assume that concepts are rigid, mind-
independent existents: if they were such things, one could not make sense very easily
of their ‘extensibility’.23

Now, this account of concepts may be able to make sense of the ontological
multiversist’s invocation of different set concepts’ being instantiated by alternative
set-theoretic universes: the crux, here, is to see set concepts as mutually intertwined
(that is, as arising from each other).

Again, the example of a forcing extension of the universe V [G] will do. Using
Buzaglo’s account, the latter may just be seen as a ‘new’ set-theoretic object (and,
correspondingly, set concept) arising from the regulated ‘stretching’ of the laws
holding for the set concept of another object, V . After all, Buzaglo’s account is not
very far from Hamkins’ own ‘naturalist’ account of forcing, whereby V [G] is made
fully real as a result of ‘stretching’ (laws holding for) V through forcing. Hamkins
notes that this process may be compared to that relating to complex numbers, which
are constructed by ‘stretching’ the square root function, in particular, by forcing it
to have a value at

√−1. Hamkins says:

The case of forcing has some similarities [with that of complex numbers, my note].
Although there is no generic filter G inside V , there are various ways of simulating the
forcing extension V [G] inside V , using the forcing relation, or using the Boolean-valued
structure V B, or by using the Naturalist account of forcing. None of these methods provides
a full isomorphic copy of the forcing extension inside the ground model (as the complex
numbers are simulated in the reals), and indeed they provably cannot–it is simply too much

22See Buzaglo (2002). Hints of a conception of concept expansion and evolution in mathematics
may also be found in Lakatos (1976), which is also discussed by Buzaglo in the work mentioned.
23However, Buzaglo does not deny that realism about concepts may be compatible with concept
change and evolution. See Buzaglo (2002), pp. 116–137, where the author examines Gödel’s realist
conception which, contrary to what has been stated above, takes concept evolution precisely as
proof that concepts are objective constructs.
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to ask–but nevertheless some of the methods come maddeningly close to this. (Hamkins
2012, p. 420)

Now, this strategy may be extended to all other ‘set concept-instantiating-
universes’ in the ontological multiverse, which may be construed as being new
set-theoretic objects arising from stretching the laws (axioms) holding for concepts
of other (previously established) set-theoretic objects.

3.4.1.3 Reality and Illusion

Leaving aside, for a moment, Hamkins’ ‘naturalist’ interpretation of the multiverse,
one could think that one of the purposes of the ‘ontological multiverse’ is that of
making the illusion of ‘living in separate, parallel universes’ as fully real, which
seems to involve some thorough-going metaphysical construal of set-theoretic
practice.

However, in practice, what set-theorists working with the multiverse seem to be
mostly interested in is something of a more definite mathematical character, that
is, articulating a methodology which makes sense of ‘accessing’ other universes
from a given universe. This, in particular, implies making sense of our experience
of ‘jumping’, in Hamkins’ own words, from one universe to another. This may be
seen as a form of mathematical ‘perspectivism’, which may be described as follows:

Multiverse Perspectivism (MP) In working with one universe V , set-theorists
are particularly interested in knowing: (1) what universes one may have access to
from V and how, and (2) what V looks like from the point of view of those universes.

Now, as even multiversists may concede, one could certainly be a universist and
implement MP within the single-universe conception, but MP is, trivially, facilitated
by the adoption of the/a multiverse, as the multiverse precisely allows one to
view (and refer to) universes as being ‘separate’, although somehow interrelated,
constructs.

For instance, consider the following examples illustrating MP. The first two are
multiverse axioms formulated by Hamkins:

Axiom 1 (Countability Principle) Every universe V is countable from the per-
spective of a better universeW .

Axiom 2 (Absorption into L) Every universe V is a countable transitive model in
another universeW satisfying V = L.

One further example comes from the HP. As we have seen in Sect. 3.2.2, within
the HP, it is essential that one can really refer to ‘extensions of V ’. In V -logic, one
can prove the following fact:

Theorem 2 (S. Friedman) If there is a small ‘lengthening’ of V , called Hyp(V ),
then ‘thickenings’ of V may be viewed as outer models of V whose existence is
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implied by V -logic statements ϕ asserting: ‘there is an outer model of V which
satisfies T ’, where T is an extension of ZFC.

So, it is only from the perspective of Hyp(V), as defined in V-logic, that outer
models of V can really be seen as existing.

In sum, the reference to ‘reality’ and ‘illusion’, thus, only serves to highlight
more sharply the purposes and the extent of MP: the multiverse allows one to study
inter-universe relationships by preserving our intuitive experience of this as a ‘move’
or a ‘jump’ from one universe to another.

3.4.2 Multiverse-Related Mathematics

I will now briefly present three case studies of ‘multiverse-related’ mathematics,
which will help me illustrate that the multiverse may be able to fulfil many
foundational jobs associated to set theory (which provides a response to Problem 1
(Foundational Jobs)), and also that it may not just be a useful heuristic, but rather
a central construct in contemporary set theory, which partly responds to concerns
expressed by Problem 4 (Axioms). I shall further address Problem 4 in Sect. 3.4.4.

3.4.2.1 Woodin’s Set-Generic Multiverse and �-logic

I start with Woodin’s results on CH in the set-generic multiverse. Woodin’s guiding
question was: is it possible to find an axiom which plays, for the structure H(ω2),
the same role as that played by PD for H(ω1)?24 That is, is there any axiom which
makes H(ω2) ‘well-behaved’, as PD does with H(ω1)? Now, it turns out that it is
relatively easy to force over properties of H(ω2), which means that it is relatively
easy to have different, mutually inconsistent pictures of H(ω2). Therefore, Woodin
identified the solution of the problem in identifying an axiom able to induce forcing-
invariant properties of H(ω2).

Now, it was known that many forcing axioms have this characteristic (that is,
they are ‘absoluteness axioms’) and, moreover, that they imply the failure of CH.
Therefore, Woodin’s work was directed at identifying the appropriate forcing axiom
which would make H(ω2) well-behaved (and which, among other things, would
also imply ¬CH), but the work carried out for this goal subsequently led to a
parallel, equally fruitful, undertaking, that of defining a broader logical framework,
wherein forcing invariance, in general, may be addressed. All this led Woodin to
introduce a new logic, -logic.

24H(κ), for a cardinal κ , is the collection of all sets whose cardinality is hereditarily less than κ ,
that is, all sets whose elements and the elements of whose elements and so on, have cardinality less
than κ .
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-logic is a logic in the full sense of the word, that is, a logical system which
comes with its own definitions of semantic validity and logical consequence.25 The
semantics of-logic is hinged on the use of Boolean-valued models V B (where B is
a complete Boolean algebra). The collection of all such models would, subsequently,
become what Woodin defined the ‘set-generic multiverse’.26

Now, it is important, for my purposes, to recall the definitions of validity and
provability in -logic. The definition of validity, with respect to a theory T , in -
logic (of |�) is as follows:

Definition 1 (-validity) T |� φ if and only if, for all α ordinals, and all
complete Boolean algebras B, when V B

α |� T , then V B
α |� φ.

The notion of provability is a lot more complex, as it uses universally Baire sets
of reals, which cannot be addressed here.27

Definition 2 (-provability) T � φ if and only if there exists an A ⊆ R

universally Baire, such that M |� φ, for every A-closed set M such that M |�
ZFC.

In turn, the -conjecture is the conjecture that -logic is complete (that is, that
|� is equivalent to �).

As is known, in his (2001) Woodin, ultimately, focussed his attention on a
specific forcing axiom, the (�) axiom, which allowed him to prove that, for all φ,
ZFC+(�) � “H(ω2) |� φ′′ or ZFC+(�) � “H(ω2) |� ¬φ′′, precisely the kind of
absoluteness result for H(ω2) that Woodin was looking for.28

In the results mentioned, the foundational roles fulfilled by multiverse thinking
are many. Woodin’s ‘-logic solution’ to CH looks very different from a ‘standard’,
that is a solution consisting in showing that there is an axiom A which implies
the truth or falsity of CH (something that Hamkins would subsequently define the
‘dream solution’ for CH).29 The use of the Boolean-valued multiverse, or, more
simply, of what would later become the set-generic multiverse, thus, stands out as
an immensely successful way to elucidate statements of the complexity of CH, by

25Bagaria et al. (2006) is a comprehensive introduction to -logic.
26-logic makes its first appearance in Woodin (1999), and figures as a prominent tool in Woodin
(2001). In those works, there is no direct reference to the set-generic multiverse, although the basic
definitional ideas and concepts relating to it are already there.
27A rather accessible treatment of the provability relation in -logic, and of universally Baire sets,
is in Woodin (2011), p. 108.
28Moreover, Woodin was able to prove that:

Theorem 3 (Woodin) ZFC+(�) � “H(ω2) |� ¬CH”.

It should be noted that the result requires the assumption of the existence of class-many Woodin
cardinals, a particular strand of large cardinals having, as is known, far-reaching connections with
Definable Determinacy Axioms, such as PD.
29See Hamkins (2012), p. 430.

claudio.ternullo@ut.ee



3 Maddy On The Multiverse 59

showing, in particular, what such statements require in terms of ‘solving resources’,
itself a way, in turn, to fulfil ‘Conceptual Elucidation’.

Secondly, multiverse thinking leads to define a broader logical environment,
that of -logic, through which statements like CH (or ¬CH), in particular, proof-
theoretic and semantic facts about them, can be represented. This, among other
things, also implies a re-structuring of the notion of proof in set theory, something
which should be viewed as being strongly connected with two further foundational
roles, ‘Shared Standard’ and ‘Metamathematical Corral’.

Finally, it should be noted that the kind of ‘multiverse logic’ inherent in the
results mentioned is not only a specific ‘tool’ to be employed in representing facts
about set-theoretic undecidability, but also a way to produce concrete mathematics,
as shown by further work done on the -conjecture.30

3.4.2.2 The Hyperuniverse Programme

As said in Sect. 3.2, the Hyperuniverse Programme (HP) has identified two main
kinds of multiverse:

1. Zermelo’s height multiverse31

2. The hyperuniverse H, that is, the collection of all countable transitive models of
ZFC

How did the programme get there? First came the proof that certain maximality
principles have very important first-order consequences. For instance, take the IMH:

Definition 3 (IMH) For all φ, if φ is true in an inner model of an outer model of
V , then φ is true in an inner model of V .

On the one hand, the IMH implies that there are no large cardinals in V (only
in inner models of V ), and that PD is false. On the other, refinements of IMH, like
SIMH#, imply, among other things, that CH is false.32

Now, HP’s maximality principles address extensions of V (in height and width).
Therefore, one of the programme’s main goals from the beginning has been to
clarify what mathematical resources are needed in order to express principles which
address extensions of V , like the IMH.

The answer consisted in adopting the multiversist position that we have men-
tioned above. In particular, in order to make maximality principles mathematically
expressible, HP turned to taking into account:

30See, for instance, Viale (2016).
31See Footnote 8.
32Further details on all the different maximality principles explored by the HP may be found in
Friedman (2016).
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1. A partially potentialist view of V, whereby height extensions are admissible, but
the width of the universe is fixed, which accounts for the introduction of the
multiverse (1), or

2. A fully potentialist view of V , that is, a view whereby V is extendible in height
and width, which accounts for the introduction of the multiverse (2)

By adopting (1), one may only state the IMH syntactically, as, by (1), outer
models of V aren’t really available, whereas, if one adopts (2), in particular, if one
takes V to be countable, then one may have real ‘thickenings’ and, thus, real outer
models satisfying the IMH. The latter choice leads to the introduction of H.

As is clear, then, multiverse thinking is fully integrated in the mathematics of
the HP, in the sense that it would be a lot more cumbersome to express maximality
principles such as the IMH within a universist framework.

Moreover, we could say that, also within the HP, the multiverse helps one fulfil
tasks which are associated to ‘Conceptual Elucidation’, such as elucidate what V is
like, and also foster one’s mathematical investigations on maximality principles and
their consequences. Therefore, as in the case of Woodin’s set-generic multiverse,
the introduction of the hyperuniverse is not merely a way to represent facts about
‘truth in V ’: it is a way to produce new mathematics, which subsequently leads to
finding solutions to outstanding set-theoretic problems.

3.4.2.3 The Multiverse Case for V = L

One further, striking example of multiverse-related mathematics is Hamkins’
multiversist construal of V = L. A very influential and widespread view concerning
V = L is that the axiom would be a sort of minimality principle, that is, a principle
which implies that V is as small as possible.33 Hamkins has attempted to challenge
this point of view, by using mathematical facts which are deeply connected with the
multiverse.

First, let us contrast the following two conceptions:

Conception 1 There is an absolute background concept of set, and of other set-
theoretic notions, such as set, ordinal, cardinal.

Conception 2 There is no absolute background concept of set and of other set-
theoretic notions, such as set, ordinal, cardinal.

33Of course, the fact that L is ‘minimal’ is simply a mathematical fact (insofar as L is the smallest
inner model of V ). As is widely known, the view that construes L as a ‘minimality principle’ has
been expressed by Gödel in (1947), p. 478–9. In that work, Gödel explicitly contrasts V = L to
maximum principles. Maddy herself, as is known, has argued in favour of the claim that V = L

would be ‘restrictive’. The full argument may be found in Maddy (1997), pp. 216–232.
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The ‘ontological multiverse’ view, as has been said many times, is bound up
with Conception 2, which, in turn, suggests the following facts: L may not have the
same ordinals as V , insofar as the concept ‘(ordinal)L’ may be different from the
concept ‘(ordinal)V ’. By adopting this approach, one may, then, proceed to establish
further striking mathematical facts, all of which suggest that V = L is not inherently
restrictive. What follows is a summary of Hamkins’ argument:

1. By Shoenfield absoluteness, statements such as ‘T has a transitive model’,
which are �1

2 , are absolute between V and L. Therefore, even theories T which
contradict V = L (for instance, the theory ZFC+‘∃ a measurable cardinal’) have
transitive models in V if and only if they have transitive models in L.

2. All reals in V can be coded in a modelM of ZFC+V=L.
3. Any transitive countable modelM can be ‘continued’ such that it may, ultimately,

become a model of ZFC+V=L. Thus, using forcing, one may first collapse any
model to the countable, and then use such model to make it satisfy V = L.34

The upshot of this is remarkable: a case for the non-limitative character of V=L
can be successfully made within multiverse-related mathematics in a way which is
entirely in accordance with the set-theoretic naturalist’s desiderata.

Again, while talk of concepts might look suspect to the naturalist, I have already
construed their use in an essentially non-metaphysical way through ‘concept expan-
sion’ (in Sect. 3.4.1.2 which addressed Problem 2), and, based on this perspective,
we may elucidate such notions as that of ‘constructibility’ and also completely
revolutionise our mathematical perspective on such axioms as V = L.

3.4.3 Opposing the Argument from Priority and a New
Unification

The argument I will be reviewing in this subsection re-states concerns expressed by
the Main Problem (Unification) and Problem 1 (Foundational Jobs), and, therefore,
here I will mostly be concerned with these two problems.

In particular, one may see the Main Problem as being introduced by an argument,
which I will call ‘argument from priority’, which states that the drive towards
a unifying account of set theory was a primordial goal of set-theoretic research,
already inherent in the process of axiomatisation carried out by such pioneers as
Zermelo, Fraenkel, von Neumann and Skolem. By virtue of this fact, this goal
should still be viewed as a major goal of set-theoretic research.

34This leads Hamkins to even surmise that: ‘For all we know, our entire current universe, large
cardinals and all, is a countable transitive model inside a much larger model of V = L.’ (Hamkins
2012, p. 436).
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The argument may more accurately be summarised as follows:

1. One main goal of the axiomatisation, since its emergence, was the drive towards
producing a unifying account of set-theoretic phenomena35

2. The cumulative hierarchy V , which progressively emerged as the intended
universe of discourse of the axioms, fully fulfilled this goal

3. Then came the ‘multiverse phenomenon’, triggered by the ‘independence phe-
nomenon’

4. The goal of unification, as expressed by 1., was viewed as prioritary over other
goals in the early axiomatic set theory

5. Therefore, the universe view has priority over the multiverse view

There are, at least, two ways to resist the argument, both of which attack (4), and
passing from (4) to (5). First of all, temporal priority is not adequate, as a criterion,
to establish the absolute preferability of the single universe view over the multiverse
view. In other terms, the fact that set-theorists first aimed at describing something
like V and, only later, turned to considering a plethora of different structures does
not imply that a single universe was (or is) something inherently more desirable.

A second way to dismantle the significance of temporal priority is provided
by knowledge of further historical details. It is true that set theory was seen,
already very early, as the ‘theory of V ’, but the reasons which motivated this
fact may be of a rather different kind than pre-supposed by the argument. One
such reason was Zermelo’s insistence on the determinacy of the concept of set,
as expressed by the cumulative hierarchy and fully highlighted by his (quasi)-
categoricity theorem. It should be noted that at the time when Zermelo presented
the final version of the axioms there was no fully developed account or awareness
of the potentialities of first-order logic, nor were axiomatic theories of other areas of
mathematics (in particular, of arithmetic and analysis) naturally seen as being first-
order theories.36 The reason why the ‘ontological problem’ of set theory, so to speak,
was seen by Zermelo as very pressing was the serious challenge to the determinacy
of set-theoretic concepts posed by Skolem in the same years (something which
had led to speculations about the ‘relativity’ of set theory). Therefore, (4), in the

35It is true, however, that this goal was not fully attained, arguably, until (Zermelo 1930). Of
course, another prioritary goal of the axiomatisation was to prevent the formation of the paradoxes,
something which Zermelo carried out through introducing the Axiom of Separation already in
Zermelo (1908). For this and other aspects of the history of the axiomatisation of set theory, see
Ferreirós (2010), in particular, pp. 297–324.
36At least, until first-order logic largely took over as a consequence, in particular, of Skolem’s and
Gödel’s work. An exhaustive history of the triumph of first-order languages is provided by Shapiro
in (1991), pp. 173–197. The relevance of ‘categoricity arguments’ for the ‘triumph’ of the single
universe conception is also addressed in the same work, on pp. 250–259. A historically accurate
reconstruction of the ‘first-order proposal’ for set theory is in Ferreirós (2010), pp. 357–64.
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previous argument, should be assessed in the context of the fight between two early
conceptions of set theory:

• Zermelian conception: there is one determinate concept of set, and one (asso-
ciated) single structure instantiating it (this is the point of view of Zermelo in
(1930))37

• Skolemian conception: there is no unique (and fixed) interpretation of set-
theoretic concepts38

Now, while the dispute between these two viewpoints is, somehow, still alive,
there is no need to see it as relevant to the Maddian naturalist’s goals, and I’m rather
inclined to think that adopting ‘Generous Arena’ based on Zermelo’s concerns and
conception would be, for such a naturalist, slightly embarrassing. Moreover, since,
presumably, there is no need to follow Zermelo’s strategy to successfully counter
the argument for the relativity of set-theoretic concepts, one may also reject its main
consequence, the support to the single-universe picture.

But then one could legitimately wonder what would be of ‘unify’ and unification
concerns, if the latter ought not to be viewed as arising from the alleged determinacy
of the concept of set and from the uniqueness of V . What follows aims to provide a
tentative response to this.

There is a way to construe ‘Generous Arena’ along entirely different lines, which
is suggested by Hamkins’ foundational views. In a crucial quote from Hamkins
(2012), Hamkins says:

On the multiverse view, set theory remains a foundation for the classical mathematical
enterprise. The difference is that when a mathematical issue is revealed to have a set-
theoretic dependence, as in the independence results, then the multiverse response is a
careful explanation that the mathematical fact of the matter depends on which concept of
set is used, and this is almost always a very interesting situation, in which one may weigh
the desirability of various set-theoretic hypotheses with their mathematical consequences.
(p. 419)

Later on, he unpacks the methodology briefly sketched above, by addressing CH.
He says that CH is a settled question, on the multiverse view. The reason would be
that:

The answer to CH consists of the expansive, detailed knowledge set theorists have gained
about the extent to which it holds and fails in the multiverse, about how to achieve it or its
negation in combination with other diverse set-theoretic properties. Of course, there are and
will always remain questions about whether one can achieve CH or its negation with this
or that hypothesis, but the point is that the most important and essential facts about CH are
deeply understood, and these facts constitute the answer to the CH question. (p. 429)

37Of course this does not prevent one from interpreting Zermelo’s conception of V in multiversist
terms. See, again, Footnote 8.
38Although Skolemian relativism is a much stronger claim than this: it is the claim that set-
theoretic concepts have no definite theory-independent meaning. Here, we cannot delve into the
issue of whether Hamkins’ FBP, ultimately, fosters such a form of anti-objectivism, as, for instance
attributed by Field to Balaguer’s FBP in Field (2001), pp. 334–5.
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What Hamkins is setting out in the quote above is a fact already emerged in
connection with Woodin’s ‘-logic solution’, that is, that finding a solution to CH
implies taking into account the problem of what is needed, in terms of logical
and mathematical resources, to solve it. However, this task cannot be executed,
if one does not have a sufficiently broad collection of models (of a sufficiently
strong theory) available, where the CH vs. ¬CH hypothesis may be tested, which is
precisely what the multiverse provides us with.

Now, what I would like to highlight is the fact that the multiverse may, if viewed
from such a foundational perspective, provide a different kind of unification, one
which is needed to gain the sort of meta-theoretic ‘knowledge’ Hamkins is alluding
to in the quotes above. In particular, one could suggest that the multiverse provides a
different kind of ‘Generous Arena’ (a multiversist’s ‘Generous Arena’), one wherein
all metamathematical interactions needed to provide us with knowledge about how
to ‘settle’ problems of the same complexity, for instance, as CH, take place.

I argue that this may also be seen as a foundational role of set theory, which
could be formulated as follows:

Multiversist’s Generous Arena. Set theory is also a systematic inquiry into the
independence and unprovability phenomena, which provides us with knowledge
about set-theoretic truth. In order to carry out such an inquiry, it is fundamental to
have a unified metamathematical arena, where all relevant interactions take place.

Of course, as already said, ‘practically’ one could still carry out such an inquiry
within V . But should set-theorists agree that the Multiversist’s Generous Arena is
one further correct epistemological maxim for set theory to adopt, wouldn’t the
multiverse be the most natural candidate to fulfil it?

3.4.4 Relativism Reconsidered

Responses to the Main Problem (Unification), Problem 1 (Foundational Jobs) and,
finally, Problem 4 (Axioms) are also provided by Steel’s assessment of the goals
of the multiverse in Steel (2014). We have already seen (in Sect. 3.2.2) that Steel’s
conception is an axiomatic version of the set-generic multiverse (MV).

Now, it is crucial, for Steel’s purposes, to try to understand what MV really
consists in. First, Steel shows that multiverse language is a sub-language of LST,
that is, of the language of set theory. This is because a theorem proved by Woodin
and Laver implies the following:

Theorem 4 (Woodin, Laver) Given φ, MG |� φ ↔ M |� t (φ), where t (φ) is a
formula saying: ‘φ is true in some (all) multiverses obtained fromM’.39

39In Steel’s notation,MG is the set-generic multiverse containing all worlds satisfying MV.
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The theorem says that there is a recursive translation from MV to LST given by
t (φ), such that, given an MV-statement, there is always an LST-statement which also
expresses it (whereas no inverse procedure to translate an LST-statement to an MV-
statement is currently known). Now, there is a problem, however, with statements
like CH. The reason is that CH, as is known, is not preserved by set-forcing in
different worlds, therefore, CH cannot be expressed in MV.40

Although, on the one hand, this fact might be construed as showing that MV
might lead to a loss of set-theoretic information, on the other hand, it might be seen
as an indicator that the multiverse really is useful for us, insofar as it carries out
an important task: that of drawing a line between ordinary set-theoretic statements
which are ‘meaningful’, that is, are in the range of t (φ), and those which are not.
But this is, again, a form of ‘Conceptual Elucidation’!

But there’s more. If Steel’s MV really expresses the correct approach to set-
theoretic truth, then one need abandon what Steel calls:

Strong Absolutism (SA) There is a reference universe, V̇ , which cannot be
captured by MV.

As an alternative, one could take into account the following position:

Weak Relativism (WR) All propositions expressible in LST can also be expressed
in multiverse language.

By WR, V̇ makes sense if and only if it is expressible in multiverse language.
However, WR still does not tell us whether one can really do that. The thesis that
this is the case, a sort of combination of SA and WR, is called by Steel:

Weak Absolutism (WA) V̇ makes sense, but as an individual definable world in
the multiverse, which is included in all other worlds.

This latter standpoint looks particularly attractive to Steel, insofar as it introduces
the view that the multiverse is reducible to one of its members, which he calls the
core.

It should be noted that the acceptance of WA is, in turn, hinged on the acceptance
of other mathematical conjectures. Steel has identified an axiom, the Axiom H,
which singles out the core of the multiverse in a very detailed way.41 With the
addition of Axiom H to ‘core truths’, we might reach a situation wherein the

40However, it might still be the case that there are ‘traces’ of CH in MV, if one accepts additional
hypotheses, such as the existence of a core, which is described later on, p. 22. See also Footnote 41.
41The Axiom says that V=HODM , where HOD is the class of all hereditarily definable sets, and
M is a model of AD. Moreover, among other things, the axiom also implies CH. See Steel (2014),
p. 171–177.
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multiverse contains a preferred, ‘reference’ world. In practical terms, this is a
way to revert to a partly universist account, which, in Steel’s view, provides a
more ‘standard’ unification of set-theoretic phenomena, than the one provided by
Hamkins’ multiverse addressed in Sect. 3.4.3.

Moreover, Problem 4 (Axioms) is also answered, in a sense, by Steel’s theory,
insofar as MV is an axiomatic theory of the multiverse. It is true, though, that
the theory, in itself, has never been used as a tool to make concrete set-theoretic
mathematics. Furthermore, the status of the MV axioms (in particular, of some
LCs) may be controversial. But this should rather encourage us to continue our
investigations on the multiverse than retreat to the single-universe picture, as it is
reasonable to predict that more developed axiomatic theories of the multiverse will
respond more fully to the concerns expressed by Problem 4.

3.5 Concluding Remarks

Let’s take stock. My goal has been that of trying to explain away the Maddian
naturalist’s concerns about the set-theoretic multiverse by, essentially, adopting the
following two points of view: (1) metaphysics, even when explicitly evoked by mul-
tiverse theorists, is not fundamental for a successful articulation of the multiverse
and (2) multiverse practice has led to important mathematical discoveries, which
have a robust foundational impact and, moreover, show that a multiverse theory
may be able to fulfil the many foundational roles associated by the set-theoretic
naturalist to set theory, including that of ‘unification’.

This work has been concerned to a large extent with multiverse practice, without
providing a sharp definition of it. It should be noted that ‘multiverse practice’ does
not just consist in dealing with models of set theory, but rather implies manipulating
mathematically a determinate multiverse framework from the beginning, with a
view to pursuing a broad, but clearly set out, range of mathematical goals, such
as the study of: (1) inter-universe relationships, (2) axioms for the multiverse itself,
(3) principles which are formulated in a multiversist language, and (4) problems
whose complexity requires a strictly multiversist construal.

In Sect. 3.2 we have seen that the multiverse may not be seen as a single strand
of mathematical practices and methodologies. Furthermore, we do not currently
know whether there will ever be an ultimate conception of the multiverse. In some
respects, ‘ontological multiversism’ may be seen as such a conception, insofar as:
(1) it is maximally broad, and (2) it is particularly flexible, as it allows for the highest
amount of ‘perspectivism’. However, ‘ontological multiversism’ is also the most
controversial and problematic conception among those examined, for the reasons
we have reviewed in Sect. 3.3.

From time to time, it has been made clear that there may be no specific task
that the universist may not try to successfully emulate within their single V .
However, it is, in my view, rather apparent that the multiverse enormously facilitates
fundamental practical tasks, so why would the conscientious set-theoretic naturalist,
ultimately, oppose this fact?
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There is surely one main concern which has not been fully dispelled by the paper,
that relating to the absence of an axiomatic theory of the multiverse. However, I
have suggested that further mathematical research may eventually allow us to fully
axiomatise the multiverse, along the lines of what has been attempted by Steel with
MV. As is clear, this would help the Maddian naturalist to defeat more convincingly
the concerns expressed by Problem 4.

However, even now, and notwithstanding the current absence of an axiomatic
framework, I have suggested that the multiverse may already provide us with
the same foundational benefits that the single-universe picture does, something
which should help fully dissipate the set-theoretic naturalist’s concerns about its
usefulness.

Acknowledgement I would like to thank the University of Tartu for its support through ASTRA
project PER ASPERA (financed by the European Regional Development Fund).
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Reply to Ternullo on the Multiverse

Penelope Maddy

Doctor Ternullo raises a host of important issues, but I focus here on the central
theme: his defense of the multiverse from the point of view of a naturalist, indeed, a
naturalist of a particular variety that I call a ‘second philosopher’. In a recent paper
on the foundations of mathematics (a companion piece to my contribution to the
present volume), I considered the possibility that some sort of multiverse theory
could replace our current set theory in a range of foundational jobs now performed
by ZFC + Large Cardinals (LCs). I concluded that for now, in the current state of
knowledge, it isn’t clear that this move is feasible or advisable. Ternullo apparently
disputes this conclusion: ‘the multiverse may be as acceptable as the universe for . . .
the foundational purposes of set theory’ (Ternullo 2019, p. 46).

In an odd twist, though, Ternullo argues that one fundamental aspect of the
foundational goal, the job I call Generous Arena,1 is itself misguided, that the
argument for it is, for my naturalist, ‘slightly embarrassing’ (Ternullo 2019, p. 63).
As it happens, leading multiverse theorists don’t see the situation this way; they
embrace this foundational goal and argue that their theories meet it. For example,
this from Hamkins:

The multiverse view does not abandon the goal of using set theory as an epistemological and
ontological foundation for mathematics, for we expect to find all our familiar mathematical
objects . . . inside any one of the universes of the multiverse. (Hamkins 2012, p. 419)

1Ternullo also uses the term ‘Generous Arena’ for a different idea (Ternullo 2019, pp. 63–64), but
in the passage under discussion here, he’s concerned with the sense delineated in my contribution
to this volume.
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And here’s Steel:

We want one framework theory [i.e., foundational theory], to be used by all, so that we can
use each other’s work. It is better for all our flowers to bloom in the same garden. If truly
distinct frameworks emerged, the first order of business would be to unify them. . . . The
goal of our framework theory is to maximize interpretive power, to provide a language and
theory in which all mathematics, of today and of the future so far as we can anticipate it,
can be developed. (Steel 2014, pp. 164–165)

Ternullo seems to reject this approach, on the grounds that the argument for the
foundational goal itself is flawed (Ternullo 2019, pp. 61–63).

That argument, as he sees it, rests on the claim that Generous Arena was present
early on in the history of set theory – as it was – and that this temporal priority
implies logical priority. I think we can all agree that this is a weak argument, but
it’s not the right argument, as I hope is clear from §I of my contribution here.2

Regardless of when they first arose, the mathematical attractions of Generous Arena,
along with Risk Assessment, Metamathematical Corral, and Shared Standard,
remain as strong today as ever. In his willingness to forgo Generous Arena,
Ternullo sounds a theme familiar, as we’ve seen, in category-theoretic and univalent
foundations, but not one we hear from multiverse theorists like Hamkins and Steel.
This creates some mismatch in the debate between Ternullo and me, since my
analysis is explicitly addressed to the question of the multiverse’s aptitude for filling
this foundational role (among others) and he seems to think it needn’t be filled. Still,
there are some surrounding points well worth considering.

I begin, as Ternullo does, by attending to various versions of multiversism,
though now with an eye not to the mathematical differences between them, but to the
different philosophical or methodological stances one might take toward them. §II
sketches my concerns about the multiverse in a foundational role, and §III considers
other significant roles that multiverse thinking might play.

I. What Is a Multiverse View?

Ternullo begins with a straightforward characterization of the central distinction:

Whether set theory should be interpreted as the theory of a single universe of sets . . . or . . .
as a theory about multiple structures . . . that is, about a set theoretic ‘multiverse’. (Ternullo
2019, p. 43)

He alludes to Koellner’s distinction between pluralism and non-pluralism:

pluralism . . . maintains that . . . although there are practical reasons that one might give in
favor of one set of axioms over another – say, that it is more useful for a given task –, there
are no theoretical reasons that can be given . . .

non-pluralism . . . maintains that the independence results merely indicate the paucity of
our standard resources for justifying mathematical statements. . . . theoretical reasons can
be given for new axioms. (Koellner 2014, p. 1)

2See §I of [2017] for a bit more detail.
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Multiversism, then, is a model-theoretic version of pluralism:

There is not a single universe of set theory but rather a multiverse of legitimate candidates,
some of which may be preferable to others for certain practical purposes, but none of which
can be said to be the ‘true’ universe. (Koellner 2013, p. 3)

Ternullo agrees that multiversism is ‘an ontological (semantic) variant’ of pluralism
(Ternullo 2019, p. 44). Presumably he also takes his multiversist to hold that, though
there might be practical reasons for preferring one truth value for an indeterminate
statement over another or one universe of the multiverse over another, there are no
theoretical reasons for this – there is no determinate truth value, no ‘true’ universe.

Now Ternullo notes that unabashedly metaphysical views like these may be
problematic for the naturalist, but he concludes that the metaphysics can be
disregarded (Ternullo 2019, §4.1). He has his own reasons for saying this, but in
any case, we agree on the underlying point, that metaphysics is largely irrelevant to
the mathematical issues at hand. In the hope of clarifying some of these matters, let
me sketch a rough taxonomy of philosophical stances on multiversism, beginning
from the most ontologically or semantically loaded and moving on from there.

On the deeply metaphysical end of the spectrum, there’s Hamkins’s position:

With forcing, we seem to have discovered the existence of other mathematical universes,
outside our own universe, and the multiverse view asserts that yes, indeed, this is the case.
(Hamkins 2012, p. 425) Each . . . universe exists independently in the same Platonic sense
that proponents of the universe view regard their universe to exist. (Ibid., pp. 416–417)

In Koellner’s terms, presumably this Metaphysical Multiversism3 takes ‘theoretical’
considerations to tell us something about the structure of its generous ontology,
perhaps, for example, that every world thinks ZFC.4 It might seem that the theo-
retical/practical distinction coincides with the intrinsic/extrinsic distinction familiar
in the philosophical foundations of set theory – where intrinsic considerations are
somehow intuitive, or self-evident, or contained in the concept of set, and extrinsic
considerations involve attractive consequences or interrelations or something of that
sort – but I think this can’t be right. Koellner writes that . . .

given the current state of our knowledge a case can be made for being a non – pluralist
about ZFC and large cardinal axioms (Koellner 2013, p. 4)

3I use this term in place of Ternullo’s ‘ontological multiversism’ to leave room for a position that
replaces objective entities with determinate truth values.
4Steel (2014) and Woodin (2011) both take ZFC to be true in every world of the multiverse, but
Hamkins sometimes does not: ‘There seems to be no reason to restrict inclusion only to ZFC
models, as we can include models of weaker theories ZF, ZF−, KP, and so on, perhaps even down
to second-order number theory’ (Hamkins 2012, p. 436). On the other hand, we’ve seen that he
addresses the foundational goal like this: ‘we expect to find all our familiar mathematical objects
. . . inside any one of the universes of the multiverse’ (ibid., p. 419), which would seem to require at
least ZFC (and if Risk Assessment is taken into account, large cardinals would be handy as well).
In any case, Hamkins certainly embraces a number of objective truths (‘multiverse axioms’) about
the multiverse in §9 of his [2012].
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. . . in other words, in multiverse terms, for assuming these axioms across all worlds
of the multiverse, and from his other writings, it’s clear that some of this case is
extrinsic. Similarly, Hamkins allows that

the mathematician’s measure of a philosophical position may be the value of the mathemat-
ics to which it leads (Hamkins 2012, p. 440).

So it appears that at least some extrinsic considerations must also yield information
about the multiverse, must also be included under ‘theoretical’.

Suppose, then, that a certain set-theoretic statement, perhaps a candidate for a
new axiom to be true in all worlds, or perhaps another sort of general claim about the
structure of the multiverse, has many mathematical advantages and no mathematical
disadvantages. This wouldn’t be enough for the Metaphysical Multiversist to
endorse it, because we’d have to be confident that those mathematical merits
produce theoretical support, not mere practical support. We’d have to be confident
that our belief in that set-theoretic statement, however attractive it might be, isn’t just
wishful thinking, that the objective mathematical realm of the multiverse doesn’t
just happen to deny us something we’d very much like to have. Many philosophers,
in the tradition of Benacerraf’s famous challenge to Platonism, would ask how
we could come to know that our beliefs are tracking the truth about an abstract
realm. My naturalist asks a question that’s logically prior to Benacerraf’s: why
should we demand more than mathematical merits? Why should those mathematical
merits be held hostage to extra-mathematical metaphysics? Her answer is that this
is wrong-headed, that the compelling mathematical reasons should be enough all by
themselves.5

Though Metaphysical Multiversism is uncongenial to the naturalist, as Ternullo
says, this isn’t the end of the story; there are other varieties of multiversism. We
could, for example, leave metaphysics aside and simply talk about theories. Set
theory, then, isn’t the project of describing an abstract mathematical realm; it’s the
project of forging a powerful mathematical theory to serve the foundation goal
(among others).6 The universist advocates ZFC and its extensions in this role;
the multiversist proposes an alternative multiverse theory of sets and worlds to
take its place. For these purposes, all extrinsic considerations would be on equal
footing; there’d be no distinction between ‘theoretical’ or truth-tracking cases and
‘merely practical’ cases. This Theory Multiversism is an option entirely open to the
naturalist, should the evidence point that way.

A final variant sees the multiverse as analogous, not to a universe ontology, not to
a universe theory, but to the iterative conception. In universe thinking, the iterative
conception serves as an intuitive picture that helps us see our way around in deriving
consequences from the axioms or seeking new avenues for axiom choice. From

5See [2011], pp. 55–59. In that book, I propose an alternative metaphysical position, Thin Realism,
that avoids this problem by essentially reading its ontology off the analysis of proper methods,
including extrinsic methods, but I doubt this is what Hamkins or Koellner or Ternullo has in mind.
6We could think of this as the project of forming an optimally effective concept of set. Cf. the
Arealism of [2011].

claudio.ternullo@ut.ee



Reply to Ternullo on the Multiverse 73

the naturalist’s non-metaphysical perspective, intrinsic considerations based on this
picture are potentially of great heuristic value; the history of the subject amply
demonstrates what an immensely successful tool the iterative conception has been.
But, for the naturalist, it’s important to stress that the value of this intuitive picture
rests on the great mathematical merits of the work it’s inspired, in other words, on
its extrinsic success.7 If we were presented with an alternative intuitive picture that
conceptualizes set-theory differently, if that alternative way of guiding the subject
were more fruitful than the iterative conception, we should switch our allegiance
without regret.8 The Heuristic Multiversist9 argues that the intuitive picture of a
multiverse is just such an alternative; he might propose that ZFC and its extensions,
guided by the iterative conception, should be replaced with a multiverse theory
based on the new picture. This would be a version of Theory Multiversism, but
other possibilities emerge in §III below. Either way, the basic suggestion is that the
intuitive multiverse picture would guide the practice in new and different directions
with important mathematical advantages.

There are no doubt other ways to frame a philosophical perspective for multi-
versism, and perhaps predictably, one prominent multiverse theory, the one due to
Steel, doesn’t fit squarely in any of the three bins just described. As Ternullo notes,
Steel is out to explore whether CH is ‘meaningful’; his multiverse theory is intended,
not as an alternative subject matter (Metaphysical Multiversism), not exactly as an
alternative theory (Theory Multiversism), but as a way of determining which, if any,
sentences in the language of set theory (not the multiverse language of sets and
worlds) are ‘meaningless’, pose ‘pseudo-questions’. How he goes about this and
what conclusions he draws are quite subtle matters that go well beyond the scope of
this reply.10 Still, I hope these three rough categories will help illuminate the debate
between Ternullo and me. As this is an intramural debate between naturalists, we’re
focused primarily on multiversisms of the Theory and Heuristic varieties.

II. Naturalistic Concerns About Multiversism

In the paper Ternullo is discussing, I raise a number of questions about multiverse
theories as potential alternatives to ZFC and its extensions as our basic foundational
theory. The most fundamental of these is that a foundational theory, as we now
understand it, has to be a theory, has to be an explicit set of axioms capable of

7See [2011], pp. 131–137.
8Something like this actually happened when the intuitive picture of sets as extensions of properties
fell out of favor in light of its conflict with the extremely fruitful axiom of choice.
9Ternullo contrasts ‘heuristic’ with ‘instrumental’ (2019, p. 53). See §III below.
10Toby Meadows and I hope to clarify some of these matters in ‘A philosophical reconstruction
of Steel’s multiverse’, in preparation. I also neglect the hyperuniverse program, simply because I
don’t understand it well enough to comment.
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doing the foundational jobs. Of the multiverse accounts on offer, only Steel’s comes
with a set of axioms, a fully explicit first-order theory of sets and worlds, but as
noted, his goal is to evaluate the sentences of ordinary set theory, not to replace
them with something different. So, flat-footed as it sounds, the general lack of an
explicit multiverse theory strikes me as a serious obstacle to a new and different
multiverse foundation.

Hamkins’s stand on the foundational status of the multiverse was quoted above:

We expect to find all our familiar mathematical objects . . . inside any one of the universes
of the multiverse. (Hamkins 2012, p. 419)

Roughly speaking, it seems any world of the multiverse can serve as our Generous
Arena, and ZFC (satisfied by that world) as our Shared Standard. Presumably
Risk Assessment is to be carried out in a world with large cardinals, that is, in
ZFC+LCs. There’s some question about Meta-mathematical Corral: if we only care
about corralling a generous arena, we’re once again thrown back on ZFC and its
extensions; if we want to corral all of mathematics, it seems we’d need a theory
of our multiverse, which we’ve seen Hamkins’s doesn’t provide. On Steel’s view,
ZFC+LCs turns up in the meaningful part of set-theoretic language and continues
to carry out its usual foundational functions. For the most part, then, ZFC and its
extensions retain their foundational roles – in that respect, no alternative is actually
on offer. So it’s hard to see a case for replacing a universe view with multiverse view
for foundational purposes.

But this isn’t the end of the story. Some version of the multiverse perspective
may have such attractive mathematical features that we’re moved to adopt it even if
a familiar theory like ZFC remains our official foundation. Ternullo mounts a case
along these lines.

III. Ternullo’s Defense

One striking turn in Ternullo’s discussion is his characterization of Zermelo’s
famous ‘On boundary numbers and domains of sets’ (Zermelo 1930) as ‘the first
description of a multiverse’ (Ternullo 2019, p. 47).11 If this were so, it would
go a long way toward showing that multiversism has important and far-reaching
mathematical consequences! Working in a strong implicit meta-theory, Zermelo
presents an analysis of ‘normal domains’ characterized by second-order ZFC
minus Infinity12: their ‘boundary numbers’ are inaccessible cardinals; they can be

11To be clear, Ternullo isn’t claiming that the historical Zermelo understood his work in multiverse
terms (see Ternullo 2019, p. 47, footnote 8). He holds, rather, that Zermelo is a ‘height potentialist’
and that this position can be seen as a kind of ‘height multiversism’ (see Footnote 13 below).
12He leaves out the axiom of infinity to allow for a ‘finitary’ normal domain acceptable to
intuitionists (so for him ω is a boundary number). As he sees it, a generous store of normal domains
makes set theory adaptable for a wide range of applications.
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decomposed into ranks up to that number (this is touted as one of the extrinsic
benefits of Foundation); any two with the same boundary number are isomorphic;
for any two with different boundary numbers, one is an initial segment of the other.
The question then arises: are there any normal domains, are there any boundary
numbers? Zermelo mounts an argument in the meta-theory that for any ordinal α,
there’s a corresponding boundary number κα; in modern terms, he’s argued for the
Axiom of Inaccessibles:

We must postulate the existence of an unlimited sequence of boundary numbers as a new
axiom for the ‘meta-theory of sets’. (Zermelo 1930, p. 429)

Though Zermelo does take second-order ‘ZFC-Infinity’ to characterize each of an
unending series of normal domains, I see no evidence that he intends his second-
order ‘ZFC + a proper class of inaccessibles’ in the meta-theory as anything other
than a description of the single universe in which all these normal domains reside.13

If including an axiom of inaccessibles is enough to qualify a list of axioms as a
multiverse theory, then almost all set theorists these days are multiversists; this sets
the bar far too low, renders the term useless. So it seems that Zermelo is best left out
of this discussion.

Ternullo is on stronger ground when he extends the appeal to mathematical
consequences into contemporary set theory. I’m happy to grant that, for example,
Hamkins’s multiverse thinking has led to a fruitful investigation of ‘set-theoretic
geology’ or that Steel’s approach has focused attention on important questions about
the ‘core’. Cases like these display a clear heuristic benefit to thinking in terms of
an intuitive multiverse picture – on this Ternullo and I agree – but he goes on to
insist that these benefits aren’t purely heuristic, that they are actually ‘instrumental’.
He draws this distinction from a question raised in my paper: can all the welcome
mathematics inspired by multiverse thinking be carried out in our familiar universe
theory, that is, are these all theorems of ZFC and its extensions? If the answer to this
question is no, then multiverse thinking would be more than merely heuristic – fully
instrumental, in Ternullo’s terms – but as far as I can tell, the answer is yes, which
Ternullo seems to acknowledge:

It has been made clear that there may be no specific task that the universist may not try to
successfully emulate within their single V. However, it is, in my view, rather apparent that
the multiverse enormously facilitates fundamental practical tasks. (Ternullo 2019, p. 66)

This is just to say that multiverse thinking is of great (purely) heuristic value.
Notice that we have here instances of Heuristic Multiversism different from what

was envisioned in §I: the multiverse picture isn’t being used to inspire new axioms
toward a version of Theory Multiversism, but to inspire new mathematics, new

13Many observers see Zermelo as a potentialist, but I have my doubts. Though everyone, actualist
and potentialist alike, uses a familiar range of metaphors – the universe is unending, etc. – it seems
to me that the cash value of potentialism is the rejection of quantification over all sets. But this is
exactly what Zermelo seems to do, for example, in arguing that there’s an inaccessible for every
ordinal.
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concepts and methods, within our existing theory of ZFC and its extensions. And
there’s another potential contribution of Heuristic Multiversism, as well. Hamkins
observes that

There is no reason to consider all universes in the multiverse equally, and we may simply
be more interested in parts of the multiverse consisting of universes satisfying very strong
theories, such as ZFC plus large cardinals. (Hamkins 2012, p. 436)

Now the process of narrowing down to a restricted range of worlds may well be
functionally equivalent to the process of adding new axioms to ZFC, so what’s of
interest here is the suggestion that thinking in multiverse terms could bring new
and different considerations to bear on that process. In other words, multiverse
thinking might help us to refine our official theory of sets. In fact, this may be the
ultimate upshot of Steel’s line of thought: a stretch of multiverse thinking leads him
to propose a new axiom for ordinary set theory.

In sum, then, our naturalist has no straightforward form of Theory Multiversism,
only Steel’s set of axioms with a different motivation, but there seems to be ample
room for Heuristic Multiversism to do significant mathematical work in a number
of different ways. We can draw two morals. The first is that ZFC and its extensions
aren’t uniquely tied to the intuitive universe picture of the iterative conception.
They could be thought of, instead, as the shared theory of a range of worlds in
the multiverse, so that what the universist sees as adding new axioms about V, could
instead be seen as a narrowing of the range of worlds we take to be of interest. The
second moral is one that should appeal to Ternullo’s naturalism: since these intuitive
pictures, universist and multiversist, are playing a merely heuristic role, there’s no
reason at all not to exploit them both, no reason at all not to switch back and forth
depending on which is more suggestive in a given context. In the end, set theorists
should feel entirely free to think in any intuitive terms that can lead them to good
mathematics!
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Chapter 4
Proving Theorems from Reflection

Philip D. Welch

Abstract We review some fundamental questions concerning the real line of
mathematical analysis, which, like the Continuum Hypothesis, are also independent
of the axioms of set theory, but are of a less ‘problematic’ nature, as they can be
solved by adopting the right axiomatic framework. We contend that any foundations
for mathematics should be able to simply formulate such questions as well as to raise
at least the theoretical hope for their resolution.

The usual procedure in set theory (as a foundation) is to add so-called strong
axioms of infinity to the standard axioms of Zermelo-Fraenkel, but then the question
of their justification becomes to some people vexing. We show how the adoption of
a view of the universe of sets with classes, together with certain kinds of Global
Reflection Principles resolves some of these issues.

4.1 Introduction

This essay falls into two distinct parts. We first look at some long-standing questions
in mathematical analysis, from the Russian and French schools of the early twentieth
century, and how they have, or have not, been answered since. Our purpose here is
two-fold: to step away from the eternal recurrence of Cantor’s Continuum Problem
in debates of this kind, which is a question in third order number theory, to give
examples in second order number theory, or what logicians would also call plain
‘analysis’. Our second purpose is to here make the case that the questions considered
are natural ones in the context of mathematical thought. Few mathematical analysts
ever come across a problem where the continuum hypothesis, that 2ℵ0 = ℵ1, is
ever an important consideration, and they are aware of its independence from the
other ZF axioms. Questions such as whether projections of co-analytic sets are
Lebesgue measurable, for example, are much nearer their domains of interest. If a
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mathematician wants to know whether such a set A, say is Lebesgue measurable,
or has meagre symmetric difference from an open set, we cannot wish this question
away by talking about a ‘multiverse’, or the dependence of its truth on some model
of set theory obtained by forcing, or on some variant foundational theory or other:
they want to know the answer.

Our not so hidden agenda then, is to make the point that any foundation of
mathematics has to be able to both simply formulate these questions, since they
are naturally occurring statements of mathematical significance, even to the extent
of their being simply written, and moreover to give some succour at least to the
possibility of their resolution.

The second part is rather different. One advance over the independence phe-
nomena ushered in by Cohen, has been for set theorists to expand the axioms of
Zermelo-Fraenkel set theory (ZF, or ZFC with the Axiom of Choice added) by so-
called ‘strong axioms of infinity’ often phrased in terms of ‘large cardinal’ numbers
(actually it is not their largeness, but the strong or exotic properties they bear, that
yields their strength). The question of justification of the assumption of such axioms
then looms large. (But perhaps it is only a larger worry for the foundationalist than
for the mathematician: when Andrew Wiles was asked whether it would bother
him if the unbounded class of Grothendieck universes (and hence a proper class of
inaccessible cardinals), that prima facie had been invoked for his proof of Fermat’s
Last Theorem, turned out to be necessary for his argument, his reaction was a
metaphorical shrug when not a literal one: not in the slightest. It was neither here
nor there; in short he had a proof. The point of the story is that the mathematics was
already convincing.)

We give a straightforward account of much of this that is familiar to set theorists,
but perhaps not elsewhere, and in the second part (Sect. 4.4) we deal with a recent
proposal that notions of ‘reflection’ on the universe of sets instituted by early
researchers such as Ackermann and Bernays, and warmly endorsed by Gödel, can
be expanded in ways to demonstrate the existence of such large cardinals that solve
the problems we give in the first part.

We should like to emphasise that our contribution in the first part is limited
only to exposition and is indebted, amongst others, to Woodin (2001a,b) and to
any general history of descriptive set theory. The reader will find the descriptive set
theory they need in Moschovakis (2009).

We should like to warmly thank the referee who saved us from more than one
embarrassing infelicity.

4.2 The Task to Hand

We look at some problems in the projective hierarchy of Luzin. However first we
give Borel’s hierarchy. In the following a ‘Polish space’ is a separable, complete
metrisable space. This includes the common examples of the reals R with the usual
Euclidean metric, Baire space NN, and Cantor space 2N with metrics derived from
the standard product topologies.
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4 Proving Theorems from Reflection 81

Definition 4.2.1 (Lebesgue (1905) Borel Sets) Let T be a Polish space; let B0 be
the class of closed sets in T ;

Let Bη = {⋃n∈NAn | ¬An in some Bηn for an ηn < η}.
Let B =⋃η<ω1

Bη.

Implicit in the definition above is that we perform complementation and union
throughout all the countable ordinals, and the process finishes at stage ω1 – the first
uncountable cardinal: nothing further would result from continuing further. This
analysis of a certain sequence of easily described sets into a hierarchy is a step in
so-called ‘descriptive set theory’ that seeks to analyse the real line (or other nearby
Polish space examples) in terms of a hierarchy of increasing complexity.

Definition 4.2.2 (Suslin 1917: Analytic Sets) Let T be a Polish space; let B be the
class of Borel sets in T × T ; let

A =df {A | ∃C ∈ B(A = proj (C))}

where proj (C) = {x ∈ T | ∃y ∈ T : C(x, y)}. Then A is called the class of
analytic sets.

Theorem 4.2.1 (Suslin 1917) Borel = A& co-A, that is the Borel sets in a space
are precisely those analytic sets with analytic complement.

So here we have written co-A for the class of sets whose complement is in A
(and similarly will do so below “co-S” for other classes S). Descriptive set theorists
would call the class of Borel sets the ‘self-dual’ class of A. The study of the
projective hierarchy was initiated by the discovery of Suslin (a student at the time)
that Lebesgue had erred in assuming the projection of a Borel set was Borel. It was
not. Indeed there was a hierarchy of sets to be investigated obtained by projection
and complementation:

Definition 4.2.3 (Luzin 1925, Sierpiński 1925: The Projective Sets) Let T be a Polish space.

S1=A ⊆ T k(in any dimension) ; Sn+1={proj (D) | D ⊆ T k × T ,D ∈ co-Sn};PROJ=
⋃

n

Sn.

Lebesgue studied these and showed that they formed a proper hierarchy of
increasing complexity as n increased. Sierpinsky later showed they were closed
under countable unions and intersections. It is important to realise that these are
the definable sets in analysis: the operations of projection and complementation in
the above definition, correspond when written out even in informal notation to an
existential quantification over the elements of T and to negation. With T equalling
R, this means that any definition of a set of reals the analyst writes down will fall
inside the class PROJ .

The following intimates that the projective sets might be very regular: in this
case that they can always be assigned a meaningful, length, area, volume. . .
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Theorem 4.2.2 (Suslin 1917) Any D ∈ A is Lebesgue measurable.

However there the matter lay stuck. Attempts to ascend the projective hierarchy
and establish, for example the Lebesgue property conspicuously failed.

Problem 5 (Lebesgue Measurability) Are the sets in PROJ Lebesgue measur-
able?

It seemed intractable:

(Luzin – 1925) One does not know and one will never know whether the projective sets are
Lebesgue measurable.

4.2.1 The Baire and Perfect Subset Properties

A setU is said to have the Baire Property (BP) if it has meagre symmetric difference
with some open set. (In turn a set is meagre if it is the countable union of nowhere
dense sets. In some sense it is ‘negligible’.) It was known (Lusin and Sierpiński
1923) that analytic sets (and so also their complements) had the Baire property.

Problem 6 (Property of Baire) Do sets in PROJ have the property of Baire
(BP)?

A perfect set is one which is closed but contains no isolated points. Since a perfect
set has size the continuum, Cantor’s continuum problem is settled for such sets.

Problem 7 (Perfect subset property (PSP)) Does every uncountable set in
PROJ contain a perfect set?

It was known (due to Suslin) that every uncountable analytic set contained
a perfect subset. (This may fail for co-analytic sets, for example in the Gödel
constructible hierarchy.)

4.2.2 Uniformisation

Y Px
P*

P

x x
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A function P ∗ ⊆ P ⊆ X × Y uniformizes P if

∀x[∃y(x, y) ∈ P → ∃ y′ (P ∗(x) = y′ ∧ (x, y′) ∈ P)].

A function P ∗ is projective if its graph is.

Problem 8 (Uniformization Property (Unif )) Does every set P in T × T in
PROJ have a projective uniformizer? To abbreviate: Unif (PROJ)?

For co-analytic sets a classical theorem yields that there is always a projective
uniformizing function moreover one of the same complexity.

Theorem 4.2.3 (Novikov-Kondō 1937) Every co-analytic subset of the plane has
a co-analytic uniformizer.

The above properties of the projective sets are called the regularity properties. For
good measure we add one more.

4.2.3 The Banach-Tarski Property

Problem 9 (Banach-Tarski Problem) Is there a paradoxical decomposition of the
sphere in Rn into projective pieces?

The original Banach-Tarski theorem states that it is possible to decompose a
sphere into finitely many pieces and reassemble the pieces to form two spheres
identical to the first. In fact 5 pieces are enough, but they cannot be Lebesgue
measurable. Could there be then such a decomposition where the pieces are
projective, that is definable in analysis? (See Wagon 1994.)

Discussion: to summarise, using some obvious abbreviations, we have a list of 5
Problems.

P1: LM(PROJ)
P2: BP(PROJ)
P3: PSP (PROJ)
P4: Unif (PROJ)
P5: Banach Tarski with projective pieces.

Each of these questions deals with subject matter that is familiar to mathematical
analysts in the twenty-first century, and has been so since the early 20th. One of
my points in introducing these is to make clear that such questions are themselves
clear. The Continuum Problem is usually wheeled out to serve as a stalking horse for
the difficulties of a realist view of set theory, or at least of the real continuum, that
an author wishes to introduce. However in logical terms the Continuum Problem
is a problem in third order number theory: one must use an existential quantifier
ranging over subsets of the real line. The problems above are expressible without
requiring such quantifications to take place, they are expressible in second order
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number theory or commonly called analysis: the quantifiers range over sets of
numbers, or over functions from N to N and the complexity, that is the number
of quantifier alternations, is the number of the rank of the set in the Lusin projective
hierarchy being discussed (roughly speaking). The Real Continuum is often spoken
of (cf. Feferman 2012) as having potentially an “indeterminate nature” since its
third order statement relies upon the supposed mysteries of the power set operation
when applied to an infinite set. “What is the cardinality of P(ω)?” The problems
above are however of a more concrete nature. Analysts rarely come across questions
that turn upon the cardinality of the continuum. They come across questions about
the Lebesgue measurability of definable sets, that is sets within PROJ , on a daily
basis. And they commonly recognise analytic and co-analytic sets as being tractable,
as they enjoy these regularity properties. Thus the Problems listed are concrete
problems within, and stated within, mathematical analysis.

4.3 Difficulties

We shall see that notwithstanding the ‘simpler’ logical second order definition of
the concepts involved in these problems, they are subject to the same independence
phenomena as the third order Continuum Problem, and, as we shall see, for roughly
the same reasons. (That is: on the one hand there is an inner model of the universe
of sets in which the continuum hypothesis was true, namely Gödel’s L – such inner
models are transitive subclasses of V which are models of the ZFC axioms; and
on the other hand there are techniques derived from Cohen’s forcing method where
he showed the consistency of the negation of CH with the other axioms. The same
dichotomy appears below: on one hand appeal to the model L to get one answer,
and forcing techniques the consistency of the other.)

Thus: the Regularity Properties can consistently fail:

Theorem 4.3.1 (Gödel) If ZF is consistent, then so is ZFC+“There is a projec-
tive set that is not LM”.

Indeed there is a projection of a co-analytic (“PCA”) set that fails to be LM .
This gives a negative “answer” to P1. The reason being that in Gödel’s universe
of constructible sets, L, with which he showed the consistency of the axioms of
ZF together with CH , there are non-Lebesgue measurable sets at roughly the
level of the complexity of the wellordering of the universe of L that he also
demonstrated existed. Recall that the construction of the Vitali non-measurable
set uses a wellordering of the continuum. Thus one expects a failure of Lebesgue
measurability at roughly the same level of complexity as the wellordering of the
continuum we have in L, which is used to construct a Vitali counter-example.

This use of the wellorder of L also leads to the following propositions relating to
the problems above. In L:

P2: there is a PCA-set without the Baire property BP;
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P3: there is a co-analytic set that is uncountable with no perfect subset;
P5: there is a paradoxical decomposition of the unit sphere in R3 using PCA-pieces.

For P4 the matter is slightly more nuanced: For co-analytic sets in the plane or
higher dimensions, we have seen by the Novikov-Kondo theorem that they are
uniformisable by co-analytic functions. For higher levels the wellorder of L ensures
that sets in the projective classes PCA,PCPCA . . . etc. are all uniformisable
by functions in the same class. (And if those hold for a suitable class � it is a
straightforward result that it must fail for their complements in co-�.) A more
delicate question for the Uniformisation Problem is to ask that the uniformising
function come from the very same class or level in the projective hierarchy as the
set being uniformised. Then by Novikov-Kondo this holds for co-analytic sets; in L
this also holds for PCA sets (and for further classes on the repeated projected side:
PCPCA . . . etc. .)

Whereas Gödel’s construction of L gives a canonical inner model of V – the
universe of all sets of mathematical discourse, there are various constructions
based on extensions of Cohen’s method of forcing which allow one to conclude
that consistent with the axioms of ZF is the possibility that various levels of the
projective hierarchy can be all Lebesgue measurable, or enjoy the other regularity
properties.

Indeed a renowned theorem of Solovay allows that all sets are Lebesgue
measurable and have the Baire property:

Theorem 4.3.2 (Solovay 1964,1965,1970) If the theory ZF+ “There is an inac-
cessible cardinal” is consistent, then so is the theory ZF +DC+ “Every set is LM
and has the BP ”.

The above is quite remarkable. The DC is ‘Dependent Choice’ that allows for
an infinite sequence of choices in any given relation R(v1, v0) to be made. This is
usually – but not always – all that an analyst requires. (The full Axiom of Choice is
paradoxically usually only invoked to guarantee the existence of pathological sets,
i.e. difficult sets that are not LM or do not have the regularity properties etc.) The
extra assumption beyond ZFC of the inaccessible cardinal was queried for many
years as to its necessity. Eventually Shelah (1984) showed that it was needed for
Lebesgue measurability of all sets but not for the Baire property (thus breaking
what had seemed a tight link, that what was true for sets of one kind was true of the
other.)

However, these are only consistency results, and do not tell us about the facts of
the matter in V . Notwithstanding this, mathematicians might simply have shifted to
a view that all sets that they could write down and specify were LM and BP and
used DC with comfort. But they seemingly have not.

Solovay also showed that, even retaining the full axiom of choice all definable
sets of reals have strong regularity properties:

Theorem 4.3.3 (Solovay 1964,1965,1970) If the theory ZF+ “There is an inac-
cessible cardinal” is consistent, then so is the theory ZFC+ “Every set projective
set is LM and has the BP ”.
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4.4 Resolution and Reflection

4.4.1 Resolution

Are there principles that are somehow missing from the ZFC axioms, and that
could resolve these problems? For many set theorists the assumption that all sets
are in Gödel’s L – which indeed resolves these problems in a somewhat negative
direction – is unpalatable. The iterative conception of sets appearing ever upwards in
increasing ranks in a hierarchy built along the ordinals using the power set operation:

V0 = ∅; Vα+1 = P(Vα); Lim(λ)→ Vλ =
⋃

α<λ

Vα

has an entirely mathematical feel to it. The construction of L replaces the successor
step with only allowing sets definable in first order logic rather than the full power
set. However why should this purely logical construction deliver all the sets that
there are, sets which arise from a purely mathematical set theoretical conception?

It is a well known part of this story that Gödel himself allowed for the possibility
that strong axioms might settle questions such as CH . However then a discussion
then ensues about the justification of these strong axioms. At such a length of
time since Zermelo’s formulations of the axioms for sets, and with the additions
of Skolem, and Fraenkel, it seems inconceivable that any basic fact of sets has been
overlooked in the ZFC system. Any supplementing axioms may have to have a
different set of justifications or grounds for acceptance. It is usual at this point to
talk about intrinsic grounds that follow from the iterative conception of set and the V
hierarchy as outlined as above, or more widely ‘set-structure’ concerning the whole
of (V ,∈). These are to be contrasted with extrinsic grounds where the consequences
of these hypotheses are so rich and so compelling that we feel we should to adopt
them.

There is much to be said (and has been) at this point but we shall pass over this.
Our targeted aim is that certain viewpoints of the universe (V ,∈) encourage a view
that ‘large cardinals’ or ‘strong axioms of infinity’ can be invoked by ‘reflecting’
on the universe. Solovay delivered a striking clue in an early theorem relying on the
assumption of a measurable cardinal:

Theorem 4.4.1 (Solovay 1969) ZF proves that if there is a <-κ-additive 2-
valued measure on some set of cardinality κ > ℵ0 then BP(PCA), LM(PCA),
PSP (PCA).

These conclusions are then quite in contradiction to the picture given in Gödel’s
L. There is also a mystery as to why the existence of measures, or equivalently
ultrafilters on fields of sets quite remote from Vω+1 (which contains all the real
numbers, or elements of Baire space or . . . ) should affect properties down at this
very modest rank.
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As oblique as the idea at first appears the determinacy of two person perfect infor-
mation games implies much about the regularity properties of the real continuum.

Let A ⊆ N
N (or some XN). The game GA is defined as follows:

I plays k0 k2 . . . k2n . . .

I I plays k1 k3 . . . k2n+1 . . .

• I wins if and only if x = (k0, k1, . . .) ∈ A.
• GA is determined if either Player has a winning strategy in this game.

Let us write, for a class of set � “Det(�)” for the statement that for every set
A ∈ � that the game GA is determined. “Det(PROJ)” is then read as “Projective
Determinacy” or sometimes “Definable Determinacy”.

Theorem 4.4.2 (Mycielski 1964, 1966) Det(PROJ) implies Regularity for the
projective sets.

Thus the Solovay theorem from a measurable cardinal, and the results from
assuming Definable Determinacy were leading in the same direction. The following
indicated that these matters were no coincidence;

Theorem 4.4.3 (Martin 1970) ZF proves that if there is a <-κ-additive 2-valued
measure on some set of cardinality κ > ℵ0 then Det(Analytic).

This was earlier than the landmark theorem of Martin:

Theorem 4.4.4 (Martin 1975) ZF proves Det(Borel).

(This remains the most quotable theorem in mathematics that requires ZF – as
H. Friedman had previously shown (Friedman 1970) that ω1-many iterations of the
power set operation together with appropriate instances of Replacement would be
required.)

However ZFC is just not strong enough to prove Det(Analytic) on its own:
this is because Det(Analytic) can prove the consistency of ZFC. (And we cannot
contradict Gödel’s Incompleteness Theorems.) After much effort the prize was won:

Theorem 4.4.5 (Martin-Steel 1989) If there are infinitely many Woodin cardinals
then Det(PROJ) and hence Regularity for the projective sets.

Theorem 4.4.6 (Woodin 1988) If there are infinitely many Woodin cardinals and
a measurable cardinal above them, then in L(R), the Gödel closure of R through
all the ordinals, GA is determined for every A ⊆R. And hence Regularity for all
sets in L(R).

Thus “AD”, the axiom that games based on any sets are determined, and which
thus implies the regularity properties for all sets, is consistent with DC (as it holds
in L(R)) but not the full AC. We could note also, that as strategies for such games
can themselves be construed as sets of integers, or reals, thatAD holding inL(R), is
equivalent to the statement that all games that are definable in L(R) are determined

claudio.ternullo@ut.ee



88 P. D. Welch

(in V ). We thus may prove outright the regularity properties from sufficient large
cardinals. But we may be thought to have replaced a collection of problems by
problems yet more problematic: how to justify the existence of such cardinals in the
universe (V ,∈)?

4.4.2 Reflection

To say that the universe of all sets is an unfinished totality does not mean objective
undeterminateness, but merely a subjective inability to finish it.

Gödel, in (Wang: “A Logical Journey: From Gödel to Philosophy”).

We take the view that the ordinals for example, indeed form a determinate
concept: they are the class of sets that are transitive and wellordered by set
membership. They form a proper class as Cantor and Burali-Forti (the latter
eventually) recognised. We denote by On the totality of all ordinals.

Historically reflection principles are associated with attempts to formulate the
idea that no one notion, idea, statement can capture our whole view of V =⋃
α∈On Vα . Such reflection principles are usually formulated in some language (first

or higher order) as positing that sentences ϕ (when interpreted in the appropriate
way over V ) that hold in 〈V,∈, . . .〉, must also hold in some 〈Vβ,∈, . . .〉. Let us call
this sentential reflection. This is again a broad subject, and the reader is directed
to Koellner’s article ‘Reflection Principles’ (Koellner 2009) for a more in-depth
discussion of the possible scope and limitations of reflection principles. Koellner
argues that principles that may be deemed of an ‘intrinsic nature’ are unable to
deliver any strong axioms that are inconsistent with a view that V = L, and
so are not strong enough by themselves to prove outright anything about the real
continuum beyond what we can already in L.

We first review some of the traditional sentential reflection principles.

(1) Montague-Levy: First order Reflection.
(R0) : For any ϕ(v0, . . . , vn) ∈ L∈̇

ZF � ∀α∃β > α∀�x ∈ Vβ [ϕ(�x)↔ ϕ(�x)Vβ ].

First order Reflection is actually provable in ZF . Indeed if we drop Infinity
and the Replacement Scheme from ZF , the resulting theory, when augmented
by (R0), gives back Infinity and Replacement. It is a theorem scheme and thus a
metatheorem: it is a theorem only with one ϕ at a time. However by formalising
a �n-Satisfaction predicate we have:

For each n, ZF � ∃Cn[Cn ⊆ Onis a c.u.b. class so that for any ϕ ∈ Fml�n :

∀β ∈ Cn∀�x ∈ Vβ [ϕ(�x)↔ ϕ(�x)Vβ ]].

Informally we write this as ∀β ∈ Cn : (Vβ,∈) ≺�n (V,∈).
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(2) Levy, Bernays Reflection.
Suppose we allow some second order methods and allow proper classes to

enter the picture more actively. If we allow reflection on classes then we can
deliver some modest large cardinals. Let �(D) be the assertion that:

D is a function from On to On, but ∀α D “α is bounded in On”.

By the Axiom of Replacement for any class D, we have then:

(V ,∈,D) |� �(D).

If we allow the assumption that ∀D�(D) reflects to some Vκ we shall have:

∀D ⊆ Vκ (Vκ,∈,D) |� �(D).

This implies that κ is a strongly inaccessible cardinal. However strongly
inaccessible cardinals are strongly inaccessible in L, and are thus consistent
with “V = L”. The strict ZF -ist will eschew such an argument as it quantifies
over all classes and not all such are necessarily definable over (V ,∈).

Whilst Levy (1960) remained at the level of discussing Reflection to obtain inac-
cessible cardinals, and inductively defined hierarchies of such principles relating
to the much earlier cardinals of Paul Mahlo, Bernays (1961) allowed � above to
be any �1

n formula about some parameter D. The resulting strengthened reflection
principle now goes by the name of an indescribability property: any �1

n-property
may be reflected downwards. Indeed there are �1

n+1 sentences, that if reflected
over (V ,∈) to some (Vκ,∈) ensure that (Vκ,∈) itself is �1

n-indescribable in the
same sense.1 The point to note here is that we have firmly entered the realm of
second order entities: we must use these to realise the second order variables of
our language, and moreover we must have a domain of quantification for the string
of quantifiers in such a sentence to vary over. It is quite possible to consider third,
fourth, n’th order languages over (V ,∈) and the associated reflection principles. But
then such a layering of ranks of classes above V leads to the inevitable question as
to why we do not declare such layers to be inhabited by sets.

We shall see that it is part of our viewpoint to avoid even second order methods
wherever possible. We swallow the logical necessity of the existence of classes, as
Cantor, Russell, and Burali-Forti showed, and admit of two types of objects: the
mathematical realm of sets which constitute the universe of mathematical discourse
(V ,∈); but we consider classes as just the parts of V (in a mereological fashion),
which themselves may or may not be sets.

1We have not exactly delineated modern indescribability properties here, which usually are defined
with an extra free predicate symbol, but we only wish to give the flavour of this. See Kanamori
(2003), I.6, for a fuller discussion.
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Gödel again:

All the principles for setting up the axioms of set theory should be reducible to Ackermann’s
principle: The Absolute is unknowable. The strength of this principle increases as we
get stronger and stronger systems of set theory. The other principles are only heuristic
principles. Hence, the central principle is the reflection principle, which presumably will
be understood better as our experience increases. Meanwhile, it helps to separate out more
specific principles which either give some additional information or are not yet seen clearly
to be derivable from the reflection principle as we understand it now.

(Section 8.7.9 of Wang 1996).

(Our italics.)

The Universe of sets cannot be uniquely characterized (i.e. distinguished from all of its
initial segments) by any internal structural property of the membership relation in it, which
is expressible in any logic of finite or transfinite type, including infinitary logics of any
cardinal number.

(Wang - ibid.)

Generally I believe that, in the last analysis, every axiom of infinity should be derivable
from the (extremely plausible) principle that V is indefinable, where definability is to be
taken in [a] more and more generalized and idealized sense. (Wang, ibid., p. 285)

Gödel is presumed to be happy with considering logics of higher types, and thus
Bernays may not be overstepping that mark. But the reflection we have proposed
below is not one of a logical character, meaning in a logic of higher types, or in an
infinitary language; it is a structural reflection that takes the above ‘unknowability’
of the first quote above, or we prefer: ‘ineffability’, of the whole universe of sets,
together with its parts, and reflects on that structure to bring it down to a set sized
substructure.

Strengthening Reflection Principles

As we alluded to above, Koellner (2009) has outlined a heuristic argument that
intrinsic justifications of reflection will never produce a justification for a large
cardinal that cannot reside in L. The cardinals or principles produced will all be
consistent with V = L (and he argues that the small large cardinals they could
conceivably justify are technically weaker than an ω-Erdős cardinal).

The Challenge then: To justify a set-theoretic reflection principle that will ensure
the existence of large cardinals (or strong axioms of infinity) that are sufficient to
deliver the hypotheses needed for modern set theoretical principles.

We first mention some recent attempts at strengthening reflection. Notwith-
standing Bernays’ higher order reflection of sentences, Reinhardt pointed out that
for formulae with third order parameters, the reflection scheme was inconsistent
(Reinhardt 1974). Tait (2005) attempted to provide some relief from this by placing
restrictions on the substitutions possible and defined syntactic classes of higher
order formulae with parameters on which one could nevertheless reflect, and showed
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the consistency of some of these principles from a measurable cardinal, and left
the consistency of others open. Koellner (2009) showed the latter inconsistent but
proved the consistency of the former from a ω-Erdős cardinal, which we do not
define here, but is a cardinal again that is consistent with V = L. He further gave
a heuristic argument that any reflection principle that was based on the intrinsic
iterative hierarchy of sets, and which include such sentential reflections, are all
limited in their outcomes, would have to be intraconstructible as its consistency
would be derivable from such an ω-Erdős cardinal. Such cardinals then would never
be strong enough to prove outright anything about the real continuum beyond what
we can in L.

To summarise we thus have:

• The Reflection Principles to date are all consistent with a view of the universe as
being L the constructible universe: they are intra-constructible.

• However these are all motivated on a syntactic level.

The moral is thus: We need stronger Reflection Principles: those that generalise
Montague-Levy are not up to the task of providing any justification for the large
cardinals needed for modern set theory.

We have proposed (Welch and Horsten 2016, Welch 2012) a Global Reflection
Principle to overcome this intraconstructibility limitation. This principle has as its
inspiration the properties related to those of a subcompact cardinal, and is more of
the nature of structural reflection rather than sentential or linguistic.

It is quite legitimate to ask first why do we need stronger reflection principles?
Here is one very good reason.

Theorem 4.4.7 (Woodin) Suppose there is a proper class of Woodin cardinals.
Then T h(L(R)) is immune to change by set forcing.

The import of the theorem is that the perhaps baleful effects of Cohen’s forcing
method can have no effect on the fact of the matter as to which sentences are true
in analysis, or indeed of any statement about the reals and ordinals: in L(R) every
object is definable from such, and as such it encompasses analysis, the projective
hierarchy, and way beyond, using iterated definability through On. This is thus
a strong absoluteness result. Whilst Woodin cardinals have a somewhat tricky
definition (which is why we have not defined them here) it turns out that this notion
is absolutely central to proving the consistency of many concepts in modern set
theory. The supposition of their existence, or indeed that they are unbounded in the
ordinals, is now ubiquitous in current theorems of set theory.

We shall therefore intend to define such a Global Reflection Principle (GRP)
which will deliver an unbounded class of such large cardinals. We take an almost
naive Cantorian stance, and consider the absolute infinities that he identified at that
time: the absolute infinity of On the ordinals, Card the class of cardinals, V itself
etc. , and we collect these (without as yet being too precise as to what this means),
into a familyC, but our viewpoint will be thatC is the collection of the mereological
parts of V . Some of these will be set-sized and we simplify matters by simply
identifying them with the corresponding sets. Those parts that are not sized are
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the interesting entities in C, and we think of these as the proper classes. We then
consider a structural reflection of the whole universe (V ,∈, C) together with its
parts to a small structure.

4.4.2.1 Global Reflection Principle: GRP

We take a small (meaning set-sized) substructure of (V ,∈, C), the universe with all
of its parts, C, and ask that this is then isomorphic to a small part of V : namely
some Vα together with all of its parts. The ‘parts’ of Vα are naturally thoseD ⊆ Vα ,
that is elements of Vα+1. The language L in which we wish to state the principle’s
reflection properties is the usual first order language for set theory, but augmented
with predicate variables X0, X1, X2, . . . that will vary over the collection C. It is
important to note that there are no second order quantifers over these variables. We
thus avoid having an explicitly demarked domain of quantification for the second
order objects. We thus write �0

ω for the class of formulae of L. In the second
line of the next definition the first structure is thus ‘�0

ω’-elementary in the second,
meaning as usual that such formulae with substitutions for set variables from X and
for predicate variables from C′ have the same truth value in both structures.

Definition 4.4.1 (Global Reflection Principle – GRP) There is a set X ⊆ V and
a collection C′ ⊆ C with:

(X,∈, C′) ≺�0
ω
(V ,∈, C)

and:

(X,∈) = (Vα,∈)

for some α ∈ On, and so that

Vα+1 = {D ∩ Vα | D ∈ C′}.

This can be summarised as we have a transitivising isomorphism π so that

π : (X,∈, C′) −→ (Vα,∈, Vα+1)

with π the identity on X.

Hence we have

(V ,∈, C) is reflected down to (Vα,∈, Vα+1)

Or to put it another way, we are thus requiring that there is set-sized simulacrum
of (V ,∈, C) that is of the form (Vα,∈, Vα+1).
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Indeed the inverse of π yields an elementary embedding in an equivalent formula-
tion that is perhaps more congenial to set theorists:

There is an initial segment of the universe Vα , and a nontrivial elementary
embedding

π−1 : (Vα,∈, Vα+1) −→�0
ω
(V ,∈, C)

with critical point α (i.e., π−1(α) > α whereas for z ∈ Vα , π−1 is the identity:
π−1(z) = z).

Thus all that π−1 does is move, or stretch, objects from Vα+1 to objects in C.
Equivalently, as there are no ‘points’ above Vα in X, π ’s collapsing action on any
X ∈ C satisfies π(X) = X ∩ Vα . Thus, for example the part of V which is the class
of ordinals, On, is in C, and π−1(α) = On. (Where α here is considered a class
over Vα and as an element of Vα+1.) We thus have

ϕ(�x, �X)(Vα,∈,Vα+1) ↔ ϕ(π−1(�x), π−1( �X))(V,∈,C) ↔ ϕ(�x, π−1( �X))(V,∈,C).
Why GRP? Define a field of classes U on P(α) by

X ∈ U ↔ α ∈ π−1(X).

As P(α) ⊆ Vα+1 ⊆ dom(π−1) by�0
1-elementarity (in π−1), this is an ultrafilter.

Standard arguments show that U is a normal measure on α, and thus α is a
measurable cardinal. But then:

∀β < α 〈V,∈〉 |�“∃α > β(α a measurable cardinal)” ⇒
⇒ 〈Vα,∈〉 |�“ ∀β∃λ > β(λ a measurable cardinal)” ⇒
⇒ 〈V,∈〉 |�“There are unboundedly many measurable cardinals”.

It is an exercise in the appropriate definitions to show that the critical point α is also
a Woodin (indeed a Shelah) cardinal. So we thus have:

Theorem 4.4.8 (GRP) (V ,∈) |� ∀α∃λ > α(λ a measurable Woodin cardinal).

Corollary 4.4.9 By the results of Martin-Steel and Woodin mentioned above,GRP
then implies:

• (a) Projective Determinacy Det(PROJ) and (AD)L(R).
• (b) (Woodin) Th(L(R)) is fixed: no set forcing notion can change Th(L(R)),

and in particular the truth value of any sentence about reals in the language of
analysis, thereby including Det(PROJ).

4.5 Discussion

There is a discussion to be had as to whether we have here a genuine reflection
principle. As we have intimated, the nature of the reflection that is occurring is
logical in as much as it relies on passing from the whole universe V (with its parts)
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to a substructure that preserves a certain amount of logical elementarity, namely�0
ω-

elementarity. But it is structural in that it requires the substructure to be isomorphic
to an initial segment of the universe Vα together with all of Vα’s classes, that is
Vα+1. It is quite possible to posit weaker reflection principles where the second
order domain of π−1 is only a proper subset of Vα+1. It might for example only
include P(α)L for example. Whereas this would be enough to deduce the existence
of 0�, that is the existence of a non-trivial embedding π−1 : L −→ L, we could not
define the measure on P(α) as we did above.

We could view GRP as the natural limit of a series of principles where we
demanded more and more classes of Vα to be in the image of π (whilst perhaps
allowing α to vary to achieve this). Thus larger and larger inner models M would
haveM-measures defined on their P(α)M as we just saw for L yielding 0� above.

We did not quantify over the collection C in any fashion. All we required of it
was that it contained sufficient elements to allow the definition of the GRP. This
allowed us to be somewhat vague as to what the collection C was. The status of
C is discussed in Welch (2012) and Welch and Horsten (2016). There we discuss
various approaches as to how to regard C, for example through the manœuvre of
considering plurals and plural quantification. However we reject this in favour of a
mereological approach. This fulfils the need to find a way to sufficiently distinguish
sets from classes (see Maddy 1983 for a discussion on this). The argument often
deployed against considering higher order types over the top of V is that in such a
case ‘there was no reason to stop building V at the level On’ (or some such). By
thinking of the ordinals as a determinate concept, we have a class of sets priorly
given in a mathematical manner. In this viewpoint there are no ‘ordinals beyond V ’:
V is the universe of all mathematical objects, and ordinals are mathematical objects.
Likewise there is a mathematical power set operation P(x), but a ‘power-class
operation’ acting on the parts of V would be something else altogether different,
and would not be considered a mathematical operation.

We did not (yet) formalise GRP in any class theory. We think of the development
of our intuitions concerning V and its parts as taking place in a pre-formalised state:
these include our intuitions concerning the ineffability of (V ,∈, C), and are not yet
formalised. We think simply as mathematicians do about the semantics, or structure
of our concepts.

One could then proceed to formalise the statement of GRP in NBG – class
theory. The assertion of the existence of such a π appears prima facie to be third
order, but with usual coding tricks, in fact it can be regarded as an assertion that
a certain kind of class exists and thus is a �1

1 statement. It is not hard to come
up with strengthenings: we could for example increase the amount of elementarity
demanded to include that of a language with full quantification over the variablesXi .
This ‘mereological reflection’ then has reflection involving quantified statements
about the parts of V . This is natural, but a stronger principle than GRP. However
then one must be specific about the domain of quantification, i.e. the class C.
Our own inclination is to eschew second order methods whenever possible – being
not entirely convinced of their coherence. One point that can be made is that with
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(Vα,∈, Vα+1) being a natural model of Morse-Kelley class theory, if we have an
enhanced version of GRP with this form of full second order reflection, we can
carry this up to deduce that (V ,∈, C) must also form a model of Morse-Kelly.

A final technical word on the consistency of GRP. One can easily see that:

Theorem 4.5.1

Con(ZFC + ∃κ(κ is 1-extendible)) −→ Con(NBG+GRP).

Indeed 1-extendibility is stronger than the enhanced versions of GRP mentioned
above. Sam Roberts in (2017) has extended the above account of global reflection
to yield a very flexible family of higher order reflection principles which, when
suitably formulated, can yield supercompact cardinals and more. But these cross
the philosophical threshold we have stopped short of: not to quantify over the parts
of V . They also cross over the admittedly more technical set theoretical threshold
into those cardinals, such as supercompacts, that imply the existence of embeddings
j of the universe into an inner model that are discontinuous at the successor
cardinal of the critical point (the first ordinal moved) of j . Such embeddings require
representation by systems of ultrapowers known as ‘long extenders’, which we
do not define here, but for a discussion of ‘long’ and ‘short’ extender types see
Section 1 of Neeman (2007). The GRP here falls just short of justifying such. The
GRP embedding is of a ‘superstrong’ type where On is the target of the critical
point κ and is at the limit of those that can be expressed using short extenders.
Here a cardinal κ is called superstrong if there is an embedding j , preserving
elementarity in the usual first order language of set theory, with critical point κ ,
and an inner model M so that j : V −→M with VMj(κ) = Vj(κ). Note now that

j�Vκ+1 : Vκ+1−→VMj(κ)+1 however without any assumption that the latter is

Vj(κ)+1. (The latter would require 1-extendibility.) But taking C = VMj(κ)+1, it is
easy to see (Vj (κ),∈, C) together with j�Vκ+1 gives a set model of NBG+GRP .

Hence the last theorem can be modestly improved, in that the antecedent is a
large cardinal that can be expressed by short extenders.

Theorem 4.5.2

Con(ZFC + ∃κ(κ is superstrong)) −→ Con(NBG+GRP).

It is possible given such a j from GRP to define from it a directed system of short
extenders from V , in such a way that this directed system expresses an ultrapower
embedding which when restricted to Vκ+1 is just j . We thus get back j from this
directed system (see the discussion in Kanamori 2003 Ch. 5 Sect. 26 for example.)
Were long extender embeddings ever to be shown, as a class, inconsistent, then GRP
is pretty much what we would be left with.
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Chapter 5
Naïve Type Theory

Thorsten Altenkirch

Abstract We introduce Type Theory, in its latest incarnation of Homotopy Type
Theory, as an alternative to set theory as a foundation of Mathematics. We
emphasize the naïve, intuitive understanding of Type Theory.

5.1 Introduction

The word type theory has at least two meanings:

• The theory of types in programming languages,
• Martin-Löf’s Type Theory as a constructive foundation of Mathematics

We will be mainly concerned with the latter (which is emphasised by capitalising
it), even though there are interactions with the design of programming languages as
well.

Type Theory is the base of a number of computer systems used as the base of
interactive proof systems and very advanced (functional) programming language.
Here is an incomplete list:

NuPRL is maybe the oldest implementation of Type Theory, which was devel-
oped at Cornell. It is based on a different flavour of type theory which was called
Extensional Type Theory but which is now referred to as Computational Type
Theory (Constable et al. 1986).

Coq is maybe now the system most used in formal Mathematics and has been
used for some impressive developments, including a formal proof of the Four
Colour Theorem and the verification of an optimising C compiler (Bertot and
Castéran 2013; Chlipala 2013).
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Agda is a sort of a twitter it can be used as a interactive proof assistant or as a
dependently typed programming language (Norell 2008; Stump 2016).

Idris goes further on the programming language road by addressing more prag-
matic concerns when using Type Theory for programming (Brady 2017).

Lean is developed at Microsoft Research with strong support for automatic
reasoning (de Moura et al. 2015).

Cubical Cubical is a very new system and more a proof of concept but it is the
only one (so far) that actually implements Homotopy Type Theory (Cohen et al.
2016).

One way to introduce Type Theory is to pick one system (I usually pick Agda)
and then learn Type Theory by doing it. While this is a good way to approach this
subject, and do I recommend to play with a system, I want to concentrate more
on the conceptual issues and then I find that having to explain the intricacies of a
particular system can be a bit of a distraction. Hence this course will be a paper
based introduction to Type Theory.

This chapter can be viewed as a taster for my forthcoming book (Altenkirch
2019) or for the book on Homotopy Type Theory (HoTT) (The Univalent Foun-
dations Program 2013) which was the output of a special year at the Institute for
Advanced Study in Princeton.

The material presented in these notes was the base for a number of courses since
my presentation at the FOMUS meeting:

• Introduction to homotopy type theory
22nd Estonian Winter School in Computer Science (EWSCS), Palmse, Estonia,
January 2017.

• Naïve Type Theory
Midland Graduate School 2017 (MGS 2017), Leicester, UK, April 2017.

• Introduction to homotopy type theory
EU Types summer school, Ohrid, Macedonia, July 2017

5.2 Type Theory vs Set Theory

I view Type Theory in the first place as a intuitive foundation of Mathematics. This
is similar to how most Mathematicians use Set Theory: the have an intuitive idea
what sets are but they don’t usually refer back to the axioms of Set Theory. This is
sometimes called naïve Set Theory1 and similar what I am doing here can be called
naïve Type Theory.

In Set Theory we write 3 ∈ N to express that 3 is an element of the set of natural
numbers. In Type Theory we write 3 : N to express that 3 is an element of the
type of natural numbers. While this looks superficially similar, there are important
differences:

1This is also the title of a well known book by Halmos (1998).
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• While 3 ∈ N is a proposition, 3 : N is a judgement, that is a piece of static
information.

• In Type Theory every object and every expression has a (unique) type which is
statically determined.2

• Hence it doesn’t make any sense to use a : A as a proposition.
• This is similar to the distinction between statically and dynamically typed pro-

gramming languages. While in dynamically typed languages there are runtime
functions to check the type of an object this doesn’t make sense in statically
typed languages.

• In Set Theory we define P ⊆ Q as ∀x.x ∈ P → x ∈ Q. We can’t do this in
Type Theory because x ∈ P is not a proposition.

• Also set theoretic operations like ∪ or ∩ are not operations on types. However,
they can be defined as operations on predicates, aka subsets, of a given type. ⊆
can be defined as a predicate on such subsets.

• Type Theory is extensional in the sense that we can’t talk about details of
encodings.

• This is different in Set Theory where we can ask wether N∩Bool = ∅? Or wether
2 ∈ 3? The answer to these questions depends on the choice of representation of
these objects and sets.

Apart from the judgement a : A there is also the judgement a ≡A b which
means that a, b : A are definitionally equal. We write definitions using :≡, e.g. we
can define n : N as 3 by writing n :≡ 3. As for a : A definitional equality is a static
property which can be determined statically and hence which doesn’t make sense as
a proposition. We will later introduce a =A b, propositional equality which can be
used in propositions.

While Type Theory is in some sense more restrictive than Set Theory, this does
pay off. Because we cannot talk about intensional aspects, i.e. implementation
details, we can identify objects which have the same extensional behaviour. This
is reflected in the univalence axiom, which identifies extensionally equivalent types
(such as unary and binary natural numbers).

Another important difference between Set Theory and Type Theory is the way
propositions are treated: Set Theory is formulated using predicate logic which relies
on the notion of truth. Type Theory is self-contained and doesn’t refer to truth but to
evidence. Using the propositions-as-types translation (also called the Curry-Howard
equivalence) we can assign to any proposition P the type of its evidence �P � using
the following table:

�P ⇒ Q� ≡ �P �→ �Q�

�P ∧Q� ≡ �P �× �Q�

2We are not considering subtyping here, which can be understood as a notational device allowing
the omission of implicit coercions.
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�True� ≡ 1

�P ∨Q� ≡ �P �+ �Q�

�False� ≡ 0

�∀x : A.P � ≡ Πx : A.�P �

�∃x : A.P � ≡ �x : A.�P �

0 is the empty type, 1 is the type with exactly one element and + is the sum
or disjoint union of types. → (function type) and × should be familiar but we will
revisit all of them from a type theoretic perspective. Π and � are less familiar in
Set Theory and we will have a look at them later.

We are using a typed predicate logic, in the lines for universal and existential
quantification A refers to a type. Other connectives are defined: ¬P is defined as
P ⇒ False. Logical equivalence P ⇔ Q is defined as (P ⇒ Q) ∧ (Q ⇒ P).
Careful, equivalence such as¬(P∧Q)⇔ ¬P∨¬Q or¬(∀x : A.P )⇔ ∃x : A.¬P
do not hold in Type Theory, hence we cannot define ∨ or ∃ via ¬ and ∧ and ∀.

Later we will see a refinement of the proposition as types translation, which
changes the translation of P ∨Q and ∃x : A.P .

5.3 Non-dependent Types

5.3.1 Universes

To get started we have to say what a type is. We could achieve this by introducing
another judgement but instead I am going to use universes. A universe is a type of
types. For example to say that N is a type, I write N : Type where Type is a universe.

But what is the type of Type? Do we have Type : Type? It is well known that
this doesn’t work in Set Theory due to Russell’s paradox (the set of all sets which
does not contain itself). However, in Type Theory a : A is not a proposition, hence
it is not immediately clear wether the paradox still works.

However, it is possible to encode Russell’s paradox in a Type Theory with Type :
Type by using trees which can branch over any type. In this theory we can construct
a tree of all trees which don’t have themself as immediate subtree. This tree is a
subtree of itself iff it isn’t which enables us to derive a contradiction.

To avoid Russell’s paradox we introduce a hierarchy of universes

Type0 : Type1 : Type2 : . . .

and we decree that any type A : Typei can be lifted to a type A+ : Typei+1. Being
explicit about universe levels can be quite annoying hence we are going to ignore
them most of the time but try to make sure that we don’t use universes in a cyclic
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way. That is we write Type as a metavariable for Typei and assume that all the
levels are the same unless stated explicitly.

5.3.2 Functions

While in Set Theory functions are a derived concept (a subset of the cartesian
product with certain properties), in Type Theory functions are a primitive concept.
The basic idea is the same as in functional programming: basically a function is
a black box and you can feed it elements of its domain and out come elements
of its codomain. Hence given A,B : Type we introduce the type of functions
A → B : Type. We can define a function explicitly, e.g. we define f : N → N

as f (x) :≡ x + 3. Having defined f we can apply it, e.g. f (2) : N and we can
evaluate this application by replacing all occurrences of the parameter x in the body
of the function x + 3 by the actual argument 2 hence f (2) ≡ 2 + 3 and if we are
lucky to know how to calculate 2+ 3 we can conclude f (2) ≡ 5.

One word about syntax: in functional programming and in Type Theory we try
to save brackets and write f 2 for the application and also in the definition we write
f x :≡ x + 3.

The explicit definition of a function requires a name but we should be able to
define a function without having to give it a name – this is the justification for the
λ-notation. We write λx.x + 3 : N → N avoiding to have to name the function.
We can apply this (λx.x + 3) 2 and the equality (λx.x + 3) 2 ≡ 2 + 3 is called β-
reduction. The explicit definition f x ≡ x+3 can now be understood as a shorthand
for f ≡ λx.x + 3.

In Type Theory every function has exactly one argument. To represent functions
with several arguments we use currying, that is we use a function that returns a
function. So for example the addition function g :≡ λx.λy.x + y has type N →
(N → N), that is if we apply it to one argument g 3 : N → N it returns the
function that add 3 namely λy.3+y. We can continue and supply a further argument
(g 3) 2 : N which reduces

(g 3) 2 ≡ (λy.3+ y) 2

≡ 3+ 2

To avoid the proliferation of brackets we decree that application is left associative
hence we can write g 3 2 and that → is left associative hence we can write N →
N→ N for the type of g.

When calculating with variables we have to be a bit careful. Assume we have a
variable y : N hanging around, now what is g y? If we naively replace x by y we
obtain λy.y+y, that is the variable y got captured. This is not the intended behaviour
and to avoid capture we have to rename the bound variable that is λx.λy.x + y ≡
λx.λz.x + z – this equality is called α-congruence. After having done this we can
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β-reduce. Here is the whole story

g y ≡ (λx.λy.x + y) y
≡ (λx.λz.x + z) y
≡ λz.y + z

Clearly the choice of z here is arbitrary, but any other choice (apart from y) would
have yielded the same result upto α-congruence.

5.3.3 Products and Sums

Given A,B : Type we can form their product A× B : Type and their sum A+ B :
Type. The elements of a product are tuples, that is (a, b) : A × B if a : A and
b : B. The elements of a sum are injections that is left a : A + B if a : A and
right b : A+ B, if b : B.

To define a function from a product or a sum it is sufficient to say what the
functions returns for the constructors, that is for tuples in the case of a product or
the injections in the case of a sum.

As an example we derive the tautology

P ∧ (Q ∨ R)⇔ (P ∧Q) ∨ (P ∧ R)

using the propositions as types translation. We assume that P,Q,R : Type, we
have to construct an element of the following type

(P × (Q+ R)→ (P ×Q)+ (P × R))
×((P ×Q)+ (P × R)→ P × (Q+ R))

We define:

f : P × (Q+ R)→ (P ×Q)+ (P × R)
f (p, left q) :≡ left (p, q)

f (p, right r) :≡ right (p, r)

g : (P ×Q)+ (P × R)→ P × (Q+ R)
g (left (p, q)) :≡ (p, left q)

g (right (p, r))) :≡ (p, right r)
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Now the tuple (f, g) is an element of the type above.
In this case the two functions are actually inverses, but this is not necessary to

prove the logical equivalence.

Exercise 1 Using the propositions as types translation, try3 to prove the following
tautologies:

1. (P ∧Q⇒ R)⇔ (P ⇒ Q⇒ R)

2. ((P ∨Q)⇒ R)⇔ (P ⇒ R) ∧ (Q⇒ R)

3. ¬(P ∨Q)⇔ ¬P ∧ ¬Q
4. ¬(P ∧Q)⇔ ¬P ∨ ¬Q
5. ¬(P ⇔ ¬P)
where P,Q,R : Type are propositions represented as types.

Exercise 2 While the principle of excluded middle P ∨ ¬P (tertium non datur) is
not provable, prove its double negation using the propositions as types translation:

¬¬(P ∨ ¬P)

If for a particular proposition P we can establish P ∨ ¬P then we can also derive
the principle of indirect proof (reduction ad absurdo) for the same proposition
¬¬P ⇒ P . Hence show:

(P ∨ ¬P)⇒ (¬¬P ⇒ P)

Note that the converse does not hold (what would be a counterexample?). However,
use the two tautologies to show that the two principles are equivalent.

Functions out of products and sums can be reduced to using a fixed set of
combinators called non-dependent eliminators or recursors (even though there is
no recursion going on).

R× : (A→ B → C)→ A× B → C

R× f (a, b) :≡ f a b

R+ : (A→ C)→ (B → C)→ A+ B → C

R+ f g (left a) :≡ f a
R+ f g (right b) :≡ g b

3I didn’t say they are all tautologies!
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The recursor R× for products maps a curried function f : A→ B → C into its
uncurried form, taking tuples as arguments. The recursor R+ basically implements
the case function performing case analysis over elements of A+ B.

Exercise 3 Show that using the recursor R× we can define the projections:

fst : A× B → A

fst (a, b) :≡ a
snd : A× B → B

snd (a, b) :≡ b

Vice versa: can the recursor be defined using only the projections?

We also have the case of an empty product 1, called the unit type and the empty
sum 0, the empty type. There is only one element of the unit type: () : 1 and none
in the empty type. We introduce the corresponding recursors:

R1 : C → (1 → C)

R1 c () :≡ c

R0 : 0 → C

The recursor for 1 is pretty useless, it just defines a constant function. The recursor
for the empty type implements the logical principle eq falso quod libet, from false
follows everything. There is no defining equation because it will never be applied to
an actual element.

Exercise 4 Construct solutions to Exercises 1 and 2 using only the eliminators.

The use of arithmetical symbols for operators on types is justified because they
act like the corresponding operations on finite types. Let us identify the number n
with the type of elements 0n, 1n, . . . (n − 1)n : n, then we observe that it is indeed
the case that:

0 = 0

m+ n = m+ n
1 = 1

m× n = m× n

Read = here as has the same number of elements. This use of equality will be
justified later when we introduce the univalence principle.
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The arithmetic interpretation of types also extends to the function type, which
corresponds to exponentiation. Indeed, in Mathematics the function type A→ B is
often written as BA. And indeed we have:

mn = n→ m

5.4 Dependent Types

By a dependent type we mean a type indexed by elements of another type. For
example the types of n-tuples An : Type their elements are (a0, a1, . . . an−1) : An
where ai : A, or the finite type n : Type. Indeed, tuples are also indexed by A :
Type. We can use functions into Type to represent these dependent types:

Vec : Type → N→ Type

VecAn :≡ An

Fin : N→ Type

Fin n :≡ n
In the propositions as types view dependent types are used to represent predicates,
e.g. Prime : N → Type assigns to any natural number n : N the type of evidence
Prime n : Type that n is a prime number. This does not need to be inhabited, e.g.
Prime 4 is empty. Using currying we can use this also to represent relations, e.g.
≤: N → N → Type, m ≤ n : Type is the type of evidence that m is less or equal
to n.

5.4.1 Π-Types and Σ-Types

Π -types generalize function types to allow the codomain of a function to depend
on the domain. For example consider the function zeroes that assigns to any natural
number n : N a vector of n zeroes

(0, 0, . . . , 0)
︸ ︷︷ ︸

n

: Nn

We use Π to write such a type:

zeroes : Πn : N.Nn
zeroes n :≡ (0, 0, . . . , 0)

︸ ︷︷ ︸
n
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The non-dependent function type can now be understood as a special case of Π -
types, A→ B ≡ Π− : A.B.

In the same vain, �-types generalize product types to the case when the 2nd
component depends on the first. For example we can represent tuples of arbitrary
size as a pair of a natural number n : N and a vector of this size An as an element
of �n : N.An. So for example (3, (1, 2, 3)) : �n : N.Nn because (1, 2, 3) : N3.
Indeed, this type is very useful so we give it a name:

List : Type → Type

ListA :≡ �n : N.An

In the propositions as types translation we useΠ -types to represent evidence for
universal quantification. For example a proof of ∀x : N.1+x = x+1 is a dependent
function of type f : Πx : N.1+x = x+1, such that applying it as in f 3 is evidence
that 1+ 3 = 3+ 1.

Similar, we use�-types to represent evidence for existential quantification where
the first component is the instance for which the property is supposed to hold and
the second component a proof that it holds for this particular instance. For example
the statement ∃n : N.Prime n is translated to �n : N.Prime n and a proof of this is
(3, p) where p : Prime 3.

As for Π -types the non-dependent products arise as a special case of �-types:
A× B :≡ �− : A.B.

To avoid clutter we sometimes want to omit arguments to a Π -type when it is
derivable from later arguments or the first component of a �-type. In this case we
write the argument in subscript as inΠx:AB x or�x:AB x. For example if we define
ListA :≡ �n:N.An we can omit the length and just write (1, 2, 3) : ListN.

We can also define a dependent recursor or eliminator for �-types which allows
us to define any dependent function out of a �-type. This eliminator is not just
parametrised by a type but by a family C : �x : A.B x → Type:

E� : (Πx : A,Πy : B x.C (x, y))→ Πp : �x : A.B x.C p
E� f (a, b) :≡ f a b

Exercise 5 As in Exercise 3 we can define projections out of aΣ-type, let A : Type
and B : A→ Type:

fst : Σx : A.B x → A

fst (a, b) :≡ a
snd : Πp : Σx : A.B x.B (fstp)

snd (a, b) :≡ b
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Note that the type of the 2nd projections is a dependent function type using the first
projection.

Derive the projections using only the eliminator EΣ . Vice versa, can you derive
the eliminator from the projections without making further assumptions?

Exercise 6 Using the propositions as types translation for predicate logic try to
derive the following tautologies:

1. (∀x : A.P x ∧Qx)⇔ (∀x : A.P x) ∧ (∀x : A.Qx)
2. (∃x : A.P x ∨Qx)⇔ (∃x : A.P x) ∨ (∃x : A.Qx)
3. (∃x : A.P x)⇒ R ⇔ ∀x : A.P x ⇒ R

4. ¬∃x : A.P x ⇔ ∀x : A.¬P x
5. ¬∀x : A.P x ⇔ ∃x : A.¬P x
where A,B : Type and P,Q : A → Type, R : Type, represent predicates and a
proposition.

We have seen that �-types are related to products but they are also related to
sums. Indeed we can derive + from � using as the first component an element of
Bool = 2 and the second component is either the first or the 2nd component of the
sum (assuming A,B : Type):

A+ B : Type

A+ B :≡ �x : Bool.if x thenA elseB

In the same way we can also derive × from Π by using dependent functions over
the booleans which returns either one or the other component of the product.

A× B : Type

A× B :≡ Πx : Bool.if x thenA elseB

It is interesting to note that × can be viewed in two different ways: either as a non-
dependent �-type or as a dependent function-type over the booleans.

Exercise 7 Show that injections, pairing, non-dependent eliminators can be
derived for these encodings of sums and products.

Finally, we notice that the arithmetic interpretation of types extends to � and Π
giving a good justification for the choice of their names, let m : N and f : m→ N:

�x : m.f x = �x<mx=0 f x

Πx : m.f x = Πx<m
x=0 f x
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5.4.2 Induction and Recursion

Following Peano the natural numbers are introduced by saying that 0 is a natural
number (0 : N), and if n is a natural number (n : N) then its successor is a natural
number (suc n : N), which is equivalent to saying suc : N → N. When defining
a function out of the natural numbers, we allow ourselves to recursively use the
function value on n to compute it for suc n. An example is the doubling function:

double : N→ N

double 0 :≡ 0

double (suc n) :≡ suc (suc (double n))

We can distill this idea into a non-dependent eliminator which is now rightfully
called the recursor:

RN : C → (C → C)→ N→ C

RN z s 0 :≡ z
RN z s (suc n) :≡ s (R z s n)

We can now define double using only the recursor:

double n :≡ RN 0 (λn.suc (suc n))

Exercise 8 We define addition recursively:

+ : N→ N→ N

0+ n :≡ n
(sucm)+ n :≡ suc (m+ n)

Define addition using only the recursor RN.

Exercise 9 Not all recursive functions exactly fit into this scheme. For example
consider the function that halves a number forgetting the remainder:

half : N→ N

half 0 :≡ 0

half (suc 0) :≡ 0

half (suc (suc n)) :≡ suc (half n)

Try to derive half only using the recursor RN.
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When we want to prove a statement about natural numbers we have to construct
a dependent function. An example is the proof that half is the left inverse of double:
∀n : N.half (double n) = n. I haven’t introduced equality yet but we only need two
ingredients to carry out this construction, given A,B : Type:

refl : Πx : A.x = x
resp : Πf : A→ B.Πm,n:Nm = n→ f m = f n

Using those we can define a dependent function verifying the statement:

halfDouble : Πn : N.half (double n) = n
halfDouble 0 :≡ refl 0

halfDouble (suc n) :≡ resp suc (h n)

As for �-types we can derive dependent functions out of the natural numbers using
a dependent recursor or eliminator. Assume that we have a dependent type C : N→
Type:

EN : C 0 → (Πn : N.C n→ C (suc n))→ Πn : N.C n
EN z s 0 :≡ z
EN z s (suc n) :≡ s (E z s n)

Exercise 10 Derive halfDouble using only the dependent eliminator EN.

The type of EN precisely corresponds to the principle of induction – indeed from
the propositions as types point of view induction is just dependent recursion.

Exercise 11 Show that the natural numbers with + and 0 form a commutative
monoid:

1. ∀x : N.0+ x = x
2. ∀x : N.x + 0 = x
3. ∀x, y, z : N.x + (y + z) = (x + y)+ z
4. ∀x, y : N.x + y = y + x

Not all dependent functions out of the natural numbers arise from the proposi-
tions as types translation. An example is the function zeroes : Πn : N.Nn which
we only introduced informally. We can make this precise by inductively defining
tuples:

nil : A0

cons : Πn:NAn→ Asuc n
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Using this we can define zeroes by recursion

zeroes 0 :≡ nil

zeroes (suc n) :≡ cons 0 (zeroes n)

This can be easily translated into an application of the eliminator

zeroes :≡ EN nil (cons 0)

Exercise 12 We can also define the finite types in an inductive way, overloading 0
and suc:

0 : Πn:Nsuc n

suc : Πn:Nn→ suc n

Using this and the inductive definition of An derive a general projection operator

nth : Πn:NAn→ n→ A

that extracts an arbitrary component of a tuple.

Exercise 13 Suggest definitions of eliminators for tuples and finite types. Can you
derive all the examples using them?

5.4.3 The Equality Type

Given a, b : A the equality type a =A b : Type is generated from one constructor
refl : Πx:Ax =A x. That is we are saying that two things which are identical are
equal and this is the only way to construct an equality. Using this idea we can
establish some basic properties of equality, namely that it is an equivalence relation,
that is a relation that is reflexive, symmetric and transitive. Moreover, it is also a
congruence, it is preserved by all functions. Since we already have reflexivity from
the definition, let’s look at symmetry first. We can define symmetry by just saying
how it acts on reflexivity:

sym : Πx,y:Ax = y → y = x
sym refla :≡ refla

The main idea here is that once we apply sym to refl we also know that two points
x, y : A must be identical and hence we can prove the result using refl again.
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Exercise 14 Provide proofs of

trans : Πx,y,z:Ax = y → y = z→ x = z
resp : Πf : A→ B.Πx, y : A.x = y → f x = f y

using the same idea.

For equality there is a recursor and an eliminator, and for the examples above we
only need the recursor because we have no dependency on the actual proofs of
equality. However, there is some dependency because equality itself is a dependent
type. We assume a family that depends on the indices of equality but not on the
equality proofs themselves: C : A→ A→ Type then the recursor is:

R= : (Πx : A.C x x)→ Πx,y:Ax = y → C x y

R= f (refla) :≡ f a

Exercise 15 Derive sym, trans, resp using the recursor R=.

What would be a statement that actually depends on equality proofs? It seems
that equality is rather trivial since there is at most one proof of it and we should
be able to prove this. This is called uniqueness of equality proofs and states that
any two proofs of equality are equal and it has an easy direct definition exploiting
exactly the fact that the only proof of equality is reflexivity:

uep : Πx,y:AΠp, q : x = y
uep refla refla :≡ reflrefla

We now define the dependent eliminator for equality which E= which is also called
J but we stick to our terminology. This time we use a family that does indeed depend
on the equality proof C : Πx,y:Ax = y → Type

E= : (Πx:AC (reflx))→ Πx,y:AΠp : x = y.C p
E= f reflx :≡ fx

Now we should be able to perform the usual exercise and reduce the direct definition
of uep to one using only the eliminator. The first step is clear, by eliminating one
argument we can reduce the problem to:

Πx:AΠq : x = x.reflx = q

but now we are stuck. We cannot apply the eliminator because we need a family
were both indices are arbitrary. Indeed, Hofmann and Streicher were able to show
that uep is unprovable from the eliminator (Hofmann and Streicher 1998). In the
next section we will discuss reasons why this is actually not a bad thing. However,
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at least based on our current understanding of equality it seems that this is an
unwanted incompleteness. One which can actually fixed by introducing a special
eliminator which works exactly in the case when we want to prove something about
equality proofs where both indices are equal. That is we assume as given a family
C : Πx:Ax = x → Type and introduce

K : (Πx:AC reflx)→ Πx:AΠp : x = x.C p
K f reflx :≡ fx

This eliminator is called K because K is the next letter after J.

Exercise 16 Derive uep using only E= and K .

Exercise 17 Instead of viewing equality as a relation generated by refl, we can also
fix one index a : A and now define the predicate of being equal to a: a = − : A→
Type. This predicate is generated by refla : a = a so no change here. However, the
eliminator looks different. Let’s fix C : Πx : A.a = x → Type

J ′a : (C refla)→ Πx:AΠp : a = x.C p
J ′a f (refla) :≡ f

Show that E= and J ′ are interderivable, that is both views of equality are equivalent.

5.5 Homotopy Type Theory

5.5.1 Proof Relevant Equality

If we are only use E= aka J we cannot in general prove that there is only one proof
of equality, but what can we prove? It turns out that we can indeed verify some
equalities:

transp refl = p
trans reflp = p

trans (transp q) r = transp (trans q r)

transp (symp) = refl

trans (symp)p = refl

where p : a =A b, q : b =A c and r : c =A d.
It is easy to verify these equalities using only J because all the quantifications

are over arbitrary p : x = y and there is no repetition of variables.
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Exercise 18 Explicitly construct the proofs using J .

A structure with these properties is called a groupoid. A groupoid is a category
where every morphism is an isomorphism. Here the objects are the elements of the
type A, given a, b : A the homset (actually a type) is a =A b, composition is trans,
identity is refl and sym assigns to every morphism its inverse.

We can go further an observe that resp also satisfies some useful equalities:

resp f refl = refl

resp f (transp q) = trans (resp f p) (resp f q)

where f : A→ B,p : a =A b, q : b =A c.
In categorical terms this means that f is a functor: its effect on objects a : A is

f a : B and its effect on morphism p : a =A b is resp f p : f a =B f b.

Exercise 19 Why don’t we prove that resp f also preserves symmetries?

resp f (symp) = sym (resp f p)

Indeed, the idea of Streicher’s and Hofmann’s proof is to turn this around and
to show that we can generally interpret types as groupoids where the equality
type corresponds to the homset. Interestingly we can also interpret J in this
setting but clearly we cannot interpret K because it forces the groupoid to be
trivial, i.e. to be an equivalence relation. However, in the moment there is no
construction which generates non-trivial groupoids, but this will change once
we have the univalence principle or if we introduce Higher Inductive Types
(HITs).

However, groupoids are not the whole story. There is no reason to assume that
the next level of equalities, i.e. the equality of the equality of equality proofs is
trivial. We need to add some further laws, so called coherence laws, which are
well known and we end up with a structure which is called a 2-Groupoid (in
particular all the homsets are groupoids). But the story doesn’t finish here we
can go on forever. The structure we are looking for is called a weak ω-groupoid.
Alas, it is not very easy to write down what this is precisely. Luckily, homotopy
theoreticians have already looked at this problem and they have a definition: a weak
ω-groupoid is a Kan complex, that is a simplicial set with all Kan fillers. This is
what Voevodsky has used in his homotopical model of Homotopy Type Theory
(Kapulkin and Lumsdaine 2012). However, it was noted that this construction uses
classical principles, i.e. the axiom of choice. Thierry Coquand and his team have
now formulated a constructive alternative which is based on cubical sets (Cohen
et al. 2016).
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5.5.2 What Is a Proposition?

Previously, we have identified propositions as types but it is fair enough to observe
that types have more structure, they can carry more information by having different
inhabitants. This becomes obvious in the next exercise:

Exercise 20 Given A,B : Type and a relation R : A→ B → Type the axiom of
choice can be stated as follows:

(∀x : A.∃y : B.R x y)→ ∃f : A→ B.∀x : A.R x (f x)

Apply the propositions as types translation and prove the axiom of choice.

This is strange because usually the axiom of choice is an indicator of using some
non-constructive principle in Mathematics. But now we can actually prove it in
Type Theory? Indeed, the formulation above doesn’t really convey the content of
the axiom of choice because the existential quantification is translated as a �-type
and hence makes the choice of the witness explicit. In conventional Mathematics
propositions do not carry any information hence the axiom of choice has to
build the choice function without any access to choices made when showing the
premise.

To remedy this mismatch we are more specific about propositions: we say that a
type P : Type is a proposition if it has at most one inhabitant, that is we define

isProp : Type → Type

isPropA :≡ Πx, y : A.x =A y

I write P : Prop for a type that is propositional, i.e. we can prove isPropP . That is
we are interpreting Prop as �P : Type.isPropP but I am abusing notation in that I
omit the first projection (that is an instance of subtyping as an implicit coercion).

Exercise 21 Show that equality for natural numbers is a proposition, that is
establish:

∀x, y : N.isProp (x =N y)

Looking back at the proposition as types translation we would like that for any
proposition in predicate logic P we have that �P � : Prop. That can be shown to
be correct for the so called negative fragment, that is the subset of predicate logic
without ∨ and ∃.

Exercise 22 Show that if P,Q : Prop and R : A→ Prop where A : Type then

1. �P ⇒ Q� : Prop
2. �P ∧Q� : Prop
3. �True� : Prop
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4. �False� : Prop
5. �∀x : A.P � : Prop

However this fails for disjunction and existential quantification: �True ∨ True� is
equivalent to Bool which is certainly not propositional since true �= false. Also
∃x : Bool.True is equivalent to Bool and hence also not propositional.

To fix this we introduce a new operation which assigns to any type a proposition
which expresses the fact that the type is inhabited. That is given A : Type
we construct ‖A‖ : Prop, this is called the propositional truncation of A. We
can construct elements of ‖A‖ from elements of A, that is we have a function
η : A → ‖A‖. However, we hide the identity of a, that is we postulate that
η a = η b for all a, b : A. How can we construct a function out of ‖A‖? It would
be unsound if we would allow this function to recover the identity of an element.
This can be avoided if the codomain of the function is itself propositional. That is
given P : Prop and f : A → P we can lift this function to f̂ : ‖P ‖ → A with
f̂ (η a) ≡ f a.

Using ‖−‖ we can redefine �−� such that �P � : Prop:

�P ∨Q� :≡ ‖�P �+ �Q�‖
�∃x : A.P � :≡ ‖�x : A.�P �‖

Now the translation of the axiom of choice

(∀x : A.∃y : B.R x y)→ ∃f : A→ B.∀x : A.R x (f x)

which is

Πx : A.‖�y : B.R x y‖ → ‖�f : A→ B.∀x : A.R x (f x)‖

is more suspicious. It basically say if for every x : A there is y : B with a certain
property, but I don’t tell you which one, then there is a function f : A→ B which
assigns to every x : A a f x : B with a certain property but I don’t tell you which
function. This sounds like a lie to me!

Indeed lies can make our system inconsistent or they can lead to classical
principle, which can be viewed is a form of lying that is not known to be
inconsistent. Indeed, assuming one additional principle, propositional extensionality
we can derive the principle of excluded middle. This proof is due to Diaconescu.

By propositional extensionality we mean that two propositions which are
logically equivalent then they are equal:

propExt : ΠP,Q : Prop.(P ⇔ Q)→ P = Q

This is reasonable because all what matters about a proposition is wether it is
inhabited, and hence two proposition which are logically equivalent are actually
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indistinguishable and hence extensionally equal. Indeed, we will see that propExt is
a consequence of the univalence principle.

Theorem 1 (Diaconescu) Assuming the amended translation of the axiom of
choice:

ac : Πx : A.‖Σy : B.R x y‖ → ‖Σf : A→ B.∀x : A.R x (f x)‖

and propExt we can derive the excluded middle for all propositions:

∀P : Prop.P ∨ ¬P

We are going to instantiate A with the type of inhabited predicates over Bool,
that is

A :≡ �Q : Bool → Prop.∃b : Bool.Qb

B ≡ Bool and the relation R : A→ B → Prop is defined as follows:

R (Q, q) b :≡ Qb

that is an inhabited predicate is related to the boolean it inhabits. Can we now prove
the premise of the axiom?

Πx : A.‖�y : B.R x y‖

that is after plugging in the definition of A,B,R it becomes

Π(Q, q) : A.‖�b : B.Qb‖

and after some currying

ΠQ : Bool → Prop.‖�b : Bool.Qb‖ → ‖�b : B.Qb‖

it is quite obvious that we can.
Now let’s look at the conclusion.

‖�f : A→ B.Πx : A.R x (f x)‖

Let’s for the moment ignore the outermost ‖−‖ and expand the types inside:

�f : A→ Bool.

Π(Q, q) : A.Q (f Q)
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We consider two special predicates T , F : Bool → Prop:

T b :≡ b = true ∨ P
F b :≡ b = false ∨ P

Where does the P come from? From the beginning of this section: it is the P : Prop
for which we want to show P ∨ ¬P .

Now applying the conclusion of the axiom to these predicates we obtain two
booleans f T , f F : Bool and from the second part we know

T (f T ) ≡ (f T = true) ∨ P
F (f F) ≡ (f F = false) ∨ P

Now let’s analyse all the possibilities: there are four combinations:

1. f T = true ∧ f F = false
2. f T = true ∧ P
3. P ∧ f F = false
4. P ∧ P
In 2–4 we know that P holds, the only other alternative in which P is not proven is 1.
In this case we can show ¬P that is P → 0. For this purpose assume P , in this case
both T b and F b are provable for any b because P is and this means T b ⇔ F b

which now using propositional extensionality implies T b = F b. But this means
that T = F using functional extensionality. This cannot be since we assumed that
f T = true and f F = false, now T = F would imply true = false which is
false that is it implies 0. Hence we have shown ¬P by deriving a contradiction from
assuming P .

To summarise we have shown P ∨¬P because in the case 2–4 we have P and in
1 we have ¬P . But hang on what about the ||− || we have been ignoring? It doesn’t
matter since P ∨ ¬P is already a proposition and putting || − || around it doesn’t
change anything.

What has really happened is that from the lie that we can recover information we
have just hidden we can extract information as long as we hide the function doing
the extraction. And this has nothing to do with �-types and existentials but with the
behaviour of the hiding operation, or inhabitance || − ||. Hence we can formulate a
simpler version of the axiom of choice in Type Theory:

(Πx : A.‖B x‖)→ ‖Πx : A.B x‖

This implies the revised translation of the axiom.
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5.5.3 Dimensions of Types

We have classified types as propositions if they have at most one inhabitant. uep
says that equality is a proposition. Even if we are not accepting uep, we can use this
to classify types: we say that a type is a set if all its equalities are propositions.

isSet : Type → Type

isSetA :≡ Πx,y:AisProp (x =A y)

As for propositions we abuse notation and write A : Set if A : Type and we
can show isSetA. uep basically says that all types are sets. The idea here is that
sets are types which are quite ordinary, they reflect our intuition that equality is
propositional.

Actually we can show that certain types are sets, e.g. Exercise 21 basically asks
to prove that N : Set. However, we can do much better, we can show in general
that any type with a decidable equality is a set. This is a theorem due to Michael
Hedberg.

Theorem 2 (Hedberg) Given A : Type such that the equality is decidable

d : ∀x, y : A.x = y ∨ x �= y

then we can show

isSetA

To show Hedberg’s theorem we establish a lemma saying that if there is a
constant function on equality types then the equality is propositional. That is we
assume

f : Πx,y:Ax =A y → x =A y
c : Πx,y:AΠp, q : x =A y → f p = f q

Now for arbitrary x, y :A,p : x= y we can show that p= trans (f p)(sym (f refl))
because using J this reduces to showing that refl = trans (f refl) (sym (f refl))
which is one of the groupoid properties. Now given any p, q : x = y we can show

p = trans (f p) (sym (f refl))

= trans (f q) (sym (f refl)) using c

= q

And hence =A is propositional.
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To construct the function f from decidability we assume p : x = y and apply
d x y. Either we have another proof q : x = y and we return this one, or we have
that x �= y but this contradicts that we already have a proof p : x = y and we can
use R0. However, in either case the output doesn’t depend on the actual value of the
input and hence we can show that the function is constant.

Indeed, if we additionally assume the principle of functional extensionality

funExt : ∀f, g : A→ B.(∀x : A.f x = g x)→ f = g

we can strengthen Hedberg’s theorem:

Theorem 3 Given A : Type such that the equality is stable

s : ∀x, y : A.¬¬(x = y)→ x = y

then we can show

isSetA

This strengthening shows that function types are sets, e.g. N→ N : Set even though
its equality is not decidable but it is stable.

To prove the stronger version we observe that for if equality is stable, we can
construct the function g : Πx, y : A.x = y → x = y by composing s with the
obvious embedding x = y → ¬¬(x = y). Since ¬¬(x = y) is propositional, f
must be constant.

Exercise 23 Show that the equality of N→ N is stable.

We can extend the hierarchy we have started to construct with Prop and Set. For
example a type whose equalities are sets is called a groupoid (indeed it corresponds
to the notion of groupoid which we have introduced previously).

isGroupoid : Type → Type

isGroupoidA :≡ ∀x, y : A.isSet (x =A y)

We can also extend this hierarchy downwards, we can redefine a proposition as a
type such that its equalities are types with exactly one element – these types are
called contractible:

isContractible : Type → Type

isContractibleA :≡ �a : A.Πx : A.x = a

isProp : Type → Type

isPropA :≡ Πx, y : A.isContractible (x = y)
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We can now define the hierarchy starting with contractible types. For historic
reasons (i.e. to be compatible with notions from homotopy theory) we start counting
with −2 and not with 0. I am calling the levels dimensions, they are also called
truncation levels.

hasDimension : N−2 → Type → Type

hasDimension (−2) A :≡ isContractibleA

hasDimension (n+ 1) A :≡ ∀x, y : A.hasDimension n(x =A y)

I am writing N−2 for a version of the natural numbers where I start counting with
−2. To summarize the definitions so far:

Dimension Name

−2 Contractible types

−1 Propositions

0 Sets

1 Groupoids

We also introduce the notation n−Type for A : Type such that we can show
hasDimension nA.

To convince ourselves that this really is a hierarchy, that is that every n−Type is
also a n + 1−Type we need to show that the hierarchy actually stops at −2 that is
that the equality of a contractible type is again contractible.

To show this assume is given a contractible type A : Type that is we have a : A
and c : Πx : A.a = x. Now we want to show that for all x, y : A the equality
x =A y is contractible, that is we have an element and all other elements are equal.
We define d : Πx, y : A.x =A y as d x y :≡ trans (sym (c x)) (c y). Now it remains
to show that e : Πx, y : A.Πp : x =A y.d x y = p. Using J we can reduce this
to d x x = refl x unfolding d x x ≡ trans (sym (c x)) (c x) we see that this is an
instance of one of our groupoid laws.

As a corollary we obtain that hasDimension nA implies hasDimension (n+1) A.

5.5.4 Extensionality and Univalence

As I have already mentioned in the introduction: extensionality means that we
identify mathematical objects which behave the same even of they are defined
differently. An example are the following two functions:

f, g : N→ N

f x :≡ x + 1

g x :≡ 1+ x

claudio.ternullo@ut.ee



5 Naïve Type Theory 125

We can show that ∀x : N.f x = g x but can we show that f = g? The answer
is no, because if there were a proof without any assumption it would have to be
refl and this would only be possible if f ≡ g but it is clear that they are not
definitionally equal. However, we cannot exhibit any property not involving this
equality which would differentiate them. Another example are the following two
propositions:

P,Q : Prop

P :≡ True

Q :≡ ¬False

Again we cannot show that P ≡ Q even though there clearly is no way to
differentiate between them.

We have already mentioned the two principles which are missing here’:

funExt : ∀f, g : A→ B.(∀x : A.f x = g x)→ f = g
propExt : ΠP,Q : Prop.(P ⇔ Q)→ P = Q

We note that the corresponding principles are true in set theory, which seems
to contradict my statement that Type Theory is better for extensional reasoning
than set theory. However, this shortcoming can be fixed since all constructions
preserve these equalities. This can be made precise by interpreting the con-
structions in the setoid model, where every type is modelled by a set with
an equivalence relation. In this case we can model function types by the set
of functions and equality is extensional equality. The same works for Prop, a
proposition is modelled by the set of propositions identified if they are logically
equivalent.

However, the shortcoming of set theory becomes obvious if we ask the next
question: when are two sets equal? For example

A,B : Set

A :≡ 1+ 2

B :≡ 2+ 1

We have no way to distinguish two sets with 3 elements, hence following the same
logic as above they should be equal. However, they are not equal in set theory
under the usual encoding of finite sets and + and it would be hard to fix this in
general.
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When are two sets equal? Given f : A→ B we say that f is an isomorphism if
there it has an inverse, that is4

isIso : (A→ B)→ Type

isIso f :≡
� g : B → A

η : Πx : B.f (g x) = x
ε : Πx : A.g (f x) = x

And we define A $ B :≡ �f : A → B.isIso f . Using isIso we can formulate a
new extensionality principle: we want to say that there is an isomorphism between
isomorphism of sets and equality of sets. Indeed, we can observe that the is a
function from equality of sets to isomorphism because every set is isomorphic to
itself using J .

Exercise 24 Define eq2iso : ΠA,B:SetA = B → A $ B
Using this we can state extensionality for sets

extSet : isIso eq2iso

As a corollary we get that A $ B → A = B. Since 1+ 2 $ 1+ 2 we can show that
1+ 2 = 1+ 2

Exercise 25 Show that

1. (A+ B)→ C = (A→ C)× (B → C)

2. (A× B)→ C = A→ B → C

3. 1+ N = N

4. N× N = N

5. ListN = N

6. N→ N �= N

assuming A,B,C : Set. For which of the results do we not need extSet?

Exercise 26 An alternative to isomorphism is bijection, one way to say that a
function is bijective is to say there is a unique element in the domain which is
mapped to an element of the codomain. We define ∃! (exists unique):

∃!x : A.P x :≡ ∃x : A.P x ∧ ∀y : A,P y ⇒ x = y

and using this we define what is a bijection:

isBij : (A→ B)→ Prop

isBij f :≡ ∀y : B.∃!x : A.f x = y

4I am using here a record-like syntax for iterated �-types.
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Show that isomorphism and bijection are logically equivalent:

∀ f : A→ B.isBij f ⇔ isIso f

extSet is incompatible with uniqueness of equality proofs (uep) because there
are two elements of 2 $ 2, namely identity and negation. If we assume that there is
only one proof of equality for 2 = 2 then we also identify this two proofs and hence
02 = 12 which is inconsistent.

So far we have only considered sets what about types in general? There is a
twist: if equality is not propositional then the η and ε components of isIso are not
propositional in general. Indeed, assuming extSet for all types is unsound. Instead
we need to refine the notion of isomorphism by introducing an extra condition which
relates η and ε. We call this equivalence of types.

isEquiv : (A→ B)→ Type

isEquiv f :≡ �g : B → A

η : Πx : B.f (g x) = x
ε : Πx : A.g (f x) = x
δ : Πx : A.η (f x) = resp f (ε x)

And we define A ∼= B :≡ �f : A→ B.isEquiv f .

Exercise 27 Define eq2equiv : ΠA,B:SetA = B → A ∼= B
We can now state extensionality for types, which is what is commonly called
univalence.

univalence : isEquiv eq2equiv

As before for extSet a consequence is that equivalence of types implies equality
A ∼= B → A = B which is what most people remember about univalence. In the
special case of sets equivalence and isomorphism agree because the type of δ is an
equivalence, that is for sets we have (A $ B) = (A ∼= B). But more is true, even
for types in general equivalence and isomorphism are logically equivalent, that is
(A $ B) ⇔ (A ∼= B). While this may be surprising at the first glance, it just
means that we can define functions in both directions but they are not inverse to
each other. Indeed, in general there are more proofs of an isomorphism that of an
equivalence, indeed isEquiv f is a proposition, while isIso f in general isn’t (but it
is if f is a function between sets). However, the logical equivalence of equivalence
and isomorphism means that to establish an equivalence all we need to do is to
construct an isomorphism. In particular all the equalities of Exercise 25 hold for
types in general.
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The definition of isEquiv looks strangely asymmetric. Indeed, we could have
replaced δ with its symmetric twin:

δ′ : Πy : A.resp g η y = ε (g y)

We can either use δ or δ′ it doesn’t make any difference. Why don’t we use both?
Indeed, this would exactly be the definition of an adjunction between groupoids.
However, assuming both messes everything up, now isEquiv f is no longer a
proposition and we need to add higher level coherence equations to fix this. Indeed,
there is such an infinitary (coinductive) definition of equivalence. But we don’t need
to use this, the asymmetric definition (or its mirror image) does the job.

Exercise 28 We can extend Exercise 26 to the case of equivalences by taking the
equality proofs into account. That is we say that not only there is a unique inverse
but that the pair of inverses and the proof that there are an inverse are unique that
is contractible. We define

isEquiv′ : (A→ B)→ Type

isEquiv′ f :≡ Πy : B.isContr (Σx : A.f x = y)

We have observed that already extSet implies that there are non-propositional
equalities, e.g. 2 = 2. In other words the first universe Type0 is not a set.
Nicolai Kraus and Christian Sattler have generalised this and shown that using
univalence we can construct types which are non n − Type for any n : N

(Kraus and Sattler 2015). I leave is an exercise to do the first step in this
construction:

Exercise 29 Show that the equalities of ΣX : Type0.X = X : Type1 are not
always sets and hence Type1 is not a groupoid.

5.5.5 Higher Inductive Types

In HoTT we view a type together with its equality types with the structure of an
ω-groupoid. Hence when we introduce a new type we also have to understand what
its equality types are. So for example in the case of→ and× we have the following
equations:

f =A→B g = Πx, y : A.x =A y → f x = g x
(a, b) =A×B (a′, b′) = (a =A a′)× (b =B b′)

When defining types inductively, that is by given the constructors, we can also add
constructors for equalities. The simplest example for this is propositional truncation
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‖A‖, which can be inductively defined by the following constructors:

η : A→ ‖A‖
irr : Πx, y : ‖A‖.x =‖A‖ y

To define a non-dependent function f : ‖A‖ → B we need an function g : A→ B

but also an equalities i : Πx, y : B.x =B y which correspond to saying that
B : Prop. f will satisfy the following equations:

f (ηa) :≡ g a

resp f (irr x y) :≡ i (f x) (f x)

Hence the eliminator does not only determine the behaviour of f on elements
but also on equalities. This makes perfect sense because in the view of types
as groupoids functions are functors. We can also turn this into a non-dependent
eliminator:

R‖A‖ : (A→ B)→ (Πx, y : B.x = y)→ ‖A‖ → B

R‖A‖ g i (ηa) :≡ g a
resp R‖A‖ g i (irr x y) :≡ i (R‖A‖ g i x) (R‖A‖ g i y)

We can also derive a dependent eliminator, for which we need a dependent version
of resp.

Another class for examples for higher inductive types are set quotients, that is we
have a set A : Set and a relation R : A→ A→ Prop, we define A/R : Set by the
constructors

[−] : A→ A/R

[−]= : Πx, y : A.Rxy → [x] =A/R [y]
set : Πx,y:A/RΠp, q : x =A/R y.p =x=A/Ry q

Note that the last constructor is necessary to make sure that the type we construct is
actually a set. We do not require that R is an equivalence relation but obviously the
equality on A/R always is.

Exercise 30 Derive the non-dependent eliminator for set quotients.

An example is the definition of the integer as a quotient of pairs of integers:

eqZ : (N× N)→ (N× N)→ Prop

eqZ (a
+, a−) (b+, b−) :≡ a+ + b− = b= + a− Z = (N× N)/eqZ
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The idea is that a pair of natural numbers (a+, a−) represents its difference a+−a−
and we identify pairs which have the same difference.

Exercise 31 Define addition and multiplication and additive inverses on Z. How
would you prove the group laws?

Higher Inductive Types even for sets are more general than set quotients because
we can define elements and equalities at the same time. An example for this are
infinite branching trees with permutations. That is we define infinitely branching
trees

Tree : Type

leaf : Tree

node : (N→ Tree)→ Tree

We inductively define a relation which identifies trees upto permutations of subtrees:

− ∼ − : Tree → Tree → Prop

perm : Πg:N→TreeΠf : N→ N.isIso f → node f ∼ node (λn.g f n)

respNode : Πg,h:N→Tree(Πi : N.f i g i)→ node f ∼ node g

Now trees with permutations can be defined as PTree :≡ Tree/ ∼. However, it turns
out that this type is not as useful as we might hope. Let’s say we want to lift the
node construction to PTree that is we want to define

node′ : (N→ PTree)→ PTree

such that node′(λn.[f n]) = [node f ]. However, we have a problem, to define node′
we need to commute the quotient definition and function type, that is we need to go
from N → Tree/PermTree to a quotient on Nat → Tree. This corresponds to an
instance of the axiom of choice, in this case this is called countable choice because
the indexing type A is N.

Exercise 32 Show that we can define node′ using countable choice (i.e. (Πx :
N.‖B x‖)→ ‖Πx : N.B x‖ for B : N→ Set).

However, using HITs we have an alternative: we can define permutable trees by
introducing the elements and the equalities at the same time:

PTree : Type

leaf : PTree

node : (N→ PTree)→ PTree

perm : Πg:N→TreeΠf : N→ N.isIso f → node f = node (λn.g f n)
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We don’t need to add a constructor corresponding to respNode because we know that
any function respects equality. We don’t ned to derive node′ because this is already
captured by node itself. In the HoTT book an instance of this idea is used to define
the Cauchy Reals (The Univalent Foundations Program 2013), section 11.3. The
naïve definition identifies converging sequences of rational numbers but we can’t
show that this definition is Cauchy complete that is that we can identify converging
sequences of real numbers. Again this can be fixed by using countable choice or
alternatively by a HIT that defines the reals and their equality at the same time, now
Cauchy completeness is simply a constructor.

All the examples of HITs we have seen so far are not really higher because they
work on the level of sets. The only good examples of true HITs I know come from
synthetic homotopy theory, here we use HoTT to model constructions in Homotopy
theory. In homotopy theory we look at the path spaces of geometric objects: we
start with paths between points and then we can have paths between paths which
are continuous transformation of paths. The main idea behing synthetic homotopy
theory is to identify paths with equality types.

A simple example is the circle. The paths on a circle correspond to the integers,
they measure how many times we move around the circle, we have to use integers
because we can go forwards and backwards. In HoTT the circle can be defined as
the following HIT:

S1 : Type

base : S1

loop : base =S1 base

Intuitively we imagine that the circle is generated by a point base and by a path loop
from the point to itself. S1 is not a set because there is no reason to assume that loop
and refl are equal and also loop and sym loop are not equal. Indeed, we can define a
function

encode : Z→ base = base

encode n :≡ loopn

encode 0 :≡ refl

encode (−n) :≡ loopn−1

To define a function in the other direction is a bit more tricky. We cannot define a
function directly from base = base because none of the indices is variable. However,
using the result from Exercise 17 it is enough if one of the indices is variable. That
is we can use base = x. However, we also have to generalize the left hand side to
depend on x. We define a family X : S1 → Type s.t. X base are the integers. We
also need to interpret loop as an equality of types Z = Z. We don’t want to use the
trivial equality because the isomorphism should represent the number of times we
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have used the loop (and its direction). We observe that λx.x + 1, λx.x − 1 : Z→ Z

are inverses hence using univalence (actually set extensionality is enough) we can
derive a non-trivial proof p : Z = Z. Hence to summarise we define

X : S1 → Type

X base :≡ Z

respX loop :≡ p

We define our generalised decode function using equality elimination

decode′ : Πx:S1 base = x → X x

decode′ refl :≡ 0

Indeed, X base ≡ Z and for refl we want to return 0. We obtain now decode by
instantiating decode′:

decode : base = base → Z

decode :≡ decode′base

While it is well known in Homotopy Theory that the group of paths of the circle
is the integers the particular proof is due to Dan Licata who formalised it in Agda,
see Licata and Shulman (2013). Dan also uses dependent elimination to show that
encode and decode are indeed inverse to each other. This shows that (base =S1

base) = Z. However, it is not always the case that the loop space of a HIT is a set it
can be a higher dimensional type again. This is especially true once we move from
the circle to the sphere S2 which can be defined as follows:

S2 : Type

base : S1

loop : reflbase =base=
S2 base reflbase

The idea is that surface of the sphere can be generated by a higher path which
maps the empty path on the pole onto itself. Now it may appear that the sphere is
quite uninteresting because all the paths base =S2 base can be transformed into
refl. However, we cannot prove that this type is contractible, that is has exactly on
element. The reason is that it has non-trivial higher path spaces, and indeed lots of
them. From Homotopy theory it is known that all higher path spaces of the sphere
are non-trivial hence S2 is not an n−Type for any n.
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5.5.6 Example: Definition of the Integers

As a more mundane example we consider the definition of the integers (Z : Type)
as a HIT. Yes, we have already defined the integers as a set quotient but I think this
definition is actually nicer.

We have the following element constructors

0 : Z
suc : Z→ Z

pred : Z→ Z

To get the type we want we need to add some constructors for equalities, namely:

sucpred : Πi : Z.suc (pred i) =Z i

predsuc : Πi : Z.pred (suc i) =Z i

However we are not done yet! The type we have constructed so far is certainly not
a set. For example there are two ways to prove

suc (pred (suc 0)) = suc 0

namely

sucpred (suc 0)

resp suc (predsuc 0)

We certainly want the integers to be a set, in particular they should have a decidable
equality. One way to achieve this would be to equate all proofs by adding another
higher constructor:

isSet : Πi, j : Z.Πp, q : i =Z j → p =i=Zj q

We call such a first order HIT a Quotient Inductive Type (QIT).
As an example let us define addition for integers. I will do this in a pattern

matching style. It is certainly a good idea to derive the eliminator and check that
the definitions can be reduced to this but just writing down the eliminator is quite a
mouthful.

To define + : Z→ Z→ Z we start with the element constructors:

0+ i :≡ i
suc j + i :≡ suc (i + j)

pred j + i :≡ pred (i + j)
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To handle the equational constructor we overload functions so that we can also apply
them to equalities. In this case we consider the function +i for some i : Z, now given
an equality p : j =Z k we write p+ i : j+ i = k+ i as a shorthand for resp (+ i) p.
Using this notation we can give definitions for the equational constructors as well:

sucpred j + i :≡ sucpred (j + i)
predsuc j + i :≡ predsuc (j + i)

We also have to deal with the isSet constructor and indeed we can extend the
overload the notation also to deal with hight proofs. However, all what we need
to notice that the constructor forces us to show that the codomain of the operation is
a set, which it is since it is the integers themselves.

Exercise 33 Define the additive inverse − : Z→ Z in the same style.

Now let’s prove something about addition, for example that it is associative.

assoc : Πi,j,k:∫ .(i + j)+ k =Z i + (j + k)

We are in for a pleasant surprise: since the codomain of associativity is a proposition
we don’t have to do anything for the equational constructors because the equations
they induce hold trivially. Hence it is enough to only consider element constructors:

assoc0 :≡ refl

assocsuc i :≡ suc (associ )

assocpred i :≡ pred (associ )

Note that in the definition above we again lift operations to equalities.

Exercise 34 Show that the additive inverse behaves properly, that is

Πi:Z(− i)+ i = 0

To show that it is also the 2nd equation hold you need to prove the lemmas you need
to prove commutativity. Hence as an extended exercise prove that the integers form
a commutative group.

To show that the equality of integers is decidable we need to define a normali-
sation function. A reasonable notion of normal form is signed numbers, that is we
define Z

nf : Type by the following constructors:

0 : Znf

+ : N→ Z
nf

− : N→ Z
nf
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Z
nf is a set because all inductive definitions which don’t refer to higher types are

automatically sets. We can easily embed the normal forms into the integers, by
defining the functions pos, neg : N→ Z

nf which repeat the predecessor n-times

pos 0 :≡ 0

pos (suc n) :≡ suc (pos n)

neg 0 :≡ 0

neg (suc n) :≡ pred (neg n)

Putting everything together we define emb : Znf → Z by

emb 0 :≡ 0

emb (+ i) :≡ pos (suci)

emb (− i) :≡ neg (suci)

Exercise 35 Define a function nf : Z → Z
nf that is inverse to emb, i.e. establish

the following propositions:

Πi:Zemb (nf i) = i
Πi:Znf nf (emb i) = i

You may notice that using univalence we have established that Z = Z
nf, hence what

is the point of defining the integers as a HIT? It turns out that while the two objects
are extensionally equivalent they are intensionally different and the HIT definition
is much easier to work with.

Let’s go back to the definition of the integers. When we added the constructor
isSet we forced Z to be a set but by using a steam hammer. This is bad consequences
when we want to define functions from the integers into a type which is not a set like
S1 earlier. The only way to do this would be going via the normal form because we
can eliminate into any type from them. However, this spoils the advantages we just
claimed from using the HIT. Luckily, there is another way which basically means
we solve a coherence problem. Instead of isSet we add the following constructor:

coh : sucpred (suc i) = resp suc (predsuc i)

This is enough to turn Z into a set. Indeed, the constructors pred, predsuc, sucpred
together just state that suc is an equivalence We can see this by adopting the
normalisation proof to this setting. This can be substantially simplified by observing
that the constructors that state that suc is an equivalence form a proposition.

We end with an open problem which suggested by Paolo Capriotti. When moving
from natural numbers to lists we are defining the free monoid over an arbitrary set
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of generators. We can do the same with the integers and define the free group FGA
over a type A by labelling suc and pred in the definition with elements of A. So in
the way we have a cons and an anti-cons and equations that they cancel each other.
As before we are saying that suc a is an equivalence. Now the question is given
A : Set is it the case that FGA is a set? If A has a decidable equality we can still
define a normalisation function and establish the property this way. However, we
don’t know how to do this in the general case.
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Chapter 6
Univalent Foundations
and the Equivalence Principle

Benedikt Ahrens and Paige Randall North

Abstract In this paper, we explore the ‘equivalence principle’ (EP): roughly,
statements about mathematical objects should be invariant under an appropriate
notion of equivalence for the kinds of objects under consideration. In set theoretic
foundations, EP may not always hold: for instance, ‘1 ∈ N’ under isomorphism
of sets. In univalent foundations, on the other hand, EP has been proven for many
mathematical structures. We first give an overview of earlier attempts at designing
foundations that satisfy EP. We then describe how univalent foundations validates
EP.

6.1 The Equivalence Principle

What should it mean for two objects x and y to be equal? One proposal by Leibniz
(1989), known as the “identity of indiscernibles”, states that if x and y have the
same properties, then they must be equal:

∀ properties P, (P (x)↔ P(y)) → x = y.

For this proposal to be reasonable, then the converse, the “indiscernibility of
identicals,” should hold incontrovertibly. That is, if x and y are equal, then they
must have the same properties:

x = y → ∀ properties P, (P (x)↔ P(y)) . (6.1)
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Indeed, one would be hard-pressed to find a mathematician who disagreed with
this principle. However, in classical mathematics based on set theory, this principle
is of limited usefulness: too few objects are equal. A group theorist, for example,
would have little interest in a principle which required them to suppose that two
groups are equal.

Instead, mathematicians are often interested in weaker notions of sameness and
those properties that are invariant under such notions. A group theorist, for example,
would have more interest in an analogous principle that described the properties of
any pair of isomorphic groups G and H :

G ∼= H → ∀ group theoretic properties P, (P (G)↔ P(H)) .

Similarly, category theorists would be more interested in a principle that described
the properties of any pair of equivalent categories A and B:

A $ B → ∀ category theoretic properties P, (P (A)↔ P(B)) .

To generalize: mathematicians working in some domain D often utilize a stronger
variant of the principle given in line (6.1) above, called the equivalence principle:
for all objects x and y of domain D:

x ∼D y → ∀ D-properties P, (P (x)↔ P(y)) , (6.2)

where ∼D denotes a suitable notion of sameness for the domain D.
We might consider a still stronger variant of the equivalence principle. A group

theorist, for example, might not only want properties of groups to be invariant under
isomorphism, but they might also want structures on groups to be invariant under
isomorphism. For example, if the equivalence principle (6.2) holds in the domain of
group theory and if two groups G and H are isomorphic, then the statements “G
has a representation on V ” and “H has a representation on V ” are equivalent (for
some fixed vector space V ). However, it is actually the case that the isomorphism
G ∼= H induces a bijection between the set of representations of G on V and
the set of representations of H on V , which we regard as structures on G and H
respectively. Such a variant of the equivalence principle has become known as the
Structure Identity Principle (see Buss et al. 2011; Univalent Foundations Program
2013, Section 9.8; Awodey 2014).

Our goal in this paper is to describe how one can find the right notion ∼D of
sameness and the right class of ‘D-properties and D-structures’ for some specific
domains D.

This right notion of sameness is not uniformly defined across different mathe-
matical objects. However, we usually use the one already present in mathematical
practice since we aim for the equivalence principle to capture mathematical practice.
As a rule of thumb, it is usually considered to be

• equality when the objects naturally form a set—numbers, functions, etc.
• isomorphism when the objects naturally form a category—sets, groups, etc.
• equivalence when the objects naturally form a bicategory—e.g., categories.
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The hard part will be in determining the right class of D-properties and D-
structures for some specific domain D. In usual mathematical practice, we can state
properties which break the equivalence principle; that is, we can state properties of
mathematical objects that are not invariant under sameness. We will seek to exclude
such properties from our class of D-properties and D-structures.

Exercise 1 Denote by 2N the set of even natural numbers. Find a property of sets
that is not invariant under the isomorphism N ∼= 2N given by multiplying and
dividing by 2, respectively.

Answer:Thestatement‘1∈N’isnotinvariantunderthisisomorphism.

Exercise 2 Find a property of categories that is true for one, but not for the other
of these two, equivalent, categories.

Answer:Take,e.g.,thepredicate“ThecategoryChasexactlyoneobject.”.

Thus, to assert an equivalence principle for sets or categories, we need to exclude
these properties from our collection of ‘set theoretic properties’ and ‘category
theoretic properties’. M. Makkai (Makkai 1998) says

The basic character of the Principle of Isomorphism is that of a constraint on the language
of Abstract Mathematics; a welcome one, since it provides for the separation of sense from
nonsense.

Put differently, establishing an equivalence principle means establishing a syntactic
criterion for properties and structures that are invariant under sameness.

6.2 History

Look again at Exercise 2. There, we violated the equivalence principle for categories
by referring to equality of objects. This might lead one to conjecture (correctly) that
categorical properties which obey the equivalence principle cannot mention equality
of objects.

However, the traditional definition of category mentions equality of objects. It
usually includes the following axiom: for any two morphisms f and g such that the
codomain of f equals the domain of g, there is a morphism gf such that domain of
gf equals the domain of f and the codomain of gf equals the codomain of g.

To avoid mentioning equality of objects, one can express the composability of
morphisms of that category via different means, specifically by having not one
collection of morphisms but many hom-sets: one for each pair of objects. This idea,
for instance explained in Mac Lane (1998, Section I.8) usually requires asking the
hom-sets to be disjoint. This last requirement is automatic if we work instead in a
typed language, where types are automatically disjoint.
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A category is then given by

• a type O of objects,
• for each x, y : O, a type A(x, y) of arrows from x to y,
• for each x, y, z : O and f : A(x, y), g : A(y, z), a composite arrow g ◦ f :
A(x, z), and

• for each x : O, an identity arrow idx : A(x, x)
such that

• for each w, x, y, z : O and f : A(w, x), g : A(x, y), h : A(y, z), there is an
equality h ◦ (g ◦ f ) = (h ◦ g) ◦ f in A(w, z),

• for each x, y : O and f : A(x, y), there is an equality f ◦ idx = f in A(x, y),
and

• for each x, y : O and f : A(x, y), there is an equality idy ◦ f = f in A(x, y).

Note that when stating axioms, the only equality that is mentioned is the equality
within a hom-set of the form A(x, y), that is, between arrows of the same type.

By adding quantifiers, ranging over one type at a time, to this typed language,
we obtain a language for stating properties of, and constructions on, categories. It
turns out that the statements of that language are invariant under equivalence of
categories:

Theorem 3 (Théorème de préservation par équivalence (Blanc 1978/1979)) A
property of categories (expressed in 2-typed first order logic) is invariant under
equivalence if and only if it can be expressed in the typed language sketched above,
and without referring to equality of objects.

We do not give here the precise form of the typed language, but refer instead to
Blanc’s article for details. Note that Freyd (1976) states a similar result to Blanc’s
above, in terms of “diagrammatic properties”.

Makkai (1998) develops notions of signature and theory, to specify mathematical
structures. A theory is a pair (L,Σ) consisting of a signature L (specifying the
shape of the structure) and a set Σ of “axioms” over L (specifying the axioms of
the structure). A theory determines a notion of “model”—which is an L-structure
satisfying the properties specified by Σ—and of “equivalence” of such models,
called L-equivalence.

His Invariance Theorem gives a result similar to Theorem 3 for models of a
theory: given an interpretation T = (L,Σ) → S of such a theory in a first-order
logic theory, an S-sentence φ is invariant under L-equivalence if and only if it is
expressible in First Order Logic with Dependent Sorts (FOLDS) over L.

In the following sections, we will see that similar results can be shown in
univalent foundations. Specifically, not only properties but also constructions will
be “invariant” under equivalence, and invariance of properties will be recovered as
a special case via the propositions-as-some-types correspondence.
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6.3 Univalent Foundations and Transport of Structures
Along Equivalences

Starting in the 1970s, Per Martin-Löf designed several versions of dependent type
theory, which are now called Martin-Löf Type Theories (Martin-Löf 1998). These
were intended to be foundations of mathematics that, unlike set theory, have an
inherent notion of computation built in. For decades, Martin-Löf type theories have
formed the basis of computer proof assistants such as Coq and Agda.

One of the most mysterious features of this kind of type theory is its equality
type a =X b of any two inhabitants a and b of a type X—see Altenkirch (2019,
Section 5.4.3). Inhabitants of such an equality type behave, in many ways, like a
proof of equality; in particular, they can be composed and inverted, corresponding
to the transitivity and symmetry of equality. In one important respect, however, they
behave differently: as explained in Altenkirch (2019, Sections 5.4.3 and 5.5.1), one
can not show that any two inhabitants e, f of an equality type a =X b are equal—
with their equality now being given by the iterated equality type e =a=Xb f .

The lack of uniqueness of those terms has given rise to a new way of thinking
about them and interpreting them into the world of mathematical objects. Instead of
interpreting them as (set-theoretic) equalities between a and b in the set interpreting
X, one can interpret them as paths from a to b in a space interpreting X.

This intuition is made formal in Voevodsky’s simplicial set model Kapulkin and
Lumsdaine (2012) which satisfies an additional interesting property: given two types
X and Y , the interpretation of their equality type X = Y is equivalent to the
interpretation of their type of equivalencesX $ Y (for the definition of equivalence,
see Altenkirch (2019, Section 5.5.4)). This observation motivated Voevodsky to add
this property as an axiom to Martin-Löf type theory which he called the Univalence
Axiom. The addition of the Univalence Axiom turns Martin-Löf type theory into
univalent foundations.

Obtaining an equivalence principle was one of the main motivations for Voevod-
sky in designing his univalent foundations:

[. . . ] My homotopy lambda calculus is an attempt to create a system which is very good at
dealing with equivalences. In particular it is supposed to have the property that given any
type expression F(T ) depending on a term subexpression t of type T and an equivalence
t → t ′ (a term of the typeEq(T ; t, t ′)) there is a mechanical way to create a new expression
F ′ now depending on t ′ and an equivalence between F(T ) and F ′(T ′) (note that to get
F ′ one can not just substitute t ′ for t in F—the resulting expression will most likely be
syntactically incorrect). [Email to Daniel R. Grayson, Sept 2006]

In the following sections, we describe how Voevodsky’s goal is realized in
univalent foundations.
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6.3.1 Indiscernibility of Identicals in Type Theory

In Martin-Löf type theory (perhaps without the univalence axiom), identicals—that
is, elements x, y : T with an equality e : x =T y between them—are easily seen to
be indiscernible. That is, for every type T and x, y : T , we can find a function

x =T y → ∀ properties P, (P (x)↔ P(y)) . (6.3)

To better formulate this in the language of dependent type theory, (i) we will define
this function for all x, y at once, (ii) we will understand ‘properties P ’ to be
functions P : T → Type, and (iii) we replace the logical equivalence P(x)↔ P(y)

with the type-theoretic equivalence

(P (x) $ P(y)) :≡
⎛

⎝
∑

f :P(x)→P(y)
isEquiv(f )

⎞

⎠

(where isEquiv is defined in Section 5.5.4 of Altenkirch’s article Altenkirch (2019)).
Our goal is hence to define a function

transport : Π(x,y:T )
(
x =T y → ΠP :T→Type (P (x) $ P(y))

)
. (6.4)

To this end, recall that in order to define a map out of an equality type, it suffices to
define its image on reflx : (x =T x) for each x : T . Therefore, it suffices to show
that there is a term

transport(refl) : Π(x:T )
(
ΠP :T→Type (P (x) $ P(x))

)
.

But then, for each x : T and P : T → Type, we can set this to be the equivalence
1P(x) : P(x) $ P(x) whose underlying function P(x) → P(x) is the identity
function:

transport(refl)(x)(P ) :≡ 1P(x).

The function transport shows that any ‘property’, or dependent type, P : T →
Type is invariant under equalities in T . In particular, given an equality x =T y,
we obtain functions P(x)→ P(y) and P(y)→ P(x) which allow us to transport
terms of P(x) or P(y) back and forth along this equality.

6.3.2 From Equality to Equivalence

We have just seen that in Martin-Löf type theory, identicals are indiscernible.
Now we investigate how to expand this to get a full-blown equivalence principle
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from this fact. In short, we will see that in many circumstances, the equality type
x =T y is itself equivalent to some structured equivalence appropriate for the type
T . Then composing this equivalence with the transport function, we will obtain the
equivalence principle (6.2).

To be precise, fix a type T . Given any notion ∼T of equivalence (or at least a
reflexive relation) in a type T , we immediately obtain a function

idtoequiv : Πx,y:T ((x = y) −→ (x ∼T y)) (6.5)

by setting idtoequiv(x, x)(refl) to the reflexive term on x in x ∼ x (since to define a
function out of an equality type, it is enough to define it just at every occurrence of
refl).

Now we hope that for notions of equivalence ∼T already of interest to us, this
function is actually an equivalence for all terms x, y : T , or more precisely, that the
following type is inhabited:

Πx,y:T isEquiv (idtoequiv(x, y))

If this type is inhabited, then for each x, y : T , we can take π1(isEquiv (idtoequiv
(x, y))), the backwards function (x ∼T y) → (x = y), and compose it with
transport to obtain a function

Π(x,y:T )
(
x ∼T y → ΠP :T→Type (P (x) $ P(y))

)

which is our equivalence principle.
Thus, in the next sections, we just aim to show that for certain types T and notions

of equivalence ∼T , the function idtoequiv is indeed an equivalence.

6.3.3 The Univalence Principle

“Equality is equivalence for types” is the slogan made precise by Voevodsky’s
univalence principle. More precisely, the univalence principle asserts part of an
equivalence principle for types: it states that the canonical map

idtoequiv : ΠA,B:Type ((A = B) −→ (A $ B)) (6.6)

from equalities of types to equivalences of types is itself, for any types A and B,
an equivalence. Then, composing idtoequiv with transport as in the last section, we
obtain an equivalence principle for types.

Π(A,B:Type)
(
A $ B → ΠP :Type→Type (P (A) $ P(B))

)
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The univalence principle is not provable in pure Martin-Löf type theory (Martin-
Löf 1998), but needs to be postulated as an axiom—hence it is sometimes also called
the “univalence axiom”. In extensions of Martin-Löf type theory, as in the recently
developed cubical type theory (Cohen et al. 2018), the univalence principle can be
derived.

Building upon the equivalence principle for types—whether it is given as an
axiom or as a theorem—one can derive equivalence principles for other kinds of
structures. Establishing that idtoequiv is an equivalence for other types and notions
of equivalence is the subject of the next sections.

6.4 The Equivalence Principle for Set-Level Structures

Now we turn our attention away from the type of all types and towards types of
more specific mathematical objects. It turns out that for types of simple objects
like propositions, sets, and monoids, the univalence axiom is enough to show the
equivalence principle for these types’ usual notion of equivalence. More precisely,
in the presence of the univalence axiom, the function idtoequiv discussed in the last
section is itself an equivalence. For an exploration and formalization of these ideas,
see Coquand and Danielsson (2013).

6.4.1 Propositions

We call propositions those types that have at most one inhabitant. We think of
propositions as either being true (when they are inhabited) or false (when they
are not inhabited). What should an equivalence of two propositions P,Q be?
Experience might indicate that such an equivalence should just be two functions

f : P � Q : g

so that P is inhabited if and only if Q is. In fact, this notion of equivalence is the
right one in the sense that it will validate the equivalence principle.

To be precise, we define

isProp : Type → Type

isProp A :≡ Π(x,y:A)x = y

whose inhabitants can be thought of as proofs that a type A is a proposition. A
proposition is then a pair (A, p) of a type A and a proof p : isProp A, that is,

Prop :≡ ΣA:Type isProp A .
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Now we have, for P ≡ (A, p) andQ ≡ (B, q),

P = Q $ (A, p) = (B, q)
$ Σ(e:A=B)(transportisProp(e, p)) = q (6.7)

$ Σ(e:A=B)1 (6.8)

$ A = B
$ A $ B (6.9)

$ (A→ B)× (B → A) (6.10)

Equivalence (6.7) above uses the fact that an equality between pairs is the same as
pairs of equalities, where the second equality is “heterogeneous”, i. e., requires a
transport along the first equality to make it well-typed. Equivalence (6.8) uses the
fact that being a proposition is itself a proposition, so that equality types between
proofs of a proposition are equivalent to the unit type. Equivalence (6.9) is given by
the univalence principle, and equivalence (6.10) uses that A and B are propositions;
a pair of maps back and forth between types that are propositions automatically
forms an equivalence of types.

Altogether, this means that P andQ are equal exactly if their underlying types A
andB are logically equivalent—the expected notion of equivalence for propositions.

6.4.2 Sets

We call sets those types whose equality types are propositions,

Set :≡ ΣA:TypeΠx,y:AisProp(x = y).

Then a set in the type theory is a collection of terms, the equality types among which
are either empty or contractible.

Given two sets X, Y : Set, where X = (A, p) and Y = (B, q), the equivalences
of types

(X = Y ) $ (A $ B) (6.11)

$ Σf :A∼=B isCoherent(f ) (6.12)

$ (A ∼= B) (6.13)

can be constructed. Here, A ∼= B :≡ Σ(f :A→B)isIsof is the type of isomorphisms
of types between A and B, and isCoherent(f ) states an equality of equalities in
A. When A is a set, the type isCoherent(f ) is contractible (see the discussion in
Altenkirch (2019, Section 5.5.4)), and hence we obtain equivalence (6.13).
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6.4.3 Monoids

The equivalence principle can be shown for many algebraic structures commonly
encountered in mathematics, such as groups and rings. Before presenting a general
result to that extent in Sect. 6.4.4, in this section, we study in detail the case of
monoids (which was formalized in Coquand and Danielsson 2013). This particular
case exemplifies many of the concepts and results used in general.

A monoid is a tuple (M,μ, e, α, λ, ρ) where

1. M : Set
2. μ : M ×M → M (multiplication)
3. e : 1 → M (neutral element)
4. α : Π(a,b,c:M)μ(μ(a, b), c) = μ(a,μ(b, c)) (associativity)
5. λ : Π(a:M)μ(e, a) = a (left neutrality)
6. ρ : Π(a:M)μ(a, e) = a (right neutrality)

Given two monoids M ≡ (M,μ, e, α, λ, ρ) and M′ ≡ (M ′, μ′, e′, α′, λ′, ρ′), a
monoid isomorphism is a bijection f : M ∼= M ′ between the underlying sets that
preserves multiplication and neutral element. We can derive an equivalence between
the equality type and the isomorphism type between any two monoids as follows:

M = M′ $ (M,μ, e) = (M ′, μ′, e′) (6.14)

$
∑

p:M=M ′
(transportY �→(Y×Y→Y )(p, μ) = μ′)

× (transportY �→(1→Y )(p, e) = e′)
$

∑

f :M∼=M ′

(
f ◦m ◦ (f−1 × f−1) = m′) (6.15)

× (f ◦ e = e′)
$ M ∼= M′

Here, the equivalence of types (6.14) uses the fact that the axioms of a monoid
(the types of α, λ, and ρ) are propositions (compare also to (6.8) above). The
equivalence (6.15) uses the univalence principle for types in the first component,
replacing an equality of sets by a bijection. This translates to replacing “transport
along the equality” by “conjugating by the bijection” in the second component.

The equivalence of types constructed above, from left to right, is pointwise equal
to the canonical map

ΠM,M′M = M′ −→ M ∼= M′ (6.16)

defined by equality elimination, which shows that the latter is an equivalence of
types. In other words, we have just proved the equivalence principle (6.5) for the
equivalence M ∼= M′.
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6.4.4 Univalent Categories

We have seen in the preceding sections that the types of propositions, sets, and
monoids all have a certain nice property—they validate the equivalence principle.
However, it is natural to consider such objects as each belonging to a category.
In this section, we discuss those categories whose objects validate the equivalence
principle.

In Sect. 6.2, we saw that in order to avoid mentioning equality of objects, we can
define a category A to consist of

1. a type A0 of objects;
2. for each a, b : A0, a set A(a, b) of arrows or morphisms;
3. for each a : A0, a morphism 1a : A(a, a);
4. for each a, b, c : A0, a function of type

A(a, b)× A(b, c)→ A(a, c)

denoted by (f, g) �→ f · g;
5. for each a, b : A0 and f : A(a, b), we have �f : id f 1a · f and rf : id f f · 1b;
6. for each a, b, c, d : A0 and f : A(a, b), g : A(b, c), h : A(c, d), we have
αf,g,h : f · (g · h) = (f · g) · h.

The reason for asking the types of arrows to be sets rather than arbitrary types is
so that these categories behave as classical categories (and not any kind of higher
category) and, in particular, so that the axioms—which state equalities between
arrows—are propositions, meaning that we do not need to state higher coherence
axioms. There is prima facie no condition of that kind on the type of objects of the
category. However, it will turn out that the objects of a univalent category form a
groupoid (meaning that all of its equality types form sets).

A morphism f : A(a, b) of the category A is an isomorphism if there is a
morphism g : A(b, a) that is left and right inverse to f , that is

isIsof :≡ Σg:A(b,a)(f · g = 1a)× (g · f = 1b) .

We call Iso(a, b) :≡ Σf :A(a,b)isIsof the type of isomorphisms from a to b, and for
any a : A0 we have 1a : Iso(a, a). We can define a function

idtoiso : Πx,y:A0(x = y)→ Iso(x, y) (6.17)

by setting idtoiso(x, x, reflx) to 1x for every x : A0 just as we did to define idtoequiv
in Sect. 6.3.2.

Now we call the category A univalent if idtoisox,y is an equivalence of types for
every x, y : A0. To see why the adjective univalent is used, compare the function in
Display (6.17) above to the one in Display (6.6) underlying the univalence principle.
The univalence principle asserts that equality and equivalence of types are the same;
here, we assert that equality and isomorphism of objects of a category are the same.
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In asserting that a category A is univalent, we assert that the equality types a = b
among its objects are equivalent to the sets Iso(a, b) of isomorphisms among its
objects. Since the property of “being a set” itself obeys the equivalence principle for
types the equality types a = b are themselves sets. When a type’s equality types are
sets, we call the type a groupoid.

A categorical equivalence between univalent categories A and B gives rise to an
isomorphism between them—indeed, the type A $ B of adjoint equivalences is
equivalent to the type A ∼= B of isomorphisms of categories.

With a set-theoretic reading of the univalence condition in mind, one could think
that only skeletal categories are univalent. However, one should keep in mind that
in type theory, the equality type x = y between two objects of a category can—and
often does—have more than one element. Consequently, in type theory, a category
being univalent usually signifies that its type of objects has many equalities. This
difference is witnessed by the many examples of univalent categories given below,
most of which are not skeletal.

With these definitions in place, the composite equivalence of types shown in
Displays (6.11), (6.12), and (6.13) can be restated as “the category of sets is
univalent”. Similarly, the result of Sect. 6.4.3 can be restated as “the category of
monoids is univalent”.

Many categories that arise naturally are univalent, in particular,

• the category of sets;
• the categories of groups, rings, etc.;
• the functor category [A,B] if the target category B is;
• a preorder, seen as a category, exactly if it is anti-symmetric.

To extend our list of univalent categories to other algebraic structures beyond
monoids, we could simply redo constructions similar to those for monoids, for
groups, rings, and other structures of interest. However, in doing so, we would
observe that we are doing the same reasoning over and over again. For instance,
looking back at monoids, we used that the category of sets is univalent to show
that the category of monoids is univalent, in step (6.15). This is due to the fact
that “monoids are sets with additional structure”, and monoid isomorphisms are
isomorphisms of sets preserving this structure. Similarly, “groups are monoids
with additional structure”, and we would expect to reuse the equivalence of
Display (6.16) when building an equivalence between the equality types of groups
on the one hand, and of group isomorphisms on the other hand. Displayed categories
as presented in Ahrens and Lumsdaine (2017) are a convenient tool for such modular
reasoning about categories built step-by-step from simpler ones. In particular,
Proposition 43 and Theorem 44 of Ahrens and Lumsdaine (2017) allow one to
show that a category built from a simpler one using the framework of displayed
categories is univalent, provided the simpler one is univalent and the “extra data”
making the difference between the two categories satisfies some condition. That
result validates the Structure Identity Principle (Univalent Foundations Program
2013, Theorem 9.8.2).
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6.5 The Equivalence Principle for (Higher) Categorical
Structures

We saw in the previous sections that for types of simple structures like propositions,
sets, and monoids, the equivalence principle comes along with the univalence
axiom. Now we see that for more complication structures, like categories, the
equivalence principle only holds for certain well-behaved categories.

The most common notion of equivalence between two categories A and B is
unsurprisingly called an equivalence A $ B. It consists of two functors F : A �
B : G and natural isomorphisms 1B ∼= FG and 1A ∼= GF (see Mac Lane 1998). An
equivalence of categories “transports” categorical structures, such as limits, between
categories, and is hence considered the right notion of sameness for categories in
most contexts. Can we show that the equality type between two categories, A = B,
is the same as the type of categorical equivalences A $ B? The answer is that while
this is not the case for arbitrary categories, it is the case whenA and B are univalent.

For any two categories A and B, the univalence axiom implies that the function
from equalities to isomorphisms (a stricter notion of sameness of categories) given
by equality elimination is an equivalence (Ahrens et al. 2015, Lemma 6.16):

(A = B) $−−→ (A ∼= B) (6.18)

Furthermore, if A and B are univalent categories, then the type of isomorphisms
between them is equivalent to that of categorical equivalences (Ahrens et al. 2015,
Lemma 6.15):

(A ∼= B) $−−→ (A $ B) (6.19)

Composing these two equivalences yields the desired equivalence of types between
equalities and categorical equivalences.

The example of categories shows that, in order to obtain the equivalence principle
for mathematical structures that naturally form bicategory, one needs to impose a
“univalence” condition on those structures. Defining such a univalence condition
for general structures is the subject of active research.
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Chapter 7
Higher Structures in Homotopy Type
Theory

Ulrik Buchholtz

Abstract The intended model of the homotopy type theories used in Univalent
Foundations is the ∞-category of homotopy types, also known as ∞-groupoids.
The problem of higher structures is that of constructing the homotopy types
needed for mathematics, especially those that aren’t sets. The current repertoire of
constructions, including the usual type formers and higher inductive types, suffice
for many but not all of these. We discuss the problematic cases, typically those
involving an infinite hierarchy of coherence data such as semi-simplicial types, as
well as the problem of developing the meta-theory of homotopy type theories in
Univalent Foundations. We also discuss some proposed solutions.

7.1 Introduction

Homotopy type theory is at the same time a foundational endeavor, in which the
aim is to provide a new foundation for mathematics, and an area of mathematics
and logic, in which the aim is to provide tools for the mathematical analysis
of homotopical (higher dimensional) structures. Let us call the former Univalent
Foundations (UF) and the latter Homotopy Type Theory (HoTT), understanding
that HoTT encompasses many different particular type theories.

In the present chapter we use the issue of higher structures as a lens with which
to study both of these aims and their relations to other foundational approaches.

To motivate the problem of higher structures, we need to recall that the intended
universe of UF, and the principal model of HoTT, is the realm of ∞-groupoids,
a homotopical kind of algebraic structures that have elements, identifications,
identifications between identifications, etc. ad infinitum, and these identifications
behave sensibly in that we can invert them, compose them, and whisker by them, but
the expected laws only hold up to higher identifications. Grothendieck’s homotopy
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hypothesis tells us that∞-groupoids are the same as homotopy types, so we shall use
these terms interchangeably, with a slight preference for the latter, as then homotopy
type theories are both theories of homotopy types as well as homotopical type
theories.

A common misconception is that higher homotopy types only occur in, or only
are relevant to, homotopy theory. That is very far from the case, as even the type
of sets, as used in most of mathematical practice, is a 1-type. And higher structures
now feature prominently in many areas ranging from geometry, algebra, and number
theory, to the mathematics of quantum field theories in physics and concurrency in
computer science. An introduction to homotopy types and the homotopy hypothesis
is given in Sect. 7.2.

It is a key point of difference between UF and earlier approaches to foundations
inspired by category theory that the former takes ∞-groupoids rather than various
notions of higher categories to be the basic objects of mathematics, from which the
rest are obtained by adding further structure. This insight was due to Voevodsky1

who remarked that many natural constructions are not functorial in the sense of
category theory. (Think for example of the center of a group.) However, every
construction—if it is to have mathematical meaning—has to preserve the relevant
notion of equivalence. (Isomorphic groups do have isomorphic centers, etc.)

Because UF aims to be a foundation for all of mathematics, it is necessary that its
language, in the shape of the HoTT, provides the means of construction for all the
homotopy types that are used in mathematics. For the construction of sets, this is not
such a big problem, as most of the sets that occur in mathematics can be constructed
from the type formers of Martin-Löf type theory. (But even here there are subtleties
if we wish to remain in the constructive and predicative realm.)

The main problems appear when it comes to higher dimensional homotopy types.
We discuss some positive results (structures that have already been constructed) as
well as some open problems (structures that have not already been constructed) in
Sect. 7.3.

We remark that although we expect some actual negative results (i.e., impos-
sibility proofs) for some of the open problems with respect to some particular
homotopy type theories, these have yet to appear. But anticipating that further means
of construction will be necessary, we discuss potential solutions in Sect. 7.4.

For the remainder of this Introduction, we shall consider an analogy. Martin-Löf
type theory can be considered as a formal system for making constructions. In fact,
a variant with an impredicative universe was called the Calculus of Constructions
(CoC), and a further extension, the Calculus of Inductive Constructions (CIC)
is the basis for the proof-assistant Coq. And we shall be concerned with the
question of the limits of the methods of construction available in constructive type

1In Voevodsky (2014) he wrote: “The greatest roadblock for me was the idea that categories are
‘sets in the next dimension.’ I clearly recall the feeling of a breakthrough that I experienced when
I understood that this idea is wrong. Categories are not ‘sets in the next dimension.’ They are
‘partially ordered sets in the next dimension’ and ‘sets in the next dimension’ are groupoids.”
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theories. An obvious analogy presents itself, namely with euclidean geometry and
the limits of the methods of geometric constructions using ruler and compasses.
We shall (probably) find that, just as in the geometric case, certain objects are not
constructible from the most basic constructions, and require further tools, such as
the neusis, for their construction. However, we shall follow Pappus’ prescription of
parsimony and demand that everything that can be constructed with lesser means,
should be so constructed. As a corollary, since a proof is a special case of a
construction, we demand that if something can be proved in a weaker system, then
it should be so proved.

Obviously we can include among the list of further means of construction such
well-known principles as the law of excluded middle (LEM), Markov’s principle
(MP), the axiom of choice (AC), various kinds of transfinite induction (TI), as
well as principles of impredicativity. Some of these, as well as weaker versions of
these, are referred to as constructive taboos because admitting them is contrary to
certain philosophical outlooks inspired by constructivism or intuitionism, and also
because they cannot be mechanically executed at all, or only with greatly increased
computational complexity.

A further aspect of the constructive taboos is that they reduce the number
of models in which we can interpret the constructions. It is well-known that
constructive systems admit many useful models, indeed, this is one reason why
classical mathematicians may be interested in such systems. Non-homotopical
constructive systems can often be modeled in toposes, more precisely, 1-toposes,
which can be seen either as generalizations of Kripke models, as generalized spaces,
or indeed as generalized worlds of sets.

It is suspected that HoTT can be modeled in higher toposes, more precisely,
(∞, 1)-toposes. These dramatically extend the usefulness of HoTT, for instance
as explained in Schreiber (2016). Earlier extensions of Martin-Löf type theory
often imposed axioms, such as the uniqueness of identity proofs (UIP), that rule
out higher dimensional models. These contradict the univalence axiom and may
be called homotopical taboos. More refined axioms may hold in (∞, 1)-toposes
corresponding to 1-toposes (the 1-localic (∞, 1)-toposes (Lurie 2009, Sect. 6.4)),
but not in more general (∞, 1)-toposes. These are called constructive-homotopical
taboos.

7.2 Infinity Groupoids and the Homotopy Hypothesis

The types in UF are supposed to be homotopy types, so let us dwell a bit on what they
are, both from an intuitive point of view, and from the perspective of mathematics
developed in set-theoretic foundations.

Intuitions are always hard to convey, and in the case of the notion of homotopy
type, even more so. Intuition is, after all, best developed through practice and
familiarity. One way to build an intuition for homotopy types is through working
in a homotopy type theory, either on paper or with the help of a proof assistant.
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Many young workers in HoTT/UF did this before learning about homotopy theory
from a classical point of view.

As a first approximation we can say that types A are collections of objects
together with for each pair of objects a, b : A, a type of identifications p : a =A b,
together with meaningful operations on these identifications, such as the ability to
compose and invert them. And there should also be higher order operations that
produce identifications between identifications, such as an identification α(p) :
(p−1)−1 = p for any p : a = b. This description is meant to capture types in their
incarnation as ∞-groupoids, and on this view, two types A,B can be identified if
there is a (weak) functor F : A→ B that is an equivalence of∞-groupoids.

Another intuition comes from describing types as (nice) topological spaces
up to homotopy equivalence. The objects are the points of the space, and the
identifications are the paths between points.

The homotopy hypothesis is the idea that these separate intuitions capture the
same underlying concept. It grew out of Grothendieck’s homotopy hypothesis con-
cerning a particular definition of ∞-groupoids (Grothendieck 1983). The modern
terminology is due to Baez (2007).

In order to explain the subtlety of the situation, let us turn to the most
common implementation of the idea of ∞-groupoids in the context of set-theoretic
mathematics. Here, these are represented by simplicial sets satisfying a certain
filling condition. These simplicial sets are called Kan complexes in honor of Kan
(1956). A simplicial set is a functorX : �op → Set, where� is the category of non-
empty finite ordinals and order-preserving functions. This means concretely that a
simplicial set consists of a set of n-simplicesXn for each n = 0, 1, . . . together with
face and degeneracy maps satisfying laws called the simplicial identities. We think
of the 0 simplices as points, the 1-simplices as lines between points, 2-simplices as
triangles, etc.

The Kan filling condition says that if we are given n compatible (n−1)-simplices
in X in the sense that they could be n of the n+ 1 faces of an n-simplex, then there
exists some such n-simplex. This condition is illustrated in Fig. 7.1 in some low-
dimensional cases. In each case, we can think of the given data as a map from a
horn, a sub-simplicial set �nk ⊆ �n of the standard n-simplex �n consisting of the
union of all the faces opposite the kth vertex, into X. A lift is some extension of this
to a map from �n to X, or equivalently, an n-simplex in X with the requisite faces.

Fig. 7.1 The Kan filling condition in dimensions 2 and 3. (a) �2
0 (b) �2

1 (c) �2
2 (d) �3

0
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For example, in Fig. 7.1b, if we are given two 1-simplices p and q in X with a
common endpoint, then there exists some 2-simplex representing both a composite
of p and q (the third face r) together with the interior representing the fact that r is
the composite of p and q.

Note that Kan complexes give a non-algebraic notion of∞-groupoid: there exist
composites and higher simplicial identifications, but there are no operations singling
out a particular composite.

Here we come to a potential pitfall: we cannot say that homotopy types are Kan
complexes, for they have different criteria of identity: In usual mathematical practice
we identify two simplicial sets if they are isomorphic (this is already a weaker notion
of identity than that provided by set theory!), whereas an identification between
Kan complexes X and Y considered as homotopy types should be a homotopy
equivalence.

And this is perhaps an appropriate point at which to give a type-theoretic take on
Quine’s (1969) famous slogans2:

1. To be is to be the value of a variable, and
2. No entity without identity.

In 1 we require moreover that all variables be typed, so we say rather that to be an
A is to be the value of a variable of type A and more importantly, to be is to be an
element of a type, and in 2 we do not require any notion of identity between entities
of different types, but we do require as an essential part of giving a type A that the
identity type x =A y, for x, y : A, is meaningful and correctly expresses the means
of identifying elements of A: no type without an identity type.

The discrepancy between the notion of identity between the model objects (here
Kan complexes) and the desired notion of identity (here homotopy equivalence) is
usually addressed using relative categories as a tool. A relative category consists
of a category equipped with a wide subcategory of weak equivalences. This is
often refined by adding more properties (e.g., the weak equivalences satisfy the
two-out-of-three or the two-out-of-six properties) or structure, such as fibrations
and/or cofibrations interacting nicely with the weak equivalences. A particularly
well-behaved notion is that of a Quillen model category, which does indeed contain
both fibrations and cofibrations in addition to weak equivalences, and is assumed to
be complete and cocomplete.

The category of simplicial sets sSet can be equipped with the structure of a
Quillen model category in which the fibrant objects are the Kan complexes (these
are also cofibrant as all objects are cofibrant) and the weak equivalences between
Kan complexes are the homotopy equivalences. The category of topological spaces,
or more precisely, for technical reasons, the category of compactly generated
topological spaces, Topcg, can likewise be equipped with a Quillen model structure
in which the cofibrant objects are the nice spaces (technically, cell complexes; all

2The second has also been discussed from a univalent perspective in Rodin (2017) and Tsementzis
(2017).
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objects are fibrant) and the weak equivalences between the nice spaces are the
homotopy equivalences.

Quillen (1967) proved that these two model categories give rise to equivalent
homotopy categories. For this purpose he introduced the notion of (what is now
called) a Quillen equivalence between model categories. Given a nice space X, the
corresponding singular Kan complex �∞(X) has as n-simplices the continuous
maps from the topological n-simplex into X, and given a Kan complex A, the
corresponding space is the geometric realization |A| given by gluing together
topological simplices according to the face and degeneracy maps in A.

That the homotopy categories are equivalent is a first step towards getting what
we actually want. We would actually like to show that the Quillen model categories
of simplicial sets and topological spaces give rise to equivalent homotopy types (in
both cases restricting to the objects that lie in a fixed Grothendieck universe). And
which notion of homotopy type should we use here? It turns out not to matter, but it
is easiest to make (large) Kan complexes out of either one.

The way this is achieved is by enhancing both sSet and Topcg to simplicially
enriched categories (the latter via the singular Kan complex construction on the level
of mapping spaces) such that they become simplicial model categories, and then
taking the homotopy coherent nerves of the subcategories of homotopy equivalences
between bifibrant objects, i.e., between the model objects on both sides.

Notice that to get a good theory of homotopy types in the classical set-up we
seem to need also a good theory of (∞, 1)-categories, that is, categories (weakly)
enriched in homotopy types, in order to also get a good hold on the universe of
homotopy types, which is another name of course anticipating the type-theoretic
notion of a universe, and which consists of the homotopy types that are small relative
to some Grothendieck universe.

There is another model structure on simplicial sets whose bifibrant objects are
the quasi-categories, those that satisfy a weakening of the Kan filling conditions
that make them suitable as models of (∞, 1)-categories. This notion was introduced
by Boardman and Vogt (1973) and the resulting theory of (∞, 1)-categories has
been studied extensively by Joyal (2002) and Lurie (2009) (see also the appendix
of Lurie (2009) for details on simplicial model categories as discussed above).

My point in bringing out these technicalities is not only to explain how homotopy
types are defined and handled in set-theoretic mathematics, but also to give a
sense of the subtleties involved. It has taken many years to give a good account
of how to treat higher structure in set-theoretic mathematics (often by working in
a 1-category-theoretic layer), and there are still many open questions about which
constructions and properties are invariant under weak equivalences inside a model
category and under Quillen equivalences between model categories. For instance, it
was just recently established that a Quillen adjunction always induces an adjunction
between underlying quasi-categories, and hence an adjunction of the presented
(∞, 1)-categories (Mazel-Gee 2016). Another line of open questions concerns the
possibility of algebraic models for∞-groupoids, where composition, inverses, etc.,
are given by operations rather than merely assumed to exist. It is quite possible
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that type theory will be influential in this area, see for instance the suggestion of
Brunerie (Brunerie 2016, Appendix).

Thus it should come as no surprise that there are still open questions about how
to treat higher structures in HoTT/UF, which is a much younger endeavor. These are
the matters we shall now turn to.

7.3 Higher Structures in HoTT/UF

When Voevodsky proposed using type theory as a foundation for mathematics,
he based this on the insight that higher structures in mathematics are not always
naturally objects of a higher category, but they are always naturally objects of a
higher groupoid.

Among the ∞-groupoids we find truncated higher groupoids, those whose
structure is concentrated in a finite range of dimensions. At the lowest level
(truncation level−2) we find the contractible types, those that only have one element
up to identifications. Secondly, we have propositions. These are types all of whose
identity types are contractible.

Moving up in the dimensions, we find next the sets, all of whose identity types
are propositions, and the 1-groupoids, all of whose identity types are sets, and so
on. We recall from Altenkirch’s Chapter that these truncation levels have a natural
formalization in HoTT in terms of predicates

hasDimension : N−2 → Type → Prop,

and that we have corresponding types of n-truncated types, n−Type.
Not all types are truncated. The 2-sphere, for example, has structure in all

dimensions, so it’s not an n-type, for any n.3

The n-types are related to the universe of all types, Type, via the truncation
construction that maps a type X to its closest n-type ‖X‖n. There is a construction
|−|n : X→ ‖X‖n giving rise to an equivalence

− ◦ |−|n : (‖X‖n→ Y )→ (X→ Y )

for any n-type Y .
When we go to discuss higher structure, it is often the untruncated types that are

the hardest to construct. The principal reason is that we can often construct truncated
types in a top-to-bottom fashion, dimensionwise. To construct a proposition, we can
just specify the type of evidence P that the proposition is true and then if necessary
take the propositional truncation ‖P ‖−1.

3This celebrated result of Serre (1953) has not yet been formalized in HoTT, but it will soon be
within reach using the HoTT version of the Serre spectral sequence (van Doorn 2018).
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I want to emphasize at this point that the sets we discussed above (and in the
Chapters of Altenkirch and Ahrens-North) are not the sets of set theory! Following
Quine’s dictum, these are different notions because they have different notions of
identity. Let us temporarily use subscripts to differentiate, and write set1 for a set
theorist’s set and set2 for a structuralist/homotopy theorist’s set (this is also the
model theorist’s notion). There is even a third notion of set, set0, which is arguably
more fundamental than either set1 or set2, and which is the one taught in elementary
education.

From a type-theoretic point of view, a set0 is simply a subset of a fixed
universal set2, X. That is, we have the type Set0(X) :≡ P(X) :≡ (X → Prop)
representing the powerset of X. We have an elementary membership relation,
∈0 : X × Set0(X)→ Prop, and two sets0 are equal if they have the same elements
in this sense.

This is of course not the set-theorist’s notion of set, according which sets1 are
elements (rather than subsets) of a universe of discourse U (itself a set2) that is
equipped with a membership relation ∈1 : U × U → Prop satisfying the axiom of
extensionality (and preferably many other set-theoretic axioms).

The naive set-theoretical hope would be to solve the equation U = P(U) (as an
identification of sets2, i.e., an isomorphism). This is impossible because of Cantor’s
diagonal argument, but it can be approximated by the cumulative hierarchy V , a
construction that can be performed in HoTT via a higher inductive type (Univalent
Foundations Program 2013, Sect. 10.5). Here V is a large set2 that is the least
solution of the equation V = Psmall(V ), where Psmall(V ) :≡ �A : Set.�f : A →
V.isInjective(f ) is the type of small subsets of V . Such sets1 can be thought of as
certain well-founded trees, and their study has a quite combinatorial flavor.

The default notion of set in HoTT/UF is set2 given by the 1-type Set, and this
seems to be the one most often used in mathematical practice outside of set theory.
For instance, in almost all mathematical contexts, each set can be replaced by an
isomorphic copy without changing the meaning of anything. Of course, sets0 as
elements of powerset 0-types/sets2 also occur throughout mathematical practice,
but for these, the set theorist’s and the structuralist’s notion coincide.

Likewise the notion of category splits into several distinct notions: I will denote
by precategory the notion defined in Sect. 6.4.4 of the Chapter by Ahrens-North,
and leave the unadorned term category for a univalent precategory. Indeed, in most
category-theoretic contexts, each category can be replaced by an equivalent while
preserving the meaning. It is also useful to have the term strict category (Univalent
Foundations Program 2013, Sect. 9.6) for a precategory whose type of objects is a
set. From the perspective of set-theoretic mathematics, the 2-type of categories arise
from a Quillen model category structure on the 1-category of strict categories.

Most of category theory can be formalized in HoTT/UF using the univalent
definition of category. A precategory can be thought of as a category with extra
structure, namely equipped with a functor from an ∞-groupoid. For a strict
category, this functor has as domain a 0-dimensional homotopy type. In set-theoretic
foundations, it will automatically be the case that every category can be equipped
with such a strict structure, but in UF this is an extra assumption, indeed a
constructive-homotopical taboo.
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7.3.1 Analytic and Synthetic Aspects of HoTT/UF

A foundational theory must be synthetic, in that it describes how to construct and
reasons with its fundamental objects in terms of postulated rules. It couldn’t be
otherwise, for if it described the “fundamental” objects in terms of other, more
fundamental, objects, and derived its rules from the properties of those, it would
hardly be foundational.

Homotopy type theories are synthetic theories of ∞-groupoids. The approach
is deeply logical, where we think of logic as invariant theory as pioneered by
Mautner (1946) and later developed by Tarski in a 1966 lecture (Tarski 1986). Both
Mautner and Tarski were inspired by the approach to geometry given in Klein’s
Erlangen Program (Klein 1872). The idea is that the logical notions are those that
are invariant under that maximal notion of symmetries of the universes of discourse.
If the universe of discourse is a set, then the corresponding symmetry group is the
symmetric group consisting of bijections of the set with itself, but if it is a higher
homotopy type, then it is the (higher) automorphism group consisting of all self-
homotopy equivalences.

In analogy with the synthetic theories of various notions of geometry (euclidean,
affine, projective, etc.), homotopy type theories are synthetic theories of homotopy
types (and set theories are synthetic theories of sets1), cf. also Awodey (2018).

The analytic aspect is that all the rest of mathematics, all mathematical objects,
their types, and their structure, needs to be developed in terms of homotopy types.
And a key criterion for success of a formalized notion is that it satisfies what Ahrens-
North call the principle of equivalence, and which I linked to Quine’s dictum above:
that the identity type captures the intended notion of identifications between the
mathematical objects that we are modeling.

One novel aspect of doing this analytical work in HoTT is when defining a
structured object, it can be a challenge already to get the correct carrier type. In
set-theoretic foundations, any carrier set of the correct cardinality will do, but in
HoTT we are more discerning.

We do reap some benefits of this extra care. For instance, any construction
(which, remember, could be proving a proposition, inhabiting a set, etc.) we perform
on a generic category is guaranteed to be invariant under equivalence of categories,
and we can use the rules of identity types to transport the construction along any
equivalence.

Compare this to the situation in set-theoretic foundations: there we have to prove
invariance under equivalence for any construction on types of dimension greater
than 0. For sets, this is not necessary, because if we are given a set for which the
notion of identification between the elements is given by an equivalence relation, we
can take the quotient. In this way, the situation in set theory is marginally better than
that of type theory pre-HoTT, where the set-quotient construction was not generally
available, leading to what some practitioners have called “setoid hell”. But in set
theory, the same problem arises for any mathematical type of dimension greater
than zero, so we may surmise that formalizations based on set theory will run into
“higher groupoid hell”.
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7.3.2 Some Constructions That Are Possible

Let us finally take a look at some constructions that are possible in HoTT. Many
of these are already discussed in Univalent Foundations Program (2013); references
are provided in other cases. I will structure this discussion according to the means
of construction used. Firstly, there are those that only use the basic constructions in
Martin-Löf type theory, namely �- and �-types, identity types, universes, as well
as (finitary) inductive types such as the natural numbers, disjoint unions, the empty
type, and the unit type.

Next, there are those that use in addition the univalence axiom. Following that,
there are those that can be reduced to one particular higher inductive type, the
(homotopy) pushout.

Finally, we find those constructions that seem to require more advanced higher
inductive types, and in the next subsection I shall discuss those for which there is no
known construction at the time of writing.

In Basic Martin-Löf type theory (MLTT) we can already define many important
notions such as homotopy fibers and other pullbacks, the predicate hasDimension :
N−2 → Type → Type and the types n−Type. We have the types of categories
and †-categories (cf. Univalent Foundations Program 2013, Sect. 9.7), as well as
many other types of mathematical objects occurring outside of homotopy theory.
But we are severely limited in our ability to construct inhabitants of these types,
or prove properties about them. For instance, we cannot prove that hasDimension
is valued in propositions (this requires function extensionality), nor can we prove
that anything is not a set (such as the type Set itself), since there are models of
MLTT in which every type is a set. We cannot construct set quotients, and, perhaps
most embarrassingly, we cannot even define the logical operations of disjunction
and existential quantification, as these require propositional truncation!

With univalence we get function extensionality (as shown by Voevodsky), and we
can now prove many structural properties. Besides hasDimension landing in Prop,
we can prove that n−Type is an (n+ 1)-type, and we get the equivalence principle
for the types of algebraic structures and for categories as mentioned in the Chapter
by Ahrens-North. (See also Awodey 2014.) We can also prove that the nth universe
is not an n-type for any external natural number n (Kraus and Sattler 2015).

At this point we can explore an intermediate route: instead of adding higher
inductive types, we can assume the propositional resizing axiom (Univalent Founda-
tions Program 2013, Axiom 3.5.5), stating that the inclusion map Propi → Propi+1
of propositions in the ith universe into the propositions in the (i + 1)st universe is
an equivalence. This makes the theory impredicative, and it allows us to mimic
many impredicative tricks known from (constructive) set theory. For instance, the
propositional truncation can be defined as ‖A‖ :≡ �P : Prop.(X → P)→ P . (If
we have the law of excluded middle, then we can just define ‖A‖ :≡ ¬¬A.)

The (homotopy) pushout type is a simple, but versatile example of a higher
inductive type. It generalizes the disjoint union. Its inputs are three types A, B,
and C, together with functions f : C → A and g : C → B. (Such a configuration
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is called a span.) The pushout is a new type D :≡ A (Cf,g B (often written A (C B
if f and g can be deduced from the context) together with injections left : A→ D

and right : B → D fitting together in a square

whose commutativity is given by a constructor glue : �x : C. left(f x) =
right(g x). (See (Univalent Foundations Program 2013, Sect. 6.8) for the elimination
and computation rules.)

Now a quite remarkable phenomenon appears. Most of the higher inductive
types that are commonly used can be constructed just from pushouts and the
other constructions in MLTT with univalent universes. These include joins and
suspensions (and therefore, spheres), cofibers (and thus smash products), sequential
colimits, the propositional truncation (van Doorn 2016; Kraus 2016) and all the
higher truncations (Rijke 2017), set quotients, and in fact, all non-recursive HITs
specified using point-, 1-, and 2-constructors by a construction due to van Doorn
et al. (2017). We also get cell complexes (Buchholtz and Favonia 2018), Eilenberg-
MacLane spaces (Licata and Finster 2014), and projective spaces (Buchholtz and
Rijke 2017), and so a lot of algebraic topology can be developed on this basis, and
even a theory of∞-groups (Buchholtz et al. 2018) and spectra (and thus homology
and cohomology theory), culminating in a proof that π4(S

3) = Z/2Z (Brunerie
2016), and a formalized proof of the Serre spectral sequence for cohomology (van
Doorn 2018).

Another important construction enabled by pushouts is the Rezk completion,
which turns a precategory into the category it represents. This can in fact be done
using univalence alone (Ahrens et al. 2015), at the cost of going to a larger universe.
This can be avoided either using pushouts or using the propositional resizing axiom.

Because so many things can be developed on the basis of univalence, pushouts,
and propositional resizing, Shulman suggested that we define an elementary (∞, 1)-
topos to be a finitely complete and cocomplete, locally cartesian closed (∞, 1)-
category with a subobject classifier and object classifiers (Shulman 2017). Let me
correspondingly introduce the term elementary HoTT for MLTT with univalence,
pushouts, and propositional resizing.

Finally, let me mention some of the known constructions that seem to require
more than the above means, but that can nonetheless be effected via more general
higher inductive types. First, there is the cumulative hierarchy as mentioned
above (Univalent Foundations Program 2013, Sect. 10.5), the Cauchy-complete real
numbers (Univalent Foundations Program 2013, Sect. 11.3), as well as the partiality
monad (Altenkirch et al. 2017). I won’t say more about these, since this Chapter
is supposed to be about higher structure. For these it is more relevant to mention
localizations at a family of maps (Rijke et al. 2017). For example, if we localize
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at a family of maps of the form P(a) → 1, for a : A, where each type P(a) is a
proposition, then we obtain an inner model of type theory in itself, in this case a
topological localization.

Of course, the number of things that have been constructed and proved in HoTT
grows every day, so undoubtedly I’ll have left some out. Many of these constructions
have already been formalized in proof assistants for HoTT. In the next section we
move to constructions that we don’t yet know how to perform (and which may
perhaps require new means of construction).

7.3.3 Some Constructions That Seem Impossible

Because proving propositions is in HoTT/UF a special case of making constructions,
any currently open problems count as constructions we don’t yet know how to
perform.4 But for some of these, it is expected that the difficulty is not just that the
construction is tricky to perform with the currently available means of construction,
but rather that we conjecture that entirely new means of construction will be
necessary.

The prime example that I will focus on is that of (∞, 1)-categories, and the
related notions of (semi-)simplicial types. Intuitively, an (∞, 1)-category C consists
of a type of objects C0, for every pair of objects a, b : C0 a type of morphisms
C1(a, b), operations for identities and composition, operations that witness the unit-
and associative laws, operations that witness higher laws that these must satisfy, and
so on ad infinitum. The problem is to come up with a way of specifying all these
higher coherence operations in a single type.

The basic example of an (∞, 1)-category from the point of view of type theory
is the category of types S that has as type of objects the universe Type, and as
morphisms from A to B the type of functions from A to B, S1(A,B) :≡ A →
B. Here, the evident identity and composition operations satisfy all the laws and
higher laws definitionally, so it ought to be particularly easy to show that S is an
(∞, 1)-category, that is, if we knew how to define the type of (∞, 1)-categories,
(∞, 1)−Cat.

It is crucial for the success of UF that we have a working definition and theory
of (∞, 1)-categories. Even if they are not fundamental in the sense that everything
is built out of them, they are still fundamental in the sense that they are a key tool in
the development of modern higher algebra, geometry, and topology.

The problem of defining (∞, 1)-categories is equivalent to the problem of
defining the type of simplicial types, sType. A simplicial type is just a functor
X : �op → S, so if we know how to define (∞, 1)−Cat and the type of functors
between any two C,D : (∞, 1)−Cat, then we can define sType. On the other hand,

4See https://ncatlab.org/homotopytypetheory/show/open+problems for an up-to-date list of open
problems.

claudio.ternullo@ut.ee

https://ncatlab.org/homotopytypetheory/show/open+problems


7 Higher Structures in HoTT 163

(∞, 1)−Cat itself can be defined as the subtype of sType consisting of complete
Segal types (also called Rezk types) (Riehl and Shulman 2017).

The problem of defining (∞, 1)−Cat can also be reduced to another, apparently
simpler problem, namely that of defining the type of semi-simplicial types, ssType.
A semi-simplicial type is a functor X : �op

+ → S, where �+ is the subcategory
of � with the same objects but only injective functions. However, �+ is a direct
category, viz. a 0-truncated category where the relation “x has a nonidentity arrow
to y” is a well-founded relation on the set of objects, so we can give a more direct
description as follows: A semi-simplicial type X consists of:

• a type of 0-simplices X0, and
• for every pair of 0-simplices a0, a1 : X0, a type of 1-simplices from a0 to a1,
X1(a0, a1), and

• for every triple of 0-simplices a0, a1, a2 : X0 and 1-simplices a01 : X1(a0, a1),
a02 : X1(a0, a2), and a12 : X1(a1, a2), a type of 2-simplices with boundary
a01, a02, a12,

• and so on . . .

Again we have the problem that it seems that infinitely much data is needed, but
here it seems more plausible that an inductive (or coinductive) approach could
work. Only, no-one has figured out how to do it, and at an informal poll of HoTT-
researchers in Warsaw in 2015 a majority believed that it is impossible.

We can define (∞, 1)-categories in terms of semi-simplicial types, as the
complete semi-Segal types (Capriotti and Kraus 2017). This work was inspired by
analogous work in the classical setting (Harpaz 2015). Thus, the problems of defin-
ing (∞, 1)-categories, simplicial types, and semi-simplicial types are equivalent,
but currently just beyond reach.

It is interesting to contrast the case of (∞, 1)-categories with that of ∞-groups:
An (∞, 1)-category structure on a pointed, connected type of objects is the same
as an ∞-monoid (the type of which we also don’t know how to construct). But the
type of∞-groups is simply that of pointed, connected types, with the type of group
elements being the identity type A :≡ (pt =A pt), with pt : A the designated
point.

While the above problems concern “large” types, there are also problems of
higher structure concerning “small” types. For example, the three-sphere as a type
S3 should carry the structure of an∞-group, because it is the homotopy type of the
Lie group SU(2). Thus, we should be able to construct the homotopy type of the
classifying space BSU(2) with BSU(2) = S3, but so far we’ve not been able to
do so. (We have the H-space structure, which is a first approximation (Buchholtz and
Rijke 2018).) In this case, however, we expect that no new means of construction
are needed.

An obvious approach would be to construct in the usual way a simplicial set
whose homotopy type is BSU(2). If we then had the realization operation |·| :
sSet → Type that turns a simplicial set into the homotopy type it represents, then
we’d be done. But such a realization operation itself seems impossible to construct
in elementary HoTT!
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As a final, important, but more open-ended problem, let me mention the problem
of developing the meta-theory of HoTT inside HoTT/UF. This has two sides, one
relatively easy, and one quite hard. The relatively easy side is the syntactic one,
but even here there are difficulties. We can represent extrinsic untyped syntax and
corresponding transformations familiar from compiler theory: picking a surface
syntax, lexing and parsing this syntax, and then type-checking it. The result should
be intrinsic syntax containing only well-typed elements. The intrinsic syntax can be
modeled by quotient inductive types (QIT) (Altenkirch and Kaposi 2016), already
mentioned in Altenkirch’s Chapter. The main difficulty here is one of software-
engineering: how do we structure both the intrinsic and extrinsic syntax, and the
transformations between them, in sufficient generality to cover all the kinds of type
theory we are interested in.

The more difficult side is the semantic one. We want to define interpretations of
the intrinsic syntax in inner models, first of all the canonical model where syntactic
types � A are mapped to types �A�, syntactic terms � a : A are mapped to terms
�a� : �A�, and so on. (For proof-theoretic reasons, we expect to only be able to
represent the interpretation locally, for instance type theory with n universes inside
the (n + 1)st universe, or using stronger principles in the target type theory than
are in the source type theory.) Shulman has called this problem “making HoTT eat
itself” (Shulman 2014), for which the term autophagy suggests itself.

The problem is that if we use the QIT intrinsic syntax, then everything syntactic
is a (homotopy) set and the elimination rule will only allow us to eliminate into
sets, whereas for the canonical model we’re eliminating into Type. And if we try
to formalize the intrinsic syntax using a non-truncated HIT, then it seems we need
infinitely many layers of coherence (reminding us of our problems above with semi-
simplicial types and the homotopical realization of simplicial sets).

7.4 Possible Further Means of Construction

Now that we have seen concretely both the range of constructions that are currently
possible in (elementary) HoTT, and some prominent problems that seem out of
reach, let us take stock.

The first conclusion is that we’d very much like to prove that the problem of
semi-simplicial types cannot be solved in elementary HoTT. But assuming that, the
next conclusion is that elementary HoTT is by itself too incomplete to serve its
foundational role as the basis for UF. Further means of constructions need to be
added. But which ones, and how do we decide which to add?

In some sense the situation is analogous to the question of new axioms for
set theory, but there are two main differences: First, we want to use type theory
as a programming language and that means that for any proposed extension, we
should say how the new constructions compute when combined with the other
constructions of type theory. The univalence axiom is a sore point in this regard,
as it has been a long-standing open problem to give it a computational meaning.
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This is now close to being solved via various cubical type theories (Angiuli et al.
2017; Bezem et al. 2014; Cohen et al. 2018), but there remains a question of whether
the corresponding model structures on various categories of cubical sets model ∞-
groupoids (we know that the test model structures do Buchholtz and Morehouse
2017). It is still completely open whether the propositional resizing axiom can be
given computational meaning.

Secondly, we want to use HoTT also in other models than ∞-groupoids. It is
conjectured that elementary HoTT can be interpreted in any (∞, 1)-topos: a left-
exact localization of the functor category Cop → S for a small (∞, 1)-category C.
(It would take us too far afield to give the exact formulation and up-to-date status of
this conjecture; see Schreiber and Shulman 2019.)

Some of the most interesting targets are given by cohesive (∞, 1)-toposes,
whose objects can be thought of as geometrically structured ∞-groupoids. (See
also Schreiber (2016)) For example, in the cohesive (∞, 1)-topos of smooth ∞-
groupoids, Smooth∞Gpd, we find all smooth manifolds among the 0-truncated
objects. And we certainly want to be able to reason about smooth (∞, 1)-categories
using a HoTT interpreted in Smooth∞Gpd. So it will not do to propose a
construction of the type (∞, 1)−Cat that can’t be performed meaningfully in any
(∞, 1)-topos.

In contrast, for the problem of interpreting type theory in internal models,
including these cohesive (∞, 1)-toposes, we need not require that the means of
doing so themselves are available in arbitrary models. It seems sufficient to be able
to do this “at the top level”. But however we solve this problem, it should probably
be with computationally meaningful (constructive) means, so that we’re able to do
proofs by reflection inside these models. (Of course not all models of interest will
be definable constructively.)

Summing up, we expect there to be a stratification of homotopy type theories,

• HoTTua : MLTT plus the univalence axiom and propositional resizing,
• HoTTel : HoTTua plus pushouts,
• HoTTel++ : HoTTel plus constructions needed for (∞, 1)−Cat,
• HoTTUF : HoTTel++ plus reflective constructions.

Here, HoTTua is the basis for Voevodsky’s UniMath formalization effort (Voevod-
sky 2015; Voevodsky et al. 2014). We know that HoTTel is strictly stronger (in the
sense of having fewer models; not in the sense of proof-theoretic strength), because
it is consistent with HoTTua that the nth universe is an n-type, while if the universes
are closed under pushouts, then they are not truncated. Since we don’t have
impossibility proofs regarding the constructions of (∞, 1)−Cat nor for autophagy,
it is still conceivable that we can take HoTTel++ and HoTTUF to be HoTTel.

For each of these we can consider adding classical axioms such as the law of
the excluded middle (LEM) or the axiom of choice (AC). These can be seen as
constructions that we don’t know how to perform in general, but that an omniscient
being would be able to perform. I will not here take any sides in the debate about
whether mathematics is better done with or without these principles—I’ll only say
that it seems to me that a foundational theory should give its users the choice. (And
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in any case, we want theories without these constructive taboos for reasoning about
other toposes of interest.)

We can also remove the resizing axiom to get (generalized) predicative systems,
and for both the predicative and impredicative systems we may add various
generalized inductive types to increase the proof-theoretic strength if needed, while
keeping the systems constructive and without changing their class of (∞, 1)-
topos models. Thus, the stratification above is meant primarily to distinguish the
(intended) models of the theories, and not their proof-theoretic strength, which is an
orthogonal concern.

With all that in mind, let us discuss some possible further means of construction
that we might add either for HoTTel or HoTTUF.

7.4.1 Simplicial Type Theory

For any (∞, 1)-topos C, we can consider the simplicial objects in C, i.e., functors
�op → C, and this is again an (∞, 1)-topos. As mentioned above, we find
therein a full subcategory of (∞, 1)-categories relative to C. This is the basis
for the suggestion by Riehl and Shulman (2017) for a synthetic type theory for
(∞, 1)-categories. In their type theory, let’s call it sHoTT, types are interpreted as
simplicial types, and they give definitions for Segal and Rezk types with the latter
representing (∞, 1)-categories. They can also define a type of discrete simplicial
types, representing ordinary types/∞-groupoids, but this type is not a Rezk type
and so not the representation of the (∞, 1)-category of ordinary types, S. Indeed, it
is not clear at this moment, whether this is at all representable in their system.

Much work remains before we can judge how useful this type theory is for
reasoning about (∞, 1)-categories. But from a philosophical point of view it cannot
be satisfactory to view sHoTT as a foundational theory, for instance playing the role
of HoTTUF. (And it is of course not intended as such!) Because simplicial types are
begging to be analyzed as such: simplicial objects in a category of types, and not to
be taken as unanalyzed in themselves. We really want to be able to define simplicial
types inside a theory where types are the fundamental objects.

7.4.2 Two-Level Type Theories

Another approach to solving the problem of defining simplicial types is to have
another layer above the univalent type theory in which to reason about infinitary
strict constructions, including (semi-)simplicial types. One proposal is Voevodsky’s
Homotopy Type System (HTS) (Voevodsky 2013). This system has a distinction
between fibrant and non-fibrant types, and it has two identity types: the usual
homotopical identity type that only eliminates into fibrant types as well as a new

claudio.ternullo@ut.ee



7 Higher Structures in HoTT 167

non-fibrant strict equality type that satisfies the reflection rule: if e : a s=A a′ is
an inhabitant of the strict equality type, then a and a′ are definitionally equal. This
rule of course makes type-checking undecidable, necessitating a further language of
evidence for typing derivations.

Another proposal is the two-level type theory (2LTT) (Altenkirch et al. 2016;
Annenkov et al. 2017). This is similar to HTS in that it distinguishes between fibrant
and non-fibrant types (the latter are called pretypes), but instead of the reflection
rule for the strict equality type it adds the rule for uniqueness of equality proofs
(Streicher’s K) and function extensionality as an axiom. Thus, type checking is
decidable, but the function extensionality axiom breaks computation.

In order to define simplicial types in 2LTT an extra principle beyond the basic
set-up is needed. This can be the assumption that the fibrant and non-fibrant natural
numbers coincide, or the more technical assumption that Reedy fibrant diagrams
of fibrant types indexed by a strict inverse category have fibrant limits. The former
limits the class of available models severely, while the latter does not.

However useful the two-level type theories may turn out to be, they also seem
unsatisfactory from a foundational perspective. Because what is a pretype? Pretypes
can only be motivated via the models of HoTT as described in set-theoretic
mathematics, where they arise as the objects of a model category presenting an
(∞, 1)-topos. But they are not preserved by an equivalence of (∞, 1)-toposes, so
they don’t have a presentation-independent meaning. They seem to be merely a tool
of convenience.

7.4.3 Computational Type Theories

If we limit ourselves to one constructive model, then there is a principled way of
making sense of new constructions. This is via the paradigm of computational type
theories in the Nuprl tradition (Constable et al. 1986). Here we consider a particular
model to give meaning explanations for the judgments of type theory. For a certain
notion of cubical sets, this has been done by Harper’s group (Angiuli et al. 2017,
2018). The benefit of the approach is that it guarantees that all constructions are
computationally meaningful and make sense in the model. The downside is that it
is tied to a particular model (though by being judicious with which primitives are
added to the computational language this downside can be minimized) and that it
also leads to a type theory without decidable type checking, so a separate proof
theory or language of evidence is needed.

7.4.4 Presentation Axioms

It may have perhaps occurred to some readers that the problems discussed in
Sect. 7.3 should be solved in the same way that they are solved in homotopical
mathematics based in set-theory, namely by working with set-based presentations.
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We already mentioned geometric realization, an operation that produces the
underlying homotopy type of a given simplicial set or topological space. We could
consider adding |·| : sSet → Type as a basic construction and the axiom stating
that |·| is surjective, meaning that every type is merely equivalent to the geometric
realization of some simplicial set. And perhaps we should add a further axiom
stating that every function A → B between types arises (merely) as the geometric
realization of a function between representing simplicial sets.

Something like this may indeed be appropriate at the level of HoTTUF if
it could be given a computational meaning. But certainly not at the level of
HoTTel++, because the axioms would severely restrict the range of models (they
are constructive-homotopical taboos).

Even the much weaker axiom sets cover (SC), stating that every type admits a
surjection from a set admits a simple counter-model (∞, 1)-topos (Schreiber and
Shulman 2018).

On the other hand, SC (or something like it) is necessary in order to describe the
semantics of HoTT (with universes) in presheaf toposes. Indeed, the universe in a
presheaf topos is built from certain sets covering the 1-types of presheaves of small
sets.

7.5 Conclusion

Higher structures are at once the raison d’être and so far, the Achilles’ heel,
of HoTT/UF from a foundational perspective. HoTT can handle with ease many
important higher structures, such as the 1-type of sets and the 2-type of categories,
that can only imperfectly be represented in other foundational systems. But so far
it cannot define the (untruncated) type of (∞, 1)-categories, and this is a major
impediment to the foundational aspirations of HoTT/UF. Of course, HoTT can be
(and has been) used successfully to reason about (structured) homotopy types. In
this way, the various homotopy type theories function as domain specific languages
(DSLs).

To be foundational, however, we need to find a compelling construction of, and
theory of, (∞, 1)-categories, and of the semantics of HoTT-DSLs, inside homotopy
type theory itself. It appears that new methods of construction are needed, but it is
at this time not clear what they should be.

A dramatic possibility, not mentioned in Sect. 7.4, is that we should take (∞, 1)-
categories to be fundamental after all, and build a synthetic type theory where the
types are (∞, 1)-categories rather than ∞-groupoids. This would be a directed
type theory. Such a thing would undoubtedly be quite complicated due to the need
to keep track of variances (see Licata and Harper (2011) and Nuyts (2015) for
some preliminary attempts), and it would represent a return to the old ways of
thinking about categorical foundations, albeit updated to account for a homotopical
perspective. We would carve out the∞-groupoids as those (∞, 1)-categories all of
whose morphisms are invertible rather than trying to build (∞, 1)-categories out of
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∞-groupoids. In any case, directed type theories should be useful also as DSLs for
reasoning about (∞, 2)-toposes.

Personally, I think we’ll find some solution that allows us to stay at the level of
∞-groupoids for the foundational theory. Perhaps there is a kind of two-level type
theory that allows us to capture the strict nature of the (∞, 1)-category of types
without postulating a bunch of meaningless pretypes.

An analogy can perhaps be made with the foundations of stable homotopy
theory. The (∞, 1)-category of spectra is a symmetric monoidal stable (∞, 1)-
category, and from a foundational point of view, this is the correct viewpoint,
since spectra should be identified when they are weakly equivalent. However, it
was discovered that this (∞, 1)-category can be presented by symmetric monoidal
Quillen model categories (i.e., very strict structures), and this has been very
important in facilitating computations in stable homotopy theory (Elmendorf et al.
1995; Mandell et al. 2001). (I should mention that there is work-in-progress by
Finster-Licata-Morehouse-Riley on developing a HoTT-DSL for stable homotopy
theory targetting the cohesive (∞, 1)-topos of parametrized spectra: this captures
the strict monoidal structure of spectra in a type theory.)

And so it may be, that in order to realize the foundational potential of HoTT/UF,
we shall need to capture the strict structure of type theory itself, perhaps by
reflecting more of judgmental structure at the level of types.

I’m confident that a good solution will be eventually found. The field is still
young, and it will be exciting to see what the future brings.
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Chapter 8
Univalent Foundations and the UniMath
Library

The Architecture of Mathematics

Anthony Bordg

Abstract We give a concise presentation of the Univalent Foundations of mathe-
matics outlining the main ideas, followed by a discussion of the UniMath library
of formalized mathematics implementing the ideas of the Univalent Foundations
(Sect. 8.1), and the challenges one faces in attempting to design a large-scale
library of formalized mathematics (Sect. 8.2). This leads us to a general discussion
about the links between architecture and mathematics where a meeting of minds
is revealed between architects and mathematicians (Sect. 8.3). On the way our
odyssey from the foundations to the “horizon” of mathematics will lead us to meet
the mathematicians David Hilbert and Nicolas Bourbaki as well as the architect
Christopher Alexander.

8.1 The Univalent Foundations and the UniMath Library

8.1.1 The Univalent Foundations of Mathematics

The Univalent Foundations (Voevodsky 2014) of mathematics designed by Vladimir
Voevodsky builds upon Martin-Löf type theory (Martin-Löf 1982), a logical
system for constructive mathematics with nice computational properties that makes
mathematics amenable to proof-checking by computers (i.e. by a piece of software
called a proof assistant). Certified or type-checked proofs should not be mistaken for
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automated proofs. Even if proof assistants come with various levels of automation,
either built-in for elementary steps or user-defined via the so-called tactics for less
basic steps, the proof assistant only checks that man-made proofs written with it are
correct.

8.1.1.1 The Univalence Axiom

The main characters in Martin-Löf type theory (MLTT for short) are types and
elements of these types. If T is a type, then the expression t : T denotes that t is an
element of T . In particular, if T is a type and t , t ′ are elements of T there is a new
type called the identity type of t and t ′ denoted t =T t ′. Sometimes for convenience
we will omit the type information and we will simply write t = t ′. When one
considers only a single element t , i.e. t ′ is definitionaly equal to t , the identity
type t =T t has always at least one element denoted idpath t , i.e. the expression
idpath t : t =T t is well-formed. This term idpath is called a constructor and the
identity types belong to a particular class of types called inductive types. Indeed,
besides its constructors (an inductive type can have either a single constructor or
many constructors), a family of types defined inductively (like the identity types
are when introduced formally) obeys an induction principle. In the case of identity
types, this induction principle states that given a type T , an element t : T , a family
F of types indexed by an element t0 : T and an element p0 : t =T t0, if there is an
element f : F t (idpath t) (the family F instantiated with the terms t and idpath t),
then for any elements t ′ : T , p : t =T t ′ there is an element of the type F t ′ p,
and moreover this element is f itself when t ′ and p are definitionaly equal to t
and idpath t , respectively. Of course, one can iterate the process of building identity
types, namely given p and q two elements of the identity type t =T t ′, one can
form the identity type p =t=T t ′ q and so on. As it happens, these identity types lead
to a very rich mathematical structure and there is a surprising connection between
homotopy theory and MLTT (the latter being also coined Martin-Löf dependent
type theory in reference to these dependent types, i.e. dependent on previous types
for their definition which may be inductive, like in the case of identity types, or not).
Roughly, one can think of T as a space, two elements t and t ′ of T as points of this
space, two elements p and q of the type t =T t ′ as paths from t to t ′ in the space
T , and the elements of p =t=T t ′ q as homotopies between the paths p and q and so
on (the elements of the successive iterated identity types being higher homotopies).
Under this correspondence idpath t is the identity path between a point t and itself
in the given space. Each type bearing the structure of a weak ∞-groupoid obtained
from the tower of iterated identity types over that type. Moreover, given two types
A and B there is also a new type denoted A→ B for the type of functions between
A and B. Among these functions some of them have a distinctive property, namely
their homotopy fibers1 are contractible,2 and they are called weak equivalences.

1The definition of the homotopy fibers of a map is given later in Sect. 8.1.2.1.
2The fundamental concept of contractibility is defined later in Sect. 8.1.1.2.
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Again, one forms a new type for the weak equivalences between two types A and
B, denoted A $ B. Voevodsky found an interpretation of the rules of MLTT using
Kan simplicial sets where an additional axiom, the so-called Univalence Axiom,
is satisfied. The Univalence Axiom (UA for short) states a property of a universe
type U (interpreted as the base of a universal Kan fibration), a type whose elements
are themselves types called “small” types. More specifically, first note that given
two small types A and B, by applying the induction principle of identity types
(take T := U , t := A, and the family F such that F B p0 is A $ B in the
statement of the induction principle above) one defines a function eqweqmap A B,
from A =U B to A $ B, that maps the identity path to the identity equivalence
when B is definitionally equal to A. The Univalence Axiom states that for any two
small types A and B the function (eqweqmap A B) is a weak equivalence, giving
the correct notion of equality (or path under the connection alluded to above) in the
universe.

8.1.1.2 The Homotopy Levels

Note that in the function type A → B introduced above the type B does not
depend on the type A. Now, we can replace the type B by a family of (small)
types indexed by the type A, namely an element F of type A → U (where U is
a universe), in this case we get a new type, the cartesian product of the family of
types F , denoted

∏

x:A
F x. Given two elements f, g :

∏

x:A
F x, we could also ask if

there is an equivalence between the identity type f = g and the dependent product∏

x:A
(f (x) = g(x)). This equivalence (or rather the non-obvious implication) is

known as function extensionality and it does not hold in MLTT. Fortunately, UA
does imply function extensionality, i.e. given A : U , F : A→ U and f, g :

∏

x:A
F x,

using UA one produces a term of the type (
∏

x:A
f (x) = g(x)) $ (f = g). Thus, the

Univalence Axiom can be seen as a strong form of extensionality and the Univalent
Foundations are a powerful and elegant way to achieve extensional concepts in
Martin-Löf dependent type theory.

Without surprise another very important type is the type of natural numbers
denoted nat. This is a second example of an inductive type. The type nat has two
constructors, 0 of type nat and s of type nat → nat that corresponds to the successor
function. The induction principle of nat is what one expects, namely an element of
the type

∏

P :nat→U
P 0 → (

∏

n:nat

P n→ P (s n))→ (
∏

n:nat

P n) .

Finally, we would like to introduce an additional dependent type called the
dependent sum type. Given a type A and an element B : A→ U , we form the type
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of dependent pairs (x, y) with x : A and y : B x, denoted
∑

x:A
B x. Given a small

type A, the type A might have the property that it has an element cntr : A together
with for every element x : A a path from x to cntr, i.e. an element of

∏

x:A
x =A cntr.

The dependent sum allows us to form the type of such elements, namely

∑

cntr:A

∏

x:A
(x =A cntr),

shortened to iscontr A, that corresponds to the type of proofs that A seen as a
space is contractible. If this last type is inhabited, i.e. if it has an element, the
type A is said to be contractible and cntr is called a center of contraction. We are
now equipped with all the tools we need to introduce the very important concept
of homotopy levels, the so-called h-levels, that intuitively capture the fact that at
some point in the tower connected with a type the iterated identity types might be
contractible. First, we need to know that one is allowed to define functions over
inductive types, in particular over the type of natural numbers nat. Hence, we will
define an element denoted isofhlevel of type nat → U → U . To achieve this,
it is enough to define isofhlevel 0X to be iscontrX and isofhlevel (s n)X to be∏

x:X

∏

y:X
isofhlevel n (x =X y), where X is a small type. Given a small type X and

a natural number n, if the type isofhlevel nX is inhabited, then one says that X is
of h-level n. The type of all types of h-level n is

∑

X:U
isofhlevel nX.3 The types of

h-level 1 are called propositions, they are the types in which any two elements are
equal. The types of h-level 2 are called sets. For n ≥ 3 the types of h-level n are
higher analogs of sets.4 It is possible to prove for instance that given a type X and
an element n : nat the type isofhlevel nX is a proposition, that the type nat is a set,
or that the type

∑

X:U
isofhlevel nX is of h-level n + 1. Moreover, the Univalence

Axiom is consistent with respect to the Law of Excluded Middle for propositions
and the Axiom of Choice for sets, hence not diminishing our ability to reason about
propositions or sets but increasing our ability to work with higher analogs of sets.

Informed by homotopy theory, the main merits of the Univalent Foundations are
the realization that types in MLTT are interpreted by homotopy types (topological
spaces up to weak homotopy equivalences), their corresponding stratification
according to the h-levels, and the ability that types give us to build weak higher
groupoids through the tower of their iterated identity types. Moreover, the Univa-
lence Axiom gives us the ability to reason formally about structures on these higher
groupoids by enforcing an equivalence principle that makes two equivalent types

3This type is small with respect to a higher universe. This technical detail is unimportant for people
unfamiliar with type theory.
4This analogy is explained in the quote from Voevodsky that ends the current Sect. 8.1.1.2.
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indistinguishable in the Univalent Foundations. Indeed, let U0, U1 be two universes
with U0 : U1 and U0 being univalent. Given any family P : X → U1, there exists
two terms transportfP : (x =X y) → Px → Py and transportbP : (x =X y)

→ Py → Px. In particular, if one takes U0 for X, then using the univalence
axiom for U0 one derives two terms of types (A $ B) → PA → PB and
(A $ B)→ PB → PA, respectively.

The Univalent Foundations realizes the following vision of Voevodsky :
First note that we can stratify mathematical constructions by their “level”. There is element-
level mathematics - the study of element-level objects such as numbers, polynomials or
various series. Then one has set level mathematics - the study of sets with structures such
as groups, rings etc. which are invariant under isomorphisms. The next level is traditionally
called category-level, but this is misleading. A collection of set-level objects naturally forms
a groupoid since only isomorphisms are intrinsic to the objects one considers, while more
general morphisms can often be defined in a variety of ways. Thus the next level after the
set-level is the groupoid-level - the study of properties of groupoids with structures which
are invariant under the equivalences of groupoids. From this perspective a category is an
example of a groupoid with structure which is rather similar to a partial ordering on a
set. Extending this stratification we may further consider 2-groupoids with structures, n-
groupoids with structures and ∞-groupoids with structures. Thus a proper language for
formalization of mathematics should allow one to directly build and study groupoids of
various levels and structures on them. A major advantage of this point of view is that
unlike ∞-categories, which can be defined in many substantially different ways the world
of ∞-groupoids is determined by Grothendieck correspondence, which asserts that ∞-
groupoids are “the same” as homotopy types. Combining this correspondence with the
previous considerations we come to the view that not only homotopy theory but the whole
of mathematics is the study of structures on homotopy types. (Voevodsky 2015).

8.1.2 The UniMath Library

Nowadays a fraction of the community working on the Univalent Foundations
is involved in the design of a library of mathematics based on the Univalent
Foundations, the UniMath (Voevodsky et al. 2014) project, using the Coq proof
assistant.

The UniMath library was born in 2014 by merging three previous reposito-
ries, the repository Foundations written by Vladimir Voevodsky, the repository
rezk_completion of Ahrens, Kapulkin and Shulman, and the repository Ktheory
by Daniel Grayson. As of 6 September 2018, the library has the following pack-
ages (arranged in alphabetical order) : Algebra, CategoryTheory, Combinatorics,
Folds, Foundations, HomologicalAlgebra, Induction, Ktheory, MoreFoundations,
NumberSystems, PAdics, RealNumbers, SubstitutionSystems, Tactics, Topology.

I will briefly focus on the three packages that implement the main ideas of the
Univalent Foundations as outlined in the first Sect. 8.1.1, namely the Foundations
package, the MoreFoundations package, and the CategoryTheory package. The
latter grew out of the rezk_completion repository, hence our choice of packages
covers two of the three original repositories. However, we underline that we do not
do justice to the contents of the library.
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8.1.2.1 The Foundations Package

The Foundations package is the very core of the UniMath library. Hence, it is
intended to become a very stable part of the library. For that reason this package
is more or less locked. The code in that package is highly organized, and Voevodsky
thought of writing it as a mathematical “textbook” about the Univalent Foundations.

The file PartA therein contains, among other things, the correct formulation of
the type of proofs that a given function f : X → Y is a weak equivalence (see
Sect. 8.1.1.1), denoted isweq f, which is the type

∏

y:Y
iscontr(hfiber f y),5 where

hfiber f y is the type
∑

x:X
f x = y of pairs consisting of an element x : X together with

a path in Y from f (x) to y. The point being that the type isweq f is a proposition,6

i.e. is of h-level 1. So, that type is proof-irrelevant, hence it becomes contractible,
i.e. of h-level 0, when it is inhabited. Here, proof-irrelevance means that given a
proposition P , there exists an equality p : p1 =P p2 for all elements p1, p2 of P ,
i.e. for all proofs p1, p2 that the proposition P holds. As we have seen, the property
of being a weak equivalence is instrumental in formulating the Univalence Axiom.

This last axiom is stated in the file UnivalenceAxiom, and it consists in
postulating that the type isweq (eqweqmapAB) is inhabited for all types A and B
of a given universe typeU , it means that we assume that the map (eqweqmap A B) is
a weak equivalence for all elements A and B of the universe type U . We recall (see
Sect. 8.1.1.1) that (eqweqmap A B) is the canonical map from A =U B, the type
of equalities between A and B, to A $ B, the type of weak equivalences between
A and B. In this last file, one also finds various consequences of the Univalence
Axiom. In that file, these consequences are themselves formulated as axioms after
the corresponding implications have been proved. It is an interesting choice of
design. Indeed, it allows the relevant use of the command “Print Assumptions” of
the Coq proof assistant in order to track the weakest axioms needed to prove a given
statement. In particular, among the consequences of the Univalence Axiom proved
in that file, one should mention function extensionality (see Sect. 8.1.1.2) which
reassures any mathematician that pointwise equal functions are equal, a fact that
any mathematician takes for granted.

The file UnivalenceAxiom2 is devoted to the proofs that the types corresponding
to the statements of these various axioms are propositions. Hence, those types
are proof-irrelevant as it should be. Last, the file PartB of the Foundations
package contains the all-important formulation of the h-levels that we have covered
in Sect. 8.1.1.2. The stratification of types according to their h-levels discriminates
well behaved propositions and sets, hence it allows elegant formalizations of
mathematics at the levels of sets and categories with a proof assistant.

5Given a small type A, see Sect. 8.1.1.2 for the definition of the type iscontr A.
6In the UniMath library any type whose name starts by the prefix “is” is a proposition.
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8.1.2.2 The MoreFoundations Package

The MoreFoundations package is less fundamental than the Foundations one, but
it is still very basic. There are constructions in the Foundations package that admit
many variants, those variants are not necessarily interesting in themselves, at least
on a purely mathematical level, but these slight variants might come in handy in a
particular context. The developers of UniMath handle this discrepancy between a
core mathematical idea and its various incarnations that are used as a convenient
scaffolding in the process of formalization by using the MoreFoundations package
as a home for those variants. It is a nice way to avoid losing the sharp structure of
the Foundations package.

We have already underlined in Sect. 8.1.1.2 that the Univalent Foundations
(MLTT + UA) are consistent with the Law of Excluded Middle (LEM) and the
Axiom of Choice (AC) if properly stated, namely if stated at the levels of proposi-
tions and sets, respectively. The type of propositions, namely

∑

X:U
isofhlevel 1X, is

shortened by hProp in the UniMath library. Then, the type corresponding to LEM
in UniMath7 is roughly

∏

P :hProp

P ) ¬P , where P ) ¬P denotes the coproduct

of P and ¬P . To be more specific, it is the type
∏

P :hProp

decidable_propP , where

decidable_propP is a pair consisting of the type P ) ¬P together with a proof
that it is a proposition, allowing to prove that the type-theoretic LEM is itself a
proposition.

The type of sets, namely
∑

X:U
isofhlevel 2X, is shortened by hSet in UniMath.

Then, the type corresponding to AC in UniMath8 is roughly

∏

X:hSet

∏

P :X→U
((
∏

x:X
ishinh(P x))→ ishinh(

∏

x:X
P x)) ,

where given a small type Y , ishinhY is the type
∏

P :hP rop
((Y → P) → P). Again,

the exact type is
∏

X:hSet

ischoicebaseX, where ischoicebaseX is a pair consisting of

the type
∏

P :X→U
((
∏

x:X
ishinh(P x)) → ishinh(

∏

x:X
P x)) together with a proof that

this type is a proposition, allowing to prove that our type-theoretic AC is itself a
proposition.

7See the file DecidablePropositions of the package MoreFoundations.
8See the file AxiomOfChoice in the package MoreFoundations.
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In the UniMath library the type-theoretic versions of LEM and AC introduced
above are not used as axioms but only as types in order to force them to be mentioned
explicitly as additional assumptions whenever they are used to prove a statement.

Finally, in the file entitled AxiomOfChoice there is a proof that the type-theoretic
AC implies the type-theoretic LEM, a result originally due to Radu Diaconescu.

8.1.2.3 The CategoryTheory Package

The file Categories of the package CategoryTheory gives an analog of the univa-
lence property for categories that mimics the pattern described for the Univalence
Axiom. Indeed, given a category C and two elements a and b of ob C, the type
of objects of C, one defines by induction a function idtoiso, from a =C b to
the type iso a b of isomorphisms from a to b, that maps the identity path to the
identity morphism when b is definitionaly equal to a. The category C is univalent
if for any two elements a, b : ob C the above function is a weak equivalence. As a
consequence, in the Univalent Foundations all category-theoretic constructions and
proofs are invariant under isomorphism of objects of a univalent category and under
equivalence of univalent categories.

In a subdirectory entitled categories (with a lower-case c, it should not be
confused with the file of the same name), one proves that the category of sets
as well as many categories of structured sets (monoids, groups, rings, modules,
discrete fields, all standard algebraic structures formalized in the Algebra package)
are univalent.9

Moreover, any category is equivalent to a univalent category called its Rezk
completion as established in the eponymous file rezk_completion. Note that the
univalence property itself for categories is not invariant under equivalence of
categories, only under isomorphism of categories.

8.2 Some Challenges to Achieve Large-Scale Libraries of
Formalized Mathematics

8.2.1 Toward Massive Collaborations in Mathematics

Formalized mathematics leads to a high level of certification and collaboration in
mathematics, in the case of the UniMath library using the Coq proof assistant
for the former and the open source distributed revision control system Git, the

9A general theorem that “isomorphism is equality” for a large class of algebraic structures
(assuming the Univalence Axiom) was proven by Thierry Coquand and Nils Anders Danielsson in
2013 (Coquand and Danielsson 2013). Closely related, is the formulation of the more abstract
Structure Identity Principle due to Peter Aczel, see Chapter 9 of The Univalent Foundations
Program (2013).
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development platform GitHub and a Google Group Univalent Mathematics (Uni-
valent Mathematics) for the latter. Note that certification is a prerequisite for true
massive collaboration in mathematics that is otherwise hardly possible, since one
would need to check by hand developments by others in order to rely on them
for his own proofs and developments. The advantage of certification allows the
UniMath developers to focus on the quality of the code in the library. Usually, when
someone submits a contribution then volunteers make remarks and suggestions to
improve the formalization, sometimes several rounds of rewriting are undertaken.
However, so far the formalization of mathematics has not changed by a few orders
of magnitude the traditional way of collaborating between mathematicians, which
typically involves at most 2 or 3 mathematicians, as illustrated by the celebrated
collaboration between Hardy and Littlewood.

Moreover, mathematicians have blamed the formalization of mathematics for its
tediousness. Regarding an influential old formal language called Automath, N.G. de
Bruijn wrote in “A survey of the project Automath” (de Bruijn 1994) :

A very important thing that can be concluded from all writing experiments is the constancy
of the loss factor. The loss factor expresses what we loose in shortness when translating very
meticulous “ordinary” mathematics into Automath. This factor may be quite big, something
like 10 or 20, but it is constant : it does not increase if we go further in the book. It would
not be too hard to push the constant factor down by efficient abbreviations.

So, de Bruijn notes two things. First, formal proofs are longer, sometimes to an
inadmissible point, as measured by the loss factor. Second, the loss factor is constant
and it does not increase beyond some threshold. Regarding the first point, Freek
Wiedijk in Wiedijk (2000)10 gives interesting data for the AutoMath, Mizar, and
HOL Light systems. In several cases, what Wiedijk calls the de Bruijn Factor,
roughly the ratio of a formalized text to a TEX encoding of its informal counterpart,
is around 4. It would be interesting to have similar data for Isabelle, a system with
more automation, and for a more expressive system based on a dependent type
theory like Coq, these systems might compare favourably. A de Bruijn factor equal
or less than 2 might be more acceptable to a mathematician, and it is certainly a
goal one should strive for. In order to succeed, in addition to more efficient support
for notations as pointed out by de Bruijn, we certainly need more automation
to handle the most obvious and boring parts of formal proofs. In the meantime,
given enough hands and eyeballs can any substantial formalization effort be made
shallow enough? We hope that the formalization of well-known mathematics, at
the undergraduate or even graduate level, is parallelizable and could benefit from
a divide-and-conquer approach to build comprehensive libraries that the working
mathematician could use to do research-level mathematics. In this perspective, the
formalization of mathematics might be more suited to massive collaborations than a
project that focuses exclusively on research-level open problems like the Polymath
Project.11

10See also http://www.cs.ru.nl/~freek/factor/
11https://en.wikipedia.org/wiki/Polymath_Project
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8.2.2 The Challenge of Scalability

With formalized mathematics one faces the challenge of scalability. As suggested
by the second point of de Bruijn, the constancy of the loss factor, the problem is not
so much about the increase of de Bruijn factor with the length of a text, but about
other aspects whose scalability might be problematic.

We will give a simple example. With the growth of the library, its index for
search becomes huge. If there is no homogeneity when possible for the names of
the definitions, lemmas and theorems, then it becomes very difficult for the user to
check whether some item useful for his goal has already been formalized and if so
to find it in the library, for instance by guessing easily its name.

One could hope that the tools of machine learning could offer in the near future
for instance more intelligent search support for definitions, lemmas and theorems in
libraries as well as some other useful automated tools. But this perspective should
not prevent developers from being very careful with the design of their library of
formalized mathematics to achieve something whole.

8.2.3 The Foundations : A Never-Ending Work or an Horizon

In the twenty-first century something new of the same magnitude as the Bourbaki
project could wait for mathematicians. However, Bourbaki told us the following :

If formalized mathematics were as simple as the game of chess, then once our chosen
formalized language had been described there would remain only the task of writing out
our proofs in this language, just as the author of a chess manual writes down in his
notation the games he proposes to teach, accompanied by commentaries as necessary. But
the matter is far from being as simple as that, and no great experience is necessary to
perceive that such a project is absolutely unrealizable : the tiniest proof at the beginning
of the Theory of Sets would already require several hundreds of signs for its complete
formalization. Hence, from Book I of this series onwards, it is imperative to condense
the formalized text by the introduction of a fairly large number of new words (called
abbreviating symbols) and additional rules of syntax (called deductive criteria). By doing
this we obtain languages which are much more manageable than the formalized language
in its strict sense. Any mathematician will agree that these condensed languages can be
considered as merely shorthand transcriptions of the original formalized language. But we
no longer have the certainty that the passage from one of these languages to another can be
made in a purely mechanical fashion : for to achieve this certainty it would be necessary
to complicate the rules of syntax which govern the use of the new rules to such a point that
their usefulness became illusory; just as in algebraic calculation and in almost all forms
of notation commonly used by mathematicians, a workable instrument is preferable to one
which is theoretically more perfect but in practice far more cumbersome. (Bourbaki 1968,
Introduction, p. 10).

As it happens, the end of the twentieth century gave us such unforeseen powerful
theories and proof assistants, actually not so “complicated” as anticipated by
Bourbaki, for instance under the form of the so-called Calculus of Inductive
Constructions (a dependent type theory extended with various features) as embodied
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in Coq, equipped with notational support to handle notations even including LaTeX
and unicode characters, incorporating automatic tools like tactics, and being able
to automatically generate typeset documents. Contrary to Bourbaki’s expectations,
packaged this way these theories have rendered the formalization of mathematics
more feasible. It opens new possibilities for learning and teaching mathematics,12

doing mathematical research, or using mathematics in industry. Thus, time may
be ripe for Bourbaki’s abandoned dream. However, one should keep in mind the
distinction between the formalization of mathematics using proof assistants and
some ultimate foundations of mathematics. The foundations of mathematics may
be a never-ending work, what Bourbaki called the “horizon” (Guedj 1985). Hence,
the importance of a third technical challenge (in addition to massive collaborations
using proof assistants, and the scalability of libraries), the migration of libraries,
for instance from a system to a more evolved system and this is why the UniMath
library uses for its development only a small subset of the Coq language. Given the
numerous proof assistants and libraries of formalized mathematics on the market,
migration is an important issue and old code for new proof assistants should be
reused as easily as possible to become the scaffolding for new achievements. The
UniMath library is intended to be a whole scalable migration-friendly library of
formalized mathematics with certified proofs. With respect to large-scale formaliza-
tion, one very interesting aspect of Bourbaki’s project consists in noticing that its
members faced large-scale architectural problems well before us, since they aimed
in their series of books at a rigorous, general and self-contained, reformulation of
the whole of mathematics known at the time. Hence, in this regard one can learn
from Bourbaki’s epoch-making project, and Armand Borel’s article “Twenty-Five
Years with Nicolas Bourbaki 1949–1973” (Borel 1998) and Pierre Cartier’s article
“The Continuing Silence of Bourbaki” (Cartier 1998) are informative.

8.3 Architecture and Mathematics

Alexander Grothendieck was a third-generation member of Bourbaki and when
reading Grothendieck’s “Récoltes et Semailles” (Grothendieck) one can wonder

12The key step towards the widespread use of formalized mathematics could be to start teaching
mathematics with the help of proof assistants, not to try very hard to gain the support of the
working mathematicians. Given that present-day students are the mathematicians of tomorrow,
the latter could be a consequence of the former. Moreover, a mathematical education using, at
least occasionally, proof assistants could be solidly grounded in rigorous proofs and the students
could benefit from it. Unfortunately, most proof assistants might be still too difficult to use except
for graduate students. Note that the Isabelle proof assistant, which offers more automation, was
used recently by a group of undergraduate students in Germany, under the supervision of three
advisers, to formalize partly the DPRM theorem motivated by Hilbert’s Tenth Problem. See their
joint paper Aryal et al. presented during the FLOC 2018 conference in Oxford.
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why the architectural metaphor is recurrent.13 Actually, there is a meeting of minds
between great architects and great mathematicians linked by an abstract approach
of space with surprisingly at the same time a feeling of its organic life. This
abstract approach of space is remarkable in the great architectural theoreticians,
like for instance Frank Lloyd Wright, Le Corbusier, or Christopher Alexander, in
the sense that one can naively believe their prime business is the 3-dimensional
space embodied in a house, a building or a city, it is certainly true but it goes
beyond. We notice that architects have been facing large-scale problems for long,
they have been challenging them and they have offered their thoughts. Christopher
Alexander in “The Nature of Order” (Alexander 2002) develops what he calls
wholeness to answer these challenges. Wholeness is precisely what is lacking in
most libraries of formalized mathematics despite the fact it is an important feature
of mathematics. Note that wholeness in Alexander’s work is a specific concept
defined by 15 properties.14 We will not discuss here each of those properties, but
only a few that seem more relevant with respect to mathematics, since it will be
probably hopeless to search for a precise dictionary between Alexander’s properties
and some corresponding features of mathematics. These properties are an interesting
attempt to capture what “organic” and “life” could mean for man-made artefacts
like architectural works which are Alexander’s main concern. In his 1900 address to

13I will give a few examples : “Je me sens faire partie, quant à moi, de la lignée des mathématiciens
dont la vocation spontanée et la joie est de construire sans cesse des maisons nouvelles. Chemin
faisant, ils ne peuvent s’empêcher d’inventer aussi et de façonner au fur et à mesure tous les outils,
ustensiles, meubles et instruments requis, tant pour construire la maison depuis les fondations
jusqu’au faîte, que pour pourvoir en abondance les futures cuisines et les futurs ateliers, et installer
la maison pour y vivre et y être à l’aise. Pourtant, une fois tout posé jusqu’au dernier chêneau et au
dernier tabouret, c’est rare que l’ouvrier s’attarde longuement dans ces lieux, où chaque pierre et
chaque chevron porte la trace de la main qui l’a travaillé et posé. Sa place n’est pas dans la quiétude
des univers tout faits, si accueillants et si harmonieux soient-ils - qu’ils aient été agencés par ses
propres mains, ou par ceux de ses devanciers. D’autres tâches déjà l’appelant sur de nouveaux
chantiers, sous la poussée impérieuse de besoins qu’il est peut-être le seul à sentir clairement,
ou (plus souvent encore) en devançant des besoins qu’il est le seul a pressentir.” (Grothendieck,
2.5 Les héritiers et le bâtisseur); and “Comme le lecteur l’aura sans doute deviné, ces “théories”,
“construites de toutes pièces”, ne sont autres aussi que ces “belles maisons” dont il a été question
précédemment : celles dont nous héritons de nos devanciers et celles que nous sommes amenés à
bâtir de nos propres mains, à l’appel et à l’écoute des choses. Et si j’ai parlé tantôt de l’ “inventivité”
(ou de l’imagination) du bâtisseur ou du forgeron, il me faudrait ajouter que ce qui en fait l’âme et
le nerf secret, ce n’est nullement la superbe de celui qui dit: “je veux ceci, et pas cela !” et qui se
complaît à décider à sa guise; tel un piètre architecte qui aurait ses plans tout prêts en tête, avant
d’avoir vu et senti un terrain, et d’en avoir sondé les possibilités et les exigences.” (Grothendieck,
2.9); and again “C’était peut-être là la principale raison pour laquelle les maisons que je prenais
plaisir à construire sont restées inhabitées pendant le longues années, sauf par l’ouvrier maçon lui-
même (qui était en même temps aussi l’architecte, le charpentier etc.).” (Grothendieck, 18.2.8.3
Note 135).
14(1) Levels of scale (2) Strong centers (3) Boundaries (4) Alternating repetition (5) Positive space
(6) Good shape (7) Local symmetries (8) Deep interlock and ambiguity (9) Contrast (10) Gradients
(11) Roughness (12) Echoes (13) The void (14) Simplicity and inner calm (15) Not-separateness.

claudio.ternullo@ut.ee



8 Univalent Foundations and the UniMath Library 185

mathematicians Mathematical Problems Hilbert mentioned this organic feature of
mathematics in the following perceptive insights :

The problems mentioned are merely samples of problems, yet they will suffice to show how
rich, how manifold and how extensive the mathematical science of today is, and the question
is urged upon us whether mathematics is doomed to the fate of those other sciences that have
split up into separate branches, whose representatives scarcely understand one another and
whose connection becomes ever more loose. I do not believe this nor wish it. Mathematical
science is in my opinion an indivisible whole, an organism whose vitality is conditioned
upon the connection of its parts. [. . . ] We also notice that, the farther a mathematical theory
is developed, the more harmoniously and uniformly does its construction proceed, and
unsuspected relations are disclosed between hitherto separate branches of the science. So it
happens that, with the extension of mathematics, its organic character is not lost but only
manifests itself the more clearly. (Hilbert 1902).

If wholeness is a feature of mathematical science according to Hilbert, Alexander
regrets its absence in most of modern, dead and dull, architectural works while this
property is shining in some of the great artistic works of the past. Alexander’s
concerns may not be widely shared by present-day architects, but they are not
without resonances among other great architects as testified by the organic architec-
ture of Frank Lloyd Wright or Tadao Ando’s obsession with making light vibrant,
alive, through the use of concrete. If Alexander does not mention mathematics, a
mathematician cannot help but think that mathematical entities and mathematics as
a whole (“la mathématique” of Bourbaki, using a singular on purpose) display to a
great extent this pervasive organic character, a life of their own, a wholeness.

Mathematical entities are like the centers of Alexander, the elementary compo-
nents of any system that make it alive, but with the subtlety that a center cannot be
isolated from other centers but needs to be understood in a mutual recursive relation
with other centers (Alexander 2002, p.116). We can think about prime numbers in
terms of what Alexander calls strong centers (Alexander 2002, p.151), centers that
focus our attention and engage us, the set of primes numbers being described by
Alain Connes as the heart of mathematics (Stéphane Dugowson et Anatole Khelif
2014) (compare Connes’s vivid organic metaphor in the interview with the dull
mechanic metaphor of the interviewers using a coffee machine).

In mathematics strong centers are not only displayed as specific mathematical
entities but also in proofs, proving being at the core of the activity of the working
mathematician. Indeed, any good mathematical proof has its own architecture. This
architecture revolves around the main ideas that provide the flesh of the proof. In a
given proof there are as many strong centers as there are main ideas, fitting together
thanks to boundaries which are the glue of the inner workings of the mathematical
mind, the hypotheses and the conclusion being the initial boundary and the last
boundary, respectively. Simple proofs have usually only one center, more elaborate
proofs may have many centers, but it does not matter, centers are always what make
things click. One can define the strong centers in a proof as the main ideas such
that handed to any mathematician with the appropriate training he will not fail
to reconstruct the proof on his own. In most proof assistants, formal proofs have
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no structure.15 It is an important issue. This is the case for instance in the Coq
proof assistant, and as a consequence in the UniMath library, where a formal proof
is basically a sequence of tactics lacking the structure of its informal counterpart.
Even if one would not intend to read formal proofs, for instance to get pedagogical
insights, but only to get certificates of correctness from them, then one still needs
to maintain on a regular basis the code in a library to take into account revisions
that might have been proposed. Since changes pushed in a library can break some
proofs, the task of repairing broken code (and in particular broken proofs) is made
harder by the lack of structure in formal proofs that makes them barely legible.

Also, there might be some roughness in the sense of Alexander in the distribution
of prime numbers mentioned above, roughness being an elusive property :

Things which have real life always have a certain ease, a morphological roughness. This
is not an accidental property. It is not a residue of technically inferior culture, or the result
of hand-craft or inaccuracy. [. . . ] It is an essential feature of living things, and has deep
structural causes. [. . . ] Roughness does not seek to superimpose an arbitrary order over a
design, but instead lets the larger order be relaxed, modified according to the demands and
constraints which happen locally in different parts of a design. (Alexander 2002, p.210).

Moreover, it suffices to quote Hilbert again to find traces in mathematics of other
properties of Alexander like local symmetries, deep interlocking and echoes :

For with all the variety of mathematical knowledge, we are still clearly conscious of the
similarity of the logical devices, the relationship of the ideas in mathematics as a whole and
the numerous analogies in its different departments. (Hilbert 1902).

The libraries of formalized mathematics are annoyingly lacking echoes. Often proof
assistants miss some nice built-in features. For instance, these libraries have no
counterpart as convenient as the index of a book, the easy search function of a PDF
file or the table of contents of a book,16 let alone clickable keywords for pop-up
windows to remind the reader about definitions.17

So far, formalized mathematics has focused only on making impossible to write
faulty proofs, in doing so it has done nothing for making proofs easier to read.
Quite the contrary, formalized mathematics is much harder to read than everyday
mathematics and this can explain why it has encountered considerable resistance
from mathematicians. One should not forget that mathematicians spend a lot of
time reading mathematics, not only doing or writing it. Formalized mathematics
has forgotten the communication function of written mathematics, and this is a
problem not only with respect to mathematicians but also for students, especially if

15Some proof assistants like Isabelle have structured proofs (in the case of Isabelle thanks to an
additional layer called the Isar language), but there is still room for improvement.
16The good practices of writing a short table of contents at the top of a file starting a new
formalization and a bibliography at the end are surprisingly not even included in the style guide
(https://github.com/UniMath/UniMath/blob/master/UniMath/README.md) of UniMath as of 6
September 2018.
17Again, the Isabelle theorem prover and its bundled editor jEdit, even if not perfect, have built a
competitive advantage with search support and clickable keywords.
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one believes that teaching mathematics with proof assistants may have pedagogical
value and is a necessary milestone towards the widespread use of formalized mathe-
matics.18 Formalized mathematics is not responsive to the reader, this strong center
of the subjective experience of mathematics, that changes across the mathematical
community. In this sense, it lacks the property that Alexander coined gradients,
the adaptive result in design when conditions vary. A simple solution should be
to have expensible/collapsible parts in proofs, so that every reader, while reading
a proof, can set for himself the level of details according to his background and
ability. Hopefully, this feature would allow to hide very low-level details that make
reading formal proofs cumbersome. Few libraries of formalized mathematics are
really designed with the reader in mind.

Finally, could it be that the last fifteenth property of Alexander, not-separateness,
the experience of “a living whole as being at one with the world” (Alexander 2002,
p.230), is the “unreasonable effectiveness of mathematics in the natural sciences”
emphasized by Eugene Wigner (Wigner 1960)?19

In the same way an architect try to realize the unfolding in space of a form
through levels of scale (Alexander 2002, p.145), i.e. the property that consists in the
presence of centers at a wide range of scales, mathematicians unfold their axioms
through mathematical entities and theorems. The levels of scale are apparent for
instance in the definition/lemma/theorem/corollary structure of a mathematical book
or article. Both architects and mathematicians are happy when this unfolding looks
like the unfolding of an organism from the seed within. The axioms of mathematics
are the seeds, the labour of mathematicians are the ground that nurtures the seeds,
and the mathematical entities and theorems are the resulting landscape with its
wide open horizon. Some parts of this landscape are jardins à la française, some
others are English gardens, both with their respective supporters. Most parts of this
landscape secretly aspire to the inner peace of Japanese gardens, natural but neither
artificial nor wild. This living unfolding, from the axioms to the theorems, is the
stuff mathematical objects are made from. In the case of the Univalent Foundations
of mathematics the unfolding of shapes, namely types of various h-levels, a concrete
example of levels of scale relevant in our context, what appears less directly and
less smoothly in sets-based mathematics as homotopy types, is remarkable. The
enlarged notion of life, of living structures, coined wholeness by Alexander, can
help to understand in particular where the platonistic attitude of mathematicians
comes from.

As pointed out earlier, Alexander underlines the interplay of centers with the use
of boundaries (Alexander 2002, p.150) which separate a center from others and at
the same time unite them. For a second example, think in mathematics about the
locus where two topics or two theories meet, share some methods and that could
possibly merge in the future as a result. But Alexander seems to miss the point that

18See also the Footnote 6 on that point.
19I have discovered a truly remarkable answer to this question which this footer is too small to
contain.
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sometimes the life of some parts may be at the expense of others. This full dynamics
was noted by Hilbert :

[. . . ] let me point out how thoroughly it is ingrained in mathematical science that every
real advance goes hand in hand with the invention of sharper tools and simpler methods
which at the same time assist in understanding earlier theories and cast aside older more
complicated developments. It is therefore possible for the individual investigator, when he
makes these sharper tools and simpler methods his own, to find his way more easily in the
various branches of mathematics than is possible in any other science. (Hilbert 1902).

The result of these sharper tools and simpler methods, won after the struggle, that
ease the orientation of mathematicians in the whole of their science is the simplicity
and inner calm put forward by Alexander, and described by him as the

quality [. . . ] which is essential to the completion of the whole. [. . . ] The quality comes
about when everything unnecessary is removed. (Alexander 2002, p.226).

The regular clean-up and reorganizations in mathematics mentioned by Hilbert
above might be the analog of evolution in the biological world and a condition for a
renewal of creativity, biological systems being a paradigm of wholeness. Of course,
biological evolution as understood by modern biology is a blind process, while
reorganizations are made on purpose by mathematicians and some mathematicians
have the platonistic feeling to be guided by an independent architectural principle of
some kind, to discover rather than to invent mathematical objects. One could think
this prompted Darwin to say

I have deeply regretted that I did not proceed far enough at least to understand something
of the great leading principles of mathematics, for men thus endowed seem to have an extra
sense. (Darwin 1958).

But one could also see in this quote a reference to the complementary ability of the
mathematician, like the artist, to tap into the subconscious mind as pointed out by
Jacques Hadamard (1996).

8.4 Conclusion

In this article, following Alexander’s approach, we have tried to underline a few
strong centers in the foundations of mathematics, namely the Univalent Founda-
tions, the UniMath library, the Bourbaki’s cathedral of mathematics, twisting some
architectural threads in a mathematical landscape. However, we have only sketched
the boundaries between these centers to allow for at least some wholeness in the
odyssey promised in the abstract.

Some mathematicians are afraid that formalization could disrupt their flow of
work, their inner music, and this may be indeed a real danger if one is not able to
cleverly design organic libraries to allow smooth reorganizations on a regular basis.
But if we are sensitive to the wholeness of our library this danger could be avoided.
By facing new large-scale challenges in design formalized mathematics could offer
new opportunities. The Alhambra (close to Alexander’s heart) located in Granada
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(Spain), started in 889, still stands shadowing our mortality, in the same way can the
libraries of formalized mathematics stand the test of time?
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Chapter 9
Models of HoTT and the Constructive
View of Theories

Andrei Rodin

Abstract Homotopy Type theory and its Model theory provide a novel formal
semantic framework for representing scientific theories. This framework supports a
constructive view of theories according to which a theory is essentially characterised
by its methods. The constructive view of theories was earlier defended by Ernest
Nagel and a number of other philosophers of the past but available logical means did
not allow these people to build formal representational frameworks that implement
this view.

9.1 Introduction

During the second half of the twentieth century Evert Beth, Patrick Suppes, Bas
van Fraassen followed by a large group of other contributors developed an approach
to formal representation and formal logical analysis of scientific theories, which
became known under the name of semantic view of theories.1 This approach was
proposed as a replacement for a different approach to the same subject developed
several decades earlier by the so-called logical positivists including Rudolf Carnap,
Carl Gustav “Peter” Hempel and Ernest Nagel. The proponents of the new semantic
view dubbed the older approach syntactic. They used resources of the recently
emerged Model theory and argued that a formal representation of scientific theories
should first of all account for the intended semantics of these theories and leave
aloof many syntactic details studied by their predecessors. Model theory helped
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00799.

1For an overview of the early history of the semantic view see Suppe (1989), Part 1, Prologue.
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these people to develop and defend a “new picture of theories” (van Fraassen 1980,
p. 64) where the semantic aspect played the leading role.

As a number of authors remarked more recently, from the viewpoint of today’s
theories of formal semantics it appears that the proponents of the “semantic”
approach at that time did not properly understand the involved relationships
between syntactic and semantic aspects of formal theories, and for this reason often
conceived of these relationships as a form of concurrence. As it became clear more
recently the model-theoretic concepts used by the proponents of the semantic view
could not be rigorously defined in an open air without taking related syntactic issues
into consideration, see Halvorson (2016), Krause and Arenhart (2016), and Muller
(2011).

Nevertheless the “fight against the syntax” led by the proponents of the semantic
view did not reduce to a mere rhetoric. Suppes had a strong insight according to
which a formal representation of given scientific theory should not involve arbitrary
syntactic choices. Suppes’ epistemological emphasis on the invariant character of
(non-formalized) theories in Physics and Geometry makes it evident where this
insight comes from; in particular, Suppes is motivated here by the geometrical
Erlangen Program (Suppes 2002, p. 99). It is clear that the idea of invariant
formal representational framework for scientific theories cannot be realised via
disregarding syntactic issues; on the contrary, this project calls for new syntactic
inventions.2

Let us conclude this Introduction with a short statement that expresses our take
on the debate between the syntactic and the semantic views of theories. Following
Halvorson we take this issue to be mostly historical. In order to evaluate the
contribution of the semantic view properly this approach should be compared with
earlier attempts to use formal logical methods in science and in the philosophy
of science but not with an artificially construed “syntactic view” which has been
hardly ever defended by anyone. These earlier attempts did not involve and could
not involve anything like formal semantics, which emerged later. When Nagel
and his contemporaries considered possible applications of mathematical logic
in the representation of scientific theories, the formal part of their work was
necessarily limited to syntactic issues. The intended semantics of formal theories
these authors described informally by associating with appropriate symbols and
symbolic expressions certain empirical and mathematical contents in the same
traditional manner in which logicians did this since Aristotle. Suppes and other
pioneers of the new “semantic” approach used a mathematical theory of semantics,
viz. Tarski’s set-theoretic semantics, as an additional intermediate layer of formal
representation between the symbolic syntax of formal theory F and the contents

2Halvorson and Glymour rightly observe that the realisation of such a project requires, in particular,
to develop an appropriate notion of equivalence of theories, which is still missing (Halvorson 2012;
Glymour 2013). Interestingly, the pioneering works of Bill Lawvere in categorical logic published
in the 1960s were equally driven by the desire to avoid the syntactic arbitrariness in logic; in
addition to examples of invariant theories borrowed from Geometry and Physics Lawvere was
motivated by Hegel’s notion of objective logic in this research (Rodin 2014, 5.8).
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of scientific theory T which F formally represents. In order to recognise the
importance of this formal semantic layer one doesn’t need to downplay the role of
syntax. In that conservative sense the semantic view is clearly more advanced than
its “syntactic” predecessor. However we argue in what follows that the “semantic
turn” also left aside some important insights of Nagel’s “syntactic” approach, which
we are trying to save from the oblivion in this paper by using a new formal
technique.

9.2 Constructive View of Theories

The once-received (Halvorson 2016) aka syntactic view of theories and the more
recent semantic view developed by Suppes and his followers were equally motivated
by their contemporary developments in logic and foundations of mathematics:
while logical positivists of the older generation were motivated by the rise of
new symbolic logic on the edge between the 19-th and the twentieth centuries,
the younger generation of researchers in the 1950s was motivated by the rise of
Model theory and formal semantics. In this paper we stick to the same pattern and
base our proposal on the recently emerged Homotopy Type theory (HoTT) and the
closely related research on the Univalent Foundations of mathematics. A view of
theories that we arrive at is a version of the non-statement view according to which
a theory, generally, does not reduce either to a bare class of sentences or to a class of
statements ordered by the relation of logical consequence. But this proposed view,
which hereafter we call constructive, differs from the usual semantic view in how
it answers the question “What are fundamental constituents of a theory (except its
sentences)?” A proponent of the standard semantic view’s answers “models”. A
proponent of the constructive view answers “methods”.

As a general philosophical view on scientific theories the constructive view is
not new: the fundamental role of methods in science has been stressed in the past
by many philosophers from René Descartes to Ernest Nagel (see Sect. 9.3.1 below).
The fact that various sorts of methods—including mathematical, experimental and
observational methods—are abound in today’s science hardly needs a special justi-
fication. The specification of relevant methods called by scientists a “methodology”
(which should not be confused with the methodology of science in the sense used
by philosophers) makes an important part of any piece of established scientific
knowledge but not only a part of an open-ended scientific research. However we
still lack convenient formal logical frameworks for representing methods as proper
elements of scientific theories. In Sect. 9.4.1 we explain why standard logical and
semantic means are not appropriate for the task. In Sect. 9.5 we show how HoTT
helps to solve this problem. In the next Sect. 9.3 we take a closer look at Nagel’s
and Suppes work, which gives us some additional motivations for our proposed
notion of constructive theory.
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9.3 Ernest Nagel, Morris Cohen and Patrick Suppes
on Logic and the Scientific Method

9.3.1 Ernest Nagel and Morris Cohen

According to Nagel and Cohen the most distinctive and valuable feature of science
is its method:

[T]he method of science is more stable and more important to men of science than any
particular result achieved by its means (Nagel and Cohen 1934, p. 395);

which they, in fact, identify with logic:

[T]he constant and universal feature of science is its general method, which consists in the
persisting search for truth, constantly asking: Is it so? To what extent is it so? Why is it so?
[. . . ] And this can be seen on reflection to be the demand for the best available evidence,
the determination of which we call logic. Scientific method is thus the persistent application
of logic as the common feature of all reasoned knowledge (Nagel and Cohen 1934, p. 192).

What kind of logic Nagel and Cohen have here in their minds? Informally Nagel
and Cohen describe their core conception of logic as the “study of what constitutes
a proof, that is, complete or conclusive evidence” (Nagel and Cohen 1934, p. 5).
However there is a wide gap, as we shall see, between this general conception of
logic and the construal of logic in form of symbolic calculus, which the authors
introduce in the same book.

By an axiomatic theory Nagel and Cohen understand a Hilbert-style formal
theory3; they are aware of and stress the fact that such a theory has no bearing
on the material truth of its axioms and theorems. The authors describe an axiomatic
theory as a hypothetico-deductive structure, which represents objective relations of
logical consequence between its sentences and only eventually may “conform” to
the “world of existence”. Whether or not a given axiomatic theory conforms to the
real world is an empirical question that cannot be answered within this given theory:

The deduction makes no appeal whatsoever to experiment or observation, to any sensory
elements. . . . Whether anything in the world of existence conforms to this system requires
empirical knowledge. . . . That the world does exemplify such a structure can be verified
only within the limits of the errors of our experimental procedure. (Nagel and Cohen 1934,
p. 137)

Thus Nagel and Cohen make it clear that logical means, which make part of an
axiomatic theory, don’t help one to determine a conclusive evidence for and thus
establish the truth of any scientific statement. But this, recall, is exactly what logic
is supposed to do in science according to the authors’ general conception. Facing
this problem Nagel and Cohen go as far as to suggest that Hilbert’s conception

3This part of Nagel and Cohen’s exposition is very outdated and, if judged by today’s standard,
also mostly informal. Since this historical detail has no bearing on the following arguments the
reader is invited to think here about a Hilbert-style axiomatic theory in its modern form.
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of proof as a formal deduction from axioms is unwarranted and that a more
reasonable terminological choice would be to talk (in context of axiomatic theories)
about deductions without calling such deductions proofs. “But so habitual—say
Nagel and Cohen—is the usage which speaks of ‘proving’ theorems in pure
mathematics that it would be vain to try to abolish it” (Nagel and Cohen 1934, p.
7). Needless to say that this linguistic compromise is very far from being innocent.
Moreover the last quoted remark that the authors use as an excuse for Hilbert’s
identification of proofs with deductions is hardly sound. Mathematicians indeed
colloquially speak of “proving” theorems. However they typically do not present
their proofs in form of formal logical deductions. The identification of proofs with
deductions is a strong assumption that cannot be downplayed by referring to the
colloquial mathematical parlance. Apparently Nagel and Cohen want here to use
Hilbert’s axiomatic approach without being agree with Hilbert on the nature and
scope of logic and, more specifically, on what constitutes a proof. Thus Nagel
and Cohen clearly see the gap between their general conception of logic and the
available formal logical techniques. They describe a possible epistemic role of these
techniques in science as follows:

The evidence for propositions which are elements in a [hypothetico-deductive] system
accumulates more rapidly than that for isolated propositions. The evidence for a propo-
sition may come from its own verifying instances, or from the verifying instances of
other propositions which are connected with the first [i.e., the given proposition] in
a system. It is this schematic character of scientific theories which gives such high
probabilities to the various individual propositions of a science. (Nagel and Cohen 1934,
p. 395)

Thus the logical deduction supported by formal techniques available to Nagel and
Cohen can play at best an auxiliary role in science helping one to accumulate evi-
dences more rapidly. By no means it can perform the fundamental methodological
role, which Nagel and Cohen reserve for logic in their informal treatment of this
question.

9.3.2 Patrick Suppes

Unlike Nagel and Cohen Suppes doesn’t expose an informal conception of logic
independent of symbolic and mathematical techniques. He regards the first-order
logic and Tarskian Model theory as representational tools for scientific theories,
which help to clarify the logical structure of these theories and their mutual
relationships. Suppes builds a scene where various scientific methods can be used
but he doesn’t attempt to represent such methods at the formal level. See, for
example, his chapter on Representations of Probablity (Suppes 2002, Ch. 5), which
provides a foundation for statistical methods in science.

In the Introduction to the same book, which summarizes Suppes’ work on
formal analysis of science during four decades, Suppes briefly considers, without
providing references, a number of alternative approaches to formalization of
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scientific theories, which he qualifies as “instrumentalist” (Suppes 2002, pp. 8–
10) even if, as far as we can see, these approaches don’t really commit one to the
instrumentalist view on science in a strong epistemological sense.

According to one such proposal, “[t]he most important function of a theory
[. . . ] is not to organize or assert statements that are true or false but to furnish
material principles of inference that may be used in inferring one set of facts from
another.” According to another proposal, “[t]heories are [. . . ] methods of organizing
evidence to decide which one of several actions to take.” Suppes does not object
these proposals on philosophical and epistemological grounds but rejects them for
technical reasons stressing the fact that none of these proposal is supported with
a developed formal technique. In what follows we argue that today we are in a
better position because some techniques appropriate for the task since recently are
available.

Thus we can conclude that neither the old-fashioned axiomatic representations of
theories, which associates empirical contents to the (appropriate part of) symbolic
syntax directly, nor the more advanced semantic approach, which uses the Tarski-
style set-theoretic semantics and Model theory, have resources for representing
scientific methods in a formal setting. This concerns methods of justification of the
ready-made scientific knowledge as well as heuristic methods. Arguably a formal
representation of ready-made scientific theories does not need to take into account
heuristic methods and may safely leave them to the context of discovery. But the
same argument does not apply to methods of justification, which make part of any
scientific theory that deserves the name.

9.4 How to Represent Methods with Symbolic Calculi

Knowing a method amounts to knowing how to perform certain operations, which
bring certain wanted outcome. One can distinguish between different senses in
which a particular method can be known by an epistemic agent. It is possible
that an agent is aware about certain instruction and can repeat it by heart but is
unable to implement it in the appropriate circumstances. It is also possible that an
agent is capable to perform an operation and get the wanted outcome without being
aware of a formal linguistic description of this operation. For a contingent historical
reason the current epistemological discussion on knowledge-how is mainly focused
on examples of this latter sort such as one’s knowledge how to ride a bicycle
(Fantl 2017). Here, on the contrary, we focus on explicit knowledge-how, that is,
the sort of knowledge-how, which is representable in the form of explicit rules
and algorithms. In this paper we leave aside the analysis of epistemic attitudes
and relations to syntactically represented methods and focus on the form of their
representation.
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9.4.1 Why Hilbert-Style Axiomatic Architecture and Tarski’s
Model-Theoretic Semantic of Logical Inference
Are Not Appropriate for the Task

Syntactic derivations in suitable symbolic calculi are natural candidates for the
role of symbolic representatives of various mathematical and material procedures
regulated by the corresponding methods. However the familiar logical calculi (such
as Classical first-order logic) and Tarskian set-theoretic semantics of these calculi
don’t support such an interpretation of syntactic derivations as we shall now see. Let
us first fix some basic concepts for the further discussion.

A syntactic rule is a partial function of form Fn→ F where F is a distinguished
set of expressions of the given formal language L called well-formed formulae. In
what follows we use word “formula” as a shorthand for “well-formed formula”. The
usual logical notation for rules is this:

A1, . . . , An

B
(9.1)

where the inputed formulae A1, . . . , An are called premises and the outputed
formula B is called conclusion.4

A syntactic derivation d (aka formal proof ) is a finite sequence of formulae
F1, . . . , Fk where each formula Fi is either an axiom or a hypothesis or is obtained
from some of preceding formulae F1, . . . , Fi−1 according to some of the available
syntactic rules.

Axioms are fixed distinguished formulae, which serve as generators for syntactic
derivations. It is common to identify axioms with rules with the empty set of
premises (which requires a more general concept of rule than we use here). However
since the conceptual difference between rules and axioms plays an important rule in
our argument, we shall not use such a formal identification.

Hypotheses are also distinguished formulae, which in derivations function like
axioms. The difference between axioms and hypotheses concerns their mutual roles
in the formal framework (that typically has a form of formal theory in which
derivations are exhibited): while the set of axioms is fixed the sets of hypotheses
vary from one derivation to another.

The last formula Fk in d is conventionally called a theorem; it is said that Fk
is derived from the axioms and hypotheses, which belong to (or are used in) d,
according to syntactic rules applied in d. Notice that the sequence of formulae
F1, . . . , Fk does not provide the full information about the syntactic derivation as a
fully determined syntactic procedure. In order to make the full information explicit

4This definition of syntactic rule leaves aside non-functional rules with multiple conclusions, which
are also considered in some logical theories. However this limitation is not essential for the purpose
of this paper.
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each formula Fi in F1, . . . , Fk needs to be supplied with a commentary, which
specifies whether it is an axiom or a hypothesis or, by default, which rule has been
used for obtaining it and with which premises.

In standard logical calculi including Classical propositional and first-order
calculi well-formed formulae are supposed to express certain statements; this is
the intended preformal semantics of these formulae. Accordingly, the syntactic
rules used in these calculi such as modus ponens are interpreted as logical rules,
which allow one, given some true statements (axioms), to deduce some other true
statements (theorems). The same rules allow one to make conclusions on the basis
of certain hypotheses. This general remark alone points to the fact that the syntactic
rules and syntactic procedures of standard logical calculi are not apt for representing
directly extra-logical scientific methods such as methods of conducting specific
physical experiments or even mathematical extra-logical methods such as methods
of calculating integrals.

The usual idea behind the project of axiomatizing science and mathematics is
to reduce (in the sense, which is explained shortly) such extra-logical methods to
logical methods via an appropriate choice of axioms. Consider a typical physical
theory T that includes descriptions of observations and experiments, which verify
empirically its theoretical statements. Think of Newton’s Principia for a concrete
historical example. An ideal formal version of this theory TF axiomatized in
Hilbert’s vein allows one to deduce results of all the observations and experiments
from its axioms (properly interpreted). Instead of using extra-logical observational
and experimental methods specified in T one applies now logical methods specified
in TF for making the corresponding deductions. This does not mean, of course—and
has been never meant by Hilbert or any other serious enthusiast of axiomatizing
Physics—that logical and empirical methods perform in this situation the same
epistemic role and that empirical methods are redundant in science. Logical
methods in such a formal framework serve for clarifying logical relations (the
precise character of which will be discussed shortly) between different theoretical
statements but they cannot by themselves help one to verify these sentences. The
task of verification aka proof5 of theoretical statements is still reserved to empirical
methods associated with T , which do not belong to TF but may play a role in a
meta-theory of TF , which shows that TF is empirically adequate or inadequate.

5The word “proof” used in such a context is ambiguous because it can also refer to formal
deductions of theorems from axioms in TF . It might seem to be a reasonable terminological
decision, which would be more in line with the current logical parlance, to reserve term “proof”
for formal deductions and talk of verifications or justifications in more general contexts including
empirical ones. However following Nagel Sect. 9.3.1 and Prawitz (1986) we believe that such
a terminological habit hides the problem rather than helps to solve it. Under certain semantic
conditions a syntactic derivation aka formal proof F1, . . . , Fk of formula Fk indeed may represent
a proof of statement expressed by this formula, i.e., may represent a conclusive evidence in favour
of this statement. In order to study and specify such semantic conditions one needs to evaluate
whether or not a given interpretation of one’s syntax makes syntactic derivations into proofs. The
bold identification of proofs with syntactic derivations makes such a critical analysis impossible.
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Thus TF can be called a physical theory only in a peculiar sense of the word,
which leaves central issues concerning the verification of a given theory outside
this very theory. This certainly does not correspond to how the word “theory” is
colloquially used by working scientists. It might be argued that even if TF fails
to represent adequately all epistemologically relevant aspects of physical theory
T it still does satisfactorily represent its logical aspects. However this claim is
also objectionable because it takes for granted a view of logic, which is not
uncontroversial to say the least. One who shares Nagel and Cohen’s understanding
of the scope of logic (Nagel and Cohen 1934) can argue that since TF leaves
aside issues concerning the verification/proof/evidencing of T -statements it fails to
capture the very logical core of T .

Does the same argument apply to theories of pure mathematics? The claim that
computing an integral reduces to (or even “ultimately is”) a logical deduction from
axioms (say, the axioms of ZFC) and some additional hypotheses appears more
plausible than a parallel claim about physical measurements; in spite of the fact that
this way of computing integrals is not used in the current mathematical practice
its theoretical possibility can be reasonably explained and justified by referring to
standard set-theoretic foundations of the Integral Calculus. On such grounds one
may argue that in the case of pure mathematics the above argument does not apply.

However in fact the standard Hilbert-style axiomatic framework combined
with (some version of) axioms of Set theory doesn’t support the evidencing of
mathematical statements just as it doesn’t provide the evidencing of empirical
statements. Firstly, it leaves to a general philosophical discussion the question of
truth of set-theoretic axioms (under their appropriate interpretation). Secondly, such
foundations of mathematics in their usual form don’t provide for a satisfactory
epistemological account of valid logical inference but reduce that crucial concept
to a meta-theoretical concept of logical consequence (this point will be explained
shortly). Thirdly, there is the problem of gap between the technical notion of
(formal) proof as logical deduction from axioms of Set theory and the colloquial
concept of mathematical proof used in today’s mathematics.

Some people see this latter problem as merely pragmatic or “practical” and
having no logical and epistemological significance. We agree that logic and episte-
mology are normative disciplines and for that reason references to past and present
mathematical practices cannot constitute by themselves conclusive arguments in
these fields. However such references may point to real logical and epistemological
problems, which is, in our view, indeed happens in the given case. As far as
deductions from ZFC are treated as ideal mathematical (or meta-mathematical)
objects their epistemological role as evidences for certain mathematical statements
remains unclear. In this form such deductions cannot be used as an effective
tool for proof-checking. A theoretical possibility of set-theoretic formalization
(justified with some meta-mathematical arguments) in practical contexts is used
rather counter-positively. If some mathematical argument can be shown to be not
formalizable in ZFC this is a reason to regard it as problematic (which, however,
doesn’t generally imply its dismissal since the given argument can be shown to be
formalizable in some appropriate axiomatic extension of ZFC). If, on the contrary,
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a mathematical argument is shown to be formalizable in ZFC this doesn’t imply
that the corresponding informal proof is correct because its formal counterpart may
possibly not qualify as a valid deduction. Unless such a formal proof is effectively
exhibited it is impossible to check this. The fact that the standard foundations of
mathematics do not provide for an effective proof-checking was the main motivation
of Voevodsky behind his project of developing alternative foundations that he called
Univalent Foundations (see Sect. 9.6 below).

Let us now see what Tarski style Model theory brings into this picture. Firstly,
it provides for a precise semantics of logical deduction as follows. Formula B
is called a semantic consequence of formulas A1, . . . , Ak just in case every
interpretation of non-logical terms in A1, . . . , Ak that makes all Ai into true
statements (i.e., every model of A1, . . . , Ak) also makes formula B into a true
statement (equiv. is also a model of B), in symbols A1, . . . , Ak |� B. Then
it is proved that if there exists a syntactic deduction from A1, . . . , Ak to B, in
symbols A1, . . . , Ak � B, then A1, . . . , Ak |� B (soundness). This clarifies our
point concerning the lack of proper semantics for logical inference in this setting:
it interprets the existence of syntactic deduction in terms of a meta-theoretical
statement that expresses a logical relation between theoretical statements but it
provides no precise semantics for individual deductions. We shall see in Sect. 9.4.3
how this problem is treated with various versions of the proof-theoretic logical
semantics.

Secondly, Tarski’s Model theory allows one to associate with a given first-
order Hilbert-style axiomatic theory a canonical class of its set-theoretic models
(Hodges 2013). For an easy example think of usual axioms for (definition of)
algebraic group and their model in form of set G with a binary operation ⊗
on it, which satisfies the appropriate axioms. The canonical character of this
construction allows one to define a group from the outset as a set with an additional
structure, namely, with a binary operation on this set that has certain required
formal properties (associativity, existence of unit and of inverse elements). This is
the “semantic” semi-formal presentation used systematically by Bourbaki (1974,
p.30), which has been adopted by Suppes and his followers for the representation of
scientific theories via the identification of appropriate sets with physical systems
such as sets of physical particles or sets of points of the physical space-time.
Importantly, the same structure type (such as the group structure type) can be
determined by, i.e., be a canonical model of different sets of axioms. This is in
accord with Suppes’ “semantic” view according to which a scientific theory must
be identified with a particular class of models rather than a particular syntactic
structure.

The semantic set-theoretic presentation of mathematical theories developed by
Bourbaki and a similar representation of scientific theories developed by Suppes
and other enthusiasts of the semantic view provides a theory with a sense of
objecthood: it represents the content of a given theory in terms of its objects such
as algebraic groups or systems of physical particles. In this way the semantic
representation supports a quasi-constructive reasoning about sets and set-theoretic
structures. For example, one may think of forming the powerset P(A) of given
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set A as a construction after the pattern of traditional geometrical constructions
like the construction of a circle by its given radius. This helps one to develop
within the set-theoretic mathematics a form of helpful intuition but the problem
is that such set-theoretic “constructions” lack formal rules, which could be used
for representing extra-logical mathematical and possibly scientific methods. When
one needs to justify the “construction” of powerset in this framework one refers
to the powerset axiom of ZFC, which is an existential statement that guaran-
tees the existence of powerset for any given set. One may argue that in such
contexts the difference between constructive rules and existential axioms is only
a matter of taste or fashion. In the next Section we argue that this is not the
case.

9.4.2 Two Axiomatic “Styles”

Hilbert and Tarski after him conceive of a theory T as an ordered set of formal
sentences satisfied by a class of intended models of this theory and, ideally, not
satisfied by any non-intended interpretation. (The latter is a desideratum rather than
a definite requirement.) An interpretation of a given sentence s in this context is
an assignment of certain semantic values to all non-logical symbols that belong to
s. Thus this approach assumes that one distinguishes in advance logical and non-
logical symbols of the given alphabet. This requirement reflects the epistemological
assumption according to which logic is epistemologically prior to all theories, which
are “based” on this logic. In other words the axiomatic method in its Hilbert-Tarski
version requires that one first fixes logical calculus L and then applies it in an
axiomatic presentation of some particular non-logical theory T .6 Suppes assumes
this basic scheme and says that a theory admits a “standard formalization” when L
is the Classical first-order logic with identity (Suppes 2002, p. 24).

All existing approaches to formal representation of scientific theories use this
familiar axiomatic architecture. However it is not unique. In 1935 Hilbert’s associate
Gerhard Gentzen argued that

The formalization of logical deduction, especially as it has been developed by Frege,
Russell, and Hilbert, is rather far removed from the forms of deduction used in practice
in mathematical proofs. (Gentzen 1969, p. 68)

and proposed an alternative approach to syntactic presentation of deductive systems,
which involved relatively complex systems of rules and didn’t use logical tautolo-
gies. In Gentzen (1969) Gentzen builds in this way two formal calculi known today
as Natural Deduction and Sequent Calculus.

6We refer here to a version of axiomatic method described by Tarski in (1941). Tarski’s view of
this method builds on Hilbert’s but does it in a particular and original way. The exact relationships
between Tarski’s semantic conception of the axiomatic method and Hilbert’s original ideas about
this method is a matter of historical study, which is out of the scope of this paper.
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Gentzen’s remark quoted above constitutes a pragmatic argument but hardly
points to an original epistemological view on logic and axiomatic method. However
his further remark that

The introductions [i.e. introduction rules] represent, as it were, the ‘definitions’ of the
symbol concerned. (Gentzen 1969, p. 80)

is seen today by some authors as an origin of an alternative non-Tarskian conception
of logical consequence and alternative logical semantics more generally, which has
been developed in a mature form only in late 1990s or early 2000s and is known
today under the name of proof-theoretic semantics (PTS) (Schroeder-Heister 2016;
Piecha and Schroeder-Heister 2016).

Unlike Hilbert Gentzen never tried apply his approach beyond the pure mathe-
matics and today the formal representation of scientific theories mostly follows in
Hilbert’s and Tarski’s steps. However as we argue below the Gentzen style rule-
based architecture of formal systems can be also applied in empirical contexts for
representing various scientific methods, which include but are not limited to logical
and mathematical methods.

9.4.3 Constructive Logic, General Proof Theory, Meaning
Explanation and Proof-Theoretic Semantics

The conception of logic that hinges on the concept of proof rather than on that of
truth has a long history that can be traced back to Aristotle; here we review only
relatively recent developments. In a series of publications that begins in early 1970s
Dag Prawitz formulates and defends the idea of general proof theory (GPT) as an
alternative or a complement to the proof theory understood after Hilbert and Bernays
as a meta-mathematical study of formal derivations (Hilbert and Bernays 1939).
Prawitz defends here the traditional conception of proof as evidence and argues that
Tarski’s semantic conception of logical consequence (Tarski 1956) does not provide,
by itself, a theoretical account of proofs in mathematics and elsewhere:

In model theory, one concentrates on questions like what sentences are logically valid
and what sentences follow logically from other sentences. But one disregards questions
concerning how we know that a sentence is logically valid or follows logically from another
sentence. General proof theory would thus be an attempt to supplement model theory by
studying also the evidence or the process – i.e., in other words, the proofs – by which we
come to know logical validities and logical consequences. (Prawitz 1974, p. 66)

Prawitz calls this conception of logic intuitionistic and, as the name suggests,
sees Brouwer and Heyting as its founding fathers. Following Kolmogorov and
some other important contributors to the same circle of ideas we prefer to call this
approach to logic constructive. As we have seen in Sect. 9.3.1 Nagel and Cohen’s
informal conception of logic also falls under this category. Since in this paper we
discuss applications of logic in empirical sciences we would like also to point to
the interpretation of proofs in constructive logic as truth-makers (Sundholm 1994),
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which may be material objects and events either artificially produced or occurred
naturally.

In 1972 Per Martin-Löf accomplished a draft (published only in 1998 as Martin-
Löf 1998) of a constructive (or intuitionistic as the author calls it) theory of types,
which implements the general constructive approach outlined above. In a more
mature form this system known as MLTT is presented in Martin-Löf (1984). MLTT
is a Gentzen-style typed calculus that comprises no axiom. The meaning of its
syntactic rules and other syntactic elements is provided via a special semantic
procedure that Martin-Löf calls the meaning explanation. In Martin-Löf (1985) the
author compares meaning explanation with a program compiler, which translates
a computer program written in a higher-level programming language into a lower-
level command language. According to Martin-Löf a similar translation of MLTT
syntactic rules into elementary logical steps gives these rules their meaning and
simultaneously validates them (Martin-Löf 1996). Martin-Löf’s meaning explana-
tion is an informal version of the proof-theoretic semantics mentioned in Sect. 9.4.2
above (Schroeder-Heister 2016).

In the late 2000s MLTT started a new life as the syntactic core of the emerging
Homotopy Type theory (HoTT) (Univalent Foundations Program 2013). In order to
describe a feature of HoTT, which is relevant to the present discussion, we need first
to expose few basic concepts of MLTT.

9.5 From MLTT to HoTT

MLTT comprises four types of judgements (which should not be confused with
propositions, see Sect. 9.7.3 below).

(i) A : T YPE;
(ii) A ≡T YPE B;

(iii) a : A;
(iv) a ≡A a′

In words (i) says that A is a type, (ii) that types A and B are the same, (iii) that a
is a term of type A and (iv) that a and a′ are the same term of type A. Let me leave
(i) and (ii) aside and provide more details on (iii) and (iv).

Martin-Löf offers four different informal readings of (iii) (Martin-Löf 1984,
p. 5):

(1) a is an element of set A
(2) a is a proof (construction) of proposition A (“propositions-as-types”)
(3) a is a method of fulfilling (realizing) the intention (expectation) A
(4) a is a method of solving the problem (doing the task) A (BHK semantics)

The author argues that these interpretations of judgement form (iii) not only
share a logical form but also are closely conceptually related. The correspondence
between (2) and (4) is based on the conceptual duality between problems and
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theorems, which dates back to Euclid (Rodin 2018); among more recent sources (4)
refers to Kolmogorov’s Calculus of Problems (Kolmogorov 1991) and the so-called
BHK-semantics (after Brouwer, Heyting and Kolmogorov) of the Intuitionistic
propositional calculus. (3) is an explanation of judgement in terms of Husserl’s
Phenomenology. The correspondence between (1) and (2) at the formal level is the
Curry-Howard correspondence. In Martin-Löf’s view this latter correspondence is
not only formal but also contentful: the author argues that in the last analysis the
concepts of set and proposition are the same:

If we take seriously the idea that a proposition is defined by lying down how its canonical
proofs are formed [. . . ] and accept that a set is defined by prescribing how its canonical
elements are formed, then it is clear that it would only lead to an unnecessary duplication
to keep the notions of proposition and set [. . . ] apart. Instead we simply identify them, that
is, treat them as one and the same notion. (Martin-Löf 1984, p. 13)

Let us now turn to judgement type (iv). It says that terms a, a′, both of the
same type A, are equal. This equality is called judgemental or definitional and
does not qualify as a proposition; the corresponding propositional equality writes
as a =A a′ and counts as a type on its own (a =A a′ : T YPE) called an identity
type. In accordance to reading (2) of judgement form (iii) a term of identity type
is understood as a proof (also called a witness or evidence) of the corresponding
proposition. MLTT validates the rule according to which a judgemental equality
entails the corresponding propositional equality:

a ≡A a′

ref la : a =A a′

where ref lx is the canonical proof of proposition a =A a′.
The extensional version of MLTT also validates the converse rule called equality

reflection rule:

p : a =A a′

a ≡A a′

but HoTT draws on an intensional version of MLTT that does not use such a prin-
ciple and, in addition, allows for multiple proofs of the same propositional equality
(the proof-relevant conception of equality) (Univalent Foundations Program 2013,
p. 52).

Let p, q be two judgmentally different proofs of proposition saying that two
terms of a given type are equal:

p, q : P =T Q
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it may be the case that p, q, in their turn, are propositionally equal, and that there
are two judgmentally different proofs p′, q ′ of this fact:

p′, q ′ : p =P=T Q q

This and similar multi-layer syntactic constructions in MLTT can be continued
unlimitedly. Before the rise of HoTT it was not clear that this syntactic feature of
the intensional MLTT can be significant from a semantic point of view. However
it became the key point of the homotopical interpretation of this syntax. Under this
interpretation

• types and their terms are interpreted, correspondingly, as spaces and their points;
• identity proofs of form p, q : P =T Q are interpreted as paths between points
P,Q of space T ;

• identity proofs of the second level of form p′, q ′ : p =P=T Q q are interpreted as
homotopies between paths p, q;

• all higher identity proofs are interpreted as higher homotopies;

(which is coherent since a path p : P =T Q counts as a point of the corresponding
path space P =T Q, homotopies of all levels are treated similarly).

In order to get an intuitive picture the non-mathematical reader is advised to
think of homotopy h between paths p, q : P =T Q as a curve surface bounded
by the two paths, which share their endpoints P,Q. Given two such surfaces h, i
two-homotopy f between h and i is a solid bounded by these surfaces. Picturing
higher homotopies of level > 2 is more difficult because it requires a geometrical
intuition that extends beyond the three spatial dimensions.

Thus the homotopical interpretation makes meaningful the complex structure of
identity types in the intensional MLTT. It makes this structure surveyable, as we
shall now see. Consider the following definition:

Definition 1 Space S is called contractible or space of h-level (−2) when there is
point p : S connected by a path with each point x : A in such a way that all these
paths are homotopic (i.e., there exists a homotopy between any two such paths).

In what follows we refer to contractible spaces “as if they were effectively
contracted” and identify such spaces with points. A more precise mathematical
formulation involves the notion of homotopy equivalence, which provides a suit-
able identity criterion for spaces in Homotopy theory. In view of the homotopy
interpretation of MLTT outlined above such spaces (defined up to the homotopy
equivalence) are also called “homotopy types”.

Definition 2 We say that S is a space of h-level n+ 1 if for all its points x, y path
spaces x =S y are of h-level n.

The two above definitions gives rise to the following stratification of types/spaces
in HoTT by their h-levels:

h-level −2: single point pt ;
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h-level −1: the empty space ∅ and the point pt : truth-values aka (mere) proposi-
tions

h-level 0: sets (discrete point spaces)
h-level 1: flat path groupoids: no non-contractibe surfaces
h-level 2: 2-groupoids: paths and surfaces but no non-contractible volumes
•
•
h-level n: n-groupoids
• . . .

h-level ω: ω-groupoids

A general space is of h-level ω: this is just another way of saying that the ladder
of paths, homotopies and higher homotopies of all levels is, generally, infinite. The
above stratification classifies special cases when this ladder is finite in the sense that
after certain level n spaces of all higher-order homotopies (or paths if n < 1) are
trivial, i.e., such homotopies (paths) are no longer distinguished one from another
at the same level. For example a set aka discrete space (h-level 0) is a space that
either does or does not have a path between any pair of its points; different paths
between two given points are not distinguished. If two points are connected by a
path they are contracted into one point as explained above. At the next h-level 1
live flat path groupoids that comprise sets of points connected by paths, which are,
generally, multiple and well-distinguished up to homotopy: homotopical paths are
identified and non-homotopical paths count as different. Thus in a flat groupoid the
space of paths between any two given points is a set. This inductive construction
proceeds to all higher levels.

Notice that h-levels are not equivalence classes of spaces. The homotopical
hierarchy is cumulative in the sense that all types of h-level n also qualify as types
of level m for all m > n. For example pt qualifies as truth-value, as singleton set,
as one-object groupoid, etc. Hereafter we call a n-type a type, which is of h-level n
but not of level n− 1.

A space of h-level l (now including the infinite case l = ω) can be transformed
into a space of h-level k < l via its k-truncation, which can be informally described
as a forced identification of all homotopies (paths) of levels higher than k. In
particular the (−1)-truncation of any given space S brings point pt when S is not
empty and brings the empty space ∅ otherwise.

A more mathematically precise explanation of HoTT basics can be found in
Univalent Foundations Program (2013) and other special literature.

The h-stratification of types in MLTT suggests an important modification of
the original preformal semantics of this theory introduced in the beginning of
this section. This modification is not a mere conservative extension. Recall that
in Martin-Löf (1984, p. 5) Matin-Löf proposes multiple informal meaning expla-
nations for judgements and suggests that they conceptually converge. In particular,
Martin-Löf proposes here to think of types as sets or as propositions and suggests
that in the last analysis the two notions are the same. HoTT in its turn provides
a geometrically motivated conceptions of set as 0-type and proposition (called in
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(Univalent Foundations Program 2013, p. 103) mere proposition) as (−1)-type.
The latter is motivated as follows. Recall that there are just two (−1)-types (up
to the homotopical equivalence): the empty type ∅ and the one-point type pt .
HoTT retains the idea that propositions are types and the idea that terms of such
types are truth-makers (proofs, evidences, witnesses). The adjective “mere” used
in (Univalent Foundations Program 2013, p. 103) expresses the fact that (−1)-
type interpreted as proposition does not distinguish between its different proofs but
only reflects the fact that such a proof exists (in case of pt) or the fact that the
given proposition has no proof (in case of ∅). In other words, the adjective “mere”
expresses the fact that mere propositions are proof-irrelevant. For the same reason
(−1)-types can be also described as truth-value types, where truth is understood
constructively as the existence of proof/evidence/truth-maker.

Whether or not the proof-irrelevant conception of proposition is fully satisfactory
as a working conception of proposition tout court has been recently a matter of
controversy. One may argue that in certain context people tend to think of and
speak about propositions in a proof-relevant sense.7 In our opinion this fact does
not constitute a strong objection to the identification of propositions with (−1)-types
because all proof-relevant aspects of propositions are taken into account at higher
levels of the homotopical hierarchy as follows. General n-type Sn where n > −1
comprises:

• the “propositional layer” S−1, which is a proposition extracted from Sn via its
propositional truncation, and

• the higher-order structure H present on all h-levels > −1, which is a (possibly
multi-layer) structure of proofs of proposition S−1.

This observation suggests the following possible application of HoTT in the
formal representation of theory T :

• extra-logical rules of T (including rules for conducting observations and experi-
ments) are MLTT rules applied at h-levels > −1

• logical rules are MLTT rules applied to (−1)types.

This gives us a preliminary answer to the question posed in Sect. 9.4 How
to represent scientific methods (including extra-logical methods) with symbolic
calculi? (A more elaborated version of this answer will be given in Sect. 9.7.3
below). Although HoTT does not comprise different sets of logical and extra-logical
rules it allows one to distinguish between logical and extra-logical applications of
its rules as follows. Logical application of rules can be isolated from the extra-
logical via (−1)-truncation. The application of HoTT rules to Sn comprises a
logical application of these rules at h-level (−1) and an extra-logical application
of the same rules at all higher h-levels. Such a joint application of MLTT rules
makes immediately evident the logical function of extra-logical (i.e., higher order)

7As some time ago argued Michael Shulman in several blogs and in a private correspondence.
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structures and constructions in Sn, which is truth-making (or verification if one
prefers this term borrowed from the philosophy of science) of proposition S−1.

The criterion of logicality that we use here is based on the h-hierarchy and the
identification of (−1)-types with propositions. It is an interesting project to evaluate
it against other criteria of logicality discussed in the philosophical literature. This,
however, is out of the scope of this paper. For our present purpose it is sufficient
to explain how set-based and higher order construction in HoTT work as truth-
makers of propositions. The crucial aspect of the shift from Martin-Löf’s original
preformal semantics for MLTT to the new preformal semantics based on the h-
hierarchy (which hereafter we shall call h-semantics for short) can be described in
the jargon of Computer Science as the shift from the propositions-as-types paradigm
to the propositions-as-some-types paradigm. Further implications of this shift are
discussed in Sect. 9.7.3 below.

9.6 Univalent Foundations

Univalent Foundations (UF) use a version of HoTT-based framework as a new
purported foundation of pure mathematics. The univalence property of type-
theoretic universes plays a central role in this project. We shall not define and discuss
this property in this paper but only point to its relevance to the choice between the
two axiomatic styles mentioned above. The 2013 standard version of UF uses the
Univalence Axiom (Axiom 2.10.3 in Univalent Foundations Program 2013), which
is in fact the only axiom added on the top of rules of MLTT. This added axiom makes
the axiomatic architecture of UF mixed in the sense that it comprises both rules and
axioms. However a more recent work by Th. Coquand and his collaborators on
Cubical Type theory (Cohen et al. 2016) provides a “constructive explanation for
UA”, i.e., a formal deduction of the univalence property in a Gentzen style rule-
based formal system other than MLTT. At the present stage of development8 such a
constructive explanation of univalence is not yet achieved in all its desired generality
but we take a liberty to bypass this technical issue in the present discussion and con-
sider the Gentzen style constructive axiomatic architecture as a proper feature of UF.

Our proposed constructive view of theories motivated and informally described
in Sect. 9.2 above applies the same axiomatic architecture for representing theories
beyond the pure mathematics. A straightforward approach to representing scientific
theories with HoTT consists in an identification of certain HoTT structures with
structures coming from theories of Physics and other scientific disciplines. A
dummy example of this sort is presented and discussed in Rodin (2017) where
a fragment of HoTT is used for proving the identity of Morning Star and the
Evening Star; the observed continuous trajectory of this celestial body is used here
as an evidence (proof) of the identity statement. Urs Schreiber formalized in UF

8As presented by Thierry Coquand in his talk given at the EUTypes meeting, Nijmegen,
Netherlands, 22–24 January 2018.
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a significant body of up-to-date mathematical physics and made a new original
contributions in this area using UF-based mathematics (Schreiber 2013). Even
if none of this qualifies as a full-blood (representation of) physical theory such
attempts show that the Gentzen-style axiomatic architecture and, more specifically,
UF as a paradigm mathematical theory that uses this architecture can be used
in science and support a constructive computer-based representation of scientific
theories.

9.7 Modelling Rules

The main lesson of the debate between the “syntactic view” and the “semantic
view”, as one can see this matter after the critical analysis briefly reviewed in
the above Introduction, is that the formal semantic aspect of one’s representational
framework is at least as much important as the syntactic one. The formal semantic
of HoTT—which should not be confused with the informal notion of meaning
explanation introduced in Sect. 9.4.3 above or with the suggestive description
of types as spaces used in Univalent Foundations Program (2013) and other
introductions to HoTT—by the present date is largely a work in progress. The
following discussion concerns only the Model theory of HoTT rather than its formal
semantics in a more general sense and it does not intend to cover all relevant
developments.

Since one leaves the familiar territory of first-order theories and their set-
theoretic semantics the very notions of theory and model become problematic and
require certain conceptual revisions, which are not necessarily innocent from a
philosophical viewpoint as we shall now see. By a theory we shall understand here a
set of formal rules as described in Sect. 9.1 from Sect. 9.4.1 together with the set of
all derivations supported by these rules. What is a model of a given theory presented
as just described?

Alfred Tarski designed his Model theory back in early 1950-ies having in mind
Hilbert-style axiomatic theories. Let us repeat its basic definitions. A model of
(uninterpreted) axiom A is an interpretation m of non-logical terms in A that makes
it into a true statement Am; if such m exists A is called satisfiable and said to be
satisfied by m. Model M of uninterpreted axiomatic theory T is an interpretation
that makes all its axioms and theorems true. When rules of inference used in T
preserve truth (soundness) it is sufficient to check that M satisfies all axioms of T
for claiming that it also satisfies all its theorems.

Since we deal with modelling a theory presented in Gentzen style rather than in
Hilbert style we need a notion of modelling a rule rather than modelling an axiom.
Although such a notion is not immediately found in standard textbooks on Model
theory (such as Hodges 1997) it can be straightforwardly construed on this standard
basis as follows. We shall say that interpretation m is a model of rule R (of general
form Sect. 9.1), in symbols
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Am1 , . . . , A
m
n

Bm
(9.2)

when the following holds: wheneverAm1 , . . . , A
m
n are true statements Bm is also true

statement. Arguably this notion of modelling a rule is implicit in Tarski’s Model
theory, so it can be used for modelling HoTT without revisions (albeit with some
add-ons, see below). There are however several problems with this straightforward
approach, which we list below and suggest some tentative solutions.

9.7.1 Logical Inference Versus Semantic Consequence
Relation

In the standard setting considered by Tarski (Hilbert-style axiomatic theories and
their set-theoretic semantics) the notion of modelling a rule is redundant because
the syntactic rules used in this setting such as modus ponens preserve truth under
all interpretations of their premises and conclusions. Moreover, one can argue in
Prawitz’s line (see Sect. 9.4.3) that the Tarski-style logical semantics provides a
formal semantics for the relation of logical consequence between the premises and
the conclusion of rule Sect. 9.2 but no semantics for this rule itself. In the passage
quoted in Sect. 9.4.3 Prawitz makes an emphasis on the epistemological aspect of
the above argument. However a form of this argument remains valid even if one
doesn’t accept the idea that the semantics for rules should be necessarily epistemic.
To make this argument work it is sufficient to assume that a proper semantics
for rules should necessarily involve the concept of “how”, which also makes part
of many non-epistemic semantic contexts such as computational models of some
natural processes. Thus one can argue that the above notion of modelling a rule is
unsatisfactory without referring to the epistemic role of rules.

As it has been mentioned in Sect. 9.4.3 Martin-Löf’s notion of meaning expla-
nation provides an informal semantics for syntactic rules, which is independent of
Model theory. In our view, keeping the formal semantics for rules apart from Model
theory can hardly be a tenable strategy today. From a mathematical point of view
meaning explanations give rise to realizability models of Type theory (Reus 1999;
Hofstra and Warren 2013) and the conceptual distinction between the two is not so
easy to formulate and in any event it is not stably kept in the current literature.9 This
is why it makes more sense, in our view, to revise some conceptual foundations of
Model theory in the light of new developments rather than leave the conceptual core
of this theory untouched and develop a formal semantics for HoTT independently.

9For example Tsementzis (2017) prefers to call preformal meaning explanation what otherwise
can be called a semi-formal model of HoTT, moreover that the author interprets rules of MLTT in
Tarskian style according to our scheme (9.2) (above in the main text).
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9.7.2 Logical and Non-logical Symbols

As we have already mentioned above in Sect. 9.4.2 in the standard setting by
interpretation of formula one understands an interpretation of non-logical symbols
in this formula; the distinction between logical and non-logical symbols is supposed
to be set beforehand. Interpreting HoTT one deals with a very different situation,
where such a distinction between logical and extra-logical elements does not apply
at the syntactic level. At the semantical level the question of logicality (Which
fragment of HoTT belongs to logic proper?) remains sound but does not have an
immediate answer. Certain concepts of HoTT such as the basic concepts of type
and term may qualify as logical in a broad sense but also receive an informal
interpretation in terms Homotopy theory, which is normally not thought of as a
theory of pure logic.

This has the following effect on the interpretation of syntactic rules. In the
standard setting these rules are supposed to serve as logical rules and work equally
for all legitimate interpretations of formulas. So in this setting the syntactic rules
admit a default interpretation in terms of logical consequence relation. The situation
is very different in HoTT and akin theories where no fixed distinction between
logical and non-logical symbols is specified at the syntactic level. So finding an
appropriate semantics for MLTT/HoTT syntactic rules constitutes a special problem
of Model theory of HoTT but not only a problem of general Model theory. Below
we describe such a semantics informally.

9.7.3 Extra-Logical Rules

In scheme Sect. 9.2 assumptions Am1 , . . . , A
m
n and conclusion Bm are statements.

Recall that in MLTT these formulas are interpreted as judgements (Sect. 9.5).
This interpretation combines with scheme Sect. 9.2 only at the price of ignoring
certain conceptual subtleties. Frege famously describes an act judgement as “the
acknowledgement of the truth of a thought” (Frege 1984, p. 355–356) or an
“advance from a thought to a truth-value” (Frege 1892, p. 159) understanding by a
thought (roughly) what we call today a proposition. Frege warns us, continuing the
last quoted passage, that the above “cannot be a definition. Judgement is something
quite peculiar and incomparable” (ib.). Having this Frege’s warning in mind one can
nevertheless think of judgements as meta-theoretical propositions and, in particular,
qualify formulas Am1 , . . . , A

m
n , B

m in Sect. 9.2 both as judgements (internally) and
meta-propositions belonging to Model theory (i.e., externally). This provides a
bridge between Tarski’s and Martin-Löf’s semantic frameworks and allows one to
interpret rules of MLTT via scheme Sect. 9.2. It should be stressed that this bridge
has a formal rather than conceptual character.
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A more difficult problem arises when one intends to use in the Model theory
the internal preformal semantics of HoTT based on the homotopical hierarchy of
types (h-semantics). Recall that h-semantics qualifies as propositions only types
of certain h-level, namely, only (−1)-types—while Martin-Löf’s early intended
semantics for MLTT admits thinking of each type as a proposition (see Sect. 9.5
above). Accordingly, h-semantics hardly supports the interpretation of all formulas
as judgements in Frege’s sense of the word. Consider a special instance of (Sect. 9.1)
where all formulas are judgements of basic form (iii) (see Sect. 9.5 above):

a1 : A1, . . . , an : An
b : B (9.3)

If A1, . . . , An, B are (−1)-types then the name of judgement used for these
expressions of form a : A can be understood in Frege’s sense: here A stands for
a proposition and a stands for its proof (witness, truth-maker). But when A is n-
type An with n > −1 the h-semantics suggests to read the same expression a : A as
a mere declaration of token a of certain higher, i.e., extra-logical typeA. This extra-
logical object a does perform a logical function: it guaranties that (−1)-type A−1

obtained from An via the propositional truncation is non-empty and thus gives rise
to valid judgement a∗ : A−1. So there is an indirect sense in which token a of type
A also functions as a truth-maker even if A is not a proposition. This fact, however,
hardly justifies using the name of judgement (in anything like its usual sense) for all
expressions of form a : A along with their h-semantics. In case of the other three
basic forms of “judgements” the situation is similar. A possible name for such basic
syntactic constructions, which we borrow from Computer Science and programming
practice, is “declaration”. We suggest to reserve the name of judgement only for
those declarations, which involve only (−1)-types.

When A1, . . . , An, B are higher types the above scheme Sect. 9.3 represents
an extra-logical rule that justifies the construction of token b from given tokens
a1, . . . , an. Once again the characterisation of this rule as extra-logical should be
understood with a pinch of salt. The (−1)-truncated version of this rule is logical.
However this truncated version represents only a simplified and impoverished
version of the original rule. Thus we’ve got here a more precise answer to the
question of how to represent extra-logical scientific methods with formal calculi
(Sect. 9.4). Generally, assumptions in MLTT/HoTT-rules have a more complex form
than in (9.3). We leave it for a further research to study these complex forms from
the same viewpoint.

Declarations of form a : A (and of other forms) can be always rendered as meta-
propositions (including the case when type A is not propositional) (Tsementzis
2017); in English such a meta-proposition can be expressed by stating that a is
a token of type A. Then scheme (9.2) can be used as usual. The obtained meta-
theoretical propositional translation can be useful, in particular, for foundational
purposes if one wants (as did Voevodsky) to certify HoTT and study its model-
theoretic properties on an established foundational basis such as ZF. However this
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way of developing Model theory of HoTT is evidently not appropriate for our
present purpose.

An available alternative consists of interpreting formal rules of form (9.2) in
terms of extra-logical mathematical constructions (generally, not purely symbolic)
which input and output certain non-propositional contents. In the special case (9.3)
such assumptions are tokens of mathematical objects of certain types and the
conclusion is a new token of certain new type. For a suggestive traditional example
think of Euclid’s geometrical rules that he calls postulates: the first of these rules
justifies a construction of straight segment by its given endpoints. The first-order
statement “For any pair of distinct points there exists a straight segment having
these points as its endpoints” used by Hilbert in his axiomatic reconstruction of
Euclidean geometry is a meta-theoretical reconstruction of Euclid’s extra-logical
rule rather than just a logically innocent linguistic paraphrase (Rodin 2018).

When an appropriate construction c that instantiates given formal rule R is
exhibited, rule R is justified in the sense that it provably has a model, which is c
itself. Since such a notion of modelling a rule does not involve a satisfaction relation
defined in terms of truth-conditions, it marks a more significant departure from
the conceptual foundations of Model theory laid down by Tarski back in 1950-ies.
Whether or not this conceptual difference implies a significant technical difference
remains unclear to the author of this paper. The Model theory of HoTT developed by
Voevodsky, which we overview in the next Section, is intended to be formalizable
both in ZFC (via a meta-propositional translation described above) and in UF. The
latter option amounts to using HoTT/UF as its proper meta-theory; in this case
preformal h-semantics turns into a form model-theoretic semantics. In this way h-
semantics becomes formal.

9.8 Initiality: Theories as Generic Models

HoTT as presented in the HoTT Book (Univalent Foundations Program 2013)
uses the syntax of MLTT extended with the Univalence Axiom; the semantic
“homotopic” aspect of this theory, a central fragment of which has been briefly
described above (Sect. 9.5), remains here wholly informal: the language of the
Book deliberately and systematically confuses logical and geometrical terminology
referring to types as “spaces”, to terms as “points” and so on. This is what we call
the preformal h-semantics throughout this paper.

A mathematical justification of such terminological liberty, which proves very
useful in providing one’s reasoning in and of MLTT with a helpful geometrical
intuition, lies in the fact that “all of the constructions and axioms considered in
this book have a model in the category of Kan complexes, due to Voevodsky”
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(Univalent Foundations Program 2013, p. 11; Kapulkin and Lumsdain 2012–
2016).10

A closer look at Kapulkin and Lumsdain (2012–2016) shows that the concept of
model used by the authors is quite far from being standard. In particular, the authors
of this paper use techniques of Functorial Model theory (FMT), which stems from
the groundbreaking Ph.D. thesis of W.F. Lawvere accomplished in 1963 (Lawvere
1963).11

The idea of Functorial Model theory can be described in form of the following
construction:

• a given theory T is presented as a category of syntactic nature (a canonical
syntactic model of T);

• models of T are construed as functors m : T → S from T into an appropriate
background category (such as the category of sets), which preserve the relevant
structure;

• models of T form a functor category CT = ST;
• in the above context theory T is construed as a generic model, i.e., as an object

(or a subcategory as in Lawvere 1963) of CT.

Voevodsky and his co-authors proceed according to a similar (albeit not quite the
same) pattern:

• Construct a general model of given type theory T (MLTT or its variant) as a
category C with additional structures which model T-rules. For that purpose the
authors use the notion of contextual category due to Cartmell (1978); in later
works Voevodsky uses a modified version of this concept named by the author a
C-system.

• Construct a particular contextual category (variant: aC-system) C(T) of syntactic
character, which is called term model. Objects of C(T) are MLTT-contexts, i.e.,
expressions of form

[x1 : A1, . . . , xn : An]

taken up to the definitional equality and the renaming of free variables and its
morphisms are substitutions (of the contexts into T-rule schemata) also identified
up to the definitional equality and the renaming of variables. More precisely,
morphisms of C(T ) are of form

f : [x1 : A1, . . . , xn : An] → [y1 : B1, . . . , ym : Bm]

10Kapulkin and Lumsdain (2012–2016) is a systematic presentation of Voevodsky’s results pre-
pared by Kapulkin and Lumsdain on the basis of Voevodsky’s talks and unpublished manuscripts.
The Book (Univalent Foundations Program 2013) refers to the first 2012 version of this paper. In
what follows we refer to its latest upgraded version that dates to 2016.
11For a modern presentation of FMT see Johnstone (2002, vol. 2, D1-4) and Nourani (2016).
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where f is represented by a sequent of terms f1, . . . , fm such that

x1 : A1, . . . , xn : An � f1 : B1
...

x1 : A1, . . . , xn : An � fm : Bm(f1, . . . , fm)

Thus morphisms of C(T ) represent derivations in T.
• Define an appropriate notion of morphism between contextual categories (C-

systems) and form category CTXT of such categories.
• Show that C(T) is initial in CTXT , that is, that for any object C of CTXT there

is precisely one morphism (functor) of form C(T)→ C.

The latter proposition is stated in Kapulkin and Lumsdain (2012–2016) as
Theorem 1.2.9 without proof; the authors refer to Streicher (1991) where a special
case of this theorem is proved and mention that “the fact that it holds for other
selections from among the standard rules is well-known in folklore”.

The authors state that the initiality property of C(T) justifies the qualification of
C (a general contextual category/C-system) as a model of T (Definition 1.2.10 in
Kapulkin and Lumsdain 2012–2016). Since the initiality condition does not belong
to the conceptual background of the standard Model theory this statement calls for
explanation. We offer here such an explanation in terms of our proposed constructive
view of theories (Sect. 9.2 above). Think of generic term model C(T) as a special
presentation of theory T in form of instruction, i.e., a system of rules presented
symbolically. This instruction is a schematic syntactic construction; it is schematic
in the sense that it is applicable to more than one context. Available contexts are
objects of CTXT . The initiality property of C(T) in CTXT guarantees that in each
particular context C instructionC(T) is interpreted and applied unambiguously. A
useful instruction can be schematic but it cannot be ambiguous.

The initiality property of contextual categories and other relevant mathematical
structures was in the focus of Vladimir Voevodsky’s research during the last several
years of his life and work. He considered it as a genuine open mathematical problem
and dubbed it the Initiality Conjecture. This conjecture is not a mathematical
statement which waits to be proved or disproved but a problem of building a general
formal semantic framework for type theories, which includes a syntactic object with
the initiality property explained above. This conjecture still stands open to the date
of writing the present paper.

9.9 Conclusion

We have seen that the epistemological argument between partisans of the so-called
Syntactic View and the Semantic View of scientific theories, which took place in
the twentieth century, was at a great extent determined by basic features of formal
logical tools available at that time (Sects. 9.1 and 9.3.2). We have also seen that
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Ernest Nagel and Morris Cohen, using the traditional philosophical prose, expressed
epistemological views on science and on the role of logic in science, which could
not be supported by formal logical means available to them in a ready-made form
at this point of history (Sect. 9.3.1). This was a price payed by these people for their
decision to develop epistemology and philosophy of science on a formal logical
basis. This price may be or be not worth paying but one should keep in mind that
formal logical tools in their turn are developed with certain intended purposes and
with some ideas about the nature of logic and its epistemic role. Even if formal
logic is more tightly connected to mathematics than to empirical sciences, important
logical ideas may come from sciences. If a system of logic represented with a
symbolic calculus does not support one’s epistemological view on science this may
be a reason to revise both one’s epistemological ideas and one’s logical ideas and
logical techniques rather than only the former.

In this paper we defend a constructive view of scientific theories according to
which methods (including empirical, mathematical and eventually logical methods)
are essential constituents of scientific theories, which should not be left out as a
part of “context of discovery” or in any other way (Sect. 9.2). This epistemological
view is certainly not original and dates back at least to René Descartes and Francis
Bacon. The brief word description of this view given in this paper is evidently
very imprecise and allows for various specifications, many of which may be not
compatible. However our aim in this paper is to support this general view with a new
formal technique rather than elaborate on it using only philosophical prose. We call
this general epistemological view “constructive” referring to an essential feature of
formal framework, viz. Homotopy Type theory, that we use for supporting this view;
the relevant sense of being constructive we have explained in some length elsewhere
(Rodin 2018). In order to avoid a possible confusion let us mention here that our
proposed constructive view of theories does not imply a form of epistemological
constructivism that treats objects of science as mental or social constructions; in
fact our constructivism is compatible with a version of scientific realism.

HoTT has emerged as an earlier unintended homotopical interpretation of
Constructive Type theory due to Martin-Löf (MLTT); MLTT in its turn has been
developed as a mathematical implementation of constructive notion of logic,
which focuses on proofs and inferences rather than on the relation of logical
consequence between statements, and which is concerned primarily with epistemic
rather than ontological issues (Sect. 9.4.3). A significant part of this intended
preformal logical semantics (albeit not all of this semantics) of MLTT is transferred
to HoTT (Sect. 9.5); the semantic features of HoTT inherited from MLTT support
a constructive logical reasoning in HoTT. However HoTT also brings about a new
extra-logical semantics, which is an essential ingredient of our proposed concept
of constructive theory. Just as in the case of standard set-theoretic semantics of
first-order theories the extra-logical semantics of HoTT is tightly related to the
logical semantics: h-hierarchy of types and the notion of propositional trunca-
tion (Sect. 9.5) provides a clear sense in which extra-logical terms have a logical
impact (Sect. 9.7.3). However the relationships between logical and extra-logical
elements are organised here differently; a major difference is that the h-semantics
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allows for making sense of the notion of extra-logical rule (or more precisely, an
extra-logical application of formal rule), which is not available in the standard
setting. This is a reason why we believe that a HoTT-based framework can be a
better representational tool for science than the standard first-order framework.

Model theory of HoTT does not exist yet in a stable form. In this paper we
discussed conceptual issues that arise when one attempts to use with HoTT and
akin theories the standard notion of satisfaction due to Tarski (Sect. 9.7). Then
we reviewed a work in progress started by Voevodsky and continued by his
collaborators where the category-theoretic concept of initiality (Sect. 9.8) plays an
important role. The purpose of this analysis is to provide a conceptual foundation
for prospective applications of HoTT and akin theories in the representation of
scientific theories along with the Model theory of such theories. Taking into account
the Model theory of HoTT is an important upgrade of preformal h-semantics to its
more advanced formal version.

Admittedly, a possibility of using HoTT or a similar theory as a standard
representational tool in science at this point is a philosophical speculation rather than
a concrete technical proposal. Nevertheless there are reasons to believe that this new
approach can be more successful than its set-theoretic ancestor. Unlike the standard
set-theoretic foundations of mathematics Univalent Foundations are effective and
“practical” in the sense that they allow for an effective practical formalization of
non-trivial mathematical proofs and checking these proofs with the computer. An
effective UF formalization of the mathematical apparatus of today’s Physics and
other mathematically-laden sciences paths a way to a similar effective formalization
and useful digital representation of scientific theories. The step from foundations
of mathematics to representation of scientific theories is by no means trivial. This
paper attempts to provide conceptual preliminaries for it.
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Chapter 10
Set Theory and Structures

Neil Barton and Sy-David Friedman

Abstract Set-theoretic and category-theoretic foundations represent different per-
spectives on mathematical subject matter. In particular, category-theoretic language
focusses on properties that can be determined up to isomorphism within a category,
whereas set theory admits of properties determined by the internal structure of
the membership relation. Various objections have been raised against this aspect
of set theory in the category-theoretic literature. In this article, we advocate a
methodological pluralism concerning the two foundational languages, and provide
a theory that fruitfully interrelates a ‘structural’ perspective to a set-theoretic one.
We present a set-theoretic system that is able to talk about structures more naturally,
and argue that it provides an important perspective on plausibly structural properties
such as cardinality. We conclude the language of set theory can provide useful
information about the notion of mathematical structure.
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10.1 Introduction

Two approaches (and, as the current volume shows, maybe more) in current debates
on foundations provide radically different perspectives on mathematical subject
matter. The set-theoretic1 perspective holds that all mathematical objects may be
modelled in the sets, a formalism given in terms of a primitive membership-relation,
and that this (in some sense) provides a useful foundation. The category-theoretic
perspective, on the other hand, holds that all mathematical objects may be modelled
by the kinds of mapping properties they have with respect to others. As we shall see
below, the two provide somewhat different perspectives on mathematics. In light of
this datum, a question which has sprung up in the literature is which foundation we
should use for interpreting mathematics (assuming that a foundation is desirable at
all).

One particular application to which category theory has been seen as especially
suited to is elucidating the notion of mathematical structure.2 A definition of
mathematical structure is somewhat difficult to provide, but for the purposes of this
paper we will take it that the existence of an isomorphism is sufficient for sameness
of mathematical structure, and that this provides a useful way of getting at the notion
(even if only partially).

This paper is directed at the following question:

Main Question. To what extent is (material) set theory a useful tool for
discovering interesting facts about structures?

We will argue that set-theoretic language can be useful for conveying important
structural information. In particular, we provide a theory of sets and classes which
better respects isomorphism invariance, but nonetheless makes extensive use of the
ambient material set theory. This is especially important if one holds that cardinality
is a structural property; the theory we provide allows us to see how theories and
cardinality interact (via a version of the Morley Categoricity Theorem).

Our strategy is as follows. First (Sect. 10.1) we briefly outline the set-theoretic
and categorial approaches, and explain the tasks to which each is best suited. Next
(Sect. 10.2) we examine the difficulties that some proponents of each foundation
have seen for the other party, and provide some responses on behalf of each. We
argue that they are not in themselves problematic, but raise a challenge for the
advocate of set-theoretic foundations. We then (Sect. 10.3) present a theory of sets,
urelements, and the classes that can be built over them. We argue that this language
provides a modification of (material) set theory that better respects structural
properties, whilst providing us with the resources to easily talk about notions like

1This term is slightly coarse since it is ambiguous between material and categorial set theories (we
will distinguish these later). For those that know the difference between the two types of set theory,
we mean “material set theory” by “set theory” until we make the distinction, and lump categorial
set theories in with category-theoretic foundations for now.
2See, for example, Awodey (1996).
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cardinality and how it interacts with structural notions. Finally (Sect. 10.4) we make
some concluding remarks and present some open questions.

10.2 Two Perspectives on Foundations: Set-Theoretic
and Categorial

In this section we’ll explain the basic difference we see between category-theoretic
and (material) set-theoretic foundations. We’ll then refine both our set-theoretic and
category-theoretic perspectives to give a better account of the subject matter they
concern.

The distinction between the set-theoretic and category-theoretic perspective may
be cast in different ways, however the most basic contrast is in how they approach
the representation of garden-variety mathematical entities. The question is one of a
perspective on which mathematics is about objects (and the internal membership-
structure those objects exhibit), versus one on which mathematics is about particular
kinds of roles a mathematical object can perform within a wider context. Under
set-theoretic foundations, we focus on translating the language of a particular
mathematical theory T into the language of set theory L∈ (consisting of only
the language of first-order logic and a single non-logical symbol ∈), and then
find a model for T in the sets (given, of course, some antecedently accepted set
theory). From the category-theoretic perspective, we would rather see what the
essential relationships T-objects have to one another, and then try and capture these
relationships through the notions of arrow and composition. To see this difference,
a couple of examples are pertinent:

Example 1 (Singletons) In set theory the singleton of an object x is the
one-element set {x}. Different singletons can look very different from the
set-theoretic perspective; for example {∅} and {�ω} are both singletons, but
have very different properties (for example, their transitive closures look very
different).

Conversely in category theory, we have the notion of a terminal object 1,
where an object 1 is terminal in a category C iff there is one and only one arrow
from any other C-object to 1. Terminal objects can have a variety of different
properties in different situations. For example, if we think of a partial order P =
(P,≤P) as a kind of category (so there is an arrow from p0 to p1 just in case
p0 ≤P p1), then if P has a maximal element it will be terminal. Interestingly,
in the set-theoretic context, we can form a category Set consisting of all sets as
objects and the functions between them as arrows. We then see that between
any set A and any singleton {x} there is exactly one function given by the rule
f (a) = x for every a ∈ A, and so the terminal objects of Set are exactly
the singletons. Nonetheless, from the category-theoretic perspective it doesn’t
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really matter which terminal object we talk about, since all terminal objects
are isomorphic within any particular category. This contrasts sharply with the
set-theoretic case where different singletons can have different interesting set-
theoretic properties (such as identity of transitive closure).

Example 2 (Products) In set theory, we define the product A × B of two sets
A and B by first picking a canonical choice of ordered pair, and then letting
A × B = {〈a, b〉|a ∈ A ∧ b ∈ B} (giving us the ‘rectangle’ of A and B).
Products of more complicated objects are then defined component-wise. For
example, the direct product of two groups G = (DG, ∗G) and H = (DH , ∗H )
is defined as the following group:

G×Group H =df (DG ×DH, ∗G×H )

Where ∗G×H is defined component-wise for g ∈ G and h ∈ H :

〈g1, h1〉 ∗G×H 〈g2, h2〉 =df 〈g1 ∗G g2, h1 ∗H h2〉

Conversely, in category theory, a product of two C-objects A and B is
another C-object A × B together with two C-arrows PrA : A × B → A

and PrB : A × B → B, such that for any pair of arrows f : C → A and
g : C → B, there is exactly one arrow 〈f, g〉 : C → A × B making the
following diagram commute:

From the category-theoretic perspective, any objects that fulfil this role are
a product (and, indeed, products are unique up to C-isomorphism). In the case
of sets and groups, the definition of set-theoretic product will (in Set) fulfil
this role (using the relevant projections as PrA and PrB ), as will the definition
of direct product for groups (when we consider the category Grp consisting
of all groups as objects and group homomorphisms as arrows). However, any
other definition of product resulting from a different definition of ordered pair
would equally well qualify as a category-theoretic product (and indeed, we
could find a function between the sets involved in the two products, ‘factoring’
one product through the other).

The difference in the above cases is the following: In set-theoretic foundations,
representations of mathematical objects are obtained by construction from the
membership relation and a suitable coding. On the category-theoretic perspective,
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we simply state what arrow-theoretic properties an entity must have in order to fulfil
the functions it does in normal mathematical reasoning.

The eagle-eyed and well-informed reader may regard the distinction between set-
theoretic and category-theoretic as a false dichotomy, since one can give categorial
theories of sets by axiomatising the external functional properties attaching to the
objects in a (or maybe ‘the’) universe of sets. This is precisely what is done on many
categorial3 set theories such as on Lawvere’s4 Elementary Theory of the Category of
Sets (ETCS), which we’ll examine in a little more detail later. In this way, it seems
like the term ‘set theory’ can be correctly applied to certain categorial theories. For
this reason we make the following distinction:

Definition 3 (Informal) Material set theories are those that axiomatise a primitive
notion of membership (denoted by ‘∈’), from which mathematical objects may be
coded. Categorial set theory on the other hand provides a theory of sets formulated
in the language of category theory, and on which objects are coded by systems of
arrows resembling the usual properties we expect set-theoretic functions to have.
Membership in categorial set theory is a defined relation, often5 explained in terms
of functions x : 1 → A (read: “x is a member of A”), since one can think of any
such function (from a ‘singleton’) as ‘picking’ a member of A.6

To make our initial question more precise, we are interested in the extent to
which material set theory tells us interesting information about structures. Where
the term “set theory” occurs without a qualifier, we mean material set theory and
take categorial set theory to be a part of categorial foundations.

Both set theory and category theory allow us to identify objects up to structural
equivalence. Exactly how they do so is a tricky issue, and provides us with a third:

Example 4 (Isomorphisms) In set theory, working within first-order logic, we
settle upon some relevant coding of vocabulary (i.e. function, constant, and
relation symbols), of structure (usually as an ordered tuple), and satisfaction
on a structure of formulas in this language (given by an interpretation function
on a structure). We then say that two structures in the same vocabulary A and
B are isomorphic iff there is a (coded) bijection between their domains such
that for every relation symbol R of the vocabulary (respectively for function

3There is some dispute over the use of the term ‘categorial’ versus ‘structural’ when axiomatising
sets in category theory. We use the term ‘categorial’ since we reserve structure-like terms for the
philosophical notion of structure.
4See Lawvere (1965) for the original presentation, and Lawvere and McLarty (2005) for an updated
version. A clean and concise presentation (with some informal commentary) is available in Leinster
(2014).
5As with many notions in category theory, there are different arrow-theoretic ways of getting at the
same idea. See, for example, Goldblatt (1984, Ch. 4) for some discussion.
6We are grateful to Michael Shulman and Dimitris Tsementzis for emphasising the importance of
making this distinction.
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and constant symbols) and for every finite sequence �a from A, RA(�a) iff
RB(f (�a)).

Importantly (an issue often glossed over in mathematics)a discussion of
isomorphism only makes sense once the vocabulary (and some suitable coding
thereof) has been chosen (on top of the coding-dependence of the set-theoretic
analysis of bijection).

In category theory, however, the notion of isomorphism is dealt with by
external arrow-theoretic properties. An arrow f : X → Y is an isomorphism
(in a category C) iff there is a C-arrow g : Y → X in such that g ◦ f = IdX
and f ◦ g = IdY (i.e. composing the functions in either direction yields the
identity morphism). Two objects are said to be isomorphic (in C) iff there is
an isomorphism between them. Importantly, the notion of isomorphism only
makes sense within a category.

The treatment of isomorphism through a particular kind of arrow results
in contexts in which the notion of set-theoretic and category-theoretic iso-
morphism come apart. For example, there are cases where we have category-
theoretic isomorphisms that are not bijective homomorphisms (in the material
set-theoretic sense). One such kind is when the relevant arrows are simply not
functions, such as in the category of proofs which has sentences as objects and
equivalence classes of proofs as arrows (so there is a single arrow f : P → Q

when Q is derivable from P ). Here, since isomorphisms are equivalence
classes of proofs between equivalent sentences, we have isomorphisms that
are not (properly speaking) bijections of any kind. In the context where there
is a functorial relationship between the category and Set, however, there can
be no non-bijective isomorphisms (since functors preserve isomorphisms).

However, in the case where there is no functor between the category and Set,
this is possible. An interesting (yet complex) case is the homotopy category
that has topological spaces as objects and homotopy classes of continuous
functions as arrows. Here, the inclusion of the unit circle into the punctured
plane is an isomorphism (its inverse is the radial projection map), which is not
bijective. In fact, Freyd (1970) showed that this is not a concrete category (i.e.
there is no nice faithful functor from this category to Set), which facilitates the
consideration of non-bijective iso-arrows.b,c

aSee Baldwin (2018, Ch. 1, esp. §1.2) for an argument that this is an often ignored
distinction.
bWe are grateful to Andrew Brooke-Taylor for bringing this example to our attention, and
some further discussion of the issue. We would also like to thank Ingo Blechschmidt and
Jean-Pierre Marquis for some further helpful conversations, in particular emphasising the
pervasiveness of the non-concreteness phenomenon. For additional discussion see Marquis
(2013), and for results showing how non-concreteness permeates see Di Liberti and Loregian
(2018).
cA further simple (but somewhat silly) example is the following category which we define
material-set-theoretically. The category has just one object {a, b}, and a single morphism
defined by f (a) = f (b) = b. Here f = Id{a,b} (in the category), and so is trivially iso, but
is nonetheless non-bijective.
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The above example is important, since it shows that even the notion of structural
similarity (as captured by the notion of isomorphism) is differently interpreted by
the two perspectives. Thus, whether or not a property is ‘isomorphism’ invariant
depends already on whether one holds one of the two perspectives to be privileged.

A second issue is whether or not there are notions of sameness of structure that
are not underwritten by isomorphism. For example two categories C and D are said
to be equivalent iff there are functors F : C → D and G : D → C, such that there
are natural isomorphisms f : IdC → G ◦ F and g : IdD → F ◦ G. In other
words, when composing the functors one does not get the identity back, but rather
something isomorphic. This has significant consequences; for example the category
of finite sets is equivalent to the category of finite ordinals, but the former has
proper-class-many elements whereas the latter has only ω-many. Some authors (e.g.
Marquis 2013) maintain that it is categorial equivalence, rather than isomorphism,
that constitutes the ‘correct’ notion of sameness of structure for categories (a fact
also supported by the development of the subject).

These cluster of issues show that there are plausibly notions of structure that
are not underwritten by isomorphisms as understood through bijection. In order to
focus discussion, we will focus on the notion of ‘sameness of structure’ as given
by isomorphisms that are bijective (what (Marquis 2013) terms the ‘extensional’
perspective). It is an important open question (one we shall identify in Sect. 10.5)
how the current work might be modified to handle different cases.

It should also be noted that talk of ‘objects’ is dispensable from the category-
theoretic perspective. Really, by taking the notion of domain and co-domain as
part-and-parcel of the arrow, we could just speak purely in terms of arrows and
composition. Material set theory and category theory thus represent two different
perspectives on the nature of mathematical subject matter; on the one hand, we
might think of mathematical objects as constructed and determined by their internal
membership-structure, and on the other we might think of them as determined (up
to isomorphism) by their relationships to other entities, and the role they play in the
category as a whole.

This underlying difference in perspective represents two sides of a long-standing7

philosophical divide: Should we think of the subject matter of mathematics as given
by individual objects with particular intrinsic relations determining their properties,
or should we rather think of the subject matter of mathematics as concerned with
purely structural properties (i.e. those invariant up to isomorphism)? The material
set-theoretic and categorial perspectives are interesting representatives of different
sides of this divide (though, as we shall see, issues are more subtle than they first
appear).8

7At least since Benacerraf (1965).
8A salient third option (especially given the topic of the current volume) is Homotopy Type Theory.
Here type theory endowed with a homotopy-theoretic interpretation is employed, providing
a foundation that meshes elegantly with category-theoretic methods. See the excellent (The
Univalent Foundations Program 2013) for discussion.
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10.3 Objections: Refining the Perspectives

As it stands, however, there are puzzles for each conception of foundations. In this
section, we explain some of the complaints that have been made about the different
foundational viewpoints and argue that these are easily resolvable. We’ll argue that
this suggests a possible route of inquiry for the friend of set-theoretic foundations;
to modify their language in order to better respect isomorphism invariance and
structure.

10.3.1 Objections to Categorial Foundations and Schematic
Types

One supposed ‘problem’ for the friend of category-theoretic foundations concerns
its subject matter. What, exactly, is category theory about? For, as it stands, category
theory merely defines particular kinds of algebraic structure. The discipline seems
to be of a piece with algebraic enterprises such as group theory or other areas
of abstract algebra. One begins by laying down conditions on what a system of
arrows must satisfy in order to be a category (existence of identity and composition
morphisms, and associativity of composition). This defines an algebraic structure
much like that of group (in fact, there is a corresponding abstract algebraic
structure for category that is slightly more general than that of group; namely then
notion of being a monoid), which can then be made more specific with additional
constraints. For example, insisting that particular diagrams exist and commute in
a category yields the definition of a topos: a Cartesian closed category with a
subobject classifier. This kind of category is very useful for studying the algebraic
properties instantiated by various logical and mathematical systems, and while
it is exceptionally rich in structure, it still (in the spirit of category theory) just
corresponds to particular algebraic properties that a system of arrows can instantiate.
Hellman sums up this thought:

. . . this theory [i.e. category theory] itself is presented algebraically, via first-order ‘axioms’
only in the sense of defining conditions telling us what a category is, together with further
ones defining topoi of various sorts. As such these ‘axioms’ are like the conditions defining
a group, a ring, a module, a field, etc. By themselves they assert nothing. They merely tell
us what it is for something to be a structure of a certain kind. (Hellman 2006, p. 134)

Hellman’s point (an important one) is that the axioms of category theory (even
when expanded to isolate categories of more complex varieties) make no existential
claims (this is what Hellman means by saying that the axioms “assert nothing”) in
that they specify what it is for a system of objects to satisfy certain axioms, without
asserting that anything satisfying them actually exists.

Some (including Hellman 2006) have taken this as an objection to category-
theoretic foundations. An appropriate foundation for mathematics should state that
some objects exist and that mathematics can be interpreted within this structure,
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thereby laying a framework ontology on which mathematics can be built. Thus
category theory appears to contrast with the usual set-theoretic foundations, where
the axioms of Infinity, Power Set, and Replacement all make existential claims
within ZFC, and many other axioms extending ZFC also make existential claims.9

This objection should not trouble the friend of category-theoretic foundations.
One salient response (made by Mclarty 2004) is that no-one has ever proposed the
axioms of category theory as a foundation, the proposal is rather to assert that some
topos or other exists and mathematics either can or should be interpreted there.
Good examples here are categorial theories of sets (such as ETCS) or attempts to
axiomatise a category of all categories (e.g. CCAF).

Moreover, we might also think that Hellman’s objection simply misses the mark.
His remarks reveal something about the general practice of category theory: It is an
algebraic discipline, no matter whether it can be modified to yield assertory content,
as McLarty suggests. When practising category theory, we care only about whether
we have the relevant relations between objects, and this does contrast with set
theory where (largely speaking) we are interested in the properties of some specific
structure (namely the cumulative hierarchy).10 This feature of the two frameworks is
further witnessed by attitudes to categoricity. In a categoricity proof, we aim to show
that a certain theory has just one model (up to isomorphism). In the context of set
theory (or indeed number theory and analysis) the project of providing a categoricity
proof makes sense; we wish to see that our axiomatisation has been successful and
we have (given the determinacy of the concept) pinned down a single structure up
to isomorphism.11 In the case of number theory and analysis we have proofs of full
categoricity (by the work of Dedekind), and in the case of set theory we have quasi-
categoricity: We can show that ZFC2 augmented with anti-large cardinal axioms can
be fully categorical, and any two ZFC2 structures are either isomorphic or one is
isomorphic to an initial segment of the other.12 In the case of category theory though,
to attempt such a proof for a categorial theory would be an absurd endeavour, the
whole point of category theory is to isolate structural properties that can be shared
by radically non-isomorphic structures.

Thus categories demand no single place to be interpreted, and the complaint that
category theory fails to delimit a determinate range of objects is misplaced. The
friend of set-theoretic foundations, for example, will regard it as of a piece with

9Good examples here are so called large cardinal axioms, as well as forcing axioms, and inner
model hypotheses.
10Here we are playing slightly fast-and-loose with debates in the foundations of set theory; under a
natural interpretation of Joel Hamkins’ multiverse perspective, set theory also should be understood
as purely algebraic. See Hamkins (2012) for the original presentation of this view and Barton
(2016) for an argument to the effect that this results in a purely algebraic interpretation.
11The exact dialectic import of a categoricity proof is something of a vexed question, see
Meadows (2013) for discussion. An argument that the quasi-categoricity of ZFC2 shows that our
axiomatisation has been successful is available in Isaacson (2011).
12The original proof of this is available in Zermelo (1930), and is subsequently tidied up in
Shepherdson (1951, 1952).
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group theory; if category-theory has any subject matter at all, it is the category-
theoretic structure that can be instantiated in various ways in the sets (and so she
should countenance category theory as a useful foundational language, even if it is
not her favourite foundation). There is no pressure to find ‘the’ structure of ‘the’
category-theoretic world; the discipline is designed to be flexible and resist such a
characterisation.

A friend of category-theoretic foundations might thus regard the subject matter
of mathematics as fundamentally algebraic, category theory as providing a good
axiomatisation of this perspective, but nonetheless resisting the characterisation of
a unique concrete subject matter. If category theory has a subject matter at all, then
it is a purely structural one.

An immediate and difficult question is how we should think of this category-
theoretic structural subject matter. Landry and Marquis provide the following
interesting idea:

A category, too, is neither a privileged abstract kind of system nor is it an abstract Fregean
“structure” qua an “object”: it is a Hilbertian style abstract structure qua a schematic type,
to be used as a framework for expressing what we can say about the shared structure of the
various abstract kinds of structured systems in terms of ‘having’ the same type of structure.
(Landry and Marquis 2005, p. 35)

The thought here is to think of categories as providing structure as a ‘schematic
type’, rather than a ‘particular structure’. Of course, it bears explaining what a
‘schematic type’ is. One kind of schematic type is well known to mathematical
logicians—the notion of first-order theory. These, if they can be instantiated in
any infinite context, can be instantiated in many infinite contexts. We leave it
open whether non-first-orderisable content can be expressed categorially. If higher-
order content (with a version of the full semantics) can be encoded in a categorial
language, then it is at least possible that we might determine a structure up to (set-
theoretic) isomorphism categorially. Whether or not this is possible we leave open;
for now, we note that the ability to systematise relationships across non-isomorphic
contexts just is one of the main strengths of category theory, and many proponents
of categorial foundations do see category theory in this light (e.g. Mac Lane 1986).

Thus we take the target of category theory to be showing the basic relationships
objects have to have to one another to fulfil their functional roles. In order to
understand better the notion of schematic type, it is useful to return to the analogy
with group theory. While it makes sense to speak of ‘the group-theoretic structure’,
there is not a single way the group-theoretic structure can be instantiated, rather
it admits of satisfaction in multiple different ways and contexts (and indeed this
is one of the reasons why abstract algebra has been so fruitful in contemporary
mathematics). This is much the same for categories, which provide a useful
framework for systematising these relationships. We thus provide the following:

Definition 5 (Informal and philosophical) A schematic type is a system of
relationships that can be instantiated in many different non-isomorphic contexts.
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Viewing category theory as the appropriate theory for formalising schematic
types, we see that the problem of ‘subject matter’ is not really a problem at all.
Rather, category-theoretic foundations provide a language and context in which to
study algebraic relationships, and for this reason precisely resist the identification
of a concrete subject matter.13 Categories correspond to theories of mappings and
can be multiply instantiated throughout concrete systems of objects, and there is no
pressure to identify a unique subject matter or make it assertory in nature.14

10.3.2 Objections to Set Theory and the Combinatorial
Perspective

In this subsection, we’ll delve into some of the criticisms of material set theory.
We’ll show that when set theory is understood as applying to an appropriate
subject matter (namely providing an analysis of possible combinations of objects)
the objections fail to gain traction. We’ll therefore suggest that a methodological
pluralism is an attractive attitude to foundations. Before moving onto the final
section, we’ll identify that a possible line of inquiry for the friend of set-theoretic
foundations is to provide a modification of her language that better respects
isomorphism invariance.

The objections to set-theoretic foundations come in two broad kinds, as Feferman
(speaking about Mac Lane 1971) explains:

Two views are intermixed in (Mac Lane 1971) as to current set-theoretical foundations,
namely that (i) they are inappropriate for mathematics as practised, and (ii) they are
inadequate for the full needs of category theory. (Feferman 1977, p. 149)

Our strategy will be the following. We expand on Feferman’s two dimensions,
articulating the different objections we find in the literature. For reasons that will

13Moreover, one might think that category theory formalises these schematic types in a way
that highlights privileged conceptual routes (such as when we know that a particular property is
universal). Marquis, for example, writes:

“The point I want to make here is extremely simple: category theory, and not just its
language, provides us with the proper code to represent the map of mathematical concepts.”
(Marquis 2017a, p. 92)

14A second objection, one that we will not consider here, is the point raised by Mathias (2000,
2001) that category theory lacks the logical strength to discuss certain strong statements of analysis
that relate to large cardinal axioms. While the objection merits a response, we set this aside for
several reasons: (1) research is ongoing here, and it is unclear that category theory cannot do
the job, (2) there are, in any case, logically strong category-theoretic statements (see below), and
(3) the possible responses to the objection do not help us elucidate the philosophical role being
played by category theory in terms of schematic types. See also Ernst (2017) for some discussion
of these issues, as well as a general survey of the comparisons between categorial and set-theoretic
foundations.
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become apparent (we find the former dimension to be the more challenging of the
two), we deal with these in reverse order, starting with inadequacy. As we go, we
will provide responses from the set-theoretic standpoint. We do, however, have to
be careful about dialectical strategy. In ‘defending the set-theoretic viewpoint’ we
could be doing one of (at least) two things:

1. We could be arguing that, despite the category-theoreticians best efforts, set
theory is still the best foundation for discussing mathematical structure.

2. Slightly weaker, we could contend that despite arguments to the contrary, set
theory is still interesting as a foundation as it has plenty to tell us about
mathematical structure.

We wish to emphasise that it is this latter claim we wish to support. We wish
to claim that despite many criticisms in the literature, set theory can still provide
interesting information about how certain structural properties are instantiated.

10.3.2.1 Inadequacy

The problem of inadequacy is roughly the following: Set theory does not provide
enough of something (either objects or information). The key issue is raised by Mac
Lane:

Our fundamental observation is just this: There is an appreciable body of results about
categories. . . but the received methods of defining categories in terms of sets do not provide
any one single context (i.e. any one model of a standard set theory) within which one can
comprehensively state these results. (Mac Lane 1971, p. 235)

The fundamental idea is the following: It is undeniable that the methods of
category theory have provided a versatile method for modern mathematics. This
raises the question for the friend of set-theoretic foundations: “Given that category
theory provides structural information, what sets should we interpret category theory
as about?”.

Mac Lane’s point is that there is no single context in which we can interpret
category theory unrestrictedly. This is visible in two related but distinct dimensions:
(i) Which model15 we should take to found category theory, and (ii) Which
categories we should expect set theory to found.16

15We use the term ‘model’ in a loose and informal way here, and intend it to apply to possibly
proper-class-sized structures. For example, we will at least allow (L,∈) as a model, even though
it is proper-class-sized.
16In the quotation above, Mac Lane is specifically interested in the first point we consider.
However, the intuition expressed transfers naturally to other objections he makes, as outlined
below.
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What model?

The first issue concerns exactly what the relevant model should satisfy. Simply put,
the widespread independence phenomenon in set theory has challenged the classical
idea that there is a single maximal universe of sets in which we may interpret all
mathematical discourse. This is discussed by Mac Lane:

These results, and others too numerous to mention, show that many interesting Mathemati-
cal questions cannot be settled on the basis of the Zermelo-Fraenkel axioms for set theory.
Various additional axioms have been proposed, including axioms which insure the existence
of some very large cardinal numbers and an axiom of determinacy (for certain games) which
in its full form contradicts the axiom of choice. This variety and the undecidability results
indicate that set theory is indeterminate in principle: There is no unique and definitive list
of axioms for sets; the intuitive idea of a set as a collection can lead to wildly different
and mutually inconsistent formulations. On the elementary level, there are options such as
ZFC, ZC, ZBQC or intuitionistic set theory; on the higher level, the method of forcing
provides many alternative models with divergent properties. The platonic notion that there
is somewhere the ideal realm of sets, not yet fully described, is a glorious illusion. (Mac
Lane 1986, p. 385)17

Since our expertise is primarily in higher-set theory (i.e. ZFC and its extensions)
and independence, we approach the issue from that perspective. As is well-known,
there are many set-theoretic sentences independent of our canonical set theory ZFC
(e.g. CH). Mac Lane takes this to show that there is no one notion of ‘set’ and hence
no one place that category theory can be interpreted. We have two responses to this
argument:

Response 1 This explicitly takes a stand on the status of certain questions in the
philosophy of set theory. In particular, it turns on how many universes of set there
are (or at least how many distinct but legitimate concepts of set there are). While the
independence phenomenon is certainly challenging, this does not mean that there
are multiple ‘meanings’ to the word “set”. Thus, for the theorist who simply rejects
the claim that the independence phenomenon indicates semantic or ontological
indeterminacy, the objection gains no traction (without further argument).

Response 2 Even if we allow the existence of different universes or concepts
of set, Mac Lane’s criticism is subject to a tu quoque. This is because, as we
explained above, category theory by its nature does not demand a single context
for interpretation (in fact quite the reverse). Rather, we argued, category theory
should be understood as providing a uniform language in which to study algebraic
properties and schematic types. Thus to insist on a single model or axiomatisation in
which category theory should be interpreted is to impute content to it that is simply
not there. Thus, insofar as this is a problem for set theory at all, it is also one for
categorial foundations.

This allows a quick response to Mac Lane’s objection: Even if there are multiple
set-theoretic concepts or universes, and no overarching context, this does not matter.

17Similar remarks are made repeatedly in Mac Lane (1986), cf. pp. 359–360, 373.
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Wherever we study category-theoretic properties set-theoretically (discussion of
particular set-theoretic interpretations is provided below), we know that our results
will transfer to the alternative cases via the schematic properties of category theory.
It is enough for us to study category-theoretic structure set-theoretically to find one
set-theoretic structure exemplifying the relevant schematic type. For the purposes
of set-theoretic foundations, we do not need to find the set-theoretic subject matter
corresponding to category theory.18

Which Categories?

The second problem of inadequacy concerns what one has within a particular
context. Simply put, category theory seems to speak about structures that are proper-
class-sized, and so do not have any set-theoretic representative. An obvious example
here is Set, the category of all sets that has as arrows set-theoretic functions (this
can be given direct category-theoretic axiomatisation by ETCS or its extensions).19

There are, however, many such categories (e.g Grp, Top, Fld, etc.).
There are two main strategies for overcoming this problem. The first is to posit

the existence of Grothendieck universes and interpret category theory there. More
formally:

Definition 6 A Grothendieck universe is a set U with the following properties:

(i) U contains the set of all natural numbers.
(ii) U is transitive.

(iii) U is closed under the formation of pair sets.
(iv) U is closed under the formation of power sets.
(v) U is closed under set-theoretic union.

(vi) If x ∈ U , f : x → y is a surjection, and y ⊆ U , then y ∈ U .

We can then interpret category theory as concerned with any such universe. For
instance, Set can be interpreted as concerned with the sets in some U (let’s call this
category SetU ), and this (along with any functor categories) is a perfectly legitimate
object formed in the stages of the cumulative hierarchy above U .

Grothendieck himself (in proposing a set-theoretic interpretation of category
theory) suggested the axiom that there should be an unbounded sequence of these
universes. In fact, being a universe is clearly equivalent to being Vκ where κ is
an inaccessible cardinal, and so the proposal comes down to interpreting category
theory within any one of an unbounded sequence of inaccessible universes.

The standard objection to this strategy is that it apparently ‘prevents’ considering
perfectly acceptable categories, such as the actual category of all sets. Given any

18A similar point is made in Maddy (2017). For some other remarks on what we would like from
set-theoretic foundations, see also Maddy’s contribution to the present volume (Maddy).
19The topos axiomatised by ETCS is that of a well-pointed topos with a natural number object and
satisfying the categorial version of the Axiom of Choice.
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such interpretation of category theory, there are sets outside of that interpretation.
But (so the objection goes) category theory is about any and all sets instantiating the
relevant category-theoretic interpretation. Any such restriction seems ad hoc. Muller
expresses the point as follows:

Any stipulation to the effect that the category-theoretician is only allowed to grab at some
fixed set whereas outside this set there are more sets, so that he is not permitted to grab
at all of them, is artificial and barks at his explicit intentions. The category- theoretician
has every right to refuse to dance to the cardinality tunes [of] the set-theoretician whistles.
Category-theory is about form & structure, irrespective of how much & how many; it ‘only’
wants to have everything which is available. The category-theoretician means all sets when
he makes the category Set of all sets, period. Set-theories which cannot accommodate this
are flawed. (Muller 2001, pp. 11–12)

A different strategy then is to allow proper-class-sized categories (so-called
‘large’ categories), and adopt a two-sorted class-theoretic language and theory (such
as NBG or MK) in providing a category-theoretic interpretation. The problem
here is that often category-theorists will consider functor categories between two
categories. Taking two categories C and D, it is natural to consider the category
DC consisting of all functors from C to D as objects, and natural transformations
between functors as arrows. Such a category, however, is often one type higher than
both C and D. In the case then when both C and D are large, even with proper classes
we are not guaranteed the existence of a class-theoretic representative concerning
CD (normally proper classes cannot be members).20 The issues concerning both
interpretations are summed up as follows:

Using universes, all the functor categories are there, but there is no category of all groups.
Using Godel-Bernays, one has the category of all (small) groups, but only a few functor
categories.21 (Mac Lane 1971, p. 235)

What should we take from this? Again we hold that these objections fail to gain
traction:

Response 1 A simple point, but one based on a non-trivial theorem, is that for
certain categories (in particular the category of all reflexive graphs), it is not clear
that the requirements Mac Lane wishes to place on interpretations of category theory
are consistent. Specifically Ernst (2015) shows that there are restrictions on what
categories one can have. The proof proceeds by considering a version of Cantor’s
Theorem in the category of all reflexive graphs and shows that certain desirable

20Of course, the material set-theorist might just accept the existence of proper-classes, hyper-
classes, hyper-hyper-classes and so on. This is naturally interpretable in an ontology on which
every universe can be extended in height, but there is also a question of whether the believer in
one maximal unique universe of sets could also make use of nth-order hyper-classes. Normally it
is assumed not, but this question remains philosophically open.
21Given the topic of the present volume, there is an interesting question as to the extent to which
this difficulty is avoided in homotopy type theory. We thank Dimitris Tsementzis for the suggestion
that this difficulty could possibly be overcome in this foundation.
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conditions on the existence of categories are jointly inconsistent.22 Thus we cannot
simply naively insist on the existence of any category whatsoever without some
restrictions.

Response 2 The problem implicitly takes a stand on issues in the philosophy of
set theory, though in the opposite direction to the previous section. For, in the case
where we think there is no maximal conception of the notion of ordinal, and rather
that any universe of set theory can be extended in height, we are always implicitly
restricted to a particular bounded universe of sets anyway. Thus, to the theorist who
holds that there are no ‘maximally high’ universes, the objection fails to gain any
traction.23

Response 3 Even if we do allow that there can be ‘maximally high’ universes of
set theory, the objection again fails to account for the schematic nature of category
theory. Given this algebraic character, when a category theorist asks us to consider
“The category Set which has as objects all sets and arrows all functions” this
should be understood as shorthand for communicating various category-theoretic
properties. Some of these are captured by first-order axiomatisations such as ETCS
and its extensions, but again, they are about a schematic type (in particular a
first-order one) rather than a particular concrete subject matter. So for studying
this schematic type, it is enough that we have just one structure exemplifying the
schematic type. Results proved about this schematic type can then be exported to
other contexts (and other structures instantiating the category-theoretic properties),
the results are about the schematic type and not the concrete instantiation of it in the
sets.

Consider the case where we have both the Grothendieck-universe and class-
theoretic interpretations available to the set theorist. More precisely, suppose she
believes the following: (1) There is a single unique universe of sets, (2) There
are unboundedly many inaccessible cardinals, and (3) There is a satisfactory
interpretation of Morse-Kelley class theory over V . Now, consider the category
theorist’s consideration of Set, and how this relates to the set theorist’s universe. The
category-theoretic structure of Set is multiply instantiated, both by each individual
Vκ where κ is inaccessible, and also V (as well as many other structures besides,
some of them countable24). Now suppose we consider some ‘super-large’ functor
category SetC (for some category C). The SetC schematic type will be instantiated
by the various Vκ with the sets above them, but not by V (since there are no levels
above V ). But this does not matter, any properties proved about the schematic

22See Ernst (2017), Maddy (2017) and Maddy for further discussion of the significance of this
result.
23One might even think, in the opposite direction, that some distinction between ‘small’ and
‘large’ is essential for making sense of certain category-theoretic results. See Shulman (2008)
for arguments to this effect, and Ernst (2017) for some additional discussion.
24An example of such a structure would be the Skolemisation and Mostowski Collapse of any
set-theoretic structure satisfying an appropriate amount of set theory.
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type Set using the schematic type SetC can just be exported back to V , the proof
concerning Set just depends on there being some set-theoretic counterpart in which
SetC is instantiated, not that every instantiation of Set has a corresponding SetC

representative. While it is the case that when a category theorist states a theorem
of the form “Set has an extension to SetC” can only be interpreted to concern the
small instantiations, this does not harm the results about the schematic type Set,
and the fact that any results proved on the basis of SetC about that structure can
perfectly well be exported back to V . This is much like the case with first-order
ZFC, it would be bizarre to claim that results proved about ZFC using extensions
in the model theory of sets are inapplicable to V because V lacks extensions.25

A natural rejoinder is that occasionally category theorists will consider explicitly
large categories like SET (i.e. the category of all sets) rather than just Set
(interpreted as the category of small sets in the first universe). Nonetheless, exactly
the same considerations apply concerning schematic types. Even if one insists that
there is a distinction between ‘small’ and ‘large’ sets, one can still have SET
instantiated in some small structure, it is just that structure does not think it is small.
These considerations are familiar from the set-theoretic framework; one can easily
have a particular Vκ satisfying the claim that there are proper-class-many cardinals
of some kind �, without Vκ witnessing that there are literally (i.e. in V ) proper-
class-many such cardinals. One just requires that the �-cardinals are unbounded
in Vκ for there to be a universe satisfying this property. Indeed, as above, any
conclusions based on the theory ZFC+ “There is a proper class of �-cardinals”,
made by considering the extension of a model thereof can be exported back to V
(on the assumption of course that V does contain such a proper class). Similarly, one
just needs a universe containing an inaccessible (in fact if the schematic content of
category theory is only first-order, one needs much less) for there to be set-sized set-
theoretic contexts in which there is a meaningful distinction between small and large
categories capable of instantiating the relevant algebraic content. To argue that set
theory fails to provide an appropriate surrogate for SETC is to impute non-algebraic
content to category theory which is quite simply not there.

10.3.2.2 Inappropriateness

The inappropriateness dimension of Feferman’s taxonomy concerns set theory
giving us too much of something (either objects or information). We’ll see that
while these problems are also resolvable, an additional line of inquiry is suggested
by the complaint that set theory provides too much non-isomorphism-invariant
information; namely to modify set theory so that the language respects isomorphism
invariance.

25There may, nonetheless, be certain philosophical considerations here, as well as technical issues
concerning how much higher-order reasoning we can capture using extensions. See Barton (2018)
and Antos et al. for discussion.
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Logical Strength

The first issue concerns the logical strength of set theory. For the practical purposes
of founding mathematics, so the argument goes, we do not need anything like the
strength of ZFC set theory. Landry and Marquis record this sentiment:

Second, it is fair to say that category theorists and categorical logicians believe that
mathematics does not require a unique, absolute, or definitive foundation and that, for
most purposes, frameworks logically weaker than ZF are satisfactory. Categorical logic,
for instance, is taken to provide the tools required to perform an analysis of the shared
logical structure, in a categorical sense of that expression, involved in any mathematical
discipline. (Landry and Marquis 2005, p. 19)

We do not wish to disagree that large portions of mathematics do not require the
logical strength of ZFC set theory. However, we do wish to make two rejoinders:

Response 1 First, set theory does not aim at being ‘minimal’ in any sense.
Rather, we wish to provide the most generous theory possible (often understood
through maximising consistency strength) to be used in interpreting any conceivable
mathematics we might consider. So, while the objection might be convincing to a
theorist who has a penchant for minimising logical strength, it fails to be convincing
to the friend of set-theoretic foundations.

Response 2 Second, we have another tu quoque here: There are interesting
category-theoretic principles that turn our to have significant large cardinal strength.
Bagaria and Brooke-Taylor, for example, note the following (in an article on colimits
and elementary embeddings):

Many problems in category theory, homological algebra, and homotopy theory have been
shown to be set-theoretical, involving the existence of large cardinals. For example, the
problem of the existence of rigid classes in categories such as graphs, or metric spaces
or compact Hausdorff spaces with continuous maps, which was studied by the Prague
school in the 1960’s turned out to be equivalent to the large cardinal principle now known
as Vopĕnka’s Principle. . . Another early example is John Isbell’s 1960 result that SetOp

is bounded if and only if there is no proper class of measurable cardinals. (Bagaria and
Brooke-Taylor 2013, p. 1)

A key point to attend to in the above is that these are not category-theoretic
principles that were dreamt up by set theorists. These are principles that were
naturally studied by category theorists that turned out to not just be independent
from ZFC, but also have substantial large cardinal strength (Vopĕnka’s Principle
is quite high in the large cardinal hierarchy). Moreover, with certain additional
assumptions one can find models of material set theories like ZFC in categorial
set theories like ETCS.26 In virtue of this, the claim that set theory is somehow

26For instance one way to do this is to find arrow-theoretic trees in a model of strengthened ETCS
that correspond to the relevant membership trees required to build a model of ZFC. We are grateful
to Michael Shulman for discussion here, and directing us to his useful Shulman (2010) and Osius
(1974).
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unfavourably distinguished by its logical strength when compared to category theory
(in all its guises) seems dubious.

Isomorphism Invariance

The second problem of inappropriateness concerns the earlier discussed fact that
set theory makes decisions about non-isomorphism invariant facts. The key issue
is that a central practice in set-theoretic foundations involves specific choices of
‘canonical’ representatives.

For example, in the earlier discussion of products, the exact object that is
eventually selected as ‘the’ product will vary depending on numerous conventional
stipulations. We might, for example, represent the ordered pair 〈a, b〉 along the lines
of Hausdorff as {{a, 1}, {b, 2}} (rather than the usual Kuratowski definition:
〈a, b〉 =df {{a}, {a, b}}) resulting in a different choice of product. This then raises
the following question: If set theory is meant to tell us what mathematical objects
exist, then what is the fact the matter about which definition of product is the actual
product?

The problem was noticed in the philosophical literature at least as early as the
seminal (Benacerraf 1965). There, he presses this problem of non-isomorphism
invariant choices to be made via the existence of ‘junk’ theorems, where a theorem
is ‘junk’ when it concerns non-isomorphism invariant properties. For example, is it
true that 5 ∈ 7? A natural answer is “Yes”; the canonical choice of ordinals is the
von Neumann definition, and under that definition it is the case that 5 ∈ 7. However,
under the Zermelo definition, it is not the case that 5 ∈ 7. So, if we think that
mathematical objects ‘are’ sets (or, as Benacerraf points out, any objects) what is
the fact of the matter concerning whether or not 5 ∈ 7? Since the truths of number
theory are invariant under domain (we just need some things that have the standard
natural number structure under the relevant relations of the required vocabulary for
arithmetic to be true in that context) there seems to be no good response; whatever
objects we pick as ‘the’ natural numbers, they satisfy the same arithmetic sentences.

The simple response is that the many (if not most) set theorists do not subscribe to
the heavy-duty set-theoretic reductionism required to generate the problem. Rather,
most friends of set-theoretic foundations (or, at least, this is the line we shall present
here), take set theory to be a device of representation. Using the membership
relation and axioms of first-order logic we are able to interpret mathematical claims
as ones about sets, with axioms telling us how these objects can be combined to yield
other mathematical properties, providing a context in which different mathematical
claims can be interrelated.

Claims like “5 ∈ 7” just do not make sense for the friend of set-theoretic
foundations until we have settled on a particular interpretation of number theory. If
we pick the von Neumann ordinals, then the question of whether 5 ∈ 7 corresponds
via our chosen interpretation to whether 5 < 7 in number-theoretic terms, and so
is obviously true (in fact trivially so). If we had picked a different representation,
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however, it may have been false (as is the case on the Zermelian conception of finite
ordinals).

This has implications for the purposes to which set theory is put in foundations.
The language is excellent for studying what kinds of mathematical properties are
compossible, and what kinds of objects are required to find an interpretation of a
piece of mathematics. Hence, the default context for studying independence results
(and their implications) is models of set theory,27 and the indexing of consistency
strength is accomplished using set-theoretic principles. If one wishes to know
whether it is possible to have one mathematical property with or without another,
one studies the models of set theory in which they have interpretations. If one
wishes to know how much logical strength is implied by the adoption of a particular
mathematical system, a standard technique is to find a model of the principle in
the sets. However, once a model has been found, few set theorists (if any) would
suggest that the mathematician should change their practice and adopt the (highly
baroque) set-theoretic language. The interpretation has been given, and this acts as
a certificate that the original (and probably more fluid) language is in good working
order.28

This has implications for the kind of applications that we see for set theory to
mathematical structure. Rather than seeing it as a language and framework for the
working mathematician, it should rather be used in finding interpretations of the
working languages and comparing them. Structurally, this might have important
consequences. One might, for example, see cardinality as an important structural
property. Set theory then provides us with a useful framework in which schematic
types of certain kinds and cardinality interact, to yield helpful structural information.
A good example here is the celebrated:

Theorem 7 (The Morley Categoricity Theorem) Suppose that a countable first-
order theory T has exactly one model up to isomorphism in a single uncountable
cardinal. Then it has one model (up to isomorphism) in every uncountable cardinal.

The standard proof of this proceeds against a background of material set
theory. Assuming that one does hold that cardinality is a structural property, it
yields information about how first-order schematic types and cardinality interact,

27This said, there are category-theoretic options here. See Bell (2011).
28Vladimir Voevodky himself was clear about this role for ZFC with respect to Homotopy Type
Theory. See, for example, his abstract for the 2013 North American Meeting of the Association of
Symbolic Logic, where he says:

Univalent foundations provide a new approach to the formal reasoning about mathematical
objects. The languages which arise in this approach are much more convenient for doing
serious mathematics than ZFC at the cost of being much more complex. In particular, the
consistency issues for these languages are not intuitively clear. Thus ZFC retains its key
role as the theory which is used to ensure that the more and more complex languages of the
univalent approach are consistent. (Voevodsky 2014, p. 108)

We are grateful to Penelope Maddy for bringing this to our attention.
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specifically if one has a first-order schematic type T (this could even be given
categorially) it provides conditions that tell us when there is only one way (up to
isomorphism) that T could be instantiated in a structure of a particular size.

We thus make the preliminary conclusion; though material set theory is baroque
and choices must be made about canonical representatives in a fashion that is not
isomorphism invariant from the perspective of certain vocabularies (e.g. number
theory), it nonetheless provides a useful perspective for stating how schematic types
interact with other structural properties (namely cardinality). We thus subscribe to a
methodological pluralism in foundations; category theory is the appropriate theory
for explaining how schematic types interact with one another, but set theory is the
appropriate language for explaining how schematic types interact with concrete
systems of objects.29

This response is satisfactory as far as it goes. However, a challenge remains for
the set theorist: Could we possibly factor out the use of canonical representatives to
yield a conception of set on which we are able to use the combinatorial power of set
theory whilst considering isomorphism invariant properties?

The point is brought into especially clear focus when contrasting material set
theory with categorial theories of sets (like ETCS). We should note that meaningful
statements of categorial set theories like ETCS are not fully isomorphism invariant.
Take, for example, the claim “f has co-domain B” for some f and B. This
interpretable as a perfectly good formula in the language of category theory, but is
obviously not isomorphism invariant; there might be objects isomorphic to B which
differ as to whether they are the co-domain of f or not.30 However, something that

29The following analogy may be helpful. Viewing mathematics as describing a kind of quasi-
computational enterprise, set theory is something like a theory of machine-code: It tells us what
kinds of things can be built, and what we need to build them. Category theory on the other hand
is like a high-level programming language, codifying what effects can be achieved by different
structural relationships in different contexts. Both the set theorist as computational engineer and
the category theorist as programmer have important roles to play in mathematics. This analogy (or,
at least, something similar) was originally communicated to the first-author by David Corfield after
a talk at the LSE in November 2013. He is also grateful to Dr. Corfield for subsequent discussion
of categorial foundations.
30Strictly speaking, we have used a formulation of category theory here on which we have variables
for objects as well as arrows. In a purely arrow-theoretic framework (where equality is only defined
between parallel morphisms) one has the result that any two equivalent categories satisfy the same
sentences. (We are grateful to Ingo Blechschmidt for helpfully forcing us to be precise about this
issue.) However, if one wants to use parameters, for instance if one is developing the theory of
modules in ETCS, or using more than one variable, then the result no longer holds. (Thanks here
are due to Jean-Pierre Marquis for this useful comment.) There are some theories that aim to make
it impossible to state non-isomorphism-invariant properties in their language. Two candidates here
are Makkai’s FOLDS (see Makkai 1998; Marquis 2017b) and Univalent Foundations (see The
Univalent Foundations Program 2013; Tsementzis 2017). We are grateful to Dimitris Tsementzis
for stressing this use of Univalent Foundations and making us aware of the non-isomorphism
invariance of category theory (in conversation and his Tsementzis 2017), as well as directing us to
Theorem 8. We are also grateful (again) to Jean-Pierre Marquis for emphasising to us the interest
of FOLDS.
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ETCS does offer is a way of ‘modding out’ this non-isomorphism invariant noise.
For instance, one can prove:

Theorem 8 (ETCS) Let φ(X) be a formula in the language of ETCS with no
constants and no free variables except the set variable X. Then if X and Y are
isomorphic, then φ(X) iff φ(Y ).31

Thus ETCS provides us with a clean-cut class of formulas for which we have
isomorphism invariance. Our task for the rest of this paper is to make a preliminary
step in providing a material set theory that does the same for structure. We will
do so by proposing a theory of sets and classes built over structures composed of
urelements, and end up with a theory that better respects isomorphsim invariance
whilst facilitating the consideration of how schematic types and systems of concrete
objects interact (as in the Morley Categoricity Theorem).

10.4 How Set Theory Helps the Structural Perspective

We now have a challenge for the friend of set-theoretic foundations; find a use of
set-theoretic language that better respects isomorphism invariance. In this section,
we do just that. The broad idea is to think of material set theory as built over
some mathematical subject matter, conceived of as composed of structures with
urelements and the functions and relations between them. Our point is the following;
we can factor out the arbitrary choices of coding to find a material set theory that by
design respects isomorphism invariance.

10.4.1 Set Theory with Structures (ZFCS)

In taking inspiration from structuralism,32 we will consider structures as composed
of featureless points, and the functions and relations between them. Treating a
featureless point as a kind of urelement, we will build a theory of sets and classes
over these urelements, and show how by doing so we can develop a more structurally
respectful theory in the language of sets and classes. However, this will also be a
framework in which it is possible to use the rich combinatorial power afforded by
material set theory in discussing notions of cardinality and structure.

31See here McLarty (1993, p. 495).
32See here, for example, Shapiro (1991).
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Definition 9 The theory of Set Theory with Structures (or ZFCS) is defined as
follows:

(i) Symbols:

(a) We have three sorts of variables: u0, u1, . . . , un, . . . will range over
urelements (to be featureless points in the domains of structures),
s0, s1, . . . , sn, . . . will range over structures, and x0, x1, . . . , xn, . . . will
range over sets.

(b) The usual logical symbols (so one’s favourite connectives and quanti-
fier(s)), and one non-logical symbol ‘∈’ (to denote material set member-
ship).

(c) Symbols: A single symbolU (for the universe), fm,n (form-ary functions),
Rm,n (for m-ary relations) and cn (for constants), where m, n are natural
numbers and m > 0. These will be used to describe structures.

(ii) Atomic formulas:

(a) a = b where a, b are variables of the same sort.
(b) a ∈ b where a is a variable and b is a set-variable.
(c) U(s, a) where s is a structure-variable and a is an urelement-variable.

(Intended meaning: a belongs to the universe (or domain) of the structure
s.)

(d) fm,n(s, u1, . . . , um) = u where s is a structure-variable, the ui and u
are urelement variables. (Intended meaning: the ui and u belong to the
universe of the structure s and the interpretation of the m-ary function
symbol fm,n in s sends (u1, . . . , um) to u.)

(e) Rm,n(s, u1, . . . , um) where s is a structure-variable and the ui are urele-
ment variables. (Intended meaning: The m-tuple (u1, . . . , um) belongs to
the interpretation of the m-ary predicate symbol by the structure s.)

(f) cn(s) = u where s is a structure-variable and u is an urelement variable.
(Intended meaning: The interpretation of the constant symbol cn by s is u.)

(iii) Compound formulas: Obtained from atomic formulas by closing under connec-
tives and quantifiers in the usual way. (Though, since the language is 3-sorted,
there will be three kinds of quantifier; one for urelements, one for structures,
and one for sets.)

(iv) Axioms:

(a) Extensionality for sets.
(b) Formula-Foundation for Sets: If a formula holds of some set then it holds

of some set which is disjoint from all other sets for which the formula
holds.

(c) The Axiom of Infinity: Usually rendered as concerning the existence of an
inductive pure set.

(d) Pairing, Union, Powerset, Separation and Collection for sets.
(e) Axiom of Choice for sets.
(f) The domain of every structure is a set: i.e. ∀s∃x∀a(U(s, a)↔ a ∈ x).
(g) The Anti-Urelement Set Axiom: No set contains all of the urelements.
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Some remarks concerning the definition are in order:

Remark 10 First, whilst the Anti-Urelement Set Axiom merits philosophical dis-
cussion,33 consideration in detail would take us too far afield here. We make this
assumption simply to avoid bounding the sizes of the structures we have available,
and settle for the pragmatic justification that we are trying to show that material
set theory can convey important structural information, not that it must in every
situation.34

Remark 11 Second, we are taking inspiration from the structuralist literature in
the following sense: Structures are to be understood as composed of featureless
points (given by the urelemente) and the ways they may correspond (with functions
and relations). Effectively, we layer sets on top of antecedently given structures
conceived of in this sense. As we’ll see, this facilitates cardinality comparisons
whilst allowing for a theory that respects isomorphism invariance.

10.4.2 Class Theory with Structures (NBGS)

We are now in a position where we have a theory of structures and the sets that
can be built over them. In order to arrive at a language that respects isomorphism
invariance we now augment with class variables. As we shall see, this allows us to
latch onto a range of isomorphism invariant classes.

Definition 12 Our Class Theory with Structures (or NBGS) comprises the follow-
ing:

1. Symbols: All the symbols of ZFCS, with an additional kind of variables
X0, X1, . . . , Xn, . . . for classes.

2. Atomic formulas: In addition to the well-formed formulas of ZFCS, we admit
Xn = Xm for class variables Xn and Xm as well-formed, as well as v0 ∈ Xn for
class-variable Xn and v0 is either a set, structure, or urelement variable.

3. Compound formulas: Obtained inductively from the connectives, ∈, urelemente
quantifiers, structure quantifiers, set quantifiers, and class quantifiers.

4. Axioms:

(a) All axioms of ZFCS.
(b) Extensionality for classes (i.e. Xn and Xm are equal iff they have the same

members).
(c) Predicative Class Comprehension:

∃X∀u∀s∀x[(φ(u)↔ u ∈ X) ∧ (ψ(s)↔ s ∈ X) ∧ (χ(x)↔ x ∈ X)]

33For two examples of such discussion, see McGee (1997) and Rumfitt (2015).
34An alternative would be to take the ‘wide sets’ approach of Menzel (2014) and modify
Replacement.
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(Where u is a urelement variable, s is a structure variable, and x is a set
variable, there are no class quantifiers35 in φ, ψ , and χ , and each of φ, ψ ,
and χ is free for u, s, and x respectively.)

Effectively we allow extensional classes composed of objects of mixed types.
The intuition behind the theory is this; once we have built our sets and structures out
of sets and urelements, we can then talk definably about them (much in the same
way as it is legitimate to talk about definable classes in the ZFC context). As we’ll
shortly see, we can then restrict to certain classes in using our set and class-theoretic
language to latch onto isomorphism invariant properties.

One technical issue is how to treat isomorphism within this framework. We really
have two notions available:

Definition 13 Two structures s0 and s1 are structure-theoretically isomorphic iff
there is a third structure s within which there is a binary relation between the
universes of s0 and s1 satisfying the usual rules of isomorphism.

Definition 14 Two structures s0 and s1 are set-theoretically isomorphic iff there is
a set-theoretic bijection between the domains if s0 and s1 satisfying the usual rules
of isomorphism.

Remark 15 Effectively the set-theoretic notion of isomorphism is the usual one,
whilst the structure-theoretic notion pulls talk of structures and isomorphism into
the prior given theory of structure.

What this prior given theory of structure satisfies will be important for our results
and arguments, since we require the closure of our NBGS world under isomorphism.
What we show below will always hold for the set-theoretic notion of isomorphism,
but there is a chance that if the antecedent theory of structures over which we layer
NBGS is too impoverished, then set-theoretic isomorphisms might not be mirrored
by structure-theoretic ones. For example, consider a world which has NBGS layered
over a theory of structure on which there is only one structure s0 composed of
an isolated point u0 with no relations on it. This is be perfectly legitimate as a
NBGS structure. However, while there are set-theoretic isomorphisms in this world
(specifically f defined by the rule f (u0) = u0), the underlying theory of structure
lacks the resources to even see that s0 is isomorphic to itself.

One fix would be to introduce the following axiom:

Axiom 16 (The Structural Richness Axiom) Any set-theoretic isomorphism has
a corresponding extensionally equivalent structure-theoretic isomorphism.36

35We make this assumption merely for technical hygiene since NBGS will do the job we want
neatly. One could also drop this restriction, and use an impredicative comprehension scheme
yielding a structural form of Morse-Kelley (call it MKS). This may well have interesting additional
properties, such as the ability to define a satisfaction predicate for the universe and first-order
formulas.
36In fuller formalism: If f is a set-theoretic isomorphism between s0 and s1, then there is an s such
that s maps uα to u′α iff f does.
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This would guarantee the existence of the isomorphisms we need for our
results both set-theoretically and structure-theoretically. Indeed, we might derive
the Structural Richness Axiom from the idea that any set-theoretic structure should
be mirrored by a structure-theoretic one, postulating the following:

Axiom 17 (The Structural Radical Richness Axiom) Any set-theoretic structure
is mirrored by a corresponding structure-theoretic structure.37

The extent to which our theory of structure should mirror what we have going
on in the sets is an interesting one, but we shall set it aside from our technical
result. Since we wish to leave it entirely open what the underlying theory of structure
should satisfy (maybe, for example, we just want to build NBGS over the structural
groups and nothing else) we shall simply concern ourselves for the technical work
with the set-theoretic notion of isomorphism. Later, we will reconsider structural
richness axioms in discussing how set theory has interesting things to say about the
interaction of schematic types with structures.

We now have the resources to factor out non-isomorphism invariant properties
from our theory whilst having combinatorial sets around to facilitate proof. This
is shown by the following analogue of the earlier mentioned ETCS theorem
concerning isomorphism invariance:

Theorem 18 (NBGS) Suppose that φ(v) is a formula without parameters in the
language of NBGS and v is a variable ranging over structures. Suppose that M is
a model for NBGS and s0 and s1 are structures in M which are isomorphic in M.
Then M |� φ(s0)↔ φ(s1).

Proof The idea of the proof is simply to take an isomorphism π between s0 and s1
and then use it to build an automorphism π ′ from M to M, moving M’s satisfaction
of φ(s0) to φ(s1) (dual reasoning obtains the converse implication). So, let π be the
witnessing structure-theoretic isomorphism. We define π ′ as follows:

(i) π ′(u) = π(u) if u is an urelement in dom(π).
(ii) π ′(s) is obtained from s by replacing each urelement u in the universe of s by

π(u).
(iii) We can then (by induction and the well-foundedness of membership) replace a

set x by defining π ′(x) as {π ′(y)|y ∈ x}.
(iv) We similarly replace a class X by π ′(X) =df {π ′(y)|y ∈ X}.
(v) This π ′ yields an automorphism of M sending s0 to s1. Thus M satisfies “φ(s0)

iff φ(s1)”.38

37In fuller formalism: For any set X of urelements and set-theoretic functions f Xm,n, relations RXm,n
on X, and constants cXn in X, there is an s such that U(s, uα) (for each uα ∈ X), and structural
relations f sm,n, Rsm,n, and csn equivalent to f Xm,n, RXm,n, and cXn in the obvious way.
38This can be proved by the usual tedious induction on the complexity of φ.

claudio.ternullo@ut.ee



10 Set Theory and Structures 249

Remark 19 A very similar theorem holds for formulas with more free variables,
providing that the domains of the structures are non-overlapping. In this way, NBGS
can provide a kind of isomorphism invariance stronger than the one for ETCS as
given in Theorem 8.

Thus, while there are many non-isomorphism invariant facts we can state within
NBGS (e.g. for an urelement or structure v, “v ∈ X”), we can factor out this non-
isomorphism invariant ‘noise’ in a precise way. Thus, for φ of the appropriate form,
if we use the ambient material set-theoretic properties to prove φ about s, we can
transfer φ to any structure isomorphic to s.

If we then allow ourselves some axiom of structural richness (e.g. either
Axiom 16 or Axiom 17) we can talk about inter-structural relationships such as
embeddability and cardinality of structures using set-theoretic resources, whilst
factoring out the structural content. For example, concerning cardinality, every
cardinal number exists, both with respect to the relevant set-theoretic code living
in the universe of NBGS under consideration, but also there is (given an assumption
of structural richness) a structure of pure cardinality (i.e. of featureless points
with no relationships between them). In this way the theory provides a way of
combinatorially linking bona fide structures with their set-theoretic codes.

This has ramifications for how we treat theorems best suited for material set
theory. The Morley Categoricity Theorem, for example, can be recast as the claim
that for any countable T in Lω,ω (i.e. T is a particular kind of first-order schematic
type) if T is satisfied by exactly one structure (up to isomorphism) for structures with
domain of some particular uncountable size, then given any two structures satisfying
T, if their domains are uncountable and the same size, then they are isomorphic.

This version of the Morley Categoricity Theorem facilitates extraction of struc-
tural information: All the above can be recast as talk directly about theories and
structures. However, the ambient material set theory provided by NBGS has a role
to play: The proof could be formalised exactly as is usually done in the material
set-theoretic case, since we have the relevant set-theoretic resources, set-theoretic
codes, and model theory lying around.39 It is just that in the end we can easily
extract the purely structural content from Morley’s result using Theorem 18 and
assumptions of structural richness, and then talk directly and transparently about
structures conceived of in a sense independent of set-theoretic coding.

Moreover, not only do we now have a way to extract the purely structural
information from the material set theory, but we can also find non-arbitrary
representatives for structures:

Definition 20 In NBGS, we say that a class X consisting of structures is (set-
or structure-theoretically) invariant if X is closed under isomorphism between
structures. If in addition any two structures in X are isomorphic we refer to X as
a (set- or structure-theoretic) isomorphism type.

39See, for example, Tent and Ziegler (2012) for a presentation of the usual proof.
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Thus, in NBGS we can equate specific mathematical structures with isomor-
phism types. This then gives us a non-arbitrary, non-coding dependent represen-
tative for the structure in question (since isomorphism types include all and only
the structures isomorphic to one another). However, all this occurs in a framework
where we have the full resources of material set theory available to speak about their
relationships.

10.5 Conclusions and Open Questions

How does this perspective provide philosophical progress? Our main claim (as
specified in the introduction) was to show that material set theory seems to be
interesting from the structural perspective. In particular, it still represents our best
theory of cardinality, and how cardinality interacts with properties of syntactic
theories. In this respect it is of interest to friends of both set-theoretic and category-
theoretic foundations.

Of course one might simply reject that cardinality is a structural property, and
that cardinality considerations fade away when one takes seriously a structural
perspective as coded categorially.40 This raises an important first question for future
research:

Question 21 To what extent should cardinality be viewed as a structural property?

If we accept that cardinality is structural, however, it is interesting that we can,
by taking much structural talk at face value, come up with a theory (namely NBGS)
that allows us to easily extract structural content from set-theoretic claims. In this
way, we have both the combinatorial power of set theory but also a way of factoring
out non-isomorphism invariant content.

The theory represents a small first step on a wider research programme in the
foundations of mathematics: How can we fuse different perspectives to yield new
mathematical and philosophical perspectives and results? In particular, we have left
open the following questions:

Question 22 There is the possibility of looking at categorial structure of theories
like NBGS. Some, are easy: The category of isomorphism invariant classes that has
as objects isomorphism types and equivalence classes of embeddings as arrows is
an obvious choice. However, there is also the possibility of looking at the categorial
structure of the classes of mixed type. What sorts of categorial relationships does
this world support?

One remaining challenge is the following: In the introduction it was noted that
certain categories have non-function-like relationships either for trivial reasons
(such as the category of proofs of a logical system) or deeper ones concerning the

40We are grateful to Steve Vickers for pressing this point.
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nature of the category itself, such as with non-concrete categories like the homotopy
category. There is also the question of how to understand non-bijective notions of
structural similarity like categorial equivalence. The framework we have provided
depends explicitly on a notion of structure on which isomorphism is understood as
a functorial (in fact bijective) relationship between structures. A question then is:

Question 23 Can a similar perspective be found that brings set-theoretic combi-
natorial power to bear on non-concrete categories? What about for more relaxed
notions of sameness of structure such as categorial equivalence?

This would further help to inform the following project:

Question 24 Aside from the normal interpretations of category theory in set theory
(either through universes or classes) or set theory in category theory (say via the
use of objects and arrows coding membership-trees), what further ways are there
of combining the different perspectives? We have shown how this can be done with
respect to ‘structure’ and ‘cardinality’, but can we have further philosophically and
mathematically fruitful fusions of these two perspectives?

For the moment, we hope to have shown that there is at least the possibility
of combining different perspectives to yield interesting fusions of foundational
theories.

References

Antos, C., Barton, N., & Friedman, S.-D. Universism and extensions of V . Submitted. https://
arxiv.org/abs/1708.05751.

Awodey, S. (1996). Structure in mathematics and logic: A categorical perspective. Philosophia
Mathematica, 4(3), 209–237.

Bagaria, J., & Brooke-Taylor, A. (2013). On colimits and elementary embeddings. The Journal of
Symbolic Logic, 78(2), 562–578.

Baldwin, J. T. (2018). Model theory and the philosophy of mathematical practice: Formalization
without foundationalism. Cambridge: Cambridge University Press.

Barton, N. (2016). Multiversism and concepts of set: How much relativism is acceptable? (pp.
189–209). Cham: Springer International Publishing.

Barton, N. (2018). Forcing and the universe of sets: Must we lose insight? Forthcoming in the
Journal of Philosophical Logic.

Bell, J. (2011). Set theory: Boolean-valued models and independence proofs. Oxford: Oxford
University Press.

Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74(1), 47–73.
Caicedo, A. E., Cummings, J., Koellner, P., & Larson, P. B. (Eds.). (2017). Foundations of

Mathematics: Logic at Harvard Essays in Honor of W. Hugh Woodin’s 60th Birthday (Volume
690 of Contemporary Mathematics). Providence: American Mathematical Society.

Di Liberti, I., & Loregian, F. (2018). Homotopical algebra is not concrete. Journal of Homotopy
and Related Structures, 13, 673–687.

Ernst, M. (2015). The prospects of unlimited category theory: Doing what remains to be done. The
Review of Symbolic Logic, 8(2), 306–327.

Ernst, M. (2017). Category theory and foundations. In E. Landry (Ed.), Landry (2017) (pp. 69–89).
Oxford: Oxford University Press.

claudio.ternullo@ut.ee

https://arxiv.org/abs/1708.05751
https://arxiv.org/abs/1708.05751


252 N. Barton and S.-D. Friedman

Ewald, W. B. (Ed.). (1996). From Kant to Hilbert. A source book in the foundations of mathematics
(Vol. I). Oxford: Oxford University Press.

Feferman, S. (1977). Categorical foundations and foundations of category theory. In R. E. Butts &
J. Hintikka (Eds.), Logic, foundations of mathematics, and computability theory (pp. 149–169).
Dordrecht: Springer.

Freyd, P. (1970). Homotopy is not concrete (pp. 25–34). Berlin/Heidelberg: Springer.
Goldblatt, R. (1984). Topoi: The categorial analysis of logic. Amsterdam: Dover Publications.
Hamkins, J. D. (2012). The set-theoretic multiverse. The Review of Symbolic Logic, 5(3), 416–449.
Hellman, G. (2006). Against ‘absolutely everything’! In A. Rayo & G. Uzquiano (Eds.), Absolute

generality. New York: Clarendon Press.
Isaacson, D. (2011). The reality of mathematics and the case of set theory. In Z. Noviak &

A. Simonyi (Eds.), Truth, reference, and realism (pp. 1–75). Budapest/New York: Central
European University Press.

Landry, E. (Ed.). (2017). Categories for the working philosopher. Oxford: Oxford University
Press.

Landry, E., & Marquis, J.-P. (2005). Categories in context: Historical, foundational, and
philosophical†. Philosophia Mathematica, 13(1), 1.

Lawvere, W. (1965). An elementary theory of the category of sets. Proceedings of the National
Academy of Science of the U.S.A., 52, 1506–1511.

Lawvere, W., & McLarty, C. (2005). An elementary theory of the category of sets (long version)
with commentary. In Reprints in Theory and Applications of Categories 11 (pp. 1–35). TAC.

Leinster, T. (2014). Rethinking set theory. The American Mathematical Monthly, 121(5), 403–415.
Mac Lane, S. (1971). Categorical algebra and set-theoretical foundations. In Scott and Jech (1971)

(pp. 231–240). Providence: American Mathematical Society.
Mac Lane, S. (1986). Mathematics: Form and function. New York: Springer.
Maddy, P. (2017). Set-theoretic foundations. In Caicedo et al. (2017) (pp. 289–322). Providence:

American Mathematical Society.
Maddy, P. (2019). What do we want a foundation to do? In this volume.
Makkai, M. (1998). Towards a categorical foundation of mathematics. In Logic Colloquium’95

(Haifa) (Lecture Notes in Logic, Vol. 11, pp. 153–190). Berlin: Springer.
Marquis, J. (2013). Mathematical forms and forms of mathematics: Leaving the shores of

extensional mathematics. Synthese, 190(12), 2141–2164.
Marquis, J.-P. (2017a). Canonical maps. In E. Landry (Ed.), Landry (2017) (pp. 90–112). Oxford:

Oxford University Press.
Marquis, J.-P. (2017b). Unfolding FOLDS: A foundational framework for abstract mathematical

concepts. In E. Landry (Ed.), Landry (2017) (pp. 136–162). Oxford: Oxford University Press.
Mathias, A. R. D. (2000). Strong statements of analysis. Bulletin of the London Mathematical

Society, 32(5), 513–526.
Mathias, A. (2001). The strength of mac lane set theory. Annals of Pure and Applied Logic, 110(1),

107–234.
McGee, V. (1997). How we learn mathematical language. The Philosophical Review, 106(1),

35–68.
McLarty, C. (1993). Numbers can be just what they have to. Noûs, 27(4), 487–498.
Mclarty, C. (2004). Exploring categorical structuralism. Philosophia Mathematica, 12(1), 37–53.
Meadows, T. (2013). What can a categoricity theorem tell us? The Review of Symbolic Logic, 6,

524–544.
Menzel, C. (2014). ZFCU , wide sets, and the iterative conception. Journal of Philosophy, 111(2),

57–83.
Muller, F. A. (2001). Sets, classes and categories. British Journal for the Philosophy of Science,

52, 539–573.
Osius, G. (1974). Categorical set theory: A characterization of the category of sets. Journal of

Pure and Applied Algebra, 4(1), 79–119.
Rumfitt, I. (2015). The boundary stones of thought: An essay in the philosophy of logic. Oxford:

Oxford University Press.

claudio.ternullo@ut.ee



10 Set Theory and Structures 253

Scott, D., & Jech, T. (1971). Axiomatic set theory (Axiomatic Set Theory, Number pt. 1).
Providence: American Mathematical Society.

Shapiro, S. (1991). Foundations without foundationalism: A case for second-order logic. New
York: Oxford University Press.

Shepherdson, J. C. (1951). Inner models for set theory–Part I. Journal of Symbolic Logic, 16(3),
161–190.

Shepherdson, J. C. (1952). Inner models for set theory–Part II. Journal of Symbolic Logic, 17(4),
225–237.

Shulman, M. A. (2008). Set theory for category theory. https://arxiv.org/abs/0810.1279
Shulman, M. A. (2010). Stack semantics and the comparison of material and structural set theories.

https://arxiv.org/abs/1004.3802
Tent, K., & Ziegler, M. (2012). A course in model theory (Lecture Notes in Logic). Cambridge:

Cambridge University Press.
The Univalent Foundations Program. (2013). Homotopy type theory: Univalent foundations of

mathematics. http://homotopytypetheory.org/book
Tsementzis, D. (2017). Univalent foundations as structuralist foundations. Synthese, 194(9), 3583–

3617. https://doi.org/10.1007/s11229-016-1109-x
Voevodsky, V. (2014). 2013 North American Annual Meeting of the Association for Symbolic

Logic: University of Waterloo, Waterloo, ON, Canada May 8–11, 2013. The Bulletin of
Symbolic Logic, 20(1), 105–133.

Zermelo, E. (1930). On boundary numbers and domains of sets. In Ewald (1996) (Vol. 2, pp.
1208–1233). Oxford University Press.

claudio.ternullo@ut.ee

https://arxiv.org/abs/0810.1279
https://arxiv.org/abs/1004.3802
http://homotopytypetheory.org/book
https://doi.org/10.1007/s11229-016-1109-x


Chapter 11
A New Foundational Crisis
in Mathematics, Is It Really Happening?

Mirna Džamonja

Abstract The article reconsiders the position of the foundations of mathematics
after the discovery of the homotopy type theory HoTT. Discussion that this
discovery has generated in the community of mathematicians, philosophers and
computer scientists might indicate a new crisis in the foundation of mathematics. By
examining the mathematical facts behind HoTT and their relation with the existing
foundations, we conclude that the present crisis is not one. We reiterate a pluralist
vision of the foundations of mathematics.

The article contains a short survey of the mathematical and historical background
needed to understand the main tenets of the foundational issues.

11.1 Introduction

It seems by all evidence about the differences between set theory and homotopy
type theory HoTT that there is a crisis in the foundations of mathematics. However,
neither mathematicians nor even the philosophers have spoken enough about it. The
preceeding crisis, happening at the beginning of the twentieth century and sparked
by the Russell paradox, created many animated discussions and engaged a large
number of mathematicians- not necessarily ‘logicians’ (as mathematical logic as
a separate field of mathematics had not yet existed, properly speaking). All the
mathematicians were interested in foundations and so were many philosophers. That
was the time when mathematics formed a tameable, unified, body of research, and
mathematicians could easily understand each other. The folklore has it that Hilbert
was the last mathematician who knew all of mathematics, but he was not the only
one: let us mention Poincaré, Picard and Von Neumann, for example. The discussion
about foundation of mathematics engaged a wide audience of mathematicians.
Today, logicians tend to hold foundational discussions with very little success in
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engaging the mathematical community. For example, mathematicians spent 358
years solving Fermat’s last problem. The solution, due to Wiles (1995) could not
have possibly been the one that Fermat meant to write in his famous margin in
1637, as it involves mathematical techniques that did not exist even in a trace form
at the time of Fermat. Could Fermat have found a different proof? If we prove
that Fermat’s last problem does not have a solution in Peano Arithmetic PA, which
encompasses all the tools available to Fermat, then it is pretty clear that Fermat could
not have solved it. Some FOM (Foundations of Mathematics) discussion groups
seem convinced that this is the case, yet Angus Macintyre seems to have proved that
Wiles’ proof actually can be carried out in PA (Macintyre). However the general
mathematical audience has not yet noticed this ‘rumination by the logicians’, as
much as everybody would really love to know if Fermat had actually proved it.

The truth is that mathematical logic has become a very specialised subject,
considered by mathematicians as an esoteric subject of little interest to their daily
life. Therefore, even the mathematical foundations, since they are immersed in logic,
are considered as esoteric. (It must be admitted that this feeling in the mathematical
community is not completely decoupled from the rather dry writing style that logic
papers tend to have). The purpose of this article is, firstly, to recall that just exactly
the opposite is true, thinking about foundations is not esoteric and, if there is indeed
a crisis in the foundation of mathematics, then everybody should be concerned.
Not only the logicians and the mathematicians but also all the scientists, who base
their reasoning upon logic and mathematics. One cannot build a high-rise without
knowing how stable are the pillars.1 Secondly, in the main body of the article we
shall describe the foundational question under consideration in such terms that every
mathematician, philosopher of mathematics or computer scientist can follow the
exposition, with the purpose of engaging a wider community in the foundational
discussion. Lastly, we shall give our own opinion, calming the fire of panic and
arguing that the crisis is relative and solvable and that it brings us more of the
positive than of the negative information. We shall argue for a vision of foundations
that envelops this information into a new stage of the development of the existing
foundations of mathematics.

11.2 For a Mathematician

Many of our glorious ancestors in set theory in the 1960s and later put an enormous
effort to show to mathematicians that the fact that there were simple statements,
such as the continuum hypothesis,2 about simple objects, such as the set of the real
numbers, that turned out to be independent of the axioms of set theory – then almost

1This metaphor might be overused. But I still like it.
2Stating that every infinite subset of the set of the real numbers is bijective either with the set of
the natural numbers or with the set of the real numbers.
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universally considered as the foundation of mathematics – should be of interest to
every mathematician on the planet. This effort does not seem to have been very suc-
cessful, even though the independence can appear almost everywhere, see David H.
Fremlin (1984) for some early examples in various areas of mathematics. Well, the
point is that it is almost everywhere, and many mathematicians have had the reaction
to withdraw to those areas of mathematics that were immune to independence and
to relegate any independence to the inferior rang of ‘pathological’ objects. Infinite
combinatorics- pathological, uncountable measures- pathological, non-separable
Banach spaces- pathological, independence- “can’t possibly happen to me”.

Fine, but what if somebody tells you that your art of mathematics is going to go
the way of the games chess and go, it is going to be replaced by formal arguments
doable by a machine which can do it better than you or any other human? That is
how the program of formalisation of mathematics through univalent foundations
teamed with automatic theorem proving, presented by a winning mathematician
who invented it, looks to a naked eye.

Ironically, it is exactly those areas of mathematics most remote from inde-
pendence, that are protected from independence by their inherent definability and
constructibility, which are in danger of this new formalisation and computerisation.
Formalisation of mathematics uses constructive mathematics.‘Pathological’ objects
in general are not constructive, they often rely on the axiom of choice and further
set-theoretic machinery, with no specific witness for existential properties. This is
what makes them prone to independence, but rather safe from formalisation.3 So,
one way or another, foundations have not been kind to mathematicians, and it looks
like one should start paying attention and ask the question if the mathematics we are
producing today is safe from a foundational and existential crisis.

Ever since the nineteenth century most (or just many?) people have considered
set theory as the foundations of mathematics. This is in spite of the great crisis in
the foundations of mathematics brought about by Russell’s paradox in 1902 and the
subsequent introduction to mathematics not only of several different axiomatisations
of set theory4 and various very successful alternative approaches to foundations
of mathematics, such as category theory, type theory and the theory of toposes.
While it is clear, for example, that it is much more reasonable to do certain parts of
mathematics by using category theory, it has been known that category theory and
set theory with large cardinals are to some extent bi-interpretable (see e.g. Feferman
1977) and apart from philosophical reasons, there is no reason for an ‘ordinary
mathematician’ to take his time from his mathematical considerations in order to
think if one or another foundation fits better with the purpose at hand.

In 2006 a new kid appeared on the block. It is the homotopy type theory
including univalent foundations. These foundations are different from set-theoretic
foundations. In some respect these foundations appear to contradict the set-theoretic

3Although see later on Isabelle and see Mizar’s project website http://mizar.org/project/.
4In this paper we take Zermelo-Fraenkel set theory with choice (ZFC) for our basis and we freely
dispose of a sufficient amount of large cardinals.
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foundations. A great disquiet, or perhaps excitement about the newly proposed
foundations can be seen by the following quote by Michael Harris5 in (2017):

It’s impossible to overstate the consequences for philosophy, especially the philosophy of
Mathematics, if Voevodsky’s proposed new Foundations were adopted.

Our thesis is that there is no contradiction in sight, moreover, these foundations
complement the set-theoretic foundations. We feel that any suggestion of a con-
tradiction between the two or the idea that either should or could be replaced by
the other comes more from a lack of understanding than anything else. We attempt
in this article to give a simple account of the most relevant developments in order
to demonstrate our thesis. We shall lead the reader through a presentation of the
basics of several different parts of mathematics and logic that have gone into the
developments in question and sometimes we shall have to simplify to a great extent
in order to make ourselves understandable. The reader interested in the details will
easily be able to find them, either in the other chapters of this book or elsewhere in
the literature and references mentioned here.

11.3 On Set Theory and Type Theories

Set theory is based on the classical first order logic. Basic entities are sets and they
are completely determined by their elements: the Axiom of Extensionality states
that for any sets A and B,

[∀x(x ∈ A ⇐⇒ x ∈ B)] ⇐⇒ A = B.6

The Law of Excluded Middle holds and the Axiom of Choice is assumed (as we are
working with ZFC). This type of set theory was formalised by Ernst Zermelo (1908)
and ramified in the work of Zermelo and Fraenkel, as well as Skolem. A detailed
history of the development of ZFC and some other set theories can be found in
Fraenkel et al. (1973).

Univalent foundations are a vision of Vladimir Voevodsky of a foundational
system for mathematics in which the basic objects are homotopy types. They obey
a type theory satisfying the univalence axiom. They are formalisable in a computer
proof assistant and are constructivist. To introduce univalent foundations, let us start
by discussing type theory. We present the types together with the idea of a proof,
which is not how these concepts were developed initially.

5A mathematician who does care about the foundations of mathematics.
6The intended meaning of the symbol ∈ is that is stands for the actual real’ membership relation. A
common misunderstanding is that this is the case with all models of set theory. However, the setting
of set theory in the logic of first order, does not allow to rule out models in which the symbol is
interpreted by other means. They have to be dealt by separate methods, including the Mostowski
collapse theorem.
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In set theory, basic variables are interpreted as sets and atomic formulas are of
the form x = y and x ∈ y. Naive set theory in which every collection of the
form {x : ϕ(x)} forms a set, leads to paradoxes, the most celebrated of which is
the one developed by Russell in 1902.7 Presuming that B = {x : x /∈ x} is a
set, we see that the question if B ∈ B does not have a unique answer. Set theory
resolved this issue by various axiomatisations, in our case of ZFC by introduction of
Restricted Comprehension by Zermelo in 1908. This type of Comprehension only
allows formation of sets of the form {x ∈ y : ϕ(x)}, that is, the comprehension of
all elements of a given set with a given property, into a set. Russell’s own solution
to the paradox was to introduce type theory. There are many versions of type theory,
but the following version from Fraenkel et al. (1973) is equivalent to the one used by
Russell and Whitehead in Whitehead and Russell (1990) in which they succeeded
to give foundations of the entire extent of the mathematics then known in terms of
type theory.

In this context, each variable has a type, which is a natural number, and writing
xi means that x is a variable of type i. Atomic formulas are of the form xi ∈ yi+1

and xi = zi . That is, a variable can only be equal to a variable of the same type and
can only belong to a variable of type exactly one higher. The Axiom of Infinity is
added to level 0 and Axiom of Choice at every level.

The advantageous formalisation power of type theory is to some extent balanced
off by the fact that is rather cumbersome to write mathematics in this way. The
reader may find it entertaining to contemplate the notions of complement or
cardinality in this setting.

For the homotopy type theory it is more useful to think of the Dependent
Type Theory, developed by Martin-Löf starting from the 1960s.8 Athough the
original idea of dependent types evolves from Martin-Löf’s study of randomness
in probability, we can see dependent type theory in a computational context, like a
computer language (this idea goes back to de Bruijn). It is particularly well suited
for the theory of proofs, as we shall now see.

Type theory does not have semantics, only syntax. The basic expressions are
of the from term:Type, for example x : N and y : R, which mean that x is a
variable of the non-negative integer type and y a variable of the real type. Such
expressions, variable typings, are called contexts. From this we can advance to
proofs or judgements using some predetermined rules. For example

x : N, y : R � x × y : N× R.

7Zermelo seems to have discovered the paradox about at the same time, although he did not publish
it.
8In our explanation, we shall privilege intuition to exactness. A much more precise, yet still rather
compact, survey of Type Theory and Univalent Foundations can be found in Thierry Coquand’s
article for the Stanford Encyclopedia of Philosophy (Coquand 2018). A longer survey of these
matters is in the recent article by Daniel Grayson (Grayson 2018). Another recent article, by Martin
Escardo (2018) gives an entirely self-sufficient presentation of the Axiom of Univalence. We have
partially followed an article by Michael Shulman and its notation, Shulman (2017).
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The symbol � means ‘proves’. In this judgement we can see a typical operation
on types, which in this case is the product of two. A list of all basic types and the
operations on them can be found on the slides by Coquand (2014). It is useful to
think of this as a category, in which objects are the contexts and the morphisms are
the judgements. This is called the Classifying Category and denoted Ctx. So, when
we write

� � a : A

we consider a as a morphism from � to A. Contexts with variables are ‘types’
and those without variables, where we substituted a variable by a constant, are
morphisms. It is exactly the way to handle the idea of substitution which makes
this into the dependent type theory. For example, we allow families of contexts,
such as B type, where we interpret

� � B type

as a judgement allowing to conclude from � that there is an object of type B (or B
is a type in �). The intuition is that B ‘depends’ on �. The dependent types also can
be combined, for example

n : N � Cn type

corresponds to “for all n we have an object of type Cn”.9 We can think of the
dependencies as factor or slice categories, where for example the statement � � B
type corresponds to the existence of type B in the category Ctx/�, the category of
all contexts in which � holds, or precisely to the statement that B is a type in that
category. Shulman (2017) states: “The point is that substitution into a dependent
type presents the pullback functor between slice categories”. Intuitively speaking
this means that substitutions behaves as we are used to having it, where ‘free’
variables can be replaced by other free variables of the same type.

These developments lead to a proof system by allowing deductions, which are
the axioms of judgements. These axioms come in two kinds: ones that allow us to
construct a type and others which allow to eliminate in order to prove equivalence.
This resembles, for example, the natural deduction, but in this context it is more
complex. An example of a deduction rule looks like this:

� � A type;�; n : A � B type
� �∏n:A B type

9Of course, type theory has no internal logic in the sense of semantics, but the operations
of product and join correspond to the existential and universal quantifiers, under the Curry-
Howard correspondence, described below. See Escardó (2018). The intuitionistic higher-order
logic interpretable in MLTT is often referred to as the internal logic of (dependent) type theory.
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where the premise is written in the numerator and the conclusion in the denominator.
This model of reasoning is very formal and well suited for implementation on a
computer, hence proof assistants such as Coq. Choosing a particular collection of
type constructors specifies the rules of a particular type theory, that is, dependent
type theory is not a unique theory but rather a template for producing proof theories.

It is possible to interpret propositional logic in type theory, namely we interpret
propositions P as types with at most one element. P is ‘true’ if there is an element
in it (these are types of level 1). From the point of view of proofs, saying that type is
inhabited amounts to saying that there is a proof of that type. We can also interpret
sets, as properties (types of level 2).10 By a property of elements of a type A we
mean a judgement of the form

x : A � P : .

Under this interpretation, we obtain the Curry-Howard correspondence (Howard
1980) between the operations of intuitionistic propositional logic and (some of) the
constructors of type theory. So theorems of intuitionistic propositional logic are
provable in the deduction system. The Law of Excluded Middle LEM does not fall
into this correspondence. LEM is addable artificially as a judgement, but then it
tends to cause difficulties in the execution of the proof assistants, although it seems
relatively harmless in Coq.11 There are proof assistants based on higher order logic,
such as Isabelle/HOL and Isabelle/ZF which are able to deal with AC and LEM.
For example, Lawrence C. Paulson in (2002) mechanised Gödel’s proof that the
consistency of ZF implies that of ZFC using the proof assistant Isabelle. The HoTT
libraries of computer proofs are based on Coq.

We note that the full Axiom of Choice is inamicable to the intuitionistic logic
in the sense that by proofs of Diaconescu (1975) and Goodman and Myhill (1974),
the Axiom of Choice implies the Law of Excluded Middle. In a model of dependent
type theory, the Axiom of Choice can be enforced on the level of sets, at the likely
price of losing the connection with the proof assistants. A very interesting article
about the relation of type theory and the Axiom of Choice is Martin-Löf’s (2009),
in which it is shown that when a certain amount of choice is added to type theory
the resulting theory interprets ZFC.

10This may look like type theory is a generalisation of set theory, as mentioned in some references,
but this is not true since set theory is not only made of objects but also of the underlying logic and
the axioms.
11Andrej Bauer in private correspondence (27 February 2018) says “Coq does not loop if we
postulate excluded middle, it just gets stuck on some computations, and then requires human
intervention to get unstuck.”
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11.4 An Identity Crisis and Univalence

To explain what the univalence is, let us first discuss some intuitions. Frege in
the celebrated Appendix of his Frege (1903) (in reaction to Russell’s paradox and
attempts to solve it) stated that

Identity is a relation given to us in such a specific form that it is inconceivable that various
kinds of it should occur.

Indeed, in set theory, there is only one kind of equality, given by the Axiom of
Extensionality and in model theory it is well known that we can always assume that
the equality relation in any model is interpreted by the true equality.

Martin Löf’s type theory MLTT builds up on Dependent Type Theory by
introducing some new types, including universes U0, U1, . . . such that Un : Un+1
and the identity type IdA(x, y) for propositions x, y. This type is the type of proofs
of equality between x and y, which are both of type A. So if this type is inhabited,
it means that the elements x and y of type A are provably equivalent. Another
type, called refl proves that any x is equal to itself. This setting gives rise to two
different kinds of identity: definitional A = B (for types) and x = y : A for
elements of a type, and the propositional one IdA(x, y). Furthermore, building on
IdA(x, y) we can also declare that any two proofs for this identity are equivalent
etc., extending the propositional equivalence to all levels of types. Then it is clear
(in fact it follows from the rule of identity introduction) that the definitional identity
implies the propositional one, but it is not at all clear that the converse should be
true.

This problem, which is to some sense the completeness problem for proof theory,
was noticed early on by Martin-Löf and others, who tried to resolve it by inserting
explicit judgements to this extent. However, in the full generality, this leads to
paradoxes. The sameness of the two notions of equality became a known problem
and search was open for more subtle models of dependent type theory where this
sameness is true.12

Intuitively speaking, Voyevodsky’s univalence fulfils this dream. It says that
the identity type Id(X, Y ) is precisely the type Eq(X, Y ) of equivalences (which
we have not defined), in the sense of being in one- to-one correspondence with
it. To quote (Grayson 2018), it offers a language for mathematics invariant
under ‘equivalence’. This intuitive understanding of the axiom, present in most
presentations of univalence for general audience (hence this one), is somewhat
misleading. Much is to be gained by understanding a more exact definition of the
univalence, which is possible to do by following the short and exactly-to-the point
(Escardó 2018). The conclusion is that univalence is a property of Martin-Löf’s
identity type of a universe of types. Without univalence, refl is the only way to
construct elements of the identity type, with univalence this is also possible by other

12This leads to intensional versus extensional type theory and is a long and interesting story, see
Hofmann (1995) for more.
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means. The univalence axiom states that a certain type is inhabited, the univalence
type. It takes a number of steps to build the univalence type, for these steps the
reader may consult §3 of Escardó (2018).

Voyevodsky’s HoTT is an extension of MLTT with the Univalence Axiom, using
topological insights which we shall describe in §5. It should be noted that the
Univalence Axiom is not a consequence of MLTT as there is also a model of MLTT
where it fails, namely any model of Streicher’s Axiom K (see Hofmann and Thomas
1998).

11.5 The Topological View

Vladimir Voevodsky came into the field of logic in a rather round-about way,
and one may say, somewhat naively. Paraphrasing his talk in the 2013 Logic
Colloquium in Evora, Portugal, we learn that after obtaining a Fields medal in
2002, he was feeling increasingly isolated in the position to publish any proof he
wanted (due to his reputation) and to have a shrinking audience of real readers
(due to the complexity of the proofs in question). He realised that he was not
alone in the situation and judged that mathematics badly needed – computerised
proof verification. Only then did he understand that there already existed a vibrant
community of researchers working not only on proof verification but also on
proof assistants. At learning of the relevant issues, Voevodsky realised that the
univalency question had appeared in a different part of mathematics under a different
name and that it had been successfully solved. The field was homotopy theory
and the key to the solution is the notion of an ∞-groupoid (a notion that was
already used by some other researchers in the logic community, as it happens,
see below for historical remarks). The main idea of Voevodsky was to interpret
the category Ctx as the homotopy category, so that types become spaces and
morphisms. Propositional equality then becomes the homotopic equivalence and the
structure obtained becomes an ∞-groupoid. Finally, Voyevodsky’s vision become
the foundation of mathematics expressed in the language of type theory in which
the objects are represented in an ∞-groupoid. This vision is succinctly represented
in Coquand’s Bourbaki seminar presentation (Coquand 2014).

For us here, let us briefly recall the relevant topological notions and their history,
discovered and developed in 1950s by Daniel Kan, building on an even earlier work
by Henry Whitehead. We start with the simplex category�, whose objects are linear
orders on a natural number n = {0, 1, 2, . . . , n − 1} and whose morphisms are
(non-strictly) order-preserving functions. We fix some large enough infinite cardinal
number (may be a large cardinal) and consider all sets that have cardinality smaller
than that cardinal. This category is called Set. A simplicial set X is a contravariant
functor X : � → Set. Simplicial sets form a category under natural (the word
natural here has a technical meaning) transformations and this category is called
sSet.
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The point is that it is a classical result in algebraic topology that a certain
fibration sSet/W of sSet called Kan complexes is equivalent to the category of
‘nice’ topological spaces and homotopy classes of maps. Because of this fact one
can, when working up to homotopy, think of simplicial sets as of combinatorial
representations of shapes or spaces, of simplicial paths as paths on these spaces etc.
Kan complexes form a model of an ∞-groupoid, the formal definition of which
requires higher category theory, but which in essence deals with a category with
objects of every type n for n < ω and n-morphisms. The homotopy types of the
geometric realizations of Kan complexes give models for every homotopy type of
spaces with only one non-trivial homotopy group, the so called Eilenberg-Mac Lane
spaces. It is conjectured that there are many different equivalent models for ∞-
groupoids all which can be realized as homotopy types, some of which are known.

Grothendick’s homotopy hypothesis states that the ∞-groupoids are equivalent
as in the equivalence of categories, to topological spaces.

A central theorem of the homotopy type theory with univalence, and one which
gave it its name is the following:

Theorem 1 (Voevodsky, Kapulkin and LeFanu Lumsdaine 2012) Modulo the
existence of two inaccessible cardinals, it is consistent that sSet/W forms a model
of Martin Löf’s type theory with the Univalence Axiom.

In the proof one can also assume LEM on the level of propositions and the Axiom
of Choice on the level of sets. Working in this particular model is what became
known as the univalent foundations, although some other models were found later,
as we shall mention.

The revolutionary result of Voevodsky had some precursors and parallels,
notably in the work of Michael Makkai (1995), Hofmann and Streicher (1998)
and Steve Awodey (see Awodey 2010); Martin Hofmann’s Ph.D. thesis Hofmann
(1995) already mentioned above, for example, contains a study of the groupoid of
intensional equivalences. See Wikipedia (20xx) for a detailed historical description.
It also has descendants, which are well worth mentioning. Another model of
Univalence Axiom and with less consistency strength, the cubical model, was
found by Bezem et al. (2017). Work of Peter Aczel (1999) shows that dependent
type theory for constructive sets has a much weaker proof theoretic strength than
that of ZF. Namely, this model can be done in constructive set theory CZF with
universes. This set theory is proof theoretically strictly weaker than ZFC, and has
the same strength as MLTT/dependent type theory (without the Univalence Axiom).
A corollary of the work by Bezem et al. (2017) is that adding the Univalence Axiom
does not add any proof theoretic power to dependent type theory. The story of the
proof-theoretic strength of these systems is rather involved. A lot of results and the
history can be found in Michael Rathjen’s paper (Rathjen 1994) and, specifically on
the strength of the univalence axiom, in the paper (Rathjen 2017).

Furthermore, the relation between this and the classical logic and set theory
is also very intricate. Work of Crosilla and Rathjen (2002) shows that the proof-
theoretic strength of CZF+ LEM + universes is at least ZFC+ unboundedly many
inaccessibles. So it is LEM that adds strength to univalent foundations.
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11.6 Conclusion, Crisis or No Crisis

Much discussion has been generated by the advent of the univalent foundations
and this volume is certainly a forum for it, as is the HoTT book (The Univa-
lent Foundations Program 2013). To certain fans of HoTT, some of them present
at the conference “Foundations of Mathematics: Univalent Foundations and Set
Theory” in Bielefeld in 2016 which initiated this volume, this subject means the
end of classical mathematics as we know it, as we can just move to a model of
univalent foundations and let the ever-developing libraries of computer proofs do all
our mathematics for us. A mathematician of the future becomes a new incarnation of
a chess player, not capable to come up with anything weakly comparable to what a
computer can do on the same subject. The less ardent fans have called to a measured
reflexion on the choice between this foundation and the classical ones, implying
perhaps the eventual adoption of one or the other. The HoTT book states in the
Introduction: “This suggests a new conception of foundations of mathematics, with
intrinsic homotopical content, an invariant conception of the objects of mathematics
and convenient machine implementations, which can serve as a practical aid to the
working mathematician. This is the Univalent Foundations program. . . . we therefore
believe that univalent foundations will eventually become a viable alternative to set
theory as the implicit foundation for the unformalized mathematics done by most
mathematicians.” Viewed from this angle, the situation looks like quite a serious
crisis in foundations, putting two foundational programmes in a competition.

Our view is that this crisis is not one and that, as ever in mathematics,
mathematical results speak for themselves. First, there is no obvious reason of
why one should choose to limit oneself to a specific model of mathematics, be it
the simplicial set model or the cubical one or, for that matter, the constructible
universe L or some other set-theoretic universe; the prevalence of consistency
results in mathematics has rendered us very careful on this issue. But there are
also more tangible observations following from the above results. If a theory has
the consistency strength less or equal ZFC+ some amount between 1 and 2 of
inaccessible cardinals, then this theory cannot resolve any of the questions for which
we know that a larger consistency strength is required. This includes many questions
in modern logic, such as projective determinacy, the existence of a measurable
cardinal, the failure of the singular cardinal hypothesis and so forth. If we take the
view that large cardinals represent the ultimate concept of the ‘actual infinity’ or the
‘higher infinite’, then these notions cannot be formalised by univalent foundations.13

On another topic, if a theory has a much weaker strength than that same theory when
accompanied by the Law of Excluded Middle, then that theory cannot answer all
questions which need this law and cannot reproduce all proofs where this law is
used. Some proofs by contradiction have a translation which does not require this
law, some can be formalised, but the results quoted above show that this cannot

13By the ‘higher infinite’ we do not mean the uncountable, which can be formalised in type theory.
Rather, we follow the usage the reference book on large cardinals by Kanamori (2003).
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be the case with all such proofs. And much of modern mathematics uses proofs
by contradiction. So, there is no way of formalising into a computerised proof in
HoTT all that is known or will be known to mathematicians, even those who are not
interested in the actual infinity but simply in the use of classical logic.

Of course, there are and have been many mathematicians (Kronecker, Poincaré
to some extent and Brouwer to some extent, for example) who have rejected either
the actual infinity or the Law of Excluded Middle or both. The fact is that much
of what they, in that vision, considered as mathematics is now within the reach
of computer formalisation. Is this a bad or a good fact? It is neither bad or good.
Mathematics is not about judgement but about furthering human knowledge and it
recognises facts as steps to further advancement. Computer formalisation is a big
step forward for advancing certain parts of mathematics and a big philosophical
advance which works together with, and not against, classical mathematics. The
fact that human beings invented the printing press did not stop the development of
writing, it enhanced it, and the same is true of any invention (weapons excluded) of
our various civilisations. We should not fear that the computers are going to replace
us- because they are not- we should welcome the new insights that they will make
us have.

We have already suggested elsewhere (Džamonja 2017) that the solution of the
crisis in the foundations might be to recognise the illusion of that ontological the in
“the foundations”. The foundations are there to serve mathematics and not to bound
its growth. If we need different foundations for different parts of mathematics,
so be it, as long as we do not run into obvious contradictions. The foundations
offered by set theory and category theory (which in our own view are different
even if bi-interpretable) remain as important as ever, the univalent foundations
have their place.14 Mathematics is also about intuition and it should be done by
everybody in a way that maximises their own intuition, it may be ZFC for one and
constructive mathematics for another. For example, with our ZFC eyes, we may
pick from the article (Bezem et al. 2017) the fact that there are �0

1-statements that
cannot be proved in MLTT + Univalence and can be proved in ZFC. But, to a
mathematician like Voevodsky it may be more striking that there are statements
about abstract category theory and abstract homotopy theory that are intuitively
constructive (and should not require strong proof theoretic means) but that become

14This view is easy to take for a platonist, which the author happens to be, who anyway considers
that all our mathematics is only a development towards the unreachable but existent world of real
Mathematics and that the creation consists in being able to reach further towards that goal. How to
do it is the essence of creativity. However, it does not seem to us that any of the known mathematical
philosophy positions contradicts the evidence for pluralists foundations as represented by the above
results.

A ‘natural hero to logical pluralist’, in the words of Greg Restall (2002) is Carnap, since, still
citing (Restall 2002), ‘for him logic is of fundamental importance to philosophical inquiry, but
nothing about this inquiry narrows the field of play to just one logic.’

claudio.ternullo@ut.ee



11 A New Foundational Crisis in Mathematics, Is It Really Happening? 267

apparently non effective, needing the Axiom of Choice, when formulated in ZFC.15

When expressed in set theory, the proof requires the Axiom of Choice, which may
be counter intuitive. It would then be natural to look for a formalism where such
mathematical fact can be stated and proved in a more direct way, an intuition that
it confirmed by the result about constructivity of univalence in Bezem et al. (2017),
which is the actual point of the paper from the point of view of its authors.

In fact, a more careful reading of the history of logic than is within the scope of
this article shows that various encodings of the foundations have always coexisted.16

Let us finish by a quote from the masters who wisely predict the fate of
foundations of mathematics, in words that entirely represent our own view. Bourbaki
writes in the introduction to the first volume of Bourbaki (1966)17:

We now know that, logically speaking, it is possible to derive almost all present-day
mathematics from a unique source, set theory. By doing this we do not pretend to write
a law in stone; maybe one day mathematicians will establish different reasoning which is
not formalisable in the language that we adopt here and, according to some, recent progress
in homology suggests that this day is not too far away. In this case one shall have to, if not,
totally change the language, at least enlarge the syntax. It is the future of mathematics that
will decide this.

Acknowledgements Many thanks to the organisers of the FOMUS conference in July 2016 for
their invitation to give a talk and to participate in the panel discussion. I would also like to
thank Peter Aczel, Andrej Bauer, Mark Bezem, Thierry Coquand, Laura Crossila, Deborah Kant,
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Chapter 12
A Comparison of Type Theory with Set
Theory

Ansten Klev

Abstract This paper discusses some of the ways in which Martin-Löf type theory
differs from set theory. The discussion concentrates on conceptual, rather than
technical, differences. It revolves around four topics: sets versus types; syntax;
functions; and identity. The difference between sets and types is spelt out as the
difference between unified pluralities and kinds, or sorts. A detailed comparison is
then offered of the syntax of the two languages. Emphasis is put on the distinction
between proposition and judgement, drawn by type theory, but not by set theory.
Unlike set theory, type theory treats the notion of function as primitive. It is shown
that certain inconveniences pertaining to function application that afflicts the set-
theoretical account of functions are thus avoided. Finally, the distinction, drawn
in type theory, between judgemental and propositional identity is discussed. It is
argued that the criterion of identity for a domain cannot be formulated in terms of
propositional identity. It follows that the axiom of extensionality cannot be taken as
a statement of the criterion of identity for sets.

12.1 Introduction

Set theory and type theory are both said in many ways. Here I shall understand
by set theory standard axiomatic set theory, thus ZFC or some variation thereof.
By type theory I shall understand Martin-Löf type theory. There are in fact several
versions of Martin-Löf type theory, but the differences between these will not play
any significant role for us. The only feature I shall assume that is not common
to all versions of type theory is a hierarchy of higher types, also called a logical
framework. Homotopy type theory is an extension of Martin-Löf type theory
obtained by adding the univalence axiom and rules allowing the formation of so-
called higher inductive types. Most of what I shall say regarding type theory should
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apply equally well to this extension (which, of course, is not to say that everything
one can say regarding Martin-Löf type theory applies equally well to homotopy type
theory).

The aim of this contribution is to note some of the ways in which type theory
differs from set theory and the predicate logic that it is written in. I hope to
make it plausible that the somewhat complex surface structure of type theory hides
a very rich conceptual architecture that may be of considerable value to those
interested in the philosophical analysis of logical and mathematical notions. I will
thus concentrate on the more conceptual aspects of type theory, rather than its
more technical aspects. Philosophically inclined logicians and logically inclined
philosophers make up the intended audience. It is not presupposed that the reader is
an expert in set theory or type theory.

The topics I shall deal with are: sets versus types (Sect. 12.2); syntax (Sect. 12.3);
functions (Sect. 12.4); and identity (Sect. 12.5). Each of these topics provides a lens
through which fundamental differences between type theory and set theory may be
observed. For the purposes of a comparison of the kind intended here other topics
could also have been included. One that springs to mind is axioms (as in set theory)
versus rules (as in type theory); but, for reasons of space and time, a study of such
further topics will have to wait for another occasion.

12.2 Sets and Types

Set theory is a theory of sets and type theory a theory of types. Both the notion
of set and the notion of type may be described as the notion of a class, group,
sum, totality, plurality, manifold, etc. of things. The way in which sets are handled
in set theory is, moreover, quite similar to the way in which types are handled in
type theory. For instance, in set theory we have a set of natural numbers, whose
existence is guaranteed by the axiom of infinity; and in type theory a type of natural
numbers, whose existence is guaranteed by the rules of natural-numbers formation,
introduction, and elimination. In set theory we have an empty set, ∅, whose existence
is either postulated outright or taken to follow from the existence of any other set
by application of the axiom of separation; and in type theory a type, often written 0,
that by definition is empty, namely by its not having any introduction rule. And just
as new sets may be formed from old by various set-theoretical operations (union,
intersection, pairing, separation, power set), so new types may be formed from old
by various type-theoretical operations, indeed operations that often are similar to
ones available in set theory (disjoint union of two types, disjoint union of a family
of types, generalized Cartesian product).

The fundamental notion of set theory would thus appear to be quite similar to the
fundamental notion of type theory. This appearance fades on closer scrutiny: sets
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and types are in fact objects of quite different natures. The difference is implicit in
Cantor’s very first definition of the notion of set (my translation)1:

A manifold (a sum, a set) of elements belonging to some conceptual sphere is called well-
defined if, on the basis of its definition and in accordance with the logical principle of the
excluded third, it must be regarded as internally determined, both whether any object of that
conceptual sphere belongs as an element to the mentioned set, and also whether two objects
belonging to the set, in spite of formal differences in the mode of givenness, are equal to
each other or not.

Cantor here presupposes a distinction between a set and the conceptual sphere to
which the elements of the set belongs. A type can very well be conceived of as a
conceptual sphere: a type is a kind, or sort, of thing, whence the things that fall
under, or belong to, a type have a certain homogeneity and may therefore be said to
constitute a conceptual sphere. Implicit in Cantor’s definition is thus the distinction
between, on the one hand, a set as a collection of things and, on the other, a type,
that is, a kind, or sort, of things.

A similar distinction is quite explicit in another foundational document of set
theory. Zermelo (1930), namely, draws a distinction between sets (Mengen) and
domains of sets (Mengenbereiche). A domain of sets in Zermelo’s sense is what
one today more commonly calls a model of set theory, or a universe of sets. It is
this notion of a domain, or universe, of sets rather than that of an individual set that
most closely resembles the notion of a type. This understanding of the relation of
sets and types is nicely illustrated by Aczel (1978), who provides a model of the
constructive set theory CZF—which by the addition of the law of excluded middle
yields classical ZF—inside a particular type V described by Aczel (p. 61) as “a type
theoretic reformulation of the classical conception of the cumulative hierarchy of
sets”. Thus a universe of sets in the sense of CZF is taken to be a certain type, and
an individual set to be an object of this type. De Bruijn (1975) assumes the same
understanding of the relation between sets and types in his discussion of how to
implement set theory in type theory: he suggests doing so by the introduction of a
separate type, SET, and a relation, ∈, on this type subject to one’s favourite axioms
of set theory.

Zermelo is careful to distinguish ordinals from sets representing ordinals inside
a domain of sets. Thus he seems to assume that besides domains of sets there is also
a domain of ordinals. The same assumption is upheld in type theory, where there
is in fact an indefinite range of domains of ordinals, namely types usually written
W(A,B), where A is a type of individuals and B a family of types of individuals
over A. This illustrates the general point that in type theory each kind of object has
its own domain. For instance, a type of ordinals W(A,B) is not a “subtype” of any

1Cantor (1882, pp. 114–115): “Eine Mannichfaltigkeit (ein Inbegriff, eine Menge) von Elementen,
die irgend welcher Begriffssphäre angehören, nenne ich wohldefinirt, wenn auf Grund ihrer
Definition und in Folge des logischen Princips vom ausgeschlossenen Dritten es als intern bestimmt
angesehen werden muss, sowohl ob irgend ein derselben Begriffssphäre angehöriges Object zu der
gedachten Mannichfaltigkeit als Element gehört oder nicht, wie auch ob zwei zur Menge gehörige
Objecte, trotz formaler Unterschiede in der Art des Gegebenseins einander gleich sind oder nicht.”
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other type, in particular not of Aczel’s V; nor is the type of natural numbers N a
“subtype” of any other type, in particular not of any type of ordinals W(A,B); nor,
finally, is the type n that by definition has n elements a “subtype” of any other type,
in particular not of the type N.

According to another of Cantor’s definitions, a set is “any plurality that can be
thought as a one”.2 The pair of notions of many and one, or plurality and unity,
has a long history in philosophy. For example, Parmenides held that what there is
is one; his pupil Zeno argued that there is no plurality; and Anaxagoras countered
that what there is is a plurality.3 An example closer to our concerns here is the
definition, found in Aristotle (Metaphysics XI.9) and Euclid (Elements VII Def 2),
of a number as a plurality of units or indivisibles. It is natural to think of numbers
thus understood as sets of units, as Cantor himself defines numbers.4 Indeed, it is
natural to regard the pair of notions of plurality and unity as the ancient predecessor
of the notion of set: a set is a unified plurality. Such is the understanding of sets
assumed not only by the early pioneers of set theory, viz., Cantor and Dedekind (cf.
his 1888, art. 2), but also by the, nowadays widely accepted, iterative conception of
set (cf. e.g. Linnebo 2010).

The notion in traditional philosophy that most appropriately may be called a
predecessor of the notion of type as understood in type theory is, to my mind, not
the notion of plurality, but rather that of genus. According to Aristotle’s definition
(Topics I.5), the term P is a genus of the term S if P reveals what S is, in other
words, if P is an appropriate answer to the question of what S is. Aristotle adds a
qualification to the effect that S cannot be an individual term. Thus he regards living
being as a genus of animal and colour as a genus of white, but not man as a genus
of Socrates or white as a genus of a trope of whiteness, such as that found in a piece
of paper on my desk. The tradition, especially following Porphyry’s Isagoge (cf.
Barnes 2003), speaks of the predicate in these latter cases as a species of its subject.
But also a species is taken to be a predicate that reveals a what of its subject; hence,
for our purposes—which are not exegetical—it seems justified to say that P is a
genus of S also when S is an individual term, provided, of course, that P reveals
what S is.

It is indeed quite natural to think of the type of an object in type theory as the
what of that object. What is 5? A natural number. What is cos? A function from R to
R. Any mathematical object is an object of a certain type, and not just an object full
stop. In taking this view of mathematical ontology, Martin-Löf type theory differs
not only from set theory, but also from type theories with a single type of individuals,
usually called ι. Such are, for instance, the simple type theories of Frege (1893) and

2Cantor (1883, p. 587): “Unter einer Mannichfaltigkeit oder Menge verstehe ich nämlich allgemein
jedes Viele, welches sich als Eines denken lässt. . . ”
3For these claims and arguments see Kirk et al. (1983, esp. pp. 249–251, 266, 358). For a general
overview of the topics of plurality and unity in ancient and mediaeval philosophy, see Meier-Oeser
(2001).
4See Cantor (1895, p. 482) and the discussion in Hallett (1984, pp. 119–141).
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Church (1940) as well as the ramified type theory of the Principia Mathematica
(Russell and Whitehead 1910). Here all individuals are regarded on a par, and
natural numbers, for instance, are coded as objects in some already constituted
type rather than taken to constitute their own type of individuals. In this respect,
therefore, such type theories are more closely related to set theory than to Martin-
Löf type theory.5

Both “kind” and “sort” are natural English translations of the Greek genos; and
both have been used in the sense of “type” in logic. Thus, the various sorts, or
domains of individuals, in many-sorted logic are just types of individuals6; and
in the so-called logical framework of Harper et al. (1993) higher types are called
“kinds”. Contemporary philosophy also knows the notion of a sortal concept, which
moreover plays a role in philosophical logic (cf. e.g. Lowe 1989). Russell (1903,
§ 497), when introducing the term “type” in the relevant sense into logic, could well
have chosen “kind”, “sort” or “category”; but perhaps he wanted a term less tainted
by the philosophical tradition. The Greek tupos, from the verb tuptō, to beat, or
strike, originally meant the effect of a blow, thus an impression or engraving or the
like; but it also meant figure as well as the form or shape of something.7 In English,
“type” was first used to mean symbol, so that a river might be called a type of human
life; but it now also means, among other things: (i) a general form or pattern of a
class or kind of things; (ii) such a kind or class itself; (iii) an example—sc., a typical
example, an archetype or prototype—of such a class.8 Of these different meanings,
a type in Russell’s sense, that is, in the sense of type theory, comes closest to (ii).
When philosophers contrast types with tokens, and when mathematicians speak of
order-types and isomorphism-types, they rather follow sense (i).

Cantor’s first definition of set may be regarded as too restrictive in its requirement
that the elements of a set should all be taken from one conceptual sphere. It is,
namely, a natural thought that a set can collect together things of arbitrary kinds.
There might, for instance, be a set containing the author of this paper, the Mona
Lisa, the boolean value t, and the empty set. The notion of set may thus be said to
be formal in the sense of topic-neutral: a set is not tied to any one topic, any one
conceptual sphere, but can have elements from arbitrary conceptual spheres. Types,
by contrast, may be thought of as being just these topics or conceptual spheres
themselves. In the terminology of Husserl (1913) we may call the notion of set a
formal category, and types may be called regions (for more discussion, see Klev
2017a). This is then yet another articulation of the basic difference between the
notion of type and the notion of set that has been emphasized here and that consists

5The relation is closer still if the simple hierarchy of types is taken to be a hierarchy of classes; see
Quine (1956) and Linnebo and Rayo (2012).
6The idea of a many-sorted language is implicit in Hilbert (1899). An early, perhaps the first, use
of the term “many-sorted logic” (or, its German cousin), as well as a definition of the thing itself,
can be found in Schmidt (1938). Schmidt (p. 485) emphasizes that he uses “sort” instead of “type”
or “kind” so as to avoid the association of levels characteristic of type theory.
7Cf. Liddell & Scott’s Greek–English Lexicon, s.v. “τύπως”.
8Cf. Oxford English Dictionary, s.v. “type”.
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in a type’s being a kind, or sort, and a set’s being a collection, namely a collection
of objects each of which is of some kind.

12.3 Syntax

The syntax of a formal language may seem like a rather technical topic, of more
interest to the metamathematician or the programmer than to the philosopher. But
the syntax of a formal language is the skeleton of its conceptual architecture, so if
we want to understand the latter, we should also need to understand the former. In
particular, if we wish to compare conceptual aspects of set theory and type theory,
we shall do well in comparing the syntax of the languages they are written in.

12.3.1 Type Structure

Some remarks on type structure are necessary to begin with. I will assume the
presence of a hierarchy of higher types in Martin-Löf type theory (cf. Nordström
et al. 1990, chs. 19–20). The types in this hierarchy may be divided into three
kinds: types of individuals, or individual domains; function types; and a “supertype”
dom of types, or domains, of individuals. This latter type is often called set in the
literature, but since we are here using “set” in the sense of set theory, another name
seems advisable.9

Examples of types of individuals are the type N of natural numbers and the type
bool of boolean values, or truth-values. Being types of individuals, both N and bool
are objects of type dom.

It is characteristic of function types in Martin-Löf type theory that they are
dependent. That a function f is of dependent type means that the type of f (a)
depends on the argument a. Thus, for different arguments, a and b, the type of f (a)
may differ from the type of f (b).10 For our purposes here it is, however, enough to
consider the simpler case of non-dependent function types. Thus we say that (A)B
is a type, namely the type of functions from A to B, whenever A and B are types.
The notion of function will be discussed in more detail in Sect. 12.4 below.

For the development of logic inside type theory a type of propositions is required.
In the simple type theory of Church (1940) the type o of propositions is, in the
presence of an axiom of extensionality, just the type of truth-values. Truth-values

9The use of the term “set” for types of individuals, perhaps inspired by Bishop (1967, p. 13), goes
back to Martin-Löf (1984). “Domain” was used for the same purpose in Diller and Troelstra (1984).
One reason why this, rather natural, terminology was not taken up by Martin-Löf himself seems to
have been the use of the term “domain” for a very different notion in Dana Scott’s so-called theory
of domains (e.g. Scott 1982).
10For a general discussion of dependent types, see Aspinall and Hofmann (2005).
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were in fact present already in the logic of the Grundgesetze (Frege 1893), where
they served as the meanings (Bedeutung) of sentences. For Frege, however, truth-
values did not constitute a separate type, but were part of the one grand universe
of individuals.11 In Martin-Löf type theory propositions are identified with types
of individuals, in line with the so-called propositions-as-types principle, or Curry–
Howard isomorphism.12 On the one hand, a proposition A may be regarded as a
type of individuals, namely as the type of its proofs, or truthmakers. On the other
hand, a type of individuals Amay be regarded as the proposition that A is inhabited.
We may therefore identify the type dom of types of individuals with the type prop
of propositions:

prop = dom

A type of propositions is thus accommodated within the hierarchy of higher types
by being identified with the “supertype” dom of individual domains.13 The resulting
conception of proposition is, of course, very different from that assumed in the
simple theory of types and predicate logic.

We may also think of the language of set theory as presupposing a certain type
structure. Namely, there is a type V of individuals called sets; there is a type prop
of propositions; and for any types A and B, there is a type (A)B of functions from
A to B. How propositions are conceived in this context is of little consequence for
us; what matters only is that there is a type of propositions.

The function types introduced above are types of unary functions. Functions of
greater arity may be explained by the technique of “Currying”.14 Note first that if
A, B, and C are types, then so is (B)C and therefore also (A)(B)C. But a function
f of type (A)(B)C may be regarded as a binary function whose first argument is
of type A and whose second argument is of type B. Thus, for suitable arguments a
and b we may write f (a, b) instead of f (a)(b). Conversely, if f is such a binary
function, then for any a of type A, we have a unary function f (a, ) from B to C.
Thus we may regard f as a function of type (A)(B)C. Similar considerations apply
to functions of arity greater than two.

11In the reconstruction of Frege’s type hierarchy given by Dummett (1973, pp. 44–45) there is a
separate type of propositions.
12See Howard (1980), Martin-Löf (1984, pp. 5–6, 11–13), de Bruijn (1995), or Wadler (2015).
13In homotopy type theory there is also a more specific conception of propositions. A so-called
mere proposition is a type of individuals that, intuitively, has at most one element; see The
Univalent Foundations Program (2013, ch. 3).
14Systematic employment of this technique stems from Schönfinkel (1924, § 2), but the idea is
present already in Frege (1893, § 36).
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12.3.2 Terms and Types

In the presentation of the syntax of a predicate-logical language it is usual to
distinguish terms and formulae. The corresponding distinction in a type theory
adhering to the propositions-as-types principle is the distinction between terms and
types. Indeed, the propositions-as-types principle is sometimes called the formulae-
as-types principle. When comparing the syntax of set theory with the syntax of type
theory it is therefore natural to begin by comparing the way in which terms and
formulae, respectively types, are formed.

In the language of set theory there are no primitive term-forming operators, nor
any primitive individual constants; hence, variables are the only terms formable by
the primitive vocabulary. The rules for forming formulae follow the usual pattern
of predicate logic, with the two basic schemes: (i) function applied to a suitable
number of arguments; (ii) variable-binding operator applied to a suitable number of
operands.15 Thus we are thinking of ∈ and = as binary functions on V , namely of
type (V )(V )prop, and of the propositional connectives as functions on prop. The
quantifiers are the variable-binding operators of set theory.

It is well known that the application of a variable-binding operator to an operand
may be analyzed as a combination of pure variable-binding and function application.
For instance, the application of the quantifier ∀x to a formula A(x)may be analyzed
as

A(x) ��	 x.A(x) ��	 ∀(x.A(x)),

where x.A(x) is A(x) with the variable x bound. Since we have assumed the
presence of a hierarchy of higher types, we may, moreover, identify variable-binding
with abstraction, sc., lambda-abstraction, or functional abstraction. What is here
written x.A(x) may thus be thought of as a function from V into prop, thus of
type (V )prop. A more familiar notation for x.A(x) would be λx.A(x), but we shall
employ the lambda for a slightly different purpose below. The universal quantifier,
finally, may then be regarded as a higher-order function, of type ((V )prop)prop,
for it takes a function, say x.A(x), and yields a proposition ∀(x.A(x)).

Both the terms and the types of type theory are formed by the same two schemes
(i) and (ii). In particular, in the version of type theory assumed here there is only one
variable-binding operator, namely abstraction.16 The modes of construction in set
theory and type theory, both endowed with a hierarchy of higher types, are thus the
same: function applied to a suitable number of arguments and variable-binding in the
form of abstraction. The primitive vocabulary available for forming terms and types
in Martin-Löf type theory is, however, much richer than the primitive vocabulary
of set theory. Indeed, whereas the primitive vocabulary of set theory consists of

15For the distinction between function and operator, see Church (1956, §§ 3, 6).
16Dependent function types introduce a further variable-binding operator; thus with dependent
function types present, there are two variable-binding operators.
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∈ and = together with the logical connectives and the quantifiers, the range of
primitive constants in Martin-Löf type theory is indefinite. Martin-Löf type theory
is, namely, open in the sense that the objects of type dom are not given once and
for all, in a list or inductive definition, say. Rather, objects of type dom (i.e., types
of individuals) and functions with co-domain dom may, in effect, be introduced
at will, subject only to the requirement that the types thus introduced or formable
satisfy the general description of what a type of individuals is (cf. Martin-Löf 1984,
pp. 7–8). In general, this requirement is met by providing any newly postulated type
of individuals A or function Φ forming such types with one or more introduction
rules. Once introduction rules for A or Φ are provided, an elimination rule may be
formulated,17 whereby further pieces of primitive vocabulary are introduced.

The openness of the primitive vocabulary of type theory may be illustrated by
the following, somewhat perverse, example. In order to do arithmetic in type theory
one usually introduces a type of natural numbers, N, and three associated constants:
the individual constant 0, the successor function, s, and a recursor R, which makes
possible definition by recursion and proof by induction on N (e.g. Martin-Löf 1984,
pp. 71–76). Assuming all of this to have been introduced, there is, however, nothing
stopping one from introducing further primitive vocabulary, N∗, 0∗, s∗, and R∗,
satisfying rules structurally identical to those governing the corresponding non-
starred constants. In other words, there is nothing stopping one from introducing
a duplicate of the type of natural numbers and its associated constants. There might
not be much use in such duplication; but the question of usefulness is besides the
point here, where we just want to illustrate the openness of the primitive vocabulary
of type theory. One can of course exploit this openness in more inventive ways
than mere duplication of well-known types and their associated constants. In fact,
inductively defined types quite generally are to be formalizable in type theory; and
any such formalization introduces new primitive vocabulary.

12.3.3 Judgements

Besides term and type, there is in type theory a further logico-grammatical category:
judgement.18 At the most general level, there are two forms of (categorical)
judgement in type theory:

a : C
a = b : C

17Dybjer (1994, 2000) provides a general scheme for the formulation of such rules.
18The term “judgement” in this sense was introduced by Martin-Löf (1982). The term had of
course been used in logic before, but it had fallen out of fashion during, say, the first decades of the
twentieth century; see e.g. Carnap (1934, § 1). For the early history of the use of the term in logic,
see Martin-Löf (2011); for aspects of the later history, see Sundholm (2009).
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The first may be read as saying that a is an object of category C and the second
as saying that a and b are identical objects of category C. Here “category” is used
not quite as in “logico-grammatical category”, but in a more ontological sense. This
use of the term will seem quite natural if (i) we analyze a : C as being of the form
subject–copula–predicate, and (ii) keep in mind that one of the meanings of the
Greek katēgoria is “predicate”. The specific forms of judgement assumed in any
particular version of type theory depends on which categories are assumed. In the
version of type theory assumed in this paper the categories are type and A, for any
type A. Thus we get the following forms of (categorical) judgement:

A : type
A = B : type

and for any type A,

a : A
a = b : A

Examples of judgements are thus

N : type
t : bool

s : (N)N
s(2+ 1) = 2+ s(1) : N

It is essential for anyone wishing to understand the relation between the language
of set theory and the language of type theory to appreciate the difference between
the type theorist’s a : A and the set theorist’s a ∈ b. The first says that a is an object
of the type, or kind, or sort A, whereas the latter says that, within the universe,
or type, of sets, the relation ∈ obtains between a and b. Instances of the form of
judgement a : A in the type structure of set theory are

∅ : V
{∅, {∅}} : V

∈ : (V )(V )prop
Ord : (V )prop,

where Ord(a), for a : V , is the proposition that a is a Von Neumann ordinal. The
first two of these judgements says that ∅, respectively {∅, {∅}}, is a set; the third that
∈ is a binary propositional function; and the fourth that Ord is a unary propositional
function on the universe of sets V . These are things that cannot be expressed in the
language of set theory, in particular not by a formula of the form a ∈ b. That ∅ is a
set, for instance, cannot be expressed by a set-theoretical formula. In fact, reflection
on type predications—assertions that such and such is an object of some type—
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shows that they cannot be taken to have the form of predicate-logical formulae (cf.
Klev 2018a). We are not forced to conclude, as Wittgenstein (1922, esp. 4.126)
seems to have done, that type predications cannot be expressed at all, that the type
of an object a is something that cannot be said, but only shown in our use of a
symbol for a. One can instead introduce—and explain the meaning of—a new form
of statement for the expression of type predications. The judgement a : A is such a
novel form of statement.

When a type A is regarded as a proposition, an object a of type A may be
regarded as a proof, or a truthmaker, of A.19 The judgement a : A is thus to be
read as saying that a is a proof of the proposition A.20 It should be emphasized
that a : A is not itself a proposition. In fact, the logico-grammatical categories of
judgement and proposition are disjoint: no judgement is a proposition, nor is any
proposition a judgement. Thus, iterated colons, as in “b : (a : A)”, make no sense
in type theory.21 Nor is there any need for such iterated colons, since the relation
between a term and its type is taken to be internal and not in need of proof: if a is of
type A, then its being so can be seen either immediately from the form of a or else
from the form of what results after a sequence of simple computation steps. This
point is closely related to “the basic intuitionistic idealization that we can recognize
a proof when we see one” (Kreisel 1962, p. 202) and to the requirement on a type
theory that the relation between a term and its type be decidable in the recursion-
theoretic sense.

The theorems of type theory are judgements and not propositions. Thus it is not

A

but

a : A

that is the form of a theorem of type theory (albeit not the only form). The logical
form of a theorem must be the form of something that is assertion-apt, in the
sense of being suitable as the object of an act of assertion. Propositions—be they
conceived as types of proofs, as truth-values, or as sets of possible worlds, say—are
not assertion-apt in this sense. The judgement that a is a proof of A, by contrast, is
assertion-apt and thus has the logical form appropriate for a theorem.

If we can demonstrate that a proposition A has a proof, or a truthmaker, then
we are certainly justified in asserting that A is true. Thus it makes good sense to

19For the relation between, on the one hand, recent discussions on truthmakers and truthmaker
semantics and, on the other, Martin-Löf type theory, see Sundholm (1994) and Klev (2017b).
20In the literature, also the term “proof-object” is used, following Diller and Troelstra (1984).
21This contrasts with so-called justification logic (cf. Artemov and Fitting 2016), where a : A,
understood as “a is a justification of A”, is a proposition. Thus, for instance b : (a : A) and
(a : A) ⊃ A, are well-formed formulae there.
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introduce a new form of judgement A true governed by the rule

a : A
A true

It must be emphasized that the true occurring here is not a truth-predicate in
the ordinary sense. A predicate in the usual sense always yields a proposition
(or formula) when applied to a suitable number of arguments, but A true is a
judgement and not a proposition. This true should rather be compared to the sign �
of judgement, or assertion, in Frege’s and Russell’s systems:

� A

This assertion sign, the so-called turnstile, is not used in forming new propositions,
but in forming a judgement from a proposition. Thus, unlike the propositional
connectives and the quantifiers, the assertion sign turns a proposition into something
assertion-apt. Employing grammatical terminology, we may say that the assertion
sign supplies the mood of the assertion � A, whereas the proposition A is the
content. A content by itself is not assertion-apt; what is required for assertion is a
composite of content and mood, more specifically, of content and assertoric mood.

In the language of set theory, as in predicate-logical languages more generally, no
distinction similar to that between proposition and judgement is drawn. In particular,
the theorems of set theory are not regarded as being of a logico-grammatical
category different from that of formulae. The string of symbols � A can of course
be found in presentations of set theory, but it is then regarded as expressing a
metamathematical property of A, namely that there exists a sequence of formulae
coding a derivation of the formula A. We may regard this metamathematical “� A”
as a judgement, but only as a judgement in the metalanguage of set theory (or
any other formal theory) and not as a judgement of set theory proper.22 Inside
set theory we must instead regard the formulae themselves as assertion-apt; no
additional element such as the assertion sign is required in order to turn such a
formula into something of the form of a theorem. If we take assertions to have
content–mood structure, we must therefore regard the formulae of set theory as
coming equipped with the assertoric mood. But then we shall be forced to hold
that the antecedent A of an implication A ⊃ B as well as any of the disjuncts of a
disjunction A ∨ B have assertoric mood, which they clearly do not have.23 For the
purposes of conceptual clarity it is therefore quite useful to draw a distinction such
as that between proposition and judgement.

22See Curry (1963, ch. 2.C) for such an account of the metamathematical “� A”.
23This is sometimes called the “Frege point” after Geach (1972, pp. 254–270); see e.g. Frege (1983,
pp. 201–203).
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12.3.4 Hypothetical Judgements

In the simple theory of types, as well as in higher-order logic and many-sorted logic,
variables are typed globally, in the sense that the type of a variable is specified once
and for all by the formation rules of the language. In Martin-Löf type theory, by
contrast, variables are typed locally, namely in a so-called context

x1 : A1, . . . , xn : An,

where the Ai’s are types. If there are free variables in a judgement a : C or a = b :
C, then such a judgement therefore does not have a determinate meaning unless a
context is provided in which the types of these variables are declared. The general
form of judgement in type theory must therefore also list the context. A common
notation uses the turnstile, as follows:

x1 : A1, . . . , xn : An � a : C
x1 : A1, . . . , xn : An � a = b : C

These judgements should be read as saying that a is an object of category C,
respectively that a and b are identical objects of category C, in the context x1 :
A1, . . . , xn : An. This in turn may be recast as a hypothetical judgement: a is
an object of category C, or a and b are identical objects of category C, provided
x1 : A1, . . . , xn : An. We get a more familiar form of hypothetical judgement by
letting C be a proposition A and by thinking of the type assignment xi : Ai as the
assumption that Ai is true:

A1 true, . . . , An true � A true

This is the judgement that A is true provided, or on the assumption, or condition,
that A1, . . . , An are all true.

Hypothetical judgement is another novelty of type theory in comparison with set
theory and ordinary predicate logic. In particular, hypothetical judgements should
not be confused with implications, that is, propositions of the form A ⊃ B, for a
hypothetical judgement is not a proposition (cf. Sundholm 2012). A hypothetical
judgement should rather be compared to a sequent in the sense of Gentzen (1936,
§ 5), namely a sequent

A1, . . . , An −→ A

to be read as saying that A is true on the assumption that A1, . . . , An are all true
and governed by introduction and elimination rules together with structural rules
(these sequents are therefore not quite those of ordinary sequent calculi, which have
so-called left and right rules rather than introduction and elimination rules). This, in
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turn, may be understood as a gloss on the assertion that the relation of consequence
holds between the propositions A1, . . . , An and A.

12.4 Functions

Among the fundamental notions of mathematics one finds not only the notion of a
domain or collection of objects, but also that of an operation on, or transformation,
or mapping, of objects of such a domain, what is usually called a function. We have
already come across (non-dependent) function types: ifA and B are types, then so is
(A)B. In Martin-Löf type theory we take this type to be explained by the following
two elimination-like rules:

f : (A)B a : A
f (a) : B

f : (A)B a = a′ : A
f (a) = f (a′) : B.

The first rule says that whenever f : (A)B and a : A, then there is an object f (a)
of type B, namely the result of applying f to a. With the function type (A)B there
is thus associated a primitive notion of application to an argument. The second rule
says that a function applied to identical arguments yield identical results.

In set theory it is not common to regard the notion of function as a primitive
notion. On the contrary, one there usually takes the notion of function to be
explained in terms of the primitive notions of set theory. More precisely, a function
f is there defined to be a set f of ordered pairs satisfying the condition that if
〈x, y〉 ∈ f and 〈x, y′〉 ∈ f are both true, then so is y = y′.24 Inside set theory, there
might thus be no need to talk about functions in addition to sets. If we are to analyze
the language and conceptual architecture of set theory, we do, however, still need to
invoke functions, as we have already done when sketching a type structure for set
theory. In particular, the relations of elementhood, ∈, and identity, =, will then be
analyzed as binary propositional functions on the universe V of sets, as expressed
by the following judgements:

∈ : (V )(V )prop
= : (V )(V )prop

Yet another function is presupposed by the definition of the application of a
function qua set of ordered pairs to an argument. Namely, in order to define the
term f (a), where both f and a are sets, the syntax of predicate logic requires that
there be some function connecting f and a. Thus, we must think of 1( 2) as a

24Hausdorff (1914, p. 33) appears to have been the first to define the notion of function in this way
solely in terms of set theory. On Hausdorff’s definition in a historical context, see Ulrich Felgner’s
article in Hausdorff (2002, pp. 621–633).
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binary function on the universe V , as follows:

1( 2) : (V )(V )V

Of course, one could also use some other notation here, such as a left quotation
mark, thus writing f ‘a, as in Shoenfield (1967, p. 245).

Since the primitive language of set theory contains no term-forming operators,
the definition of any n-ary function symbol F must there take the form

Fa1 . . . an = b↔def ϕ[a1, . . . , an, b] (Def-F )

Here ϕ[a1, . . . , an, b] is a formula whose free variables are among a1, . . . , an, b

such that

∀x1 . . . xn∃!y ϕ(x1, . . . , xn, y)

is a theorem. The application function, in particular, may be introduced by the
definition

f (a) = b↔def (ψ[f, a] ∧ 〈a, b〉 ∈ f ) ∨ (¬ψ[f, a] ∧ b = ∅),

where ψ[f, a] is a formula expressing that f is a function in the sense of set theory
and that there is x such that 〈a, x〉 ∈ f . Notice, however, that the definiendum here
is not f (a), but rather f (a) = b. More generally, the definiendum in the definition
(Def-F ) is not the term Fa1 . . . an, but rather the formula Fa1 . . . an = b. What
is explained by such a definition is, therefore, not the term, but the formula. The
term Fa1 . . . an is thus rendered an improper symbol in the sense of Russell and
Whitehead (1910, p. 66), viz., a symbol that has no meaning in isolation, but only
in certain contexts. The term f (a), in particular, has no meaning outside the context
of formulae of the form f (a) = b or formulae defined from such formulae. The
proposition that 2+ 2 is an even number, for instance, cannot therefore be analyzed
simply as Even(2+ 2), but must be analyzed as ∃n(2+ 2 = n ∧ Even(n)).

Functions qua sets of ordered pairs should thus not be compared to objects of
function type (A)B. They may, however, be compared to objects of type A → B.
In Martin-Löf type theory A→ B is a type of objects that, just as the relevant sets
of ordered pairs, are individuals coding functions. It can be formed whenever A and
B are types of individuals:

A,B : dom
A→ B : dom

There is a more general form of type, written Π(A,B), of individuals coding
dependent functions; but, as elsewhere in this article, we may concentrate on the
simpler non-dependent case, A→ B. The introduction rule for A→ B allows us to
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form an individual λ(f ) for any f : (A)B when A and B are types of individuals:

A,B : dom f : (A)B
λ(f ) : A→ B

Just as in set theory, we need an application function to account for the application
of an element c : A→ B to an argument. Such an application function is provided
by the elimination rule for A→ B:

c : A→ B a : A
ap(c, a) : B

The application function ap is defined by laying down that it is to satisfy the
following equation:

ap(λ(f ), a) = f (a) : B

From this equation it is clear that λ(f ) may indeed be thought of as a code of
f : (A)B.

Those familiar with Frege’s logical system in the Grundgesetze may recognize
the similarity between the terms λ(f ) and Frege’s courses-of-values (Wertverläufe;
Frege 1893, § 9). A course-of-values –α.f (α) can be formed whenever f is a function
from individuals to individuals (or, from objects to objects, in Frege’s terminology).
Moreover, there is a binary application function, −1

!−2, defined on individuals,
satisfying

–α.f (α)!a = f (a)

The rules governing courses-of-values are thus quite similar to those governing
λ(f ). An essential difference, however, is that a Fregean course-of-values is of the
same type as any argument to which it may be applied via −1

!−2. Self-application
therefore makes sense, which is one of the reasons (though not the only reason)
for the inconsistency of Frege’s system. In Martin-Löf type theory, by contrast, the
object λ(f ) is of type A → B, whereas any object to which λ(f ) may be applied
via ap is of type A.

We should emphasize the difference between the primitive notion of application
associated with the function type (A)B and application via an application function
such as ap,−1

!−2 or 1( 2). Consider, for instance, the term ap(c, a). It involves
both notions of application: the primitive application of ap to c and a and the
application of c to a via the function ap. It is clear that some primitive notion of
function application is needed. As Frege (1892, p. 205) and Bradley (1893, ch. 3)
in effect noted, an infinite regress soon arises if we try to get rid of the primitive
notion of function application in favour of application via an application function.
For instance, if we invoke an application function ap∗ to account for the application
of ap to c and a, as in ap∗(ap, c, a), then we either need to say that ap∗ is applied
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primitively to its arguments or else invoke yet a further application function and thus
be on the brink of regress.

12.5 Identity

Recall that in type theory we have two basic forms of (categorical) judgement: a : C
and a = b : C. Just as there is a fundamental difference between the formula
a : C of type theory and the formula a ∈ b of set theory, so there is a fundamental
difference between the formula a = b : C of type theory and the formula a = b

of set theory or of predicate logic quite generally. The most fundamental difference
is in logico-grammatical category: whereas the former is a judgement, the latter is
a proposition. In particular, a formula a = b of predicate logic is to be analyzed
as the result of applying a certain binary propositional function, = : (A)(A)prop,
to objects a, b : A of the underlying domain A. The judgement a = b : C, by
contrast, does not have function–argument structure, nor is it a proposition. As a
consequence, the propositional connectives and the quantifiers are not applicable to
identity judgements as they are to identity propositions.

The wish to do predicate logic in type theory very nearly forces one to introduce
a propositional function Id such that for any type of individuals A and any a, b : A,
the result Id(A, a, b) of applying Id to A, a, and b is the proposition that a and b
are identical. Thus, we are to have the following formation rule:

A : dom a : A b : A
Id(A, a, b) : prop

That is, wheneverA is a type of individuals and a and b are elements ofA, then there
is a proposition Id(A, a, b). Because of the identification prop = dom, we could
also have written Id(A, a, b) : dom in the conclusion, but prop is more suggestive
in this case. The formation rule for Id does of course not by itself make Id(A, a, b)
into an identity proposition. But by supplying the function Id thus postulated with
the introduction rule

a : A
refl(a) : Id(A, a, a)

and a corresponding elimination rule, it can be seen that Id(A) indeed behaves
as identity on A. In particular, it follows easily from these rules that Id(A) is an
equivalence relation such that if Id(A, a, b) is true, then a and b are indiscernible
by unary propositional functions over A (cf. e.g. Nordström et al. 1990, pp. 57–59).
Type theory thus recognizes both judgemental identity, a = b : A, and propositional
identity, Id(A, a, b).
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Identity types, Id(A, a, b), are central in homotopy type theory and have been
the subject of many important metamathematical studies.25 The relation between
judgemental and propositional identity, and the treatment of identity more generally,
is, moreover, one of the more intriguing philosophical aspects of Martin-Löf type
theory. Here I will restrict myself to one topic, namely the conceptual priority
of judgemental identity over propositional identity. Again we shall see how type
theory allows a much deeper analysis of logical notions—in this case the notion of
identity—than anything set theory and predicate logic can offer.

In order to have the right to take f to be a function on some domain A, we must
presuppose that A has been equipped with a notion of identity. For we may take f
to be a function on A only if we know that f is well-defined, that is, only if we
know that the results f (a) and f (b) of applying f to identical arguments a, b : A
are identical; or, in symbols:

a = b �⇒ f (a) = f (b) (Well-def)

The propositional function of identity onA, namely the function= : (A)(A)prop, is
a binary function onA. Being such a function, it therefore presupposes thatA comes
equipped with a notion of identity. On pain of circularity, this notion of identity,
presupposed by the propositional function of identity, cannot itself be propositional
identity. In particular, the identity,=, featuring in (Well-def) cannot be propositional
identity. Thus the notion of a function f on a domain A presupposes some notion
of identity other than propositional identity.

Judgemental identity, since it is not a propositional function onA, may well serve
as the notion of identity presupposed by the notion of a function on A. It does serve
this role in Martin-Löf type theory. The formulation there of (Well-def) is, indeed,
one of the primitive, meaning-giving rules governing functions, and invokes only
judgemental identity (see Sect. 12.4):

f : (A)B a = b : A
f (a) = f (b) : B

The formulation of (Well-def) in terms of propositional identity Id, by contrast,
is a theorem, easily established by the rule of Id-elimination. We may conclude
that judgemental identity is conceptually prior to propositional identity, since
the functionhood of propositional identity presupposes judgemental identity. It
is worthwhile noting that this argument relies only on the difference in logico-
grammatical category between judgemental and propositional identity, and not on
the rules that govern these two notions of identity (which tend to vary between
various versions of type theory).

Another way of seeing the priority of judgemental identity over propositional
identity follows the idea that the criterion of identity for a type A cannot be

25Examples are Streicher (1993), Hofmann (1997), and Hofmann and Streicher (1998).
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expressed by propositional identity, though it may be expressed by judgemental
identity. It is a general requirement on a category C that it be determinate what it
is for objects a, b : C to be identical. A good example is afforded by the rational
numbers. Someone who does not know that different fractions may be the same
rational number, such as are 1

2 and 2
4 , cannot be said to have understood the concept

of a rational number. Or, in a more ontological turn of phrase: it is part of the
essence of rational numbers that fractions m

n
and m′

n′ such that mn′ = m′n are the
same rational number, namely they are the same “in spite of formal differences in
the mode of givenness”, to quote Cantor (see the quotation in Sect. 12.2).26 The
explanation of a type A, being a category, must therefore include an explanation
of what it is for objects a, b : A to be the same. Or, again in a more ontological
terminology: the essence of a type A must include a criterion of identity, namely a
criterion that determines what it is for objects a, b : A to be identical. It can then be
seen by reasoning similar to that above that the criterion of identity for A cannot be
expressed in terms of the propositional function of identity on A (cf. Klev 2018b).
This function, namely, presupposes that A has already been equipped with a notion
of identity; but it is the criterion of identity for A that is to determine what it is for
objects a, b : A to be identical.

It follows that we cannot regard the axiom of extensionality in set theory,

a = b↔ ∀x(x ∈ a ↔ x ∈ b),

as a formulation of the criterion of identity for sets. Just as all other axioms of set
theory, this is an ordinary predicate-logical formula, so the identity sign occurring
in it must be taken to signify a propositional function on the universe V of sets, and
therefore to presuppose a criterion of identity for V . Or, again, the well-formedness
of the axiom of extensionality presupposes that V has been equipped with some
notion of identity; hence it cannot be by means of this axiom that V is so equipped.

The identity judgement a = b : V , by contrast, lends itself to the expression of
the identity criterion for V , since it does not presuppose any notion of identity on
V . Indeed, it is by means of judgements a = b : C that the identity criterion for a
category C in Martin-Löf type theory is stated. For instance, the criterion of identity
of the function type (A)B may be taken to be contained in the following two rules:

f = g : (A)B a : A
f (a) = g(a) : B

f, g : (A)B x : A � f (x) = g(x) : B
f = g : (A)B

Thus, we are to have f = g : (A)B if and only if f (a) = g(a) : B for arbitrary
a : A. The criterion of identity for the function type (A)B is thus in a sense reduced
to the criterion of identity for B. The criterion of identity for a type A of individuals
follows from a stipulation, stated in terms of judgemental identity, of when two so-

26Cantor’s use of the term “mode of givenness” (Art des Gegebenseins) might have inspired Frege’s
use of the same term in his elucidation of the notion of sense; see Sundholm (2001, pp. 65–67).
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called canonical objects of A are identical; we shall not go into the details here (cf.
Martin-Löf 1984, pp. 7–10).

12.6 Concluding Remarks

A theory that is put to service as a foundation for mathematics provides mathematics
not only with a theoretical foundation, that is, a set of basic principles (axioms
or rules, say) on the basis of which the theorems of mathematics are to be
demonstrable: it also provides it with a certain conceptual architecture, or an
“ideology”, an articulation of its basic concepts and their interrelations. In the
foregoing pages I have contrasted the two ideologies thus provided by set theory
and type theory. We have seen, for instance, how the two primitive notions of set
and type differ from each other, as well as how type theory differs from set theory
in taking the notion of function to be primitive. Besides outlining such differences, I
have tried to convey how rich and nicely detailed the conceptual architecture of type
theory is. On first sight such intricacy may seem superfluous. Do we, for instance,
need a distinction between judgements and propositions or a distinction between
judgemental and propositional identity? Set theory draws no such distinctions, but
it has nonetheless been quite successful as a foundation for mathematics. Indeed, the
ideological simplicity of set theory is certainly part of the explanation of its success.
I have tried to show how the subtle distinctions offered by type theory can be of use
in the philosophical analysis of logical and mathematical notions, namely as tools
that allow one to dig deeper where set-theoretical ideology gives in.
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Chapter 13
What Do We Want a Foundation to Do?

Comparing Set-Theoretic, Category-Theoretic, and
Univalent Approaches

Penelope Maddy

Abstract It’s often said that set theory provides a foundation for classical math-
ematics because every classical mathematical object can be modeled as a set and
every classical mathematical theorem can be proved from the axioms of set theory.
This is obviously a remarkable mathematical fact, but it isn’t obvious what makes it
‘foundational’. This paper begins with a taxonomy of the jobs set theory does that
might reasonably be regarded as foundational. It then moves on to category-theoretic
and univalent foundations, exploring to what extent they do these same jobs, and to
what extent they might do other jobs also reasonably regarded as foundational.

Mainstream orthodoxy holds that set theory provides a foundation for contempo-
rary pure mathematics. Critics of this view argue that category theory, or more
recently univalent foundations, is better suited to this role. Some observers of this
controversy suggest that it might be resolved by a better understanding of what a
foundation is. Despite considerable sympathy to this line of thought, I’m skeptical
of the unspoken assumption that there’s an underlying concept of a ‘foundation’ up
for analysis, that this analysis would properly guide our assessment of the various
candidates. In contrast, it seems to me that the considerations the combatants offer
against opponents and for their preferred candidates, as well as the roles each
candidate actually or potentially succeeds in playing, reveal quite a number of
different jobs that mathematicians want done. What matters is these jobs we want
our theories to do and how well they do them. Whether any or all of them, jobs or
theories, deserves to be called ‘foundational’ is really beside the point.

The forces behind the rise of set-theoretic foundations (in the late nineteenth
and early twentieth centuries) and its subsequent accomplishments (as of the early
twenty-first) are explored and assessed in §13.1. §13.2 turns to the criticisms lodged
against set-theoretic foundations as category theory developed (in the 1940s) and the
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subsequent case for category-theoretic foundations (beginning in the 1960s). The
current proposal for univalent foundations is examined in the concluding §13.3.

13.1 Set-Theoretic Foundations1

It’s commonplace to note that all standard mathematical objects and structures can
be modeled as sets and all standard mathematical theorems proved from the axioms
of set theory2 – indeed, familiarity may well have dulled our sense of just how
remarkable this fact is. For our purposes, though, let me draw attention to another
commonplace: when called upon to characterize the foundational role of set theory,
many observers are content merely to remind us that mathematics can be embedded
in set theory in this way. But simply repeating that this is so leaves our present
questions untouched: what’s the point of this embedding?, what need does it serve?,
what foundational job does it do?

To answer these questions, we should look back at the conditions under which
set theory arose in the first place. Over the course of the nineteenth century,
mathematics had expanded dramatically in an extraordinary variety of directions.
This great torrent of new mathematics brought with it a pair of epistemological
losses, as the subject outstripped available thinking on what ultimately justifies
mathematical claims. Early efforts to make good on those losses eventually needed
support of their own, and it was at this point that set theory entered the picture. A
quick sketch of these developments should help explain what jobs set theory was at
least partly designed to do.

Consider first the case of geometry. From the diagrams of Euclidean times to
Kant’s late eighteenth century theory of spatial intuition, geometry was generally
understood as grounded in some variety of visualization or intuition. That changed
in the nineteenth century with the introduction of ‘points at infinity’ (where parallel
lines meet) and ‘imaginary points’ (with complex numbers as coordinates). There
was no denying the fruitfulness of regarding geometry from this new perspective,
but the imaginary points at which two disjoint circles ‘intersect’ can hardly be
visualized or intuited! So this is the first epistemic loss: visualization and intuition
were no longer adequate measures of correctness for the brave new geometry. What
justification, then, could be given for admitting these new, invisible points, what
guarantee that they wouldn’t severely compromise the whole subject? Geometers
were understandably queasy about this expansion of the proper domain of their
inquiry.

1Many themes of this section are explored in more detail, with sources, in §I of [2017].
2Items like the category of all groups or the category of all categories are exceptions. There is no
set of all groups or set of all categories for the same reason that there’s no set of all sets: sets are
formed in a transfinite series of stages, and there’s no stage at which all of them (or all of them that
are groups or all of them that are categories) are available to be collected. The category-theoretic
cases are explored in the next section.
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The second epistemic loss came with the rise of pure mathematics during this
same period.3 Up through the eighteenth century, there was no distinction between
pure and applied; mathematics was considered the study of the mathematical
structure literally present in the physical world. Galileo, Newton, Euler, Fourier,
and others took the goal of natural science to be the isolation of purely mathematical
laws governing the behavior of observable phenomena (e.g., planetary motions or
the distribution of heat in a body) without appeal to hidden causes (e.g., Cartesian
vortices or caloric fluids). This strategy was a tremendously successful at the
time, encouraging precise mathematization and eschewing dubious mechanical
explanations. The ongoing clash between mathematization of observable behavior
and causal explanation re-emerged in the late nineteenth century in the study of
thermodynamics: descendants of the purely descriptive, mathematical tradition, pro-
posed the experientially exception-less second law, that entropy can only increase,
while descendants of the causal, explanatory tradition developed the kinetic theory,
according to which a decrease in entropy is just highly unlikely. In the early years
of the twentieth century, the tables of history turned: kinetic theory with its atoms
and molecules in random motion was experimentally confirmed. This meant that
the laws of classical thermodynamics were revealed to be merely probable, and
more generally, that the many hard-won differential equations of the eighteenth and
nineteenth centuries were highly effective approximations, smoothed-out versions
of a more complex, discrete microstructure.

By the end of the nineteenth and beginning of the twentieth centuries, as pure
mathematics proliferated and applied mathematics lost its claim to literal truth,
it became clear that mathematics isn’t actually in the business of discerning the
precise formal structure of the physical world. Rather, it provides an array of abstract
models for the scientist to choose from for any particular descriptive job. Most of
these mathematical descriptions involve explicit idealizations and approximations,
and applied mathematicians expend considerable effort on explaining how and why
these non-literal representations are nonetheless effective, often within a limited
range of cases. Some such descriptions are effective despite our inability to explain
exactly what worldly features they’re tracking (e.g., in quantum mechanics). These
are crucial morals for the philosophy of science, but our concern here is the
epistemic loss suffered by mathematics itself: in the new, pure mathematics, there
was no place for physical interpretation or physical insight to guide developments.
In Euler’s day, a scientist’s feel for the physical situation could help shape
the mathematics, could constrain it to effective paths even when rigor was in
short supply. Now that mathematicians had declared their independence – their
freedom to pursue whatever paths caught their purely mathematical interest –
physical results and physical intuition could no longer serve to support or justify
mathematical work. Without this guidance, how were mathematicians to tell which
among the proliferation of new, purely mathematical abstract structures under were
trustworthy, legitimate, worthwhile?

3For more on this development, see [2008] or chapter 1 of [2011].
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In the face of these epistemic set-backs, two types of remedies were offered. The
first, in response to queasiness about the new, un-intuitable geometric points, came
in the mid-nineteenth century, when Karl von Staudt managed to build surrogates
for the suspicious entities out of straightforwardly acceptable materials. So, for
example, a point at infinity where two given parallel lines meet can be identified
with the collection (‘pencil’) of all lines parallel to those two, and this point at
infinity taken to be on a given line if the line is in that collection.4 In this way,
a previously suspicious mathematical development is domesticated by building
it up from previously justified mathematics. This method was widely used, but
eventually a new question has to be faced: which means of building new from old
are trustworthy, and why?

The second remedy, in response to the proliferation of abstract structures, came
later in the nineteenth century, with Hilbert’s axiomatic method: each proposed
structure should be rigorously axiomatized; if that axiomatization is coherent, the
structure is legitimate. Though careful isolation of appropriate axioms might reveal
unnoticed incoherence in some cases, for most others a new worry is immediate:
how do we tell which axiomatizations are coherent?5 A second concern is less
obvious, but also serious. Suppose I’ve devised an axiom system for the natural
numbers, another for the real numbers, another for analysis, another for point-set
topology, another for computable functions, and so on – and I prove theorems in
each of these. Can I use the theorems I’ve proved in one area to prove theorems in
another? John Burgess illustrates how centrally modern mathematics replies on the
ability to move easily between its branches:

There is the interconnectedness of the different branches of mathematics, a phenomenon
evident since the seventeenth century in the use of coordinate methods, but vastly expanded
in the nineteenth century. With the group concept, an idea originating in algebra is applied
to geometry. With ‘functional analysis’, ideas originating in geometry or topology are
applied to analysis, as functions come to be considered ‘points’ in an auxiliary space, and
operations like differentiation and integration come to be considered ‘transformations’ of
that space. (Footnote: One reason one needs to allow in pathological functions like the
Riemann-Weierstrass examples is in order to achieve a certain ‘completeness’, analogous
to the completeness of the real number-line, in the ‘space’ of functions.) And so on across
the whole of mathematics.

Interconnectedness implies that it will no longer be sufficient to put each individual branch
of mathematics separately on a rigorous basis. (Burgess 2015, pp. 59–60, emphasis in the
original)

Today it’s hard to see how Wiles could have proved Fermat’s Last Theorem if he’d
been confined to one or another of the individual axiom systems!

4Readers of Frege (1884) will recognize this as ‘the direction of a line’ and recall how it serves as
Frege’s model for identifying a natural number with a collection of equinumerous collections.
5This was before the development of formal languages and deductive systems, before a clear
understanding of consistency, satisfiability, and of course, before Gödel’s completeness and
incompleteness theorems.
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The epistemic and methodological questions raised by these nineteenth-century
losses and their partial remedies permeated the climate in which set theory first
arose. Though much of the initial motivation for introducing sets was purely
mathematical – Cantor, for example, was just trying to generalize his theorem on the
uniqueness of trigonometric representations – it soon became clear that the various
building methods of von Staudt and the rest were all essentially set-theoretic in
character, all derivable from a few elementary set-theoretic operations (like taking
subsets, intersections and unions, cross-products, and power sets). Indeed it turned
out that all the various items previously axiomatized in separate systems (natural
numbers, real numbers,6 analysis, etc.) could be constructed set-theoretically – the
beginnings, in other words, of the famous embedding of mathematics in set theory.

In this way, set theory made progress on our first two questions: the trustworthy
building methods are those of set theory; the coherent axiom systems are those
that can be modeled by sets. Of course this is cold comfort unless we know that
set theory itself is reliable – a particularly dubious proposition at the time, given
both the paradoxes and wide-spread debates over fundamentals (the well-ordering
principle, the axiom of choice, the continuum hypothesis, etc.). Working in the
Hilbertian tradition, Zermelo set out to axiomatize the subject, successfully isolating
the basic assumptions underlying the informal practice while forestalling the known
routes to paradox. Though he hoped to include a consistency proof in his original
presentation, Hilbert encouraged him to publish the axioms first and follow with
the consistency proof when it was ready. Years later it became clear what good
advice this was, when Gödel showed that only an stronger system could prove the
consistency of Zermelo’s axioms (assuming they are consistent).

So, much as we might like to have an iron-clad guarantee of the consistency of
set theory, and thus of the trustworthiness of the methods embedded therein, this is
a forlorn hope; all we get is the assurance that the embedded methods are no more
dangerous than Zermelo’s set theory. Most estimates of that danger have decreased
substantially over the intervening century, with the development of a compelling
intuitive picture of the universe of sets (the iterative conception), a finely-articulated
model within set theory (the constructible universe), and a vast, intricate and far-
reaching mathematical theory with no sign of contradiction. Meanwhile, various
levels of consistency strength have been delineated and explored – from relatively
weak subsystems of second-order arithmetic to ever-larger large cardinal axioms –

6It’s worth noting that Dedekind’s set-theoretic construction of the reals was different in character
from von Staudt’s construction of imaginary points. Von Staudt was faced with a practice in
good working order, but with questionable posits. Dedekind was faced with a defective practice
(basic theorems of the calculus couldn’t be proved). So von Staudt’s challenge was to remove
queasiness about the posits by domesticating them, while Dedekind’s was to produce a more
precise replacement that would both conform to previous practice and extend it (proving those
basic theorems). Thus Dedekind’s construction had a different, plausibly ‘foundational’ function
(called Elucidation in [2017]). As both category-theoretic and univalent foundations are content
to relegate Elucidation to ETCS, a weak category-theoretic theory of collections (see [2017], §II,
and UFP (2013), p. 8, respectively), it won’t figure in the comparative analysis here.
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yielding a hierarchy that’s now routinely used to calibrate the level of danger a
proposed theory presents. Presumably the ability to assess these risks is something
mathematicians value. Insofar as we’re inclined to regard Risk Assessment as a
‘foundational’ virtue, this is one foundational job that contemporary set theory does
quite well.

Finally, the other question raised by the axiomatic response to the loss of
older forms of justification (intuition/visualization, physical interpretation/insight)
concerned the interrelations between the various branches of pure mathematics: if
each branch is characterized by its own separate list of axioms, how can work in one
branch be brought to bear in another?

To guarantee that rigor is not compromised in the process of transferring material from one
branch of mathematics to another, it is essential that the starting points of the branches being
connected should . . . be compatible. . . . The only obvious way to ensure compatibility of
the starting points . . . is ultimately to derive all branches from a common, unified starting
point. (Burgess 2015, pp. 61–62)

This ‘common, unified starting point’ emerges when the various branches are all
embedded in a single theory of sets, when all theorems are treated as theorems in
the same system. In this way, set theory provides a Generous Arena where all
of modern mathematics takes place side-by-side and a Shared Standard of what
counts as a legitimate construction or proof. These are the striking achievements of
the well-known embedding of mathematics in set theory. Insofar as they fairly count
as ‘foundational’, set theory is playing two more crucial foundational roles.

Let’s pause a moment to notice that everything claimed so far on set theory’s
behalf has been at the level of straightforward mathematical benefits: the embedding
of mathematics in set theory allows us to assess the risk of our theories, to bring
results and techniques one branch of mathematics to bear on concepts and problems
in another, and to agree on standards of construction and proof. Some observers,
especially philosophers, have been tempted to draw – in addition – strong meta-
physical or epistemological morals: we’ve discovered that all mathematical entities
were really sets all along, or that our knowledge of mathematics is reducible to
our knowledge of sets.7 These further claims might rightly be called ‘foundational’,
too, but they’re also controversial, to say the least. For mathematical purposes, the
metaphysical claim is beside the point: it doesn’t matter whether we say the von
Neumann ordinals are the numbers or the von Neumann ordinals can serve as fully
effective mathematical surrogates for the numbers. As for the epistemological claim,
it’s just false: however it is that we know the things we know in the various, far-flung
branches of mathematics, it isn’t by deriving them from the axioms of set theory.
Most of the time, it’s our conviction that the mathematics is correct that makes us
think there must be a formal proof from those axioms!

While dubious philosophical claims like these are unlikely to affect practice,
other intrusions of irrelevant ontological thinking might come uncomfortably close.

7These are the spurious foundational virtues called Metaphysical Insight and Epistemic Source
in [2017].
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Quite generally, if we take the claim that set theory determines the ontology of
mathematics too seriously, we might be tempted to think of it as ‘the final court
of appeal’, charged with passing stern judgement on new mathematical avenues. In
fact, I think this gets the situation backwards: casting set theory as the Generous
Arena isn’t intended to limit mathematics; rather it places a heavy responsibility on
set theory to be as generous as possible in the types of structure whose existence it
implies.8 This admonition to maximize is one of the most fundamental and powerful
methodological principles guiding the development of set theory. If we imagine, in
our overly philosophical mood, that set theory has some kind of special access to
the metaphysical facts about what abstracta exist, then we might be tempted to put
the onus on mathematical practice to conform to the dictates of set theory, to raise
that special access above informed judgements of mathematical advantage. I trust
we can all agree that this would be a grave mistake.

A more subtle danger in the same general direction arises from the fact that our
embedding of mathematics in set theory is more like von Staudt’s approach than
Hilbert’s: a surrogate for the mathematical item in question is constructed by set-
theoretic means, as an item in V, the set-theoretic universe; it’s not enough, as the
Hilbertian would have it, that there’s a model somewhere in V that thinks there is
such an item. A simple example would be a proof of 1 = 0 from the axioms of
(first-order) Peano Arithmetic: PA + not-Con(PA) is consistent (assuming PA is),
so it has a model that thinks there’s a proof of 1 = 0 from PA; but viewed set-
theoretically, that model is benighted, the thing it takes for a proof of 1 = 0 has
non-standard length, isn’t really a proof. For a more interesting example, consider a
definable9 well-ordering of the real numbers. There is such an ordering in Gödel’s
inner model, the constructible universe L, but if we add large cardinal axioms to our
list, as many set theorists these days do, then that model is benighted: the thing it
takes for a well-ordering of the reals only orders the reals present in L; in fact, there
is no definable well-ordering of all the reals.

Speaking loosely, we might express this by saying that the inconsistency proof
and the well-ordering exist on the Hilbertian standard, while on the von Staudtian
set-theoretic standard, they don’t. This way of talking is expressive and largely
benign, but it can lead us astray if we forget that it’s figurative, if we fall into
taking it too literally. We need to bear in mind that the cash value of ‘these things
exist in V’ is just ‘the existence of (surrogates for) these things can be proved from
the axioms of set theory’ – a straightforward manifestation of set theory’s role as
Shared Standard of proof. To say that ‘the universe of sets is the ontology of
mathematics’ amounts to claiming that the axioms of set theory imply the existence
of (surrogates for) all the entities of classical mathematics – a simple affirmation of
set theory’s role as Generous Arena.

8The underlying methodological maxim here is to prefer non-restrictive, maximizing theories.
[1997] concludes with an early attempt to formalize this notion. Various developments of this
idea and alternatives to it have been suggested, but the problem remains open.
9That is, projectively definable.
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The danger in taking figurative ontological talk too seriously is that it can
lead to a sort of rigidity in practice. Consider that definable well-ordering of
the reals. Suppose a pure mathematician has a clever and fruitful approach to a
certain problem, or an applied mathematician has a way to effectively model some
physical situation, by means of such an ordering. If we believe that set theory is the
‘ontology’ of mathematics, ‘the final court of ontological appeal’, we’ll be tempted
to say ‘tough luck, it might be nice if there were such a thing, but there isn’t’. But
this seems wrong. Both mathematicians’ activities can be carried out inside L – by
which we mean, in set theory with V = L as an additional axiom. Since that theory
includes the standard axioms, it provides a fairly Generous Arena all by itself:
the usual constructions and techniques are ready to hand; to speak in the figurative
idiom, L is a pretty good place to do mathematics. The disadvantage is that results
proved using V = L can’t automatically be exported to other areas of mathematics,
and results from other areas that depend on large cardinals can’t automatically be
imported. But as long as these import/export restrictions are observed, as long as
the use of axioms beyond the standard ones is carefully flagged, there’s no reason
to rule out these developments. The pure mathematician’s work on her problem is
simply part of the investigation of L, a particularly important part of V; the applied
mathematician has determined that it’s most effective to model his physical situation
in L rather than V.

This leaves us with a tempered version of the von Staudian ‘final court of
ontological appeal’: the axioms for our Generous Arena, which constitute our
Shared Standard of proof, include the usual axioms – plus some others, beginning
with large cardinals, that add to their generosity – but these can be temporarily
adjusted for mathematical or scientific purposes with suitable import/export restric-
tions. Once we reject the idea that the choice of a fundamental theory to do these
foundational jobs is a matter of determining the ‘true mathematical ontology’, once
we focus instead on the literal mathematical content of our decisions, we come to
see that we can and should allow some wiggle room for both pure and applied
mathematicians to work in well-motivated variants of the fundamental theory. I
won’t attempt to explicate what counts as ‘well-motivated’ – this requires the sound
judgment of insightful practitioners – but one clear qualifier is the existence of an
attractive, well-understood model inside V,10 as in the case of L and V = L.11

Though this marks a slight adjustment to strict von-Staudism, it’s still very far from
full Hilbertism, where any consistent theory as good as any other – precious few
such theories can deliver a pure mathematical theorem worth proving or an applied
mathematical model amenable to actual use.12

10This is, the existence of such a model can be proved from the fundamental axioms.
11Another well-known example is the theory ZF + V = L(R) + AD. Again, separating the
‘mathematically worthy’ from the unworthy no doubt requires keen mathematical discernment
and well-informed good judgement.
12For successful application, it’s not enough that our theory prove the existence of a suitable
structure; it must exist in a context with enough mathematical tools to study and manipulate that
structure. See [2011], pp. 90–96, for a related discussion.
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One last point. Returning once more to the historical development of set theory,
Zermelo’s axioms were soon supplemented with replacement and foundation, and
his imprecise notion of ‘definite property’ was sharpened to ‘formula in the first-
order language of set theory’. This generated what we now know as the formal
theory ZFC. At that point, the embedding of mathematics in set theory came to serve
yet another purpose: once mathematics was successfully encoded in a list of formal
sentences, meta-mathematical tools could be brought to bear to prove theorems
about its general features. Among the greatest of these results were those of Gödel –
classical mathematics, if consistent, can’t prove its own consistency or the negation
of the Continuum Hypothesis – and Cohen – or the Continuum Hypothesis itself.
Here set theory provides a Meta-mathematical Corral, tracing the vast reaches of
mathematics to a set of axioms so simple that they can then be studied formally
with remarkable success. Perhaps this accomplishment, too, has some claim to the
honorific ‘foundational’.

So my suggestion is that we replace the claim that set theory is a (or ‘the’)
foundation for mathematics with a handful of more precise observations: set theory
provides Risk Assessment for mathematical theories, a Generous Arena where
the branches of mathematics can be pursued in a unified setting with a Shared
Standard of proof, and a Meta-mathematical Corral so that formal techniques
can be applied to all of mathematics at once. I haven’t offered any argument that
these accomplishments must be understood to be ‘foundational’, but it seems to
me consistent with the ordinary use of the term to so apply it. I take it for granted
that these accomplishments are of obvious mathematical value, whatever we decide
about the proper use of the term ‘foundational’.

Let’s now turn to two of set theory’s purported rivals: first category-theoretic
foundations, then univalent foundations.

13.2 Category-Theoretic Foundations13

By the end of the 1930s, ZFC had been codified in its first-order form and its
role as Generous Arena, Shared Standard, Meta-mathematical Corral, and in
Risk Assessment were widely accepted. Soon thereafter, mathematical pressures in
abstract algebra gave rise to category theory, and category theorists began to criticize
set theory as a ‘foundation’. By the 1960s, category theory was being proposed
as alternative to set theory that could overcome these weaknesses. A look at the
objections raised and the solutions offered should help us determine what jobs the
critics thought a ‘foundation’ was supposed to do.

So, what was wrong with set-theoretic foundations? The first objection is that
category theory deals with unlimited categories, like the category of all groups or
the category of all categories or the category of all mathematical X’s, but nothing

13For more on many themes of this section, with sources, see §II of [2017].
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like this can be found in the universe of sets.14 Grothendieck overcame this problem
by positing an ever-increasing sequence of ‘local universes’ and noting that any
category-theoretic activity can be carried out in a large enough one of these. In
set-theoretic terms, this is to add inaccessible cardinals, the smallest of the large
cardinals beyond ZFC. In other words, the risk of Grothendieck’s category theory is
no greater than that of ZFC+ Inaccessibles. If Risk Assessment is the foundational
goal in question, set theory is still doing fine. Likewise, surrogates for the categories
are available in set theory’s Generous Arena, so Shared Standard, and Meta-
mathematical Corral also seem to be in order.

Given that the foundational goals of set theory were still being met, it’s difficult
to see what the category theorists took to be missing. The objection seems to be
that in any particular category-theoretic context, the item serving as a set-theoretic
surrogate for the category of all X’s doesn’t include all the set-theoretic X’s:

Categorical algebra . . . uses notions such as that of the category G of all groups. . . . To
realize the intent of this construction it is vital that this collection G contain all groups;
however, if ‘collection’ is to mean ‘set’ . . . this intent cannot be realized. (Mac Lane 1971,
p. 231)

This is true, but it doesn’t keep set theory from meeting any of the identified
foundational goals. Of course it doesn’t tell us what the category of X’s really is,
any more than the use of the von Neumann ordinals as surrogates for the natural
numbers tells us what they really are, but this dubious metaphysical goal has easily
been seen to be mathematically irrelevant.15

I’m not entirely confident that this is what left the category theorists dissatisfied
with the Grothendieck-style move, but fortunately, subsequent developments reveal
that this isn’t a point that needs to be settled. In hope of overcoming this purported
shortcoming of set-theoretic foundations, it was proposed that category theory itself
could provide a proper ‘foundation’ for unlimited categories – where this was taken
to mean a fundamental theory in which the category of all X’s can be formed for
any mathematical notion X, and the usual operations and constructions of category
theory can be carried out. Progress toward this goal was incremental until just
recently: Ernst (2015) shows that any such theory is actually inconsistent.16 This
means that set theory is not to blame for its inability to form categories of all X’s –
no consistent theory, including category theory itself, can do that. So whatever the
problem was supposed to be, it’s a problem that can’t be solved by any ‘foundation’.

The second early criticism lodged by category theorists against set-theoretic
foundations concerns the nature of the embedding. Though surrogates for various
mathematical items can be found in the universe of sets, that universe as a whole

14Because new groups or categories or mathematical X’s keep being formed at higher and higher
ranks in the iterative hierarchy of sets, there’s never a rank at which they all be collected together.
Recall footnote 2.
15Recall footnote 7 and surrounding text.
16Ernst shows, in particular, that a contradiction arises from the assumption that such a theory can
form the category of all graphs.
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is vast, its construction techniques wildly indiscriminate, so it includes hordes
of useless structures and – this is the important point – no way of telling the
mathematically promising structures from the rest. Furthermore, the set-theoretic
surrogates have lots of extraneous structure, artifacts of the way they’re constructed.
Here the hope was to find a foundation that would guide mathematicians toward the
important structures and characterize them strictly in terms of their mathematically
essential features. Such a foundation would actually be useful to mainstream
mathematicians in their day-to-day work, not remote, largely irrelevant, like set
theory; it would provide Essential Guidance. Proponents held that this is precisely
what category theory had done for algebraic geometry and algebraic topology.

Now it could be that some over-zealous partisan of set-theoretic foundations
at one time or another claimed that mathematics would be better off if all
mathematicians thought like set theorists, but as far as I can tell, this was never one
of the foundational jobs that set theory was seriously proposed to do. No reasonable
observer would suggest that an algebraic geometer or algebraic topologist would
do better to think in set-theoretic rather than category-theoretic terms. But it seems
equally unreasonable to suggest that an analyst, or for that matter a set theorist,
would do better to think in category-theoretic terms.17 What’s intriguing here is that
proponents of category-theoretic ‘foundations’ would apparently agree. Mac Lane,
for example, writes:

Categories and functors are everywhere in topology and in parts of algebra, but they do not
yet relate very well to most of analysis.

We conclude that there is as yet no simple and adequate way of conceptually organizing all
of Mathematics. (Mac Lane 1986, p. 407)

If a ‘foundation’ is to reveal the underlying essence, the conceptual core, omit all
irrelevancies, and guide productive research, then it’s unlikely that it can encompass
all areas of mathematics. Faced with this tension between Essential Guidance and
Generous Arena, Mac Lane seems willing to forego Generous Arena, and with it
presumably Shared Standard and Meta-Mathematical Corral.

This preference is more-or-less explicit in the theory of categories that’s proposed
as our fundamental foundation. The ‘Category of Categories as a Foundation’
(CCAF) was introduced by Lawvere in the 1960s and subsequently improved by
McLarty in the 1990s. CCAF is a actually a minimal background theory which
is then supplemented as needed to guarantee the existence of particular categories
for this or that area of mathematics. One such special category is ‘The Elementary
Theory of the Category of Sets’ (ETCS), which codifies a relatively weak theory of
collections (ZC with bounded separation). Collections in this sense are understood
in a natural way in terms of their arrows rather than their elements, but to gain
a category-theoretic set theory with sufficient strength for, say, Risk Assessment,

17See, e.g., the work of Mathias discussed in [2017].
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more characteristically set-theoretic notions have to be translated in from outside.18

A category for synthetic differential geometry is another example that could be
added with a suitable axiom. As might be expected from the Hilbertian flavor of
this approach, it isn’t conducive to Generous Arena.

So despite the rhetoric – pitting category theory against set theory, proposing
to replace set-theoretic foundations with category-theoretic foundations – the two
schools are aimed at quite different goals. Set theory provides Risk Assessment,
Generous Arena, Shared Standard, and Meta-mathematical Corral, and it
apparently continues to do these jobs even in the context of category-theoretic
foundations. What category theory offers is Essential Guidance, but only for those
branches of mathematics of roughly algebraic character. I have no objection to
calling this a ‘foundational’ achievement, so long as it isn’t taken to supersede the
other foundational goals explored here. What category theory has accomplished –
however this achievement is labeled – is a way of thinking about a large part of
mathematics, of organizing and understanding it, that’s been immensely fruitful in
practice. Proponents of set-theoretic foundations should have nothing but admira-
tion for this achievement. It raises deep and important methodological questions
about which ‘ways of thinking’ are effective for which areas of mathematics, about
how they differ, about what makes them so effective where they are and ineffective
where they aren’t, and so on.

So, should we regard set theory’s range of accomplishments for mathematics
in general as more ‘foundational’ than category-theory’s conceptual achievements
across several important areas of the subject, or vice versa? I confess that this
doesn’t strike me as a productive debate. In contrast, a concerted study of the
methodological questions raised by category theory’s focus on providing a fruitful
‘way of thinking’ would almost certainly increase our fundamental understanding
of mathematics itself. I vote for that.

13.3 Univalent Foundations

With these nineteenth and twentieth century developments in the background, the
turn of the 21st brought a new critique of set-theoretic foundations and a new
proposal for its replacement. Like set theory and category theory, this more recent
effort also arose out of ongoing mathematical practice. The mathematics involved
this time is homotopy theory, which, like category theory, has its roots in abstract
algebra; proponents of the subject describe it as ‘an outgrowth of algebraic topology
and homological algebra, with relationships to higher category theory’ (UFP 2013,
p. 1). The program of univalent foundations involves using homotopy theory to
interpret Martin-Löf’s type theory, then adding the so-called ‘Univalence Axiom’ –

18Of course set theory also translates notions from outside when locating their surrogates, but set
theory isn’t claiming to provide Essential Guidance.
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which has the effect, understood roughly, of identifying isomorphic structures.19

The result is declared to be ‘incompatible with conventional [presumably, set-
theoretic and category-theoretic] foundations’ (Awodey (2014), p. 1) and to provide
‘a completely new foundation’ (Voevodsky 2014a, b, p. 9).

We’ve seen that set-theoretic foundations arose in response to the serious
practical questions in the wake of the profound shift from mathematics as a theory
of the world to mathematics as a pure subject in its own right. In contrast, category-
theoretic practice was functioning well enough with Grothendieck’s understanding;
the impetus this time came from the hope for truly unlimited categories (miscon-
strued at the time as a shortcoming of set-theoretic foundations) and the promise
that category theory could do a new and different foundational job (Essential
Guidance). Univalent foundations takes a page from each book: there was a real
practical problem to be addressed, and addressing it introduced a new foundational
goal. Let me explain.

Grothendieck’s work in category theory was already so complex that ‘the
intellectual faculties are being strained to their uttermost limit’ (Burgess 2015,
p. 176), and as younger mathematicians pushed these ideas further, there was some
evidence those limits had been breached. Vladimir Voevodsky, one of the leaders
in this development and the originator of univalent foundations, describes how the
troubles began:

The groundbreaking 1986 paper ‘Algebraic Cycles and Higher K-theory’ by Spencer Bloch
was soon after publication found by Andrei Suslin to contain a mistake in the proof of
Lemma 1.1. The proof could not be fixed, and almost all the claims of the paper were left
unsubstantiated.

The new proof, which replaced one paragraph from the original paper by thirty pages of
complex arguments, was not made public until 1993, and it took many more years for it to
be accepted as correct. (Voevodsky 2014a, p. 8)

Soon, a similar problem hit closer to home. In 1999–2000, Voevodsky lectured at
Princeton’s Institute for Advanced Study on an approach to motivic cohomology
that he, Suslin, and Eric Friedlander had developed, an approach based on earlier
work of Voevodsky. That earlier work was written while the jury was still out on
Bloch’s lemma, so necessarily did without it. As the lectures progressed, the details
were carefully scrutinized.

Only then did I discover that the proof of a key lemma in my [earlier] paper contained
a mistake and that the lemma, as stated, could not be salvaged. Fortunately, I was able
to prove a weaker and more complicated lemma, which turned out to be sufficient for all
applications. A corrected sequence of arguments was published in 2006. (ibid.)

Perhaps even worse, in 1998 a counterexample was reported to a 1989 paper
of Michael Kaparonov and Voevodsky, but because of the complexities involved,
Voevodsky reports that he didn’t believe it himself until 2013!

19See Awodey (2014, p. 1).
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It’s easy to sympathize with the cumulative effect of these mishaps on Voevod-
sky: ‘This . . . got me scared’ (ibid.). It became hard to ignore the fact that proofs in
this area were so complex as to be prone to hidden glitches, a worry exacerbated by
the further fact that correcting these glitches made the proofs even more complex.
To top off the anxiety, at this point Voevodsky was hoping to push even further, into
something new he called ‘2-theories’.

But to do the work at the level of rigor and precision I felt necessary would take an enormous
amount of effort and would produce a text that would be very hard to read. And who would
ensure that I did not forget something and did not make a mistake, if even the mistakes in
much more simple [!!] arguments take years to uncover? (Voevodsky 2014a, p. 8)

This, then, is the pressing new problem faced by mathematical practioners in this
field: how can we be confident that our proofs are correct? To this point, various
sociological checks had been enough – proofs were carefully examined by the
community; mathematicians of high reputation were generally reliable; and so on –
but those checks had apparently been outstripped.

The need to address this problem gives rise to a new goal – a systematic
method for Proof Checking – and it seems reasonable to classify this goal,
too, as ‘foundational’. As we’ve seen, set-theoretic foundations originated in the
embedding of standard mathematics in set theory. For this purpose, as Voevodsky
puts it, all we need is to

. . . learn how to translate propositions about a few basic mathematical concepts into
formulates of ZFC, and then learn to believe, through examples, that the rest of mathematics
can be reduced to these few basic concepts. (Voevodsky 2014a, p. 9)

Here we have the embedding expressed in formal terms. Despite its meta-
mathematical virtues, this formal system isn’t one in which any mathematician
would actually want to prove anything; in fact (as noted earlier), our confidence
that there is a formal proof is usually based on our confidence in the informal proof,
combined with our informed belief that all informal proofs can be formalized in this
way. The demands of Proof Checking are quite different: we need a system that
can represent actual proofs, ‘a tool that can be employed in everyday mathematical
work’ (Voevodsky 2014a, p. 8).20

20Awodey traces the roots of univalent foundations in traditional foundational work to Frege
rather than Zermelo: ‘this new kind of . . . formalization could become a practical tool for the
working mathematician – just as originally envisaged by Frege, who compared the invention
of his Begriffsschrift with that of the microscope, (Awodey 2016a, p. 8, see also Awodey and
Coquand (2013, p. 6). While Frege does make this comparison, it involves a contrast between the
microscope and the eye: ‘because of the range of its possible uses and the versatility with which
it can adapt to the most diverse circumstances, the eye is far superior to the microscope’ (Frege
1879, p. 6). Frege’s formal system ‘is a device invented for certain scientific purposes, and one
must not condemn it because it is not suited to others’ (ibid.). The ‘scientific purpose’ in question
is to determine whether arithmetic can be derived by pure logic; the Begriffsschrift was needed
‘to prevent anything intuitive from penetrating here unnoticed . . . to keep the chain of inferences
free of gaps’ (ibid., p. 5). It seems to me likely that Awodey’s ‘practical tool for the working
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Now there are actually several proof checking technologies on offer these days,
some even based on set theory. In his contribution to this volume, Paulson touches on
a range of options and remarks that ‘every formal calculus . . . will do some things
well, other things badly and many other things not at all’ (Paulson 2019, Chap.
20, pp. 437–453). The proponents of univalent foundations have their own preferred
system, combining ideas from Martin-Löf’s type theory with insights from the study
of computer languages – a system called ‘the calculus of inductive constructions’
(CIC). The project is to express ordinary mathematical reasoning in these terms – a
process that might ‘become as natural as typesetting . . . papers in TeX’ (UFP 2013,
p. 10) – and to apply the associated proof assistant (Coq) to mechanically check the
validity of those arguments.

Obviously this is a heady undertaking, still in its early stages,21 but the ambitions
of these theorists go beyond the original goal of testing the complex arguments
of homotopy theory: Voevodsky holds that univalent foundations, ‘like ZFC-
based foundations and unlike category theory, is a complete foundational system’
(Voevodsky 2014a, p. 9).22 By this he means that both set-theoretic and univalent
foundations aim to provide three things:

(1) a formal language and rules of deduction: first-order logic with the axioms of
set theory, on the one hand; the aforementioned deductive system CIC, on the
other.

(2) an intuitive interpretation of this deductive system: the iterative hierarchy, on
the one hand; homotopy types, on the other.23

(3) a method for encoding mathematics: the well-known embedding of mathemat-
ics in set theory, on the one hand; an encoding in homotopy types on the other.

The presence of (3) indicates that Generous Arena and Shared Standard are
goals of univalent foundations, though Voevodsky admits that ‘this is . . . the least
understood part of the story’ (Voevodsky 2014a, p. 9).

The question that needs answering is whether this encoding in homotopy types
is like set theory’s proof that there is a set-theoretic surrogate or like category
theory’s postulation of a category with the desired features – recalling von Staudt
vs. Hilbert – as only the former serves to unite the encodings in a single Generous
Arena. There’s probably an easy answer to this question, but if so, it’s unknown to
me. Voevodsky’s strong analogy between set-theoretic and univalent foundations,
summarized above, suggests the former; while some of Awodey’s remarks appear
to lean toward to latter. The move to univalent foundations, Awodey writes,

mathematician’ would be analogous to the eye, not the microscope, that serving as such a practical
tool is one of those purposes for which the microscope and Frege’s formal system are ‘not suited’.
21Cf. UFP 2013, p. 2: ‘univalent foundations is very much a work in progress’.
22I don’t know what Voevodsky finds lacking in category-theoretic foundations – perhaps that it
fails to provide a Generous Arena?
23Interestingly, Voevodsky (2014a) observes that ‘our intuition about types of higher levels comes
mostly from their connection with multidimensional shapes, which was studied by ZFC-based
mathematics for several decades’ (p. 9).
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. . . has the practical effect of simplifying and shortening many proofs by taking advantage
of a more axiomatic approach, as opposed to more laborious analytic [e.g., set-theoretic]
constructions. (Awodey 2016b, p. 3)

In a footnote, Awodey alludes to Russell’s famous remark about ‘the advantages of
theft over honest toil’ (ibid.).

In broad outline, it appears that the foundational theory into which mathematics
is to be embedded begins by postulating a countable hierarchy of ‘universes’ (UFP
2013, p. 549) that obey a series of ‘rules’ (ibid., pp. 549–552). To this ‘type theory’,
we add three axioms of homotopy theory: function extensionality, univalence, and
higher inductive types (ibid., §A.3). Set theory, for example, is encoded as the
category of all the 0-types in one or another of these universes, together with the
maps between them (ibid., pp. 398, 438). So far, this looks more like honest toil
than like theft. But to get even to ETCS, we have to add the axiom of choice,
which incidentally brings with it the law of excluded middle (ibid., §10.1.5). If
we simply assert that there is such a category, our procedure begins to look more
like the axiomatic method of category-theoretic foundations – start with CCAF
and add axioms as needed, asserting the existence of individual categories with
the desired features for the various areas of mathematics – and we’ve seen that
this sort of approach doesn’t even aim for a Generous Arena. I’m in no position
to assess how far univalent foundations extends in this direction – whether these
are minor variations that can be handled with careful import/export restrictions or
something more Hilbert-like – so I leave this as a question to its proponents: is your
theory intended to provide a Generous Arena for all branches of mathematics and
a Shared Standard of proof – and if so, how?

Whatever the answer to this question may be, further doubts on the viability of
univalent foundations for Generous Arena and Shared Standard arise when we
consider Essential Guidance, the key new foundational goal of category-theoretic
foundations. Following the category theorists, Voevodsky seems to endorse this
goal: he holds that ‘the main organizational ideas of mathematics of the second
half of the 20th century were based on category theory’ (Voevodsky 2014a, p. 9);
seeks ‘a tool that can be employed in everyday mathematical work’ (ibid., p. 8); and
counts set theory’s failure in these areas against its suitability as a foundation.24 So,
for example, it isn’t enough that we find a way to embed set theory in the theory of
homotopy types; we need to find a way that reveals the true nature of the subject,
unlike ZFC:

The notion of set . . . is fundamental for mathematics. . . . However, the theory of sets [has]
never been successfully formalized. . . . The formal theory ZFC . . . is not an adequate

24Similarly, Awodey bemoans the ‘serious mismatch between the everyday practice of mathematics
and the official foundations of mathematics in ZFC’ (Awodey 2016a, p. 2) and connects univalent
foundations with structuralist tendencies in the philosophy of mathematics that frown on the
extraneous features of set-theoretic surrogates.
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formalization of the set theory which is used in mathematics. (Voevodsky 2014b, lecture 2,
slides 21–22)25

Voevodsky takes this to be accomplished in the new foundation:

As part of Univalent Foundations we now have a formalization of set theory in the form of
the theory of types of h-level 2 in MLTT [i.e., Martin-Löf type theory].26 I believe that this
is the first adequate formalization of the set theory that is used in pure mathematics. (Ibid,
lecture 3, slide 11)27

Set theorists would most likely dispute this claim,28 but for our purposes, what
matters is that the goal of Essential Guidance is more or less explicit. And as
we’ve seen, it seems unlikely that any one way of thinking is best for all areas of
mathematics, so aiming for Essential Guidance tends to undercut Generous Arena
and Shared Standard.

So, given that Generous Arena and Shared Standard are once again threatened
by Essential Guidance, likely to return to the province of set theory, what of the
other foundational goals? Speaking of the new formal system, Voevodsky remarks

Currently we are developing new type theories more complicated than the standard Martin-
Löf type theory and at the same time more convenient for practical formalization of
complex mathematics. Such type theories may easily have over a hundred derivation rules.
(Voevodsky 2013, slide 18)

Notice again the contrast with formalized ZFC. The first-order logic used there
is designed to be a simple as possible, with as few formation and inference rules
as possible, facilitating meta-mathematical study of theories expressed therein.
Because the system of univalent foundations is designed to be as natural as possible
a format for actual mathematical reasoning, it ends up being considerably more
complex, so the goal of Metamathematical Corral presumably also remains with
set theory. Furthermore, the complexity of univalent foundations leaves the question
of consistency unsettled, much as in the early days of pure mathematics, and the
solution is the same:

Thus a careful and formalizable approach is needed to show that the newly constructed
type theory is at least as consistent as ZFC with a given structure of universes [that is, with
inaccessibles]. (Voevodsky, ibid.)

In other words, the role of ‘a foundational system . . . as a standard of consistency’
(Voevodsky 2014a, p. 8) – Risk Assessment – also falls to set theory.29

25Cf. Awodey and Coquand 2013, p. 6: ‘the fundamental notion of a set . . . in univalent
foundations turns out to be definable in more primitive terms’.
26Colin Mclarty was kind enough to explain to me that ‘types of h-level 2’ is just a different
terminology for the ‘0-types in one or another of these universes’ in the previous paragraph.
27Cf. UFP (2013, p. 9).
28I’m not sure what these thinkers take to be wrong with ZFC, but it could be something akin to the
category-theorist’s conviction that a neutral notion of ‘collection’ is better understood in top-down
function-based terms (as in ETCS) rather than bottom-up element-based terms (as in ZFC).
29See also UFP (2013, p. 15).
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To sum up, then, Risk Assessment, Metamathematical Corral, Generous
Arena, and Shared Standard all appear to continue as the province of set-theoretic
foundations. We’re left with Proof Checking, the new goal introduced by univalent
foundations. The promise is that ordinary mathematical reasoning will be easily and
directly expressed in CIC and the validity of proofs then checked automatically in
COQ, and thus that homotopy type theory will provide a framework for reliable
Proof Checking:

I now do my mathematics with a proof assistant. I have lots of wishes in terms of getting
this proof assistant to work better, but at least I don’t have to go home and worry about
having made a mistake in my work. I know that if I did something, I did it, and I don’t have
to come back to it nor do I have to worry about my arguments being too complicated or
about how to convince others that my arguments are correct. I can just trust the computer.
(Voevodsky 2014a, p. 9)

I think we can all agreed that this is a very attractive picture, even if it would only
apply to areas of mathematics amenable to this sort of conceptualization.

13.4 Conclusion

The upshot of all this, I submit, is that there wasn’t and still isn’t any need
to replace set theory with a new ‘foundation’. There isn’t a unified concept of
‘foundation’; there are only mathematical jobs reasonably classified as ‘founda-
tional’. Since its early days, set theory has performed a number of these important
mathematical roles – Risk Assessment, Generous Arena, Shared Standard,
Meta-mathematical Corral – and it continues to do so. Demands for replacement
of set theory by category theory were driven by the doomed hope of founding
unlimited categories and the desire for a foundation that would provide Essential
Guidance. Unfortunately, Essential Guidance is in serious tension with Generous
Arena and Shared Standard; long experience suggests that ways of thinking
beneficial in one area of mathematics are unlikely to be beneficial in all areas
of mathematics. Still, the isolation of Essential Guidance as a desideratum, also
reasonably regarded as ‘foundational’, points the way to the methodological project
of characterizing what ways of thinking work best where, and why.

More recent calls for a foundational revolution from the perspective of homotopy
type theory are of interest, not because univalent foundations would replace set
theory in any of its important foundational roles, but because it promises something
new: Proof Checking. If it can deliver on that promise – even if only for some, not
all, areas of mathematics – that would be an important achievement. Time will tell.
But the salient moral is that there’s no conflict between set theory continuing to do
its traditional foundational jobs while these newer theories explore the possibility of
doing others.30

30Many thanks to Colin McLarty, Lawrence Paulson, and an anonymous referee for very helpful
explanations, discussions, and comments.

claudio.ternullo@ut.ee



13 What Do We Want a Foundation to Do? 311

References

Awodey, S. (2014). Structuralism, invariance, and univalence. Philosophia Mathematica, 22, 1–11.
Awodey, S. (2016a). Univalence as a principle of logic. Unpublished. Available at https://

www.andrew.cmu.edu/user/awodey/
Awodey, S. (2016b). A proposition is the (homotopy) type of its proofs (Unpublished). Available at

https://www.andrew.cmu.edu/user/awodey/
Awodey, S., & Coquand, T. (2013, Summer). Univalent foundations and the large-scale formaliza-

tion of mathematics. Princeton Institute for Advanced Study Letter. https://www.ias.edu/ideas/
2013/awodey-coquand-univalent-foundations

Burgess, J. (2015). Rigor and structure. Oxford: Oxford University Press.
Ernst, M. (2015). The prospects of unlimited category theory. Review of Symbolic Logic, 8,

306–327.
Frege, G. (1879). Begriffsschrift (S. Bauer-Mengelberg, Trans., reprinted in von Heijenoort, Ed.).

From Frege to Gödel, (Cambridge, MA: Harvard University Press, 1967), pp. 5–82.
Frege, G. (1884) Foundations of arithmetic (J. L. Austin, Trans.). (Oxford: Blackwell, 1980
Mac Lane, S. (1971). Categorical algebra and set-theoretic foundations. In D. Scott & T. Jech

(Eds.), Axiomatic set theory, proceedings of the symposium in pure mathematics of the AMS,
UCLA 1967 (pp. 231–240). Providence: AMS.

Mac Lane, S. (1986). Mathematics: Form and function. New York: Springer.
Maddy, P. (1997). Naturalism in mathematics. Oxford: Oxford University Press.
Maddy, P. (2008). How applied mathematics became pure. Review of Symbolic Logic, 1, 16–41.
Maddy, P. (2011). Defending the axioms. Oxford: Oxford University Press.
Maddy, P. (2017). ‘Set-theoretic foundations’, to appear in A. Caicedo et al, Foundations of

mathematics (Contemporary mathematics, Vol. 609). Providence: AMS.
Paulson, L. (2019). Formalizing mathematics in simple type theory (this volume).
Univalent Foundations Program, group author (UFP). (2013). Homotopy type theory: Univalent

foundations of mathematics. Princeton: Institute for Advanced Study.
Voevodsky, V. (2013, May 8). Slides for a plenary talk to the Association for Symbolic Logic.

Available at https://www.math.ias.edu/vladimir/lectures
Voevodsky, V. (2014a, Summer). The origins and motivations of univalent foundations. Princeton

Institute for Advanced Study Newsletter, pp. 8–9. https://www.ias.edu/ideas/2014/voevodsky-
origins

Voevodsky, V. (2014b, September) ‘Foundations of mathematics: Their past, present and future’,
the Bernays lectures I-III, ETH Zurich.

claudio.ternullo@ut.ee

https://www.andrew.cmu.edu/user/awodey/
https://www.andrew.cmu.edu/user/awodey/
https://www.ias.edu/ideas/2013/awodey-coquand-univalent-foundations
https://www.math.ias.edu/vladimir/lectures
https://www.ias.edu/ideas/2014/voevodsky-origins


Part IV
Philosophical Thoughts

on the Foundations of Mathematics

claudio.ternullo@ut.ee



Chapter 14
Formal and Natural Proof:
A Phenomenological Approach

Merlin Carl

Abstract In this section, we apply the notions obtained above to a famous historical
example of a false proof. Our goal is to demonstrate that this proof shows a
sufficient degree of distinctiveness for a formalization in a Naproche-like system
and hence that automatic checking could indeed have contributed in this case
to the development of mathematics. This example further demonstrates that even
incomplete distinctivication can be sufficient for automatic checking and that actual
mistakes may occur already in the margin between the degree of distinctiveness
necessary for formalization and complete distinctiveness.

14.1 Introduction

It is a striking consequence of Gödel’s completeness theorem (see e.g. chapter 3 of
Rautenberg 2006) that, whenever there is a correct mathematical proof of a certain
sentence φ from any fixed set S of axioms stated in first-order predicate calculus,
there is also a formal derivation of φ in the sense of a system of formal deduction.1

It is this force of the completeness theorem that makes the study of formal proofs
relevant to mathematical practice, as it demonstrates a certain kind of adequacy
of formal proofs as a model of normal mathematical arguments. This adequacy,
however, is rather weak: The only guarantee is that the set of correctly provable
assertions coincides with the set of formally derivable assertions. No claim is made
on the relation between mathematical arguments and formal derivations.

1The reasoning here is roughly this: If φ is not formally derivable from S, then there is a model
of S + ¬φ, i.e. a way to interprete the occurring notions in such a way that S becomes true, but φ
becomes false. In the presence of such an interpretation, no argument claiming to deduce φ from
S can be conclusive. A similar point is made by Kreisel in Kreisel (1965).
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There are in fact various reasons to assume that this relation cannot be too close:
For example, Boolos (1987) constructed an example of a statement φ that is easily
seen to be derivable in first-order logic from a set S of premises, but all such
derivations are provably of such a vast length that they cannot possibly be actually
‘written down’ in any sense of the word. On an even more fundamental level, as
most interesting theories like Peano arithmetic or ZFC set theory are incomplete
and there are statements rather canonically associated with them (i.e. consistency)
that might be used in a natural argument, one might even doubt how far carrying
out natural mathematics or even merely particular areas as number theory in a fixed
axiomatic system can work in principle.

On the other hand, there is the program of formal mathematics, where mathe-
matics is actually carried out in a strictly formal framework. This has now been
done for a huge variety of important and non-trivial theorems, including e.g. the
Gödel completeness theorem (see Koepke and Schlöder 2012), Brouwer’s fixed
point theorem (Pak 2011) and the prime number theorem (Avigad et al. 2006). There
is even a ‘Journal of Formalized Mathematics’, entirely dedicated to completely
formal proofs. Such proofs are usually done by formalization, i.e. a translation or
re-formulation of mathematical arguments in a formal system. The success of this
approach suggests that, in spite of the objections mentioned above,2 formal proofs
can be adequate to mathematical arguments in a stronger sense; namely, that correct
arguments can be translated into derivations. However, this process of translation is
often highly nontrivial and in many cases, the essence of an argument seems to get
lost in translation. For any non-formalist view of mathematics, this seems inevitable:
If mathematical arguments have content and are about ‘objects’, then this essential
relation to ‘objects’ must be lost when one passes to formal derivations, which are
void of content. It is hence a crucial question for the philosophy of mathematics to
determine the relation between arguments and derivations.

In Azzouni (2005a, 2009), Jody Azzouni considers this question while he
searches for an explanation for what he calls the ‘benign fixation of mathematical
practice’, namely the fact that mathematics, considered as a social practice, is
remarkably stable when compared to other social practices such as art, religion,
politics, philosophy and even the natural sciences. The notion of a mathematical
proof appears to be particularly invariant: While the standards for what can count as
evidence in, say, physics or biology have considerably changed over the last 2000
years, we can still evaluate an argument from e.g. Euclidean geometry and agree on
its correctness. Even where the practice splits, for example into a classical and an
intuitionistic branch, this agreement is not lost: For the intuitionist mathematician,
a valid classical argument may seem invalid from his standpoint, yet he will usually

2For example, Boolos’ proof has recently been formalized, see Benzmüller and Brown (2007).
The matter appears to be more a question of the choice of the formal system than one of formal vs.
informal proof or of first-order vs. higher-order logic: When a proof is ‘possible, but far too long’
in a certain first-order axiomatic system, there are usually natural stronger systems that allow for
the necessary abbreviations.
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be able to distinguish it from a classically invalid argument. Similarly, one doesn’t
need to become an intuitionist to see whether an argument is intuitionistically valid.

Azzouni’s explanation, which he labels the ‘derivation indicator view’, or DI-
view, of mathematical practice, goes roughly as follows: There is a notion of
proof, namely formal proofs in one or another setup, that allows for a purely
mechanical proof-check. That is, the correctness of a proof given in this form can
be evaluated by simply processing the symbols of which it consists according to a
certain algorithm. Since any two persons (and, in fact, a trained monkey or even
a computer) applying this algorithm will obtain the same result, this explains the
broad agreement at least for formal proofs.

But proofs as they appear in mathematics are virtually never formal proofs in
a certain proof system. In fact, formal proofs but for the most trivial facts tend
to become incomprehensible to the human reader. What we find in textbooks are
arguments presented in natural language, mixed with formal expressions, diagrams,
pictures etc. Checking those is not a mechanical procedure; rather, it requires
careful concentration in carrying out the indicated mental steps in one’s mind,
while questioning every step, sustaining it if possible and rejecting it otherwise. The
question hence arises how we account for the broad agreement on proofs presented
in this manner.

Azzouni’s answer is that such proofs, while not formal themselves, ‘indicate’,
‘point to’ formal proofs. They are to be considered as recipes for producing a fully
formal version of an argument. This indication is clear to us in the same way it is,
e.g., clear to us how a cooking recipe is to be transformed into a series of muscle
movements in our kitchen. The notion of a formal proof is here independent from
the choice of one or another concrete system of representation; rather, it is a form
of proof in which every step is a single inference according to some valid deduction
rule. This concept is prior to the development of actual representations for formal
proofs and could well have been intended by mathematicians in the era before
formal logic systems were introduced. In particular, in such a proof, every reference
to an imagination of the concepts used can be put aside. We can see that ‘If all zunks
are zonks, and Jeff is a zunk, then Jeff is a zonk.’ is true without knowing what zunks
and zonks are or who Jeff is. The subjective component of the argument is hence
eliminated as far as possible (all that remains is observing finite sign configurations)
and this is the reason for the wide agreement.

In Rav (2007), Yehuda Rav objects to this view with an argument that I want to
summarize as follows: Formal proofs cannot provide a basis for the explanation
of our agreement on the correctness of proofs. This agreement is based on
understanding. Once a proof is transformed into a form in which it is algorithmically
checkable, it must be void of content: all contributions of our understanding
must have entered the formalization as additional symbol strings. To do this, the
argument must have been clarified to the last extent. Hence, at the moment where an
algorithmically checkable proof is obtained, the ‘battle is over’, i.e. the checking is
already finished as far as human understanding is concerned: The interesting work
is done exactly along the way of formalizing the argument, and this process is non-
algorithmical. It is based on an understanding of the occurring concepts, it has an
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‘irreducible semantic content’.3 Therefore, carrying out the algorithmic checking
for the (formalized) argument will not result in any epistemic gain concerning the
(original informal) argument. In particular, it does not strengthen the position that
the (original) argument is valid. It might show us that we made some mistake in the
‘exercise’4 of rewriting the proof in a formal system, but that tells us nothing about
the proof itself, just as, in programming, an implementation mistake tells us nothing
about the correctness of the algorithm we had in mind. Concerning the derivation-
indicator view, this implies that it fails to explain the consensus about mathematics:
For the consensus about formal proofs via algorithmic checking procedures is of no
help unless we explain consensus about the relation between the natural argument
and its ‘formalization’, for which no algorithmic checking procedure is at hand.

This argument has certainly a good degree of persuasive power. We want to
evaluate this criticism closer. First, an epistemic gain through automatic proof
checking is indeed possible when the latter is used as a means of communication:
Even if the inventor of a proof would not learn anything new about the proof by
having it automatically checked, the automatic checking can serve as a certificate
for the correctness of the result for others. An attempt to communicate an otherwise
hardly accessible proof by this means is the work on the formalization of Thomas
Hales’ proof of the Kepler conjecture in the Flyspeck project, which was recently
announced to be completed (see e.g. Bauer and Nipkow (2006)). Focusing on the
inventor of a proof himself, it is clear that indeed a lot can be learned about a
proof through the process of formalization; being forced to work according to the
outermost standards of precision, one is more likely to spot mistakes that otherwise
evaded one’s attention. But neither of these ways to obtain an epistemic gain from
automatic proof checking concerns the point made by Rav. The question is then,
more precisely: Can the actual process of automatic checking itself (in contrast to
the production of an automatically checkable format) lead to an epistemic gain about
a proof that one already knows (e.g. by being its originator)? This is what Rav’s
criticism is about.

On the surface, we claim that the image of an ‘algorithmic system’ underlying
Rav’s argument is too narrow: It falls short of taking into account e.g. methods
for automatic language processing or the possibility of using an automatic theorem
prover for bridging gaps. But our main intention is deeper: We want to examine
when and how an algorithmic system may lead to an epistemic gain about a natural
mathematical argument.

When we talk about gaining trust in a proof, we have obviously left the realm
where one can consider a proof as mere text or string of symbols; we have to take
into account our attitude towards the proof, the way it is given to us or it presents
itself to us. The question concerning the epistemic gain should then be reformulated
as follows: ‘Is there a state of mind towards a proof that allows the construction of

3Cf. Rav (2007, p. 301).
4Rav (2007, p. 306).

claudio.ternullo@ut.ee



14 Formal and Natural Proof: A Phenomenological Approach 319

an automatically checkable write-up, but is undecided about the correctness of the
proof?’

This formulation makes it obvious that the question can’t be decided by merely
considering mathematical texts of different degree of formalization. Rather, the
representation of a proof in its reader’s consciousness has to be taken into account:
It will e.g. be relevant whether the reader only briefly skimmed through it or studied
it thoroughly, whether he worked the missing steps out or merely granted them,
whether a cited result is applied with understanding or merely as a ‘black box’ etc.
Such differences are idealized away in most approaches to logic. One of the rare
approaches to logic which seriously takes into account such aspects is found in
Husserl’s ‘Formal and transcendental logic’ (Husserl 1900). This motivates us to
choose this work as a starting point for our investigation.

Our approach here is hence to analyze to a certain (humble) extent the phe-
nomenology of proof understanding. We will distinguish two qualities of the way
how a proof can be mentally represented, applying the approach of Husserl’s
analysis of judgements, in particular his notions of ‘distinctiveness’ and ‘clarity’,
to proofs. We will argue that, if a mental representation of a proof has both of these
qualities to a maximal extent, then Rav is right in claiming that the ‘battle is over’5

and an algorithmic proof check cannot lead to an epistemic gain. On the other hand,
we claim that only distinctiveness is necessary for putting an argument into a form
that can be subjected to an automatic proof check. Therefore, we obtain a margin
in which automatic proof checking can indeed give substantial information on the
correctness of an argument: namely if the proof is mentally present in a distinct,
but unclear manner. Considering several examples from the history and the folklore
of mathematics, we demonstrate that this tends to occur frequently in mathematical
practice.

To sustain our claims and make them more concrete, we will, in the course
of this paper, refer to Naproche, a system for the automatic checking of natural
mathematical arguments. Its aim is exactly, as in Rav’s words, ‘to do the work of
automatic checking even an informal proof’ and already in its current form it gives a
vivid picture of the surprisingly natural form an automatically checkable proof can
take. We will therefore start by shortly introducing the Naproche system in the next
section.

In Sect. 14.3, we explain the distinction between distinctiveness and clarity, using
several examples. In Sect. 14.4, we demonstrate that automatic checking requires the
former, but not the latter quality, again giving examples. In Sect. 14.5, we argue that
clarity and distinctiveness correspond in a certain way to a ‘complete’, ‘gapless’
derivation as they are represented in formats like natural deduction or the sequent
calculus. The goal is to show which features of a mental representation of a proof are
expressed in such a derivation. In Sect. 14.6, we analyze a famous historical example
of a false proof in these terms, considering whether or not and how a Naproche-
like system might have helped to spot the mistake. Section 14.7 contains a critical

5Feferman (1979), quoted after Rav (2007).
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review of our account, suggesting various ways in which the use of automatic proof
checking is limited. Finally, we give in Sect. 14.8 our conclusions and plans for
future considerations on the topic.

14.2 Naproche

Naproche is an acronym for NAtural language PROof CHEcking, a joint project
of mathematical logicians from Bonn, formal linguists from Duisburg-Essen and
computer scientists from Cologne. It is a study of natural mathematical language
with the goal to bridge the gap between formal derivations and the form in which
proofs are usually presented. For this, the expressions of natural mathematical
language are interpreted as indicators for certain operations, like introducing or
retracting an assumption, starting a case distinction, citing a prior result, making
a statement etc. We will describe only very roughly how this system works, as the
details are irrelevant for our purpose. The interested reader may e.g. consult Cramer
et al. (2009) for a detailed description. Also, more information and a web interface
are available at Naproche Web Interface. A brief account on the philosophical
significance of Naproche can be found in Carl and Koepke (2010).

In the course of the project, a controlled natural language (CNL) for mathematics
is developed, which resembles natural mathematical language and is constantly
expanded to greater resemblance. This Naproche CNL contains linguistic triggers
for common thought figures of mathematical proofs. Texts written in the Naproche
CNL are hence easy to write and usually immediately understandable for a
human reader. If one was presented with a typical Naproche text without further
explanation, one would see a mathematical text, though one in a somewhat tedious
style.

Here is an excerpt from a short text about number theory in the Naproche CNL,
due to Marcos Cramer and myself, accepted by the current Naproche version 0.47:

Definition 29: Define m to divide n iff there is an l such that n = m · l.

Definition 30: Define m|n iff m divides n.

Lemma DivMin: Let l|m and l|m+ n. Then l|n.
Proof: Assume that l and n are nonzero. There is an i such thatm = l · i. Furthermore, there
is a j such that m+ n = l · j .
Assume for a contradiction that j < i. Then m+ n = l · j < l · i = m. So m ≤ m+ n. It
follows that m = m+ n. Hence n = 0, a contradiction. Thus i ≤ j .
Define k to be j − i. Then we have (l · i)+ (l · k) = (l · i)+ n. Hence n = l · k. Qed.

Via techniques from formal linguistics, namely an adapted version of discourse
representation theory (see Kamp and Reyle 2008), the content of such texts can be
formally represented in a format that mirrors its linguistical and logical structure.
This format is called a proof representation structure (PRS). In particular, whenever
a statement is made, it can be computed from the PRS whether this is supposed to be
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an assumption or a claim and, in the latter case, under what assumptions this claim
is made. In this way, the text is converted into a series of proof goals, each asking
to deduce the current claim made in the proof from the available assumptions. The
Naproche system then uses automatic theorem provers to test whether the claim
indeed follows in an obvious way from the available assumptions. This allows
the system to close the gaps that typically appear in natural proofs, one of the
crucial features in which natural proofs differ from formal derivations. In this way,
every claim is checked and either deduced (and accepted) or not, in which case
the checking fails and returns an error message indicating the first claim where the
deduction could not be processed.

14.3 Intentions, Fulfillment, Clarity and Distinctiveness

In this section, we introduce Husserl’s notions of the distinctiveness and clarity of a
judgement as a starting point for our transfer of these concepts to proofs. Crucial for
the difference between clarity and distinctiveness is the notion of ‘fulfillment’ of an
intention. We therefore start with a brief introduction to this notion, see e.g. Husserl
(2009, 1900) for Husserl’s accounts of these notions.

14.3.1 Fulfilled and Unfulfilled Intentions

A central notion of phenomenology is the notion of intention, i.e. the directedness
towards something. Whatever this something is, it must, according to Husserl,
correspond to a possible way of presenting itself in some kind of experience. Here,
‘experience’ is taken in a very broad sense, including sensual experience in the usual
sense of seeing, hearing etc., but not limited to it: E.g. remembering, imagining,
reading a mathematical proof etc. count as legitimate forms of experience. The
intention towards X is hence associated with a system of experiences in which X
appears. What kind of experience is relevant for a certain intention depends on –
or rather strictly corresponds to – the type of the intended object: A piece of music
will present itself in hearing, a phantasm will present itself in imagination, a sensual
object – say, a tree – will present itself in organized visual, tactile etc. perception.
Fulfillment of an intention now simply means that experiences presenting the
intended object are made: The piece is heard, the phantasm imagined, the tree seen
and felt. Fulfillment may be partial, and in fact, for many types of objects, it will be
necessarily so: For example, the intention towards a tree includes anticipations that it
can be seen from all sides, including rough anticipations what it will look like. Thus,
seeing only one side of a tree, the fulfillment of the intention is only partial: There
are anticipations corresponding to the object type that remain unfulfilled. Even if one
has walked completely around the tree, this does not change, as now the backside
is not given in visual or tactile experience, but only in memory thereof. Proceeding
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along these lines, it is not hard to see that intentions towards physical objects are
necessarily only partially fulfilled.

In the case of a judgement, the intention is directed towards a categorical object,
i.e. the state of affairs expressed by the judgement, i.e. in the case ‘The rose is red’
the fact that the rose is red. In this case, some of the appearing partial intentions
from which the judgement is built up (e.g. that towards a rose or towards redness)
may be fulfilled while others remain unfulfilled: We may e.g. experience a rose, but
not its redness (say under bad lighting). In the case of a work of fiction, we may
form a vivid imagination of some of the described objects, but merely skip over the
others, leaving the intention ‘signitive’, merely indicated by a symbol.

We want to apply the concept of fulfillment in the context of mathematical
proofs. Our main concern, then, are intentions towards mathematical objects and
their fulfillment. One might worry at this point that this will force us to accept some
mysterious supernatural faculty for seeing abstract objects, but this worry falls short
of taking into account the flexibility of the phenomenological treatment described
above: Fulfillment of an intention means having the corresponding experiences.
What these experiences are would be the topic of a phenomenological investigation
of mathematical objects. Luckily, our treatment does not require the prior execution
of such a monumental task, as we will only be concerned with mathematical
objects in a very special context. Still, we indicate here two examples of possible
interpretations that are hardly ‘mysterious’: The first would be the intuitionistic
standpoint, taken e.g. by Becker and Heyting, according to which the intention
towards a mathematical object is fulfilled by a construction of that object in the sense
of intuitionism. Another interpretation is that of mathematical objects as ‘inference
packages’: The intention towards a mathematical object is directed towards a system
of techniques how to deal with inferences that contain this notion. The fulfillment of
such an intention – e.g. in the course of a proof – would hence be the application of
these techniques for the full explication of a proof step. An account of mathematical
objects in this spirit, though apparently not with Husserl in mind, can be found in
Azzouni (2005b); the treatment on p. 106–111 of Lohmar (1989) is of a similar
spirit.6

6Another related perspective is that of Martin-Löf given in Martin-Löf (1980) (in particular on p.
7): He distinguishes ‘canonical’ from ‘noncanonical’ or ‘indirect’ proofs, where a ‘noncanonical
proof’ is a ‘method’ or a ‘program’ for producing a ‘canonical’ proof; as an example, an
indirect proof that 1235 + 5123 = 5123 + 1235 would consist in first proving the general law
of commutativity for addition and then instantiating it accordingly rather than carrying out the
constructions described by both sides of the equation and checking that they actually lead to
the same result. In a similar way, we may view an informal high-level argument as a recipe for
obtaining a proof in which every formerly implicit inferential step is actually carried out. Of course,
we don’t need to go along with Martin-Löf’s constructivist approach concerning mathematics here:
The checking of non-constructivistic proofs is – regardless of how one views their epistemological
value – a cognitive act which is, along with the underlying notion of correctness and its relation to
automatization, accessible to a phenomenological analysis. For a perspective on the fulfillment of
mathematical intentions based on the notion of construction, see van Atten (2010) and van Atten
and Kennedy (2003).
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This indicates how the notion of fulfillment can be applied to mathematical
proofs. Consider the inferential snippet ‘As 1 < a < p and p is prime, a does not
divide p’. We can skim through it, leaving the empty intention to use the primeness
of p to see why the result holds. Fulfilling the intention would amount to actually
seeing it, i.e. completing the proof.

14.3.2 Husserl’s Notions of Distinctiveness and Clarity

In Husserl (1900, 1999), Husserl offers a phenomenological analysis and foundation
for logic. As the notions in question have their systematic place in this analysis, we
give a short recapitulation.

At the beginning, logic is taken in the traditional sense as the study of the forms of
true judgements. It soon becomes apparent that, in the way this is traditionally done,
numerous implicit idealizations are presupposed concerning the judgement and the
modus in which it is given. These idealizations are made explicit. In the course of
this explication, logic quite naturally splits into several subsections depending on
the stage of idealization assumed. It turns out that most of these subsections are
not considered by traditional logic, which is concerned with what finally turn out
to be distinctly given judgements to which we are directed with epistemic interest.
Furthermore, in the study of the abstract forms of judgements, the extra assumption
is made that the referents occurring in the judgement forms considered are to be
interpreted in a way making the statement meaningful.7,8

The first subsection is what Husserl calls the purely logical grammar (‘rein
logische Grammatik’), i.e. the mere study of forms that can possibly be a judgement
at all in contrast to arbitrary word sequences like ‘and or write write’, ignoring all
connections with truth. This part will not concern us further.

A terminological distinction made in various places in Husserl’s work is that
between ‘distinctiveness’ and ‘clarity’. We find it e.g. in chapter 20 of Husserl
(1952) with respect to concepts: While ‘distinctiveness’ means having explicated
what one means with a certain concept, ‘clarity’ brings about an intuition of the
intended object. This is explained on page 101 of Husserl (1952):

Die Verdeutlichung des Begriffs, des mit dem Wort Gemeinten als solchen, ist eine
Prozedur, die sich innerhalb der bloßen Denksphäre abspielt. Ehe der mindeste Schritt
zur Klärung vollzogen ist, während keine oder eine ganz unpassende und indirekte
Anschauung mit dem Worte eins ist, kann überlegt werden, was in der Meinung liegt, z.B.
in ‘Dekaeder’: ein Körper, ein Polyeder, regelmäßig, mit zehn kongruenten Seitenflächen.
(. . . ) Bei der Klärung überschreiten wir die Sphäre der bloßen Wortbedeutungen und des

7E.g. the statement ‘The theory of relativity is green’ is arguably neither true nor false, which
nevertheless doesn’t contradict the principle of the excluded middle.
8See Lohmar (1989) for a further discussion of this point.
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Bedeutungsdenkens, wir bringen die Bedeutungen zur Deckung mit dem Noematischen der
Anschauung (. . . )9

A parallel distinction concerning judgements instead of concepts is then intro-
duced in Husserl (1900):

A judgement is given in a distinct manner when its parts and their references
to each other are made explicit. The intentions indicated by its parts may remain
unfulfilled, but the compositional structure of the partial intentions is apparent.
Given a judgement of the form ‘S is p’, we can, going along with the formulation,
‘carry out’ the judgement by explicitly setting S and applying p to it without
fulfilling the intentions corresponding to S or p. This explication shows that certain
intentions such as those of the form P ∧ ¬P are inexecutable in principle. The
subdiscipline of logic concerned with this kind of givenness is ‘consequence logic’
which considers the executability of a judgement in principle, based on its mere
structure, without regard to ‘facts’.

Clarity, on the other hand, is obtained when the indicated intentions are
‘fulfilled’, e.g. the objects under consideration are brought to intuition. This may
still lead to falsity and absurdity, but these are then of a semantic nature, not apparent
from the mere form of the judgement. Of course, both clarity and distinctiveness
come in degrees and can be present for certain parts of a judgement, but not for
others.

A crucial point of the analysis is that the inexecutability of intentions indicated
by certain distinctively given judgements already makes certain assumptions on the
objects under consideration which are tacitly presupposed in logical considerations
(see above).

Our aim is to apply this classification from single judgements to arguments, par-
ticularly mathematical proofs. For example, like single judgements, arguments have
a hierarchical intentional structure, which can be given in a vague or in a distinct way
and also can be partly or completely fulfilled or unfulfilled. The everyday experience
with the process of understanding mathematical arguments suggests that something
corresponds to these notions in the realm of such arguments. In particular, the differ-
ence between grasping the mere meaning (‘Vermeinung’) of an argument or actually
mentally following it is probably well-known to readers of mathematical texts.

14.3.3 Proofs, Arguments and Understanding: A Clarification

Is it possible to understand a false proof? Certainly. We can be convinced by it,
explain it to others (and convince them), translate it to another language, reformulate

9Making a concept distinct, i.e. making distinct that which is meant by the word by itself, is a
procedure which takes place within the sphere of pure thinking. Before the least step of clarification
is performed, while no or a completely inadequate intuition is associated with the word, we can
reflect upon that which is meant, i.e. in ‘decahedron’: a solid, a polyhedron, regular, with ten
congruent faces. (. . . ) With a clarification, we transcend the sphere of mere meanings and thinking
concerning meanings, we match the meanings with the noematic content of intuition. [Translation
by the author]
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it, recognize it in its reformulations etc. Even if we know it is false, this does not
necessarily hinder our understanding, and it is even often possible (and sometimes
takes some effort to avoid) to re-enter a state of mind in which it is still convincing.
This for example seems for some people to be the case with the ‘goat problem’
(Monty Hall Problem (1990)).

Of course, in the usual understanding and despite common manners of speech,
a ‘false proof’ is not a proof. It merely shares some features with a proof on the
surface. Anyway, the word is often used in such a way that a proof can be false.
This use seems to resemble closer the way we internally think of proofs. We could
replace the word ‘proof’ e.g. by ‘argument’ to avoid this ambiguity, but we prefer to
keep it. Hence, we use the word ‘proof’ in the sense of a proof attempt. Otherwise,
we could never know if something is a proof, for in principle, we could always have
been mistaken in checking it.

In this section, we make a humble approach to the study of the ways how a
proof can appear to us. We take a phenomenological viewpoint: Hence, instead
of asking what proofs might be in themselves – like platonic ideas, patterns of
brain activity, mere sequences of tokens or of thoughts – we focus on the question
how they give themselves when we encounter them in our mental activity. Mental
activities directed towards proofs are e.g. creating it, searching for it, explaining it,
remembering it, checking it etc. In such acts, we can experience a proof in different
qualities. It is these qualities of proof experience that we consider here, focusing
on two, namely clarity and distinctiveness. These are hence not properties of proof
texts, but of our perception of proofs. The only way to point to such qualities is
hence to create the corresponding experience and then naming it. This is what the
following is about. Importantly, we will consider examples of proofs that are likely
to lead to an experience with the quality in question, yet one must keep in mind
that it is the experience, not the proof text, we are talking about, and that the same
text may well be perceived in different ways. The point of this is to find out what is
needed for our perception of a proof to make it checkable and compare it to what
we need to formalize it. By Rav’s claim, the qualities necessary for formalization
presuppose those necessary for checking. We aim at demonstrating the contrary.

We now proceed to apply distinctiveness and clarity to proofs (in the sense
above). In analogy to the case of judgements, a proof is distinctively given when
its parts and their relations are made explicit. At this stage, we hence pay no
attention to the correctness of the proof, only to its ‘structure’. Distinctiveness
about a proof means consciousness of what exactly is claimed and assumed at
each point, from what a claim is supposed to follow, where assumptions are needed,
which objects are currently relevant, which of the objects appearing are identical,
how they are claimed to relate to and depend on each other etc. In analogy with
distinct judgements, a distinct proof does not need to be correct. Not even its
logical structure must be sound: A distinctively given argument can well be circular.
However, from a distinctive perception of the argument, it will be apparent that
it is. What we have with a distinct perception of a proof can be seen as a ‘proof
plan’, a description of its logical architecture. In particular, distinctiveness includes
consciousness of the sequential structure of the argument. To some extent, it is
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necessary whenever we even attempt to formulate it.10 Naturally, distinctiveness
comes in degrees. An argument can be distinct in certain parts but not in others. We
frequently experience aquaintance with a proof without being able to state exactly
where each assumption enters the argument, where each auxiliar lemma is used etc.
Also, quite often in understanding natural proofs, we encounter some mixture of
distinct deductive steps and imaginative thought experiments.

Concerning clarity, consider the following well-known ‘proof’ that 2 = 111:

Let a, b ∈ R, a = b. As a = b, we have a2 = ab, hence a2 − b2 = ab − b2.
Dividing by (a− b), we get a+ b = b. With a = b, it follows that 2b = b. Dividing
by b, we obtain 2 = 1.

Is this proof – seen as a train of thought – lacking distinctiveness? Not at all. It
is completely apparent which of these few steps is supposed to follow from which
assumption or fact earlier obtained. In fact, it is in a form that closely resembles a
formal derivation (in particular, it could easily be processed by Naproche), and not
much would be necessary to make it completely formal.

Anyway, it is of course invalid, yet many people, including clever ones, at first
don’t see why. The problem here is obviously not that one does not really know
what is stated in each step, or that one doesn’t know what is supposed to follow
or how; the problem is a misperception of division. Following the habit that ‘you
may cancel out equal terms’, the semantic layer is left for the sake of a symbolic
manipulation. On this level of consideration, one easily forgets about the condition
imposed on such a step. If one takes the effort of really going back to what division
is and why the rule that is supposedly applied here works, i.e. if one sharpens the
underlying intuition of division, and if one additionally goes back to the meaning of
the syntactical object ‘a−b’, the mistake – division by 0 – is easily discovered. What
is now added and was missing in the beginning is hence a more precise, adequate
perception of the objects and operations appearing in the argument, in other words,
a step towards the fulfillment of the intention given by the expression a− b. We call
this degree of adequacy to which the notions are perceived the ‘clarity’ of the proof
perception.

The above proof is hence distinct, yet not clear. Another famous example is the
following:

1 = √1 = √(−1)(−1) = √−1
√−1 = i · i = i2 = −1

Here, the mistake is obviously a misperception of the complex square root that
probably comes from a prior intuition about square roots in the positive reals.

10Indeed, as a working mathematician, one occasionally experiences the perception of a vague
proof idea which seems quite plausible until one attempts to actually write it down. When one
finally does, it becomes apparent that the argument has serious structural issues, e.g. being circular.
This particularly happens when one deals with arguments and definitions using involved recursions
or inductions.
11Singh (2000), appendix, or see e.g. http://www.quickanddirtytips.com/education/math/how-to-
prove-that-1-2
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Already these primitive examples show that distinctiveness can be present
without clarity.

Of course, we can have both distinctiveness and clarity. Every well-understood
proof from a thorough textbook is an example. We can also have neither, and if
one teaches mathematics, one will occasionally find examples in homework and
exams. Further examples are most of the many supposed constructions for squaring
the circle, most attempts at an elementary proof of Fermat’s Last Theorem (see
Fleck et al. 1909), disproofs for Gödel’s Incompleteness Theorem, ‘proofs’ for the
countability of R etc.

Clarity of a proof hence means fulfillment of the occurring intentions. These
intentions involve those directed to mathematical objects as well as those directed
towards logical steps, i.e. inferential claims: For a distinct understanding of a proof,
it suffices to understand that, at a certain point, A is supposed to follow. This
supposed inference is an empty intention directed at a derivation of A from the
information given at this point. The fulfillment of this intention consists in carrying
out this derivation. If a proof is given in perfect clarity, one knows exactly how
to carry out each claimed inferential step, using the inferences associated with the
occurring objects.

Let us briefly discuss the relation of the preceeding account to the view that
proofs serve as fulfillments of mathematical intentions, as e.g. advocated by P.
Martin-Löf or R. Tieszen (see Chapter 13 of Tieszen 2005). At first sight, our claim
that proofs can be present in an unclear manner seems to conflict with the claim
that proofs themselves are ‘fulfillments’ – for that would make them ‘unfulfilled
fulfillments’. This apparent conflict is, however, merely terminological: In Tieszen’s
account of Martin-Löf’s position, proofs are cognitive processes of ‘engaging in
mental acts in which we come to ‘see’ or ‘intuit’ something’ serving as evidence
for mathematical claims. The intention towards a mathematical object would then
be fulfilled by evidence for its existence, i.e. a – possibly preferably constructive
– proof of its existence. From the point of view of a proof checker that we are
interested in, on the other hand, a purported proof is, at first, a linguistic object: It can
only serve as evidence once it has been worked through and understood, a process
that may require considerable amounts of time, patience and cognitive involvement.
In particular, it must be correct in order to provide evidence; in contrast, in our use of
the word ‘proof’ as discussed at the start of the current section, we follow the usual
manner of speech to allow for ‘false proofs’.12 The notion of proof that Tieszen
seems to aim at is the way a proof is present after this process has been carried out.
This is explicated on page 277 of Tieszen (2005):

‘One can get some sense of the concept of ‘evidence’ that I have in mind by reflecting on
what is involved when one does not just mechanically step through a ‘proof’ with little or
no understanding, but when one ‘sees’, given a (possibly empty) set of assumptions, that

12This point is also discussed in Martin-Löf (1987), p. 418: ‘And it is because of the fact that we
make mistakes that the notion of validity of a proof is necessary: If proofs were always right, then
of course the very notion of rightness or rectitude would not be needed.’
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a certain proposition must be true. Anyone who has written or read proofs has, no doubt,
at one time or another experienced the phenomenon of working through a proof in such a
merely mechanical way and knows that the experience is distinct from the experience in
which one sees or understands a proof. (. . . ) To give a rough description, one might say
that some form of ‘insight’ or ‘realization’ is involved, as is, in some sense, the fact that the
proof acquires ‘meaning’ or semantic content for us upon being understood.’

It is exactly this process of acquiring ‘meaning or semantic content for us’ that
we are concerned with. In the first sentence of the quoted passage by Tieszen, our
notion of proof is present as ‘proof’ in quotation marks.

14.4 Distinctiveness, Clarity and Automatic Proof Checking

Having established the two qualities relevant for our approach, we now want to
link them to natural and automatic proof checking. Our thesis is that, while a full
formalization requires a distinct and clear presentation of a proof, which means that
there’s nothing left to do for an automatic checker, distinctiveness is sufficient for
producing an automatically checkable text, but not for checking the proof ‘by hand’.

14.4.1 Distinctiveness Is Sufficient for Automatic Checkability

We start by comparing a short and basic natural (though very thoroughly written)
mathematical argument written up for human readers to its counterparts in the
Naproche language. The following is a passage from the English translation of
Edmund Landau’s ‘Grundlagen der Analysis’ (Landau (2004)) (all variables denote
natural numbers):

Theorem 9: For given x and y, exactly one of the following must be the case:

1) x = y.
2) There exists a u (exactly one, by Theorem 8) such that x = y + u
3) There exists a v (exactly one, by Theorem 8) such that y = x + v.

Proof: A) By Theorem 7, cases 1) and 2) are incompatible. Similarly, 1) and 3) are
incompatible. The incompatibility of 2) and 3) also follows from Theorem 7; for otherwise,
we would have x = y + u = (x + v)+ u = x + (v + u) = (v + u)+ x. Therefore we can
have at most one of the cases 1), 2) and 3).
B) Let x be fixed, and letM be the set of all y for which one (hence, by A), exactly one) of
the cases 1), 2) and 3) obtains.
I) For y = 1, we have by Theorem 3 that either x = 1 = y (case 1) or x = u′ = 1 + u =
y + u (case 2). Hence 1 belongs toM .
II) Let y belong toM . Then either (case 1) for y) x = y, hence y′ = y+ 1 = x+ 1 (case 3)
for y′); or
(case 2) for y) x = y+u, hence if u = 1 then x = y+ 1 = y′ (case 1) for y′); but if u �= 1,
then, by Theorem 3, u = w′ = 1+w, x = y + (1+w) = (y + 1)+w = y′ +w (case 2)

claudio.ternullo@ut.ee



14 Formal and Natural Proof: A Phenomenological Approach 329

for y′); or (case 3) for y) y = x + v, hence y′ = (x + v)′ = x + v′ (case 3) for y′). In any
case, y′ belongs toM . Therefore, we always have one of the cases 1), 2) and 3).

Now compare this to the following variant, a fragment of a text which is accepted
by the current version of Naproche (taken from Carl et al. (2009)):

Theorem 9: Fix x, y. Then precisely one of the following cases holds:

Case 1: x = y.
Case 2: There is a u such that x = y + u.
Case 3: There is a v such that y = x + v.

Proof: Case 1 and case 2 are inconsistent and case 1 and case 3 are inconsistent. Suppose
case 2 and case 3 hold. Then x = y + u = (x + v)+ u = x + (v + u) = (v + u)+ x.
Contradiction. Thus case 2 and case 3 are inconsistent. So at most one of case 1, case 2 and
case 3 holds.
Now fix x. DefineM(y) iff case 1 or case 2 or case 3 holds.
Let y such that y = 1 be given. x = 1 = y or x = u′ = 1+ u = y + u. ThusM(1).
Let y such thatM(y) be given. Then there are three cases:
Case 1: x = y. Then y′ = y + 1 = x + 1. SoM(y′).
Case 2: x = y+u. If u = 1, then x = y+1 = y′, i.e.M(y′). If u �= 1, then u = w′ = 1+w,
i.e. x = y + (1+ w) = (y + 1)+ w = y′ + w, i.e.M(y′).
Case 3: y = x + v. Then y′ = (x + v)′ = x + v′, i.e.M(y′).
So in all casesM(y′). Thus by induction, for all y M(y). So case 1 or case 2 or case 3 holds.
Qed.

We see some extra complications arise due to the fact that the Naproche
language is a controlled language, so that formulations like ‘For given x and
y’ or ‘incompatible’ need to be replaced by their counterparts ‘Fix x, y’ and
‘inconsistent’ in the Naproche language. This, of course, can easily be overcome
by amending the language accordingly. The passage is given exactly in the way
Naproche can currently read it to avoid the criticism of being speculative, but we
are safe to assume that a line like ‘exactly one of the following must be the case’
can be processed by a slightly improved version. Now, what does it take to go
from the natural to the Naproche version? Do we need to understand the proof
in some depth or see its correctness? Certainly not. Rather, we reformulate the
proof according to some linguistic restrictions. Hence, while a certain difference
in the wording is obvious, these two texts are very similar in content and structure.
Given a knowledge of the current Naproche language, passing from the first version
to the second is trivial: One merely changes some formulations, permanently
working along the original. One can do this with virtually no understanding of
the original text, as long as one keeps the indicators for assuming, deducing and
closing assumptions and uses the same symbol where the same object is meant.
One does not even need to know the meaning of the symbols used. It seems
that any state of mind allowing one to write the first text also allows one to
write the second. In fact, even a faint memory of a vague understanding might
suffice.

This basic example indicates what is necessary for producing an automatically
checkable version of a proof: The argument must be given to us as a sequence
of steps in such a way that we can see what is currently claimed and assumed,
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which objects are considered, when a new object is introduced and when something
new is claimed about an object introduced earlier (so we will e.g. use the same
symbol). A mere image of some mental movement, which is indeed often the way
one remembers or invents an argument, is not sufficient. One needs an explicit
consciousness of the way primitive intentions are built together to form judgements
and then how these complex intentions are used to build up the argument. On the
other hand, it is not necessary at all to reduce everything to formal statements
and simple syllogisms. Whether or not a concrete checker will succeed in a
particular case depends of course on how well the checker captures the semantics
of natural mathematical language, but in principle, arguments at this stage of
understanding are open to an automatic checking process. Hence, to produce an
automatically checkable format, it suffices to have a distinct understanding of the
proof.

We consider another example, which deserves special interest, as it is explicitly
given by Rav in (2007) as an example of an ‘ordinary’ proof, which he comments
thus:

The proof of this theorem as given above is fully rigorous (by currently accepted
standards). It requires, however, on the part of the reader a certain familiarity with standard
mathematical reasoning (. . . ). No formal logic is involved here; it is a typical reasoning that
Aberdein has aptly characterized as the informal logic of mathematical proof. [Rav
2007, p. 305]

He then goes on to describe what to do for obtaining a version of this proof that
can be automatically checked, claiming that this needs, ‘as must have been noted, a
logician’s know-how’. Here is the proof as given in Rav (2007, pp. 304), including
some preliminaries about group theory (we omit Rav’s bracketed observations on
the proof):

Recall that a group is defined as a set G endowed with a binary operation (to be written
as juxtaposition) having a distinguished identity element, denoted by ‘e’ and satisfying the
following first-order axioms:

• (i) (∀x)(∀y)(∀z)[x(yz) = (xy)z]; (associativity)
• (ii) (∀x)(ex = x); (‘e’ is a left-identity)
• (iii) (∀x)(∃y)(yx = e). (every element has a left-inverse)

On the basis of these axioms, one proves that the postulated left-identity is also a right-
identity – in symbols, (∀x)(xe = x) – from which it will follow that the identity element is
unique. Here is the proof:

Let u be an arbitrary element of G. By axiom (iii), there exists t such that (1) tu = e;
once more by axiom (iii), for the t just obtained, there exists s ∈ G such that (2) st = e.
Hence: (3) ue = e(ue) = (eu)e = [(st)u]e = [s(tu)]e = (se)e = s(ee) = se = s(tu) =
(st)u = eu = u. (. . . ) Since u is an arbitrary element of G and by (3) ue = u, we conclude
that (∀x)(xe = x).

Now if there were a second element e′ with the property that (∀x)(e′x = x), we would
conclude from what has just been proven that (∀x)(xe′ = x) also, and hence e = ee′ = e′.
Thus, the identity element is unique. Hence, we have proven the following:

Theorem: (a) (∀x)(xe = x) (b) (∀y)(∀x)[yx = x �⇒ y = e].
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The following Naproche version of this proof, due to Marcos Cramer,13 is
accepted by the current version of the system:

Suppose that there is a function ∗ and an object e satisfying the following axioms:

Axiom 1. ∀x∀y∀z(x ∗ (y ∗ z) = (x ∗ y) ∗ z).
Axiom 2. ∀x(e ∗ x = x).
Axiom 3. ∀x∃y(y ∗ x = e).

Theorem A: For all x, we have x ∗ e = x.
Proof: Let u be given. By Axiom 3, there is a t such that t ∗u = e. By Axiom 3, there is an s
such that s ∗ t = e. Then u∗e = e∗(u∗e) = (e∗u)∗e = ((s ∗ t)∗u)∗e = (s ∗(t ∗u))∗e =
(s ∗ e) ∗ e and (s ∗ e) ∗ e = s ∗ (e ∗ e) = s ∗ e = s ∗ (t ∗ u) = (s ∗ t) ∗ u = e ∗ u = u. Thus
∀x(x ∗ e = x). Qed.

Theorem B: If ∀x∀y(x ∗ y = x), then y = e.
Proof: Assume that e1 is such that ∀x(e1 ∗ x = x). Then by Theorem A, ∀x(x ∗ e1 = x).
Hence e = e ∗ e1 = e1. Thus e1 = e. Qed.

Again, the transition from the original text to the Naproche text is quite
elementary and needs neither a logician’s expertise nor knowledge of group theory.
It is particularly interesting to note that the equivalence of these texts can be
observed even without a knowledge of the meaning of the corresponding terms.
This demonstrates again that it is distinctiveness, not clarity, which is required for
the transition as well as for judging the adequacy of such a translation.

Let us briefly recall at this point how Naproche proceeds to check a text like
the above: From the text, it builds a representation of the intended logical structure
of the proof. These proof representation structures (PRSs) contain the occurring
statements along with their intended relations, as A is to be assumed, B is to
be deduced, C is to be used in the step from A to B etc. Other than a formal
derivation which, by its definition, cannot be false, a PRS is completely neutral to
the correctness or soundness of the represented argument: What it represents is the
distinctively given intentional structure of a proof. Notably, presuppositions hidden
in certain formulations (e.g. uniqueness in the use of definite articles as in ‘Let n
be the smallest natural number such that. . . ’) are made explicit. In the next step,
an attempt is made to construct a fully formal proof from the PRS: In particular,
when B is, according to the PRS, claimed to follow at a certain step (possibly
with the help of an earlier derived statement A), then an automatic theorem prover
is used to attempt to prove B from the available assumptions at this point, where
indicators like explicit citations of earlier statements help to direct the proof search.
In particular, the automatic prover will attempt to apply definitions of the occurring
notions as well as results in which they appear: It will, when a notion T occurs,
quite naturally try to use the ‘inference package’ associated with T for creating the
actual deductions claimed to exist. It will, in other words, attempt to do something

13We thank Marcos Cramer for the kind permission to use the Naproche version of this text in our
paper.

claudio.ternullo@ut.ee



332 M. Carl

analogous to fulfilling the intentions given in the distinctive representation of the
proof.

14.4.2 Distinctiveness Is Not Sufficient for Natural Checking

The degree of understanding obtained by distinctly disclosing the structure of an
argument is not sufficient for performing a proof check. In fact, we can have
perfect distinctiveness and still be completely agnostic concerning correctness.
This is already indicated by our examples above. One reason for this is that, in
a natural argument, we do not have a fixed, manageable supply of inference rules
justifying each step. When checking a step, we often use some mental representation
(‘image’) of the objects under consideration. This representation is different from
a formal definition and usually precedes it.14 However, these images are imperfect
in directing us towards the objects we mean and may carry false preconceptions
concerning these objects. If, for example, concept B is a generalization of concept
A, there is a certain tendency of assuming properties of A for B. There is a vast
amount of frequent mistakes compatible with a distinct presentation. A strong
source of mistakes is some kind of a closed world assumption that excludes
objects we can’t really imagine. This danger remains even after we come to know
about counterexamples. Imagining e.g. a continuous function from R to R as a
‘drawable line’ is often very helpful, but it also misdirects us in many cases. For
another example, in spite of strong and repeated efforts, some students in set theory
courses never acknowledge the existence of infinite ordinals and keep subtracting 1
from arbitrary ordinals. The idea of a non-zero ‘number’ without a predecessor is
apparently hard to accept.

Such preconceptions derived from a misinterpretation of mental images are a
common source of mistakes even in actual mathematical research practice. Math
Overflow Discussion (2010a,b) contain long and occasionally amusing lists of
common misperceptions in mathematics, most of which are instances of such
misinterpretations. We will get back to this below when we consider classical
examples of false proofs.

Of course, this kind of perception of mathematical objects is all but a dispensible
source of mistakes: In fact, it is exactly this ability that steers the process of
proving and creating mathematics, thereby making the human mathematician so
vastly superiour to any existing automatic prover.

Let us now briefly reconstruct this example-driven account in the more general
terminology set up above for this purpose. Given a distinct presentation, we only
see what is claimed to happen, a ‘proof intention’. We can at this point already

14Historically, at least. The deductive style dominant in mathematical textbooks confronts the
student with the inverse problem: Namely making sense of a seemingly unmotivated given formal
definition.
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spot some mistakes, e.g. circularity, or that the statement actually proved is not the
statement claimed; but we cannot check the proof: A ‘proof map’, as helpful as it
is for finding one’s way through a more involved argument, does not require for its
creation an understanding or checking of the proof. To check a proof, it is necessary
to fulfill these inferential intentions; but for this, clarity is needed.

14.5 Distinctiveness, Clarity and Formalization

In this section, we consider the question what kind of understanding is necessary for
carrying out a full formalization of a proof in a common system of first-order logic
like, say, natural deduction. We argue that Rav is indeed right in claiming that such
an understanding allows checking and that, in fact, the checking is almost inevitably
carried out in the process of obtaining such an understanding.

To do this, let us reflect on the process of formalization. A formal proof is one in
which the manipulation of symbols is justified without any reference to a meaning
of these symbols. It is clear how a certain symbol may be treated without knowing
what it means, without even taking into account that it might mean anything. This
is achieved by replacing semantic reference by formal definitions. For instance, the
meaning of the word ‘ball’, representing a certain geometric shape, will be replaced
by rules that allow certain syntactical operations once a string of the form ball(x)

shows up. Still, the formal definition must capture the natural meaning if the formal
proof is to be of any semantic relevance, not just a symbolic game: The formal
definitions have to be “adequate” in a certain sense. How do we arrive at adequate
formal definitions? Obviously by observing the role a certain object plays in proofs
and then formulating precisely what about this object is used. Then, the notion of
the object is replaced by the statements used about it. (See Tieszen (2005) and
Tieszen (2011) for thorough discussions of phenomenological aspects involved in
the forming and clarification of mathematical concepts.)

If we replace an informal by a purely formal proof, we have to make all implicit
references to the content explicit to eliminate them in the formalization. This means
that the role of the object in the argument must be clear. Consequently, to obtain a
fully formal derivation from an informal proof, we must have distinctiveness and
clarity. But when all hidden information is made explicit as part of a complete
understanding of the argument, i.e. if all intentions are fulfilled, mistakes will
inevitably become apparent. The only questionable part remaining is then the
connection between the original semantic references and the formal definitions.15

But in established areas of mathematics, these definitions have stood the test of time,

15An excellent example of the delicate dialectics involved in forming definitions of intuitive
concepts is the notion of polyhedron in Euler’s polyhedron formula as discussed in Landau (2004).
Sometimes, this is the really hard part in creating new mathematics. Another prominent example
is the way how the intuitive notion of computability was formalized by the concept of the Turing
machine.
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and even though, particularly in new areas, there are debates about the adequacy of
definitions and though the focus occasionally shifts from one definition to another
providing a deeper understanding of the subject (often indicated by amending the
original notion with expressions like ‘normal’, ‘acceptable’, ‘good’ etc.), this issue
virtually doesn’t come up in mathematical practice. Even if it does, it is usually
considered to affect the degree to which the result is interesting, not the correctness
of the proof.16

Considering a distinct proof presentation, a good automatic prover will be able
to draw from formal definitions what we draw from correct intuition. Note that we
make no claim on the question whether formal definitions can exhaust semantic
content, nor do we need such a claim. The process of replacing steps referring
to understanding and perception of abstract objects by derivations from formal
definitions is what corresponds to the activity of fulfilling intentions involved in
the course of a clarification. Conceptually and mentally, this may well be a very
different operation. However, as explained above, Gödel’s completeness theorem
ensures that, whenever an argument can be brought to clarity, there will be a
derivation from the definitions. This is the reason why an automatic proof checker,
using an enhanced formalism as described above, can give us information on the
possibility of clarification.

For a more concrete picture of what information this kind of automatic checking
can give us, let us suppose that we have given a certain proof B to our proof-checker
(e.g. Naproche) and got a negative feedback, i.e. that our assumptions were found
to be contradictory or that some supposed consequence could not be reproduced
by the system. We are thereby made aware of a particular proof step that needs
further explanation, and it is here that we may become aware of an actual mistake
in our intended proof. This can already be seen in the most basic examples above,
e.g. the ‘proof’ that 2 = 1: Here, the demand to divide by (a − b) will trigger the
presupposition that (a − b) �= 0 as an intermediate proof goal which will then be
given to the automatic theorem prover. It is then a matter of seconds that we will
be informed that this proof goal was found to contradict the assumptions which will
make it very obvious what goes wrong in the intended proof. Here, we thus have a
clear example how automatic proof checking can lead to an epistemic gain.

It is not so obvious what information there is to be drawn from the opposite
scenario, e.g. a positive feedback from the system. Certainly, we are informed
that the proof goal is actually formally provable as it should be, but that doesn’t
imply that our proof was correct. Getting information about our proof from a
positive feedback would need a close connection between our natural way to think
about missing proof steps and the automatic theorem prover, which is certainly a

16Suppose, for example, that someone came up with a non-recursive function that one can evaluate
without investing original thought so that one is inclined to accept the evaluation of this function
as an instance of ‘calculation’, thus disproving the Church-Turing thesis. As a consequence,
recursiveness would lose its status as an exact formulation of the intuitive concept of calculation.
But this would not affect the correctness of recursion theory.
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fascinating subject for further study, but currently far remote from reality. This point
will be discussed in Sect. 14.7.

14.6 An Historical Example

In this section, we apply the notions obtained above to a famous historical
example of a false proof. Our goal is to demonstrate that this proof shows a
sufficient degree of distinctiveness for a formalization in a Naproche-like system
and hence that automatic checking could indeed have contributed in this case
to the development of mathematics. This example further demonstrates that even
incomplete distinctivication can be sufficient for automatic checking and that actual
mistakes may occur already in the margin between the degree of distinctiveness
necessary for formalization and complete distinctiveness.

Example (Cauchy 1821)[Cf. Rickey]17

Claim: Let (fi |i ∈ N) be a convergent sequence of continuous functions from R to R, and
let s be its limit. Then s is continuous.
Proof: Define sn(x) := �ni=1fi(x), rn(x) := �∞i=n+1fn(x). Also, let ε > 0. Then, as
each fi is continuous and finite sums of continuous functions are continuous, we have
∃δ∀a(|a| < δ �⇒ |sn(x + a)− sn(x)| < ε).
As the series (fi |i ∈ N) converges at x, there is N ∈ N such that, for all n > N , we have
|rn(x)| < ε.
Also, the series converges at x + a, so there is N such that, for all n > N , we have |rn(x +
a)| < ε.
So we get: |s(x + a) − s(x)| = |sn(x + a) + rn(x + a) − sn(x) − rn(x)| ≤ |sn(x + a) −
sn(x)| + |rn(x)| + |rn(x + a)| ≤ 3ε.
Hence s is continuous.

This example is taken from Rickey and closer analyzed in the appendix of Landau
(2004). The mistake becomes obvious when one focuses on the dependencies
between the occurring quantities: The δ shown to exist in line 3 of the proof depends
on ε, x and n. The N from line 4, on the other hand, only depends on ε and x.
However, the N used in line 6 obviously also depends on a. Hence N is in a subtle
way used in two different meanings. The dependence on a can only be eliminated
if there is some M bigger than N(ε, x + a) for all |a| < δ(ε, x, n). This property
means that (fi |i ∈ N) is uniformly convergent, which is much stronger than mere
convergence.

Simple as this mistake may seem, it has a long success story (see again Landau
2004): The (wrong) statement it supposedly proves was considered trivially true
for quite a while by eminent mathematicians, and when the first counterexamples

17This formulation is sometimes disputed as not correctly capturing the argument Cauchy had in
mind. Some claim that Cauchy meant the variables implicit in his text to not only range over what
is now known as the set of reals, but also over infinitesimals. However, the formulation we offer
captures the way the proof was and still is understood and at first sight considered correct by many
readers, so we will not pursue this historical question further.
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occurred, they were considered either as pathologies that shouldn’t be taken
seriously as functions or violently re-interpreted as examples. It was no other then
Cauchy who first felt the urge to give a proof and published the above argument
in his monograph (Cauchy 1821). It took several decades before the mistake was
spotted and the statement was corrected by strengthening the assumption to uniform
convergence.

Reproducing the understanding of this argument shows what is going on: In the
argument for the existence of N , one gets the imagination of a ‘sufficiently large
number’ and then reuses the object in a new context in an inappropriate way because
hidden properties of the object – its dependencies on others in its construction – are
ignored. That is, while the train of thought described here gives distinct intentions to
certain objects N and N ′ which are then identified, a fulfillment of these intentions
is not possible.

Now, suppressing the arguments on which an object depends is quite common in
mathematical writings. A formalizer, of course, must reconstruct this information.
The way a Naproche-like system models a text can easily allow for such a
convention. Apart from that, the text is certainly not lacking distinctiveness. It also
uses only very little natural language and not in any complicated way. It would be
quite feasible to enrich the vocabulary of e.g. Naproche to process it in the precise
form given here. But when the formalization is carried out, the proof breaks down.
It will be very interesting to actually carry this out on concrete systems once they
are sufficiently developed.

14.7 Discussion

We have explained above how automatic checking with Naproche-like systems can
lead to an epistemic gain concerning a proof. We will now take a close look at the
assumptions on which our account relies, thereby sharpening the picture when such
gains can be expected and when not.

Under what circumstances, then, do we get new information from Naproche
and what is that information? Certainly, it is informative if Naproche spots a non-
intended contradiction – in this case, the proof contains a mistake. The false proofs
of 1 = 2 and −1 = 1 above are examples where a tacit assumption contradicts the
information given, which an automatic proof checker can spot and report. But what
does it mean in general when Naproche fails to confirm a proof? And what does it
mean for the correctness of the proof if it succeeds? An informal proof, as found in
a mathematical journal, a math exam or a math olympiad is roughly seen as correct
when it convinces the critical expert: I.e. when it provides a person with the right
background with the information needed to construct a complete, detailed argument.
This notion of ‘right background’ is highly context-dependent: An original research
paper at the frontier of some area of core mathematics may leave proof steps to the
reader as ‘clear’ that would require from the average beginner student several years
of study and concentrated work to complete; on the other hand, proof exercises
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for beginner students of mathematics often require details even – occasionally
especially – for steps that are supposedly immediately clear. This is only one
respect in which the correctness of proof texts is a delicate notion, involving
sociological aspects like what background knowledge and what heuristic power is
to be expected by the audience addressed. The criterion realized in Naproche in
its current implementation is comparably weak, namely whether each claim can be
formally deduced from the information given at that point with limited resources
(typically within 3 s processing time). This is a very rough model of the inferences
regarded as admissible for bridging proof steps by human readers to whom formally
extremely complex inferences may be clear based on spatial intuition, analogy with
previous arguments etc. Consequently, a failure of Naproche to confirm a proof does
not necessarily mean that this proof is not a rational and sensible way of convincing
the reader of the correctness of the conclusion. Conversely, at least in principle, we
could have false positive results. If the checking succeeds, then a formal proof of
the conjecture in question was generated, so a correct proof is confirmed to exist;
but this does not necessarily mean that the original informal proof was correct by
the standards for informal proofs. Suppose e.g. that, in a proof of a statement A,
the end-result A is deduced as an intermediate step in the process of bridging a
gap in that proof; in this case, the formalization should certainly not be seen as a
confirmation that the original argument was sound. Similarly, if the work needed to
confirm a certain inference in a proof is much more complex than the whole proof
itself, one has a reason to doubt the proof. This becomes particularly obvious when
one thinks of tutorial contexts: When asked to prove something, some students try to
trick the corrector by making some deductions from the information given forwards,
some steps backwards from the goal and then simply writing the results next to each
other, claiming that the latter follows from the former. Even though this claim may
be right, these texts fail to show that the author knew how to do it, and usually,
the step left out is as complicated as the original problem itself. It is an interesting
field of further study to see what kind of inferences may be ‘left to the reader’ and
build formal models of those. More generally, the notion of correctness for informal
proofs, in contrast to that for formal proofs, certainly deserves further attention.

Still, granting these objections and as decent as our currently existing software
may be, the experience with Naproche and our analysis thereof above should suffice
to demonstrate that there is more to get from automatic proof checking than Rav
(and many others) might expect. However, one should not forget that this kind
of checking relies on various convenient circumstances; for example, it assumes a
stable formal framework which in particular allows to replace the understanding of a
term by a formal definition for all purposes of deduction. Where such a framework
is missing, the emulation of fulfillment of mathematical intentions by automatic
proving will not work. Such a framework is, of course, not always present; rather, it
typically occurs as a rather late stage in the development of a mathematical theory.
The clarification and development of notions is an important part of mathematics,
and proofs play a role as a part of this process (as e.g. Lakatos has impressively
demonstrated in Lakatos 1976). A similar caveat holds with respect to the use of
axiomatic systems: Not always is the content of a theory canonically codified in
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an axiomatic system; furthermore, axiomatic systems codifying a theory can be
complemented when defects become apparent in its usage. (A well-known examples
is Zermelo’s proof of the well-ordering principle introducing the axiom of choice.)

A vast majority of contemporary mathematical work, however, does indeed work
in such stable environments where we have formal definitions and a universally
accepted axiomatic background. Still, there are parts of mathematicians’ proof
practice (arguably the philosophically most interesting ones) that evade automatic
checking in the sense explained above. For those, there may indeed be fundamental
reasons to expect that automatic checking will not be helpful. Let us look at
one example: Namely Turing’s work (Turing 1937) on the Entscheidungsproblem,
which was widely accepted as settling this problem. It depends on a technical
part (the Entscheidungsproblem is not solvable by a Turing machine) as well as
a concept analysis (Turing machine computability captures the informal notion of
computability, as intended in the formulation of the Entscheidungsproblem). The
first part is, technical difficulties aside, open to automatic checking. But the second
part seems to be of an entirely different nature: Can a machine even in principle help
us to decide whether some formalization of a certain intuitive notion is adequate?
Apparently, we can’t have told the machine what such a notion means without
knowing it ourselves. If, by some other means (like automatic learning) we had
a machine answering ‘yes’ or ‘no’ to such questions, how could we know it is
right? The machine would have to take part in the discussion arising, providing
experiences, thought experiments exploring the borders of the informal notion etc.
In some cases, the underlying informal understanding of such notions will be
rooted far outside of mathematics in what may be called the life-world. Is the set
of reals an adequate model for a ‘line’ or for time? Does Turing computability
indeed capture computability in the intuitive sense? DoesZFC provide a reasonable
understanding of what it means to be a set and are the set-theoretical formalizations
of mathematical notions adequate to them? These questions play a crucial role in the
acceptance of various formal proofs as answers to mathematical questions, and they
are only non-mathematical when one arbitrarily limits the scope of mathematics
to formalism. In all of these cases, one can easily imagine how the discussion
about them will touch on aspects of human thinking and experience far outside
of mathematics. These notions are human notions, made by humans for humans.
Human understanding is the ultimate criterion for their adequacy, so that no outer
authority like a computer can tell us what they mean. It is hence quite plausible that
we cannot write a program of which we are justified to believe that it gives correct
answers to questions concerning the adequacy of a concept analysis, but there is
nothing mysterious about this ‘non-mechanical nature of the mind’: It is a mere
consequence of the specific evidence type of (human) concept clarification.18

18Even more, taking the speculation a bit further, being able to meaningfully and convincingly
participate in this kind of discourse is a plausible criterion for not calling something a ‘machine’
any more. (Moreover, the definiteness of a machine’s response, which is a main motivation for
striving for automatization in the first place, is lost when a machine becomes merely another
participant of a discourse.) Of course, the rules of a discourse are made by its participants; so in the
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To briefly summarize our discussion: There are indeed important aspects and
parts of mathematicians’ proof practice that are likely beyond automatic checking
in principle, and definitely in the current state or any state to be expected in
the foreseeable future. The great consensus on the Church-Turing-Thesis and the
general acceptance of Turing’s work as a solution to the Entscheidungsproblem (or
Matiyasevich’s work on diophantine equations as a solution to the 10th problem,
see Matiyasevich) is something that Azzouni’s derivation-indicator-view can hardly
explain. But many great mathematicians have done their work in stable frameworks
and a great deal of mathematics takes part in those: Here, automatic proof checking
can lead to epistemic gains. And here, Naproche-like systems work, demonstrating
that the derivation-indicator view is not as easily discarded by arguments like those
of Rav.

14.8 Conclusions and Further Work

We hope to have made it plausible that phenomenological considerations and the
corresponding shift of focus can be fruitfully applied to questions concerning the
philosophy of mathematical practice with a relevance to mathematical research
itself. Namely, we have argued that, in spite of the claims against it, automatic proof
checking can lead to an epistemic gain about an argument in providing evidence
that the indicated intentional acts can be carried out in a distinct and clear manner.
The reason for this was that human proof checking needs clarity about a proof,
while automatic checking can be performed once a certain degree of distinctiveness
is obtained. For this argument, we crucially used the phenomenological turn from
proofs in the way they are usually considered to the ways in which they occur.

A phenomenological theory of proof perception has, to our knowledge, not yet
been given.19

end, the possibility of computers becoming influential even in the conceptual part of mathematics
might boil down to the question whether we are willing to accept a computer as a participant in
such a debate on equal terms. However, we now have reached a level of speculation at which it is
better to stop.
19There are, however, several phenomenological accounts of mathematical proofs focusing on
other aspects. We are thankful to the anonymous referee of an earlier version of this paper for
pointing out to us four very worthwhile works on the phenomenology of proofs, and we take the
opportunity to briefly discuss their relation to our work:

In Tragesser (1992), R. Tragesser points out that, in the philosophy of mathematics, actual
proof practice is often ignored in favour of or replaced with formal proofs and remarks that this
‘idealizes away’ many elements that are important for mathematics. To remedy this, he proposes
phenomenology as a better approach, where phenomenology means focusing on ‘the thing itself’
and striving for a deep an understanding as possible rather than being satisfied with pragmatical
considerations. In particular, he emphasizes that possible proofs are as good as actual proofs and
that this is a sense in which mathematics can be said to be a priori. His approach does not build on
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It would certainly be interesting in its own right. As one consequence, it would
contain a thorough study of proof mistakes, which, on the one hand, might become
relevant in pedagogical considerations, but would also sharpen our understanding of
what automatic proof checkers can add to our trust in a proof and how they can do
this.

A concrete application of such considerations would be the development of
proving tools suitable for Naproche-like systems. Such a prover is supposed to
bridge steps in natural proofs which are assumed to be supplied by the reader. In
a sense, these proofs are hence ‘easy’ and ‘short’. Of course, such steps often take
place in e.g. spatial or temporal intuition rather than formal reasoning. There is
therefore no obvious relation between a ‘simple, short argument’ and the number
of lines in a corresponding derivation.20 A next step is hence to consider common
elementary operations that are performed in supplying such proof steps and give
formal background theories to replace them. The goal of this would be to make the
automatic prover’s activity more resemblant to an actual human reader. (Suppose

Husserl’s phenomology and also does not apply, as ours does, to the analysis of mistakes, as for
Tragesser, a proof is always a correct proof.

A similar critique of focusing on formal representations of proofs is given by G.-C. Rota in Rota
(1997), who also presents a similar understanding of phenomenological analysis, which should
consider as close as possible actual proofs without ignoring important aspects as belonging to other
fields – such as psychology – or due to confusing description with norms. Rota in particular points
out that ‘proof’ has aspects beyond ‘verification’, such as understanding, degrees of understanding,
giving ‘reasons’, different kinds of proof and the heuristical value that proofs and theorems play
for the further development of mathematics. He also gives historical examples to substantiate his
thesis that mathematics is really a strive for understanding in which theorems and proofs both play
equal roles.

In Sundholm (1993), G. Sundholm notes that there is a ‘tension’ between various plausible
claims put forward concerning proofs, which leads him to distinguish between proof-acts (series
of mental acts), proof objects (the result obtained at the end of a proof) and proof-traces (the
written presentation, that allows others to reproduce the series of acts). His work does not build on
Husserl’s analysis of logic, but is related to our work as the present paper can be viewed as a closer
analysis of the process of reproducing a proof-act on the basis of a proof-trace, distinguishing
different qualities that such an reproduction can have and attempting to determine which of these
needs to be achieved in order to check the proof for correctness or to produce an automatically
verifiable version.

In Hartimo and Okada (2016), M. Hartimo and M. Okada compare Hankel’s approach to
formal arithmetic and mathematics to Husserl’s and demonstrate strong parallels between Husserl’s
treatment of arithmetic and term-rewriting systems commonplace in computer science. As an
example given on p. 955 of Hartimo and Okada (2016) that goes back to Husserl, an arithmetical
expression like 18+48 is here considered to be ‘fulfilled’ by a normal form expression, in this
case 66, and the possibility of fulfilling the intentions signified by such expressions is demonstrated
by showing how to reduce them to such a unique normal form by a certain algorithm.
20To appreciate this difference, one might consider the equation ((a+b)+c)+d = ((d+c)+b)+a
over the reals, which is obviously true for a human reader who thinks of addition as taking the
union of two quantities. In our experience with number-theoretical texts in Naproche (Carl), the
automatic prover, having to derive this from commutativity and associativity of addition, often got
lost in the countless alternative possibilities which rule to apply. This is a striking example for the
pragmatical difference between formal definitions and intuitive concepts.
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e.g. that the automatic prover proves an auxiliary lemma in a proof in a very
complicated way, obtaining the final theorem as an intermediate step. We would
certainly not call this a valid reconstruction of the argument.) This could help to
considerably increase the contribution of natural-language oriented automatic proof-
checkers: In areas like elementary number theory, where crucial appeal to intuition
is rare and proofs can be translated rather naturally, a Naproche reconstruction of
an informal proof will usually correspond well to the proof intended. Even if it
doesn’t, we gain trust in the theorem from a positive checking, as we obtain a formal
proof, whether it adequately captures the original proof or not. But of course, the
goal of a proof checker is not just to check whether the theorem claimed to be
proved is provable, but whether the purported proof actually is one. For succeeding
at this task, the checker would have to become ‘pragmatically closer’ to the intended
human reader.

Once sufficient background theories are built up, one should actually carry out
the examples given above and others to see what Naproche does with them. Will
it find the ‘right’ mistake? This asks for a systematic study of wrong proofs in e.g.
flawed research papers, wrong students’ solutions etc. Such a reconsideration of
well-known mistakes can serve both as a source of inspiration for the development
of natural proof-checkers and as powerful demonstration of what has been achieved.
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Chapter 15
Varieties of Pluralism and Objectivity
in Mathematics

Michèle Friend

Abstract The phrase ‘mathematical foundation’ has shifted in meaning since the
end of the nineteenth century. It used to mean a consistent general theory in
mathematics, based on basic principles and ideas (later axioms) to which the rest
of mathematics could be reduced. There was supposed to be only one foundational
theory and it was to carry the philosophical weight of giving the ultimate ontology
and truth of mathematics. Under this conception of ‘foundation’ pluralism in
foundations of mathematics is a contradiction.

More recently, the phrase has come to mean a perspective from which we can
see, or in which we can interpret, much of mathematics; it has lost the realist-type
metaphysical, essentialist importance. The latter has been replaced with an emphasis
on epistemology. The more recent use of the phrase shows a lack of concern for
absolute ontology, truth, uniqueness and sometimes even consistency. It is only
under the more modern conception of ‘foundation’ that pluralism in mathematical
foundations is conceptually possible.

Several problems beset the pluralist in mathematical foundations. The problems
include, at least: paradox, rampant relativism, loss of meaning, insurmountable
complexity and a rising suspicion that we can say anything meaningful about
truth and objectivity in mathematics. Many of these are related to each other, and
many can be overcome, explained, accounted for and dissolved by concentrating on
crosschecking, fixtures and rigour of proof. Moreover, apart from being a defensible
position, there are a lot of advantages to pluralism in foundations. These include: a
sensitivity to the practice of mathematics, a more faithful account of the objectivity
of mathematics and a deeper understanding of mathematics.

The claim I defend in the paper is that we stand to learn more, not less, by
adopting a pluralist attitude. I defend the claim by looking at the examples of set
theory and homotopy type theory, as alternative viewpoints from which we can learn
about mathematics. As the claim is defended, it will become apparent that ‘pluralism
in mathematical foundations’ is neither an oxymoron, nor a contradiction, at least
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not in any threatening sense. On the contrary, it is the tension between different
foundations that spurs new developments in mathematics. The tension might be
called ‘a fruitful meta-contradiction’.

I take my prompts from Kauffman’s idea of eigenform, Hersh’s idea of thinking
of mathematical theories as models and from my own philosophical position:
pluralism in mathematics. I also take some hints from the literature on philosophy
of chemistry, especially the pluralism of Chang and Schummer.

15.1 Introduction1

There is a deep difficulty for the pluralist. The pluralist is not just pluralist in one
respect, as we shall shortly see. He is pluralist in some of, or at least: epistemology,
foundations, methodology, ontology and truth. I’ll work through the definitions
and some easy examples in the next section. For the pluralist who is pluralist in
most, or all, respects, the difficult task is to account for the apparent robustness and
objectivity of mathematics. Is the robustness and objectivity an illusion, if not, what
accounts for it?

15.2 Pluralism in General and Pluralism in Mathematics

What is pluralism? Let us start with some definitions.

Pluralism is a philosophical position where the trumping characteristic is a tolerance
towards other points of view, theories, methodologies, values and so on. The tolerance
is not an act of kindness. It is motivated by scepticism and honesty.

The mathematical pluralist I canvass here2 is someone who occupies a philosophical
position concerning mathematics. The trumping characteristic of is that he shows
a tolerance towards different approaches in mathematics concerning: epistemology,
foundations, methodology, objectivity and truth. He is a principled sceptic.

A principled sceptic is not just someone who doubts out of habit or obduracy. Rather,
he is someone who has been brought to doubt in light of (1) being aware of several
epistemologies, etc. in mathematical practice, and (2) lacking a strong conviction that
one particular of these is ‘correct’.

1I should like to thank Amita Chatterjee for her excellent comments as referee for
improving the paper. The paper was originally published in 2017 in: Mathematical Pluralism,
Special Issue of the Journal of the Indian Council of Philosophical Research, Mihir
Chakraborty and Michèle Friend (Guest Editors) Springer. JICPR Vol. 34.2 pp. 425–442. DOI
https://doi.org/10.1007/s40961-061-0085-3. ISSN: 0970–7794. pp. 425–442. I should also like to
thank the Instituto de Investigaciones Filosoficas at the Universidad Autonoma de México for
support.
2There are other aspects in which one can be a pluralist. Since I shall be focusing on the question
of objectivity, these aspects are sufficient to draw out the problem.
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Thus, the principled sceptic can be thought of as modest and honest. The modesty is
such that it is not even necessarily a stable position, since the principled sceptic does
not rule out the possibility that in the future he might acquire the relevant conviction,
but he is also open to the idea that there might simply never be a unique correct
epistemology, foundation etc. for him or for anyone else, although he recognises the
hope or conviction in others.

In my experience, many mathematicians refer to themselves as pluralist. I suspect
that what they mean by this is that they are pluralist in one respect or other, possibly
one not discussed here, and they do not specify in which sense.

15.3 Varieties of Pluralism

Let us work through the varieties I propose to look at here, in order to understand
the problem of objectivity.

Pluralism in epistemology: The pluralist in epistemology believes that there are different
methods of knowing mathematical concepts and that it is far from obvious, given the
present state of play, that there is anything like ultimate explanations, justifications
or complete knowledge in (not of ) mathematics,3 or unique convergence on ‘best’
explanations, justifications or knowledge in mathematics.

First, let us distinguish between, on the one hand, learning and teaching
mathematics, and knowing (parts of) mathematics. When we talk of epistemology
we are talking of knowledge, not pedagogy. In epistemology we are interested
in how we can be quite certain of a concept, where ‘certainty’ is not merely
phenomenological, but justified; or how can we be sure that there is no ambiguity in
a concept.4 These are different questions from those that surround ‘learning styles’
or ‘teaching styles’. About these, we might ask which are most efficient, or which
teaching styles suit which kinds of students, and how can we detect this in advance?
The difference is that in teaching mathematics at the lower levels, it is usually
sufficient for the purposes at hand to give some grasp of a mathematical concept.
Pluralism in learning or teaching styles, I take it, is rarely controversial.5 That is,
we tolerate different learning and teaching styles, since some part of the population

3I think that no one would claim a complete knowledge of mathematics, but some people might
well claim a complete knowledge of some parts of mathematics, say, the theorem ‘2 + 2 = 4’ in
Peano arithmetic.
4Arguably, there is always some ambiguity in any concept. For example, there is always ambiguity
in context. However, the ambiguity might not be important for our concerns or purposes, or it
might not be recognised yet, since we do not yet make the subtle distinctions necessary to notice
the ambiguity.
5The exceptions are, for example, when a new way of teaching mathematics is adopted nation-
wide. Experiments of this sort were introduced in France under the ‘Code Napoleon’, in the USA
as the ‘New Math’ (Sic!) and might very well be the case in some countries with a language
not known to many people outside the country – for lack of textbooks, schools of mathematical
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learns or teaches better in one style rather than another. Pluralism in epistemology
is, I think, a more controversial claim.

Let me tell a more-or-less standard story. We shall then have occasion to refine it.
Proofs are one example of an epistemological route to mathematics. Others are:

contemplation of an axiom or theorem, or application of a theorem or result in
another area of mathematics or outside mathematics, experimenting: by drawing
or calculating values within parameters so one watches the numbers change through
the calculations.

We all know that some mathematicians (and people) think linearly and others
think geometrically. Some mathematicians (and people) think generally and some
think in a more detailed way. More controversially, some philosophers, logicians
and mathematicians think that we can only know mathematics if we reason in a way
that can be represented using a constructive logic. According to such constructivists,
we construct mathematics step-by-step starting from ideas or principles or truths
it would be impossible to doubt or the doubting of which would make thinking
impossible (in some sense) or from immediate truths,6 that is, truths we cannot
further justify. Immediate truths are first principles of mathematics or logic that we
know. We proceed from principles we know in this very strong sense of ‘know’
through inference rules that preserve knowledge. Those who reason otherwise are
not entitled to claim to know mathematics! Of course, this raises the question as to
which are the immediate truths, and what do we do if someone disagrees with our
selection?

Continuing with the standard story, some philosophers, logicians and mathemati-
cians on the other end of the epistemological spectrum think that we grasp, discover
or see, mathematical truths, ideas and so on through contemplation and reasoning,
not step-by-step, but by having insights into the reality beyond our sense experience.
This is the more Platonist view. The privilege of being human is to be able to have
these insights and to communicate them to others. Of course, we might be wrong
etc.

With a few refinements, these two epistemologies are the only options, according
to the standard story. The epistemological pluralist is (at least) agnostic between the
constructive understanding of epistemology and the Platonist understanding.

The epistemological pluralist might also be more than agnostic. As an epis-
temological pluralist, I do not think that either of the above stories is quite
right because, first, they do not preclude each other; we might use a proof and
contemplation of an axiom or theorem to gain knowledge; second, knowledge is
partly phenomenological. What is right about the story is that mathematicians make
knowledge claims. They (rarely bother to, but could) claim to know that 2+ 8= 10

learning etc. All of these are geographical, historical and politically situated. The subject is not
without interest.
6‘Immediate’ is not meant in the temporal sense of ‘right away’, or in the sense of ‘obvious’. Some
constructively ‘immediate truths’ might take a long time to appreciate. It remains, however, that
there is no further direct justification we can add to bring about appreciation. At best, we can give
a number of examples, and expose someone to them, hoping they will ‘sink in’.
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in Peano arithmetic, for example. As a pluralist, the way I interpret this is to
think that what they mean is that that they can give a proof, from the axioms of
arithmetic, and that they feel it to be true. So, there is a justification accompanied
by the phenomenology of conviction. The conviction “that 2 + 8 = 10 in Peano
arithmetic” comes from a rigorous proof, or from knowing that a rigorous proof can
be constructed, together with a pretty good idea that one could work out how to do
it pretty quickly. However, the right sort of phenomenology even accompanied by
a justification is not enough to claim knowledge, for, we still have to (meta-)justify
our conviction in the particular justification.

It is far from clear that ‘2 + 8 = 10’ (not in Peano arithmetic but tout court) is
‘known’! It is not a justified true belief, since it is false in arithmetic mod 8.7 In
arithmetic mod 8, 2 + 8 = 2.

Maybe this is disingenuous. After all, we rarely use arithmetic mod 8, so we
tend to specify it if we are, so there is something inductively safe (or by default
appropriate) in saying that one knows that 2 + 8 = 10, without adding the qualifier
‘in Peano arithmetic’. But 2 + 8 = 10 is not just a default truth either, insofar as
one can make sense of the notion of a default truth at all. Rather, it is a statement
confirmed by use over and over again, in all sorts of contexts. That is, there is a
good (meta) justification behind taking to be true by default. It is a highly confirmed
default.

We can already begin to develop the thesis about objectivity. Following Wright
(1992), we can call this “wide cosmological role” for the statement 2 + 8 = 10. A
‘truth’ has a wide cosmological role when it can be imported to other discourses
(Wright p. 196) and is treated as true in each. 2 + 8 = 10 is very useful in all sorts
of discourses: about pieces of wood, about loaves of bread, about river basins in a
country and so on. This gives the ‘truth’ that 2 + 8 = 10 a robustness, since it is
counter-checked and confirmed widely. But there is still something more, and this is
what we shall see in sections 4, 5 and 6, when we develop the notion of objectivity
further in the form of what I shall refer to as borrowing, crosschecking and fixtures
within mathematics.

For now, let us consider the next sort of pluralism.

Pluralism in foundations consists in a tolerance towards the idea that there might be
different foundations in mathematics. More moderately: it is an agnosticism concerning
which foundation is ‘the correct one’, if any. Less moderately, it is the conviction that
there is no reason to believe, on present evidence, that there is a unique foundation,
together with agnosticism as to whether or not this situation might ever change.

Pluralism in foundations can be thought of in at least three ways: as epistemic,
ontological or alethic. The epistemic version of pluralism in foundations is that
we do not know which, if any, foundation is ‘correct’. The ontological version is
that there is no unique ontology referred to by the several purportedly foundational

7This is a sort-of ‘clock arithmetic’, where the numbers go up to 8 and then start again at 1, going
in a circle.
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theories. The alethic version is that there is no truth of the matter whether any
particular proposed foundation is the truth-conferring foundation for mathematics.

These sorts of pluralism are convincing if we take seriously the practice of
working mathematicians. Few of them work only in one of these foundations.
Most do not even care to make explicit reference to one of these, they might make
reference to several of these or to none of them. This is, of course, just a report
about the practice, and the practice could be by-and-large wrong, but this remains
to be shown and the burden of proof lies with the monist who advocates a particular
unique foundation for mathematics.

Moreover, we should be alerted to the fact that the word ‘foundation’ has changed
its use and meaning in the context of mathematics. Evidence of this can be found in
this volume. See the chapters by Claudio Ternullo, Andrei Rodin, Penelope Maddy
and Lawrence C. Paulson. It was used to mean a reducing discipline that would
take on the philosophical charge of providing the ontology and ultimate truth of all
of mathematics. Now, it tends to mean ‘is a perspective from which we can see a
lot of mathematics, and so unite a lot of mathematics into a coherent whole’. This
is the modern, more pluralist, sense in which ‘foundation’ is used by Shapiro-type
structuralism, by group theorists, algebraists, by most modern category theorists
and set theorists and, more recently, by homotopy type theorists.8 These modern

8I’ll explain the terms. Shapiro’s structuralism is a philosophy of mathematics characterised
roughly as follows: mathematical theories can all be thought of as structures. A structure consists
in a domain of objects together with some predicates, relations and functions that bear between the
objects, and give structure to the objects, together with operations we can perform on formulas in a
second-order set theoretic language. We use standard classical model theory to compare structures
to each other. Group theory studies objects, such as the positive integers, which must include
an identity element and operations that correspond closely to addition and multiplication. Group
theorists impose their idea of groups, and findings about groups on other areas of mathematics,
bringing new insights to those areas. Algebra is also a very basic way of looking at other areas
of mathematics. Algebra is about working out which formulas are equivalent to which other
formulas. Category theory was proposed as an alternative to set theory. In category theory, we
have categories. They are made up of objects and ‘arrows’. The claim of category theorists is that
(almost) any part of mathematics can be thought of as a category. Moreover, category theorists
compare categories and work out meta-functions (called ‘functors’ in category theory) which take
us from one category to another. This, too, tells us about connections between different areas of
mathematics. Set theory was proposed as a real foundation for mathematics at the beginning of the
twentieth century. It was so proposed because so much of mathematics was found to be reducible
to set theory. That is, it was a mathematically comprehensive theory. Alternative ‘foundations’,
such as Whitehead and Russell’s type theory, were proposed at the time or since the development
of set theory. Homotopy type theory is more recent. Some mathematicians claim that it, too, can be
thought of as a foundation for mathematics. From what I understand, it is based on the constructive
dependent type-theory of Martin-Löf. What the homotopy type theorists bring to the table is not
only the very sophisticated individuation of statements in mathematics in terms of type, but also the
homomorphisms, that is, roughly, the relations and functions, between the types that are normally
glossed over as equality. Each of the above areas of mathematics is foundational in the sense that
they can make the claim that they can ‘see’ or ‘interpret’ much of what is counted as ‘mathematics’
today. Moreover, each theory brings its own way of looking and of seeing mathematics. We learn
something from each, and we would deprive ourselves of understanding and insight if we were to
ignore some.
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‘foundationalists’ defend their favoured foundation with claims about making sense
of, understanding parts of, or giving insight into, particular results in mathematics
more easily or lucidly. This more sober use of ‘foundation’ is arguably pluralist
in the sense above. Taking the working mathematician seriously we also observe a
pluralism in methodology.

What is pluralism in methodology?

Pluralism in methodology is a tolerance towards different methodologies. In mathematics,
we might see this in the form of borrowing techniques developed in one area of
mathematics in an area otherwise foreign to it. We might do this in order to generate
a proof of a theorem.

What we quite often see in modern mathematics is the borrowing of results
and proof techniques from one area of mathematics to another. For example,
proof techniques, such as proof by contradiction or diagonalisation techniques, are
freely shared between areas of mathematics. Diagrams or tables developed in one
area of mathematics might be imported to another for reasons of suggestion or
demonstration. As we shall see in later sections when we further develop the notion
objectivity available to the pluralist, this is not necessarily a problem because of the
fixtures and crosschecking and the method of ‘chunk and permeate’ that organises
our reasoning into compartments. All of these will be explained in due course. The
surprising thesis here is that it is borrowing that accounts for the objectivity of the
discipline of mathematics. Before I develop this properly, let us turn to the varieties
of pluralism that most directly lead us to the problem of objectivity for the pluralist.

The problem of accounting for objectivity is made quite stark for the philosopher
of realist inclination, but not conviction, when we observe pluralism in ontology and
truth, since together they disrupt the philosopher’s usual account of objectivity. The
usual account runs as follows: there is an ontology, studied by mathematicians, and
the ontology is what makes the statements in mathematics true or false. This is the
general realist picture, and it is one of long standing in philosophy of mathematics.

To already cast doubt on the realist account we can disentangle realism in
ontology from realism in truth in the following way. Realists in ontology think that
the ontology of mathematics is independent of us, but that truth is, for example, a
feature tied to language and concept formation, so we might get the truths wrong,
in the sense of not quite referring to the underlying ontology. In contrast, a realist
in truth but not in ontology, might think that a lot of mathematical statements are
true without there being any ontology, since, for example, ontology has to be causal
or physically detected by us. So, for example, someone might say that gauge theory
in physics is true (since it gives us all the right measurements and predictions),
but there is no ‘underlying reality’ in the sense of a causal ontology. In terms of
predictions concerning matter or forces, gauge theory has extra mathematical and
epistemological structure; structure that does not bear on, ontology and properties
of objects. It might, nevertheless be true.9 But, in this paper, it is not enough to

9James Weatherall “Understanding gauge”. Paper presented at the conference:
Logic, Relativity and Beyond 2015, Budapest, 9–13 August 2015.
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disrupt the realist account with disentangling ontology from truth, since what we
are contemplating is a position that is pluralist in both ontology and truth. So, as
philosophers we are robbed of our traditional account of objectivity in mathematics.

A pluralist in ontology denies that there is a unique, absolute, consistent10 well-defined
(or well-definable) ontology which accounts for the whole of mathematics as it is
practiced.

A pluralist in truth believes that truth in mathematics is not an absolute term, or at least is
not a well-defined concept. Truth-in-a-theory is perfectly understood, except maybe in
some half-developed theories; but truth of a theory is not. Truth is, then, always relative
to a context, namely, a theory of mathematics, and a meta-mode in which we (implicitly
and temporarily) take the theory to be true.

The question we shall now address is: is it possible for there to be, and if so in
what way can there be, objectivity in mathematics without thinking that there is
one epistemology, foundation, methodology, ontology or truth in mathematics. The
task seems daunting. So, we might give up and think that we are quite delusional
about the objectivity of mathematics. It is all a mere fiction11 after all. But if we
give up like this, then we are faced with the equally difficult task of accounting for
the delusion! Mathematics certainly seems to be objective. The indicator for this
is that we are often surprised by results, and when we are surprised we adjust our
understanding and adopt the new information as fact.

15.4 Objectivity Within Proofs: Chunk and Permeate

For the pluralist, there are at least two separate sources of objectivity in mathemat-
ics. One is rigour of proof or demonstration. The other is borrowing, crosschecking
and fixtures. We shall address the latter in the next section. Now, we concentrate on
rigour of proof and preservation of ‘objectivity’ within a proof.

It often happens, especially in modern mathematics, that in a particular proof,
results or methods are borrowed from different areas of mathematics. If we were
to put all of the theories together we would have inconsistent or trivial theories.
A theory might be inconsistent but not trivial, just in case it is paraconsistent or
relevant.12 But in such borrowing proofs, we do not use all of the resources of all of
the theories. So, maybe the parts we do borrow are all consistent with each other?
Unfortunately, things are not always so simple.

10For the paraconsistent logicians: substitute ‘coherent’ or ‘non-trivial’ for ‘consistent’.
11I deliberately use the qualifier ‘mere’ to distance this attitude of giving up on the objectivity of
mathematics from the Field’s factionalism which is a positive account of mathematics as fiction.
12A theory is consistent if and only if it has a consistent model, or less impredicatively, a theory
is consistent just in case the underlying logic, or formal representations of reasoning is/are not
paraconsistent or relevant, and there are no contradictions. A theory is trivial if and only if every
well-formed formula of in the language of the theory can be derived in the theory. A theory is
paraconsistent, or relevant, if and only if inconsistency in the theory does not engender triviality.
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There are particular proofs in mathematics that (1) have inconsistent sets of
premises. That is, from them we could derive a contradiction. Moreover, (2) the
underlying logic is assumed to be neither paraconsistent nor relevant, and therefore
the theory that would result would be trivial, were we to take the premises as
axioms and close the theorems under other-than-paraconsistent or relevant rules of
inference. When both (1) and (2) occur in a proof, we have to be very careful.
Otherwise we could be accused of working within a trivial theory and this is
not acceptable mathematical practice.13 Paraconsistent and relevant mathematical
theories are uncommon in mathematics, so we shall ignore this area of mathematics
forthwith. To get a flavour of how such work is done, see Graham Priest’s chapter
in this volume. Paraconsistent treatments of mathematics are very interesting. The
question then is, can a proof where (1) and (2) occur still be coherent, objective or
still make sense in mathematics?

One way of helping with such situations is to draw on the proof strategy called
‘chunk and permeate’. (Brown and Priest 2004).

More precisely, we shall develop a very weak sort of objectivity: ‘objectivity-
modulo chunk and permeate’. Informally, and overlooking many subtleties, ‘chunk
and permeate’ is a method of re-constructing proofs that use together inconsistent
premises. Chunk and permeate, arranges such proofs into a series of chunks of
reasoning. Within each chunk we have perfectly acceptable formal reasoning.
Between chunks, we only allow some information to permeate, or flow – just enough
to come to the conclusion of the chunk. In considering proofs, we are interested in
preservation of objectivity, where ‘objectivity’ is not contrasted to subjectivity, but
to context sensitivity, or context-relativity. One hypothesis of this paper14 is that:

a chunk and permeate re-arrangement of proofs is enough to preserve objectivity from
premises to conclusion since each chunk belongs to a separate and objective context
(background theory).

The notion of ‘objective context’ is what will be fleshed out in the next two sections.
Chunk and permeate proofs are objectivity preserving but are not guarantors of
objectivity by themselves, just as validity of a proof is truth preserving but not a
guarantee of truth. That is, if the various premises are objective relative to their
context, then so is the conclusion; but there is no guarantee that the premises are
objective tout court. Nevertheless, if the hypothesis is correct, then we can accept
the following definition:

A proof is objectivity preserving if it has been or can be successfully arranged in a chunk
and permeate proof.15

13The question whether intentionally working within a trivial theory should be acceptable, or under
what circumstances it should be acceptable is under investigation by Luis Estrada Gonzalez.
14This has not been proved.
15It is an interesting and open question whether any correct proof can be arranged in a chunk-
and-permeate fashion. It is an interesting and open problem whether any incorrect proof can also
be so arranged, and if so what this means. These questions are under investigation by the author
and others, especially my colleagues in Mexico. The questions are quite delicate especially if we
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To see this better: the philosophical problem with objectivity preservation
within a proof is that the conclusion is true within the context of the premises
(on condition that we accept the premises, that they are objective in the ways to
be specified in the next sections) and possibly that we conducted the proof in the
right order (for reasons of chunk and permeate) but there is no guarantee that the
conclusion is true in general, i.e., globally true in mathematics (in the absence
of one epistemology, foundation, methodology, ontology and truth). There is no
guarantee because if we were to combine the whole theories or contexts from which
we imported the theorems/ premises then we would end up with a trivial theory.

To solve the problem we turn to the other source of objectivity in mathematics:
fixtures and crosschecking. We need the latter to account for the objectivity
of mathematics taken as a whole in the light of global inconsistency, that is,
inconsistencies between mathematical theories.

15.5 Objectivity in Mathematics: The Thesis of Borrowing,
Crosschecking and Fixtures

Before I turn to the account of borrowing, crosschecking and fixtures. In case it is
useful for situating the following sort of enquiry, I should note that inspiration and
courage to undertake this account of objectivity in light of pluralism comes from
Wright’s treatment of objectivity in his book Truth and Objectivity (Wright 1992).
There we find that there is not one account of truth or one account of objectivity, but
several that depend on some properties of the discourse. Here I tentatively explore
some ideas about objectivity in mathematics. The objectivity, in light of pluralism,
takes the form of borrowing, crosschecking and fixtures.

Borrowing occurs when an axiom, rule, lemma, result, theorem, proof technique, diagram-
representation, operation and so on are imported from one theory of mathematics to
another.

Crosschecking occurs when we prove that two theories share features that are ‘the same’.

Of course, the judgement that it is ‘the same’ axiom, rule etc. that is imported can
only rigorously be made within a theory (or class of theories), and depends on our
translation. See for example the chapter by Benedikt Ahrens and Paige North and
the chapter by Neil Barton and Sy Freidman in this volume. We have to make a
proof about the translation being correct or loyal. Such proofs of ‘sameness’, if
they exist, are usually informal and carried out at the meta-level. Thus a particular
theory in which such an informal proof is made is rarely stipulated. The informal
proofs are made in a class of theories. This is because when we do not stipulate a
particular theory for our informal proof, it follows that once we have the informal
proof, all we can do is rule out some theories. We do this when we notice that

are allowed to use paraconsistent reasoning or even trivial representations of reasoning within a
chunk, but then if we have to use such representations then this might reveal too high a price for
acceptance or objectivity of the conclusion. These are all open questions.
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some presuppositions or inference moves were made that are forbidden by some
other theories, so the proof cannot belong to those theories. Similar remarks
apply to crosschecking. Examples of crosschecking are: equi-consistency proofs,
embeddings, reductions to a ‘foundation’ and to some extent borrowings and inter-
translations.

Fixtures are notions which stay fixed across some mathematical theories.16 They are
preconditions for crosschecking in mathematics, and items that are extensively borrowed
become fixtures.

Modern mathematics, more than any other discipline, involves borrowing and
crosschecking.17 Let me give an example where borrowing, crosschecking and
fixtures come together. For another example see the chapter by Philip Welch in this
volume.

If I can show that proofs in a formal language can be expressed in a normal form,
and then that they can be arranged in a tree (partial order), and that the tree (partial
order) is infinite, then it follows by reductio and induction that either at least one
node has an infinite number of branches, or that there is at least one branch that
is infinitely long. An informal proof like this is ostensibly about proofs. It borrows
from developments in logic (formal languages and normal form), partial orders and
theories about infinity. None of these ideas are exotic in mathematics. They are each
central. They each turn up in all sorts of areas of mathematics. They are confirmed
by use and borrowing. Through borrowing, more exotic parts of mathematics are
gradually incorporated into the cannon of mathematics. As we do so, as we borrow
or crosscheck, we have to keep some things fixed, such as working within a theory
or by translating and keeping language fixed or by using logical constants, and we
might be surprised. If we cannot keep such features stable throughout the proof, then
we would have to use the strategy of chunk and permeate. For example, we might
find that there is an underlying ambiguity in a ‘constant’ or a definition, that only
surfaces when we change the context.

I advance the thesis that objectivity preserving proofs on the one hand and borrowing,
crosschecking and fixtures on the other hand, together, supplant the need for absolute
truth, absolute and independent ontology, a traditional foundation (to which all of
mathematics can be reduced) or for a single epistemology or methodology.

This thesis overhauls many preconceptions in the philosophy of mathematics, and
I think that it offers a better account of the present day practice of mathematics.
More mildly, the thesis is enough to show that the pluralist canvassed here can
give an account of the objectivity or apparent objectivity of mathematics. Before
the thesis can be accepted, we should delve more deeply into the pair of notions:
crosschecking and fixtures.

16The word ‘fixtures’ is supposed to be suggestive of the notion of a fixed point in mathematics,
but it is a little looser than that of fixed point.
17This was less the case in the past, especially when geometry and arithmetic were kept quite
separate. The later interaction between the two was also important. Today, we do not so much use
arithmetic to check geometry and geometry to check arithmetic, but rather, we use set theory, and
the ultimate tool: model theory, to do this. Or we use a combination of the two.
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15.6 Objectivity in Mathematics: Crosschecking
and Fixtures, Using Model Theory and Structures

A good start to understanding the notion of a fixture is to consider Shapiro’s
structuralism. A structuralist uses model theory in order to compare theories, or
structures, using models. This way of comparing theories comes with a warning.
The whole model theory approach assumes the language of set theory and is wedded
to classical logic. These are the limitations of the model theoretic approach, at least
as it has been developed by Shapiro. Nevertheless, it is useful, provided we bear
these limitations in mind. The limitation is why model theory is not the only way of
detecting fixtures for the pluralist. Let us begin with a few definitions.

A structure is an n-tuple consisting in operations, a domain of objects, a set of object
constants, a set of predicate, relation and function constants that pick out members of the
powerset of the domain of objects. To our n-tuple, we add an assignment function which
maps object constants to objects in a domain, first-order predicates to sets of objects in
the domain, binary first-order relations to ordered pairs of objects in the domain, and so
on for n-tuple relations and functions.

With Shapiro, we are assuming a second-order language with object, predicate,
relation and function variables. We do not need to make this assumption, but it
helps us to get a lot more fixtures and crosschecks using one mathematical tool:
model theory.

A theory is a set of formulas, possibly including axioms or base formulas closed under some
rules or operations.

In model theory, the interpretation is the semantics of the theory. The semantics
is the models. Models satisfy, or fail to satisfy sets of sentences or whole theories.
Sets of sentences are consistent if and only if they have a model. Consistent
structures have models. We attribute properties to theories by investigating the
relations (mappings), which bear between structures. We also compare theories, by
comparing their models. The comparison is made formally, using functions defined
in the language of set theory. Using model theory, we learn the limitations of theo-
ries: we prove ‘limitative results’ about a theory or language. For example, we use
model theory to study: embeddings, completeness, compactness, the Löwenheim-
Skolem properties, categoricity, decidability and so on.18 Some or all of these are
what I shall call ‘crosschecks’. Crosschecks re-enforce objectivity.

18Explaining the vocabulary: an embedding of one structure into another is a demonstration that
the embedded structure is a part of a greater structure. A theory is complete if and only if the
semantics and the syntax match in what they consider to be theorems (on the syntactic side) or be
true (on the semantic side). That is, the syntax will prove all and only the truths of the theory. A
theory is compact if and only if when an infinite set of theorems of the theory has a model, every
finite set of theorems also has a model. The upward Lôwenheim-Skolem property states that if
a countable theory has a countable model then it has a model for ‘every’ cardinal that is greater
than countable. The downward Löwenheim-Skolem theorem states that if a countable theory has a
model of countable size, then it has a model of every cardinality less than countable (i.e., of finite
size). A theory is categorical if and only if all of its models have the same cardinality. A theory
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Let us look at a simple example. A model theorist will think of a group as
a structure. The structure contains an identity element, 1, two binary function
symbols, +, x, which name a group addition and product operations and one unary
function symbol, −1, naming the inverse operation. (Hodges 1997, 3). The theory
(the set of formulas that are true in the theory) is closed under some version of
addition and multiplication. This structure can be embedded in a larger structure
which includes everything in a group plus the operation of division, for example.

Embedding is a type of crosscheck. Say we show we can embed one theory/
structure, A, into another, B. Since there is a common structure to both, namely the
structural elements of A, it follows that these are fixed between the structures. They
serve as a basis for comparison of B to A and A to B. A is a proper sub-structure
of B. Every formula true in A is also true in B, every formula provable in A is also
provable in B and so on.

A and B check the objectivity of each other. That is, there is a meta-theory, or
context, in which both are equally legitimate. Here our meta-theory is model theory.
We might think of this as a pair-wise equi-objectivity-crosscheck, but then the
language becomes ugly, so we shorten this to the, marginally less ugly, crosscheck
objectivity.

Crosscheck objectivity occurs when we have crosschecked one theory against another using
a more-or-less formal theory such as model theory. The objectivity is relative to the
theory used to make the check and up to the formality and objectivity of the proof of
check.

The collection of objectivity crosschecks is part of what objectivity across mathe-
matics consists in.

Equi-consistency,19 compactness and the Löwenheim-Skolem results are also
forms of objectivity crosscheck, all are studied in model theory. Remember the
warning about the limitations of model theory and structuralism? There are other
mathematical theories that provide crosschecks. We can find these in many of the
still so-called ‘foundational’ theories, since they are all means of doing some meta-
mathematics. Let us look at another source of objectivity crosscheck, not belonging
to a foundational theory.

15.7 ‘Logical Notions’ and Invariance: More Crosschecks
and Fixtures

Tarski gives a very interesting answer to the question: what are the logical notions?
The answer is ambiguous; and I shall return to this. First, let me outline some
of Tarski’s discoveries. Tarski extends ‘logic’ following what Klein had done in

is decidable if and only if the syntax of the theory can decide in every case whether a conclusion
follows from a set of premises or not (Shoenfield 1967).
19Equi-consistency is the proved result that if one theory is consistent then so is the other. That is,
they are either both consistent, or both inconsistent.
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geometry (Tarski 1986 146). It is evident that this technique and conception can be
applied more or less widely, and encounters some interesting limitations even within
the application Tarski made.

Klein tried to find a unified approach to geometry by means of the study of
space invariances with respect to a group of transformations. This idea was pressing
because of the presence, and increasing acceptance of, non-Euclidean geometries.
Not only did these force us to revise our compliance and faith in our geometrical
intuitions, but the non-Euclidean geometries introduced new considerations on
groups (therefore, introducing new algebraic ideas). The algebraic ideas then fed
back to the geometries by way of finding invariances across geometries. The ‘finding
of the invariances’ was essentially an analysis of the common ‘logical structure’ of
geometry. Following Klein’s insight, Tarski used the notion of invariance under a
transformation of a domain of objects (on to itself) to identify invariant, and so,
logical notions (across the foundational theories of Whitehead and Russell’s type
theory, von Neumann set theory and Gödel-Bernays set theory).

Following Tarski, we treat the domain over which we reason as a set20 and we
may transform it on to itself with any function (transformation), which we can
define in the language. We discover that with some transformations the objects of
the domain remain the same, such as with the identity transformation, but other
notions remain stable under some transformations and not others, such as the ‘lesser
than’ relation. The notions (properties or relations between objects) which remain
the same under any (recognised) transformation of the domain on to itself are then
called ‘invariant’. These are then identified as the logical notions, for Tarski. In
this very precise sense, we say that the ‘meaning’ of these notions is invariant.
It turns out that the invariant notions across Whitehead and Russell’s type theory,
von Neumann set theory and Gödel-Bernays set theory are: the logical connectives,
negation, identity and the quantifiers.

Or rather, subsequently, we have worked out that the invariant notions Tarski
found can be reduced to these. To be historically accurate: Tarski himself did not
make this discovery directly. Instead, he found that there are only two invariant
notions of class: the notion of a universal class, the notion of the empty class, (Tarski
1986 150). For Tarski, there are four invariant binary relations: “the universal
relation which always holds between two objects, the empty relation which never
holds, the identity relation which holds only between ‘two’ objects when they
are identical, and its opposite the diversity relation.” (Tarski 1986 150). Ternary,
quaternary relations, and so on, also have a small, finite number of invariant notions
under transformations, similar to the invariant notions over binary relations. The
last notion which shows invariance is that of the cardinality of the domain, which
reduces to the notion of quantifier under certain assumptions.

Tarski had the Whitehead and Russell logicist project very much in mind when
he presented this material, so he went on to speculate whether this shows us
that mathematics is really logic, and logical notions (so defined) are what tie

20This is in a loose sense of ‘set’, i.e., not tied to a particular set theory.
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mathematics together. For Tarski, such a conclusion is too hasty. These results
should be taken with a pinch of salt. I shall discuss one reason for this. There are
others.

One reason is that the methodology adopted by Tarski will not determine for
every notion whether it is invariant, or ‘logical’. Tarski is quite frank about this, for,
he asks the question: is the (set theoretic) membership relation a logical notion or
not. It turns out that it is if we consider the membership relation as it is implicitly
defined in Whitehead and Russell’s type theory. But it is not if we consider the
membership relation in von Neumann set theory, (Tarski 1986 152–3). As Shapiro
puts it: “ . . . on this [model theoretic] account, the logical-non-logical distinction
would be an artefact of the logic [of the meta-theory].” (Shapiro 1991, 7). This
is when we see ambiguity dis-ambiguated (if at all) by context, or meta-theory.
Whether a relation is invariant depends on other meta-considerations that we use to
show the invariance. The answers are not unique to the question: is this concept,
symbolised in this way, invariant across theories? Nevertheless, we have, again,
a cross-theory fixture: namely the invariant notions, and we hold them invariant
relative to the meta-theory we used to demonstrate invariance. This is a type of
partial re-enforcing of objectivity across theories.

Definition:

invariance objectivity is when there are concepts, symbolised in a formal language, that
are invariant under permutation of a domain on to itself. The invariance is relative to
(at least) the meta-theory used to show the invariance.

There are other forms of crosschecking and fixtures in mathematics such as
languages, formalisations, fix points and so on. In fact, mathematics is riddled with
such. The more ‘global’ sort of objectivity we are after comes from taking all of
these together.

I advance the thesis that

It is the myriad collection of partial/ relative sorts of objectivity: objectivity preserving
proof, crosscheck objectivity, invariance objectivity and others that together account for
how it is that mathematics is objective in the face of the sort of pluralism canvassed here.

15.8 Analysis by Way of a Conclusion

For philosophers who are looking for a ‘unified account’ of mathematics, there are
many mysteries left unexplained in existing attempts to provide such an account.
Many of the mysteries concern mathematical practice. The pluralist gives honest
answers.

For example, If we think that there is or should be a unified account, and we
think that modern mathematics largely consists in proofs,21 then we might ask why

21Both are widely held in the literature in philosophy of mathematics. And both are very suspect
claims in light of pluralism.
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there are so many proofs for some theorems. There are well over 100 proofs for
pythagoras’ theorem which are non-equivalent, except in the conclusion. They are
not all ‘suspect’ proofs, made in some obscure part of mathematics. In other words,
new proofs are not developed to assuage doubt as to the truth, or robustness, of the
result. Put another way, they are not meant to be part of some inductive argument
for Pythagoras’ theorem. Each is a rigorous proof (up to the accepted standards
of rigour at the time). Even in the case of theorems we judge less certain, some
proofs are useful for assuaging doubt, but some are not; and yet, the institution of
mathematics accepts them as valuable contributions to the field of mathematics. So
what is the surplus information we gain from a proof, over the truth of the theorem
proved?

The pluralist thinks of this question as indicative of a wider phenomenon.
There is something unique and interesting about mathematics. Mathematics ‘hangs
together’; it seems to be objective and non-circular. It is not like a Popperian pseudo-
science, but neither is very much of it checked against physical phenomena, and
our material observations.22 Moreover, the pluralist does not have the necessary
philosophical convictions to attribute the hanging together to: absolute truth,
consistency, embedding in a unique foundational theory or ontology. Ultimately,
these are the wrong places to look according to the pluralist. The pluralist picture of
mathematics is very different. The pluralist sees that mathematical theories can be
applied to other mathematical theories, and individual theorems can serve in several
theories, or infiltrate, quite disparate areas of mathematics. In fact, the pluralist
claim is stronger than this. It is not that they can be so applied, it is that modern
mathematics largely consists in such applications and infiltrations. See the chapter
in this volume by Dzamonja and Kant. Moreover the wealth of crosschecking is
exactly what re-enforces and leads to our producing several proofs of the same
theorem; but more important, borrowing, crosschecking and fixtures is sufficient to
warrant our confidence in the objectivity of mathematics in the absence of a unique
foundation, and all that that entails philosophically.

In this paper I merely introduced the notion of ‘fixtures’, discussing two types
of example, the ones from structuralism and the ones from Tarski’s idea of using
invariance to fix the idea of a ‘logical’ notion. Once we see some of these, others
will suggest themselves to the reader when he revisits mathematical texts or articles.
I propose the exercise of looking at the table of contents of a recent journal in logic
or mathematics, and count how may articles are about limitative results, connections
between theorems in different theories, in applications of one methodology to a
‘foreign’ area of mathematics and so on. There will be a significant percentage of
such articles. It turns out that a lot of cutting edge contemporary mathematics is of
this nature. Moreover, the borrowing and crosschecking is not all part of a unified
outlook. Each borrowing or crosscheck depends on a context or a meta-theory.

22If we think that mathematics is more certain than observation, then none of it is ‘checked’ by
observation.
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Even by examining only a few of these sorts of borrowings and crosschecks
(which pre-suppose ‘fixtures’), and imagining that there are others, we learn two
lessons.

One lesson is that mathematics does ‘hang-together’ and forms a distinctive discourse
(distinctive in character, not in ontology).

The second lesson is that we do not need to rely on an ontology, a notion of absolute
truth or on a unique theory to play the role of foundation, in order to justify pluralist
mathematical practice, recognise its importance and give a firm and honest account of
objectivity in mathematics.

Borrowing, crosschecks and fixtures supplant the philosophical triumvirate: ontol-
ogy, knowledge and truth. Instead pluralists explain the triumvirate in other terms.
The pluralist offers a rich account of the ‘hanging together’ of mathematics. No
other discipline has developed a web of crosschecks as keenly as mathematics, and it
is these crosschecks which allow us to loosen the stringent constraints of traditional
foundationalism.

The pluralist diagnoses of why philosophy of mathematics took the course it did
is that, within a Western tradition, philosophers take the triumvirate as primitive, or
already understood, when this is not at all the case. In fact, they have misfired when
they brought it to bear on the subject of mathematics.

Why would the pluralist say that traditional approaches in philosophy have
misfired in the case of mathematics? It is partly a matter of (philosophical)
temperament. Traditional Western philosophers tend towards a certain temperament
(towards monism). Such philosophers think of crosschecking as evidence for the
fact that there is a deep underlying truth or that there is an underlying mathematical
ontology, or logic, or major foundational theory, or something to explain the miracle
of application. As Tarski writes:

The conclusion [that there are different answers to the question whether ∈ is a logical
notion] is interesting, it seems to me, because the two possible answers correspond to
two different types of mind. A monistic conception of logic, set theory and mathematics,
where the whole of mathematics would be a part of logic, appeals, I think, to a fundamental
tendency of modern philosophers. [Tarski was giving this talk in 1936]. Mathematicians,
on the other hand, would be disappointed to hear that mathematics, which they consider the
highest discipline in the world, is a part of something so trivial as logic; and they therefore
prefer a development of set theory in which set-theoretical notions are not logical notions.
(Tarski 1986, 153).

Mathematicians today would be disappointed, not so much because logic is thought
of as trivial, since it is not so judged today, but by the constraints on their creativity.
Nevertheless, present day mathematicians do share Tarski’s mathematician’s con-
cern about being held to a foundational standard, and that is because so much of
the development of mathematics has no explicit roots in set theory or any other
foundation. That is, mathematicians have, for the most part, quite disregarded the
philosophical foundationalist aspirations. Instead, they rely on the crosschecks as
confirmation of their results. And this is what foundations do under the more modern
conception of ‘foundation’. This is what allows mathematicians to borrow and to
notice fixtures.
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Moreover, each particular crosscheck is backed up by some sort of formal or
informal proof. There are plenty of contexts where attempts at cross application do
not work. It is not the case that everything in mathematics fits together in any way we
choose, and it is the failure of borrowing which is also evidence for the objectivity
and non-triviality of mathematics. This sort of objectivity is not grounded in an
ontology.

What we do have evidence for is that there is a borrowing, crosschecking, cross-
fertilisation and a conversation in mathematics; that the crosschecks are as rigorous
and thorough as we choose. Sometimes we are slack, for example when we try to
apply mathematics to physics, and find that we have to gerrymander the mathematics
to fit the physical theory – see renormalisation.23 In fact, mathematics is the
discipline where the crosschecks are the most rigorous of any area of research. This
accounts for the phenomenology of absolute truth and independence of mathematics.
But phenomenology is not evidence for truth or independence. Our phenomenology
sometimes misleads us.

Moreover, returning to the quotation from Tarski, the mathematician might well
(depending on temperament, again) feel either unconcerned by metaphysical notions
underlying his subject matter, or he might feel that raising such questions is alien to
him, or he might adopt a schizophrenic attitude. All of these possible attitudes point
to the variety of attitudes held by practicing mathematicians, and that there is such a
variety testifies to the confusion, or lack of good and coherent traditional answer to
the philosophical questions. The pluralist philosopher has a different temperament
characterised by tolerance, honesty and modesty.
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Chapter 16
From the Foundations of Mathematics
to Mathematical Pluralism

Graham Priest

Abstract In this paper I will review the developments in the foundations of
mathematics in the last 150 years in such a way as to show that they have delivered
something of a rather different kind: mathematical pluralism.

16.1 Introduction

I suppose that an appropriate way to write an essay on the foundations of
mathematics would be to start with a definition of the term, and then discuss the
various theoretical enterprises that fall within its scope. However, I’m not sure that
the term can be caught in a very illuminating definition. So I’m not going to do this.

What I want to do instead is to tell a story of how foundational studies developed
in the last 150 years or so. I am not attempting to give an authoritative history of the
area, however. To do justice to that enterprise would require a book (or two or three).
What I want to do is put the development of the subject in a certain perspective—a
perspective which shows how this development has now brought us to something of
a rather different kind: mathematical pluralism. And what that is, I’ll explain when
we get there.

For the most part, what I have to say is well known. Where this is so, I shall
just give some standard reference to the material at the end of each section.1 When,
towards the end of the essay, we move to material that is not so standard, I will give
fuller references.

So, let me wind the clock back, and start to tell the story.

1A good general reference for the standard material is Hatcher (1982).
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16.2 A Century of Mathematical Rigor

The nineteenth century may be fairly thought of as, in a certain sense, the age
of mathematical rigour. At the start of the century, many species in the genus
of number were well known: natural numbers, rational numbers, real numbers,
negative numbers, complex numbers, infinitesimals; but many aspects of them and
their behaviour were not well understood. Equations could have imaginary roots;
but what exactly is an imaginary number? Infinitesimals were essential to the
computation of integrals and derivatives; but what were these ‘ghosts of departed
quantities’, as Berkeley had put it?2 The century was to clear up much of the
obscurity.

Early in the century, the notion of a limit appeared in Cauchy’s formulation of the
calculus. Instead of considering what happens to a function when some infinitesimal
change is made to an argument, one considers what happens when one makes a
small finite change, and then sees what happens “in the limit”, as that number
approaches 0 (the limit being a number which may be approached as closely as one
pleases, though never, perhaps, attained). Despite the fact that Cauchy possessed the
notion of a limit, he mixed both infinitesimal and limit terminology. It was left to
Weierstrass, later in the century, to replace all appeals to infinitesimals by appeals
to limits. At this point, infinitesimals disappeared from the numerical menagerie.

Weierstrass also gave the first modern account of negative numbers, defining
them as signed reals, that is, pairs whose first members are reals, and whose second
members are “sign bits” (‘+’ or ‘−’), subject to suitably operations. A contemporary
of Weierstrass, Tannery, gave the first modern account of rational numbers. He
defined a rational number as an equivalence class of pairs of natural numbers,
〈m, n〉, where n �= 0, under the equivalence relation, ∼, defined by:

〈m, n〉 ∼ 〈r, s〉 iff m · s = r · n

Earlier in the century, Gauss and Argand had shown how to think of complex
numbers of the form x + iy as points on the two dimensional Euclidean plane—
essentially as a pair of the form 〈x, y〉—with the arithmetic operations defined in an
appropriate fashion.

A rigorous analysis of real numbers was provided in different ways by Dedekind,
Weierstrass, and Cantor. Weierstrass’ analysis was in terms of infinite decimal
expansions; Cantor’s was in terms of convergent infinite sequences of rationals.
Dedekind’s analysis was arguably the simplest. A Dedekind section is any partition
of the rational numbers into two parts, 〈L,R〉, where for any l ∈ L and r ∈ R,
l < r . A real number can be thought of as a Dedekind section (or just its left-hand
part).

2The Analyst, or a Discourse Addressed to an Infidel Mathematician (1734), §XXXV.

claudio.ternullo@ut.ee



16 From the Foundations of Mathematics to Mathematical Pluralism 365

So this is how things stood by late in the century. Every kind of number in extant
mathematics (with the exception of infinitesimals, which had been abolished) had
been reduced to simple set-theoretic constructions out of, in the last instance, natural
numbers.

What, then of the natural numbers themselves? Dedekind gave the first axioma-
tisation of these—essentially the now familiar Peano Axioms. This certainly helped
to frame the question; but it did not answer it.3

16.3 Frege

Which brings us to Frege. Frege was able to draw on the preceding developments,
but he also defined the natural numbers in purely set-theoretic terms. The natural
number n was essentially the set of all n-membered sets (so that 0 is the set whose
only member is the empty set, 1 is the set of all singletons, etc.). This might
seem unacceptably circular, but Frege showed that circularity could be avoided, and
indeed, how all the properties of numbers (as given by the Dedekind axioms) could
be shown to follow from the appropriate definitions.

But ‘follow from’ how? The extant canons of logic—essentially a form of
syllogistic—were not up to the job, as was pretty clear. Frege, then, had to develop
a whole new canon of logic, his Begriffsschrift. Thus did Frege’s work give birth to
“classical logic”.

Given Frege’s constructions, all of the familiar numbers and their properties
could now be shown to be sets of certain kinds. But what of sets themselves?
Frege took these to be abstract (non-physical) objects satisfying what we would now
think of as an unrestricted comprehension schema. Thus (in modern notation), any
condition, A(x), defines a set of objects {x : A(x)}. Because he was using second-
order logic, Frege was able to define membership. Again in modern notation, x ∈ y
iff ∃Z(y = {z : Zz} ∧ Zx).

Moreover, Frege took these set-theoretic principles themselves to be principles
of pure logic. Hence all of arithmetic (that is, the theory of numbers) was a matter of
pure logic—a view now called logicism. And this provided an answer to the question
of how we may know the truths of arithmetic—or to be more precise, reduced it to
the question of how we know the truths of logic. As to this, Frege assumed, in
common with a well-worn tradition, that these were simply a priori.

Frege’s achievement was spectacular. Unfortunately, as is well known, there was
one small, but devastating, fly in the ointment, discovered by Russell. The naive
comprehension principle was inconsistent. Merely take for A(x) the condition that
x /∈ x, and we have the familiar Russell paradox. If B is the sentence {x : x /∈
x} ∈ {x : x /∈ x} then B ∧ ¬B. Given the properties of classical logic, everything
followed. A disaster.

3For the material in this section, see Priest (1998).
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After the discovery of Russell’s paradox, Frege tried valiantly to rescue his
program, but unsuccessfully. The next developments of the Zeitgeist were to come
from elsewhere.4

16.4 Russell

Namely, Russell—and his partner in logical crime, Whitehead. Russell was also a
logicist, but a more ambitious one than Frege. For him, all mathematics, and not
just arithmetic, was to be logic. In the first instance, this required reducing the other
traditional part of mathematics—geometry—to logic, as well. This was relegated to
Volume IV of the mammoth Principia Mathematica, which was never published.

But by this time, things were more complex than this. The work of Cantor
on the infinite had generated some new kinds of numbers: transfinite ones. These
were of two kinds, cardinals, measuring size, and ordinals, measuring order. Russell
generalised Frege’s definition of number to all cardinals: a cardinal number was any
set containing all those sets between which there is a one-to-one correspondence.
He generalised it further again to ordinals. An ordered set is well-ordered if every
subset has a least member. An ordinal is any set containing all those well-ordered
sets between which there is an order-isomorphism.

Of course, Russell still had to worry about his paradox, and others of a similar
kind which, by that time, had multiplied. His solution was type theory. The precise
details were complex and need not concern us here. Essentially, sets were to be
thought of as arranged in a hierarchy of types, such that quantifiers could range over
one type only. Given a condition with a variable of type i, A(xi), comprehension
delivered a set {xi : A(xi)}; this set, however was not of type i, but of a higher type,
and so it could not be substituted into the defining condition delivering Russell’s
paradox to produce contradiction.

Russell’s construction faced a number of problems. For a start, it was hard to
motivate the hierarchy of orders as a priori, and so as part of logic. Secondly, with
his construction, Frege had been able to show that there were infinite sets (such as
the set of natural numbers). The restrictions of type theory did not allow this proof.
Russell therefore had to have an axiom to the effect that there was such a thing: the
Axiom of Infinity. It was hard to see this as an a priori truth as well.5

On top of these, there were problems of a more technical nature. For a start,
the hierarchy of types meant that the numbers were not unique: every type (at
least, every type which was high enough) had its own set of numbers of each kind.
This was, to say the least, ugly. Moreover, Cantor’s work had delivered transfinite
numbers of very large kinds. Type theory delivered only a small range of these.

4For the material in this section, see Zalta (2016).
5Earlier versions of type theory also required a somewhat problematic axiom called the Axiom of
Reducibility. Subsequent simplifications of type theory showed how to avoid this.
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Specifically, if �0 = ℵ0, �n+1 = 2�n , and �ω = ⋃
n<ω

�n, then type theory delivered

only those cardinals less than �ω. Of course, one could just deny that there were
cardinals greater than these, but prima facie, they certainly seemed coherent.

Finally, to add insult to injury, one could not even explain type theory without
quantifying over all sets, and so violating type restrictions.

Russell fought gallantly against these problems—unsuccessfully.6

16.5 Zermelo

New developments arrived at the hands of Zermelo. He proposed simply to
axiomatize set theory. He would enunciate axioms that were strong enough to
deliver the gains of the nineteenth century foundational results, but not strong
enough to run afoul of the paradoxes. His 1908 axiom system, strengthened a
little by later thinkers, notably Fraenkel, appeared to do just this. The axioms were
something of a motley, and so all hope of logicism seemed lost7; but, on the other
hand, the system did not have the technical inadequacies of type theory.

The key to avoiding the paradoxes of set theory was to replace the naive
comprehension schema with the Aussonderung principle. A condition,A(x)was not
guaranteed to define a set; but given any set, y, it defined the subset of y comprising
those things satisfyingA(x). An immediate consequence of this was that there could
be no set of all sets—or Russell’s paradox would reappear. Indeed, all “very large”
sets of this kind had to be junked, but with a bit of fiddling, the mathematics of the
day did not seem to need these.

In particular, the Frege/Russell cardinals and ordinals were just such large sets.
So to reduce number theory to set theory, a different definition had to be found.
Zermelo himself suggested one. Later orthodoxy was to prefer a somewhat more
elegant definition proposed by von Neumann. 0 is the empty set. α + 1 is α ∪ {α},
and given a set,X, of ordinals closed under successors, the ordinal which is the limit
of these is

⋃
X. A cardinal was an ordinal such that there was no smaller ordinal

that could be put in one-to-one correspondence with it.
Logicism had died. The fruits of nineteenth century reductionism had been

preserved. The paradoxes had been avoided. The cost was eschewing all “large”
sets; but this seemed to be a price worth paying.

The next developments came from a quite different direction.8

6Starting around the 1990s, there was a logicist revival of sorts, neo-logicism; but it never delivered
the results hoped of it. For the material in this section, see Irvine (2015) and Tennant (2017).
7About 20 years later, in the work of von Neumann and Zermelo, a model of sorts was found: the
cumulative hierarchy. This did provide more coherence for the axioms, but it did nothing to save
logicism. On the contrary, it appeared to give set theory a distinctive non-logical subject.
8For the material in this section, see Hallett (2013).
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16.6 Brouwer

In the first 20 years of the twentieth century, Brouwer rejected the idea that
mathematical objects were abstract objects of a certain kind: he held them to
be mental objects. Such an object exists, then, only when there is some mental
procedure for constructing it (at least in principle). In mathematics, then, existence is
constructibility. Brouwer took his inspiration from Kant. Mental constructions occur
in time. Time, according to Kant, is a mental faculty which enforms sensations—
or intuitions, as Kant called them. Hence, Brouwer’s view came to be called
Intuitionism. Intuitionism provides a quite different answer from that provided by
logicism as to how we know the truths of mathematics: we know them in the way
that we know the workings of our own mind (whatever that is).

Brouwer’s metaphysical picture had immediate logical consequences. Given
some condition, A(x), we may have (at least at present) no construction of an object
which can be shown to satisfy it; moreover, we may also have no way of showing
that there is no such construction. In other words, both of ∃xA(x) and ¬∃xA(x)
may fail. Hence the Law of Excluded Middle fails. Nor is this the only standard
principle of logic to fail. Suppose that we want to show that ∃xA(x). We assume,
for reductio, that¬∃xA(x), and deduce a contradiction. This shows that¬¬∃xA(x);
but this does not provide us with a way of constructing an object satisfying A(x).
Hence, it does now establish that ∃xA(x). The Law of Double Negation (in one
direction), then, also fails.

Brouwer did not believe in formalising logical inference: mental processes, he
thought, could not be reduced to anything so algorithmic. But a decade or so later,
intuitionist logic was formalised by Heyting and others. Unsurprisingly, it turned
out to be a logic considerably weaker than “classical logic”, rejecting, as it did,
Excluded Middle, Double Negation, and other related principles.

Given the unacceptability of many classical forms of inference, Brouwer set
about reworking the mathematics of his day. All proofs which did not meet
intuitionistically acceptable standards had to be rejected. In some cases it was
possible to find a proof of the same thing which was acceptable; but in many cases,
not. Thus, for example, consider König’s Lemma: every infinite tree with finite
branching has at least one infinite branch. Such a branch may be thought of as a
function, f , from the natural numbers to nodes of the branch, such that f (0) is
the root of the tree, and for all n, f (n + 1) is an immediate descendent of f (n).
We may construct f as follows. f (0) has an infinite number of descendants by
supposition. We then run down the branch preserving this property, thus defining
an infinite branch. Suppose that f (n) has an infinite number of descendants. Since
it has only a finite number of immediate descendants, at least one of these must
have an infinite number of descendants. Let f (n+ 1) be one of these. The problem
with this proof intuitionistically, is that we have, in general, no way of knowing
which node or nodes these are, so we have no construction which defines the next
value of the function. There is, then, no such function, since we have no way of
constructing it.
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Brouwer delivered ingenious constructions, which were intuitionistically valid,
and which could do some of the things that classically valid constructions could
do. Thus, in the case of König’s Lemma, he established something called the Fan
Theorem. However, it was impossible to prove everything which had a classical
proof. Intuitionistic mathematics was therefore essentially revisionary. There are
things which can be established classically which have no intuitionist proof.

This may make it sound as though intuitionist mathematics is a proper part of
classical mathematics.9 This, however, is not the case. True, not every proof that is
classically valid is intuitionistically valid. But that means that there can be things
which are inconsistent from a classical point of view, which are not so from an
intuitionistic point of view. And this allows for the possibility that one may prove
intuitionistically some things that are not valid in classical mathematics.

Take, for example, the theory of real numbers. LetU be the real numbers between
0 and 1; and think of these as functions from natural numbers to {1, 0}. Now consider
a one-place function, F , from U to U . To construct F , we need to have a procedure
which, given an input of F , f , defines its output, F(f ). And this means that for
any n, we must have a way of defining [F(f )](n). Since this must be an effective
procedure, [F(f )](n) must be determined by some “initial segment” of f—that is,
{f (i) : i ≤ m} for some m. Hence, if f ′ agrees with f on this initial segment,
[F(f )](n) and [F(f ′)](n)must be the same. It follows that F(f ) and F(f ′) can be
made as close as we please by making f and f ′ close enough. That is, all functions
of the kind in question are continuous! This is simply false in classical real number
theory: there are plenty of discontinuous functions.

Intuitionism is not, then, simply that sub-part of classical mathematics which can
be obtained by constructive means: it is sui generis.

Ingenious though it was, though, intuitionist mathematics never really caught
on in the general mathematical community. Mathematicians who did not accept
Brouwer’s philosophical leanings could see nothing wrong with the standard
mathematics. Or perhaps more accurately, mathematicians were very much wedded
to this mathematics, and so rejected Brouwer’s philosophical leanings.10

16.7 Hilbert

The suspicion of classical reasoning was not restricted just to intuitionists, though. It
was shared by Hilbert, who was as classical as they came. The discovery of Russell’s
paradox, and the apparently a priori principles that lead to it, was still something of
a shock to the mathematical community; and Hilbert wanted a safeguard against

9Though one might also simply consider simply the constructive part of classical mathematics. See
Bridges (2013).
10Further on all these things, see Iemhoff (2013).
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things of this kind happening again. This inaugurated what was to become known
as Hilbert’s Program.

Hilbert wanted to prove that this could not happen. Of course, the proof had
to be a mathematical one; and to prove anything mathematical about something,
one has to have a precise fix on it. Hence, the first part of the program required
such a fix on mathematics, or its various parts. This would be provided, Hilbert
thought, by appropriate axiomatizations. Hilbert had already provided an axiom
system for Euclidean geometry. So the next target for axiomatization was arithmetic.
The axiomatization was to be based on classical logic—or at least the first-order
part of Frege’s logic, which Hilbert and his school cleaned up, giving the first really
contemporary account of this.

Given the axiomatised arithmetic, this was then to be proved consistent. Of
course given that the proof of consistency was to be a mathematical one, and the
security of mathematical reasoning was exactly what was at issue in the project,
there was an immediate issue. If our mathematical tools are themselves inconsistent,
maybe they can prove their own consistency. Indeed, given that classical logic is
being employed, if arithmetic is inconsistent, it can prove anything.

Hilbert’s solution was to insist that the reasoning involved in a consistency proof
be of a very simple and secure kind. He termed this finitary. Exactly what finitary
reasoning was, was never defined exactly, as far as I am aware; but it certainly
was even weaker than the constructive reasoning of intuitionists. The danger of
contradiction, it seemed to Hilbert, arose only when the infinite reared essentially
its enticing but dangerous head. Hence the reasoning of the consistency proof had
to be something like simple finite combinatorial reasoning—most notably, symbol-
manipulation.

This approach allowed a certain philosophical perspective. Take the standard
language of arithmetic. Numerals are constituted by ‘0’ followed by some number
of occurrences of the successor symbol. Terms are composed from numerals
recursively by applying the symbols for addition and multiplication. Equations
are identities between terms. The �0 fragment of the language is the closure of
the equations under truth functions and bounded quantifiers (i.e., particular or
universal quantifiers bounded by some particular number). The truth value of any�0
statement can be determined in a finitary way. Terms can be reduced to numerals by
the recursive definitions of addition and multiplication. Identities between numerals
can be decided by counting occurrences of the successor symbol, and then truth
functions do the rest, the bounded quantifiers being essentially finite conjunctions
and disjunctions. So, according to Hilbert, we may take the �0 statements to be the
truly meaningful (contentful) part of arithmetic.

But what about the other statements? Given some axiom system for arithmetic,
this will contain the finitary proofs of the true �0 statements, but proofs will
go well beyond this—notably, establishing statements with unbounded quantifiers.
However, since the true�0 statements are complete (that is, for any such statement,
either it or its negation is true), the system is consistent iff it is a conservative
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extension of that fragment.11 Thus, if the system is consistent, reasoning deploying
statements not in the�0 fragment can prove nothing new of this form. However, the
statements might well have an instrumental value, in that using them can produce
simpler and more expeditious proofs of �0 statements. Hence, thought Hilbert, the
non-�0 sentences could be thought of as “ideal elements” of our reasoning—in
much the same way that postulating an ideal “point at infinity” can do the same for
proofs about finite points, or imaginary numbers can do the same for proofs about
real numbers.12

The demise of Hilbert’s Program is so well known that it hardly needs detailed
telling. A young Gödel showed that any axiomatization of arithmetic of sufficient
power—at least one that is consistent—must be incomplete. That is, there will be
statements, A, such that neither A nor ¬A is provable. Since (classically) one of
these must be true, there was no complete axiomatization of arithmetic. Putting
another nail in the coffin of the Program, Gödel also established that given such a
system, there is a purely arithmetic statement which can naturally be thought of as
expressing its consistency. However, this is not provable within the system—again
if it is consistent. Since the system encodes all finitary reasoning (and much more),
this seemed to show that a finitary proof of the consistency of even this incomplete
system was impossible.13

16.8 Category Theory

So, by mid-century, this is how things stood: apart from some rearguard actions, the
great foundational programs of the first part of the twentieth century were defunct.
This, however, was not an end of the matter. New developments were to come from
a quite new branch of mathematics: category theory.

It is common in mathematics to consider classes of structures of a certain kind:
groups, topological spaces, etc. Important information about their common structure
is delivered by the morphisms (structure preserving maps) between them. When the
range of one morphism is the domain of another, such morphisms can be composed.
If we write composition as �, then the morphism f�g is a map which, when applied
to an object x , delivers the object obtained by applying f to g(x).

11If the system is not a conservative extension it proves the negation of some true �0 sentence,
and so the system is inconsistent. Conversely, if it is inconsistent, since it can prove everything, it
is not a conservative extension.
12In these cases, the ideal elements are not statements, but objects. Hilbert discovered that quan-
tifiers could be eliminated by the use of his ε-symbol. Thus, ∃xA(x) is equivalent to A(εxA(x)).
One might—though I don’t think Hilbert ever suggested this—take ε-terms themselves to signify
ideal objects. In this way non-�0 statements might be thought of as statements of �0 form, but
which concern these ideal objects (as well as, possibly, real ones).
13For the material in this section, see Zach (2013).
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Starting in the late 1940s Eilenberg and MacLane generalised this way of looking
at things, to deliver the notion of a category. The idea was taken up and developed
substantially by later mathematicians, including Grothendieck and Lawvere.

A category is a bunch of objects, together with functions between them, thought
of as morphisms, and often termed arrows, because of the way they are depicted
diagrammatically. In fact, the objects may be dispensed with, since each may be
identified with the identity function on it (which is a morphism). So the notion
of a category may be axiomatised with a number of axioms concerning functional
composition. A category is, then, any model of this axiom system (in the same way
that a group, e.g., is any model of the axioms of the theory of groups). Hence,
there is a category of all groups, all topological spaces, all sets, etc. The category
of a particular kind of structures (e.g., sets) may justify further axioms concerning
functional composition, in the same way that a consideration of Abelian groups
justifies axioms additional to those of groups in general.

But foundationally there is now a problem. Since the consolidation of set theory
in the early part of the century, it had been assumed that all mathematics could
be formulated within set theory. One can, indeed, think naturally of a category
as a set of a certain kind. But the problem is that categories such as those of all
groups, all topological spaces, all sets—large categories, as they are called—are of
the very large kind that had been excised from set theory by Zermelo in order to
avoid Russell’s paradox. It would seem, then, that set theory cannot provide any
kind of foundation for category theory.

There are certain remedial measures one might essay. A large category is not
a set, but one can think of it as a proper class, in the sense of NBG set theory (a
weak form of second-order ZF)—proper classes being, in effect, sub-collections of
sets which are not themselves members of anything. However, this is not generally
good enough. For category theorists consider not only particular categories, but
the category of functions between them. (Given two categories, the category of
morphisms between them is called the functor category.) This is “too big” even
to be a proper class.

One solution to these problems is to deploy the “Grothendieck hierarchy”. This
is the cumulative hierarchy, with levels, Vα , for every ordinal α, together with the
assumption that there are arbitrarily large inaccessible cardinals. As is well known,
if ϑ is an inaccessible cardinal, Vϑ is a model of ZF set theory, so all the usual set
theoretic operations can be performed within it. We may then think of the category
of all sets, group, etc., as categories of objects in a Vϑ . The categories themselves,
their functor categories, etc., are not in Vϑ, but are denizens of higher levels of
the cumulative hierarchy. Category theory, then, must be thought of as “typically
ambiguous”, applying schematically to each Vϑ.

The retrograde nature of this move is clear. The point of category theory is
to chart commonalities of structure between all structures of a certain kind. The
Grothendieck hierarchy explicitly reneges on this. One way to bring the point
home is as follows. Suppose that we are considering a category of a certain kind,
and we prove something of the form ∃!x∀yR(x, y). This might be some sort
of representational theorem. Interpreting this at each level of the Grothendieck
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hierarchy, the uniqueness of the x in question is lost: all we have is one at every
level.

An honest approach to category theory would seem, then, to take it to be a sui
generis branch of mathematics. Some have even gone so far as to suggest that it
should be taken as providing an adequate foundation for all mathematics, including
set theory. The plausibility of this is delivered by the theory of topoi. Topoi are
particularly powerful categories of a certain kind. (The category of all sets is one of
them.) They can be characterised by adding further axioms concerning composition
to the general axioms of category theory. All the standard constructions of set theory,
at least all those which are involved in the reduction of the other normal parts of
mathematics to set theory, can they be performed in a topos.

As a foundational strategy, the weakness of this move is evident. There are many
topoi, and “standard mathematics” can be reconstructed in each one. We are, thus,
back to the theoretical reduplication which plagued type theory.

I think it fair to say that what to make of all these matters is still sub judice.
However, we are still not at the end of our story.14

16.9 Paraconsistency

We have so far met two formal logics in the foregoing: classical and intuitionistic.
In both of these, the principle of Explosion is valid: A,¬A � B, for all A and
B. The inference might be thought of as “vacuously valid” in these logics, since
the premises can never hold in an interpretation. The principle is clearly counter-
intuitive, though. Starting around the 1960s, the development of paraconsistent logic
began, a paraconsistent logic being exactly one where Explosion is not valid. Using
a paraconsistent logic we may therefore reason using inconsistent information in
a perfectly sensible way. The information does not deliver triviality—that is, not
everything can be established.

There are, in fact, many paraconsistent logics. Their key, semantically speaking,
is to stop Explosion being vacuously valid, by including in the domain of reasoning,
not only standard consistent situations, but also inconsistent ones. Thus, if p and
q are distinct propositional parameters, there can be a situation where p and ¬p
hold, but q does not. This is not to suggest that these inconsistent situations may be
actual. We reason, after all, about situations which are conjectural, hypothetical, etc.
However, the view that some of these inconsistent situations are actual (that is, that
what holds in them is actually true), is called dialetheism.15

The possibility of employing a paraconsistent logic opens up new possibilities in
a number of the foundational matters which we have met.16

14For the material in this section, see Marquis (2014).
15On paraconsistency, see Priest et al. (2018b). On dialetheism, see Priest et al. (2018a).
16On inconsistent mathematics in general, see Mortensen (2017).
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Thus, one of the possibilities that has been of much interest to paraconsistentists
is set theory—and for obvious reasons: using a paraconsistent logic allows us to
endorse the unrestricted comprehension schema. Contradictions such as Russell’s
paradox can be proved in the theory, but these are quarantined by the failure of
Explosion. Moreover, it was proved that, with an appropriate paraconsistent logic,
naive set theory (that is, set theory with unrestricted comprehension) is non-trivial.17

This raises the prospect of regenerating Frege’s foundational project. Of course,
having an unrestricted comprehension schema does not guarantee that this project
can be carried through. The set-theoretic principles are strong, but the logic is
much weaker than classical logic. Things other than Explosion need to be given
up. Notably, the principle of Contraction, A → (A → B) � A → B, cannot be
endorsed, because of Curry’s Paradox.18

It was only relatively recently that Weber was able to show that much of Frege’s
program can be carried out in such a theory.19 He showed that virtually all of the
main results of cardinal and ordinal arithmetic can be proved in this set theory.
Moreover, the theory can be used to prove the Axiom of Choice, as well as results
that go beyond ZF set theory, such as the negation of the Continuum Hypothesis,
and several large-cardinal principles. (Of course, in the context, this does not show
that one cannot prove the negations of these as well.)

Weber’s proofs have a couple of very distinctive elements. First, they use
comprehension in a very strong form, namely:

∃x∀y(y ∈ x ↔ A)

where A may contain x itself. This provides the potential for having a fixed point,
and so self-reference, built into the very characterisation of a set.20 Next, Weber not
only accommodates inconsistencies, but makes constructive use of them. Thus, a
number of the results concerning cardinality, such as Cantor’s Theorem, make use
of sets of the form {x ∈ X : r ∈ r}, where r is the set of all sets which are not
members of themselves, and so inconsistent.

Whether Weber’s proof methods, and the various distinctions they require one
to draw, are entirely unproblematic; and whether other aspects of set-theoretic
reasonings (such as those required in model theory) can be obtained in naive set
theory, are still questions for investigation.

Another of the foundational matters we have met, and with which paraconsis-
tency engages, is that concerning Gödel’s theorems. Gödel’s first theorem is often
glossed as saying that any “sufficiently strong” axiomatic theory of arithmetic is
incomplete. In fact, what it shows is that it is either incomplete or inconsistent.

17See Brady (1989).
18With naive comprehension we can define a set, c, such that x ∈ c↔ (x ∈ x →⊥). Contraction
and modus ponens then quickly deliver a proof of ⊥.
19See Weber (2010, 2012).
20Perhaps surprisingly, Brady’s proof shows this strong form of comprehension to be non-trivial.
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Of course, if inconsistency implies triviality, it is natural to ignore the second
alternative. However, paraconsistency changes all that, since the theory may be
complete, inconsistent, but non-trivial. (I note that there is nothing in the use of
paraconsistent logic, as such, which problematises the proof of Gödel’s theorem.
The logic required of an arithmetic theory in order for it to hold is exceptionally
minimal.)

Indeed, it is now known that there are paraconsistent axiomatic theories of
arithmetic which contain all the sentences true in the standard model, and so which
are complete (that is, for any sentence of the language, A, either A or ¬A is in the
theory). These theories are inconsistent, but non-trivial.21

What foundational significance this has depends, of course, on the plausibility of
the claim that arithmetic might be inconsistent.

Implausible as this may seem, Gödel’s theorem itself might be thought to lead
in this direction. At the heart of Gödel’s proof of his theorem, there is a paradox.
Consider the sentence ‘this sentence is not provable’. If it is provable, it is true; so
it is not provable. Hence it is not provable. But we have just proved this; so it is.

Of course, this argument cannot be carried through in a consistent arithmetic,
such as classical Peano Arithmetic, when proof is understood as proof in that
system. This may be a matter of relief; or it may just show the inadequacy of the
system to encode perfectly natural forms of reasoning.

Indeed, if one takes one of the axiomatic arithmetics containing all the truths of
the standard model, there will be a formula of the language Pr(x) which represents
provability in the theory in the theory itself. It is then a simple matter to construct
a sentence, G, in effect of the form ¬Pr(〈G〉) (where angle brackets indicate gödel
coding), and establish that both ¬Pr(〈G〉) and Pr(〈G〉) hold in the theory.22

What of Gödel’s second theorem? Since a paraconsistent theory of the kind
we have just been talking about is inconsistent, one should not expect to prove
consistency. But it is also non-trivial, i.e., some statements are not provable. This
can be expressed by the sentence ∃x¬Pr(x), and this sentence can be proved in
theories of the kind in question. Of course, this does not rule out the possibility that
one may be able to prove ¬∃x¬Pr(x) as well; and in what sense the proof of non-
triviality is finitary may depend on other features of the arithmetic. To what extent
these matters may be thought to help Hilbert’s program is, then, still a moot point.23

21See Priest (2006, ch. 17).
22Additionally, one would expect that the schema Pr(〈A〉) ⊃ A would be provable in a theory of
arithmetic in which Pr(x) really did represent provability. In a consistent theory, it is not, as Löb’s
Theorem shows. However, the schema is provable in the above theories.
23A third foundational issue opened up by paraconsistency concerns category theory. Given that
one can operate in a set theory with a universal set, it is possible to have a category of all sets, all
groups, etc., where ‘all’ means all. The implications of this for the relationship between set theory
and category theory are yet to be investigated.
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16.10 Intuitionist and Paraconsistent Mathematics

We have now been rather swiftly through a story of the development of studies in
the foundations of mathematics in the last 150 years. As we have seen, none of
the foundational ideas we have looked at can claim to have met with uncontestable
success. But looking back over developments, we can see that something else has
emerged.

As we saw in Sect. 16.6, there are fields of intuitionist mathematics that are quite
different from their classical counterparts.24 Indeed, there are fields of intuitionist
mathematics that have no natural classical counterpart.

Let me give just one example of this. This is the Kock-Lawvere theory of
smooth infinitesimal analysis.25 To motivate this, consider how one would compute
the derivative of a function, f (x), using infinitesimals. The derivative, f ′(x), is
the slope of the function at x, given an infinitesimal displacement, i; so f (x +
i) − f (x) = if ′(x). Now, as an example, take f (x) to be x3. Then if ′(x) =
(x + i)3 − x3 = 3x2i + 3xi2 + i3. If we could divide by i, we would have
3x2+3xi+i2. Setting i to 0 delivers the result—though how, then, did we divide by
i?26 If i2 = 0, we have another route to the answer. For then it follows that for any
infinitesimal, i, if ′(x) = 3x2i. We may not be able to divide by i, but suppose that
ai = bi, for all i, implies that a = b (this is the Principle of Microcancellation).
f ′(x) = 3x2 then follows. This is exactly how the theory of smooth infinitesimal
analysis proceeds.

Call a real number, i, a nilsquare if i2 = 0. Of course, 0 itself is a nilsquare,
but it may not be the only one! We may think of the nilsquares as infinitesimals.
The theory of smooth infinitesimals takes functions to be linear on these. Given a
function, f , there is a unique r such that, for every nilsquare, i f (x+i)−f (x) = ri.
(In effect, r is the derivative of f at x.) This is the Principle of Microaffineness.27

Microaffineness implies that 0 is not the only nilsquare. For suppose that it is,
then all we have is that f (x + 0) − f (x) = r0, and clearly this does not define a
unique r . So:

[1] ¬∀i(i2 = 0 → i = 0)

But now, why do we need intuitionist logic? Well, one might argue that 0 is the only
nilsquare, which would make a mess of things. A typical piece of reasoning for this
goes as follows. Suppose that i is a nilsquare and that ¬i = 0. Then i has an inverse,
i−1, such that i · i−1 = 1. But then i2 · i−1 = i. Since i2 = 0, it follows that i = 0.

24For a further account of some of these enterprises, see Dummett (2000, chs. 2, 3).
25On which, see Bell (2008).
26One answer to the conundrum is provided by non-standard analysis, an account of infinitesimals
developed in the 1960s by Robinson. This deploys non-standard (classical) models of the theory
of real numbers.
27Microcancellation follows. Take f (x) to be xa. Then, taking x to be 0, Microaffineness implies
that there is a unique r such that, for all i, ai = ri. So if ai = bi for all i, a = r = b.
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Hence, by reductio, we have shown that ¬¬i = 0. If we were allowed to apply
Double Negation, we could infer that i = 0—and so we would have a contradiction
on our hands. But this move is not legitimate in intuitionist logic. We have just:

[2] ∀i(i2 = 0 → ¬¬i = 0)

And we may hold both [1] and [2] together.
What we see, then, is that there are very distinctive fields of intuitionistic

mathematics, quite different from the fields of classical mathematics. Moreover,
one does not have to think that intuitionism is philosophically correct to recognise
that these are interesting mathematical enterprises with their own integrity. They
are perfectly good parts of pure mathematics. (Whether they have applications to
areas outside of mathematics is a quite separate matter, and irrelevant to the present
point.)

A similar point can be made with respect to paraconsistent mathematics. In
Sect. 16.9 we saw that there were inconsistent mathematical theories relevant to
various foundational enterprises: set theory and arithmetic. There are, however,
many interesting inconsistent mathematical theories based on paraconsistent logics,
which have no immediate application to foundational matters.28 These include
theories in linear algebra, geometry, and topology.

Let me give an example of one of these. This concerns boundaries. Take a simple
topological space, say the one-dimensional real line. Divide it into two disjoint parts,
left,L, and right,R. Now consider the point of division, p. Is p inL orR? Of course,
the description under-determines an answer to the question. But when the example
is fleshed out, considerations of symmetry might suggest that it is in both. Then,
p ∈ L, and p ∈ R so p /∈ L—and symmetrically for R. So a description of the
space might be that if x < p, x is (consistently) in L; if p < x, p is (consistently)
in R; and p is both in and not in L, and in and not in R. Given an appropriate
paraconsistent logic, the description is quite coherent.29

This might not seem particularly interesting, but the idea of inconsistent bound-
aries has interesting applications. One of these is to describe the geometry of
“impossible pictures”.30 Consider the following picture:

The three-dimensional content of the picture is impossible. How should one
describe it mathematically? Any mathematical characterisation will specify,

28See Mortensen (1995).
29Further on inconsistent boundaries, see Cotnoir and Weber (2015).
30For more on the following, see Mortensen (2010).
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amongst other things, the orientations of the various faces. Now, consider the
left-hand face, and in particular its lighter shaded part. This is 90◦ to the horizontal.
Next, consider the top of the lower step on the right-hand side of the picture. This
is 0◦ to the horizontal. Finally, consider the boundary between them (a vertical
line on the diagram). This is on both planes. Hence it is at both 90◦ and 0◦ to the
horizontal.31 That’s a contradiction, since it cannot be both; but that’s exactly what
makes the content of the picture impossible. Note that the characterisation of the
content must deploy a paraconsistent logic, since it should not imply, e.g., that the
top of the higher step is at 90◦ to the horizontal.

Hence, we see, again, that whatever one thinks about the truth of naive set theory,
or inconsistent arithmetic, there are perfectly good mathematical structures based on
a paraconsistent logic.

Both intuitionist logic and paraconsistent logic, then, provide perfectly coherent
and interesting areas of mathematical investigation to which classical logic can be
applied only with disaster.32

16.11 Mathematical Pluralism

What we have seen is that there are areas of relatively autonomous mathematical
research. That is, there is a plurality of areas, such that there is no one of them
to which all others can be reduced. This is mathematical pluralism. In truth, this
pluralism was already clear in the case of category theory: attempts to reduce it
to set theory or vice versa, were always straining at the seams. But intuitionist
and paraconsistent mathematics have put the matter beyond doubt.33 We have, in
these cases, mathematical enterprises which are completely sui generis. (Note that

31And one can set things up in such a way that this does not imply that 90 = 0.
32It seems to me that given any formal logic there could, at least in principle, be interesting
mathematical theories based on this. However, intuitionistic logic and paraconsistent logic (and
perhaps fuzzy logic; see Mordeson and Nair 2001) are the only logics for which this has so far
really been shown.
33In fact, the matter is arguably the case even in classical set theory. We can investigate set theory
in which the Axiom of Choice holds, and set theory in which the Axiom of Determinacy, which
contradicts it, holds. In that case, however, a monist might claim that we are simply doing model
theory, and investigating what holds in models of certain set-theoretic axiom systems. One might
consider a similar claim in the cases mentioned in the text: we are just doing model-theory using
classical logic, albeit of models of non-classical logics. But this suggestion seems lame. First,
intuitionist real number theory and paraconsistent set theory are not done in this way. So the
suggestion gets the mathematical phenomenology all wrong. Secondly, the insistence that the
model theory be classical seems dogmatic. Investigations could proceed with intuitionist model
theory, which would give quite different results. (Note that intuitionist model theory is well
established, but there is as yet no such thing as paraconsistent model theory.) Thirdly, it is entirely
unclear how to pursue this strategy in the case of category theory, simply because the foundational
problem with category theory was precisely that its ambit appears to outstrip the classical models.
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I am not maintaining that all these branches of mathematics are equally deep, rich,
elegant, applicable, etc. That is a quite different matter. All I am claiming is that
they are all equally legitimate pure mathematical structures.) What to make of
the situation certainly raises interesting issues,34 but that it now obtains cannot be
gainsaid.35

Mathematical pluralism was certainly not an aim of work in the foundations of
mathematics, but it has emerged none the less. In the eighteenth century, some
mathematicians investigated Euclidean geometry, trying to prove that the Parallel
Postulate was deducible from the other axioms. They did this by assuming its
negation, and aiming for a contradiction, which, it turned out, was not coming. Their
aim was not to produce non-Euclidean geometries; but by the nineteenth century, it
became clear that this is exactly what they had done. In a similar way, the aim
of research in the foundations of mathematics was not to establish mathematical
pluralism—indeed, most researchers in the area took themselves to be mathematical
monists. But that, it seems, is what, collectively, they have done. If one were Hegel,
one would surely diagnose here a fasinating episode in the cunning of reason.36
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Chapter 17
Does Mathematics Need Foundations?

Roy Wagner

Abstract This note opens with brief evaluations of classical foundationalist
endeavors – those of Frege, Russell, Brouwer and Hilbert. From there we proceed
to some pluralist approaches to foundations, focusing on Putnam and Wittgenstein,
making a note of what enables their pluralism. Then, I bring up approaches that find
foundations potentially harmful, as expressed by Rav and Lakatos. I conclude with
a brief discussion of a late medieval Indian case study (Śaṅkara’s and Nārāyan. a’s
Kriyākramakarı̄) in order to show what an “unfounded” mathematics could look
like. The general purpose is to re-evaluate the desiderata of foundational programs
in mathematics.

17.1 Classical Foundations

A good starting point for discussing mathematical foundations is Frege. His con-
cern is strongly ontological-epistemological, and rooted deep within post-Kantian
philosophy. This concern includes, but is not limited to, what Penelope Maddy calls
in this volume metaphysical insight (I take advantage of her useful terminology
for foundational desiderata throughout this paper, and distinguish it with italics).
As stated in the first paragraphs of the Grundlagen (1884), Frege wanted to clarify
the concept of number in order to reduce the quantity of elementary mathematical
concepts, explicate the principles of human reasoning, and find the underlying
conceptual relations between mathematical statements. He believed that his logical
definition of numbers would help achieve all this, while also settling the Kantian
question about the analytic or synthetic nature of arithmetic.1

1It is important to recall that Frege’s logical foundation of arithmetic does not extend to geometry.
Frege believed geometry to be synthetic (that is, not reducible to logical analysis), as expressed
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The antinomies in Frege’s work led Russell to scrutinize and reform the underly-
ing logical apparatus (Russell 1903, Appendix B). But in order to maximize logical
expressibility (in Maddy’s terms, supplying a generous arena) while minimizing the
risk of contradiction (a sort of risk assessment measured by the hierarchy of types),
he had to sacrifice metaphysical insight. The axioms required for Russell’s type
theoretic logic are often considered rather contrived, not least by Russell himself,
who described them as “the most arbitrary thing he and Whitehead had ever had to
do, not really a theory but a stopgap” (Spencer Brown 1972, x).

Brouwer’s motivations were rather different. He felt no need to explicate the
concept of number, because, according to him, that concept was given to humans via
the intuition of time (Brouwer 1981, ch. 1). But if one wanted to be faithful to this
pre-linguistic intuition, then one’s mathematical tools had to be scrutinized. Only
those mental procedures that could be implemented within the framework opened
up by the intuition of time (finite – but potentially infinite – constructions) were part
of intuitionistic mathematics (in Maddy’s terms, we would say he was looking to
adhere to an epistemic source).

For Brouwer, language was a secondary representation, which was at risk of
divergence from live meaning (Brouwer 1975[1919], 222–229). This mistrust of
symbolic reasoning excluded from intuitionistic mathematics some of the proce-
dures and constructs that Frege took for granted (such as the law of excluded
middle applied to complete infinite collections). But the intuitionist approach did
not completely reject classical mathematics as useful for whatever it is that it
might be useful for. As Heyting put it, the subject of intuitionistic mathematics,
namely “constructive mathematical thought, determines uniquely its premises and
places it beside, not interior to, classical mathematics, which studies another subject,
whatever subject that may be” (Heyting 1983 [1956], 69).

So far I have emphasized three different foundational purposes (which do
not exhaust the various authors’ motivations): Frege’s conceptual explication
(metaphysical insight), Brouwer’s hygiene of procedure to preserve live, rather
than linguistic, meaning (epistemic source), and Russell’s attempts to exorcise
contradictions (which came at the expense of both of the above). I now wish to point
out how Hilbert’s work would add some very different foundational desiderata.

Formalism can be described as the belief that mathematics is reducible to
meaningless formal inscriptions subject to finitely verifiable rules, but Hilbert’s
version was more subtle than that. One should not confuse Hilbert’s views on what
mathematics is with the methodological issue of how to decide what should be
allowed into mathematics. For the latter question, Hilbert’s answer is clear: anything
that is conservative (or consistent) with respect to finitary arithmetical knowledge.
In order to verify this conservatism, one has to formalize mathematics, analyze finite
sequences of mathematical symbols (propositions, proofs) by means of an intuitive
finitary logic, and use this logic to verify consistency (Hilbert 1983[1926], 192).

in (1984[1874], 56) and (1971[1906], 9). Logic is therefore not the foundation of all mathematics
according to Frege, but rather of arithmetic alone.
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But when it comes to what a mathematical entity is (such as number or infinity),
Hilbert remains vague. In the same paper, he says that mathematical signs for
abstract concepts, such as infinity, “signify nothing” (Hilbert 1983[1926], 196),
but also that infinity is “a concept of reason which transcends all experience and
which completes the concrete as a totality”, which is hardly nothing! (Hilbert
1983[1926], 201). On the other hand, he supposed finite numbers to have a clear
intuitive or at least a practical meaning. Another indication that Hilbert did not view
mathematical symbols as meaningless is his endorsement of the axiomatic method
even for grounding empirical sciences such as physics (Corry 2004). So it seems
that metaphysical insight and epistemic source did not interest Hilbert very much.
He was aiming at something different.

Now Poincaré (1996 [1905–1906], 1034, 1039) and Wittgenstein (1976, 158–9)
criticized logical and formal foundational programs for their circularity: one needs
to be able to count in order to implement and verify the correctness of the symbolic
manipulations that supposedly define and rule over numbers. While I believe that
this criticism is justified in the case of Frege and Russell, I believe that it does
not successfully apply to Hilbert. Indeed, Hilbert agrees with Kant (and Brouwer)
that mathematics requires a non-logical given. But unlike Brouwer or Kant, Hilbert
takes this given to be the realm of signs (rather than time or space), including “their
properties, differences, sequences, and contiguities” (Hilbert 1983[1926], 196) –
which practically already contains elementary arithmetic. His formal method sought
to prove the consistency of formal systems using this intuitive knowledge, in order to
certify the conservatism of more elaborate formal systems with respect to arithmetic.
So there’s no attempt to define number by number, only to use the intuitive aspects
of numbers and symbols to investigate higher mathematics. This is, again, akin to
what Maddy calls risk assessment.

Despite the blow suffered by Hilbert’s program from Gödel’s incompleteness
theorem, Hilbert’s program is, in a sense, the “winner” of the early twentieth
century foundational debates. It allowed mathematicians to endorse any formalized
theory whose consistency could be reduced (or at least compared) to that of
some well understood system (ZF or its various extensions or competitors). For
Hilbert’s foundations to stand, we do need to take on faith the consistency of some
potentially infinitary mathematics based on some symbolic intuition, but as long as
the mathematical community has not found mathematical contradictions in these
systems that could not be dissolved by further disambiguation, decoupling,2 and
monster-barring formalizations, this faith can be sustained.

But Hilbert’s formal approach (which can be imposed on practically any
mathematical theory, including model theoretic approaches to set theory, variants
of category theory, etc.) did not only guarantee the plurality of mathematics
(the generous arena, in Maddy’s terminology). It did much more: it allowed to
set aside questions of conceptual clarity (Hilbert’s own conceptions were never

2By “decoupling” I mean breaking down a contradictory concept into several concepts such that
each maintain some of its aspects in a non-contradictory manner.
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quite clear!) and adherence to some pre-linguistic living intuitions. It exported to
philosophy those questions that threatened mathematical consensus with dilemmas
of metaphysical insight and epistemic source in exchange for a practical mechanism
for obtaining mathematical consensus regarding different extensions of elementary
arithmetic. The mathematical community could finally agree on how to agree,
suspend judgment on whatever need not be agreed upon (e.g. which theory
of infinity is “true”), and exile questions that cannot be expressed in Hilbert’s
framework (such as “what are numbers?”) to the realm of obscure philosophy.
Mathematicians could finally stop paying attention to philosophers and their kin.

In one sense, the above may be captured by what Maddy calls shared standard – a
common framework against which to measure mathematical definitions and proofs –
but this does not exhaust Hilbert’s achievement. Being able to agree on what need
not be agreed upon and casting it out of mathematics is perhaps the triumph of
Hilbert’s foundational program – a foundational desideratum that I add to Maddy’s
list and title: bounding the scope of debate.

But this achievement is not only about drawing a clear boundary around
mathematics. It is also about making it extremely difficult for outsiders to cross
the boundary and attempt to challenge it from within. The modern commitment to a
higher level of formalization of mathematics has made sure that only highly trained
mathematicians – those who have spent so much time in training and are so invested
in the language of mathematics that they are not likely to risk its authority – could
take a substantial part in the debate over mathematical values. This foundational
desideratum may be titled: keeping intruders out. I believe that this has a lot more
to do with the success of mathematical formalization than is usually acknowledged.

17.2 Pluralist Foundations

Given the above state of affairs, it is no surprise that while some philosophers
continued to quibble in the polemical margins excluded by Hilbert’s formalization,
others took up a more unifying approach. Instead of being cornered into choosing a
foundation for mathematics, they chose to explain that one needn’t choose.

One prominent expression of this position in the twentieth century is due to
Hilary Putnam. His Mathematics without Foundation (Putnam 1967) considered the
set theoretic and modal approaches to the foundation of mathematics, and concluded
that they offer complementary and reconcilable accounts: “Even if in some contexts
the modal-logic picture is more helpful than the mathematical-objects picture, in
other contexts the reverse is the case. . . . Looking at things from the standpoint of
many different ‘equivalent descriptions,’ considering what is suggested by all the
pictures, is both a healthy antidote to foundationalism and of real heuristic value in
the study of first-order scientific questions” (Putnam 1967, 19–20). Let a thousand
flowers bloom!

What allowed Putnam to be so nonchalant about foundations is his belief in
the reality of mathematics. Mathematical entities are so strongly entwined with the
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scientific project, that it makes no sense, according to Putnam, to think of them as
less real than such entities as electrons or water. If we believe, with Putnam, that the
scientific project is our most successful engagement with reality, we might as well
endorse mathematical and physical entities (tangible and abstract alike) wholesale.
Having such confidence in the reality of mathematics, we can show some lenience
when it comes to its foundational description.3

Another pluralist approach was expressed by Wittgenstein. He was concerned
that what was usually called “foundations of mathematics” had nothing to do with
actually founding mathematics. Frege’s or Russell’s calculi were, for Wittgenstein,
not the foundation of arithmetic, but new calculi, which could be related to other
arithmetical counting and calculations techniques, so as to form the thick web of
standards that mathematics is.

To understand this position we should first understand what makes a statement
“mathematical”. According to Wittgenstein, whether a statement is mathematical,
is not determined by the objects that the statement supposedly refers to, but rather
by its use (Wittgenstein 1976, 113–115). If we say that “2 and 3 are 5” or that
“two apples and three apples are five apples”, both statement can be empirical
observations just as they can be mathematical statements, depending on how we
act on them.

If these statements are used to make a practical prediction, then they are
empirical. In such cases, if the prediction happens to be wrong, then it’s simply
wrong – just like a gut feeling or a weather forcast is sometimes right and sometimes
wrong. In contrast, a mathematical use would set these statements as a standard
against which things are described. In the latter case, “2 + 3 = 5” or “two
apples and three apples are five apples” is our mathematical standard. When an
empirical observation deviates from this standard, one is challenged to explain the
discrepancy: perhaps we miscounted, or perhaps someone took an apple, or an
apple decomposed before you were done counting, or one apple became two due to
some quantum voodoo... What characterizes the use of a statement as mathematical
in Wittgenstein’s sense is that it assigns responsibility for bad predictions not to
mathematics, but to our imperfect control of the situation or our mis-application of
rules.

3Similar pluralist approaches are not unique to twentieth century formalized science. Here I
will only mention one scholar who offered a pluralist solution to the problem of founding
infinitesimals: Lazare Carnot. Carnot (1832, see also Schubring 2005 for an analysis) considered
several approaches to infinitesimal analysis: the ancient method of exhaustion, actual infinitesimal
indivisibles, Newton’s fluxions and first and last ratios, intuitive notions of limits, and Lagrange’s
replacement of derivatives by power series expansions. To that Carnot added the formulation of
infinitesimals as corrective variables, not necessarily small in value, which cancel out, if they
eventually turn out equal to purely fixed numbers (the analogy here is to purely imaginary numbers,
which must be zero if they are equal to real numbers). He considered all these systems worthy and
potentially innovative. The choice between them, according to Carnot, should be pragmatic, rather
than foundational (Carnot 1832, 120–121).
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Now in this framework, Russell’s or Frege’s definitions of numbers are new
techniques, which are subject to a standard that says that they must accord with
our older forms of counting and calculating. If there’s a mismatch between the old
and new calculi, it must be explained – usually as an error in following the rules
of either the old or new calculus. In cases of discrepancy between the old and new
systems, we don’t suspect that the systems do not match, but assume that there was
an error in our adherence to the systems, even if we don’t have a record of the
process of calculating that would allow us to find the error (Wittgenstein 1976, Ch.
28). This holds even though in large enough calculations we are more likely than
not to have inconsistent results, and are unlikely to even try using a logical calculus
to do arithmetic. The situation is similar in the context of coupling everyday wordy
mathematical proofs and Hilbert’s formalized proofs. The standard is that every
wordy proof is formalizable. If it’s not, then there’s a problem with the proof, not
with the formalization standard.

Since calculating in Russell’s or Frege’s formalism is very inefficient, the real
purpose of setting the mathematical standard that binds the new calculi with the old
arithmetic is to draw some interesting analogies and project on arithmetic logical
claims that are difficult or impossible to justify by looking at the old calculi alone
(Wittgenstein 1976, 247). But it would be an error, according to Wittgenstein, to
assume that logic grounds mathematics and follow logic-arithmetic analogies that
are simply confusing or useless.

Of course, setting a standard is not something we can do arbitrarily. Imposing
a new standard requires authority and/or some sort of motivating gain. If the
standard requires users to waste a lot of effort on finding explanations for apparent
discrepancies, the standard is less likely to be maintained. If discrepancies between
classical arithmetic and the new calculi, or between wordy proofs and Hilbert’s
formal proofs were too big, that is, if people too often got into trouble trying to
appeal to these standards – then they would likely be rejected as standards.4

So what enables mathematical standards is the fact that the available resources
allow enough students to be trained to follow them more or less consensually
without getting into too much trouble. As Wittgenstein put it, the facts on which
our calculus is based are “the empirical facts that we generally remember mistakes
in counting, don’t twist the calculus around, and so on” and that “if six intelligent
people add [I might add: ‘small enough numbers’], they get the same result”

4Note that people would get into trouble trying to formalize proofs, because many proofs cannot
be actually formalized with reasonable resources. Nevertheless, people do not actually run into
trouble because they are not actually expected to fully formalize entire proofs. In practice, one
may be required to present a semi-formalization of some specific sub-argument (replace some
terms by a logical or set theoretical reconstruction, replace a qualitative statement or an implied
construction by a more explicit formula, break down a derivation into sub-steps that are closer
to known theorems, rules or axioms, etc.). This is something that mathematicians do manage
to usually perform consensually to the extent required in actual mathematical deliberations and
controversies. Still, there are people who think that formal proofs are not necessarily a very good
standard against which to measure mathematics (e.g. Hersh 1997, Thurston 1994). For a more
recent discussion of the formal/informal gap, see Rav (2007) and Tanswell (2015).
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(Wittgenstein 1976, 291, 274). These facts are natural, psychological and social
facts that have to do with human behavior, and they, according to Wittgenstein, form
the grounds on which mathematical standards are rejected or endorsed. So, similarly
to the case of Putnam, given Wittgenstein’s kind of naturalistic foundations,
pluralism with respect to mathematical languages or foundational systems is easy to
tolerate.5

If we accept Wittgenstein’s characterization of mathematics, then the pragmatic-
naturalistic grounding of successful standards obviates the need for a foundational
shared standard. Mathematics builds on many different practices, as well as on
translation schemes between those practices, which people can be trained to follow
consensually. Giving primacy to one standard over others by considering it a
foundation helps fortify mathematical consensus (as this standard becomes the
arbitrator when different standards conflict), but granting such primacy depends on
already having a relatively robust system of translation schemes that tie different
practices to each other without necessarily passing through the supposed foundation.
Indeed, if this hadn’t been the case, it would have been very difficult to choose one
standard over others, and a dissensual mathematical culture would have emerged.
So a foundation may strengthen what Maddy calls a shared standard, but cannot be
given full credit for it.

Wittgenstein’s pluralism went so far as to claim that an inconsistency does not
invalidate a mathematical system, as long as the inconsistency doesn’t lead us into
problems (either because the results of the inconsistency are inconsequential, or
because we know how to bypass the inconsistency even if we can’t formalize how
we do it – see Wittgenstein 1976, Chs. 21–22). A long history of inconsistent
mathematics (infinitesimals from the seventeenth to the nineteenth century), the
formal contradictions that still survive in theoretical physics, and contemporary
paraconsistent mathematics (Mortensen 1995) all demonstrate that his position is
not as unreasonable as it may sound to a philosopher or mathematician raised
on Hilbertian formalism. That category theorists sometimes exceed the awkward
bounds of Grothendieck Universes, despite their awareness of lurking contradictions
(Ernst 2015, Krömer et al. 2009) is also witness to this fact.

This means that risk assessment as a foundational desideratum is perhaps better
achieved through practical experience than through a foundational program. More-
over, I have already argued that the contribution of a foundation to a shared standard
may be overrated, and what Maddy calls a generous arena is obviously obtained
more fully in a pluralist framework than by any single foundation. Therefore,
the main advantage of formal foundational programs (axiomatic, set- or category-
theoretical) over pluralism might reduce to their ability to bound the scope of debate
and keep intruders out, preventing philosophers and other critics from ruffling
mathematics’ feathers. Still, even though these are perhaps the most prominent

5For a discussion of why such rigorous standards are characteristic (perhaps even defining) of
mathematics rather than of other sciences, I refer the reader to Wagner (2017, Ch. 3.3)
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impacts of formal foundational systems, they are neglected in philosophical debates
over foundational achievements and desiderata.

A more recent proponent of pluralism, Michele Friend (2014, see also this
volume), has a more difficult task cut out for her, compared with Putnam or
Wittgenstein. Her purpose is to convince philosophers and mathematicians that
pluralism is tenable and makes sense even if we don’t commit ourselves to Putnam’s
realism or Wittgenstein pragmatic naturalism. Since her account of pluralism has no
independent ground to build on, it has to emerge from discussions within and against
a motley of foundational positions (Friend 2014, part I). This makes it, I believe,
an impressive and laudable attempt at bootstrapping a new mediating discourse
from within a world of agonistic strands of discourse: “Pluralism is founded on the
conviction that we do not have the necessary evidence to think that mathematics is
one unified body of truths, or is reducible to one mathematical theory (foundation).
The pluralist is simply agnostic on this issue, . . . it is in the light of this agnostic
attitude that pluralism is developed” (Friend 2014, 103).

Replacing the search for a single foundational standard by the construction of
a mediating agnostic discourse between many different standards is a daunting
project. However, proposing that proofs seek “to communicate something, to convey
an idea, and to open a discussion” (Friend 2014, 214), this strand of pluralism has
a chance of growing into something that will exceed being yet another scheme of
translation between mathematical practices: it might actually be able to mediate
between non-mathematicians and mathematicians. Given the current foundational
success in keeping intruders out, this is a genuinely revisionary project.

17.3 Against Foundations

But pluralism is not our terminus. One may not only accept any or many foun-
dations, one may reject the idea of foundations altogether. This rejection would
not have to be based on the fact that no single foundation captures perfectly the
entirety of mathematics. Rather, it would be based on the claim that foundations
risk crippling mathematics. Yehuda Rav has addressed this issue in a string of papers
(Rav 1999, 2007, 2008):

Indeed, a strict axiomatization of analysis, or any field of mainstream mathematics, for that
matter . . . would be counter-productive, and essentially not feasible. The reason is simple,
stemming from what can be called the transfer of technologies. . . . Ideas and concepts that
were developed independently in a particular area of mathematics are frequently used and
applied in a different context, much to the enrichment of the latter. Encapsulating a major
branch of mathematics, such as analysis, for example, within a rigid axiomatic framework,
would block beforehand such unforeseeable developments . . . (Rav 2008, 134–135).

Trying to encapsulate the unformulated practice of mathematicians inside a
foundational framework is considered here not only as arbitrary, but as actually
harmful. The claim is that the generous arena of any given foundation or collection
of foundations might not be generous enough when considered from the point
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of view of historical development and change. Rav does agree that foundations
are crucial for the logician who proves theorems about formal theories (which
Maddy calls meta-mathematical corral) – but these foundations need not constrain
the innovative practitioner of such object theories, and the meta-mathematics that
studies the object theories need not itself have a clear foundation (Rav 2008, 142).

Formal foundations, according to Rav, do not guide mathematicians. If anything,
they are derived from the unformulated practice of mathematicians (Rav 2008, 125).
Indeed, many successful mathematicians do an excellent job without being able to
fully reconstruct the definitions and axioms of any foundational system, or recognize
subtle violations of the axioms. Essential guidance is not really something that
foundational programs provide – perhaps because they are too essentialist to capture
something as historically changing and plural as mathematics.

Another anti-foundationalist voice in the history and philosophy of mathematics
is Imre Lakatos, who stated in no uncertain terms that “knowledge has no founda-
tions” (Lakatos 1976, 46). One of his arguments against foundations is linguistic:
even a formal system is presented and couched in a natural language. But natural
languages are unstable, contradictory and changing. So the meaning of formal rules
is eventually susceptible to the uncertainties of natural languages (Lakatos 1976,
89–90). To that, one may object that while unexpected interpretations of formal
rules could, in principle, come up, they actually do not, and consensus about which
moves are allowed within a given formal system is effectively unthreatened at least
for contemporary mathematics.

But while formalization can inhibit the emergence of unexpected interpretations
of what is valid within a given system and make mathematics more consensual over
larger spans of time, the polemical field of unexpected interpretations is not thereby
extinguished – it is merely exported. In a formalized setting, interpretations relate
to the translations between formalizations and applications or intuitive meanings,
and disagreements emerge with respect to which phenomena or experiences are
correctly represented by given formalizations and their consensual mathematical
inferences. This expulsion of conceptual dialectics from mathematics to the non-
mathematical realm of application or interpretation (which is a form of keeping
intruders out) is considered by Lakatos a problematic turn of events (Lakatos 1976,
122).

Lakatos believed that committing to a specific foundational system without
challenging it risks leading to degeneration. He believed that this is precisely
what happened with the Euclidean and Newtonian postulates: they started as wild
revolutionary ideas, and ended up becoming scientific Procrustean beds (Lakatos
1976, 48–49). For Lakatos, the dialectic of interpretations is not an unfortunate
limitation of human language, but the productive engine of improvement. It is
precisely because we can come up with new, unintended interpretations to old terms,
that we can enrich and refine our knowledge (for an application of Lakatos’s stance
to set theory, see Tanswell 2017). Indeed, such interpretations force us to explore
our proofs in new contexts and consider new forms of argument. In turn, these new
arguments reshape our interpretations and concepts. This is the progressive dialectic
of formal science.
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According to Lakatos, rather than try to freeze this process by formalization,
concepts should be made just as clear as required for the anticipated space of
interpretations, and be revised when new interpretations arise. Lakatos would
therefore not be content even with a plurality of foundations, as he was intent
on encouraging dialectic changes of mathematical practices in an evolving world
of interpretations. He would reject bounding the scope of discussion and keeping
intruders out – those prominent achievements of formal foundational approaches –
as desiderata.

17.4 Mathematics Without Foundations

One way to deal with all this is to accept foundational theories as long as they
are not taken seriously as foundations – not so much a pluralism of foundations,
but a pluralism with regards to partial translations between mathematical languages
(formal and informal), none of which is granted primacy. But can we imagine a
highly evolved, proof oriented mathematical culture that simply does not think in
terms of foundations? I do not mean here a mathematical culture that is not certain
about its foundations, or has imperfect foundations, or is polemical or pluralistic
about its foundation (as was the case with the dominant strands of higher classical
Greek, medieval Arabic and modern European mathematics). I mean a mathematics
that simply doesn’t practice foundations. Fortunately, we do not need to imagine
such a culture. I believe it was really there, in Kerala (southwest India), in late
medieval times, practiced by a group of mathematicians that hardly ever bothered
with foundations (in the sense of trying to set a clear and unified logical ground,
axioms or inference rules for mathematics).

Before I say something about this culture, I should make a disclaimer. Past
mathematical cultures cannot replace our contemporary mathematics. Such cultures
evolved in certain contexts and for certain functions that shaped them in ways that
may not be relevant for other mathematical cultures. Other mathematical cultures
could only expand our imaginations concerning what our mathematics could be.
The relevance of this “could” has to be evaluated contextually for the inspirations it
might (or might not) provide for future mathematics.

Turning back to our case study: Kerala mathematics in the fourtheenth to six-
teenth century. This culture was the most advanced mathematical culture of its time
throughout the world. Its breakthroughs include power series like approximations
of trigonometric functions and the value of pi (surveys are available in Joseph 2009;
Plofker 2009, ch. 7; Sarma et al. 2009). Here we are interested in one important text:
Śaṅkara’s Kriyākramakarı̄ (Sarma 1975, see also Wagner 2018) – an encyclopedic
commentary on Bhaskara II’s twelfth century Lı̄lāvatı̄, completed by his disciple
Nārāyan. a in the mid sixteenth century.

This work includes not only algorithms and general statements, but also detailed
proofs (upapatti or yukti) in prose and in verse. Some historians of mathematics
claimed that Indian mathematics had no interest in proofs (see Sarma et al. 2009,
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267–70). This position has been refuted, as discussions of proofs and justification
have been documented already in early classical Sanskrit mathematics (e.g. Keller
2012). Part of the problem is that the texts known to western scholars were mostly
succinct summaries of algorithms in verse. But in India, these highly elliptic texts
were accompanied by oral teaching and written commentaries, which included
detailed justifications (for a list of sources see Sarma et al. 2009, xxix-xxxii, 294–
96). Within this tradition, the most highly elaborate proofs that survive in Indian
sources come from Kerala.

As observed by Srinivas (2005) and Raju (2007), Indian proofs did not start with
axiomatic foundations. Indian proofs could rely on evidence elicited from observing
a diagram or the use of analogies to physical situations. But while many Indian
logical schools preferred observation over inference, this tendency does not reduce
Indian proofs to inductive generalizations – a good proof had to give compelling
reasons that would convince the community of specialists, not only show that a
certain mathematical technique works by means of examples.

Moreover, the role of observation in proof does not make empirical reality
the ground of mathematics, because mathematical astronomy included “fictional”
non-observable and idealized entities that are viewed instrumentally, rather than
realistically (Srinivas 2016, 11–12). These fictional entities can and do serve as
starting points of mathematical proofs. This fits well with the fact that many Indian
logical systems do not assume a bivalent truth value, which would equate fictional
with false (Raju 2007).

One can find statements in the Kerala mathematical literature that might apear to
be foundational, such as the claim that mathematical computations depend mostly
on the rule of three, the Pythagorean theorem and arithmetical operations (Sarma
et al. 2009, 30; a similar statement is made by Nı̄lakan. t.ha, another proponent of
the same school, in the context of astronomical calculations, Sastri 1930, p.100).
But this should not be taken seriously. There are obviously many other implicit and
explicit mathematical tools in Indian proofs, and the Pythagorean Theorem (and, to
an extent, also the rule of three) are themselves subject to justification within the
same treatises.

If we follow the reasoning of proofs in the Kriyākramakarı̄ “all the way down”,
we find several kinds of explicit grounding elements:

1. Arithmetic rules such as distributivity, associativity, etc.
2. Observation and cut-and-paste manipulations of two and three-dimensional

geometric diagrams
3. Observation of simple physical models (such as ropes and beams)
4. Combinatorial common sense (for lack of better terminology)
5. The logic of inference (anumāna – this is used to explain the rule of three in terms

of an underlying logical structure; see Hayashi 2000)
6. Analogies between different mathematical situations

Building on the above, one derives ever more complex algebraic and geometric
statements, and ends up with the impressive achievements mentioned above.
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Diagram 17.1 The sum of
consecutive odd numbers is a
square number

So far, this is what we’d expect from an informal mathematical proof cul-
ture. What makes the Kriyākramakarı̄ especially interesting is the fact that the
relations between ground and conclusion are often very unstable and surprising.
For example, we may expect to find proofs of the rule that we would express as
(a + b)(a − b) = a2 – b2 to be derived from algebraic manipulations of the left
hand product, or from a cut and paste manipulation of a diagram of a square divided
in four parts – and the Kriyākramakarı̄ indeed contains such proofs. It is, however,
more surprising to find another proof at the end of the section on square roots, where
this identity is derived from the fact that an arithmetic series of odd numbers starting
from one sums to a square number (the latter is visually obvious from Diagram 17.1,
and also proved arithmetically in the context of summing arithmetic series).

Given this fact, a difference of squares equals the tail of a finite arithmetic
series of odd integers. Such a series can be viewed as the sum of two
interlaced arithmetic series of consecutive integers. Then, by the general trick
for summing arithmetic series (noting that the sum of two terms equally
distant from the extremes of the series is constant), the interlaced arithmetic
series sum to the required product of sum and difference (for example,
62 − 22 = (1 + 3 + 5 + 7 + 9 + 11) − (1 + 3) = 5 + 7 + 9 + 11 = (2 + 3) +
(3 + 4) + (4 + 5) + (5 + 6) = (6 + 2)(6 − 2); Sarma 1975, 43–44). This proof
is surprising because it is a rather difficult proof of a rather elementary fact, which
depends on a method that is explained only later in the book.

Such alternation of geometric and algebraic methods is in fact prevalent in
the Kriyākramakarı̄. A good example is the extended discussion of quadratic
Diophantine problems of the following form: “find two numbers such that the sum
and/or difference of their squares, together with some given perturbation, yield a
square number” (e.g. find rational x and y such that x2 + y2 + 1 and x2 − y2 + 1 are
squares of rational numbers). Each kind of problem is solved by at least one general
rule with infinitely many instantiations. The methods of justification of these rules
include:

1. Synthetic algebraic verification: show that plugging in the formulas given by the
rule into the unknowns yields a result that can be algebraically rearranged as a
square.
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2. Algebraic analysis: show how the rule is derived from the conditions of the
problem, heuristic algebraic models for the solution, and/or established algebraic
identities.

3. Application of the numerical algorithm for root extraction to the sums and
differences given by the rule; the fact that the algorithm terminates shows that
the resulting expressions have rational roots (note that the numerical algorithms
are applied here to general “variables”)

4. Geometric cut-and-paste models showing that the relevant sums and differences
are indeed squares.

These methods are often combined, but different emphasis on different methods is
given in the proofs of different rules.6

One more kind of proof is available in the same context, which is, again, more
surprising: modeling the algebraic problem by chords in a circle (Sarma 1975, 146).
This method is used, for example, to show that for integer x and y, the squares of

x and x2−y2

2y sum to a square of a rational number. To prove this assertion consider

Diagram 17.2. In this diagram, y(2b + y) = x2, because chords in a circle intersect

proportionally, and the diameter 2r equals 2(b + y). This means that b = x2−y2

2y .

From the Pythagorean Theorem we have r2 = x2 + b2 = x2 +
(
x2−y2

2y

)2
. But we

also know that r = b + y = x2−y2

2y + y, which is rational. So the two squares sum
to the square of a rational number.

This example is remarkable, because a rather simple algebraic fact, which can
easily be explained algebraically, is proved here by means of a rather advanced
geometrical reasoning, which, itself, is presented without proof and is related to
mathematical material that shows up only later in the book.

In general, the multiplicity of methods and the variety of formulations within
each method in the proofs of the Kriyākramakarı̄ indicate that the author is interested

Diagram 17.2 Chords in a
circle represent the solution
of a Diophantine equation

6The “pulverization” method for solving such problems is treated in a separate section of the book.
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in maximizing the understanding of relations between different mathematical
methods and principles, rather than reducing mathematics to a unified foundation.
The alternation of geometric and algebraic propositions that prove each other
sometimes verges on circularity, where the two bodies of knowledge establish each
other reciprocally.

17.5 Conclusion

On the one hand, this should make no sense from a foundational point of view.
On the other hand, even in our foundationally oriented mathematical culture,
similar Base-Case prevail. Induction-Step are consistently interested in the relations
between different methods of proof. This often leads to attempts to prove a statement
B from a statement A and vice-versa. From a foundational point of view, this makes
sense where A and B are independent of the other axioms (e.g. the axiom of choice
and the well-ordering principle). But such explorations take place also when A and
B both follow from the given axioms, and there’s no explicit logical control on the
tools of the proof. In such situations A and B would be formally equivalent simply
by virtue of being provable. When attempting to prove B from A after having proved
A from B, it is often hard to tell if we do or do not “essentially” use the “main ideas”
of the “independent” proof of B, or “really” derive B from A. Still, mathematicians
have a strong interest in this kind of derivations.

The point I am trying to make with this case study is that a rich mathe-
matical proof culture does not necessarily require foundations in order to thrive.
Mathematics can in principle endorse Wittgenstein’s holistic view and reject the
ground/consequence division in favor of a system of correlation of practices,
possibly containing circularities and manageable contradictions. It can further
endorse Lakatos’s view and expose mathematics to the sway of interpretive drifts
by purposely not tying it to (a) formal system(s). Induction-Step modern research
mathematics should adopt this approach is a different question, on which I remain
here (with Friend) agnostic.

Shared standards and risk assessment can be achieved and have historically
been achieved without committing to formal foundations. If they like, meta-
mathematicians can keep their formalized meta-mathematical corral – this does
not require them to impose it on the rest of us and restrict the generous arena of
plural mathematics. True, the high level of consensus obtained from granting some
formal foundation the power of final arbitration may suffer. Moreover, bounding the
scope of debate and keeping intruders out would be more difficult to achieve without
formal foundations. The latter, however, are perhaps not necessarily desirable. Once
we accept that foundations are not strictly necessary for just any mathematical
culture, then the debates over the reasons for adopting or rejecting foundational
systems in our mathematical culture, and the role we assign to presumably
foundational systems, become much more contingent and open ended.
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Hoshiarpur: Vishveshvaranand Vedic Research Institute.

Sarma, K. V., Ramasubramanian, K., Srinivas, M. D., & Sriram, M. S. (2009). Ganita-Yukti-Bhasa
of Jyesthadeva. Springer.

Sastri, S. (Ed.). (1930). The Aryabhatiya of Aryabhatacarya, with the Bhasya of Nilakanthasoma-
sutvan. Trivandrum: Government Press.

Schubring, G. (2005). Conflicts between generalization, rigor and intuition. New York: Springer.
Spencer Brown, G. (1972). Laws of form. London: The Julian Press.
Srinivas, M. D. (2005). Proofs in Indian mathematics. In G. G. Emch, R. Sridharan, & M. D.

Srinivas (Eds.), Contributions to the history of Indian mathematics (pp. 209–248). New Delhi:
Hindustan Book Agency.

Srinivas, M. D. 2016. On the nature of mathematics and scientific knowledge in Indian tra-
dition. http://iks.iitgn.ac.in/wp-content/uploads/2016/02/On-the-Nature-of-Mathematics-and-
Scientific-Knowledge-in-Indian-Tradition-MD-Srinivas-2016.pdf.

Tanswell, F. (2015). A problem with the dependence of informal proofs on formal proofs.
Philosophia Mathematica, 23(3), 295–310. https://doi.org/10.1093/philmat/nkv008.

Tanswell, F. S. (2017). Conceptual engineering for mathematical concepts. Inquiry, 61, 881–913.
https://doi.org/10.1080/0020174X.2017.1385526.

Thurston, W. P. (1994). On proof and Progress in mathematics. Bulletin of the American
Mathematical Society, 30(2), 161–177. https://doi.org/10.1090/S0273-0979-1994-00502-6.

Wagner, R. (2017). Making and breaking mathematical sense: Histories and philosophies of
mathematical practice. Princeton: Princeton University Press.
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Chapter 18
Foundations for the Working
Mathematician, and for Their Computer

Nathan Bowler

Abstract We begin by discussing which aspects of the ZFC foundation for
mathematics are useful for supporting mathematical practice. We focus in particular
on those aspects which cater specifically to human styles of mathematical reasoning.
We then consider some advantages of categorical or type theoretic foundations, and
how these advantages rely on less human-friendly features of those systems. We
close by raising the possibility that this latter type of foundation may become more
appropriate as mathematical practice shifts towards a greater reliance on computers.

18.1 Disclaimer

I am not a philosopher but a working mathematician. Thus the aim of this paper
is simply to present one possible perspective on foundational issues which appears
to me from an outside perspective to be largely neglected by those working more
directly on the foundations of mathematics. I am grateful to the anonymous referee
for some helpful hints about how to give the paper a veneer of philosophical
respectability.

18.2 What Use Are Foundations?

We all accept that good foundations are important, but why? To me, it’s because
they make my life as a working mathematician much easier. Foundations are
sometimes informally motivated in less practical terms, by saying that they provide
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an Epistemic Source1 of basic knowledge on which further arguments can be based,
that they enable Metaphysical Insight into the true nature of mathematical objects
or that they give a formal expression2 to our constructive mental activity. For now
I want to set aside those ideas and focus on pragmatic advantages. So let’s lower
our eyes from the metaphysical sky to the earth, where foundations belong, and
carefully examine how good foundations can support mathematical workmanship.

As a concrete example, if I want to use a theorem from group theory in
my work then the requirements are minimal; I just have to check that some
object I have built satisfies the definition of groups, and perhaps some further
conditions from the theorem. I don’t have to worry that group theorists might
be relying on assumptions incompatible with the basic assumptions in my own
discipline. Common foundations give us a shared language, across cultures and
across disciplines. They give mathematics portability.

Common foundations also give us a Generous Arena of shared mathematical
objects. If I hear about some exotic graph arising from an odd construction in
functional analysis, I know that despite its origins it is one of the subjects of my
study and could serve perfectly well as a counterexample to my own conjectures.
That such things can be taken for granted is a sign of how reliable a mathematical
infrastructure our current foundations provide.

Because modern foundations provide a powerful Shared Standard, I can have
confidence in my results. By this I don’t mean to claim that the currently accepted
standards distil essential and indisputable truths about the world, such that any
statements derived according to them must also stand beyond dispute. My claim is
rather more banal: once I’ve proved something, I don’t have to worry that someone
else will prove the opposite. I can also have confidence in other people’s results.
When I prove something which other people have shown to be false, I always know
that I can go back over my proof and I’ll find a mistake somewhere. In this way I
am insulated from inconsistency.

It isn’t that there’s some mathematical guarantee that I’ll never run into an
inconsistency; Gödel pulverised any such hopes.3 It’s more that if there is an
inconsistency then the chances of me being the one to stumble on it are tiny. And

1In this paper, capitalised terms in bold are taken from Maddy’s classification of various aspects of
what it is to be a foundation in Maddy (2017). Basic familiarity with that classification is helpful
but hopefully not essential to follow this paper.
2Uncapitalised terms in bold are names I have chosen for other things we might hope for in a
foundation, not discussed by Maddy. Formal expression seems to me to be a serious omission,
given its importance for intuitionism. Intuitionists consider mathematics to be the result of the
constructive mental activity of humans rather than the discovery of fundamental principles claimed
to exist in an objective reality; accordingly, the aim of a foundation is to give a formal expression
to that activity.
3More precisely, he showed that if a formal system is expressive enough to encode first order
arithmetic then it can only prove its own consistency if it is itself inconsistent. Since the
mathematics I care about builds on arithmetic and since I don’t want to work in an inconsistent
system, this leaves no hope of a proof, of the kind Hilbert wanted, of the consistency of that
mathematics from within a simpler and more evident subsystem.
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even if I did, it wouldn’t be just my problem. Mathematicians around the world,
including dedicated teams of foundational specialists, would jump on the problem
at once and would quickly come up with a patch. This means that I can leave Risk
Assessment regarding possible inconsistencies to the experts. Note that the benefit
for the working mathematician of a good foundation is not so much that it enables
Risk Assessment as that it insulates us from the need to worry about it.4

In contrast to the practical approach taken in the last few paragraphs it was once
common to claim that, in giving an axiomatisation for mathematics, the point is to
gather some (perhaps self-evident) axioms and principles to serve as an Epistemic
Source, on the basis of which unshakeable knowledge can be built up. This might be
plausible if the axiomatisation were the obvious one: extensionality plus universal
comprehension. Those really are self-evident principles. The problem is that they
lead to the Russell paradox. Self-evident claims are unfortunately not always true.
Our current foundations are too obviously shaped by a trial-and-error attempt to
cover as much ground as possible whilst avoiding paradox for such a view of them
to be sustainable.

Another suggestion is that our foundations give formal expression to our
intuitive human reasoning. That doesn’t fit with my experience. Forming my
intuitions into a proof formal enough to be published feels like nailing jelly to a
wall. Instead our foundations give a Shared Standard determining which sorts
of reasoning will count as mathematics. In return for the price of fitting my own
arguments to this ‘mathematics transfer protocol’, I have the benefit of belonging
to a community whose other members follow the same rules, and on this basis rests
my confidence that their results will not contradict my own.

Most dubious of all is the idea that our foundations give Metaphysical Insight
into the true nature of mathematical objects, including such deep discoveries as the
fact that the number 3 is the union of the number 1 and the ordered pair (0,1). This
and similar examples show that the way mathematical objects are implemented in
the Generous Arena provided by our foundation has no metaphysical significance.

Even if these less practical goals could be fulfilled by some alternative foun-
dation, it would not be widely adopted if it did not also serve mathematicians by
letting them talk to each other, easily use each other’s results and have confidence in
those results. It is these pragmatic considerations which are really essential for any
foundation of mathematics.

The main lesson I want to draw from all of this is that mathematical foundations
are not immutable, and that changes in foundations can be justified on purely
pragmatic grounds.

4More bluntly put, most of what falls under Risk Assessment is irrelevant for the working
mathematician and only good from the point of view of foundational specialists. The same goes
for the role of a foundation as a Meta-mathematical Corall.
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18.3 Why ZFC Suits Me

Having briefly considered in general terms what foundations are good for, let’s now
focus on the particular advantages of the most widely used current foundation, ZFC.
In this section, I hope to illustrate that this formalism is particularly well adapted to
the quirks of its human users.

Firstly, it is simple, self-contained and memorable enough that we are able to
learn it. Learning to work with this formalism isn’t completely trivial, but it can be
done within a single course of lectures. That is enough to allow this formalism to be
absorbed and used by people all around the world. We saw in the last section that
this universality is essential. So since the users are humans the learnability is also
essential.

Part of what makes ZFC so learnable is that it is easy to picture using the
cumulative hierarchy. This isn’t just a nice extra feature that allows set theory
lecturers to draw pretty pictures on the board. It is vital. To see this, we must pause
to reflect on how much of mathematics relies on leveraging the particular toolkit of
intuitions and skills we have inherited from our ancestors.

The human brain is not particularly well suited to abstract reasoning or calcula-
tion. Concerning our calculation abilities, as Dehaene points out in ‘The Number
Sense’ (Dehaene 1997), the brain ‘can accurately code only sets whose numerosity
does not exceed 3, and it tends to confuse numbers as they get larger and closer’. No
doubt your own unhappy memories confirm his observation that ‘we have . . . a hard
time remembering the small number of equations that make up the multiplication
table’. As for abstract reasoning, not even a tenth of people can solve an elementary
logical problem called the Wason selection task (Wason 1977):

You are shown a set of four cards placed on a table, each of which has a number on one
side and a colored patch on the other side. The visible faces of the cards show 3, 8, red and
brown. Which card(s) must you turn over in order to test the truth of the proposition that if
a card shows an even number on one face, then its opposite face is red?

We are able to get around these limitations to some extent by translating
arithmetical or logical problems into terms that our brains are adapted to deal with.
Dehaene reports that the brain ‘tends to associate the range of numerical quantities
with a spatial map, thus legitimizing the metaphor of a mental number line oriented
in space’ and that there is ‘an automatic association between numbers and space’.
Similarly, performance on the Wason selection task increases greatly when it is
presented in the context of a social norm such as ‘if a person is drinking beer then
he must be over 20 years old’ (Cosmides and Tooby 1992).

Our brains have been honed over millennia to have strong and reliable intuitions
for certain highly specific tasks. Much of modern mathematics is built around
methods for exploiting these intuitions in formal contexts. Dehaene provides an
excellent example:

the English mathematician John Wallis, in 1685, made a unique gift to the mathematical
community when he introduced a concrete representation of complex numbers – he first
saw that they could be envisioned as a plane where the “real” numbers dwelled along a
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horizontal axis. To function in an intuitive mode, our brain needs images – and as far as
number theory is concerned, evolution has endowed us with an intuitive picture only of
positive integers.

Similarly, the true power of a subject like topology is not that it allows us to see
the relation between donuts and coffee cups, which after all is intuitively clear, but
that it allows us to leverage the same intuitions of shape and space in reasoning about
formal objects such as spectra of rings or infinite products of discrete spaces. A
similar exploitation of spatial intuitions lies behind the power of algebraic geometry.
As a further example, our excellence at strategising and developing tactics to outwit
competitors is used in the many flavours of game theory and is reflected by the use
of algorithms all over mathematics. If there were a way to get formal arguments out
of the ability to recognise faces, it would be the highlight of modern mathematics.

Returning to the question of the benefits of ZFC set theory, it is clear that it
relies on this kind of intuition-leveraging. Humans are adapted to build complex
tools, which means building up objects from component parts, themselves built
from yet simpler components. This is precisely the intuition exploited by the idea of
the cumulative hierarchy, and it allows us to visualise and understand many of the
axioms of ZF. Our intuitions about decision-making, which underlie the axiom of
choice, are rather different but no less strong.

This notion of intuition-leveraging is reminiscent of that of intrinsic justifica-
tion; we might say that an axiom is intrinsically justified if our intuitions tell us
that the axiom is true of the objects of discourse. There is however a key difference.
To leverage our intuitions it is only necessary that the objects of discourse behave
sufficiently like other objects, ones for which we do have an intuitive grasp, that
our intuitions for the latter objects are helpful in working with the former ones.
Thus our intuitions about shape and space tell us, on the face of it, nothing about
spectra of rings, since these spaces don’t resemble the spaces in our experience.
But by pretending that they do we can exploit our intuitions to help us work more
easily with such spectra. Similarly, although one might dispute that our intuitions
about decision making still apply when infinitely many choices are to be made
simultaneously, there is no question that these intuitions help us to work with the
axiom of choice.

An independent advantage of ZFC for human users is its clean ontology.
Mathematical objects like the set of natural numbers simply exist and have certain
properties. We are so used to this way of doing mathematics that it might seem
inevitable, but as I shall discuss in the next section it is perfectly possible to
imagine a foundation for mathematics without this feature. For now it will suffice
to focus on two aspects of this ontology: the way it is achieved by means of a neat
distinction between syntax and semantics, and the extravagantly wasteful nature of
the collection of objects this foundation provides.

The ZFC foundation has two clearly distinguished parts. First there is a formal
account of what counts as a mathematical statement or a mathematical proof; this
is provided by first-order logic. Then there is the particular theory to which such
reasoning may be applied, namely the axioms of ZFC. This latter part of the
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foundation is what provides the ontology; it determines that the fundamental objects
of mathematical discourse are sets and gives us flexible ways to build and work with
these sets.

This allows us to maintain in our5 heads the distinction between arguments,
which are simply about mathematical objects and belong to the first part of the
formalism, and the objects themselves, which belong to the second. The details of
how the arguments go can be detached from the properties which they establish.
Thus to use the results of other mathematicians I don’t need to keep track of any
information about the syntactic details of their arguments.

Of course this distinction is not always as clean as we would like. It is perfectly
possible to treat the arguments themselves as mathematical objects, with fruitful if
often unsettling consequences. One of these is that first-order logic is incapable of
pinning down the properties of even such a familiar object as the set of natural
numbers (Gödel again). On the other hand the second part of the formalism is,
strictly speaking, not the collection of sets but only a first-order theory of sets.
As just noted, there is no hope that such a theory could completely pin down the
universe of sets.

Nevertheless, enough properties of sets are determined by the theory that we
don’t run into problems by treating it as describing a fixed and platonic realm. This
makes working in ZFC very comfortable for human users. Even for statements
which cannot be proved nor disproved, such as the continuum hypothesis, ZFC
panders to our assumption that there must be some truth of the matter through its
incorporation of the law of the excluded middle: CH must be either true or false, we
just don’t know which.6

The second aspect of the ontology which is tailored to human ways of thinking is
its profligacy. Almost all mathematical reasoning is about objects which appear7

in the cumulative hierarchy just after the natural numbers, at most within the
next dozen layers. So what is all the other junk there for? Well, it is built with
constructions which we occasionally need to make use of. Indeed, this is one of
the main uses of the ZF formalism in practice: the extremely flexible set-building
notation.

5The word ‘our’ here refers to working mathematicians. As will shortly be explained, the
distinction in our heads looks rather shaky when examined closely. Those with more philosophical
sophistication, and we ourselves in our more reflective moments, know that there are thorny issues
to be resolved here. One possible point of view is that a modern approach to foundations essentially
involves identification of sets, numbers etc. with syntactical objects, a view which would have deep
consequences. My own view is that such an identification is not forced on us, but explaining the
reasons for this would go far beyond the scope of this paper. In any case, the point here is that,
whether such a distinction is ultimately tenable or not, working as if it were is a useful practice
which allows the mathematician to focus on mathematics rather than philosophy.
6As in the last paragraph but one, no claim about the extent to which LEM actually holds for CH
is intended here, nor do I intend to disparage the sophisticated points of view on the matter held
by modern set theorists. The claim is just that LEM is a useful working hypothesis which allows
nonspecialists to ignore the philosophical issues and get on with their work.
7Or rather can be implemented; see the next two paragraphs.
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There is a sense in which the flexible constructions provided by ZFC play a more
fundamental role than the specific sets constructed with them. The identification of
natural numbers or other mathematical objects with particular sets is, after all, rather
arbitrary. Why should we suppose, following von Neumann, that the elements of the
number 2 are 0 and 1, rather than using Dedekind’s definition and taking the only
element of 2 to be 1? Indeed, where did we get the idea that natural numbers should
have elements at all? Worse still, we are told that the elements of the rational number
2 are different again, meaning that the natural number 2 is not a rational number.

A better way to put the matter would not be to say that natural numbers are
sets, but that they can be implemented as sets, by using the powerful set-building
constructions of ZFC. A canonical implementation is a helpful part of the Shared
Standard, in the same way that it is helpful if everyone drives on the same side of
the road, but the choice of which implementation to use is fairly arbitrary. The same
goes for ordered pairs, for rational, real or complex numbers, and so on to the higher
edifices of mathematical study.

Occasionally we run into mathematical objects which we need the full strength
of ZFC to implement or to reason about. It would feel very unnatural to normally
work in a weaker formalism, and to only work with a stronger formalism capable
of supporting those implementations when we need them. Since we naturally think
in terms of a fixed realm of objects, it only makes sense that if it’s fine to use those
extra constructions when we need them then the objects they construct must be
sitting there the whole time.

Indeed, this fits with our day-to-day experience as human investigators of the
world. We confine our attention to a small part of the universe, unworried by the fact
that there is a great multitude of objects with which we do not concern ourselves.
Why should our relation to the universe of mathematics be otherwise?

In pointing out the ways in which ZFC is tailored to our human oddities, I’m not
trying to claim that we should strive to overcome these oddities and replace ZFC
with a better foundation, one which isn’t held back by human nature. My point is
that ZFC is a great foundation for us precisely because it is tailored to work with our
human nature by leveraging our intuitions, by giving us a clean ontology to work
with, and by providing an Arena for the implementation of mathematical objects
which is Generous to the point of wastefulness.

18.4 Categories and Type Theory: Wonderfully Alien

Category theory and type theory have some compelling advantages over set theory,
but a closer look shows that they come at the cost of making the foundation
unfriendly for human users. Indeed, some of their most attractive features are so
closely tied to utterly unintuitive ways of thinking that even if we did use such a
foundation we would have trouble taking full advantage of its power.

As a warm-up before we get to these pricklier features, let’s consider a familiar
but less compelling argument for the advantages of category theoretic over set
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theoretic foundations. When a group theorist studies a particular group, they don’t
care what its elements actually are, but only how they combine under multiplication
and inversion. For example, if they’re studying the simple group of order 60, its
elements might be even permutations of the set {1, 2, 3, 4, 5}, or rotations of a
regular dodecahedron in R

3, or pairs of 2 × 2 matrices over the field of integers
modulo 5; these things live at very different levels in the cumulative hierarchy, but
that doesn’t matter.8 The idea is that by stripping away the unnecessary substructural
detail a category theoretic approach can provide Essential Guidance about the
nature of the structure itself.

This argument loses a little of its force when we recall that mathematical objects
are usually implemented as sets, rather than fundamentally being sets. A typical
group theorist does not care which particular implementation of the simple group of
order 60 they are using. With this in mind, there are two different ways in which we
could interpret the claim that a categorical foundation provides Essential Guidance.

The first is to note that it provides a unified account of just what it means to have
an implementation for many kinds of mathematical object. Indeed, the language of
category theory is very useful for isolating and expressing exactly what we require
from such implementations. On this view, category theoretic ideas can serve as
useful organising principles but they do not play a foundational role. Instead, they
help us understand what it means to implement objects in an existing foundation.9

Furthermore, as Maddy notes (Maddy 2017), although category theoretic ideas are
well suited to dealing in this way with the objects of algebraic topology or algebraic
geometry, they don’t work so well for the objects of other fields such as analysis or
combinatorics.

A second and more extreme interpretation is that category theory allows us to
dispense entirely with the dirty business of implementing mathematical objects and
to work in an implementation-agnostic foundation. But that would be to throw out
the baby with the bathwater, since we would lose the that along with the how. We
would lose all the benefits of a clean ontology. So this is no good if we want a
human-friendly foundation. If we give up on the idea that our foundation should
be human-friendly, then the benefits which open up are far more powerful than
Essential Guidance, though also considerably more alien.

As we move to a discussion of these new advantages, it will be helpful to keep
in mind the dichotomy between guidance for implementation within an existing
foundation and the attempt to build an implementation-agnostic foundation. The
same dichotomy will shortly appear again, but expressed in terms of interpretation
of syntax rather than implementation of objects.

8Thanks to Peter Johnstone for this lovely example.
9A more nuanced approach, championed by McLarty (2004), is to maintain a set theoretic
foundation, but use a first order theory of functions and their composition rather than of
membership. The fact that the basic theory here is categorical allows a smoother implementation
of many mathematical objects. This foundation enjoys many of the benefits discussed in the last
section, though it involves a tradeoff of intuition-leveraging against Essential Guidance. For a
fuller discussion, see Sect. 18.5.
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Since you and I are humans, let’s work our way up to these unintuitive advantages
slowly, starting with a concrete experience familiar to all mathematicians. No
doubt it has happened to you, after proving some statement, that you realised that
you could prove something more general with exactly the same argument. What
precisely does this mean? Well, the argument is something which can be written on
a piece of paper, a bit of syntax. In order to see this argument as proving your
original result, you employ an interpretation of that syntax. But with a slightly
broader interpretation of that same syntax, perhaps just relaxing restrictions on how
some variables in the main definitions can be interpreted, you get the more general
result too.

Sometimes we modify the interpretation of the syntax more drastically. A
familiar case of this is in arguments by duality. There are examples of duality
all over mathematics: in projective geometry, the theory of planar graphs, matroid
theory and category theory. In each of these cases the duality has both a semantic
and a syntactic component. Semantically, a construction is given which assigns to
each of the objects of study a dual object. This means that, for any statement about
the objects, we can consider what it would mean when applied instead to the dual
objects. Thus for each concept we obtain a dual concept and for each theorem we
obtain a dual theorem. This transformation can be made entirely syntactic; typically
it consists of adding the prefix ‘co’ in front of certain words and removing it from
others. In other words, when we argue by duality this can be seen as employing the
original argument but with an alternate interpretation of its syntax.

Using duality in this way can be extremely powerful, and it is about as far as this
sort of trick is usually pushed. But we can go a lot further. One natural option is
to exploit the extra flexibility of interpretation available for a more stripped-down
syntactic framework. Typically the arguments we produce are expressed (or rather
expressible) in the default syntactic framework of modern mathematics, which is
first-order logic. But if your argument does not use the full strength of first-order
logic then you can wring a lot more out of it.

If, for example, you didn’t use the principle of the excluded middle at any point
then you can interpret your argument in the internal language of any topos.10 So
you may be able to generalise your result to a version in which all objects have a
continuously varying structure parameterised by your favourite topological space or
an action of your favourite group, to give two of the most banal examples.

The trick here was that if the argument can be expressed with a more stripped-
down syntax then it can be transferred to a richer variety of contexts. Category
theory has some clever tools to allow very fine-grained exploitation of this ‘argu-
ment lifting’ idea. There is a large hierarchy of levels of syntactic complication, and
for each level a corresponding categorical structure in which syntax at that level

10A topos is a highly structured kind of category. The prototypical example is the category of
sheaves over a topological space. There are many other examples, such as categories of actions of
a fixed group. By means of the internal language, first-order statements in the language of sets can
be given a meaning within the topos. See for example Johnstone (2002) or MacLane and Moerdijk
(1992).
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can be interpreted, with simpler syntax corresponding to more flexible structures.11

This ranges down from the interpretation of higher-order intuitionistic logic in topoi
through the interpretation of algebraic theories in categories with finite products.

We can get a better grasp of how this works by examining that last case in more
detail for a particular algebraic theory, namely the theory of groups. Recall that a
group object in a category with finite products consists of an objectG together with
maps e : 1 → G and i : G → G and m : G × G → G satisfying the usual rules
for the identity, inverses and multiplication of a group. Many straightforward facts
about groups, such as the uniqueness of inverses, also hold for group objects. Using
the trick of argument lifting it is clear why this must be the case. The arguments for
these elementary properties of groups are simple enough that they can be expressed
in algebraic logic and so they can be interpreted in any category with finite products.

Of course for more advanced statements within group theory more complex
arguments are needed, which cannot be expressed within algebraic logic. In standard
presentations of group theory no attempt is made to clearly demarcate which
arguments can be expressed in this way, just as no attempt is made to demarcate
which arguments avoid the law of the excluded middle and so can be lifted to any
topos. Many arguments will fall at some level of the hierarchy in between these two,
and so the natural categorical setting for interpreting them will be categories with
more structure than just finite products but less structure than is required for topoi.

It would be very helpful if each argument were flagged with the information of
exactly how much syntactic complication is needed to express it, since this would
also make clear the proper context to which it can be lifted. But it is clear that
such a presentation of group theory would be painful for a human learner; the extra
information would have to be learned by rote. On the other hand, storing and using
information of this type is a task for which computers are ideally suited.

You might recognise the following argument schema if you have ever taught
undergraduate students:

Lemma 4.1 If P thenQ.

Proof Suppose not for a contradiction. Then we have P but ¬Q. Since P ,
[derivation ofQ from P ] and soQ. This contradicts our assumption that ¬Q.※ .(

This argument is needlessly complicated, with a gratuitous use of the principle of
the excluded middle. I usually discourage my students from making arguments of
this kind on purely aesthetic grounds, but we have seen above that there is a potential
pragmatic reason. By following the discipline of using only the syntactic forms and
logical principles which are strictly needed in an argument it is possible to increase
the number of contexts to which it can be lifted.

The suite of tools for argument lifting provided by category theory appears
again in a thinly disguised form in type theoretic foundations for mathematics.
Corresponding to the various kinds of structure which might be imposed on a

11For a discussion of a decent representative sample of such levels, see Johnstone (2002).

claudio.ternullo@ut.ee



18 Foundations for the Working Mathematician, and for Their Computer 409

category we have the various kinds of ‘type constructor’. For example, finite
products in category theory correspond to product types in type theory. Arguments
correspond to terms which can be built in the type theory, and an argument being
expressible at a particular level of the hierarchy means that its corresponding term
is present in the type theory with the appropriate type constructors for that level.

Seen this way, the benefits of the modularity of type theoretic foundations
become clear. By mixing and matching different type constructors, we can express
each argument in a formalism carefully tuned to match the logical and syntactic
strength it needs. This is strongly reminiscent of the modular and flexible nature of
programming languages, where the ability to choose a language with structures and
libraries suited to the task in hand is a great advantage.

There is a further advantage to keeping track of the strength of the formal-
ism required for each particular mathematical argument; it allows decidability-
tracking. If the formalism is simple enough, then aspects of it may be decidable.
For example, it may be decidable whether a given term inhabits a given type or
whether two such terms are judgmentally equal. More strongly, it may sometimes
be decidable, for a given type, whether or not there is any term inhabiting it.
This is an advantage from a computational rather than a human perspective;
human mathematicians are unlikely to follow fixed algorithms to decide whether
mathematical claims are true, but it is convenient to save work by implementing
such algorithms on computers and therefore useful to keep track of where such
algorithms are likely to be helpful.

We’ve already seen a couple of ways in which the tools provided by categorical
or type theoretic foundations are better suited to the grasp of computers than of
humans, but this becomes even clearer when we consider how incompatible they
are with two of the aspects of ZFC which make it so comfortable for us to use: the
straightforward ontology and the clean separation of syntax and semantics.

To see how the ontology falls apart, let’s return to the example of the natural
numbers and think about how their theory should be treated if we take seriously the
discipline of keeping track of the weakest appropriate level of interpretation for each
argument. Already in the very weak context of a category with finite products12 it is
possible to define a notion of ‘natural numbers object’. Just as for group objects,
many of the elementary properties of the natural numbers also hold for natural
numbers objects, because the arguments proving them can be interpreted in any
category with finite products. So number theory, like group theory, can be stratified
according to how flexibly the arguments can be interpreted.

So what are the most elementary arguments involving natural numbers about?
From our current perspective, the natural answer is that they are about the things
for which we can interpret them, that is, natural numbers objects in categories with
finite products. But this has the worrying implication that more advanced arguments
involving natural numbers are about a more restricted class of things, because we

12In fact there is even a weaker notion of natural numbers object which can be defined in any
category with a terminal object.
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need more categorical structure in order to interpret them. This rather uncomfortable
situation is very different from the clean ontology given by ZFC, in which all these
arguments are about a single object.

There is a compromise open to us if we want to preserve the clean ontology
within a categorical foundation. We could say that number theoretic arguments are
about the actual natural numbers but happen to have a syntactic form which also
allows them to be interpreted in a wider context. But notice that this means taking
an external view of those other sites of interpretation. We must see them as objects
already instantiated on the basis of some other foundation. So this more comfortable
approach does not allow us to exploit argument lifting in the way that we structure
the foundation.

To see what it would mean to take an interpretation-agnostic view of these
structures, and to take seriously the idea of building argument lifting into the
foundation, we must return to type theory. In place of the notion of a natural
numbers object we find there the notion of a natural numbers type. Some terms
witnessing elementary properties of the natural numbers type can already be built in
the presence of relatively few and simple type constructors. Those corresponding to
more advanced arguments, however, can only be formed in the presence of stronger
type constructors.

So how should we think about this? Working in such a modular foundation, can
all these arguments still be thought of as being about the same object? There is
a part of me that, perhaps trying to hang on to a unitary ontology, generates the
following story: the natural numbers are indeed a single object, which in some
contexts is rather blurry, because the type theoretic environment is not strong enough
to determine it fully. Stronger type constructors cast a sharper light on it, and so
when they are present its properties become clearer and crisper.

As you pause to smile at this clumsy attempt to preserve some semblance of
an ontology, please note that this is only a concern for me because I am human.
My ontological worries are strictly irrelevant to what it means to work successfully
within such a foundation. A computer, unburdened by them, could happily produce
and manipulate terms at various levels of complexity, never losing track of just
which constructors are used to produce which terms.

Keeping track of such rote facts is just the sort of thing at which we humans
struggle. Imagine the inconvenience if, to make use of other people’s results, you
had to pay attention not only to the details of what they proved but also to the
syntactic form of their arguments and the logical principles used. We saw in the last
section that ZFC avoids such difficulties by means of a clean separation between
syntax and semantics. In category theoretic and type theoretic foundations the
dividing wall between them has crumbled.

In category theory the syntax breaks through and invades the semantics; free
categories with a particular structure tend to encode precisely the syntax which may
naturally be interpreted in categories with that structure. Thus interpretation of that
syntactic structure can be seen purely semantically as a structure preserving functor
from that free category to the category in which the interpretation takes place.
Interpretations of type theory can be seen in precisely this light, since the arrows
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in these free categories often correspond precisely to equivalence classes of terms
under convertibility. So in a type theoretic foundation the conquest of semantics by
syntax is complete.

Another way in which syntax and semantics merge in type theory is the
exploitation of the Curry-Howard correspondence to treat propositions and math-
ematical objects on an equal footing. For a human, whilst it is interesting to note
the similarities of structure between propositional and set theoretic constructions,
identifying the two can be a little disorienting. But for a computer system the
simplification entailed by this identification is a great boon.

I have argued that some of the best features of type theoretic foundations are also
the features which make them least comfortable for human users. A weak form of
Essential Guidance is compatible with a human-friendly foundation, but to gain the
advantages of argument lifting and decidability tracking it would be necessary to
jettison the clean ontology and intuition-leveraging that we are used to. Similarly,
the modularity available within a type theoretic foundation is in conflict with the
aim of having a single Generous Arena. We could make, at best, clumsy use of such
a foundation and we would not be able to exploit its full power. A computer system,
on the other hand, could work very efficiently in that context, storing and exploiting
metadata about the syntactic strength of each argument and using computational
approaches guided by the varying levels of decidability available at each level of the
modular foundational structure.

18.5 Shifting Foundations

Modern mathematics relies ever more on the use of computers, not only to perform
brute-force searches and complex calculations but also to encode and verify the
mathematical arguments themselves. By the 1990s, computers were already used
to prove hypergeometric identities, and to derive new ones (Petkovsek et al. 1996).
They could also resolve open problems in other fields, such as the Robbins Problem
(Bernd 1998). Nowadays it is totally normal to rely on computer systems to solve
basic problems in algebra and calculus, and theorem provers are sophisticated
enough to tackle much more complex problems such as the Boolean Pythagorean
Triples Problem (Marijn et al. 2016).

Automated theorem provers are now usually integrated into interactive proof
assistants, which makes the balance of contributions from the human and the
computer harder to estimate. But following the trend from the last paragraph, it
is reasonable to expect that over time more and more of the work will be done by
computers and less and less by humans. If, as I have argued, our current foundation
is optimised for human use but is not so well suited for computer systems, this may
necessitate a shift from set theoretic towards type theoretic foundations. Foundations
are after all not inscribed in stone; the main criteria for a good foundation are
pragmatic.
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The main area in which this shift is beginning to take place is in proof checking
and verification systems, for which the main contenders sensibly use a type theoretic
architecture. However, translating existing mathematics into a form which can be
processed by such a system remains somewhat arduous. It will be many years yet
before it is reasonable to expect mathematicians to submit a formal verification
along with each of their papers, and the process of settling on a standard for doing
this is likely to be fraught.

If there is a shift in foundations of the kind I envision, it is unlikely to be orderly.
There will be a number of competing standards with different practical advantages,
and the competition between them will take a long time to resolve. Indeed, there
is no reason to expect it to resolve at all. Just as practical considerations may drive
a shift to new foundations, they may also drive the mathematical community away
from reliance on a single foundation.

What, after all, is the practical reason why we currently require a fixed and unified
foundation? It is that otherwise we would regularly need to translate arguments back
and forth between foundations, and this would not always even be possible. We
would have to keep careful track of the logical strength of the arguments used in
order to know which results could be transferred to which foundational settings.
We just saw, however, that a key advantage of type theoretic foundations is that
they do allow us to keep track of logical strength in this way. Furthermore, since
type theoretic arguments have a clear and constrained syntax, automated tools for
translating arguments from one foundational setting to another in a way which
preserves information about their strength are likely to be achievable.

This brings out a further advantage of type theoretic foundations which we
overlooked in the last section, because we were still supposing a single unified
foundation. But the same features we discussed there also support automated
translation between foundations. For Maddy (2017), a Generous Arena is impor-
tant because it allows import and export of objects and methods between different
mathematical fields:

What’s needed is a single arena where all the various structures studied in all the
various branches can coexist side-by-side, where their interrelations can be studied, shared
fundamentals isolated and exploited, effective methods exported and imported from one to
another, and so on.

Towards the end of her discussion of categorical foundations, after reiterating
the point in this quotation, Maddy writes ‘I leave it to the reader’s conscience
to decide whether Generous Arena . . . should be jettisoned’. But perhaps this
is not so much a moral issue as a practical one. Automated translation gives
an alternative and more flexible way to achieve the same goals. This goes far
beyond the modularity of type theoretic foundations discussed in the last section,
in the same way that the flexibility provided by alternative programming languages
goes beyond that provided by modularity of individual languages. It involves
automated tracking of logical strength which similarly goes far beyond the
decidability tracking mentioned in the last section, and is likely to be of more
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use to working mathematicians than the kinds of Risk Assessment provided by
traditional foundations.

Since our current reasons for using a single unchanging foundation do not
apply to foundations based in computer systems, we may well see a continual
competition between constantly developing and improving foundational standards,
as is currently the case for programming languages. The choice of foundation used
for a particular mathematical enterprise would then be driven by pragmatic con-
siderations. The dozen or so decades surrounding the start of the third millennium
may turn out to be the only period in history in which mathematics has a unified
foundation.

As an example, different foundations may be better suited to pure and applied
mathematics. This is particularly apparent for quantum mechanics, a field whose
philosophical foundations remain under-clarified. According to the Kochen-Specker
theorem (1967) there is no way to assign actual values to quantum mechanical
observables in such a way that they have definite intrinsic values at any given time,
independent of the device used to measure them. Thus the mathematics of quantum
mechanics does not straightforwardly fit with the traditional kinds of ontology
used in physics. Because of this there are a number of competing interpretations,
most famously the Copenhagen Interpretation and the Many-Worlds Interpretation.
These give indistinguishable predictions but take very different stances on such
fundamental questions as whether there is a single universe (Copenhagen) or many
other parallel worlds (Many-Worlds). But these worries, like the ontological worries
about type theory in the last section, only arise for human users.

Since the ontology of quantum mechanics is so vexed, there is no clear advantage
to formalising it in a foundation with a clean ontology, so in this case foundations
optimised in other directions may be the best choice. For example, there has
been a surge of interest in categorical formulations of quantum mechanics in
recent decades. Once serious contender is the categorical quantum mechanics of
Abramsky and Coecke. They give a survey of their ideas in Abramsky and Coecke
(2009), where the key benefits they mention (apart from new perspectives on old
ideas) are ‘identifying the fundamental mathematical structures at work’ (this is
Essential Guidance) and ‘an effective calculational formalism’ with ‘automated
software tool-support’ (this is linked to decidability tracking).

Returning to pure mathematics, what are the implications of these ideas for those
working on type theoretic foundations? Since such foundations are better suited
to use by computer systems, it would be natural to develop them principally with
computer systems and not human users in mind. This means that there is no need to
try to build in some of the aspects which human users would require, such as a clean
ontology, intuition-leveraging, or a single Generous Arena. Instead, the aspects
making the foundation more usable for humans could be constructed at the level of
a user interface.

We can get some fragmentary initial ideas about what such a user interface
might involve by considering three very different research projects. The first is
the development, by Ganesalingam and Gowers (2017), of ‘a program that solves
elementary mathematical problems, mostly but not exclusively in metric space
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theory, and presents the solutions in a form that is hard to distinguish from solutions
that human mathematicians might write’. The problems which are solved by this
program are far from the cutting edge of what is achievable by modern automated
theorem provers, being the sort of exercises I might set to my students to check that
they have understood the definitions. But the proofs produced by this program are
almost indistinguishable from the answers that good students might write. As such,
they are far more human-readable than the usual output of a theorem prover. A tool
like this would be a useful final processing step in the interactions of computer-based
mathematical systems with humans.

Perhaps closer to the foundational issues we have examined in this paper is the
work of McLarty (2004). He outlines a set-theoretic axiomatisation ETCS, due to
Lawvere, which is expressed in terms of functions and their composition rather then
of set membership. ETCS is considerably weaker than ZFC. McLarty explains that
‘[results that] mathematicians normally use are all theorems of ETCS. Ones dealing
with ℵω or higher cardinals require extensions of ETCS’. He presents a suitable
extension ECTS+R which is inter-interpretable with ZFC.

In the light of our earlier considerations, this suggested foundation is lacking
on a number of fronts. Considered from the human point of view, if we want
to sometimes allow ourselves the indulgence of the stronger foundation ETCS+R
then we must accept the ontological consequences. If we are to act as if we are
dealing with straightforwardly existing mathematical objects, then they must have
the properties implied by that stronger foundation even when we argue about them in
ways expressible in the weaker one. Similarly the objects provided by the stronger
foundation don’t disappear when we use the weaker one. So if we want a clean
ontology then we must take ETCS+R, not just ETCS with the option of R, as
our foundation. But in doing so we give up on the intuition-leveraging power of
ZFC, since the axiom R has much less intuitive traction than the corresponding ZFC
axiom of replacement.13 Even taking into account the gain in Essential Guidance,
this sacrifice is so great that ETCS+R is less suited for human users than ZFC.

From the computer perspective, however, McLarty’s foundation does not go
nearly far enough. In terms of modularity it is extremely coarse-grained, allowing
little more than the bolting on of replacement or large cardinal axioms to the
already (by categorical standards) powerful system ETCS. Accordingly it provides
no resources for argument lifting or decidability tracking, let alone automated
tracking of logical strength.

McLarty’s proposal seems to fall between two stools, but perhaps this could
be turned to its advantage if we consider its possibilities as a user interface for a
computer-based foundation. In this role it wouldn’t matter that it lacks the resources
mentioned in the previous paragraph, since they would be the responsibility of the
back end. The similarity to the established foundation ZFC would make it fairly
easy for humans to learn, and the Essential Guidance it provides would play a

13the other axioms of ETCS also arguably have less intuitive bite than their ZFC counterparts, but
this is particularly clear in the case of R.
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practical role, by ensuring that human users phrase their mathematics in terms which
lack the kind of implementation-dependent baggage which would make it hard to
translate into the type-theoretic foundation used by the computer. Of course, ETCS
was not designed with this role in mind, but it at least gives a rough idea of the kind
of foundation which could be designed, not for humans or computers, but for the
interface between them.

The third project was similarly never intended for the role of a user interface, but
it serves to illustrate what might be involved in building a bridge between the kind of
ontology-agnostic approach to quantum mechanics advocated above and ontology-
bound human users. It is the topos foundation for theories of physics, due to Döring
and Isham, as summarised in Döring and Isham (2011). They begin by constructing
a topos which is designed in such a way that its internal language appears to have a
bearing on a particular physical system, coded as a Hilbert space. Within this topos,
they find an analogue of the classical state space. Then they show that the Kochen-
Specker theorem is equivalent to the assertion that there is no map from the terminal
object to this state object. Bearing in mind that in the category of sets maps from
the terminal object to a set correspond to elements of that set, this can be seen as
saying that there are no elements, in the classical sense, of the state space.

Having thus made precise the impossibility of fitting quantum systems into
a classical ontology, they carefully investigate to what extent our usual ways of
speaking about the world can be recovered within this topos. They outline a formal
language in which propositions about a system are represented by sub-objects of
its state object. Then truth values can be assigned to propositions with the aid of a
truth object. In this way many of the familiar ways of talking about physical systems
can be given an interpretation. Much care is needed in setting up this framework in
such a way that the claims of the formal language are not of the kind which the
Kochen-Specker theorem would render meaningless.

The key benefit of this work is not that it makes quantum systems technically
easier to work with (in fact it does the opposite). It is that it gives a method for taking
our standard ways of talking about the world, built to work with a clean ontology,
and fitting them, where possible, to the mathematics of quantum systems. Where
this is not possible, it gives a precise account of this impossibility. If my earlier
suggestion of ignoring issues of ontology in the foundations of quantum mechanics
is to be followed, then some theory which can play these roles will be an essential
part of any user interface.

None of these three examples comes close to showing what a full user interface
between computer and human foundations for mathematics could look like; each
just gives a tantalising glimpse of a part of the problem, together with a discon-
certing insight into the difficulty of even these small parts of the task. The question
of how to design a good interface to allow a human to seamlessly interact with a
mathematical system which, under the hood, is based on a type theoretic foundation,
is an important and neglected practical problem.
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Chapter 19
How to Frame a Mathematician

Modelling the Cognitive Background of Proofs

Bernhard Fisseni, Deniz Sarikaya, Martin Schmitt, and Bernhard Schröder

Abstract Frames are a concept in knowledge representation that explains how the
receiver, using background information, completes the information conveyed by
the sender. This concept is used in different disciplines, most notably in cognitive
linguistics and artificial intelligence. This paper argues that frames can serve as the
basis for describing mathematical proofs. The usefulness of the concept is illustrated
by giving a partial formalisation of proof frames, specifically focusing on induction
proofs, and relevant parts of the mathematical theory within which the proofs are
conducted; for the latter, we look at natural numbers and trees specifically.

19.1 Introduction

Frames are a concept in knowledge representation that explains how the receiver,
using background information, completes the information conveyed by the sender.
This concept is used in different disciplines, most notably in cognitive linguistics
and artificial intelligence. This paper argues that frames can serve as the basis
for describing mathematical proofs. The usefulness of the concept is illustrated by
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giving a partial formalisation of proof frames, specifically focusing on induction
proofs, and relevant parts of the mathematical theory within which the proofs are
conducted; for the latter, we look at natural numbers and trees specifically.

19.2 Motivation

Why would one want to use frames for modelling mathematical proofs? We have
three arguments which also connect our concept to related work in different areas
of formal mathematics and philosophy.

First, using frames is not as unheard of as it may seem: The schemata and
tactics underlying semi-automatic provers such as Coq1 und Isabelle2 can be seen as
frames. These schemata also contain patterns of proofs that are partially filled in by
the mathematician conducting the proof, and are partially completed by heuristics
implemented in the provers. For instance, in the excerpt from an interactive session
with Coq presented in Fig. 19.1, Coq’s tactic induction generates two subgoals

Fig. 19.1 Example run for an induction on natural numbers in Coq, taken from the Coq reference
manual (Coq Development Team 2017, section 8.5.2)

1https://coq.inria.fr/
2https://isabelle.in.tum.de/
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from a proof about natural numbers, which correspond to the base case and the
induction step as discussed in the remainder of this article.

Secondly, for comprehending and checking proofs, mathematicians at least to
some extent complete the informal proofs in mathematical texts using their expertise
and the proof schemata they have acquired in their mathematical life. A common
task for students in BA theses is to enrich a given published (expert) proof with
information that completes the proof schemata and hence shows that they have
comprehended the proof. Even the task of finding a proof appears to be closely
related to frames. There are different proof techniques which might be triggered,
for instance by the domain of discourse, as in the example of Turán’s Theorem
discussed at length in Sect. 19.6.5: Firstly, we see another typical technique besides
induction, namely an extremal argument, secondly, we do not use standard induction
but strong induction. This shows that both frames can be active at the same time and
can even interact, as will be discussed later.

A typical remark made by experienced mathematicians is that beginners must
present and be presented more explicit proofs, but that for experts a reduction in
detail is even beneficial in optimising the effort needed to process a proof. This can
be seen as support for the assumption that the proof schemata are cognitively ‘real’
and, at least in the beginning, explicitly acquired.

Thirdly, in the philosophy of mathematics, it is also discussed how to deal with
gaps. Azzouni for instance introduces the derivation-indicator view (see Azzouni
2004, 2009), arguing that while in the daily life a mathematician deals with proofs,
those proofs are actually indicative of underlying derivations. Carl and Koepke
(2010) argue that this view might be deeply linked to our first motivating point.
There is quite an extensive literature discussing the connection between informal
and formal proofs and especially debating Azzouni’s views, including Rav (2007)
and Tanswell (2015) or in this Volume Carl: (Chap. 14).

With frames we present a semantic abstraction layer which is situated between
the textual layer and a full formal derivation. This layer is more on the cognitive side
compared to Proof Representation Structures (Cramer et al. 2009; Cramer 2013)
and can provide strategies to fill gaps on the way from the text towards a formal
representation. We surmise that these frames represent what mathematicians use
for processing proofs, but they might also be usable for guiding proof assistants or
provers. Our main argument in this article is that this level of representation can
help to explain why only some aspects of proofs are made explicit in actual natural
language proofs, and others can be left implicit, supplied by the implicit knowledge
about the proof structure. In the terminology of frames, we say that the slots of
these frames can be filled with contextually available or inferable information. For
instance, the induction variable must be identified and a base case must be supplied,
even if it is ‘evidently trivial’ and therefore need not be explicitly stated. This view
can also provide an account of similarity between proofs: If the frame instances
one constructs during the reading of a proof are sufficiently similar (e.g., unifiable,
ignoring nasty details such as variable names), the proofs can be considered the

claudio.ternullo@ut.ee



420 B. Fisseni et al.

same, and will ultimately lead to the same derivation as well. Thus text can be seen
as consisting of frame indicators, and frames as derivation indicators.

On the way from a textual representation to a frame representation, two kinds
of completing information can be distinguished: On the one hand, slots provided
by frames must be filled with adequate values, such as identifying the induction
variable. On the other hand, we also must fill gaps in the proof, as in the case of the
omitted induction base case.

In a way, this links to half-automated provers, which also need less information
than fully formalised proof checkers. However, while in the former the restrictions
are imposed by the power of ‘tactical’ components and run-time considerations, we
consider the human mathematician to be the measure of explicitness for textbook
proofs, and provers to be the measure of explicitness for formal proofs.

19.3 Frames

In this section, we first give a high-level overview of the frame concept and will then
illustrate the structure of frames below referring to FrameNet’s semantic annotation
of verbs.

The concept of frame in artificial intelligence is generally traced back to a
report by Minsky (1974) which introduces frames as a general “data-structure for
representing a stereotyped situation, like being in a certain kind of living room, or
going to a child’s birthday party” (p. 1), organised in a hierarchy (called frame-
system by Minsky). ‘Situation’ should not be taken too seriously, as frames can be
used to model concepts in the widest sense, and Minsky illustrates the use of frames
with a multitude of examples from vision to story understanding.3 Each frame is
characterised by a set of features, which can be (sub-)frames again. Features, also
called slots, can have default values and can carry constraints; slots are filled by
concrete values. The concept has later been elaborated to formal systems such as
the Frame Representation Language (FRL, cf. Roberts and Goldstein 1977a,b),
which, among others, allows to attach a procedure to a slot that will calculate the
value of a feature from other values when needed. In the world of mathematics,
we can imagine that when talking about a circle in Euclidean geometry, we need the
centre and the radius to describe the circle; we can calculate its diameter, if needed.4

This helps reduce redundancy of the representation. Also, FRL allows to define that
values are constrained, so that we could specify that radii must be positive, or buyer

3Schank and Abelson (1977) develop the related concept of scripts, which adds a temporal
dimension. Though we do not model temporal progression explicitly, our use of frames also
resembles scripts, if one reads the constituents of a proof frame as a plan for linear text organisation.
4This shows a certain kind of freedom we have in defining frames; we could also define the circle
based on the centre and the diameter, of course.
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and seller be different.5 A default assumption connected to the mathematical frame
function might be that the limit of a function is called ‘ε’ and that it is small but
greater than zero. Conversely, one can assume that the name ε within the area of
analysis denotes a limit with the respective properties, and the use of ε contributes
to evoking the greater frame of limiting. Giving a different name to a limit or a
different meaning to ε would however, strictly speaking, not be excluded.

An important linguistic theory using frames is FrameNet.6 A development of
Fillmore’s (1968) Case Grammar, FrameNet develops a hierarchical model of
(mainly) verb semantics where the features are the participants and their semantic
roles. Verbs evoke frames which then provide certain roles that can be taken on by
entities in the discourse universe. Roles are generally divided into core and non-
core roles; this division captures the salience and optionality of the roles within a
frame.7 For example, Commerce_buy has the core roles Buyer and Goods, while
Seller, Money and Means (e.g., cash vs. check) and many others are non-core roles.

Hyponym verbs either inherit roles from their parents or provide perspectives
on a more general frame by making roles more or less optional. For instance,
Commerce_goods-transfer inherits from Transfer and thus has more specific roles
(e.g., Buyer instead of Donor), but also new ones (Money, i.e., the price). Com-
merce_buy and Commerce_sell are perspectives on Commerce_goods-transfer, but
differ in that the role of Seller is not a core role for buy. Some of the frames are
lexical, e.g., the ones tied to buy and sell; the more general ones are often non-
lexical.

The differences in role assignment thus capture semantic (and pragmatic)
differences between verbs. Consider a simple example. Explicitly realised frame
elements are annotated in the sentence:

(1) a. [Buyer John] bought [Goods a beautiful medieval book] [Time yesterday].
b. [Seller Peter] sold [Goods a beautiful medieval book] to [Buyer John] for

[Money twenty Euros].

This can be represented in a feature-value matrix, which also illustrates subframes
(in the TIME field). The exclamation mark indicates core roles, and �expression�
is the semantics of the expression. We use point-in-time, person, money, purpose
as labels (for types) that constrain the potential fillers. To spare the reader the
enumeration of slots that have not been realised explicitly, we abbreviate the frame,
indicating this with the ellipsis dots. From now on, we will always assume that a
description in this way is generally partial and ellipsis dots are not needed.

5Our feature structures will employ subtyping and inheritance for this purpose.
6See, e.g., Ruppenhofer et al. (2006) and the project’s website at https://framenet.icsi.berkeley.edu
7Even core roles can be omitted sometimes, as in John finally sold his car.
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(2) a.
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buy

BUYER! �John�

GOODS! �a beautiful medieval book�

TIME �yesterday�

SELLER person

MONEY money

PURPOSE purpose

. . .
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YEAR 2018

MONTH 02

DAY 28

HOUR {1, . . . , 24}
MINUTE {0, . . . , 60}
. . .
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sell

SELLER! �Peter�

BUYER! �John�

GOODS! �a beautiful medieval book�

TIME point-in-time

MONEY �twenty Euros�

PURPOSE purpose

. . .
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BUYER! j
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⎥
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While both sentences evoke the similar frames, the Seller slot need not be filled
in the first case. However, it is present and could be filled, just as the Time slot
specifying when the transfer occurs is present (but usually non-core) with most
verbs, and can be filled with more or less specific values.

When considering mathematical texts, the ideal of a fully formal proof does
not easily allow for non-core roles remaining unexpressed without having default
values. This has to do with a key difference between the scope of our and
FrameNet’s approach: While FrameNet is interested in the grammatical realisation
of single sentences, we are concerned with the semantic modelling of a complete
proof. Moreover, the specific pragmatics of proofs in mathematics demand that
a certain semantic completeness of understanding can be achieved when working
through it. An example of non-core constituents of a proof may therefore be
metacomments about the proof strategy, which we will leave aside in this paper.

The important points about frames we will use in the following are: Frames
are used to define concept hierarchies, where each concept has features (slots)
which can have default values and can be complex (sub-frames). When instantiating
frames, their values can be given explicitly, they can be supplied by default values
(or relations), and the filling of slots can be guided by constraints from mathematical
convention, or from the context of the proof.
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In a full cognitive system, we also need rules to relate the frames and to supply
default conclusions or inferences and we need belief revision. To some extent, these
can also be represented as frames, but other formalisations may be more elegant;
nothing hinges on this assumption for the rest of the article.

19.4 Frames as Feature Structures

Frame representations can be seen as feature structure descriptions in the sense of
Carpenter (1992), and this is the formalism we will be using later to model our
frames as well.

The formalism assumes that a feature structure is a labelled graph whose labels
indicate features (i.e., from one node, a label can occur only once), and whose
terminal nodes and whose subgraphs respectively represent values. Those values are
atomic in the case of terminal nodes and in the case of subgraphs they are complex,
i.e., they have features and values themselves. Nodes are assumed to be typed and
the types are assumed to be organised hierarchically. Features are introduced at a
certain level in the hierarchy and are inherited by descendants.

These graphs are described by feature-value matrices as introduced in the
preceding section. In the feature structure descriptions, the boxes indicate structure
sharing; where the shared structures can sensibly be represented by mathematical
variables, we abuse notation by boxing letters etc. An example of this is given with
s and x in Fig. 19.4 presented in the next section.

19.5 Induction as a Frame

Induction is a mathematical proof technique that can be used to prove statements
about a set of inductively definable structures. A formal induction proof consists
of at least two parts: in the so-called base case, the statement is proved for a least
element of the set (which shall be called M for brevity; it must be partially ordered
and have at least one minimum); in the so-called induction step, an implication is
proved: under the assumption that the statement holds for some x ∈ M , it is proved
for a value building on x, e.g., the successor of x. The assumption is called induction
hypothesis. The term induction variable denotes the identifier used for the elements
ofM throughout the proof (i.e., x above). Although most induction proofs only have
one base case and one induction step, in general, it is possible to have more of each.
There are virtually countless variations. It might be possible to have two induction
steps, for even and uneven numbers, we might take a step from n to 2n and 2n+1 as
often used in computational complexity, or even without a base case. The so called
strong induction (sometimes also called weak induction) shows that a statement for
k is true if it holds (i.e., can be shown to be true) for all smaller cases. Since the
empty universal quantifier is true, this gives us the base case immediately.
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Fig. 19.2 Inheritance hierarchy of frames in the proved family

Fig. 19.3 Proved frame

Fig. 19.4 Induction frame. For a more elaborate version, see Appendix A

We annotated a collection of proofs from different areas of mathematics, which
the examples in this paper are taken from. Based on the parts of a formal induction
proof and on our annotation experience, we propose the following frame structure as
a formalisation of relevant aspects of the mental representation of a natural language
proof by induction as shown in Figs. 19.2–19.4.

As indicated in Sects. 19.3 and 19.4, we assume that the structures can be
organised in a hierarchy, where more specific structures are derived from more
general structures and inherit some of their features, as shown in Fig. 19.2.
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First, we define a frame for a general proof. This structure – called proved – consists
of an assertion of the to-be-proved statement and the actual proof (cf. Fig. 19.3).

An induction is a special type of proof. Therefore, the induction frame is also a
proved frame and thus inherits the features ASSERTION and PROOF (underlined in
Fig. 19.4). On the same level, we introduce the new feature INDUCTION-VARIABLE,
which captures the induction variable as described above in this section.

The particular structure of induction proofs is captured by the PROOF feature as
follows. Both the BASE-CASE and the INDUCTION-STEP contain a condition which
only holds during the respective part of the proof. These conditions constrain the
induction variable to be the least element of M in the base case and to be greater
than the least element during the induction step. These conditions are rarely stated
explicitly but often play an integral role in the proof.

The BASE-CASE and INDUCTION-STEP features constitute the actual proof as
they contain an instance of the proved frame. Additionally, the STEP-FUNCTION

feature captures the specific successor function of the induction step.8

Finally, the feature INDUCTION-HYPOTHESIS references the special assumption
described in the beginning of this section.

The following types or, equivalently, constraints are used in Fig. 19.4: sentence
is the type of sentential semantic object, which can be either a natural language
expression or a mathematical formula. function is the type of a semantic object for
a mathematical function. symbolic is not a semantic, but a syntactic, non-sentential
object such as a variable name. Furthermore, we defined proved and induction as
types for the respective frames described in this section.

19.5.1 Constraints

Our feature structure formalism allows us to formulate constraints and thus capture
additional aspects of knowledge about induction proofs that often remain implicit.
An example is the value of the ASSERTION feature in a INDUCTION-STEP: It is
normally a more specific version of the toplevel ASSERTION value of the induction
proof. We describe this connection in Fig. 19.4.

19.5.2 Default and Inferred Values

In the case of natural numbers being the subject of an induction proof, some of the
features have default values. Table 19.1 gives a summary.

8If there is more than one induction step, each of them can have a different successor function.
As several base cases and induction steps are possible, the BASE-CASES and INDUCTION-STEPS

features should be considered list-valued in principle, even if we use a simplified singleton notation
(with features BASE-CASE and INDUCTION-STEP, but see Appendix A for a more complete
version of the frame) in most examples.
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Table 19.1 Default values
for the case of natural
numbers. s is the sentence
that is to be proved; as
explained in the
text,“(?!) value” indicates
default values; we used
“min(N)” because the natural
numbers can start with 0 or 1

INDUCTION-VARIABLE (?!)
[

NAME n

TYPE N

]

BASE-CONDITION (?!) n = min(N)

STEP-FUNCTION (?!) λn. n+ 1

INDUCTION-CONDITION (?!) n = n′ + 1

INDUCTION-HYPOTHESIS (?!) s[n′/n]

Fig. 19.5 A term and a graph
describing the same binary
tree

Table 19.2 Default values
for the algebraic data type
Tree as defined in the text

INDUCTION-VARIABLE (?!)
[

NAME t

TYPE Tree

]

BASE-CONDITION (?!) t = EmptyTree

STEP-FUNCTION (?!) Node
INDUCTION-CONDITION (?!) t = Node x t1 t2

INDUCTION-HYPOTHESIS (?!) s[t1/t] ∧ s[t2/t]

In Sect. 19.3 we already mentioned that besides default values and explic-
itly given values, we can also have values that are calculated and more gener-
ally: inferred. We do not specifically mark explicitly given values, but indicate
“(?!) default values” and “(
) inferred values” as illustrated in this sentence.

In general, any inductively defined structure naturally induces default values for
a proof by induction. Consider, e.g., the following definition of an algebraic data
type for binary trees in the functional programming language Haskell (see Marlow
2010):

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)

This piece of code defines a term representation for binary trees. An example is
shown in Fig. 19.5. An overview of the default values that naturally arise from this
definition is given in Table 19.2.
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19.6 Example Proofs

In this section we apply the induction frame presented above and show how
mathematicians implicitly use frames in constructing or understanding proof texts.
We start with a relatively straightforward representation of an induction proof and
then continue with a bare-bones proof where knowledge of frame elements is needed
to complete the gaps and make sense of the overall structure.

19.6.1 A Proposition from Linear Algebra

We will show how the frame concept can be applied to a proof text and in how far
semantic text explication which relates textual information to parts of the induction
frame is needed for the adequate interpretation of the text.

Let us consider the proof of proposition 4.4.6 in Kowalski (2016, 92f). We
received two different versions of the same proof by asking a master student from
physics and a PhD student from a logic-related programme, to reformulate the proof
in order to explain the central proof ideas to first semester students. They wrote their
version independently of each other.

19.6.2 First Reformulation

The first version is shown in (3). It addresses only the induction part of the proof in
Kowalski (2016, 92f) which is not worked out there.9

(3) a. Before we start with the proof, we show that the induction scheme is easy to
generalize. In the classical form the induction step requires that one derive a
statement for n+ 1 out of a statement depending on n.

n→ n+ 1 (3.1)

But there we throw away the fact that the logic of induction is a chain of
proved statements, hence consists of all statements before n. Thus, we can
use the modified version of the induction step:

∀i ≤ n→ n+ 1 (3.2)

b. The statement t1 = 0 was already shown.
c. The remaining step would be to show t1 = · · · = ti = 0 �⇒ ti+1 = 0

Therefore we apply f k−(i+1) on

9In this and in the following proofs the subdivision by small Latin letters has been added by the
authors of this paper. References to equations have been renumbered according to the scheme used
in the rest of this article.
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t1v + · · · + ti+1f
i(v)+ · · · + tk−1f

k−2(v) = 0, (3.3)

which leads to

t1f
k−(i+1)(v)+ · · · + ti+1f

k−1(v) = 0 (3.4)

higher order terms drop out. Finally ti+1 = 0 follows directly from eq. 4 when
we use t1 = . . . ti = 0 and f k−1(v) �= 0.

The proposition in Kowalski (2016, 92f) the proof in (3) refers to is:

(4) PROPOSITION 4.4.6. Let V be a finite-dimensional K-vector space and let f be a
nilpotent endomorphism of V . Let n = dim(V ). Then f n = 0. More precisely, for
any vector v �= 0 in V , and k ≥ 0 such that f k(v) = 0 but f k−1(v) �= 0,10 the
vectors

(v, f (v), . . . , f k−1(v))

are linearly independent.

(3) proves the linear independence of (v, f (v), . . . , f k−1(v)) by actually showing
that t1 = . . . = tk = 0 follows from t1v+ t2f (v)+ . . .+ tkf k−1(v) = 0. The proof
fragment builds on the assumption that fk = 0 and f k−1 �= 0 and on the proof for
the base case t1 = 0 in Kowalski (2016, 93).

The proof text consists of an introducing comment (3-a) and the derivation
argument itself comprising (3-b) and (3-c). In (3-b) and (3-c), there is no explicit
mention of the induction scheme or of one of the slots of the induction frame
(cf. Fig. 19.4). We can, however, find some indicators of an induction scheme,
especially the proof goal t1 = · · · = ti = 0 �⇒ ti+1 = 0, which is reminiscent
of the step from an induction hypothesis to the thesis of the induction step, although
being non-typical. The expert reader, of course, will expect that the universal claim
(“for any vector. . . ”) will require an inductive proof.

The induction frame is referenced in the comment part (3-a). This part has
two main functions: It sets the frame, and it modifies the standard scheme of
the induction step, i.e., it overrides a default setting of the relation between the
INDUCTION-HYPOTHESIS and the THESIS of the STEP-STATEMENT in instantiat-
ing a strong induction i.e., here an inference from the conjunction of all instances
of a predicate P [j ] for 1 ≤ j ≤ i, and not just from P[i] itself, to P [i + 1].
Equipped with this background, the reader can (hypothetically) identify the whole
second part of the text (3-b) and (3-c) as an induction with t1 = · · · = ti = 0 as
INDUCTION-HYPOTHESIS and ti+1 = 0 as the THESIS of the INDUCTION-STEP.
The ASSERTION of the whole frame, which is not stated explicitly, can be recon-
structed as ∀i(ti = 0). From that the INDUCTION-VARIABLE has to be inferred as i
with type N. The STEP-FUNCTION is the default one. The BASE-CONSTRUCTOR

(and subsequently also the BASE-CASE and the INDUCTION-CASE) chooses its
value from the respective default alternative.

10The original text reads: f k−1(v) = 0. The misprint was corrected here in (4).
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Fig. 19.6 Induction frame as instantiated by (3), (?!) . . . are default values, and (
) . . . are
inferred values, other values are given in the text, but not necessarily marked as slot values

(3-b) points then to t1 = 0 as the ASSERTION of the BASE-CASE. The
BASE-CASE slot of the INDUCTION-SIGNATURE has therefore to be filled with
i = 1. That confirms that the BASE-CONSTRUCTOR (and subsequently also
the BASE-CONDITION and the INDUCTION-CONDITION) chooses its value from
the respective default alternative. Figure 19.6 sums up how the frame slots are
instantiated by the proof in (3).

This short sketch illustrates that in order to capture the whole argument of (3-a)
a reader has to fill in missing slots of the induction frame by some inferences from
the information given in the proof text, i.e., the reader interprets the text under the
hypothesis that the relevant information for filling the frame slots is provided in the
text.
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19.6.3 Second Reformulation

Let us now consider a second proof by a PhD student in a logic-related programme
of Philosophy who finished a Master’s degree in Mathematics.

(5) a. Prop. (4.4.6) Let V be a finite-dimensional K-vector space and let f be a
nilpotent endomorphism of V. Let n = dim(V ). Then f n = 0. More precisely,
for any vector v �= 0 in V , and k ≥ 0 such that f k(v) = 0 but f k−1(v) �= 0,
the vectors

(v, f (v), . . . , f k−1(v))

are linearly independent.
b. Proof Let V be a finite-dimensional K-vector space and let f be a nilpotent

endomorphism of V. Let n = dim(V ).
c. If it is shown that for any vector v �= 0 in V and k ≥ 0 such that

f k(v) = 0 and f k−1(v) �= 0 the vectors (v, f (v), . . . , f k−1(v)) are linearly
independent, then k ≤ n, because (v, f (v), . . . , f k−1(v)) are k linearly
independent vectors and there are at most n linearly independent vectors in
V . Since f is nilpotent for any v ∈ V there is a k such that f k(v) = 0. Then
f m(v) = 0 for any m ≥ k. So, f n(v) = 0 for all v ∈ V , because k ≤ n,
which implies f n = 0. Thus, the second claim of the proposition implies the
first.

d. We now show the second claim. Let v �= 0 be a vector in V and k ≥ 0 such
that f k = 0 and f k−1 �= 0. To show that (v, f (v), . . . , f k−1(v) are linearly
independent, let t0, t1, . . . , tk−1 be elements of K such that

t0v + t1f (v)+ · · · + tk−1f
k−1(v) = 0. (5.5)

We will show by induction on i ≤ k − 1 that ti = 0 for all i ≤ k − 1, which
shows that (v, f (v), . . . , f k−1(v)) are linearly independent.

e. Base Case: We consider t0, and show t0 = 0. We apply f k−1 to equa-
tion (5.5):

f k−1(t0v+t1f (v)+ . . .+tk−1f
k−1(v)) = f k−1(0)

t0f
k−1(v)+t1f k(v)+ . . .+tk−1f

2k−2(v) = 0 (Linearity)

t0f
k−1(v) = 0 (f k(v), f k+1(v), . . . ,

f 2k−2(v) are 0)

t0 = 0 (f k−1(v) �= 0).

f. Induction Step: Now assume that t0, . . . ti = 0 for an arbitrary, fixed i <
k − 1. We show that ti+1 = 0. We substitute t0 = 0, . . . ti = 0 in (5.5) and
apply f k−i−2:

f k−i−2(ti+1f
i+1(v)+ . . .+tk−1f

k−1(v)) = f k−i−2(0)

ti+1f
k−i−2+i+1(v)+ . . .+tk−1f

k−i−2+k−1(v) = 0 (Linearity)

ti+1f
k−1(v)+ . . .+tk−1f

2k−i−3(v) = 0
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ti+1f
k−1(v) = 0 (f k(v), f k+1(v), . . . ,

f 2k−i−3(v) are 0)

ti+1 = 0 (f k−1(v) �= 0).

This ends the induction and the proof.

In contrast to the first version, one sees that this version contains more details
and is a little longer. The induction scheme is mentioned and the slots are not only
mentioned but even marked by the usage of bold print. The proof text consists of
an introduction of the given facts (5-b). Note the indirect discourse we can find
typically in mathematical texts. The author then shows in (5-c) that the second part
of the proposition is indeed a strengthening of the first.

In (5-d) she states the method of the proof and makes the induction variable,
i.e., i explicit, she also unravels the definition of linear independent. In (5-e) we
can follow the base case. We note the typical explication of proofsteps in the
right column on longer parts of calculations. Similarly to this the induction step
is explained in (5-f). We note that the induction assumption is not stated explicitly
as an induction assumption. Asking why the author made the decision, she said
that adding the “Now assume that” was sufficient for her to make explicit that an
assumption is used here.

This amplification of the original proof illustrates that the frames are (in some
sense) cognitively real. While we can assume that the author of this second
reformulation was able to comprehend the original proof before reformulating it, she
chose to make the frame and the slots explicit, without any explicit knowledge of our
frame model as presented above. We asked her to make the proof comprehensible for
a first semester student. We assume that her changes are caused by the assumption
that first year students need the explicit information.

19.6.4 The Original Proof

The original proof in Kowalski (2016, 93) – cited here as (6) – is even more
reduced. It just mentions the induction frame in (6-c) after giving an example for
the step from the base case to the immediate successor in (6-b). That i is to be the
INDUCTION-VARIABLE with i = 1 as the BASE-CONDITION can be inferred from
the step from t1 to t2 in (6-b) and the universal quantification in (6-c). Only the
ASSERTION is stated explicitly in (6-c). The whole proof as specified in (3-c) has to
be reconstructed from the hint that in the step from i = 1 to i = 2 f k−2 has to be
applied instead of f k−1, which leads to the general term f k−i+1 for the step from i

to i + 1 (Fig. 19.7).

(6) a. Proof. First, the second statement is indeed more precise than the first: let
k ≥ 1 be such that f k = 0 but f k−1 �= 0; there exists v �= 0 such that
f k−1(v) �= 0, and we obtain k ≤ n by applying the second result to this
vector v. We now prove the second claim. Assume therefore that v �= 0 and
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Fig. 19.7 Induction frame as instantiated by (6), default and inferred values are marked as in
Fig. 19.6

that f k(v) = 0 but f k−1(v) �= 0. Let t0, . . . , tk−1 be elements of K such that

t1v + · · · + tk−1f
k−1[sic!](v) = 0.

Apply f k−1 to this relation; since f k(v) = . . . = f 2k−2[sic!](v) = 0, we get

t1f
k−1(v) = t1f k−1(v)+ t2f k(v)+ · · · + tk−1f

2k−2[sic!](v) = 0,

and therefore t1f k−1(v) = 0. Since f k−1(v) was assumed to be non-zero, it
follows that t1 = 0.

b. Now repeating this argument, but applying f k−2 to the linear relation (and
using the fact that t1 = 0), we get t2 = 0.

c. Then similarly we derive by induction that ti = 0 for all i, proving the linear
independence stated.

Kowalski (2016, 93); in the first equation, the exponent k − 1 has to be replaced by
k − 2; in the line below and the second equation, 2k − 2 by 2k − 3.
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19.6.5 Turán’s Theorem

So far we have shown how the concept of frames can be applied to rather basic
proofs, now we turn to a more advanced example. The proof (7), taken from
Diestel (2006, 165f), has a transparent structure, but superficially does not follow
the induction frame in a linear order. It is therefore well-suited to explain how frame
slots are filled in reading the text, and it also contains some gaps to be filled with
knowledge of the frame.

(7) Theorem 7.1.1. (Turán 1941)
For all integers r, n with r > 1, every graphG � Kr with n vertices and ex(n,Kr)
edges11 is a T r−1(n).
Proof.

a. We apply induction on n. For n ≤ r − 1 we have G = Kn = T r−1(n) as
claimed. For the induction step, let now n ≥ r .
Since G is edge-maximal without a Kr subgraph, G has a subgraph K =
Kr−1.

b. By the induction hypothesis, G − K has at most tr−1(n − r + 1) edges, and
each vertex of G−K has at most r − 2 neighbours in K .

c. Hence

‖G‖ ≤ tr−1(n− r + 1)+ (n− r + 1)(r − 2)+
(
r − 1

2

)

= tr−1(n); (7.6)

the equality on the right follows by inspection of the Turán graph T r−1(n)

(Fig. (7-c)).

Fig. 7.1.3 The equation from (1) for r = 5 and n = 14

Since G is extremal for Kr (and T r−1(n) � Kr ), we have equality in (7.6).
Thus, every vertex ofG−K has exactly r − 2 neighbours inK – just like the
vertices x1, . . . , xr−1 of K itself. For i = 1, . . . , r − 1 let

Vi := {v ∈ V (G) | vxi /∈ E(G)}

11ex(n,H) means the number of edges of a graph G � H that is extremal for n and H , i.e., the
maximal amount of edges a graph on n vertices could have, without having a subgraph (isomorphic
to) H .
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be the set of all vertices of G whose r − 2 neighbours in K are precisely the
vertices other than xi . Since Kr � G, each of the sets Vi is independent, and
they partition V (G). Hence, G is (r − 1)-partite. As T r−1(n) is the unique
(r − 1)-partite graph with n vertices and the maximum number of edges, our
claim that G = T r−1(n) follows from the assumed extremality of G. �

Diestel (2006, 165f)

The proof is about graphs, hence it is in principle possible to use induction on
the number of vertices, i.e., induction on the natural numbers. In Graph Theory it is
mostly common to use strong induction, since an operation on the vertex set of the
graph might remove more than one vertex. Hence we need the induction hypothesis
for all smaller numbers of vertices. Here the induction step for graphs G with n
vertices presupposes by the induction hypothesis (7-b) that the theorem has been
proved for graphs G−Kr−1 with n− r + 1 vertices.

Beside this we can see a second proof technique in the proof of Turán’s Theorem,
namely an extremal argument. Turán’s Theorem is actually often considered as the
starting point of a whole new subfield of extremal combinatorics or extremal graph
theory. This technique reoccurs in different proofs in a manner that the mathematical
community decided that it constitutes this field. We can only scratch the surface
of the formalisation of this frame here, but we would argue that it corresponds
to another frame. There needs something to be extremal to constitute an extremal
argument. Extremal can mean minimal or maximal. In this case we have considered a
maximal structure without any further specific properties. We can consider different
graph invariants. In this case it was the number of edges, but we can in principle
take any invariant, like the lengths of the shortest cycle in the graph, i.e., its girth.
To summarise, one slot of the frame is filled by the extremal structure, another by
the kind of extremality (minimal or maximal), and a third slot would contain an
equivalence relation on the respective structures (e.g., the number of edges). An
in-depth analysis of different extremal arguments would of course yield to more
features of the frame.

We can infer even more from this passage. Knowing that this is one of the
first results in extremal combinatorics, it offers the possibility to consider maximal
counter examples. Actually, within one field proofs are often designed closely based
on few basic techniques. A list of those techniques might be found for instance in a
handbook article such as Bollobás (1995) for extremal combinatorics. We surmise
that these techniques constitute a frame hierarchy, every technique a frame of its
own, and proofs are generally primarily designed as interactions of these frames,
similar to what we have shown in the discussion of Turán’s proof in this section.

19.7 Conclusion

In Sect. 19.6 we have given examples of four different proof texts, two textbook
proofs and two reformulations for one of them. All of them show that frame
knowledge is needed to reconstruct the derivation from the text and that such
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knowledge is applied when elaborating a proof, respectively. We treat the examples
in a way suggesting that the relevant inferences are driven by expectations generated
by the slot structure of the frame and default values. In this respect mathematical
texts and their interpretation do not seem to differ much from other sorts of
descriptive texts.

A The Full Induction Frame

There are strong relationships between induction and case distinctions. The frame
in Fig. 19.8 gives an idea how this can be described in our approach. It also
accommodates the case that the induction domain has multiple base constructors
and recursive constructors.

Fig. 19.8 A fuller Induction Frame which also illustrates the connection to case distinctions
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Chapter 20
Formalising Mathematics in Simple Type
Theory

Lawrence C. Paulson

Abstract Despite the considerable interest in new dependent type theories, simple
type theory (which dates from 1940) is sufficient to formalise serious topics in
mathematics. This point is seen by examining formal proofs of a theorem about
stereographic projections. A formalisation using the HOL Light proof assistant
is contrasted with one using Isabelle/HOL. Harrison’s technique for formalising
Euclidean spaces is contrasted with an approach using Isabelle/HOL’s axiomatic
type classes. However, every formal system can be outgrown, and mathematics
should be formalised with a view that it will eventually migrate to a new formalism.

20.1 Introduction

Let’s begin with Dana Scott:

No matter how much wishful thinking we do, the theory of types is here to stay. There
is no other way to make sense of the foundations of mathematics. Russell (with the help
of Ramsey) had the right idea, and Curry and Quine are very lucky that their unmotivated
formalistic systems are not inconsistent.1 (Scott 1993, p. 413)

The foundations of mathematics is commonly understood as referring to philo-
sophical conceptions such as logicism (mathematics reduced to logic), formalism
(mathematics as “a combinatorial game played with the primitive symbols”) (von
Neumann 1944, p. 62), Platonism (“mathematics describes a non-sensual reality,
which exists independently . . . of the human mind”) (Gödel 1995, p. 323) and
intuitionism (mathematics as “a production of the human mind”) (Heyting 1944,
p. 52). Some of these conceptions, such as logicism and formalism, naturally

1Italics in original.
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lend themselves to the idea of doing mathematics in a formal deductive system.
Whitehead and Russell’s magnum opus, Principia Mathematica (Whitehead and
Russell 1927), is the quintessential example of this. Other conceptions are hostile to
formalisation. However, a tremendous amount of mathematics has been formalised
in recent years, and this work is largely indifferent to those philosophical debates.

This article is chiefly concerned with the great body of analysis and topology
formalised by John Harrison, using higher-order logic as implemented in his
HOL Light proof assistant (Harrison 1996). The original motive for this work
was to verify implementations of computer arithmetic, such as the calculation of
the exponential function (Harrison 2000), prompted by the 1994 floating-point
division bug that forced Intel to recall millions of Pentium chips at a cost of
$475 million (Nicely 2011). Another great body of mathematics was formalised by
Georges Gonthier using Coq: the four colour theorem (Gonthier 2008), and later,
the odd order theorem (Gonthier et al. 2013). Here the motive was to increase
confidence in the proofs: the first four colour proof involved thousands of cases
checked by a computer program, while the proof of the odd order theorem originally
appeared as a 255-page journal article. Finally there was the Flyspeck project, to
formalise Thomas Hales’s proof of the Kepler conjecture, another gigantic case
analysis; this formalisation task was carried out by many collaborators using HOL
Light and Isabelle/HOL, so again higher-order logic.

Higher-order logic is based on the work of Church (1940), which can be seen as a
simplified version of the type theory of Whitehead and Russell. But while they were
exponents of logicism, today’s HOL Light and Isabelle/HOL users clearly aren’t, or
at least, keep their views secret.

Superficially, Coq users are indeed exponents of intuitionism: they regularly
refer to constructive proofs and stress their rejection of the excluded middle.
However, this sort of discussion is not always convincing. For example, the abstract
announcing the Coq proof of the odd order theorem declares “the formalized proof
is constructive” (Gonthier et al. 2013, p. 163). This theorem states that every finite
group of odd order is solvable, and therefore a constructive proof should provide, for
a given group G of odd order, evidence that G is solvable. However, the solvability
of a finite group can be checked in finite time, so no evidence is required. So does the
constructive nature of the proof embody anything significant? It turns out that some
results in the theory of group modules could only be proved in double-negation form
(Gonthier et al. 2013, p. 174).

Analysis changes everything. Constructive analysis looks utterly different from
classical analysis. As formulated by Bishop (Bishop and Bridges 1985), we may not
assume that a real number x satisfies x < 0 ∨ x = 0 ∨ x > 0 , and x �= 0 does not
guarantee that xy = 1 for some real y. In their Coquelicot analysis library, Boldo
et al. assume these classical principles, while resisting the temptation to embrace
classical logic in full (Boldo et al. 2015, §3.2).
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The sort of constructivism just described therefore seems to lack an overarching
philosophical basis or justification. In contrast, Martin-Löf’s type theory was
intended from the start to support Bishop-style constructive analysis (Martin-Löf
1975); this formal calculus directly embodies Heyting’s intuitionistic interpretation
of the logical constants (Martin-Löf 1996). It is implemented as the Agda (Bove
et al. 2009) programming language and proof assistant.

It’s worth remarking that the very idea of fixing a formalism as the foundation of
intuitionistic mathematics represents a sharp deviation from its original conception.
As Heyting wrote,

The intuitionistic mathematician . . . uses language, both natural and formalised, only for
communicating thoughts, i.e., to get others or himself to follow his own mathematical
ideas. Such a linguistic accompaniment is not a representation of mathematics; still less
is it mathematics itself. (Heyting 1944, p. 52–3)

Constructive logic is well supported on the computer. However, the choice of
proof assistant is frequently dictated by other considerations, including institutional
expectations, the availability of local expertise and the need for specific libraries.
The popularity of Coq in France is no reason to imagine that intuitionism is the
dominant philosophy there.

Someone wishing to formalise mathematics today has three main options:

• Higher-order logic (also known as simple type theory), where types are built
inductively from certain base types, and variables have fixed types. Generalising
this system through polymorphism adds considerable additional expressiveness.

• Dependent type theories, where types are parameterised by terms, embodying
the propositions-as-types principle. This approach was first realised in NG de
Bruijn’s AUTOMATH (de Bruijn 1980). Such systems are frequently but not
necessarily constructive: AUTOMATH was mainly used to formalise classical
mathematics.

• Set theories can be extremely expressive. The Mizar system has demonstrated
that set theory can be a foundation for mathematics in practice as well as in
theory (Bancerek and Rudnicki 2002). Recent work by Zhan (2017) confirms
this point independently, with a high degree of automation.

All three options have merits. While this paper focuses on higher-order logic, I
make no claim that this formalism is the best foundation for mathematics. It is
certainly less expressive than the other two. And a mathematician can burst free
of any formalism as quickly as you can say “the category of all sets”. I would prefer
to see a situation where formalised mathematics could be made portable: where
proofs could be migrated from one formal system to another through a translation
process that respects the structure of the proof.
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20.2 Higher-Order Logic on the Computer

A succinct way to describe higher-order logic is as a predicate calculus with simple
types, including functions and sets, the latter seen as truth-valued functions.

Logical types evolved rapidly during the twentieth century. For Whitehead and
Russell, types were a device to forestall the paradoxes, in particular by enforcing
the distinction between sets and individuals. But they had no notation for types
and never wrote them in formulas. They even proved (the modern equivalent of)
V ∈ V , concealing the type symbols that prevent Russell’s paradox here (Feferman
2004). Their omission of type symbols, which they termed typical ambiguity, was a
precursor to today’s polymorphism. It seems that they preferred to keep types out of
sight.

Church (1940) provided a type notation including a type ι of individuals and a
separate type o of truth values, with which one could express sets of individuals
(having type oι), sets of sets of individuals (type o(oι)) etc., analogously to the
cumulative hierarchy of sets, but only to finite levels. Church assigned all individuals
the same type.

Other people wanted to give types a much more prominent role. The mathe-
matician NG de Bruijn devoted much of his later career, starting in the 1960s, to
developing type theories for mathematics:

I believe that thinking in terms of types and typed sets is much more natural than appealing
to untyped set theory. . . . In our mathematical culture we have learned to keep things apart.
If we have a rational number and a set of points in the Euclidean plane, we cannot even
imagine what it means to form the intersection. The idea that both might have been coded
in ZF with a coding so crazy that the intersection is not empty seems to be ridiculous. If
we think of a set of objects, we usually think of collecting things of a certain type, and set-
theoretical operations are to be carried out inside that type. Some types might be considered
as subtypes of some other types, but in other cases two different types have nothing to do
with each other. That does not mean that their intersection is empty, but that it would be
insane to even talk about the intersection. (de Bruijn 1995, p. 31)2

De Bruijn also made the case for polymorphism:

Is there the drawback that working with typed sets is much less economic then with untyped
ones? If things have been said for sets of apples, and if these same things hold, mutatis
mutandis, for sets of pears, does one have to repeat all what had been said before? No. One
just takes a type variable, ξ say, and expresses all those generalities for sets of things of
type ξ . Later one can apply all this by means of a single instantiation, replacing ξ either by
apple or by pear. (de Bruijn 1995, p. 31)

His work included the first computer implementations of dependent type theories.
However, his view that apples and pears should have different types, using type
variables to prevent duplication, is universally accepted even with simple type
theory.

2Italics in original.
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20.2.1 Why Simple Type Theory?

What is the point of choosing simple type theory when powerful dependent type
theories exist? One reason is that so much can be done with so little. HOL
Light “sets a very exacting standard of correctness” and “compared with other
HOL systems, . . . uses a much simpler logical core.”3 Thanks to this simplicity,
fully verified implementations now appear to be in reach (Kumar et al. 2016).
Isabelle/HOL’s logical core is larger, but nevertheless, concepts such as quotient
constructions (Kaliszyk and Urban 2011), inductive and coinductive definitions
(Blanchette et al. 2014; Paulson 1997), recursion, pattern-matching and termination
checking (Krauss 2010) are derived from Church’s original HOL axioms; with
dependent type theories, such features are generally provided by extending the
calculus itself (Giménez 1995).

The other reason concerns automation. Derivations in formal calculi are
extremely long. Whitehead and Russell needed hundreds of pages to prove
1 + 1 = 2 (Whitehead and Russell 1927, p. 360).4 Proof assistants must be
capable of performing lengthy deductions automatically. As a general rule, more
expressive formalisms are more difficult to automate, and some technical features
of constructive type theories interfere with automation. It is striking to consider the
extent to which the Ssreflect proof language and library has superseded the standard
Coq libraries. Gonthier and Mahboubi write

Small-scale reflection is a formal proof methodology based on the pervasive use of
computation with symbolic representations. . . . The statements of many top-level lemmas,
and of most proof subgoals, explicitly contain symbolic representations; translation between
logical and symbolic representations is performed under the explicit, fine-grained control
of the proof script. The efficiency of small-scale reflection hinges on the fact that fixing
a particular symbolic representation strongly directs the behaviour of a theorem-prover.
(Gonthier and Mahboubi 2010, p. 96)

So Ssreflect’s remarkable success (Gonthier 2008; Gonthier et al. 2013) appears
to involve sacrificing a large degree of mathematical abstraction. The Coquelicot
analysis library similarly shies away from Coq’s full type system:

The Coq system comes with an axiomatization of standard real numbers and a library of
theorems on real analysis. Unfortunately, . . . the definitions of integrals and derivatives are
based on dependent types, which make them especially cumbersome to use in practice.”
(Boldo et al. 2015, p. 41)

In the sequel, we should be concerned with two questions:

• whether simple type theory is sufficient for doing significant mathematics, and
• whether we can avoid getting locked into any one formalism.

3http://www.cl.cam.ac.uk/~jrh13/hol-light/
4In fact the relevant proposition, ∗54 · 43, is a statement about sets. Many of the propositions
laboriously worked out here are elementary identities that are trivial to prove with modern
automation.
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The latter, because it would be absurd to claim that any one formalism is all that we
could ever need.

20.2.2 Simple Type Theory

Higher-order logic as implemented in proof assistants such as HOL Light (Harrison
1996) and Isabelle/HOL (Nipkow et al. 2002) borrows the syntax of types in the
programming language ML (Paulson 1996). It provides

• atomic types, in particular bool, the type of truth values, and nat, the type of
natural numbers.

• function types, denoted by τ1 ⇒ τ2.
• compound types, such as τ list for lists whose elements have type τ , similarly
τ set for typed sets. (Note the postfix notation.)

• type variables, denoted by ’a, ’b etc. They give rise to polymorphic types like
’a ⇒ ’a, the type of the identity function.

Implicit in Church, and as noted above by de Bruijn, type variables and polymor-
phism must be included in the formalism implemented by a proof assistant. For
already when we consider elementary operations such as the union of two sets, the
type of the sets’ elements is clearly a parameter and we obviously expect to have a
single definition of union. Polymorphism makes that possible.

The terms of higher-order logic are precisely those of the typed λ-calculus:
identifiers (which could be variables or constants), λ-abstractions and function
applications. On this foundation a full predicate calculus is built, including equality.
Note that while first-order logic regards terms and formulas as distinct syntactic
categories, higher-order logic distinguishes between terms and formulas only in that
the latter have type bool.

Overloading is the idea of using type information to disambiguate expressions. In
a mathematical text, the expression u×v could stand for any number of things:A×B
might be the Cartesian product of two sets,G×H the direct product of two groups
andm×n the arithmetic product of two natural numbers. Most proof assistants make
it possible to assign an operator such as×multiple meanings, according to the types
of its operands. In view of the huge ambiguity found in mathematical notations—
consider for example xy, f (x), f (X), df/dx, x2y, sin2 y—the possibility of
overloading is a strong argument in favour of a typed formalism.

20.2.3 Higher-Order Logic as a Basis for Mathematics

The formal deductive systems in HOL Light and Isabelle/HOL closely
follow Church (1940). However, no significant applications can be tackled from
this primitive starting point. It is first necessary to develop, at least, elementary
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theories of the natural numbers and lists (finite sequences). General principles of
recursive/inductive definition of types, functions and sets are derived, by elaborate
constructions, from the axioms. Even in the minimalistic HOL Light, this requires
more than 10,000 lines of machine proofs; it requires much more in Isabelle,
deriving exceptionally powerful recursion principles (Blanchette et al. 2014).
This foundation is already sufficient for studying many problems in functional
programming and hardware verification, even without negative integers.

To formalise analysis requires immensely more effort. It is necessary to develop
the real numbers (as Cauchy sequences for example), but that is just the beginning.
Basic topology including limits, continuity, derivatives, power series and the
familiar transcendental functions must also be formalised. And all that is barely
a foundation for university-level mathematics. In addition to the sheer bulk of
material that must be absorbed, there is the question of duplication. The process
of formalisation gives rise to several number systems: natural numbers, integers,
rationals, reals and complex numbers. This results in great duplication, with laws
such as x + 0 = x existing in five distinct forms. Overloading, by itself, doesn’t
solve this problem.

The need to reason about n-dimensional spaces threatens to introduce infinite
duplication. Simple type theory does not allow dependent types, and yet the
parameter n (the dimension) is surely a natural number. The theory of Euclidean
spaces concerns Rn for any n, and it might appear that such theorems cannot even
be stated in higher-order logic. John Harrison found an ingenious solution (Harrison
2005): to represent the dimension by a type of the required cardinality. It is easy to
define types in higher-order logic having any specified finite number of elements.
Then R

n can be represented by the type n → real, where the dimension n is
a type. Through polymorphism, n can be a variable, and the existence of sum
and product operations on types even allow basic arithmetic to be performed
on dimensions. It must be admitted that things start to get ugly at this point.
Other drawbacks include the need to write R as R

1 in order to access topological
results in the one-dimensional case. Nevertheless, this technique is flexible enough
to support the rapidly expanding HOL Light multivariate analysis library, which
at the moment covers much complex analysis and algebraic topology, including
the Cauchy integral theorem, the prime number theorem, the Riemann mapping
theorem, the Jordan curve theorem and much more. It is remarkable what can be
accomplished with such a simple foundation.

It’s important to recognise that John Harrison’s approach is not the only one. An
obvious alternative is to use polymorphism and explicit constraints (in the form of
sets or predicates) to identify domains of interest. Harrison rejects this because

it seems disappointing that the type system then makes little useful contribution, for example
in automatically ensuring that one does not take dot products of vectors of different lengths
or wire together words of different sizes. All the interesting work is done by set constraints,
just as if we were using an untyped system like set theory. (Harrison 2005, p. 115)

Isabelle/HOL provides a solution to this dilemma through an extension to higher-
order logic: axiomatic type classes (Wenzel 1997). This builds on the idea of
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polymorphism, which in its elementary form is merely a mechanism for type
schemes: a definition or theorem involving type variables stands for all possible
instances where types are substituted for the type variables. Polymorphism can be
refined by introducing classes of types, allowing a type variable to be constrained
by one or more type classes, and allowing a type to be substituted for a type
variable only if it belongs to the appropriate classes. A type class is defined by
specifying a suite of operations together with laws that they must satisfy, for
example, a partial ordering with the operation≤ satisfying reflexivity, antisymmetry
and transitivity or a ring with the operations 0, 1, +, × satisfying the usual axioms.
The type class mechanism can express a wide variety of constraints using types
themselves, addressing Harrison’s objection quoted above. Type classes can also
be extended and combined with great flexibility to create specification hierarchies:
partial orderings, but also linear and well-founded orderings; rings, but also groups,
integral domains, fields, as well as linearly ordered fields, et cetera. Type classes
work equally well at specifying concepts from analysis such as topological spaces
of various kinds, metric spaces and Euclidean spaces (Hölzl et al. 2013).

Type classes also address the issue of duplication of laws such as x + 0 = x.
That property is an axiom for the type class of groups, which is inherited by rings,
fields, etc. As a new type is introduced (for example, the rationals), operations can
be defined and proved to satisfy the axioms of some type class; that being done,
the new type will be accepted as a member of that type class (for example, fields).
This step can be repeated for other type classes (for example, linear orderings). At
this point, it is possible to forget the explicit definitions (for example, addition of
rational numbers) and refer to axioms of the type classes, such as x + 0 = x . Type
classes also allow operators such as + to be overloaded in a principled manner,
because all of those definitions satisfy similar properties. Recall that overloading
means assigning an operator multiple meanings, but when this is done through type
classes, the multiple meanings will enjoy the same axiomatic properties, and a single
type class axiom can replace many theorems (Paulson 2004).

An intriguing aspect of type classes is the possibility of recursive definitions over
the structure of types. For example, the lexicographic ordering ≤ on type τ list
is defined in terms of ≤ on type τ . But this introduces the question of circular
definitions. More generally, it becomes clear that the introduction of type classes
goes well beyond the naïve semantic foundation of simple type theory as a notation
for a fragment of set theory. Recently, Kunčar and Popescu (2015) have published
an analysis including sufficient conditions for overloaded constant definitions to
be sound, along with a new semantics for higher-order logic with type classes. It
remains much simpler than the semantics of any dependent type theory.

20.2.4 A Personal Perspective

In the spring of 1977, as a mathematics undergraduate at Caltech, I had the immense
privilege of attending a lecture series on AUTOMATH given by de Bruijn himself,
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and of meeting him privately to discuss it. I studied much of the AUTOMATH
literature, including Jutting’s famous thesis (Jutting 1977) on the formalisation of
Landau’s Foundations of Analysis.

In the early 1980s, I encountered Martin-Löf’s type theory through the group at
Chalmers University in Sweden. Again I was impressed with the possibilities of this
theory, and devoted much of my early career to it. I worked on the derivation of well-
founded recursion in Martin-Löf’s type theory (Paulson 1986a), and created Isabelle
originally as an implementation of this theory (Paulson 1986b). Traces of this are
still evident in everything from Isabelle’s representation of syntax to the rules for�,
� and + constructions in Isabelle/ZF. The logic CTT (constructive type theory) is
still distributed with Isabelle,5 including an automatic type checker and simplifier.

My personal disenchantment with dependent type theories coincides with the
decision to shift from extensional to intensional equality (Nordström et al. 1990).
This meant for example that 0+n = n and n+0 = n would henceforth be regarded
as fundamentally different assertions, one an identity holding by definition and the
other a mere equality proved by induction. Of course I was personally upset to see
several years of work, along with Constable’s Nuprl project (Constable et al. 1986),
suddenly put beyond the pale. But I also had the feeling that this decision had been
imposed on the community rather than arising from a rational discussion. And I see
the entire homotopy type theory effort as an attempt to make equality reasonable
again.

20.3 Example: Stereographic Projections

An example will serve to demonstrate how mathematics can be formalised using the
techniques described in Sect. 20.2.3 above. We shall compare two formalisations
of a theorem: the HOL Light original and the new version after translation to
Isabelle/HOL using type classes.

The theorem concerns stereographic projections, including the well-known
special case of mapping a punctured6 sphere onto a plane (Fig. 20.1). In fact, it holds
under rather general conditions. In the two-dimensional case, a punctured circle is
flattened onto a line. The line or plane is infinite, and points close to the puncture
are mapped “out towards infinity”. The theorem holds in higher dimensions with the
sphere generalised to the surface of an n-dimensional convex bounded set and the
plane generalised to an affine set of dimension n− 1. The mappings are continuous
bijections between the two sets: the sets are homeomorphic.

5http://isabelle.in.tum.de
6Punctured means that one point is removed.
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Fig. 20.1 3D illustration of a
stereographic projection from
the north pole onto a plane
below the sphere (Original:
Mark.Howison at English
Wikipedia This version:
CheChe • CC BY-SA 4.0)

The theorem we shall examine is the generalisation of the case for the sphere to
the case for a bounded convex set. The proof of this theorem is formalised in HOL
Light7 as shown in Fig. 20.2. At 51 lines, it is rather short for such proofs, which
can be thousands of lines long.

The HOL Light proof begins with the statement of the desired theorem. We see
logical syntax coded as ASCII characters: ! = ∀ and /\ =∧. Moreover, the DELETE
operator refers to the removal of a set element (S − {a}). Words such as convex
and bounded denote predicates defined elsewhere. Infix syntax is available, as
in the symbol homeomorphic. We see John Harrison’s representation of Rn in
the type real^N->bool and in particular, !s:real^N->bool abbreviates “for
all s ⊆ R

N”. Note that the constraint on the dimensions is expressed through the
concept of affine dimension rather than some constraint on M and N. This statement
is legible enough, and yet the notation leaves much to be desired, for example in
the necessity to write &1 (the ampersand converting the natural number 1 into an
integer).

!s:real^N->bool t:real^M->bool a.
convex s /\ bounded s /\ a IN relative_frontier s /\
affine t /\ aff_dim s = aff_dim t + &1
==> (relative_frontier s DELETE a) homeomorphic t

We have to admit that the proof itself is unintelligible. Even a HOL Light user can
only spot small clues in the proof text, such as the case analysis on whether the set s
is empty or not, which we see in the first line, or the references to previous lemmas.
If we look carefully, we might notice intermediate statements being proved, such as

~(t:real^N->bool = {})

or

7File https://github.com/jrh13/hol-light/blob/master/Multivariate/paths.ml
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let HOMEOMORPHIC_PUNCTURED_SPHERE_AFFINE_GEN = prove
( !s:real N->bool t:real M->bool a.

convex s /\ bounded s /\ a IN relative_frontier s /\
affine t /\ aff_dim s = aff_dim t + &1
==> (relative_frontier s DELETE a) homeomorphic t ,

REPEAT GEN_TAC THEN ASM_CASES_TAC s:real N->bool = {} THEN
ASM_SIMP_TAC[AFF_DIM_EMPTY; AFF_DIM_GE; INT_ARITH

--(&1):int <= s ==> (--(&1) = s + &1) ] THEN
MP_TAC(ISPECL [ (:real N) ; aff_dim(s:real N->bool) ]

CHOOSE_AFFINE_SUBSET) THEN REWRITE_TAC[SUBSET_UNIV] THEN
REWRITE_TAC[AFF_DIM_GE; AFF_DIM_LE_UNIV; AFF_DIM_UNIV; AFFINE_UNIV] THEN
DISCH_THEN(X_CHOOSE_THEN t:real N->bool STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN (t:real N->bool = {}) MP_TAC THENL
[ASM_MESON_TAC[AFF_DIM_EQ_MINUS1]; ALL_TAC] THEN

GEN_REWRITE_TAC LAND_CONV [GSYM MEMBER_NOT_EMPTY] THEN
DISCH_THEN(X_CHOOSE_TAC z:real N ) THEN STRIP_TAC THEN
MP_TAC(ISPECL
[ s:real N->bool ; ball(z:real N,&1) INTER t ]

HOMEOMORPHIC_RELATIVE_FRONTIERS_CONVEX_BOUNDED_SETS) THEN
MP_TAC(ISPECL [ t:real N->bool ; ball(z:real N,&1) ]

(ONCE_REWRITE_RULE[INTER_COMM] AFF_DIM_CONVEX_INTER_OPEN)) THEN
MP_TAC(ISPECL [ ball(z:real N,&1) ; t:real N->bool ]

RELATIVE_FRONTIER_CONVEX_INTER_AFFINE) THEN
ASM_SIMP_TAC[CONVEX_INTER; BOUNDED_INTER; BOUNDED_BALL; CONVEX_BALL;

AFFINE_IMP_CONVEX; INTERIOR_OPEN; OPEN_BALL;
FRONTIER_BALL; REAL_LT_01] THEN

SUBGOAL_THEN (ball(z:real N,&1) INTER t = {}) ASSUME_TAC THENL
[REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER] THEN
EXISTS_TAC z:real N THEN ASM_REWRITE_TAC[CENTRE_IN_BALL; REAL_LT_01];
ASM_REWRITE_TAC[] THEN REPEAT(DISCH_THEN SUBST1_TAC) THEN SIMP_TAC[]] THEN

REWRITE_TAC[homeomorphic; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [ h:real N->real N ; k:real N->real N ] THEN
STRIP_TAC THEN REWRITE_TAC[GSYM homeomorphic] THEN
TRANS_TAC HOMEOMORPHIC_TRANS

(sphere(z,&1) INTER t) DELETE (h:real N->real N) a THEN
CONJ_TAC THENL
[REWRITE_TAC[homeomorphic] THEN
MAP_EVERY EXISTS_TAC [ h:real N->real N ; k:real N->real N ] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHISM]) THEN
REWRITE_TAC[HOMEOMORPHISM] THEN STRIP_TAC THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; DELETE_SUBSET];
ASM SET_TAC[];
ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; DELETE_SUBSET];
ASM SET_TAC[];
ASM SET_TAC[];
ASM SET_TAC[]];

MATCH_MP_TAC HOMEOMORPHIC_PUNCTURED_AFFINE_SPHERE_AFFINE THEN
ASM_REWRITE_TAC[REAL_LT_01; GSYM IN_INTER] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHISM]) THEN
ASM SET_TAC[]]);;

Fig. 20.2 HOL Light code for the stereographic projection theorem

~(ball(z:real^N,&1) INTER t = {})

though in the latter case it is unclear what z is. The formal proof consists of program
code, written in a general-purpose programming language (OCaml) equipped with
a library of proof procedures and supporting functions, for that is what HOL Light
is. A HOL Light proof is constructed by calling proof procedures at the OCaml
command line, but one could type in any desired OCaml code. Users sometimes
write such code in order to extend the functionality of HOL Light. Even if their
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code is incorrect,8 they cannot cause HOL Light to generate false theorems. All
LCF-style proof assistants employ a similar kernel architecture.

In recent years, I have been embarked on a project to translate the most
fundamental results of the HOL Light multivariate analysis library into Isabelle.
The original motivation was to obtain the Cauchy integral theorem (Harrison 2007),
which is the gateway to the prime number theorem (Harrison 2009) among many
other results. I was in a unique position to carry out this work as a developer of both
Isabelle and HOL. The HOL family of provers descends from my early work on
LCF (Paulson 1987), and in particular the proof tactic language, which is perfectly
preserved in HOL Light. The 51 lines of HOL Light presented above are among the
several tens of thousands that I have translated to Isabelle/HOL. Figure 20.3 presents
my version of the HOL Light proof above, as shown in a running Isabelle session.
Proof documents can also be typeset with the help of LATEX, but here we have colour
to distinguish the various syntactic elements of the proof: keywords, local variables,
global variables, constants, etc.

The theorem statement resembles the HOL Light one but uses the Isabelle
fixes/assumes/shows keywords to declare the premises and conclusion. (It is typical
Isabelle usage to minimise the use of explicit logical connectives in theorem
statements.) Harrison’s construction real^N isn’t used here; instead the variable
a is declared to belong to some arbitrary Euclidean space. An advantage of this
approach is that types such as real and complex can be proved to be Euclidean
spaces despite not having the explicit form real^N.

The proof is written in the Isar structured language, and much of it is legible.
An affine set U is somehow obtained, with the same dimension as S, which we
note to be nonempty, therefore obtaining some element z ∈ U . Then we obtain
a homeomorphism between rel_frontier S and sphere z 1 ∩ U, using
a previous result.9 Then an element is removed from both sides, yielding a new
homeomorphism, which is chained with the homeomorphism theorem for the sphere
to yield the final result. And thus we get an idea how the special case for a punctured
sphere intersected with an affine set can be generalised to the present result.

The Isar proof language (Wenzel 2007), inspired by that of the Mizar sys-
tem (Trybulec 1993), encourages the explicit statement of intermediate results and
obtained quantities. The notation also benefits from Isabelle’s use of mathematical
symbols, and a further benefit of type classes is that a number like 1 belongs to all
numeric types without explicit conversion between them.

8Malicious code is another matter. In HOL Light, one can use OCaml’s String.set primitive
to replace T (true) by F. Given the variety of loopholes in programming languages and systems,
not to mention notational trickery, we must be content with defences against mere incompetence.
9Because the HOL Light libraries were ported en masse, corresponding theorems generally have
similar names and forms.
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Fig. 20.3 The stereographic projection theorem in Isabelle/HOL

20.4 Discussion and Conclusions

The HOL Light and Isabelle proofs illustrate how mathematical reasoning is done
in simple type theory, and what it looks like. The Isabelle proof demonstrates
that simple type theory can deliver a degree of legibility, though the syntax is a
far cry from normal mathematics. The greater expressiveness of dependent type
theories has not given them any advantage in the domain of analysis: the leading
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development (Boldo et al. 2015) is not constructive and downgrades the role of
dependent types.

As I have remarked elsewhere (Paulson 2018), every formal calculus is ultimately
a prison. It will do some things well, other things badly and many other things not at
all. Mathematics write their proofs using a combination of prose and beautiful but
highly ambiguous notations, such as ∂2z/∂x2 = y2/x2 + exy cos y. Formal proofs
are code and look like it, even if they are allowed to contain special symbols and
Greek letters. The various interpretations of anomalous expressions such as x/0 are
also foundational, and each formalism must adopt a clear position when one might
prefer a little ambiguity. (Both HOL Light and Isabelle define x/0 = 0, which some
people find shocking.) Develop our proof tools as we may, such issues will never
go away. But if past generations of mathematicians could get used to REDUCE and
FORTRAN, they can get used to this.

The importance of legibility can hardly be overstated. A legible proof is more
likely to convince a sceptical mathematician: somebody who doesn’t trust a complex
software system, especially if it says x/0 = 0. While much research has gone into
the verification of proof procedures (Kumar et al. 2016; Schlichtkrull 2016), all
such work requires trusting similar software. But a mathematician may believe a
specific formal proof if it can be inspected directly, breaking this vicious cycle.
Ideally, the mathematician would then gain the confidence to construct new formal
proofs, possibly reusing parts of other proofs. Legibility is crucial for this.

These examples, and the great proof translation effort from which they were
taken, have much to say about the process of porting mathematics from one system
to another. Users of one system frequently envy the libraries of a rival system.
There has been much progress on translating proofs automatically (Kaliszyk and
Krauss 2013; Obua and Skalberg 2006), but such techniques are seldom used.
Automatic translation typically works via a proof kernel that has been modified to
generate a trace, so it starts with an extremely low-level proof. Such an approach
can never deliver legible proofs, only a set of mechanically verified assertions.
Manual translation, while immensely more laborious, yields real proofs and allows
the statements of theorems to be generalised to take advantage of Isabelle/HOL’s
type classes.

All existing proof translation techniques work by emulating one calculus within
another at the level of primitive inferences. Could proofs instead be translated at
the level of a mathematical argument? I was able to port many proofs that I did not
understand: despite the huge differences between the two proof languages, it was
usually possible to guess what had to be proved from the HOL Light text, along
with many key reasoning steps. Isabelle’s automation was generally able to fill the
gaps. This suggests that in the future, if we start with structured proofs, they could
be translated to similarly structured proofs for a new system. If the new system
supports strong automation (and it must!), the translation process could be driven
by the text alone, even if the old system was no longer available. The main difficulty
would be to translate statements from the old system so that they look natural in the
new one.
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The huge labour involved in creating a library of formalised mathematics is not
in vain if the library can easily be moved on. The question “is simple type theory
the right foundation for mathematics?” then becomes irrelevant. Let’s give Gödel
the last word (italics his):

Thus we are led to conclude that, although everything mathematical is formalisable, it is
nevertheless impossible to formalise all of mathematics in a single formal system, a fact
that intuitionism has asserted all along. (Gödel 1986, p. 389)
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Kunčar, O., & Popescu, A. (2015). A consistent foundation for Isabelle/HOL. In C. Urban
& X. Zhang (Eds.), Interactive Theorem Proving—6th International Conference, ITP 2015
(LNCS, Vol. 9236, pp. 234–252). Springer.

Martin-Löf, P. (1975). An intuitionistic theory of types: Predicative part. In H. Rose & J. Shep-
herdson (Eds.), Logic Colloquium’73 (Studies in logic and the foundations of mathematics,
Vol. 80, pp. 73–118). North-Holland.

Martin-Löf, P. (1996). On the meanings of the logical constants and the justifications of the logical
laws on the meanings of the logical constants and the justifications of the logical laws. Nordic
Journal of Philosophical Logic, 1(1), 11–60.

Nicely, T. R. (2011). Pentium FDIV flaw. FAQ page online at http://www.trnicely.net/pentbug/
pentbug.html

Nipkow, T., Paulson, L. C., & Wenzel, M. (2002). Isabelle/HOL: A proof assistant for higher-order
logic. Springer. Online at http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf

Nordström, B., Petersson, K., & Smith, J. (1990). Programming in Martin-Löf’s type theory. An
introduction. New York: Oxford University Press.

claudio.ternullo@ut.ee

http://www.trnicely.net/pentbug/pentbug.html
http://www.trnicely.net/pentbug/pentbug.html
http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf


20 Formalising Mathematics in Simple Type Theory 453

Obua, S. & Skalberg, S. (2006). Importing HOL into Isabelle/HOL. In U. Furbach & N. Shankar
(Eds.), Automated Reasoning: Third International Joint Conference, IJCAR 2006. Proceedings,
Seattle, 17–20 Aug 2006 (LNAI, Vol. 4130, pp. 298–302). Springer.

Paulson, L. C. (1986a). Constructing recursion operators in intuitionistic type theory. Journal of
Symbolic Computation, 2, 325–355.

Paulson, L. C. (1986b). Natural deduction as higher-order resolution. Journal of Logic
Programming, 3, 237–258.

Paulson, L. C. (1987). Logic and computation: Interactive proof with Cambridge LCF. Cam-
bridge/New York: Cambridge University Press.

Paulson, L. C. (1996). ML for the working programmer (2nd ed.). Cambridge: Cambridge
University Press.

Paulson, L. C. (1997). Mechanizing coinduction and corecursion in higher-order logic. Journal of
Logic and Computation, 7(2), 175–204.

Paulson, L. C. (2004). Organizing numerical theories using axiomatic type classes. Journal of
Automated Reasoning, 33(1), 29–49.

Paulson, L. C. (2018). Computational logic: Its origins and applications. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, 474(2210). https://
doi.org/10.1098/rspa.2017.0872

Schlichtkrull, A. (2016). Formalization of the resolution calculus for first-order logic. In J. C.
Blanchette & S. Merz (Eds.), Interactive Theorem Proving: 7th International Conference, ITP
2016. Proceedings, Nancy, 22–25 Aug 2016 (LNCS, Vol. 9807, pp. 341–357). Springer.

Scott, D. S. (1993). A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical
Computer Science, 121, 411–440. Annotated version of the 1969 manuscript.

Trybulec, A. (1993). Some features of the Mizar language. http://mizar.org/project/trybulec93.pdf/
von Neumann, J. (1944). The formalist foundations of mathematics. In Benacerraf and Putnam

(1983) (pp. 61–65). First published in 1944.
Wenzel, M. (1997). Type classes and overloading in higher-order logic. In E. L. Gunter & A. Felty

(Eds.), Theorem Proving in Higher Order Logics: TPHOLs’97 (LNCS, Vol. 1275, pp. 307–
322). Springer.

Wenzel, M. (2007). Isabelle/Isar—A generic framework for human-readable proof documents.
Studies in Logic, Grammar, and Rhetoric, 10(23), 277–297. From Insight to Proof—Festschrift
in Honour of Andrzej Trybulec.

Whitehead, A. N., & Russell, B. (1962). Principia mathematica. Cambridge: Cambridge
University Press. Paperback edition to *56, abridged from the 2nd edition (1927).

Zhan, B. (2017). Formalization of the fundamental group in untyped set theory using auto2.
In M. Ayala-Rincón & C. A. Muñoz (Eds.), Interactive Theorem Proving—8th International
Conference, ITP 2017 (pp. 514–530). Springer.

claudio.ternullo@ut.ee

https://doi.org/10.1098/rspa.2017.0872
https://doi.org/10.1098/rspa.2017.0872
http://mizar.org/project/trybulec93.pdf/


Chapter 21
Dynamics in Foundations: What Does
It Mean in the Practice of Mathematics?

Giovanni Sambin

Abstract The search for a synthesis between formalism and constructivism, and
meditation on Gödel incompleteness, leads in a natural way to conceive mathematics
as dynamic and plural, that is the result of a human achievement, rather than
static and unique, that is given truth. This foundational attitude, called dynamic
constructivism, has been adopted in the actual development of topology and revealed
some deep structures that had remained hidden under other views. After motivations
for and a brief introduction to dynamic constructivism, an overview is given of the
changes it induces in the practice of mathematics and in its foundation, and of the
new results it allows to obtain.

I believe that reflection on foundations, that is philosophy of mathematics, should
not be separated from the development of mathematics itself, otherwise its purpose
would be vacuous, of pure confirmation of what already exists. For mathematicians
in particular the study of foundations should lead to greater awareness, and should
also serve to modify and improve the mathematics they produce. Foundational
research should go beyond the search for consistency or the repetition of the
controversy between Brouwer and Hilbert, albeit in updated forms.

The search for a synthesis between formalism and constructivism, and a medi-
tation on Gödel incompleteness open to discussion, rather than a dogmatic denial
of its meaning as for example Bourbaki did, leads in a natural way to conceive
mathematics as dynamic and plural, that is the result of a human achievement,
rather than static, complete, unique, that is, a given absolute truth. In other
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words, it becomes possible to see the domain of mathematics as a product of a
Darwinian process of evolution, as is the case with all the other domains of science.
The common vision of mathematics as a manifestation of truth is modified and
mathematics is transformed into a theory of abstractions and the information they
manage, produced by ourselves through a dynamic process starting from reality.
The effectiveness and objectivity of mathematics are not given, but conquered
through the dynamic interaction between abstraction and application to reality. I
call dynamic constructivism this foundational attitude.

For over 25 years (since 1991 with Sambin (1991) in theory, and since the mid-
1990s also in the practice of mathematics (Sambin 2002, 2008, 2011, 2012, 2015,
2017)) I have engaged myself in developing a dynamic vision of mathematics at the
same time putting it to the test of practice in the actual development of topology.

It is very interesting to confirm that on the basis of dynamic constructivism one
can really develop topology. But even more interesting, and largely unexpected,
is the discovery that assuming profoundly such a change of attitude towards
foundations leads also to many new results. The concrete development of topology
(see Sambin (2020, to appear) of which this chapter is an anticipation) has revealed
some deep structures underlying topology which in theory were already visible in
the 1930s of the twentieth century but were not seen in practice because of the
dazzling light of the accepted view.

After a brief explanation of the motivations and a brief introduction to dynamic
constructivism and the Minimalist Foundation that corresponds to it, the purpose of
this chapter is to illustrate what changes it induces in the practice of mathematics
and what novelties it allows to obtain in mathematics (symmetry and duality in
topology and in general a deeper connection between logic and topology, continuity
as a commutative square, mathematisation of existential statements, embedding of
topology with points into that without points, algebrisation of topology,. . . ) and in
its foundation (a foundational system with two levels of abstraction linked by the
forget-restore principle, conservativity of ideal aspects over real mathematics,. . . ).

So, in hindsight, one can see all the signs of a new Kuhnian paradigm also for
mathematics.

21.1 Towards a New Paradigm in Mathematics: Dynamic
Constructivism

The purpose of this section is to introduce the general motivations and char-
acteristics of the new attitude towards foundations that I have called dynamic
constructivism. It seems to me that the best way to motivate and illustrate dynamic
constructivism is to start with a brief overview of the historical development of the
debate on foundations1 and a description of the current situation, as I see it.

1The chapters by Priest and by Wagner, as well as the general introduction of this volume, contain
analogous overviews.
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More than a philosophical examination, my intention is to attempt to acquire
awareness on the part of mathematicians. Finally, I illustrate schematically some
methodological principles showing what my proposal means in practice.

21.1.1 The Problem of Foundations, Hilbert Program,
Enriques Criterion and Gödel Theorems

The problem of foundations is the attempt to give answers to some questions such as:
What is mathematics? What is its meaning? Where does it come from? The problem
of foundations has been seriously posed only twice in the history of mankind. The
first time it was faced in ancient Greece by many scholars, including Pythagoras,
Zeno, Plato, and finally Euclid, who expresses all of mathematics in geometric
language.

The discovery of non-Euclidean geometry, the birth of abstract algebra, the need
of a rigorous formulation of analysis in the nineteenth century, strained intuition and
made the problem of foundations for the second time pressing and inevitable. The
question was: is it possible to still keep everything together in one system and give
it a meaning? A positive answer was seen in set theory, later called naive, developed
mainly by Cantor, with contributions by Frege, Dedekind and Peano.

This theory worked well, apparently, but, as history teaches us, it soon gave rise
to some paradoxes: among the first, that of Burali-Forti in 1896 and among the best
known, that of Russell in 1901.

The paradoxes were not a completely negative experience, because they forced
a rethinking, but they shook the entire community of mathematicians and logicians
because it was clear that such a problem could not remain ignored. The first thirty
years of the twentieth century are commonly known as the period of crisis of
foundations.

It is well known there were three lines of thought that developed then: formalism
(chiefly by Hilbert), constructivism (chiefly by Brouwer), and logicism (chiefly by
Russell). I will briefly discuss formalism and constructivism, which are the two
currents of thought that played a fundamental role in the formulation of my new
approach.

What goes by the name of Hilbert’s program was to prove the coherence of an
axiomatised version of set theory, with the only purpose of avoiding contradictions
and thus demonstrating its consistency in a purely formal way, by studying it meta-
mathematically. ZFC, namely Zermelo-Fraenkel plus the axiom of Choice, is an
axiomatic set theory that tries to avoid the paradoxes, and retain the power of
Cantor’s naive theory of sets. Hilbert’s request was to demonstrate the consistency
of ZFC in an irrefutable way, that is, using only the tools of what he calls finitary,
or real mathematics.

Brouwer argued that the solution provided by Hilbert was not sufficient because
it removed the ground under the feet of mathematics, leaving it devoid of meaning.
Federigo Enriques, a contemporary of Hilbert and Brouwer, but closer to the latter,
had a less extreme position. While expressing gracefully in a beautiful old style
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Italian, he does not spare a few lashes to Hilbert: “Hilbert seeks for a logical
demonstration [of consistency], but we do not quite see in what sense the views of
the illustrious geometer should be understood.” (Enriques 1906, page 134, footnote).

And again in what I call Enriques’ criterion: “If then you would not lose yourself
in a dream devoid of sense, you should not forget the supreme condition of positivity,
by means of which the critical judgement must affirm or deny, in the last analysis,
facts either particular or general.” (Enriques 1906, page 11, my emphasis).

ZFC does not meet Enriques’ criterion: it does not talk about facts, no concrete
interpretation of it has been given. Moreover, we do not even know whether it is
consistent, in the sense that we do not have a proof and probably we will never have
one. In fact, the request that all mathematics can be done within ZFC means that
within mathematics it is not possible to prove the consistency of set theory, since
ZFC does not prove Con(ZFC) by Gödel’s second incompleteness theorem.

For some mysterious reasons, the weakest theory from a theoretical point of
view became the most common. What happened? After Gödel theorems, Bourbaki’s
attitude, which is basically a denial of the problem, became common. Can’t we
prove consistency? We declare it is not a problem! We are not interested in the
problem of foundations, we consider it solved once and for all. Logic and the
problem of foundations are not part of mainstream mathematics, those who still
deal with it are not first class mathematicians.

An explicit expression of this is given by Dieudonné, who in Dieudonné (1970)
says: “On foundations we believe in the reality of mathematics, but of course when
philosophers attack us with their paradoxes we rush to hide behind formalism
and say: ‘Mathematics is just a combination of meaningless symbols’ and then
we bring out Chaps. 1 and 2 on set theory. Finally we are left in peace to go
back to our mathematics and do it as we have always done, with the feeling
each mathematician has that he is working with something real. This sensation is
probably an illusion, but is very convenient. That is Bourbaki’s attitude towards
foundations.” The choice of words (attack/hide, meaningless/real, feeling/illusion)
is particularly illuminating.

We will see later on how the bourbakists were wrong and how overcoming this
rigid and irreverent position towards the problem of foundations can be very fruitful,
even within mathematics.

In any case, the problem of the meaning of mathematics and of what one is
talking about when one talks of mathematical entities remains open. Trust in a
theory for which there is no proof of consistency is more like an act of faith than a
criterion provided with some kind of scientific content. When bourbakists declare
that the problem of foundations does not concern them is the same as looking at a
tree without grasping the forest behind it.

As for me, I believe that this attitude cannot be the basis of a healthy foundation
of mathematics. ZFC, which was supposed to be the solution, has become part of
the problem which, in addition, hinders any advancement towards more solid and
convincing innovations.
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21.1.2 Towards a Synthesis

Analysing the formalist approach by Hilbert and the constructivist one by Brouwer,
we can somehow perceive the traces of a dynamic similar to that between Hegelian
thesis and antithesis which, however, precisely because of its dynamic/dialectic
nature, requires an overcoming, a synthesis.

The classical approach proposed by Hilbert program, that declares mathematics
to be self-sufficient, that is, capable of justifying its own meaning by virtue
of consistency of its formalised version such as ZFC, is destined to confront
dialectically with the other approach, that of Brouwer which, on the contrary,
requires each statement of mathematics to have a computational meaning, that is,
a meaning provided operatively by applications to concrete entities.

The dialectic, that is, the dynamic interplay that has seen the opposition between
formalists and constructivists, has generated in the course of the twentieth century
gradually more detailed positions, without however triggering a real overcoming.

The abstractness of the formalist position as opposed to the sometimes slavish
concreteness of the constructivist one can, in fact, trigger a mechanism for synthesis
that brings together the positive of the two positions, and elevates them generating
new conceptions and new perspectives.

Bishop’s book (Bishop 1967) showed that constructive mathematics, in particular
analysis, does not depend on Brouwer’s subjective views and is much simpler than
previously expected. After the book Bishop (1967), constructive mathematics has
become a rich and vibrant field of research. However, it has not been successful
among mathematicians because they fear that too large a part of classical math-
ematics should be amputated, and they perceive motivations as still unclear and
partly subjective.

One can see that after Bishop many other fields of mathematics (geometry,
algebra, measure theory,. . . ) can be developed constructively and some entirely
new branches have been created (I have contributed myself with formal topology
(Sambin 1987)).

These advancements in constructive mathematics, unimaginable a hundred and
even fifty years ago, should make both parties more relaxed: formalists no longer
have reasons to fear a revolution that amputates mathematics, constructivists no
longer need to take refuge in motivations foreign to mathematics, because they are
aware of their own potential.

So today times are ripe and the moment is right to start a synthesis, which already
manifests itself, in my opinion, in terms of a dynamic and minimalist approach.

One problem of the formalist treatment, via ZFC, is the surrender of our intuition
in the face of an alleged superior authority. For example, ZFC proves the existence
of a well ordering of real numbers, but nobody is able today, and probably also in
the future, to exhibit it. That well ordering exists only in a platonic world. So an
argument based on acts of faith, such as that of the truth of ZFC, produces a piece
of concrete information, such as that on real numbers, that cannot be obtained with
a proof made entirely of concrete arguments (that is, which can only be obtained by
passing through the full power of ZFC).
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In the technical terms of logic, this is a situation of non-conservativity: a higher,
abstract system proves some statements about a lower, more concrete one, and
therefore with higher priority, that cannot be obtained in the lower system itself.

The reason why non-conservativity is commonly accepted lies, in my opinion,
in the fact that one assumes bivalence, that is, the classical notion of truth, and
completeness of theories, and these two are postulated because one presumes one
can achieve security and stability through immobility.2 Thus one falls into purely
ideal knowledge.

The tragic side of this choice is that one prefers to destroy one’s intuition rather
than to give up, or modify, ideology. I believe we should abandon this kind of
vision, especially in a global world that needs to accept a plurality of views, and
therefore needs more soft, flexible, adaptable views, that base their strength on
internal awareness rather than external authority or force.

One problem of the constructivist treatment is that, fearing the dangers of the
formalist escape towards pure linguistic expressions without content, it has sought
a solution by banning any ideal aspect from mathematics and restricting only to
computational content (numerical meaning). This position is crystal clear in Bishop,
for example.

I believe this has really sacrificed mathematics. Mathematics is not just compu-
tation, it is made up of many other ingredients: spatial intuition, mainly, but also
formal deduction, axiomatic method, etc.

These are the shortcomings we should try to adjust. The task is not pure
presentation, it also requires some conceptual change. In fact, in order to be able to
make a synthesis, we must expand both visions, by distinguishing total information,
related to computation and therefore to real mathematics, from partial information,
related to ideal aspects.

Hilbert’s vision implicitly included real mathematics in constructive mathematics
and asked for consistency of the theory of ideal aspects. Then, in a bit crude words, a
synthesis should be sought by modifying this vision, on the one hand by identifying
real mathematics with the constructive one in the sense of effective (which also
includes a treatment of infinity), and on the other hand by strengthening, after
Gödel’s lesson, the request for consistency of ideal mathematics into a request for
its conservativity over real mathematics.

The attempt to make a synthesis between formalism and constructivism requires
abandoning the idea of an absolute and complete truth and all acts of faith in an
authority external to us, and instead seeking a perspective that allows conservativity
of ideal entities with respect to real mathematics. Thus we are guided in a natural
way towards a dynamic vision.

An open and profound reflection on Gödel incompleteness theorems, in contrast
to the dogmatic and superficial denial of its meaning by Bourbaki, naturally leads to
similar conclusions. Meditation on Gödel theorems leads us to the conclusion that
truth and mathematics cannot be reduced to a system chosen once and for all, but

2Assuming classical logic and completeness of the more concrete system, conservativity of the
higher one coincides with its consistency.
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there is always something left out to be conquered, step by step. Every time we try to
block truth and mathematics in a system, due to the phenomenon of incompleteness
we can observe that something is left out. But then, again, we might as well conceive
mathematics in a dynamic way.

Therefore the main challenge, and my proposal, is to move from a view of
mathematics as static, complete, unique, transcendent, that is, an absolute given
truth, to one in which mathematics is seen as a dynamic, partial, plural, evolutionary
human achievement. This is the paradigm shift that I propose.

In other words, we should move from a view of mathematics external to us,
with some religious flavour, to a totally human vision, based on evolution. Bishop
basically says that mathematics has a special status, but he does not explain why.
His objection to ZFC is due to its lack of numerical meaning, and not because he is
reluctant to concede mathematics a transcendent nature (see page 1 of Bishop 1967).

Evolution is now commonly accepted in science, except in the domain of
mathematics. It becomes possible to see also the domain of mathematics as the
product of a Darwinian evolutionary process, as with all other domains of science.
The difference is “only” that the domain of mathematics, its object of study, that
is mathematical entities, are produced by ourselves human beings, rather than by
nature (one could say: produced by nature, through us natural human beings).

I wrote about this idea in detail in Sambin (1991) (in Italian). In Sambin (2002), I
express it this way: “It is now generally believed by biologists and by neuroscientists
that nothing beyond biology and evolution is theoretically necessary to explain
human beings, that is, their bodies and their minds. [. . . ] No metaphysics, no ghosts,
no homunculi. This is a big intellectual change, which has lead to a new global
cultural attitude. My general claim is simply that the same holds for logic and
mathematics. That is, a naturalistic, evolutionary attitude is fully sufficient, and [. . . ]
actually convenient for explaining not only the human body and mind, but also all
human intellectual products, including logic and mathematics, which are just the
most exact of these. That is, mathematics is a product of our minds and so to explain
it we require no more than what is needed by biologists to explain the mind.”

In a nutshell, mathematics does not come from heaven, but is built entirely by
humans in a dynamic process that selects and stabilizes what works, and drops what
does not work, just as in Darwinian natural evolution.

A dynamic vision, which includes different qualities of information, is the key to
solving the problems left unresolved by other approaches to foundations:

1. to constructivists, it provides access to ideal entities, as partial information, or
non-numerical information, without having to modify their own conception of
computational mathematics,

2. to formalists, it allows not to loose meaning, by making it clear that ideal entities
are not a truth above our heads, that we must accept even at the cost of sacrificing
our intuition, but rather some fictitious entities that we introduce to simplify the
treatment of real mathematics, but without modifying it, let alone contradict it.

I have deeply assumed such a change of foundational attitude in my practical
work of mathematical research (in constructive topology), even before being able to
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communicate it adequately. Unexpectedly, in a certain sense, this has also brought
with it many new results and changes in the practice of mathematics.

The purpose of the present paper is to illustrate these novelties in practice, both
in methodology (a foundation which is open, minimalist, flexible, intentionally
incomplete and with two levels of abstraction,. . . ), and in results (a deeper con-
nection between logic and topology, a mathematization of existential statements, an
embedding of topology with points into topology without points, algebrization of
topology,. . . ).

Not long ago, with hindsight, that is after having implemented it without being
aware of it, I realized that these changes could be seen as the practical signs of a
paradigm shift, in the sense of Kuhn (1962), even for mathematics.

21.1.3 A Plural and Dynamic View of Mathematics

Now I spend a few words to explain how it is possible to conceive mathematics as
obtained dynamically, not only the historical process of growth of knowledge, but
also the actual construction of its entities. What is mathematics? Let us look at facts
and rephrase the question in these terms: what is a mathematical abstraction?

One starts from reality, one extracts some features considered relevant, one gets
something that is more sharply defined and easier to manipulate in place of the
things from which it comes, which are more complex and articulated, and finally
the result of such manipulation is applied to reality itself.

It is much simpler and more efficient to manipulate symbols than things. For
example, if one has to count large quantities of goods, it is better to do it with
the help of simpler tokens in place of goods themselves, so that one can easily
manipulate them, rather than counting goods one by one in reality.

When one reads it as a progressive process of abstraction, mathematics is well
explained through a diagram like that: one abstracts, one manipulates, and then one
applies. If it works, that is, if the diagram is commutative, the abstraction is accepted
and one goes on. If it does not work, one adjusts it or looks for a better one. This is
somehow the beginning of everything.

Every culture has its own mathematics. It is useful to man for survival, a sort
of continuation of natural evolution. The main idea is that mathematics is an
evolutionary advantage that all cultures have developed. In my opinion, mathematics
is the exploration and use of abstract notions and structures produced by our thought
and that can be useful in a completely reliable way to understand the world.

It should not be difficult to agree with this perspective. However, if one takes it
seriously, it has many clear consequences to which not many people come.
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The first is that nothing is given. Every notion is the result of human abstraction
starting from reality, which includes previously constructed mathematics.

The second is that, since abstractions are the result of a human process, there
is no reason why there should be only one way of obtaining them. Each different
foundation expresses a different criterion with which to abstract, a different style
of abstraction. If mathematics is the creation and study of abstract concepts, a
foundation is a choice of how to abstract them from reality.

The third is that application is an essential and integral part of mathematics,
otherwise the dynamic process would not even begin. Application is part of
mathematics, it is not something separate, as in the traditional division between
pure mathematics and applied mathematics. The isolation of mathematics from its
applications means that it focuses on the manipulation of entities, and then in fact
forgets the importance of the process of abstraction with which such entities and
concepts are created, that is the process by which we arrive at definitions.

The fourth consequence is that the question “what are mathematical entities?”
is replaced by: why and how do we build them? how do we communicate them?
to which domains can we fruitfully apply them? It is always a matter of referring
to us, and not to something given externally to us. We are the measure of things in
the sense that we humans equip ourselves with the tools we believe to be useful to
improve our lives.

Remember that the object of study of all other sciences today has an evolutionary
explanation. Why should mathematics be the only exception?

The fifth consequence is that objectivity of mathematics is a result, and not
something given. Objectivity is a goal, which is reached through a laborious
dynamic process, and not a place to start from, set down by others.

21.1.4 Some Principles of Dynamic Constructivism

To enter immediately into the heart of what we have developed so far, let’s move
on and see how this new vision is put into practice. In order to obtain some meta-
mathematical results (such as normalization, extraction of programs, computational
or realizability interpretation, etc.) one needs a formal system to be specified in all
detail. The Minimalist Foundation (MF), introduced in Maietti and Sambin (2005)
and Maietti (2009), seems the best one can do to express the ideas of dynamic
constructivism in a formal system. We here will focus on conceptual novelties of
MF that are made possible by the dynamic view.

Adopting dynamic constructivism in practice means, from a formal point of view,
developing mathematics using MF as a foundation. From an informal point of view,
it means following these four principles:

1. Pluralism in foundations and hence in mathematics3 We have already said
that there are many different ways to abstract. One could say that the choice

3See the chapters by Friend, Priest, and Wagner in this volume for other views on pluralism.
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of a foundation (or foundational system) represents one of these ways, which
corresponds to the choice of which kind of information is considered relevant and
which is not, and therefore what should be maintained or left out, in the process of
abstraction.

Every different style with which abstractions are made, that is every different
foundation, yields a different way of doing mathematics. First comes the style of
abstraction, that is the foundation, and then the resulting mathematics. There is no
single foundation nor a privileged one. Each foundation produces a different kind
of mathematics and should be respected.

For example, constructive mathematics does not coincide with the construc-
tivization of classical mathematics, that is to say with classical mathematics
developed according to stricter principles of proof; because at least half of the
work, and actually the most exciting half, consists in finding appropriate definitions,
corresponding to the different way of abstracting.

Pluralism is an immediate consequence. But pluralism includes, in my opin-
ion, also finding a common root for seemingly incompatible points of view
or approaches. MF is compatible with the most relevant foundations for both
constructive and classical mathematics, predicative and impredicative (constructive
type theory, calculus of construction, internal theory of toposes, axiomatic set
theory, both classical and constructive, Feferman’s explicit mathematics) in the
sense that each of them can be obtained as an extension of MF.

2. Accept open concepts and incomplete theories Since the construction of math-
ematics is a never-ending process and – as we said – nothing is given a priori,
in advance, one should avoid whatever blocks the process, as it happens when
assuming a fixed universe of all sets, or of all subsets, or of all propositions.

So many of our notions, through which we describe reality, are open, intrinsically
incomplete. It is not necessary to assume that there is a universe of all sets, or
equivalently that sets exist independently of us humans. Simply, whenever we run
into an aggregate of objects meeting the conditions we have established to be called
a set, we will call that aggregate a “set”.

Contrary to a common vision, this is not a limitation but the source of a more
relaxed vision and a deeper understanding. The consistency of the minimalist
foundation MF becomes a theorem with every rigour in the sense specified later,
contrary to the case of axiomatic set theory ZFC.

3. Preserve all conceptual distinctions and all fragments of information There is
no reason why all aspects of our abstract thinking should be reducible to a single
notion, such as that of set. What about the notion of operation, for example? Or
about the notion of proposition: why should it be the same as a set?

When mathematics ceases to be conceived as existing in itself, as the gift offered
to us by some transcendental assumption, all its results (not only theorems or
solutions to problems, but also definitions, intuitions, conceptual distinctions, etc.)
are the result of the human struggle for knowledge, and thus all of them become
valuable and must be kept and respected, as they are, without reducing everything
to a single notion, like that of set.
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As a result, many more primitive notions than usual are maintained so that,
alongside the notion of set, we will have the notion of collection and proposition,
even in their form under assumptions (which produce the notions of operation,
subset, relation, function, etc.). Moreover, we adopt a logic, such as intuitionistic
(or constructive) logic, which is more refined in maintaining conceptual distinctions,
such as that between ϕ and ¬¬ϕ, or that between ∃xϕ and ¬∀x¬ϕ.

In other words, on the one hand we want to keep under control the validity of
every assumption of foundational character and, on the other, keep all information,
of any kind, even partial, unless it can be restored automatically.

Being respectful of all notions becomes being careful not to forget or fictitiously
introduce any information. A high resolution of concepts (such as a high resolution
image) is obtained – perhaps paradoxically for some – through a minimalist choice
of assumptions. The examples in Sect. 21.1.5 should remove all doubts about this.

Dealing also with partial information means going beyond the position of those
constructivists, as Bishop and Martin-Löf, who, in order to eliminate any ideal
aspect and keep information under control, have self-limited themselves to the case
in which one has complete information, as in computation.

In particular, Martin-Löf constructive type theory has total control over infor-
mation, and in particular it is intensional. This is fine for meta-mathematical
properties and for formalization in a proof-assistant, but it is not so good for doing
mathematics, which is extensional (instructions defining an operation do not appear
in the concept of equality, the proof that P(a) is true is not relevant to conclude that
a belongs to the subset corresponding to P ,. . . ).

To actually use type theory in the practice of mathematics, in particular to get the
usual extensional concept of subset and of relation, we need to relax total control
and we “forget” some piece of information. As I hint further, a way to do this
is to abandon the propositions-as-sets principle, that is at the base of Martin-Löf
type theory (and that can be read as a rigorous expression of the so-called BHK
interpretation of intuitionistic logic), and introduce the concept of proposition as
primitive, and independent from the concept of set.

At that point, an autonomous justification of intuitionistic logic is needed as
an alternative to BHK. We believe we can explain logical constants by taking
the difference between levels of abstraction seriously: each logical constant is the
reflection at the (more abstract) level of object language of a link between assertions
at the (more concrete) meta-level. But this is another story, which is not going to be
told here, see Sambin et al. (2000).

4. Keep all the different levels of abstraction It is a fact that communication can
have different levels of reference, which in mathematics is expressed through the
fundamental distinction between language and metalanguage, but also different
levels of abstraction. In the Minimalist Foundation the intensional aspects coexist
with the extensional ones, and this is achieved by formulating MF with two levels
of abstraction. The extensional level is as close as possible to the practice of
constructive mathematics, while the intensional level is closer to the formalization
of mathematics, for example in a proof assistant.
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In addition, the distinction between the ideal and real aspects of mathematics can
be kept within MF, through the set/collection and operation/function distinctions
(see below).

In conclusion, it can be shown that the Minimalist Foundation satisfies all the
properties that a foundation of a dynamic view of mathematics should have in order
to be completely satisfactory. This means it is:

Applicable, meaningful This means that it fulfils Enriques’ criterion: applications
are the facts we talk about. In rigorous terms, “facts” consist of the computational
content, as expressed by a realizability interpretation, see Maietti and Maschio
(2014).

Reliable We trust in its consistency because we have a proof of it, and not by
acts of faith or emotions. This follows from the realizability interpretation, that
is from the fact that Enriques’ criterion is satisfied.
Consistency also follows from the existence of a normalization procedure for
derivations. Normalization and realizability are proved at the intensional level,
but then their consequences propagate to the extensional level, since the two
levels of MF are linked according to the forget-restore principle, as proved in
Maietti (2009).
Consistency of MF is immediately reducible to that of a fragment of Martin-Löf
type theory, for which several proofs are available in the literature.

Universal It allows one to express and preserve all significant conceptual distinc-
tions. Every notion has a clear and specific meaning. That is why it is minimalist
in assumptions, because it aims to be maximal in conceptual distinctions.
It is universal also in the sense that all foundations can be expressed as extensions
of MF, adding appropriate assumptions.
These properties make it a very natural framework for pluralism, because they
allow to express all possible foundations within the same picture and therefore to
compare them more easily. In particular, it is the best possible environment for
“reverse mathematics”, as it provides a rigorous common basis for analyzing the
various other foundational hypotheses.

Precise It can be formalized with the precision required by the formalization of
mathematics in a proof assistant (see Sacerdoti Coen and Tassi 2011).

All this is possible! The Minimalist Foundation MF fully agrees with the perspective
of dynamic constructivism.

Some positive features are the following. Having many levels of abstraction
means being able to choose the best one for the problem in question or for different
purposes. For example, we can maintain our spatial intuitions even when we treat
computation. No basic principle is assumed that can “lose” information and no
information is assumed to be given or restored for free.

Mathematics becomes a theory (in fact, the various possible theories) for the
management of abstractions and the information they transmit. Since in reality we
often have different qualities of information, even partial or less sharp information
should be preserved.
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Having all the conceptual distinctions, namely keeping all the ingredients of
mathematics, means keeping our intuitions even when it comes to computations
(or programs). And it also means being able to express all the nuances of specific
concrete problems.

21.1.5 Minimalism in Practice

In practice, forgetting the intensional level that is used only to obtain meta-
mathematical results and formalization in a proof assistant, the ideas behind MF
are simple, even for mathematicians with no concern for foundations, that is, even
without specifying the formal system. Even for them a concept of proposition, of
generated or non-generated set and judgments of this kind, but dependent on an
argument (set-indexed family of sets, set-indexed family of elements, etc.) are clear
and intuitive, on an informal level. Nothing else is needed.

The real and profound difference that I propose, with respect to the common
vision, is that mathematical entities do not exist in themselves, but it is us who build
them. Moreover, none of the common assumptions are made on these entities, for
the reasons we now see.

Following the general principle that suggests keeping all conceptual distinctions,
we wish to distinguish a positive notion of existence, an effective notion of set and
of function, from the corresponding notions, but negative or not effective.

1. A positive notion of existence Following the general principle, we wish to
distinguish a positive (constructive) notion of existence ∃xϕ, which allows us, at
least ideally, to build a witness d that certifies existence, that is, for which ϕ(d) is
valid, from a negative (classical) ¬∀x¬ϕ, in which one proves that the denial of
existence leads to an absurdity. This means that we cannot accept as universally
valid the law of the excluded middle, that says that for any proposition ϕ, either ϕ
is true or its negation ¬ϕ is true, even if we do not know which of these:

LEM (Law of Excluded Middle)) ϕ ∨ ¬ϕ true for all propositions ϕ.

In fact, assuming LEM, the equivalence between ∃xϕ and ¬∀x¬ϕ is derivable (this
is a generalization of the de Morgan law ϕ ∨ ψ ↔ ¬(¬ϕ & ¬ψ)).

I would like to stress and clarify right away that, in our approach, where there is
no absolute and predetermined concept of truth, the question at stake is not to believe
in the truth of LEM or not, but to decide whether we are interested in maintaining or
not a distinction between two different types of information (∃ and ¬∀¬) that the
assumption of LEM nullifies.

That is, LEM destroys a different quality of information, such as that between ∃xϕ
and ¬∀x¬ϕ. So much so that many classical mathematicians do not even perceive
the difference. The matter is deciding whether this suits us or not. So, in reverse,
those who are not willing to give up LEM show that they do not care, or do not
consider it relevant, to keep the distinction between ∃xϕ and ¬∀x¬ϕ.
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We are interested in maintaining a positive understanding of the existential
quantifier, which cannot be derived or borrowed from anything other. Therefore we
cannot assume validity of LEM, and this means that we must adopt constructive (or
intuitionistic) logic.

2. An effective notion of set The relation of the distinction between generated or
non-generated set, with the axiom of the power set is conceptually analogous to
the one just seen between positive and negative exists, with the principle LEM. The
axiom of the power set says that:

PSA (Power Set Axiom) if X s a set, then PX is a set,

where PX is formed by all subsets ofX. As we now see, assuming this axiom means
not considering the distinction between two different notions, which we call here set
and collection, within the notion of set of classical mathematics.4

The notion of set has for us an effective meaning; that is, we call set the situation
in which we have a finite number of definite rules to construct all elements. The
formal way of expressing that all the elements are obtained by iterated use of the
rules is to assume that a principle of proof by induction holds. Our sets are therefore
inductively generated.

The notion of element x of a setX is included in the previous explanation: x is an
element of X, written x ∈ X as usual, if x is obtained by applying (a finite number
of times) the rules defining X.

Therefore the question: what is a set? has for us a practical answer. To give a set
means to exhibit the finite number of rules by which we obtain all its elements. We
are the ones who build sets, and so it is sufficient to remember the rules with which
we (or others) have built them. This view is hardly compatible with an axiomatic
approach, in which information is not retained of what the specific rules for building
a set are.

Typical examples of sets in our sense are finite sets, the set N of natural numbers,
lists of elements over a set, or the product of sets, etc.

A collection is an aggregate of objects without exhaustive rules to build them,
that is, without principles of induction. So, while a set is effective, real, completely
communicable and stable over time (as determined univocally by a finite number of
rules), a collection is an ideal, open concept, which theoretically could change.

A typical example of collection is given by PX, all subsets of a set X. In fact, a
constructive notion says that a subset of a set X is a proposition with an argument
x ∈ X. And that two subsets are equal if for each x of X they are equivalent as
propositions. Then it is easy to show, with an argument by diagonalization, that
there cannot be a finite number of rules with which all subsets of X can be built. So
PX is definable constructively only as a collection.

4Note that it is not a mere matter of words; if the classical meaning of the word set is considered
by now fixed, our sets might be called proper, or small, or effective sets.
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Assuming the validity of PSA, as in ZFC, means not being interested in the
distinction of sets from collections, that is, sets that are actually constructible from
those that are not. Conversely, rejection of PSA allows us to preserve an effective
notion of set, and keep it distinct from that of collection.

3. An effective notion of function The situation is quite similar for a third conceptual
distinction, even if it is seldom made and preserved.

We call operation a family of elements indexed on a set g(x) ∈ S (x ∈ X). This
means that we know how to obtain an explicit description of the value g(x), when
we are provided with an explicit description of the argument x. So what we call
operation here coincides with the common notion of function in constructivism, for
example in Bishop and Martin-Löf.

We wish to distinguish this notion from that of function, in the sense of functional
relation, which is typical of classical mathematics. A (binary) relation R(x, a) from
X to S is a proposition that depends on two arguments x ∈ X and a ∈ S (instead
of only one argument, as in the notion of subset). And two relations are said to be
equal if for all x and a they give equivalent propositions. Then here a function is
nothing but a total and singlevalued relation, that is a relation that satisfies (∀x ∈
X)(∃!a ∈ S)R(x, a). This is the usual set-theoretic definition.

Informally, we know that on every argument x the value of the function exists and
is unique, but we do not know how to obtain it explicitly. So, in a sense, a function
can be thought of as an operation built by someone else, but who does not give us
the instructions with which she built it. In this case we have no chance to restore
them (for example, if the other person is an opponent in a two-handed game and the
operation is her strategy in choosing the moves, from our point of view that is only
a function).

A link between the two notions is present in any case, in the sense that every
operation g(x) ∈ S (x ∈ X) gives rise to a function ĝ(x, a) ≡ (g(x) = a), the
graph of g. But we do not accept validity of the converse, that is, that each function
is the graph of an operation, because this would be like expecting to be able to
explicitly describe the values of g, even when only their existence and uniqueness
are known.

As we will see, this is a simple way to get a mathematical characterization of
Brouwer’s choice sequences. Therefore we cannot accept without restriction the
validity of the so-called axiom of unique choice (for operations):

AC! (Axiom of Unique Choice): (∀x∈X)(∃!a∈S)R(x, a)→ (∃g∈OP(X, S))(∀x∈
X)R(x, g(x)).

where R is a relation and g ∈ OP(X, S) is an operation from X to S. In fact, this
would mean that every function is the graph of an operation, which is precisely what
we wish to avoid. Of course, a fortiori we cannot accept the axiom of choice AC in
the form (∀x ∈ X)(∃a ∈ S)R(x, a)→ (∃g ∈ OP(X, S))(∀x ∈ X)R(x, g(x)).

Given that many consider AC! a tautology, or (in the constructive context) many
consider AC! valid simply by the constructive interpretation of quantifiers, it is
convenient to explain the way in which its validity can be kept under control. The
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issue is to distinguish a weak, although positive, concept of existence ∃ from a
concept of strong existence, such as that expressed by � in Martin-Löf type theory.

We say that ∃xϕ(x) is true when we have a guarantee that a witness d that makes
ϕ(d) true can eventually be found, at least ideally, even if no operation is available
to provide it (as instead it happens for �). An example of such existence ∃ (besides
the one appearing in the game above) could be given by the situation in which our
wedding ring is lost at a party in the open air by a friend: we know with positive
certainty that there is a wedding ring in our friend’s garden, but we have no effective
procedure that allows us to find it.

In order to maintain this further distinction (between ∃ and�), another principle,
which is typical of Martin-Löf type theory, must be kept under control, namely the
so-called propositions-as-sets, which identifies sets with propositions (and therefore
∃ with �). In fact, if in the formulation of AC! above we replace ∃ with �, then, as
it is well known, it turns out to be derivable.

In conclusion, to preserve the distinction between operations and functions we
must keep propositions distinct from sets, and this is the main departure from
Martin-Löf type theory.

21.2 New Mathematics Arising from Dynamic
Constructivism

The most personal and profound reason why I chose to undertake the challenge of
writing a book Sambin (2020, to appear) and I faced all the relative effort is to show,
to myself and others, that one can “rebuild the universe” of mathematical thought
according to the new criteria that I have developed over many years of research
activity and that I have seen possible thanks to the synthesis between formalism and
constructivism of which I spoke above (in Sect. 21.1.2).

I wanted to show that one can build an environment in which I could always feel
at ease, even in the technically most difficult steps, because I have experienced that
even to those it was possible to give an explanation and a clear explicit motivation.
I hope readers too will feel comfortable within this new approach.

So my motivation is foundational (or philosophical) as much as mathematical.
It is my belief that, on the one hand, the study of a (constructive) foundation
of mathematics necessarily goes together with putting it into practice developing
mathematics actually, and on the other hand, the development of mathematics
should always also include awareness of the foundation in which this is possible.

My main foundational need is to be able to have a mathematics that admits an
explanation without any kind of “transcendental” assumption, that is devoid of any
form of platonism, in which for every entity one can tell how and why it was built
or introduced by us human beings. This means showing with facts that there is a
mathematics that explicitly maintains a clear, direct or indirect link with the concrete
reality of which it speaks abstractly.
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In my opinion, mathematics is an arsenal of conceptual tools, very well thought
out and developed, with which we organise our knowledge of reality. Constructivism
means, ultimately, full awareness of what notions and principles are used, or what
abstractions and idealizations apply, when we look – mathematically – at reality.

What I pursue, in the final analysis, is a mathematics in which one can see how
dynamic constructivism, described above, is put into practice.

So, instead of bringing further theoretical arguments in favour of dynamic
constructivism that little change mathematics itself, I intend to show by facts that
this foundation, in addition to standing up theoretically, works very well in practice.

The purpose of the book I already mentioned several times and that here I
am presenting in preview is to show, with definitions and theorems, that doing
mathematics in a radically new way, both conceptually and technically, is totally
possible and reasonable. The result is a very “clean” mathematics, in which all
ingredients coexist and interact with each other and everything maintains a clear
intuition.

To my knowledge, the development of topology I introduce and discuss in
Sambin (2020, to appear) is the first and only systematic version (as distinct from
meta-mathematical results that only demonstrate the possibility) since the time of
Hermann Weyl (1918) of abstract mathematics developed in a strict and explicit
predicative manner.

Following a tradition for mathematical textbooks, the foundation is left at an
informal level, that is to say, the concepts that are used are illustrated only in
words, just as before the advent of formal systems and computers. Although it is
not necessary to know the formal system for the Minimalist Foundation to be able
to read it, the whole book can be formally expressed within MF. Moreover, it can
be formalized in a proof assistant (as indeed it was done on Matita (Asperti et al.
2011)). Even this alone would be very important conceptually.

If the deepest motivation of what I propose is foundational, why then do we speak
primarily of topology? The reasons are two, of different nature.

1. Topology is the discipline that deals with the connections between finite
and infinite. This makes it fundamental in classical mathematics, and for us even
inescapable. In fact, as we will see, it allows us to introduce constructively (in our
sense) ideal entities, which are determined only by an infinite amount of information
(such as real numbers, or better streams and choice sequences), as ideal points
over an effective structure, and therefore always maintaining the distinction between
what is infinite/ideal and what is finite/effective/real (as required in Sect. 21.1.2).

A fascinating outcome is that the study of foundations is inextricably linked to
topology in a very concrete sense. So topology is not a topic like many others in
mathematics: we would have gone through it anyway.

2. In practical terms, topology is the most difficult subject to develop construc-
tively (in our sense), and so if we succeed with that, we succeed also with all the
rest of mathematics.

Now, even without seeing formal details of the foundational system MF that
corresponds to dynamic constructivism, I would like to make it clear immediately
that the answer to questions such as: can we really develop mathematics, topology
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in particular, on the basis of apparently such a weak foundation? and how much of
classical mathematics can be done? is that not only can mathematics be done, but
that one can do a lot of it. And the part that remains excluded seems to be not so
useful for applications. In any case, even when it is not possible to do something
on the basis of MF, it is interesting to examine what additional principles would be
needed to obtain it.

As the book shows with facts, much of topology can be done only on the basis of
MF. The only addition to MF that must be done throughout the book is a principle
of generation by induction and co-induction which is needed to generate positive
topologies starting from an axiom-set.

Developing topology on the basis of MF means making explicit and keeping
much more pieces of information than usual on stage. These are kept hidden by
“strong” foundations because one expects to be able to rebuild them without actually
being able to do so, and this means, as a matter of fact, they are not really considered
interesting.

Such additional information makes computational interpretation and computer
implementation possible at all, or much easier. All of mathematics we do over MF
offers no obstacle to its implementation in a proof assistant.

However, there is no reason to fear one has to change jobs: it is mathematics as
always, its practice does not change much. The reader will never doubt that it is still
clearly mathematics, and not computer code.

On the contrary, since MF enjoys the advantage of being compatible with any
other foundation, readers do not need to learn a new foundation. They can keep
their own vision, and all what they read remains immediately comprehensible and
valid. In other words, using MF makes it easier to increase that part of mathematics
that is common to all foundations (contrary to the very unpleasant fact, either of not
being able to transfer a result from one foundation to another, or of being able to do
so only at the cost of modifying the proof).

Similarly, this new way of doing mathematics acts as an intermediate between
the usual way and the formalization required by a proof assistant, and remains
the same regardless of the various possible implementations. The advantage over
implementations from classical mathematics directly to computer code is that the
information needed for implementation is maintained (and not abstracted, as usual)
and is included in the mathematics itself. This allows an easier accumulation of
knowledge on the formalization of mathematics in a proof assistant.

In addition, introducing this new way of doing mathematics makes it possible for
mathematicians, and not just computer scientists, to work towards formalization in
a computer. This is why we introduce the extensional level of MF and extensional
notions by way of propositions (subset, relation, etc.). Lack of usual extensional
notions is, in my opinion, the main reason why mathematics on the basis of Martin-
Löf type theory was not much developed so far.

If what can be done of topology to someone seems little or trivial, or reached
through a too long path, just think that it is all effective, implementable. If we keep
in mind that what we are doing is effective topology, then it becomes clear that we
can do a lot, indeed it is surprising that we can do virtually everything.
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Summing up, MF works very well: it allows us to go beyond Bishop, both
in mathematics (topology, axiomatic method, algebra,. . . ), and in foundations
(formalization, implementation).

To get all this a price has been paid: the main task was to start everything
anew from the beginning and find the (constructively) correct basic topological
definitions. This is very different from reformulating constructively the definitions
of classical mathematics.

It is a widespread belief that there is only one mathematics, the classical one,
and that the purpose of constructivism is to develop as much as possible of it while
avoiding “strong” but constructively unreliable principles, such as the principle of
the excluded middle or impredicative definitions. This is the opinion of Bishop
(1967), for example.

With this perspective, the enthusiasm of discovery is only in the hands of classical
mathematicians; what remain to constructivists is only the “moral” satisfaction of
a convincing proof. It is then no wonder if, under this perspective, constructive
mathematics is considered sufficiently interesting only by mathematicians with
particular sensitivities. In fact, what can be the appeal of finding only new proofs,
following more stringent criteria, of well-known facts about well-known concepts?

However, things are not like that at all. A dynamic and pluralist vision leads
to a different conclusion. If a foundation is the choice of the criteria with which
one abstracts from reality to obtain mathematical entities, then a different style
of abstraction, that is a different foundation, gives rise to different entities, which
classical mathematicians neglect de facto, and therefore with them a different
mathematics, with different problems.

In my opinion, the most fascinating part of research in constructive mathematics
is that it reveals new structures and new ways of mathematical thought. But to
create new mathematics, the foundation must be used in practice, and not only
studied meta-mathematically, beginning with definitions, without any dependence
on or deference towards the consolidated classical or impredicative tradition. One
starts from scratch, there is no need for ZFC.

This was done for the Minimalist Foundation. The reward of this patient work
is the surprising and intriguing discovery that the use in practice of a different
foundation, much weaker than previous ones, has fostered the emergence of a new
mathematics, new concepts and new structures that had remained entirely unnoticed,
almost hidden by too strong assumptions such as PSA, LEM and AC.

Thus it turns out that the additional information required and retained by MF
to maintain certain conceptual distinctions (see Sect. 21.1.5) has its own clear
“logical” structure, which lies under the usual notions and results, and which
actually illuminates usual topology, leading to results that are new also for the usual
approach (classical or impredicative).

I insist on concrete development because the most interesting thing is that in
order to carry out what is classically done by applying “strong” principles, we are
forced by practice to invent new concepts and new tools.

claudio.ternullo@ut.ee



474 G. Sambin

A typical example is given by overlap, a notion that one must invent to be able
to speak smoothly and constructively of the inhabited intersection of two subsets
D,E ⊆ X. Formally, one puts:

D � E ≡ (∃x ∈ X)(x ε D & x ε E).

It is useless in classical mathematics, since there it is equivalent toD ∩E �= ∅. But,
as we will see, the use of � in practice pulls out many structures that previously had
remained hidden.

The use of a foundation that preserves a greater distinction between concepts is
analogous to the use of a fishing net with narrower meshes: it takes much more to
the surface. It is also like using a scalpel instead of a razor. The use of new tools or
means of exploration (telescope, microscope, off-road vehicle, laser, computer, soft
climbing shoes,. . . ) has always led to new, previously unimaginable discoveries.
Similarly, the use of the new MF foundation has allowed us to bring out some new,
very clear and solid facts, as we are now going to see.

The production of a new mathematics is an important confirmation of the validity
of the foundational setting. Of this we speak from now on.

21.2.1 Duality, Symmetry and Other Structures at the Base
of Topology

According to the common definition, a topology X on a set of points X is a
subcollectionX ⊆ PX. Usually, one just saysX is a given subset of PX. Recall
that a better management of information means we distinguish sets from collections,
and hence do not assume Power Set Axiom PSA. Moreover, constructively we
should explain what it means that X ⊆ PX is given.

The best we can do is to start from a base for open subsets, that is, a family of
subsets ext (a)⊆ X (a ∈ S) indexed on a second set S, called basic neighbourhoods.
And then obtain X by closing under (set-indexed) unions over these.

Equivalently, one can reduce to (X,, S), where  is the relation defined by
x  a ≡ x ε ext (a). So the basic structure is two sets linked by a relation; one set
of points, one set of indexes, or observables, and a relation  linking the two. I have
called it a basic pair.

The presence of the second set S is the source of several discoveries. Actually,
topology can be seen as the result of the dynamics between two sets X and S,
through the relation . In this setting, one can define basic notions of topology,
like open, closed, cover, positivity, continuity,. . . , and see that they have a deep
structural justification, based on symmetry and logical duality. This was not visible
before, since using PSA the topology X itself is considered to be a set, and hence
the presence of S is not necessary.

The interior of a subset is usually defined to contain all points which are
in some basic neighbourhood that is all contained in the subset. Similarly, the
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closure of a subset is all points which, whenever they are in a neighbourhood, that
neighbourhood overlaps the subset. Then in a basic pair interior and closure of a
subset D ⊆ X are defined by:

x ε intD ≡ ∃a(x  a & ext a ⊆ D), x ε clD ≡ ∀a(x  a→ ext a � D).

Since E � D is the logical dual of E ⊆ D ≡ (∀x ∈ X)(x ε E → x ε D), the
first discovery is that the formulas defining int and cl are exactly the logical dual
of each other, obtained one from another by swapping ∀, ∃ and →, & . This had
not been seen assuming classical logic, because one “simplifies prematurely” using
excluded third and double negation.

By analysing definitions, one can see that int and cl are obtained by composing
more elementary operators between PX and PS. We define ♦,�, ext , rest , by
putting:

a ε ♦D ≡ ext a � D x ε extU ≡ ♦x � U
a ε �D ≡ ext a ⊆ D x ε restU ≡ ♦x ⊆ U

where ♦x ≡ {a ∈ S : x  a}. Since we need it later anyway, we recall here that
ext, rest, ♦,� are nothing but the four possible images of a subset along a relation
r : X→ S when r ≡. The use of � to express an existential quantification, besides
⊆ to express a universal one, makes definitions clear and compact:

existential image a ε r D ≡ r− a � D existential anti-image x ε r−U ≡ r x � U
universal image a ε r−∗D ≡ r− a ⊆ D universal anti-image x ε r∗U ≡ r x ⊆ U (21.1)

where rx ≡ {a ∈ S : xra} for all x ∈ X, and r−a ≡ {x ∈ X : xra} for all a ∈ S.
So ♦, ext are existential and �, rest are universal. Then by definitions it is

int = ext�, cl = rest♦,

that is, int and cl are nothing but a mathematical representation of quantifiers of
the form ∃∀ and ∀∃, respectively. This is evident if one uses relativized quantifiers,
since then x ε intD ≡ (∃a ε ♦x)(∀x ε ext a)(x ε D) and x ε clD ≡ (∀a ε
♦x)(∃x ε ext a)(x ε D), so that the formal difference between int and cl is just
the swap between ∃ and ∀.

With no conditions on , the requirements on the structure X = (X,, S) are
perfectly symmetric. So X sym ≡ (S,−, X), where a − x ≡ x  a, is also a
basic pair. Then a second discovery is that we can define also other operators J ,A
on the side of S, so-called formal side, which are symmetric of int , cl , respectively:

J = ♦ rest , A = � ext .
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In fact, ♦ is symmetric of ext , and � of rest , that is, ♦ coincides with ext sym, the
operator ext in the symmetric basic pair X sym, and similarly for rest .

As we now see, this is the beginning of pointfree topology. A was already known.
The novelty here is the introduction of the operator J ≡ ♦ rest , dual of A, and the
definition of U ⊆ S as formal closed if U = JU .

Since ext / � and ♦ / rest are adjunctions, the operators int ,J
are reductions (contractive, monotone, idempotent) while cl ,A are saturations
(expansive, monotone, idempotent). Moreover, open subsets ofX, that is fixed point
for int , are all and only those of the form extU , for some U ⊆ S. They form a
complete lattice which is isomorphic to fixed points for A, which are hence called
formal open subsets. By duality, something fully analogous holds for closed subsets.
The situation is summarized in the following nice drawing, reminding some from
the Middle Ages:

After lecturing about these structures for over twenty years in the five continents,
to the best of my knowledge I can say that they were never published before. It
is an example of results which were possible in the 1930s, but one had to wait
for a logician in the 1990s to discover them, so sixty years later than what could
happen, simply because he looked for something more informative than the classical
foundation and did not stop! This is the real reason of these satisfactory discoveries;
a long delay due only to a different mindset. They were buried under ideology,
namely excess of assumptions.

In fact, assuming classical logic with LEM, the positive information of the
form ∀∃ which characterizes cl is identified with, and hence replaced by, the
combination ¬∃∀¬, that is absence or negation of an information of the form ∃∀,
which characterizes int . Thus closed subsets are uniquely determined by open
subsets by way of negation, or complement, and closure is explicitly definable
by cl ≡ − int− (complement of interior of complement). In conclusion, the
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strict logical duality between int and cl is reduced to complementation, and
hence becomes invisible. Even without LEM, closure can be uniquely determined
by interior through an impredicative definition. As a consequence, closed subsets
and the operator cl are anyway by and large ignored.

In our approach, closure and interior are mathematical notions representing two
combinations of quantifiers, ∀∃ and ∃∀ respectively, which cannot be reduced to
each other by negation. So they must be treated independently.

Assuming PSA makes the second set S useless, and hence symmetry cannot
emerge. In fact, X itself is a set, and then (X,X) amounts to the basic pair
(X, ε,X) with = ε. So the definition of J also cannot emerge (as it happened,
as a matter of facts).

This is sufficient, in my opinion, to disprove the claim that the classical paradigm
is just “absolute truth”.

The discovery of duality and symmetry manifests a clear logical structure
underlying the notions of open and of closed subsets. It is then natural to investigate
whether the same or similar structure underly also other notions or results of
topology. It has been exciting to make in this way some other discoveries, which
were previously made de facto impossible due to the excessive “power” of ZFC.

The next discovery is that in the framework of basic pairs one can characterize
continuity in a simple structural way. In fact, the presence of bases S, T allows one
to see that a function f : X→ Y is continuous from (X,, S) into (Y,′, T ) if and
only if there is a relation s between S and T such that the square is commutative,
namely ′ ◦f = s ◦ . Then by symmetry it is natural to consider a relation r also
between X and Y , and continuity becomes ′ ◦ r = s ◦ . Formally, one can easily
prove the equivalence of all the following conditions:

1. r is continuous, that is r x � ext b→ ∃a(x  a & ext a ⊆ r−ext b),
2. r− is open,
3. r−ext b = ext (sr−b) for all b ∈ T , where a sr b ≡ ext a ⊆ r−ext b,
4. there exists a relation s : S → T such that ′ ◦ r = s ◦ .

In other words, continuity is the same as commutativity of a square of relations
between sets:

So, when continuity gets free from its bond with functions and when bases are
explicit, a fully structural characterisation of it becomes visible. After looking for a
reference with no success, I believe this also is a new discovery. It had not be seen
classically, since one gets rid of bases “too early” on the assumption they can be
reconstructed from X.
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Passing from functions to relations gives of course greater generality (a fact
which widens the range of applications), but what is interesting here is that
it makes the underlying logical structure more explicit. Restricting to functions
somehow hides logic, since for every function f the equation f− = f ∗ holds,
that is, existential and universal anti-images coincide. Finally, as we see below,
with relations one can finally give mathematical evidence to the old claim that the
pointfree approach is more general than traditional pointwise topology.

I cheated a little, when I said that a basic pair is sufficient to build a topological
space. In fact, traditionally (X,X) is a topological space if open subsets X
are closed under unions and finite intersections. Up to here,  in a basic pair
(X,, S) is any relation. If open subsets X are defined as those of the form
extU ≡ ∪bεU ext b for some U ⊆ S, then by its definition X is closed under
unions.

Then we recall that X is closed also under finite intersections if and only if
ext (a) ⊆ X (a ∈ S) is a base for a topology. In our framework this amounts to a
condition on  which, putting c ε a ↓ b ≡ ext c ⊆ ext a & ext c ⊆ ext b, can be
expressed by two simple equations:

B1: ext a ∩ ext b = ext (a ↓ b) every two neighbourhoods have a common
refinement,

B2: ext S = X every point has a neighbourhood.

Validity of B1 and B2 together is called convergence. A concrete space is a basic
pair (X,, S) satisfying convergence.

Since all the rest is a simple application of logic, the discovery here is that
convergence is the only mathematical postulate to obtain topological spaces.

We now see how this idea is extended to morphisms. The trick is to introduce
a notion of point “in the sense of topology”, that is, which can be characterized in
terms of open and of closed subsets. So we say that a subset of points D ⊆ X is
convergent if:

D is strongly inhabited: D � ext a for some a,
D is filtering: D � ext a & D � ext b→ D � ext (a ↓ b) for all a, b,

and that a subset α ⊆ S is an ideal point of X if:

α is inhabited,
α is filtering: D � ext a & D � ext b→ D � ext (a ↓ b) for all a, b,
α is formal closed.

A consequence of the dynamics between X and S is that ♦, rest form a bijection
between convergent subsets and ideal points in X . Thus the notion of convergent
subset is a properly constructive substitute of the notion of irreducible closed subset,
see Johnstone (1982).

Then the following are equivalent expressions of convergence of X :

B1 and B2 hold, so X is a concrete space,
every singleton in X is convergent, written P1X ⊆ Conv(X ),
every ♦x is an ideal point of X .
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A commutative square (r, s) is said to be convergent if it satisfies any of the
following equivalent conditions:

r maps convergent subsets into convergent subsets,
s maps ideal points into ideal points,
r− respects finite intersections,
r−ext (b ↓Y c) = ext (s−b ↓X s−c), for all b, c ∈ T , and r−ext T = ext S.

The idea is that such an r is a “function in a topological sense”, rather than a set-
theoretic one (which means it maps singletons into singletons).

So we have two categories. BP is the category of basic pairs and relation-pairs
(r, s), that is commutative squares, up to a suitable notion of equality (which also
turns out to have a purely structural nature, namely equality of diagonals). It is
essentially only applied logic, in the sense that all its notions are just an expression
of certain combinations of quantifiers. The category CSpa of concrete spaces is
obtained as a subcategory of BP by requiring convergence, both on objects and on
morphisms.

All proofs are very elementary, once definitions and statements are clear. With
classical “eyes”, it is very hard to see these little facts; and in fact they had not be
seen for over sixty years. Building on them, one can develop topology with points
in a constructive and very structural way, showing that logic and topology are much
closer to each other than one would expect before. This is, in my opinion, of great
foundational interest.

21.2.2 Pointfree Topology Is Real

The category of concrete spaces provides a satisfactory constructive version of
topological spaces. However, the book Sambin (2020, to appear) is mostly on the
pointfree approach to topology. Why do we need pointfree topology?

Adopting an effective notion of set, that is distinguishing sets from collections,
means that in most examples of topological spaces points form a collection, and not
a set. However, it is a matter of facts that in all such examples there is a family of
basic neighbourhoods indexed on a set S. That is, effectivity lies on the base, which
means on the side of observables, and not on the side of points. So, since our aim is
to maximize effectivity, we start from the effective part, namely the pointfree side,
make it as rich as possible, and introduce points and spaces with points as ideal
notions, using them as “late” as possible. The deep motivation for the pointfree
approach is as simple as that.

The general method to introduce and justify all pointfree definitions is to
axiomatise the structures induced on the formal side, that is, deposit as much as
possible of the categories of basic pairs and of concrete spaces on their formal side,
and then introduce pointfree notions as an axiomatization of such structures. As
we now see in practice, this method is very efficient. Owing to the discovery of
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symmetry and of logical duality, it produces pointfree notions which are definitely
richer than one would previously expect.

Axiomatizing the structure deposited by a basic pair X = (X,, S) on S
produces the notion of basic topology, namely a triple (S,A,J ) satisfying:

A saturation: U ⊆ AV ↔ AU ⊆ AV ,
J reduction: JU ⊆ V ↔ JU ⊆ J V ,
A/J compatibility: AU � J V ↔ U � J V .

Breaking the symmetry, when X is a concrete space the trace on S is validity of
the equation AU ∩ AV = A(U ↓ V ), where U ↓ V ≡ ∪aεU,bεV a ↓ b and
a ↓ b ≡ A{a} ∩ A{b}; we call it pointfree convergence. A positive topology is a
basic topology satisfying (pointfree) convergence.

The saturation A was part of the original definition of formal topology in Sambin
(1987). Moreover, pairs (S,A) with A satisfying convergence can be seen as a
predicative presentation of locales (Sambin 1987; Battilotti and Sambin 2006).
If they are equipped with a predicate Pos as required in Sambin (1987), they
correspond to open locales. The novelty of positive topologies, both for constructive
and classical mathematics, is the presence of the reduction J besides A, and the
condition of compatibility to connect them. This makes them substantially more
general than formal topologies and locales.

Perhaps expressing the content of compatibility on the usual side of points might
help to appreciate its novelty. By the symmetry of basic pairs, the operators int
and cl on X also give rise to a basic topology, that is, int is a reduction, cl
is a saturation, and their link is compatibility clD � intE ↔ D � intE for
all D,E ⊆ X. Compatibility here means (as one can check with simple logical
manipulations) that all points in clD are also limit points for D in the topology of
all open subsets.5

Although J is new, from the point of view of the underlying logical structure the
introduction of A and J are equally natural. A is a way to express quantifications
of the form ∀∃, that is �ext , and J of the form ∃∀, that is ♦ rest . The interaction
between the saturation A and the reduction J through compatibility is a trace of
the logical duality between ∀∃ and ∃∀. One can only guess that J went unobserved
because to express compatibility quickly and perspicuously one needs overlap, and
incredibly a specific notation for it, such as the sign � adopted here, had not been
systematically used before.6

The presence of J considerably strengthens the expressive power of pointfree
topology. In fact, it provides a primitive treatment of closed subsets in pointfree
terms by defining U ⊆ S to be formal closed when JU = U .

The fact that J was lacking in the constructive tradition is particularly surprising.
Assuming classical logic, in every basic pair the equation J = −A− holds, exactly

5Beware that limit points in this sense require an impredicative definition, and thus we cannot use
them to define closure in terms of interior.
6The notation � is now rapidly spreading in the community of constructive mathematicians.
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for the same reasons as cl = − int− above. So in every structure (S,A) one can
define J by putting J ≡ −A− and treat formal closed subsets thus. But this choice
is not viable constructively, because it does not correspond to the underlying logical
structure and negation (and hence complementation) behaves very differently. So,
if constructivists only use open subsets, they will prevent themselves from using
closed subsets at all, while this is something which classical mathematicians can
do, in their way. For constructivists, competing with classical mathematicians by
adopting their notions and treating them in a constructive foundation is like fighting
while keeping one hand on the back! With this handicap (restrict to classical
definitions and treat them constructively), they know even before the start that they
will loose the competition.

That is why we need to have an independent notion of closed subsets, both in
pointwise and in pointfree topology. I believe there is no valid reason for con-
structivists to refrain from their introduction. Much of the debate on constructivism
should be revised at the light of this perspective.

After basic pairs and basic topologies, the independent treatment of the notions
of open and closed is systematically kept in all subsequent definitions, beginning
with that of their morphisms. We take the properties of s in a relation-pair (r, s)
as defining conditions and say that a continuous relation from (S,A,J ) into
(S′,A′,J ′) is a relation s from S into S′ such that s preserves formal closed and s−∗
preserves formal open subsets, that is, if U = JU and V = AV , then sU = J ′sU
and s−∗V = A′s−∗V , respectively. These conditions are an immediate consequence
of the underlying combinations of quantifiers. As positive topologies are obtained
from basic topologies by adding convergence, their morphisms are obtained by
adding only its preservation. If (r, s) : X → Y is a convergent relation-pair,
then s satisfies As−(b ↓ c) = A(s−b ↓ s−c) and As−T = AS; we call formal
map any continuous relation satisfying these two conditions. With these morphisms,
basic topologies and positive topologies become categories, called BTop and PTop,
respectively.

Convergence aside, all definitions, including those of arrows, seem to flow
almost by themselves out of purely logical considerations. I have chosen the name
Basic Picture for the theory of basic pairs and of basic topologies because it can
be described as the study of pure logical dynamics between sets, when they are
connected by relations. In this sense, it is nothing but applied logic.

At the same time, this study is carried on by means of definitions which have a
strong topological meaning. In a certain sense, topological notions can be viewed as
a quick way to deal with different combination of quantifiers. So the basic picture is
also a generalization of topology.

Topology in the stricter sense, either with points as in concrete spaces or pointfree
as in positive topologies, is obtained as a special case simply by adding at will a
single mathematical assumption, the module of convergence.

So the basic picture provides elegant, purely logical structures underneath
topology, which means a safe foundation to topology and a deeper understanding of
familiar notions. In a few words, logic and topology are much closer (constructively)
than one would imagine before (classically).
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All these structures were left in the dark by the classical perspective since there
they collapse to trivial properties of complements, which can be understood as
purely mathematical. They remain visible only with the finer distinctions imposed
by constructive logic; actually, this could be a good reason for some classical
mathematicians to learn it.

An interesting novelty, which was not expected at the beginning, is that our
“weak” framework finally offers a precise mathematical expression and proof to
the expectation, which is well present since the time of Grothendieck, of a notion of
space generalizing that of topological space. Indeed, we achieve this with positive
topologies.

The well-known link between pointfree and standard topology (with points) is
a categorical adjunction between topological spaces Top and locales Loc. Such
adjunction can be considerably strengthened and becomes an embedding, provided
that topological spaces are replaced with concrete spaces and locales with positive
topologies. That is, we can prove that the category of concrete spaces CSpa
embeds into that of positive topologies PTop. By what precedes, it is clear that the
embedding functor maps objects and morphisms of CSpa into the structures they
induce on their formal side.

This gives a precise statement, and a rigorous proof in terms of categories, to
the original and deepest motivation of pointfree topology, namely the claim that
it is more general than traditional topology with points. Contrary to a common
belief, this is an example showing that constructive mathematics can provide results
which are new also for classical mathematicians. It is not known whether such
an embedding is possible without exploiting the presence of the new notion of
positivity relation �.

One of the specific merits of formal topology is the introduction of effective
methods (generation by induction) in topology, see Sambin (1987) and in particular
Coquand et al. (2003). This highlights the deepest and most interesting role
of topology, in my opinion, that is the interplay between effective/discrete and
ideal/continuous. With the presence of J we see, as a further novelty, that also
coinductive methods appear on the stage.

In order to study generation of A and J on a set S, it is better to look at
them equivalently as relations. We call cover the relation � (between elements
and subsets) defined by a � U ≡ a ε AU ; dually, the positivity relation � is
defined by a � U ≡ a ε JU . The operator A is a saturation if and only if � is
reflexive (a ε U → a � U ) and transitive (a � U & U � V → a � V , where
U �V ≡ (∀a ε U)(a�V )). Similarly for J and �. In this language, compatibility
is expressed by a � U & a � V → U � V , where U � V ≡ (∃b ε U)b � V .

In the same way as cover � is generated by induction (Coquand et al. 2003),
now dually positivity � is generated by coinduction (Martin-Löf and Sambin 2020,
To appear). To do this, we start from an axiom-set, that is, any set-indexed family
of subsets C(a, i) ⊆ S (a ∈ S, i ∈ I ),7 which we think of as axioms saying that

7The case in which I depends on a, as in Coquand et al. (2003), is only apparently more general.
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C(a, i) covers a, for every i ∈ I . The induction and coinduction rules have the
form:

�-generation: for all a ∈ S, i ∈ I

refl
a ε U

a � U trax
i ∈ I C(a, i)� U

a � U
(21.2)

�-induction: for all a ∈ S,W ⊆ S

a � U U ⊆ W
[i ∈ I, C(b, i) ⊆ W ]

|
b ε W

a ε W

(21.3)

�-cogeneration: for all a ∈ S, i ∈ I

corefl
a � U

a ε U
cotrax

i ∈ I a � U

C(a, i)� U
(21.4)

�-coinduction: for all a ∈ S,W ⊆ S

a ε W W ⊆ U
[b ε W, i ∈ I ]

|
C(b, i) � W

a � U

(21.5)

One can see that � is the least cover such that a�C(a, i), or equivalently C(a, i) ⊆
AU → a �U , holds for all a ∈ S, i ∈ I . Dually, � is indeed the greatest positivity
such that a � U → C(a, i) � JU . Moreover, � is compatible with �, so that
(S,�,�) is a basic topology. We refer to Coquand et al. (2003) for technical details
to be imposed on the axiom-set to obtain that the resulting cover is convergent, so
that (S,�,�) is a positive topology.

To make the above result meaningful, we need to postulate, as anticipated, that
indeed (21.2), (21.3) and (21.4), (21.5) define two relations between elements and
subsets; this is the principle called ICAS, Induction and Coinduction on Axiom-
Sets.

The above theorem of generation is a central result for a development of topology
which aims to be as effective as possible. Reflecting on the fact that one starts from
any axiom-set, its generality should be evident. All common example of spaces, as
real numbers, Baire space, Zariski topology, Scott domains, etc., fall under its range
and thus can be defined in an effective way.

We have a look only at the example of Baire space, since it is the most
illuminating on the interaction between real and ideal aspects. We need to spend
a few words on notation. We write N

∗ for the set of lists of natural numbers.
We write k ∗ l for the concatenation of k, l and extend this notation to sets by
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putting k ∗ N ≡ {k ∗ n : n ∈ N}. We define two operations on lists such that
k = tail(k) ∗ head(k) holds for all k ∈ N

∗.
We write �N and �N for the relations generated inductively by the rules in the

first line and coinductively by those in the second line, respectively:

ref l.
k ε U

k �N U
ζ

k �N U

k ∗ a �N U
�
k ∗ S �N U

k �N U

coref l.
k �N U

k ε U

k ∗ a �N U

k �N U

k �N U

k ∗ S �N U

The rules ζ and � are exactly Brouwer’s rules of inductive generation of bars (see
for instance Martino and Giaretta 1981) in the present notation. One can check
formally that they are equivalent to an axiom-set. In fact, we choose I to contain
only two elements, & and �, and put C(k, &) ≡ {tail(k)}, C(k, �) ≡ k ∗ S. Then the
general scheme (21.2) for & ∈ I gives

tail(k)� U
k � U for all k ∈ S∗,

which clearly is equivalent to ζ for all k ∈ S∗. For � ∈ I we get exactly �. Then
by the general result (N∗,�N,�N) is a positive topology, called Baire positive
topology. The same procedure works also after replacing N with any set; if we chose
a set only with 0, 1 as elements, we obtain Cantor positive topology.

By applying (21.5) above with W ≡ U one derives that U is formal closed (that
is a ε U ↔ a � U ) if and only if U splits the axioms, that is b ε U & i ∈ I →
C(b, i) � U holds for all b ∈ S, i ∈ I . So, in the case of Baire positive topology,
U ⊆ N

∗ is formal closed if and only if

k ε U → k ∗ N � U and k ε U → tail(k) ε U. (21.6)

This shows that an inhabited formal closed subset of Baire positive topology is,
apart from the property of decidability, exactly the same as a spread in Brouwer’s
intuitionism. This fact confirms, in my opinion, the interest of both notions.

We have tried so far to maximize effectivity, and we have seen that this means
developing the pointfree approach to topology. It is now the right time to follow
what we proposed in Sect. 21.1.2 and treat also ideal aspects. These are expressed
by re-introducing points through the notion of ideal point over a positive topology.
Thus ideal notions are introduced locally, case by case, and not once and for all, as
with actual infinite sets of ZFC.

The general method to obtain pointfree definitions here works particularly well.
In fact, we define ideal points of a positive topology S = (S,�,�) to be those
subsets of S which satisfy the same conditions met by subsets ♦x for x ∈ X in a
concrete space X . But this task has already been performed, through the definition
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of ideal point of X (page 478). This can be expressed in the language of S by noting
that D � ext a iff a ε ♦D. So we say that a subset α ⊆ S is an ideal point of S if:

α is inhabited: α � S,
α is filtering: a ε α & b ε α→ a ↓ b � α for all a, b,
α is formal closed: a ε α ↔ a � α.

To help intuition, which says that α is the subset of its own approximations, we write
α  a for a ε α. Then α is filtering if α  a & α  b→ (∃c ε a ↓ b)α  c. And
α is formal closed if and only if α enters �, that is α  a & α ⊆ U → a � U .
From this, by compatibility, it follows that α splits the cover �, that is α  a &
a � U → α � U .

Ideal points of S form a subcollection IP t(S) of PS, which in general is not a
set. This is not a problem, because there role is only to please our spatial intuition,
as we now show. For every positive topology S , we define Ip(S) ≡ (IP t(S), �,S)
(where α � a ≡ a ε α) and call it the ideal space associated with S . As in a concrete
space, we can equip IP t(S) with a topology. Open subcollections are of the form
ext (U), which contains α if α � U , and closed ones of the form rest (U), which
contains α if α ⊆ U .
Ip is extended to morphisms of PTop by putting Ip(s) ≡ (s∃, s) for every formal

map s : S → T . Here s∃ is just a notation for the operation α �→ sα, where sα is the
existential image of α along s. One can show that the conditions defining s : S → T
as a formal map contain what is sufficient to make s∃ : IP t(S) → IP t(T ) a
continuous mapping.

The category of ideal spaces ISpa is defined as the “image” of PTop under Ip.
Conversely, one can define a functor Up : ISpa → PTop which forgets all what
Ip added. Thus ISpa is isomorphic to PTop in a trivial way. However, passing from
PTop to ISpa is not at all useless. The reason is that ideal spaces and ideal maps are
a decoration of effective structures with some redundant information which is very
useful to support our spatial intuition.

The case of an ideal point of Baire positive topology on N
∗ is particularly

illuminating and relevant. In fact, as we now see, it provides a rigorous mathematical
formulation of Brouwer’s notion of choice sequence.

From a purely geometric point of view, it is clear what a choice sequence α is.
One can interpret nodes in N

∗ as sequences of choices of elements in N which say
how to proceed upwards starting from nil, and which halt after a finite number of
choices. Choice sequences are the same, except that they do not halt. So one can see
very well that choice sequences are obtained from the notion of finite list k ∈ N

∗ by
extrapolation to the infinite.

claudio.ternullo@ut.ee



486 G. Sambin

Brouwer proposed to clarify this intuitive notion by first defining spreads, as
recalled above, and then explaining what it means for a choice sequence to be in
a spread. I claim that his idea is perfectly well expressed by saying that a choice
sequence in the spread U is nothing but and ideal point α ⊆ U . In fact, α itself is
a spread, since it is inhabited and formal closed. Since it is inhabited, by (21.6) it
contains nil. Again by (21.6), if α  k ≡ k ε α then also k ∗ N � α, which means
that any node in α has at least one successor. But since α is filtering, there is at
most one such successor. In other words, a choice sequence for us is the same as a
convergent spread, that is an ideal point. An argument confirming this identification
is that one can prove that ideal points (of Baire positive topology ) coincide with
functions (not operations!) from N to N.

Our notion of choice sequence is ideal (apart from its name, ideal point) since
we require no condition of effectivity on the subset α. So choice sequences are an
intrinsically infinitary, or ideal notion, while basic neighbourhoods, that is finite
sequences, are real.

The definitions of cover and positivity induced by Ip(S) on S are a �Ip(S) U ≡
∀α(α  a → α � U) and a �Ip(S) U ≡ ∃α(α  a & α ⊆ U), respectively. Such
definitions are impredicative, since they contain quantifications on collections, and
thus they are acceptable only as ideal notions .

One can easily see that, by our definition of ideal point, the original cover �S on
S is always contained in the ideal cover �Ip(S) induced by Ip(S), that is a�SU →
∀α(α  a → α � U). Dually, ∃α(α  a & α ⊆ U) → a �Ip(S) U holds for
every S .

Nothing guarantees that the original �S on S coincides with �Ip(S) induced
on S by Ip(S). This is the reason why in the ideal space corresponding to S it
is convenient to keep S itself, rather than the naked set S. On the contrary, the
equality of the two covers is a very interesting property. We say that S is spatial if
�S = �Ip(S); this simply follows the definition of spatial locale. Instead, new is the
dual notion of S reducible, which holds if �S = �Ip(S), see Ciraulo and Sambin
(2019).

Spatiality and reducibility of S express important properties of S , which are
particularly interesting in the case of Baire positive topology. As first noticed
in Fourman and Grayson (1982), spatiality of Baire positive topology is just an
equivalent formulation (in our terms) of Bar Induction:

BI ∀α(k ε α→ U � α)→ k � U

The dual to spatiality, reducibility, should be valid in Baire positive topology. In
fact, it is says that every spread is inhabited by a choice sequence:

SH k � U → ∃α(k ε α & α ⊆ U)

and this looks somehow implicit in Brouwer’s definition of choice sequence.
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Both BI and SH are perfectly precise and clear mathematical statements. They
are intuitively obvious, one can even think of them as a way to clarify the intuitive
notion of choice sequence. But from the perspective of MF and positive topology
they look as unprovable. Since we keep ideal and real mathematics well distinct, a
way out of this difficulty seems available to us. In fact, most probably we cannot
prove BI and SH, but if we could prove meta-mathematically that such ideal
principles are conservative over real, pointfree topology, then we could continue
to use them without affecting effectivity.8 Trying to prove conservativity of BI and
SH over Baire positive topology is work in progress.

This expression of the notion of choice sequence is very fragile, since it depends
on foundational choices. Assuming axiom of unique choice AC! amounts to killing
the distinction between lawlike sequences (that is, sequences which follow a law)
and choice sequence, and every sequence is lawlike (as in Bishop). Absence of
AC!, as in MF, shows that Brouwer and Bishop were talking about two different
notions, and thus can reconcile them. Thus we can reconcile spatial intuition with
computational interpretation, in the sense that they can to live together without
ignoring each other, if we pass from one flat system (of which we can ask only
consistency) to a system with two levels, the real (positive topologies, pointfree) and
the ideal (ideal spaces, pointwise), so that having two languages and theories, we can
speak about conservativity of one with respect to the other. I do not mean here to
identify literally Hilbert’s real, or finitary mathematics with pointfree topology, but
rather suggest that both are self-justified and used to justify ideal mathematics.

21.2.3 The Dark Side of the Moon: Mathematizing Existentials

Adopting classical logic, mathematical notions which are defined by a formula
containing an existential quantifier can be reduced to other notions by negation.
The first example is D � E ≡ ∃x(x ε D & x ε E), which is classically equivalent
to ¬∀x¬(x ε D & x ε E), and hence D � E is definable as D ∩ E �= ∅.
Similarly, the quantification ∃∀ defining int = ext� is equivalent to ¬∀∃¬, so that
int is classically definable as − cl−. By symmetry, J is classically definable by

putting J ≡ −A−. This is clearly not possible constructively since ∃ has a positive
character which cannot be expressed by way of negation.

The relation � and the operator J are new mathematical notions introduced in
order to express such existential quantifiers. They seem to be the right tools to gain
access to and explore a whole new territory of mathematics, the mathematization of
existentials, that is, a positive mathematical treatment of statements involving the
existential quantifier. This had remained invisible to a classical perspective, because

8Note that Kleene’s construction proving that BI+ AC!+ CT� ⊥, which is commonly understood
as showing that effectivity is incompatible with choice sequences and Bar Induction, is not a
problem here because of the absence of AC!.
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of the excessive strength of its negation. I like to call it the dark side of the moon. It
looks really paradoxical to me that � and J had been ignored for so long also in the
constructive tradition.

Using � and J , which express ∃ and ∃∀ in an abstract form, one can see that
every notion of traditional topology is accompanied by its existential dual, which in
classical mathematics was definable by negation. So formal closed subsets are dual
to open ones and basic topologies besides A contain its dual J , which means that
cover � is accompanied by positivity �, arrows preserve the universal A as well as
existential J , generation by induction is accompanied by that by coinduction, etc.

Working with � and � in the practice of research demands a sort of internal
revolution; in authentic research, in my opinion, one should always be ready for
this. One aim of the book Sambin (2020, to appear) is to show that the mathematics
of existentials is reasonable and clean. It actually often allows to express better, and
sometimes understand better, also some aspects of classical mathematics (a little
example is the clean description (21.1) of images of subsets exploiting � besides
⊆).

After realizing that using � is worthwhile and after getting familiar with it,
it becomes a natural step further to express � in algebraic terms. The standard
algebraic counterparts of the structure of subsets of a set is given by complete
Boolean algebras (cBa) and complete Heyting algebras (cHa)9 in the classical
and constructive tradition, respectively. They axiomatize properties of operations
of subsets with respect to inclusion, which is a universal notion. They are thus
here enriched with a new primitive ><, a binary relation which corresponds to the
existential notion � of overlap between subsets, in the same way as the common
notion of partial order ≤ corresponds to inclusion ⊆. One then adds some natural
axioms on >< and its connections with the operations of a cHa:

symmetry if p >< q then q >< p
preservation of meet: if p >< q then p >< p ∧ q
splitting of join: q ><

∨
i∈I pi iff q >< pi for some i ∈ I ,

density: ∀r(p >< r → q >< r)→ p ≤ q,

This new structure has been called an overlap algebra.
Density is a strong assumption, which is not algebraic in some strict technical

sense. It can be used to show that, reasoning classically, an overlap algebra is exactly
the same as a cBa, where>< is defined by p >< q ≡ p∧q �= 0. One can guess that this
explains why overlap algebras did not appear in the classical tradition. However, the
same result does not hold reasoning constructively over a cHa. Once again, one can
see that reasoning classically on a classical definition allows one to obtain something
which is not possible by reasoning constructively over the same definition purged of
classical aspects. Rather than saying no to some classical arguments on negation, a

9We do not consider here some fine distinctions between the three notions of cHa, frames or
locales.
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constructivist should work harder and find positive mathematical notions to express
constructively the illusory strength supplied by classical logic!

The situation is summarized by a table exhibiting the lack of expressiveness in
the established constructive tradition:

Classically Intuitionistically Our new notion

Power of a set cBa = overlap algebra cHa Overlap algebra = cHa + ><

By mimicking the classical definition and only blocking the classical arguments
when dealing with it, before fully appreciating the richness of the original notion
in the classical framework, one runs the risk of undermining its expressive power.
An overlap algebra is a strictly positive notion, which one cannot define by negation
without using classical arguments. The presence of >< permits a positive definition
of atoms, from which it follows easily that every atomic overlap algebra coincides,
up to isomorphisms, with the power of a set. However, the notion of overlap algebra
is much more general, see Ciraulo and Sambin (2010).

By exploiting � once again, one can find a suitable notion of arrows to turn
overlap algebras into a category OA. We first consider the case of two overlap
algebras PX and PS for some sets X and S. Using overlap, one can find an abstract
characterization of a relation between X and S in terms of operators on subsets,
that is operations between PX and PS. The crucial trick is to define two operations
F : PX→ PS and F ′ : PS → PX to be symmetric, written F ·|·F ′, when FD � U
iff D � F ′U , for all D ⊆ X and U ⊆ S. This notion has a clear existential flavour,
and is put aside the familiar notion of adjoint operators F / G. Then one can prove
that any four operators F,G′ : PX → PS and F ′,G : PS → PX satisfy F / G,
F ′ / G′ and F ·|·F ′ if and only if there is a relation r from X to S such that F = r ,
F ′ = r−, G = r∗ and G′ = r−∗, where r , r−, r−∗, r∗ are images of subsets along
r , as defined in (21.1).

This says that relations between X and S are characterized in a way which
extends immediately to all overlap algebras. Therefore the notion of morphism
between two arbitrary overlap algebras P , Q is a quadruple of operations f, f−∗ :
P → Q and f−, f ∗ : Q→ P which form a symmetric pair of adjunctions, that is,
such that f / f ∗, f− / f−∗ and f ·|·f−.

It is evident, I believe, that without overlap it is very difficult to see this
characterization of relations. As a matter of facts, to my knowledge it was not
discovered, perhaps even in the classical framework.

The increase of expressive power provided by the new primitive>< is sufficient to
formulate most of the basic picture and positive topology in algebraic terms. With
overlap algebras the distinction between sets and collections is lost, and so we revert
to the usual terminology with points.

The definition of basic topology in algebraic terms, in the terminology of the
side of points, becomes an overlap algebra P equipped with a closure operator C
(characterized by p ≤ Cq ↔ Cp ≤ Cq) and an interior operator I (characterized
by Ip ≤ q ↔ Ip ≤ Iq) which satisfy compatibility: if Ip >< Cq then Ip >< q.
This is a simple notion, over which one can easily develop an algebraic version
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of constructive topology. By contraposition, previous absence of ><, and hence of
compatibility, says that a proper constructive algebraic treatment of topology was
missing.

When opens are expressed by a reduction, convergence is easily expressed in
algebraic terms by requiring them to be closed under meets: Ip ∧ Iq ≤ I (p ∧ q).
To express a situation which is valid on topological spaces, we can add a condition
of C-I-density: ∀r(p >< Ir → q >< Ir)→ p ≤ Cq.

One thus reaches an algebraic version of the basic picture, and hence of topology.
So the soundness of our (set theoretic) definitions gets confirmed by the fact that
they extend seamlessly to the more general framework of overlap algebras.

My claim is that an algebraic version of open subsets, which is a cHa classically
and also intuitionistically, should be an overlap algebra with a reduction I to express
open subsets (or a saturation if we are on the formal side). A topology is again a
cHa classically, because one defines closed subsets by negation. Intuitionistically
it is also cHa, but there one doesn’t have a proper notion of closed. I believe the
correct notion here is that of overlap algebra equipped with both a reduction I and
a saturation C, with suitable axioms. So the table above is extended to:

Classically Intuitionistically Our new notion

Power of a set cBa cHa/locale Overlap algebra

Open subsets cHa cHa/locale Overlap algebra + I

Topology cHa cHa/locale Overlap algebra + I + C

Here again one can see that adopting only the classical definition, constructivists
deprive themselves of some tools which they can use to express positively some
notions which the classicist treats by way of negation.

21.3 What Can We Achieve? Benefits of a Paradigm Shift

The current situation is really funny. In all the sciences of nature and life, from
astronomy to biology, the evolutionary vision is accepted as a matter of fact (except
for small minorities). Mathematics, the science on which all others should be based,
has instead remained the only one in which a truth that transcends time and humanity
is necessary. One accepts that the man descends from the ape, that the bat is similar
to the mouse, but it is believed that sets have always existed, and wait only for us to
describe them. Is not this a profound inconsistency that needs to be fixed?

Times are ripe to bring a dynamic-evolutionary point of view also within
mathematics. I think I have shown with facts that this different conceptual attitude is
not only possible, but that indeed it brings with it several advantages, both in theory
and in practice.

It can also have a profound impact on the working mathematician. If com-
pleteness is impossible by Gödel’s theorems, we can give up immediately and
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accept without any regret the incompleteness of our knowledge. If truth and so also
mathematics are not given, and therefore they are neither complete nor bivalent, then
it is no longer correct that all that is not false must be true, and all that is consistent
exists, and this means that we are not compelled to consider true or existing even
statements or entities devoid of meaning.

Without referring to any absolute truth, mathematics is freed from all fundamen-
talism with a religious flavour and, paradoxically, becomes better founded. And we
can feel free from the oppression of a truth hanging over our heads, and relieved of
the nightmare of an external authority above us that tells us what is to be considered
true, significant or correct, and to which we must be subject even if we do not
understand well what it is. Then we can see that mathematics is our creation and
management of abstract concepts, and of the actual information that we express
with them.

All this on the one hand relaxes us and makes us free, but on the other at the same
time makes us responsible. As no mathematics exists before us, we should always
be aware of the abstractions by which we pass from reality to mathematical notions.
And we must accept, as for all human creations, a plurality of the principles with
which we do this, that is a plurality of foundations, and then finally of mathematics
to which they give rise. Mathematics indeed cannot be a single one, no mathematics
is the absolute truth.

In conclusion, we become more relaxed, free and creative, but also more
responsible. In one word, adults (as opposed to Bourbaki).

The cultural attitude of dynamic constructivism is expressed in practice by the
Minimalist Foundation MF. MF leaves room for everyone, in the sense that it admits
all other foundations as an extension, and basically does not ask for any act of faith.
It is therefore ideal as the foundation of an evolutionary, dynamic mathematics,
open to different conceptions. Expressing one’s position on the basis of a common
foundation/language may be helpful in dissolving some communication problems.
Assuming the distinction we made here between real mathematics and ideal
mathematics, it can be said that, for classicists, mathematics is only the ideal one,
while for (orthodox) constructivists mathematics is only the real one. It will be
difficult for them to understand each other without clarifying this. In our framework
we can treat both, and clarify how they are connected.

Adopting a new foundation like MF really means wearing a pair of new glasses
with which to look at reality. Not only it works very well in the practice of
mathematics, but it also allows one to see many things that nobody had seen before.
A surprise, in general, is that the additional information that one has to keep to
operate in this minimalist way is not pure “code” for the computer, but has its own
clear logical structure.

In a nutshell, the discovery is that logic and topology are much more deeply
linked than before, and that logic becomes useful also in the process of giving
definitions. This increased role of logic has a general explanation. In fact, if one
does not believe in a truth established outside us, then the least we can ask is that
what we are talking about has a clear logical structure.
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The turning point is when creativity is freed from the cage of the absolute and
of completeness, and gives rise to several new definitions. What is exciting, indeed
very appealing, is that in this way many mathematical innovations have emerged, to
achieve which, while keeping the old attitude, the (almost) 25 years it took me to
develop them would not have been sufficient. All the technical innovations presented
in Sect. 21.2 have been induced by dynamic constructivism.

Some results have been found constructively that seem to me of interest to any
non-biased mathematician, even classic. And some new facts have been found which
had escaped also the “orthodox” constructivists. All this is due to greater attention
on both types of information: abstract and computational.

Constructivism therefore does not mean to remake constructively what classicists
do. A constructive foundation is not handmaid of the classical one, so much so that
one discovers structures that the classical foundation had not seen, even if they were
elementary.

Being constructivist does not mean having to give up something in advance.
There is no a priori amputation of classical mathematics. Before saying that
something is out of reach, one has to try to obtain it.

Independence of thought from the classical vision manifests itself in practice in
the freedom to accept or leave, modify, innovate classical definitions. In particular,
we see that an abstract predicative mathematics, that is not only computation, is
entirely possible.

Due to the methodological choice of compatibility of the minimalist foundation
with all others, no ideological commitment is required to appreciate the mathemat-
ical innovations it induces. In practice, the new structures of the Basic Picture and
Positive Topology remain new and intelligible, and may be of interest, even for
mathematicians with different foundational principles, or without active interest in
foundational questions.

In addition to novelties, it must be remembered that everything that is done over
MF automatically is consistent, indeed, automatically has a concrete meaning, as
there is a realizability interpretation. So Enriques’ criterion is satisfied.

I think I have shown that one can do mathematics after Cantor, that is, with sets
and their generality, without having to submit to the platonist-formalist vision. The
common vision today is not necessary, it is only one of the possible visions, so much
so that it had not seen many things.

Mathematics, even the most advanced, can be done over a foundation which we
not only know to be consistent, but of which we also have a specific, computational
interpretation. This shows that acts of faith, like that in ZFC, are not necessary. On
the contrary, it becomes clear that they are the fruit of a cultural attitude that should
now become obsolete, since it no longer has any reason to be.

In the common vision, the role of foundations is to provide safe grounds to the
activity of mathematicians, that all in all is taken as a matter of fact. Something
similar happens also for the recent approach called Univalent Foundation UF or
homotopy interpretation of type theory. UF says nothing about the conception of
mathematics, which apparently is to be accepted as given, just like in the classic
paradigm; in particular, it keeps silent on pluralism. Only this attitude can explain
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why UF uses an advanced mathematical discipline, such as homotopy theory, as a
foundation of mathematics. A foundation that starts from the top. Apart from these
conceptual differences, there seem to be some convergence between MF and some
outcomes of UF, and this should be investigated.

Instead, we say that the activity of doing mathematics must go together (not in
each mathematician, of course, but as a principle) with the study of its foundations.
We put back mathematics together with its foundations. Perhaps it is precisely
the dynamic interaction between the study of foundations and the development of
mathematics that is the most specific feature of my work.

The fact that someone succeeds in doing mathematics without any dogma, proves
that this is possible. I believe that this simple observation should be for a true
scientist reason enough to try to do the same, inasmuch as I believe it is a constituent
part of science to do without a dogma, whenever this is possible.

Many will continue to think that mathematics is classical mathematics. But now
they will have fewer arguments: constructivism amputates mathematics (false), the
classical vision is in any case a necessary preliminary to constructivism (false),
constructivists will never find anything really new (false), etc.

After all, what I propose is not a “constructive” mathematics, as opposed
to classical mathematics, but simply a mathematics which is well-founded and
dynamic. However trivial, this is, incredibly, a new paradigm in the sense of Kuhn:
to organize the way we interpret the world, and not to describe a platonic universe
above our heads.
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