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Abstract. Many psychologists, philosophers, and computer scientist have
written about mental models, but have remained vague about the nature
of such models. Do they consist of propositions, concepts, rules, images, or
some other kind of mental representation? This paper will argue that a unified
account can be achieved by understanding mental models as representations
consisting of patterns of activation in populations of neurons. The fertility of
this account will be illustrated by showing its applicability to causal reasoning
and the generation of novel concepts in scientific discovery and technological
innovation. I will also discuss the implications of this view of mental models
for evaluating claims that cognition is embodied.

1 Introduction

Mental models are psychological representations that have the same rela-
tional structure as what they represent. They have been invoked to explain
many important aspects of human reasoning, including deduction, induction,
problem solving, language understanding, and human-machine interaction.
But the nature of mental models and the processes that operate on them
has not always been clear from the psychological discussions. The main aim
of this paper is to provide a neural account of mental models by describing
some of the brain mechanisms that produce them.

The neural representations required to understand mental models are
also valuable for providing new understanding of how minds perform
abduction, a kind of inference that generates and/or evaluates explanatory
hypotheses. Considering the neural mechanisms that support abductive in-
ference makes it possible to address several aspects of abduction, some first
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proposed by Charles Peirce, that have largely been neglected in subsequent
research. These aspects include the generation of new ideas, the role of emo-
tions such as surprise, the use of multimodal representations to produce “em-
bodied abduction”, and the nature of the causal relations that are required
for explanations.

The suggestion that abductive inference is embodied raises issues that have
been very controversial in recent discussions in psychology, philosophy, and
artificial intelligence. This paper argues that the role of emotions and multi-
modal representations in abduction supports a moderate thesis about the role
of embodiment in human thinking, but not an extreme thesis that proposes
embodied action as an alternative to the computational-representational un-
derstanding of mind.

2 Mental Models

How do you solve the following reasoning problem? Adam is taller than Bob,
and Bob is taller than Dan; so what do you know about Adam and Dan?
Readers proficient in formal logic may translate the given information into
predicate calculus and use their encoding of the transitivity of “taller than”
to infer that Adam is taller than Dan, via applications of the logical rules of
universal instantiation, and-introduction, and modus ponens. Most people,
however, report using a kind of image or model of the world in which they
visualize Adam as taller than Bob and Bob as taller than Dan, from which
they can simply read off the fact that Adam is taller than Dan.

The first modern statement of the hypothesis that minds use mechanical
processes to model the world was by Kenneth Craik, who in 1943 proposed
that human thought provides a convenient small-scale model of a process such
as designing a bridge [3, p. 59]. The current popularity of the idea of mental
models in cognitive science is largely due to Philip Johnson-Laird, who has
used it extensively in explanations of deductive and other kinds of inference
as well as many aspects of language understanding (e.g. [16, 18, 19]. In his
history of mental models, Johnson-Laird cites as an important precursor the
ideas of Charles Peirce about the class of signs he called “likenesses” or
“icons”, which stand for things by virtue of a relation of similarity [17].
Earlier precursors may have been Locke and Hume with their idea that ideas
are copies of images. Many recent researchers have used mental models to
explain aspects of thinking including problem solving [13], inductive learning
[15], and human-machine interaction (e.g. [39]). Hundreds of psychological
articles have been published on mental models1.

Nevertheless, the nature of mental models has remained rather fuzzy. Ners-
essian [26, p. 93] describes a mental model as a “structural, behavioral, or
functional analog representation of a real-world or imaginary situation, event
or process. It is analog in that it preserves constraints inherent in what is
1 http://www.tcd.ie/Psychology/other/Ruth_Byrne/mental_models/
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represented.” But what is the exact nature of the psychological representa-
tions that can preserve constraints in the required way? One critic of mental
model explanations of deduction dismisses them as “mental muddles” [34].

This paper takes a new approach to developing the vague but fertile notion
of mental models by characterizing them in terms of neural processes. A
neural approach runs counter to the assumption of mental modelers such
as Johnson-Laird and Craik that psychological explanation can proceed at
an abstract functional and computational level, but I will try to display the
advantages of operating at the neural as well as the psychological level. One
advantage of a neural account of mental models is that it can shed new light
on aspects of abductive inference.

3 Abduction

Magnani [22] made the explicit connection between model-based reasoning
and abduction, arguing that purely sentential accounts of the generation and
evaluation of explanatory hypotheses are inadequate (see also [23, 5, 45]). A
broader account of abduction, more in keeping with the expansive ideas of
Peirce [29, 30], can be achieved by considering how mental models such as
ones involving visual representations can contribute to explanatory reasoning.
Sententially, abduction might be taken to be just “If p then q; why q? Maybe
p”. But much can be gained by allowing the p and q in the abductive schema
to exceed the limitations of verbal information and include visual, olfactory,
tactile, auditory, gustatory, and even kinesthetic representations. To take an
extreme example, abduction can be prompted by a cry of “What’s that awful
smell?” that generates an explanation that combines verbal, visual, auditory,
and motor representations into the answer that “Joe was trying to grate
cheese onto the omelet but he slipped, cursed, and got some cheese onto the
burner”.

Moreover, there are aspects of Peirce’s original descriptions of abduction
that cannot be accommodated without taking a broader representational
perspective. Peirce said that abduction is prompted by surprise, which is an
emotion, but how can surprise be fitted into a sentential framework? Simi-
larly, Peirce said that abduction introduces new ideas, but how could that
happen in sentential schemas? Such ideas can generate flashes of insight,
but both insight and their flashes seem indescribable in a sentential frame-
work. Another problem concerns the nature of the “if-then” relation in the
sentential abductive schema. Presumably it must be more than material im-
plication, but what more is required? Logic-based approaches to abduction
tend to assume that explanation is a matter of deduction, but philosophical
discussions show that deduction is neither necessary nor sufficient for expla-
nation (e.g. [35]). I think that good explanations exploit causal mechanisms,
but what constitutes the causal relation between what is explained and what
gets explained? I aim to show that all of these difficult aspects of abduction
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– the role of surprise and insight, the generation of new ideas, and the nature
of causality – can be illuminated by consideration of neural mechanisms.

Terminological note: Magnani [24] writes of “non-explanatory abduction”,
which strikes me as self-contradictory. Perhaps there is a need for a new
term describing a kind of generalization of abduction to cover other kinds
of backward or inverse reasoning such as generating axioms from desired
theorems, but let me propose to call this generalized abduction gabduction
and retain abduction for Peirce’s idea of the generation and evaluation of
explanatory hypotheses.

4 Neural Representation and Processing

A full and rigorous description of current understanding of the nature of
neural representation and processing is beyond the scope of this paper, but
I will provide an introductory sketch (for fuller accounts, see such sources as
[2, 5, 10, 27, 42].

The human brain contains around 100,000,000,000 neurons, each of which
has many thousands of connections with other neurons. These connections
are either excitatory (the firing of one neuron increases the firing of the one it
is connected to) or inhibitory (the firing of one neuron decreases the firing of
the one it is connected). A collection of neurons that are richly interconnected
is called a neural population (or group, or ensemble). A neuron fires when it
has accumulated sufficient voltage as the result of the firing of the neurons
that have excitatory connections to it. Typical neurons fire around 100 times
per second, making them vastly slower than current computers that operate
at speeds of billions of times per second, but the massive parallel processing
of the intricately connected brain enables it to perform feats of inference that
are still far beyond the capabilities of computers.

A neural representation is not a static object like a word on paper or
a street sign, but is rather a dynamic process involving ongoing change in
many neurons and their interconnections. A population of neurons represents
something by its pattern of firing. The brain is capable of a vast number of
patterns: assuming that each neuron can fire 100 times per second, then the
number of firing patterns of that duration is (2(100))100000000000, a number
far larger that the number of elementary particles in the universe, which is
only about 1080. I call this “Dickenson’s theorem”, after Emily Dickenson’s
beautiful poem “The brain is wider than the sky”. A pattern of activation
in the brain constitutes a representation of something when there is a stable
causal correlation between the firing of neurons in a population and the thing
that is represented, such as an object or group of objects in the world [9,
28]. The claim that mental representations are patterns of firing in neural
populations is a radical departure from everyday concepts and even from
cognitive psychology until recently, but is increasingly supported by data
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acquired through experimental techniques such as brain scans and by rapidly
developing theories about how brains work (e.g. [1, 37, 42]).

5 Neural Mental Models

Demonstrating that neural representations can constitute mental models re-
quires showing how they can have the same relational structure as what they
represent, both statically and dynamically. Static mental models have spatial
structure similar to what they represent, whereas dynamic mental models
have similar temporal structure. Combined mental models capture both spa-
tial and temporal structure, as when a person runs a mental movie that
represents what happens in some complex visual situation such as two cars
colliding.

The most straightforward kind of neural mental models are topographical
sensory maps, for which Knudsen, du Lac, and Esterly [21, p. 61] provide the
following summary:

The nervous system performs computations to process information that is
biologically important. Some of these computations occur in maps – arrays of
neurons in which the tuning of neighboring neurons for a particular parameter
value varies systematically. Computational maps transform the representa-
tion into a place-coded probability distribution that represents the computed
values of parameters by sites of maximum relative activity. Numerous compu-
tational maps have been discovered, including visual maps of line orientation
and direction of motion, auditory maps of amplitude spectrum and time in-
terval, and motor maps of orienting movements.

The simplest example is the primary visual cortex, in which neighboring
columns of neurons process information from neighboring small regions of
visual space [21, 20]. In this case, the spatial organization of the neurons
corresponds systematically to the spatial organization of the world, in the
same way that the location of major cities on a map of Brazil corresponds to
the actual location of those cities.

Such topographic neural models are useful for basic perception, but they
are not rich enough to support high level kinds of reasoning such as my “taller
than” example. How populations of neurons can support such reasoning is
still unknown, as brain scanning technologies do not have sufficient resolution
to pin down neural activity in enough detail to inspire theoretical models of
how high-level mental modeling can work. But let me try to extrapolate
from current views on neural representation, particularly those of Eliasmith
and Anderson [10], to suggest how the brain might be able to make extra-
topographic models of the world (see also [9]).

Neural populations can acquire the ability to encode features of the world
as their firing activity becomes causally correlated with those features. (A
and B are causally correlated if they are statistically correlated as the result
of causal interactions between A and B). Neural populations are also capable
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of encoding the activity of other neural populations, as the firing patterns of
one population becomes causally correlated with the firing patterns of another
population that feeds into it. If the input population is a topographic map,
then the output population can become a more abstract representation of
the features of the world, in two ways. The most basic retains some of the
topographic structure of the input population, so that the output population
is still a mental model of the world in that it shares some (but not all)
relational structure with it. An even more abstract encoding is performed
by an output neural population that captures key aspects of the encoding
performed by the input population, but does so in a manner analogous to
the way that language produces arbitrary, non-iconic representations. Just
as there is no similarity between the word “cat” and cats, so the output
neural population may have lost the similarity with the original stimulus:
not all thinking uses mental models. Nevertheless, in some cases the output
population provides sufficient information to enable decoding that generates
an inference fairly directly, as in the “taller-than” example. The encodings
of Adam, Bob, and Dan that include their heights makes it possible to just
“see” that Adam is taller than Dan.

A further level of representation is required for consciousness, such as the
experienced awareness that Adam is taller than Dan. Many philosophers and
scientists have suggested that consciousness requires representation of rep-
resentation (for references see [43]), but mental models seem to require sev-
eral layers: representation of representation of representation. The conscious
experience of an answer to a problem comes about because of activity in
top-level neural populations that encode activity of medium-level modeling
populations, that encode activity of low-level populations, that topographi-
cally represent features of the world. To put it another way, conscious models
represent mid-level models that represent low-level topographic models that
represent features of the world. The relation representation need not be tran-
sitive, but in this case it carries through, so that the conscious mental model
represents the world and generates inferences about it.

So far, I have been focusing on mental models where the similar relation-
structure is spatial, but temporal relations are just as important. When you
imagine your national anthem sung by Michael Jackson, you are creating a
mental model not only of the individual notes and tones but also of their
sequence in time. Similarly, a mental model of a working device such as a
windmill requires both visual/spatial representations of the blades and base
of the windmill and also temporal representations of the blades of the mill.
Not a lot of research has been done on how neurons can encode temporal
relations, but I will explore two possibilities.

Elman [11] and other researchers have shown how simple recurrent net-
works can encode temporal relationships needed for understanding language.
A recurrent network is one in which output neurons feed back to provide
input to the input neurons, producing a kind of temporal cycle that can re-
tain information. Much more complex neural structures, however, would be
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needed to encode a song or running machine, perhaps something like the neu-
ral representation of a rule-based inference system being developed by Terry
Stewart using Chris Eliasmith’s neural engineering framework [38]. On this
approach, a pattern of neural activation encodes a state of affairs that can
be matched by a collection of rules capturing if-then relations. Then running
a temporal pattern is a matter of firing off a sequence of rules, not by the
usual verbal matching employed by rule-based cognitive architectures such as
Anderson’s [1] ACT, but by purely neural network operations. If the neural
populations representing the states of affairs are mental models of either the
direct, topographic kinds or the abstracted, structure-preserving kinds, then
the running of the rule-based system would constitute a temporal and spatial
mental model of the world.

6 Generating New Ideas

Peirce claimed that abduction could generate new ideas, but he did not spec-
ify how this could occur. If abduction is analyzed as a logical schema, then
it is utterly mysterious how any new ideas could arise. The schema might be
something like: “q is puzzling, p explains q, so maybe p.” But this schema
already includes the proposition p, so nothing new is generated. Hence logic-
based approaches to abduction seem impotent to address what Peirce took to
be a major feature of this kind of inference (cf. [45, 4]). Thagard [4] gave an
account of how new concepts can be generated in the context of explanatory
reasoning, but this account only applied to verbal concepts represented as
frames with slots and values.

In contrast, the view of representations as patterns of activity in neural
populations can be used to describe the generation of new multimodal con-
cepts. Here I give only a quick sketch, as full details including mathematical
analysis and computer simulations are provided in [46].

Assuming that two concepts are represented by patterns of activity in neu-
ral populations, which may be disjoint or overlapping, then a new combined
concept can be represented by a new pattern of activity in a neural population
which may also be disjoint or overlapping. A mathematical operation that
combines patterns of neural activity is called convolution, which was origi-
nally a method for combining waves in signal processing theory. Tony Plate
[31] adapted convolution to apply to vectors that stand for high-level symbolic
representations, and Chris Eliasmith [8] developed a method for using biolog-
ically realistic neural networks to perform convolution. Thagard and Stewart
[46] describe how many kinds of creativity and innovation, including scientific
discovery, technological invention, social innovation, and artistic imagination,
can be understood in terms of mechanisms of representation combination.

The convolution model of creative conceptual combination is fully mul-
timodal, applying to whatever neural populations can represent, including
information that is visual, auditory, olfactory, gustatory, tactile, kinesthetic,
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or pain-related. Moreover, the Thagard and Stewart [46] account of creativity
also applies to emotions, which can also be understood as patterns of activity
in neural populations involving multiple brain areas involved in both cogni-
tive appraisal and physiological perception [43]. In particular, the wonderful
AHA! experience that attends creative breakthroughs can be understood as
a neural process that involves a triple convolution:

1. Two representations are convolved to produce a novel one.
2. An emotional reaction to the new representation requires a convolution

of cognitive appraisal and physiological perception.
3. The AHA or EUREKA reaction is a convolution of the new representation

and the emotional reaction to it.

Thus the mechanism of convolution in neural networks is capable of modeling
not only the combination of representations but also the emotional reaction
that successful combinations generates.

Creative conceptual combination does not occur randomly, but rather in
the directed context of attempts to solve problems, including ones that require
generation of new explanations. Let us now consider how abductive inference
can operate with neural populations.

7 Neural Abduction and Causality

Following ideas suggested in [41, 44] presented a neural network model of
abductive reasoning based on the account of reasoning with conditionals de-
veloped by Eliasmith [8]. At one level, our neural model of abduction is very
simple, using thousands of neurons to model a transition from q and p causes
q to p. The advantage in taking a neural approach to modeling, as I have
already described, is that p and q need not be linguistic representations, but
can operate in any modality. To take a novel example, q could be a neural
encoding of pain that I feel in my finger, and p could be neural encoding of a
picture of splinter in my finger. Then my abductive inference goes from the
experience of pain to the adoption of the visual representation that there is
a splinter.

Moreover, the neural model of abduction tracks the relevant emotions. Ini-
tially, the puzzling q is associated with motivating emotions such as surprise
and irritation. But as the hypothesis p is abductively adopted, the emotional
reaction changes to relief and pleasure. Thus neural modeling can capture
emotional aspect of abductive reasoning.

But how can we understand the causal relation in “p causes q”? Thagard
and Litt ([44], see also [41]) argue that causality should not be construed
formally as a deductive or probabilistic relation, but as a schema that de-
rives from patterns of visual-motor experience. For example, when a baby
discovers that moving its hand can move a rattle, it is forming an association
that combines an initial visual state with a subsequent motor and tactile
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state (pushing the rattle and feeling it) with a subsequent visual-auditory
state (seeing the rattle move and make noise). I do not know whether such
sensory-motor-sensory schemas are innate, having been acquired by natural
selection in the form of neural connections that everyone is born with; al-
ternatively they may be acquired very quickly by infants thanks to innate
learning mechanisms. But on the basis of perceptual experiments in both
adults and children, there is evidence that understanding of causality is tied
to such multimodal representations (e.g. [25]). Moreover, the concept of force
that figures centrally in many accounts of physical causality has its cogni-
tive roots in body-based experiences of pushes and pulls. Hence it seems
appropriate to speak of “embodied abduction”, since both the causal rela-
tion itself and the multimodal representations of many hypotheses and facts
to be explained are tied to sensory operations of the human body. However,
the topic of embodiment is highly controversial, so I now discuss how I think
the embodiment of abduction and mental models needs to be construed.

8 Embodiment: Moderate and Extreme

I emphatically reject the extreme embodiment thesis that thinking is just
embodied action and therefore incompatible with computational-represen-
tational approaches to how brains work [6]. I argue below that even motor
control requires a high degree of representation and computation. Much more
plausible is the moderate embodiment thesis that language and thought are
inextricably shaped by embodied action, a view that is maintained by Gibbs
[14], Magnani [24] and others. On this view, thinking still requires represen-
tations and computations, but the particular nature of these depends in part
on the kind of bodies that people have, including their sensory and motor
capabilities. My remarks about multimodal representations and the sensory-
motor-sensory schemas that underlie causal reasoning provide support for the
moderate embodiment thesis.

However, there are two main reasons for not endorsing the extreme em-
bodiment thesis. First, many kinds of thinking including causal reasoning,
emotion, and scientific theorizing take us well beyond sensorimotor pro-
cesses, so explaining our cognitive capacities requires recognizing representa-
tional/computational abilities that outstrip embodied action. Second, even
the central case of embodied action – motor control – requires substantial
representational/computational capabilities.

I owe to Lloyd Elliott the following summary of why motor control is much
harder than you might think. Merely reaching to pick up a book requires
solutions to many difficult problems for the brain to direct an arm and hand
to reach out and pick up the book. First, the signals that pass between the
brain and its sensors and muscles are very noisy. Information about the size,
shape, and location of the book is transmitted to be brain via the eyes,
but the process of translating retinal signals into judgments about the book
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involved multiple stages of neural transformations [37, ch. 2]. Moreover, when
the brain directs muscles to move the arm and hand in order to grasp the
book, the signals sent involve noisy activity in millions of nerve cells.

Second, motor control is also made difficult by the fact that the context
is constantly changing. You may need to pick up a book despite the fact
that there are numerous changes taking place, not only in the orientation
of your body, but also in visual information such as light intensity and the
presence of other objects in the area. A person can pick up a book even
though another person has reached across to pick up another book. Third,
there are unavoidable time delays as the brain plans and attempts to move
the arm to pick up the book.

Fourth, motor control is not an automatic process that occurs instantly
to people, but usually requires large amounts of learning. It takes years for
babies to become adept at handling physical objects, and even adults require
months or years to become proficient at difficult motor tasks such as playing
sports. Fifth, motor control is not a simple linear process of the brain just
telling a muscle what to do, but requires non-linear integrations of the move-
ments of multiple muscles and joints, which operate with many degrees of
freedom. Picking up a book requires the coordination of all the muscles that
move different parts of fingers, wrists, elbows, and shoulders.

Hence grasping and moving objects is a highly complex task that has been
found highly challenging by people attempting to build robots. Fortunately
for humans, millions of years of animal evolution have provided humans with
the capacity to learn how to manipulate objects. Recent theoretical expla-
nations of this capacity understand motor control as representational and
computational, requiring mental models (see e.g. [4, 47]). What follows is a
concise, simplified, synthesis of their accounts.

The brain is able to manipulate objects because its learning mechanisms,
both supervised and unsupervised, enable it to build powerful internal mod-
els of connections among sensors, brain, and world. A brain needs a forward
model from movements to sensory results, which enables it to predict what
will be perceived as the result of particular movements. It also needs an in-
verse model from sensory results to movements, which enables it to predict
what movement will produce the desired perceived result. Forward and in-
verse models are both dynamic mental models in the sense I discussed earlier:
the relational structure they share with what they represent is both spatial
and temporal, concerning the location and movement of limbs to produce
changes in the world. Motor control in general requires a high-level control
process in which the brain enables the body to interact productively with
the world through a combination of representations of situations and goals,
forward and inverse models, perceptual filters, and muscle control processes.
The overall process is highly complex and not all like the kinds of manipu-
lations of verbal symbols that some philosophers still take as the hallmark
of representation and computation. But the brain’s neural populations still
stand for muscle movement and visual changes, with which their activity is
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causally correlated, so it is legitimate to describe the activities of such popu-
lations as representational. Moreover, the mental modeling, both forward and
inverse, is carried out by systematic changes in the neural populations, which
hence qualifies as “principled manipulation of representations” [7, p. 29].

Let me summarize the argument in this section. Embodied action requires
motor control. Motor control requires mental models, both forward and in-
verse, to identify dynamic relations among sensory information and muscle
activity. Mental models are representational and computational. Hence em-
bodied action requires representation and computation, so that it cannot
provide an alternative to the representational/computational view of mind.
Therefore considerations of multimodal representations, embodied abduction,
and sensory-motor conceptions of causality only support the moderate em-
bodiment thesis, and in fact require rejection of the extreme version.

Proponents of representation-free intelligence like to say that “the world
is its own best model”. As an advisory that a robot or other intelligent sys-
tem should not need to represent everything to solve problems, this remark
is useful; but literally it is clearly false. For imagining, planning, explaining,
and many other important cognitive activities, the world is a very inade-
quate model of itself: far too complex and limited in its manipulability. In
contrast, mental models operating at various degrees of abstraction are in-
valuable for high-level reasoning. The world might be its own best model if
you’re a cockroach, with very limited modeling abilities. But if you have the
representational power of a human or powerful robot, then you can build
simplified but immensely useful models of past and future events, as well
as of events that your senses do not enable you observe. Hence science uses
abductive inference and conceptual combination to generate representations
of theoretical (i.e. non-observable) entities such as electrons, viruses, genes,
and mental representations.

Cockroaches and many other animals are as embodied, embedded, and
situated in the world as human beings, but they are far less effective than
people at building science, technology, and other cultural developments. One
of the many advantages that people gain from our much larger brains is the
ability to work with mental models, including ones used for abduction and
the generation of new ideas.

9 Conclusion

I finish with a reassessment of Peirce’s ideas about abduction from the neural
perspective that I have been developing. Peirce did most of his work on
inference in the nineteenth century, well before the emergence of ideas about
computation and neural processes. He was a scientist as well as a philosopher
of science, and undoubtedly would have revised his views on the nature of
inference in line with subsequent scientific developments.
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On the positive side, Peirce was undoubtedly right about the importance
of abduction as a kind of inference. The evaluative aspect of abduction is
recognized in philosophy of science under the headings of inference to the best
explanation and explanatory coherence, and the creative aspect is recognized
in philosophy and artificial intelligence through work on how hypotheses are
formed. Second, Peirce was prescient in noticing the emotional instigation
of abduction as the result of surprise, although I do not know if he also
noticed that achieving abduction generates the emotional response of relief.
Third, Peirce was right in suggesting that the creation of new ideas often
occurs in the context of abductive inference, even if abduction itself is not
the generating process.

On the other hand, there are several suggestions that Peirce made about
abduction that do not fit well with current psychological and neural under-
standing of abduction. I do not think that emotion is well described as a
kind of abduction, as it involves an extremely complex process that combines
cognitive appraisal of a situation with respect to ones goals and perception
of bodily states [43, 42]. At best, abductive inference is only a part of the
broader parallel process of emotional reactions. Similarly, perception is not
a kind of abduction, as it involves many more basic neuropsychological pro-
cesses that are not well described as generation and evaluation of explanatory
hypotheses (see e.g. [37, ch. 2]).

Finally, Peirce’s suggestion that abduction requires a special instinct for
guessing right is not well supported by current neuropsychological findings.
Perhaps evolutionary psychologists would want to propose that there is an
innate module for generating good hypotheses, but there is a dearth of ev-
idence that would support this proposal. Rather, I prefer the suggestion of
Quartz and Sejnowski [32, 33] that what the brain is adapted for is adaptabil-
ity, through powerful learning mechanisms that humans can apply in many
contexts. One of these learning mechanisms is abductive inference, which
leads people to respond to surprising observations with a search for hypothe-
ses that can explain them. Like all cognitive processes, this search must be
constrained by contextual factors such as triggering conditions that cut down
the number of new conceptual combinations that are performed [4]. Abduc-
tion and concept formation occur as part of the operations of a more general
cognitive architecture.

I see no reason to claim that the constraints on these operations in-
clude preferences for particular kinds of hypotheses, which is how I inter-
pret Peirce’s instinct suggestion. Indeed, scientific abduction has led to the
generation of many hypotheses that scientists now think are wrong (e.g. hu-
moral causes of disease, phlogiston, caloric, and the luminiferous ether) and
to many hypotheses that go against popular inclinations (e.g. Newton’s force
at a distance, Darwin’s evolution by natural selection, Einstein’s relativis-
tic account of space-time, quantum mechanics, and the mind-brain identity
theory). Although it is reasonable to suggest that the battery of innate hu-
man learning mechanisms includes ones for generating hypotheses to explain
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surprising events, there is no support for Peirce’s contention that people must
have an instinct for guessing right. Evolutionary psychologists like to compare
the brain to a Swiss army knife that has many specific built-in capacities; but
a more fertile comparison is the human hand, which evolved to be capable
of many different operations from grasping to signaling to thumb typing on
smartphones. Peirce’s view of abduction as requiring innate insight is thus as
unsupported by current research as the view of Fodor [12] that cognitive sci-
ence cannot possibly explain abduction: many effective techniques have been
developed by philosophers and AI researchers to explain complex causal rea-
soning.

I have tried to show in this paper how Peirce’s abduction is, from a neural
perspective, highly consonant with psychological theories of mental models,
which can also productively be construed as neural processes. Brains make
mental models through complex patterns of neural firing and use them in
many kinds of inference, from planning actions to the most creative kinds of
abductive reasoning. I have endorsed a moderate thesis about the importance
of embodiment for the kinds of representations that go into mental modeling,
but critiqued the extreme view that sees embodiment as antithetical to mental
models and other theories of representation. Further developments of neural
theories of mental models should further clarify their roles in many important
psychological phenomena.
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