Bounding Nonsplitting Enumeration Degrees

Thomas F. Kent Andrea Sorbi

Università degli Studi di Siena Italia

July 18, 2007

Goal: Introduce a form of Σ_2^0 -permitting for the enumeration degrees.

Till now, density was the only known property that held in all ideals of Σ_2^0 -enumeration degrees.

A is enumeration reducible to B ($A \leq_e B$) if we can enumerate A given any enumeration of B.

Definition

 $A \leq_e B$ iff there is c.e. set Φ such that $A = \{x : \exists \langle x, P \rangle \in \Phi \ (P \text{ finite and } P \subseteq B)\} = \Phi^B$

Basic Facts

We can embed the Turing degrees into the enumeration degrees via the embedding $\iota : \deg_{\mathcal{T}}(A) \mapsto \deg_{e}(A \oplus \overline{A})$.

• The image of the Turing degrees under ι is known as the "total degrees".

$$\mathbf{0}_e = \{W: W \text{ is c.e.}\}.$$

$$\mathbf{0}'_e = \deg_e(\overline{K}).$$
 Theorem (Cooper, 1984)

A is
$$\Sigma_2^0$$
 iff $A \leq_e \overline{K}$.

Theorem (Cooper, 1984)

The Σ_2^0 -enumeration degrees are dense.

The Global and Local Picture

Nonsplitting Degrees

Definition

A degree a is nonsplitting if $a>0_{\text{e}}$ and for every x,y< a, $x\vee y< a.$

Theorem (Ahmad 1989 (c.f. Ahmad, Lachlan 1998))

There exists a nonsplitting Σ_2^0 -enumeration degree.

The requirements:

Nontrivial

 \mathcal{N}_{Φ} : $A \neq \Phi$, and

Nonsplitting

$$\mathcal{S}_{\Psi,\Omega_0,\Omega_1} \qquad \qquad : \ A = \Psi^{\Omega_0^A \oplus \Omega_1^A} \Rightarrow \exists \Gamma_0, \Gamma_1 \Big[A = \Gamma_0^{\Omega_0^A} \ \text{or} \ A = \Gamma_1^{\Omega_1^A} \Big].$$

Bounding Nonsplitting Degrees

Theorem (Kent, Sorbi 2007)

Every nontrivial Σ^0_2 -enumeration degree bounds a nonsplitting degree.

The requirements:

A ≤_e B

 \mathcal{R} : $A = \Theta^B$

Nontrivial

 \mathcal{N}_{Φ} : $A = \Phi \Rightarrow \exists \Delta (B = \Delta)$, and

Nonsplitting

$$\mathcal{S}_{\Psi,\Omega_0,\Omega_1} \qquad : A = \Psi^{\Omega_0^A \oplus \Omega_1^A} \Rightarrow \exists \Gamma_0, \Gamma_1 \Big[A = \Gamma_0^{\Omega_0^A} \text{ or } A = \Gamma_1^{\Omega_1^A} \Big]$$
 or $\exists \Lambda [B = \Lambda].$

Some Corollaries

Corollary

The nonsplitting degrees are downwards dense in the Δ_2^0 -enumeration degrees.

Corollary

There is a properly Σ_2^0 nonsplitting enumeration degree.

Corollary

The c.e. Turing degrees are not elementarily equivalent to any ideal of the Σ_2^0 -enumeration degrees.

Question

Are the nonsplitting degrees dense in the Σ_2^0 or Δ_2^0 enumeration degrees?

N-Requirement - Standard

- 1. Pick x and set $x \in A$.
- 2. If ever $x \in \Phi$, set $x \notin A$.

N-Requirement - Bounded

- 1. Assume $x_0, \ldots x_{n-1} \in \Phi \cap A$.
- 2. Pick x_n .
- 3. While 1. holds, enumerate $\langle x_n, B \upharpoonright x_n \rangle \in \Theta$.
- 4. If ever $x_n \in \Phi$, stop defining x_n axioms, and enumerate $D_n = \bigcap \{D : \langle x_n, D \rangle \in \Theta \}$ into Δ .

N-Requirement - Bounded

- If infinitely many x_i are defined and each $x_i \in A$, then since $D_0 \subseteq D_1 \subseteq \cdots \subseteq B$, we can conclude $\Delta = B$.
- If $x_i \notin A$ then $x_i \notin A$ for all j > i.
- (Conditional Dumping) While $x_i \in A$, for all $y \in S(s_i)$, enumerate $\langle y, B \upharpoonright y \rangle$ into Θ .

S-Requirement - Standard

- 1. Pick x and set $x \in A$.
- 2. Wait for $x \in \Psi^{\Omega_0^A \oplus \Omega_1^A}$ via $\langle x, F_0 \oplus F_1 \rangle \in \Psi$.
- 3. Enumerate $\langle x, F_i \rangle$ into Γ_i , x into $S(\gamma_0)$ and return to Step 1.
 - Hopefully $x \in A$ iff $F_0 \subseteq \Omega_0^A$.
 - If true for co-finitely many x, then $A = \Gamma_0^{\Omega_0^A}$.
 - Strategies below γ_0 can only use x which have this property.

S-Requirement - Standard

- 4. If ever see $x \notin A$ and $F_0 \subseteq \Omega_0^A$ (hence $x \in \Gamma_0^{\Omega_0^A} A$), dump $S(\gamma_0) \{x\}$ into A, enumerate x into $S(\gamma_1)$.
 - For this x, $F_0 \subseteq \Omega_0^{A-\{x\}}$, killing Γ_0 .
 - Hopefully $x \in A$ iff $F_1 \subseteq \Omega_1^A$.
 - If true for infinitely many x, then $A = \Gamma_1^{\Omega_1^A}$.
 - Strategies below γ_1 can only use x which have this property.

S-Requirement - Standard

- 5. If ever see $x \notin A$ and $F_1 \subseteq \Omega_1^A$ (hence $x \in \Gamma_1^{\Omega_1^A} A$), dump $S(\gamma_1) \cup S(\gamma_0) x$ into A, and set $x \notin A$.
 - For this x, $F_1 \subseteq \Omega_1^{A-\{x\}}$, killing Γ_1 .
 - Not a problem since now $x \in \Psi^{\Omega_0^{A-\{x\}} \oplus \Omega_1^{A-\{x\}}}.$

S-Requirement - Bounded (v. 1.0)

- As with the *N*-strategy, expand the outcome s to s_0, s_1, \ldots
- If we choose x_0, x_1, \ldots as possible diagonalization witness, and for all $i, x_i \in \Psi^{\Omega_0^A \oplus \Omega_1^A} \cap A$, then $B = \Lambda$.
- (Conditional Dumping) While $x_i \in A$, for all $y \in S(s_i)$, enumerate $\langle y, B \mid y \rangle$ into Θ .

S-Requirement - Potential Problem

- Γ_0 assumes all elements of $S(\gamma_1)$ have settled down.
- Possibly there is $x \in S(\gamma_1)$ and $y \in S(\gamma_0)$ such that
 - while $x \in A$, $y \in A$ iff $y \in \Gamma_0^{\Omega_0^A}$, but
 - while $x \notin A$, $y \notin \Gamma_0^{\Omega_0^A}$.
 - $\lim_s A(x)$ does not exist, i.e. A is Σ_2^0 .

S-Requirement - Solution

- Assume $S(\gamma_1) = \{x\}.$
- Construct two enumeration operators: $\Gamma_{0,0}$ and $\Gamma_{0,1}$.
- $\Gamma_{0,0}$ assumes $x \notin A$ and $\Gamma_{0,1}$ assumes $x \in A$.
- Accounts for Σ_2^0 nature of A.
- In general, if $|S(\gamma_1)| = n$, then we construct 2^n enumeration operators.

Quasi-Lexicographical Ordering

Definition

Define the quasi-lexicographical ordering $<_b$ on $2^{<\omega}$ by $\sigma<_b\tau$ if

- 1. $|\sigma| < |\tau|$, or
- 2. $|\sigma| = |\tau|$ and there is a $k < |\sigma|$ such that $\sigma(k) = 0$, $\tau(k) = 1$, and for all i < k, $\sigma(i) = \tau(i)$.

S-Requirement - Bounded

- The strategy proceeds basically the same as before.
- We have added infinitely many outcomes to the tree to account for all possible states of elements to the left of the current outcome.
- When an element is moved left through the streams, it must make sure that the assumptions of the new stream are consistent with the assumptions of the previous stream.

S-Requirement - Bounded

- Other technical concerns not covered here include:
 - Other uses of conditional dumping.
 - Local approximations to B.
 - etc.

The End!

Kent, Sorbi "Bounding Nonsplitting Enumeration Degrees," to appear in The Journal of Symbolic Logic.

