Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ_2^0 -permitting for the enumeration degrees. Till now, density was the only known property that held in all ideals of Σ_2^0 -enumeration degrees. A is enumeration reducible to B ($A \leq_e B$) if we can enumerate A given any enumeration of B. #### Definition $A \leq_e B$ iff there is c.e. set Φ such that $A = \{x : \exists \langle x, P \rangle \in \Phi \ (P \text{ finite and } P \subseteq B)\} = \Phi^B$ ### **Basic Facts** We can embed the Turing degrees into the enumeration degrees via the embedding $\iota : \deg_{\mathcal{T}}(A) \mapsto \deg_{e}(A \oplus \overline{A})$. • The image of the Turing degrees under ι is known as the "total degrees". $$\mathbf{0}_e = \{W: W \text{ is c.e.}\}.$$ $$\mathbf{0}'_e = \deg_e(\overline{K}).$$ Theorem (Cooper, 1984) A is $$\Sigma_2^0$$ iff $A \leq_e \overline{K}$. Theorem (Cooper, 1984) The Σ_2^0 -enumeration degrees are dense. ### The Global and Local Picture ## Nonsplitting Degrees #### Definition A degree a is nonsplitting if $a>0_{\text{e}}$ and for every x,y< a, $x\vee y< a.$ ## Theorem (Ahmad 1989 (c.f. Ahmad, Lachlan 1998)) There exists a nonsplitting Σ_2^0 -enumeration degree. #### The requirements: Nontrivial \mathcal{N}_{Φ} : $A \neq \Phi$, and Nonsplitting $$\mathcal{S}_{\Psi,\Omega_0,\Omega_1} \qquad \qquad : \ A = \Psi^{\Omega_0^A \oplus \Omega_1^A} \Rightarrow \exists \Gamma_0, \Gamma_1 \Big[A = \Gamma_0^{\Omega_0^A} \ \text{or} \ A = \Gamma_1^{\Omega_1^A} \Big].$$ # **Bounding Nonsplitting Degrees** ## Theorem (Kent, Sorbi 2007) Every nontrivial Σ^0_2 -enumeration degree bounds a nonsplitting degree. ### The requirements: A ≤_e B \mathcal{R} : $A = \Theta^B$ Nontrivial \mathcal{N}_{Φ} : $A = \Phi \Rightarrow \exists \Delta (B = \Delta)$, and Nonsplitting $$\mathcal{S}_{\Psi,\Omega_0,\Omega_1} \qquad : A = \Psi^{\Omega_0^A \oplus \Omega_1^A} \Rightarrow \exists \Gamma_0, \Gamma_1 \Big[A = \Gamma_0^{\Omega_0^A} \text{ or } A = \Gamma_1^{\Omega_1^A} \Big]$$ or $\exists \Lambda [B = \Lambda].$ ### Some Corollaries ### Corollary The nonsplitting degrees are downwards dense in the Δ_2^0 -enumeration degrees. ### Corollary There is a properly Σ_2^0 nonsplitting enumeration degree. ### Corollary The c.e. Turing degrees are not elementarily equivalent to any ideal of the Σ_2^0 -enumeration degrees. #### Question Are the nonsplitting degrees dense in the Σ_2^0 or Δ_2^0 enumeration degrees? ### N-Requirement - Standard - 1. Pick x and set $x \in A$. - 2. If ever $x \in \Phi$, set $x \notin A$. ## N-Requirement - Bounded - 1. Assume $x_0, \ldots x_{n-1} \in \Phi \cap A$. - 2. Pick x_n . - 3. While 1. holds, enumerate $\langle x_n, B \upharpoonright x_n \rangle \in \Theta$. - 4. If ever $x_n \in \Phi$, stop defining x_n axioms, and enumerate $D_n = \bigcap \{D : \langle x_n, D \rangle \in \Theta \}$ into Δ . ## N-Requirement - Bounded - If infinitely many x_i are defined and each $x_i \in A$, then since $D_0 \subseteq D_1 \subseteq \cdots \subseteq B$, we can conclude $\Delta = B$. - If $x_i \notin A$ then $x_i \notin A$ for all j > i. - (Conditional Dumping) While $x_i \in A$, for all $y \in S(s_i)$, enumerate $\langle y, B \upharpoonright y \rangle$ into Θ . # S-Requirement - Standard - 1. Pick x and set $x \in A$. - 2. Wait for $x \in \Psi^{\Omega_0^A \oplus \Omega_1^A}$ via $\langle x, F_0 \oplus F_1 \rangle \in \Psi$. - 3. Enumerate $\langle x, F_i \rangle$ into Γ_i , x into $S(\gamma_0)$ and return to Step 1. - Hopefully $x \in A$ iff $F_0 \subseteq \Omega_0^A$. - If true for co-finitely many x, then $A = \Gamma_0^{\Omega_0^A}$. - Strategies below γ_0 can only use x which have this property. # S-Requirement - Standard - 4. If ever see $x \notin A$ and $F_0 \subseteq \Omega_0^A$ (hence $x \in \Gamma_0^{\Omega_0^A} A$), dump $S(\gamma_0) \{x\}$ into A, enumerate x into $S(\gamma_1)$. - For this x, $F_0 \subseteq \Omega_0^{A-\{x\}}$, killing Γ_0 . - Hopefully $x \in A$ iff $F_1 \subseteq \Omega_1^A$. - If true for infinitely many x, then $A = \Gamma_1^{\Omega_1^A}$. - Strategies below γ_1 can only use x which have this property. ## S-Requirement - Standard - 5. If ever see $x \notin A$ and $F_1 \subseteq \Omega_1^A$ (hence $x \in \Gamma_1^{\Omega_1^A} A$), dump $S(\gamma_1) \cup S(\gamma_0) x$ into A, and set $x \notin A$. - For this x, $F_1 \subseteq \Omega_1^{A-\{x\}}$, killing Γ_1 . - Not a problem since now $x \in \Psi^{\Omega_0^{A-\{x\}} \oplus \Omega_1^{A-\{x\}}}.$ # S-Requirement - Bounded (v. 1.0) - As with the *N*-strategy, expand the outcome s to s_0, s_1, \ldots - If we choose x_0, x_1, \ldots as possible diagonalization witness, and for all $i, x_i \in \Psi^{\Omega_0^A \oplus \Omega_1^A} \cap A$, then $B = \Lambda$. - (Conditional Dumping) While $x_i \in A$, for all $y \in S(s_i)$, enumerate $\langle y, B \mid y \rangle$ into Θ . ## S-Requirement - Potential Problem - Γ_0 assumes all elements of $S(\gamma_1)$ have settled down. - Possibly there is $x \in S(\gamma_1)$ and $y \in S(\gamma_0)$ such that - while $x \in A$, $y \in A$ iff $y \in \Gamma_0^{\Omega_0^A}$, but - while $x \notin A$, $y \notin \Gamma_0^{\Omega_0^A}$. - $\lim_s A(x)$ does not exist, i.e. A is Σ_2^0 . ## S-Requirement - Solution - Assume $S(\gamma_1) = \{x\}.$ - Construct two enumeration operators: $\Gamma_{0,0}$ and $\Gamma_{0,1}$. - $\Gamma_{0,0}$ assumes $x \notin A$ and $\Gamma_{0,1}$ assumes $x \in A$. - Accounts for Σ_2^0 nature of A. - In general, if $|S(\gamma_1)| = n$, then we construct 2^n enumeration operators. # Quasi-Lexicographical Ordering #### Definition Define the quasi-lexicographical ordering $<_b$ on $2^{<\omega}$ by $\sigma<_b\tau$ if - 1. $|\sigma| < |\tau|$, or - 2. $|\sigma| = |\tau|$ and there is a $k < |\sigma|$ such that $\sigma(k) = 0$, $\tau(k) = 1$, and for all i < k, $\sigma(i) = \tau(i)$. ## S-Requirement - Bounded - The strategy proceeds basically the same as before. - We have added infinitely many outcomes to the tree to account for all possible states of elements to the left of the current outcome. - When an element is moved left through the streams, it must make sure that the assumptions of the new stream are consistent with the assumptions of the previous stream. ## S-Requirement - Bounded - Other technical concerns not covered here include: - Other uses of conditional dumping. - Local approximations to B. - etc. #### The End! Kent, Sorbi "Bounding Nonsplitting Enumeration Degrees," to appear in The Journal of Symbolic Logic.