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Goal: Introduce a form of £9-permitting for the enumeration
degrees.

Till now, density was the only known property that held in all
ideals of ¥3-enumeration degrees.

A is enumeration reducible to B (A <. B) if we can enumerate A
given any enumeration of B.

Definition
A <. B iff there is c.e. set ® such that
A= {x:3(x,P) € & (P finite and P C B)} = 5




Basic Facts

We can embed the Turing degrees into the enumeration degrees
via the embedding ¢ : degy(A) — deg.(A @ A).

e The image of the Turing degrees under ¢ is known as the
“total degrees"”.

0. ={W:Wisce.}.

0, = deg,(K).

Theorem (Cooper, 1984)
Ais X9 iff A<. K.

Theorem (Cooper, 1984)

The ¥3-enumeration degrees are dense.




The Global and Local Picture

0, = deg, (K)

0. ={W:Wisce.}



Nonsplitting Degrees

Definition
A degree a is nonsplitting if a > 0. and for every x,y < a,
xVy<a.

Theorem (Ahmad 1989 (c.f. Ahmad, Lachlan 1998))

There exists a nonsplitting ¥3-enumeration degree.

The requirements:
e Nontrivial

No :A# 0, and

e Nonsplitting
A A
Sw.0p.0 DA =w%e . gro Ty [A —T or A=T{.




Bounding Nonsplitting Degrees

Theorem (Kent, Sorbi 2007)

Every nontrivial ¥3-enumeration degree bounds a nonsplitting
degree.

The requirements:

o A <e B

R - A=068

e Nontrivial

No cA=0=3JA(B=A), and

e Nonsplitting
A A
Sw.20.2 P A= VRO = 3,1y [A = ngo or A= r?l




Some Corollaries

Corollary

The nonsplitting degrees are downwards dense in the
AY-enumeration degrees.

Corollary
There is a properly ¥3 nonsplitting enumeration degree.

Corollary

The c.e. Turing degrees are not elementarily equivalent to any
ideal of the ¥9-enumeration degrees.

Question
Are the nonsplitting degrees dense in the 3 or AS enumeration
degrees?




N-Requirement - Standard

Ncp . A;ﬁ@

recd—-A r€A—-®

1. Pick x and set x € A.
2. If ever x € O, set x ¢ A.



B

N-Requirement - Bounded

Ny : A=d=B=A

s S1 s w

i | €D - A ToED—A- - - r€A—-®

Assume xp,...Xp,_1 € PNA.
Pick x,.
While 1. holds, enumerate (x,, B | x,) € ©.

If ever x, € ®, stop defining x,, axioms, and enumerate
Dn={D: (xn, D) € ©} into A.




N-Requirement - Bounded

Ng : A=d=B=A

s S1 s w

0 €P— A r1ed—A ToEDP—A:+ - reA—®

e If infinitely many x; are defined and each x; € A, then since
Dy C D; C--- C B, we can conclude A = B.

o If x; ¢ Athen x; ¢ Aforall j > i.

e (Conditional Dumping) While x; € A, for all y € S(s;),
enumerate (y, B [ y) into ©.




S-Requirement - Standard

A A QA QA
Swv.00,0: - A= T% 9% =>A=T,°or A=T7"

A A
zepent _ 4 A=T{ A=TJ0  zeA—g%et

1. Pick x and set x € A.

2. Wait for x € WREX via (x, Fo® F1) € V.

3. Enumerate (x, F;) into [';, x into S(70) and return to Step 1.
o Hopefully x € A iff Fp C QF.

A
o If true for co-finitely many x, then A = I'g‘).
o Strategies below g can only use x which have this property.




S-Requirement - Standard

A A QA QA
Sv.a00, ¢+ A= Yo O = A = Iy® or A=TI7"

QA QA
reweol 4 A=T] A=Ty"  zeA- %o

A
4. If ever see x ¢ A and Fg C Qf (hence x € Fgo — A), dump
S(70) — {x} into A, enumerate x into S(71).

e For this x, Fo € 25" killing I,
e Hopefully x € Aiff F; C Q{‘.

A
o If true for infinitely many x, then A= r?l,
e Strategies below 71 can only use x which have this property.




S-Requirement - Standard

A A 0A 04
Sw,00,0, A= U o =A=Iy° or A=TI7"

ga! J0 w
A A
rev%ent _ 4 A=T A=T5  zeA—u2%ed

A
5. If ever see x ¢ A and F; C Qf' (hence x € rill — A), dump
S(71) US(70) — x into A, and set x ¢ A.
e For this x, F; € Q7" killing 'y,

. A—{x} g gA—{x}
e Not a problem since now x € W% = &% 7




S-Requirement - Bounded (v. 1.0)

A A 0A 0A
S\I;’Qle : A:\Ijﬂo@ﬂl :>A:F00 OI‘A:F11 or B=A

rev%eel 4 A=rTH  A=TH sea_upen]

e As with the N-strategy, expand the outcome s to sp, s1, ...

e If we choose xg, x1, ... as possible diagonalization witness,
and for all i, x; € VNP N A, then B = A.

e (Conditional Dumping) While x; € A, for all y € S(s;),
enumerate (y, B [ y) into ©.




S-Requirement - Potential Problem

A oA Q4 of
Sy.ae0 ¢ A=TVROUW = A=T" or A=T7" or B=A

st Y0

A=T%  4=r¥

e o assumes all elements of S(-y1) have settled down.

e Possibly there is x € S(1) and y € S(7o) such that

o while x € A, y € Aiffy € I® but

o while x ¢ A, y ¢ I’
e limg A(x) does not exist, i.e. Ais 9.




S-Requirement - Solution

A A 0A 0A
Sy.ae0 ¢ A=TVROUW = A=T" or A=T7" or B=A

g4l 70,0 70,1

a3y

of Q%
A=T7" A=Ty5" A=T,5

Assume S(v1) = {x}.

Construct two enumeration operators: 9o and [ 1.
0,0 assumes x ¢ A and g1 assumes x € A.
Accounts for X3 nature of A.

In general, if |S(71)| = n, then we construct 2" enumeration
operators.




Quasi-Lexicographical Ordering

Definition
Define the quasi-lexicographical ordering <, on 2<% by o <, 7 if
1. |o| < |7]|, or
2. |o| =|7| and there is a k < |o| such that o(k) =0, 7(k) =1,
and for all i < k, o(i) = 7(i).

0 <p 1 <p
00 <p 01 <p 10 <p 11 <y
000 <p 001 <p 010 <p 011 <p 100 <p 101 <y




S-Requirement - Bounded

A A 0A 0A
Sy.ae0 ¢ A=TVROUW = A=T " or A=T7" or B=A

94! 70,0 We

A A
reweat 4 A=T{ A=Tg0  zeA—v%ent

e The strategy proceeds basically the same as before.

e We have added infinitely many outcomes to the tree to
account for all possible states of elements to the left of the
current outcome.

e When an element is moved left through the streams, it must
make sure that the assumptions of the new stream are
consistent with the assumptions of the previous stream.




S-Requirement - Bounded

A A QA QA
Sw.00,0: - A= 0% 9% =A=I°"or A=I7" or B=A

2! 70,0 We
A A
reUWOA 4 A=TH A=T  zeA—w%ont

e Other technical concerns not covered here include:

e Other uses of conditional dumping.
e Local approximations to B.
e etc.




The End!
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