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Abstract: It is well known that there are, at least, two sorts of cases where one should not prefer 

a direct inference based on a narrower reference class, in particular: cases where the narrower 

reference class is gerrymandered, and cases where one lacks an evidential basis for forming a 

precise-valued frequency judgment for the narrower reference class. I here propose (1) that the 

preceding exceptions exhaust the circumstances where one should not prefer direct inference 

based on a narrower reference class, and (2) that minimal frequency information for a narrower 

(non-gerrymandered) reference class is sufficient to yield the defeat of a direct inference for a 

broader reference class. By the application of a method for inferring relatively informative 

expected frequencies, I argue that the latter claim does not result in an overly incredulous 

approach to direct inference. The method introduced here permits one to infer a relatively 

informative expected frequency for a reference class R, given frequency information for a 

superset of R and/or frequency information for a sample drawn from R. 
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1  Introduction 

 

Instances of direct inference proceed from two premises. The first premise states that a given 

object, c, is an element of a given set, R (the reference class). The second (major) premise states 

something about the relative frequency of elements of R among another set, T (the target class). 

Typically, the major premise states that the relative frequency of T among R is some value, r 

(though other sorts of statistical statement, e.g., imprecise-valued frequencies or expected 

frequencies, might also serve). The conclusion of the direct inference, in the typical case, is then 

that the probability that c is in T is also r. In order to permit a concise expression of such direct 

inferences, I use “PROB” to denote the personal probabilities that are rational for a given agent, 

given the agent’s evidence, and “freq” to denote a function that takes pairs of sets and returns the 

relative frequency of the first set among the second. Given these conventions, typical instances of 

direct inference satisfy the following schema: 

 

From cR and freq(T|R) = r infer that PROB(cT) = r. 

 

Instances of the preceding schema are, of course, defeasible. For example, it is usually 

assumed (for good reason) that an instance of the schema is defeated in cases where one is in a 

position to formulate a direct inference of the following form, where s  r, and R is not 

gerrymandered and narrower than R (i.e., R  R) (cf. Venn 1866, Reichenbach 1949, Kyburg 

1974, Bacchus 1990, Pollock 1990, Kyburg & Teng 2001): 
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From cR and freq(T|R) = s infer that PROB(cT) = s. 

 

In Section 2, I consider the difficulty of arbitrating between similar pairs of direct 

inferences, in cases where one is not in a position to make a precise-valued frequency judgment 

for the narrower reference class, R. I here maintain that such cases fall into two categories. In the 

first category, one’s frequency ‘information’ for the narrower reference class is fully 

uninformative, and thereby has no bearing on what conclusion one should adopt concerning the 

relevant singular proposition (cT). In these cases, direct inference based on the broader 

reference class is licensed, provided there are no other defeaters for the inference. On the other 

hand, if one’s frequency information for the narrower reference class is informative (to even the 

slightest degree), I maintain that direct inference based on the broad reference class is defeated. 

In Sections 3 and 4, I address the worry that the preceding proposal is overly incredulous, 

yielding the defeat of too many direct inferences, in the presence of scant frequency information 

for a narrower reference class.  

 

 

2  Imprecise-valued Frequency Judgments 

 

Elsewhere (Thorn 2012), I advocated the view that even modest frequency information 

concerning a (non-gerrymandered) reference class is sufficient to trigger the defeat of a direct 

inference based on a broader reference class.
2
 In particular, I claimed that direct inference to a 

conclusion about the probability that cT based on frequency information for a reference class R 

is defeated, if one is warranted in accepting that freq(T|R)  V, for some V  {0/|R|, 1/|R|, …, 

|R|/|R|}, where cR, R is non-gerrymandered, and R  R.
3
 The preceding claim conflicts with 

the most developed competing accounts of direct inference, including those of Kyburg (1974), 

Bacchus (1990), Pollock (1990), and Kyburg and Teng (2001). Indeed, assuming that direct 

inference based on gerrymandered reference and target classes are set aside, the preceding 

accounts all entail the doctrine that direct inference based on a narrower reference class yields the 

defeat of a direct inference based on a broader class only if the conclusions of the two direct 

inferences are inconsistent. The doctrine maintained by my opponents has a sound motivation 

(given other auxiliary features of the respective accounts), as it serves to prevent imprecise-

valued frequency information for a narrow reference class from yielding the defeat of a direct 

inference based on precise-valued frequency information for a broad reference class. For 

example, consider pairs of direct inferences of the following form: 

 

From cR and freq(T|R) = 0.5 infer that PROB(cT) = 0.5. 

 

From cR and freq(T|R)  [0.4, 0.6] infer that PROB(cT)  [0.4, 0.6]. 
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 In fact, the view of (Thorn 2012) is committed to an even stronger doctrine about the conditions under which direct 

inferences are defeated by frequency information for a narrower reference class. For the sake of comprehensibility, 

details of the stronger doctrine are omitted here, though I believe that the method of inferring expected frequencies 

introduced in Section 4 is capable of addressing worries concerning the stronger doctrine that parallel the worries 

discussed in the body of the paper. 



Faced with the preceding pair of direct inferences, the doctrine held by my opponents 

permits the conclusion that PROB(cT) = 0.5. The present conclusion is plausible. But as Stone 

(1987) pointed out, the doctrine (that direct inference based on a narrower reference class yields 

the defeat of a direct inference based on a broader class only if the conclusions of the two direct 

inferences are inconsistent) permits implausible conclusions in the face of examples of the 

following form (assuming that the second direct inference incorporates the most precise estimate 

for freq(T|R) that is warranted): 

 

From cR and freq(T|R) = 0.5 infer that PROB(cT) = 0.5. 

 

From cR and freq(T|R)  [0, 0.5] infer that PROB(cT)  [0, 0.5]. 

 

The standard accounts of direct inference are overly credulous in the face of the preceding 

example, permitting inference to the conclusion that PROB(cT) = 0.5. Unlike the standard 

accounts, my account yields the defeat of the first direct inference in both of the two preceding 

examples. It would appear, then, that my account skirts credulity in the second example, while 

demanding inappropriate incredulity in the first. As it turns out, the prima facie incredulousness 

of my view (in the first example) can be addressed by an auxiliary method for reasoning about 

the value of the expected frequency for a narrower reference class R, on the basis of frequency 

information for a broader reference class R. Before illustrating the method, a few words about 

expected frequencies are in order. 

The doctrine that it is statements of expected frequency that are the proper major premises 

for direct inference may be found in (Bacchus 1990). Within Bacchus’s account of direct 

inference, the doctrine functions to prevent highly uninformative frequency information for a 

narrower reference class from defeating a direct inference based on an informative frequency 

statement for a broad reference class. Expected frequencies are apt to perform this function, in 

virtue of the deductive connections, and lack thereof, between frequencies and expected 

frequencies. In particular, for all T, R, and r: PROB(freq(T|R) = r) = 1 implies E[freq(T|R)] = r 

(Thorn 2012). The preceding implication explains why it is generally correct to use point-valued 

frequency statements as major premises for direct inference. On the other hand, in the case where 

PROB(freq(T|R)  S) = 1, we are not generally in a position to infer that E[freq(T|R)]  S. 

Rather the most we can deduce, in general, is that E[freq(T|R)]  U, where U is the smallest 

interval such that S  U (Thorn 2012). The lack of an implication, in the latter case, explains why 

fully uninformative frequency information for a narrow reference class does not defeat direct 

inferences based on broader reference classes. For example, the judgment that freq(T|{c})  

{0,1} does not result in the defeat of a direct inference for a broader reference class that would 

yield the conclusion that PROB(cT) = r  {0,1}, since the most one may generally deduce from 

PROB(freq(T|{c})  {0,1}) = 1 is that E[freq(T|{c})]  [0,1]. In such cases, the doctrine that 

statements of expected frequency are the proper major premises of direct inference may be 

regarded as ‘deflating’ the inferential role of imprecise frequencies.
4
 

In addition to deflating the inferential content of imprecise frequencies, the doctrine that 

statements of expected frequency are the proper major premises of direct inference provides an 

avenue to ‘inflating’ the inferential role of relatively imprecise, though non-vacuous, frequencies, 

thereby addressing a worry about the incredulousness of the doctrine proposed above (i.e., that 
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modest frequency information concerning a narrow reference class is sufficient to trigger the 

defeat of direct inferences based on broader reference classes). The latter worry is addressed via 

auxiliary methods of inferring an expected frequency for a narrow reference class R based on a 

(relatively) precise-valued frequency judgment for a reference class R (R  R). A method for 

inferring an expected frequency for R based on frequency information for R was proposed in 

(Thorn forthcoming). In the following section, I provide a simple example that illustrates the kind 

of conclusions the method permits. In Section 4, I address a major limitation of the method 

described in Section 3.   

 

 

3  Imprecise Frequencies Based on Descriptive Statistics 

 

Suppose we are warranted in accepting that freq(T|R) = 0.5 and that freq(T|R)  {0.4, 0.6} (and 

we are not warranted in accepting that freq(T|R) = 0.4 or that freq(T|R) = 0.6). To simplify 

matters, suppose we also know that |R| = 100 and |R| = 10. In that case, we can assign a 

probability to the claim that freq(T|R) = 0.4, by direct inference, and, similarly, to the claim that 

freq(T|R) = 0.6. 

 As a basis for assigning a probability to freq(T|R) = 0.4, notice that R is an element of {s 

: s  R  |s| = 10  freq(T|s)  {0.4, 0.6}}. Next notice that we are in a position to deduce the 

value of the following frequency: freq({s : freq(T|s) = 0.4} | {s : s  R  |s| = 10  freq(T|s)  

{0.4, 0.6}}). In particular, the value of this frequency is (   
 
  

  
 
 ) / (   

 
    

 
 +   

 
    

 
 ) = 0.5. 

We are thus in a position to formulate a direct inference of the following form: 

 

From R{s : s  R  |s| = 10  freq(T|s)  {0.4, 0.6}} and  

freq({s : freq(T|s) = 0.4} | {s : s  R  |s| = 10  freq(T|s)  {0.4, 0.6}})= 0.5 infer that 

PROB(R{s : freq(T|s) = 0.4}) = 0.5 (i.e., PROB(freq(T|R) = 0.4) = 0.5). 

 

A similar direct inference yields the conclusion that PROB(freq(T|R) = 0.6) is also 0.5. 

Taken together the conclusions of the two direct inferences license a conclusion about the value 

of E[freq(T|R)]. Namely, E[freq(T|R)] = i iPROB(freq(T|R) = i) = 0.4PROB(freq(T|R) = 

0.4) + 0.6PROB(freq(T|R) = 0.6) = 0.40.5+0.60.5 = 0.5. 

Recall that (above) I endorsed the doctrine that direct inference to a conclusion about the 

probability that cT based on frequency information for a reference class R is defeated, if one is 

warranted in accepting that freq(T|R)  V, for some V  {0/|R|, 1/|R|, …, |R|/|R|}, where 

cR, R is non-gerrymandered, and R  R. The method employed in the preceding example 

uses frequency information for the relevant R, in order to make a point-valued judgment of the 

expectation of freq(T|R). The method thereby goes some distance in addressing the worry that 

the proposed thesis yields incredulity about the value of PROB(cT) in cases where one’s 

information concerning the possible values of freq(T|R) is modest. Taken together, the proposed 

method and the proposed thesis also yield an appropriate degree of incredulity, in the face of the 

sort of example introduced by Stone (1987): In the example given above, the illustrated method 

does not entitle one to infer that PROB(cT) = 0.5, but only that PROB(cT) is close to 0.5. The 

exact conclusion one is permitted to draw depends on one’s information concerning the size of R 

and the size of R. For example, if |R| = 100 and |R| = 10, then the described method permits one 

to infer that E[freq(T|R)]  0.4885 and PROB(cT)  0.4885. Similarly, if |R| = 1,000 and |R| = 



100, then the described method permits one to infer that E[freq(T|R)]  0.4652 and PROB(cT) 

 0.4652. 

As explained in (Thorn forthcoming), the method employed in the preceding example is 

also applicable in cases where the values of |R| and/or |R| are unknown, and where the range of 

possible values of freq(T|R) is greater than two, and the range of possible values of freq(T|R) is 

greater than one. In presenting the proposed method, I did not consider its application to cases 

where one’s information concerning the possible values of freq(T|R) was derived by an inductive 

inference, based on a sample of the elements of R.
5
 Since cases of the latter sort are common, I 

now provide a sketch of how I think we should reason about the expectation of freq(T|R) in such 

cases. 

 

  

4    Imprecise Frequencies Based on Sampling 
 

In many cases, we form frequency judgments on the basis of counting, actuarial records, etc. that 

warrant acceptance of descriptive statistical statements of the form freq(T|R)  V. In other cases, 

our frequency judgment, for some group, is formed by an inductive inference from an observed 

sample of members of the group. It is typically proposed that such inductive inferences are 

underwritten by some form of the Law of Large Numbers, based on the idea that it is reasonable 

to proceed as if the values of the elements of our sample were independent and identically 

distributed. I favor a less standard view, where induction is underwritten by a combinatorial 

version of the Law of Large Numbers, along with direct inference, and proceeds without the 

assumption that the values of the elements of our sample are independent and identically 

distributed. I will illustrate the ideas that follow according to my preferred view, though similar 

points could also be expressed within the more standard framework. 

 According to the view that I prefer, inductive inference proceeds from the combinatorial 

fact that almost all sufficiently large subsets of a set agree with the set, within a small margin, on 

the relative frequency of any given characteristic (cf. Williams 1947, Kyburg 1974, Stove 1986, 

McGrew 2001, Thorn 2014). The following result, reported by McGrew (2001), illustrates the 

described combinatorial fact: 

 

Theorem. T,R: ,,n: n  1/(4
2
)   

         freq({s : freq(T|s)  freq(T|R)} | {s : s  R  |s|  n}) > 1.
6
 

 

 By appeal to results such as the preceding, it is possible to underwrite inductive inference 

via direct inference. Indeed, results such as the preceding, are sufficient to generate the major 

premises for direct inferences of the following form, where S is our observed sample of the 

elements of R, and n is sufficiently large, so that 
 
and  (above) are nearly zero: 

 

From S{s : s  R  |s|  n} and freq({s : freq(T|s)  freq(T|R)}|{s : s  R  |s|  n})  

infer that PROB(S  {s : freq(T|s)  freq(T|R)})  1  

(i.e., that PROB( freq(T|S)  freq(T|R) )  1). 
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Assuming we have observed that the value of freq(T|S) is r, we may employ the conclusion of the 

preceding direct inference to conclude that PROB(freq(T|R)  r)  1, and thus that E[freq(T|R)] 

 r. 

 As just illustrated, we are sometimes in a position to make an inductive inference about 

the (approximate) value of E[freq(T|R)], given frequency information for a sample of the 

elements of R. As we saw in the preceding section, it is also possible to reason to a conclusion 

about the value of E[freq(T|R)], given the value of freq(T|R). The problem that I will now 

address is that of adjudicating the two sorts of inference to the value of E[freq(T|R)]. Intuitively, 

a conclusion about the value of E[freq(T|R)] based on a (very) large sample of the elements of R 

takes precedence over a competing inference based on the value of freq(T|R). In such cases, it is, 

I think, obvious that PROB( freq(T|S)  freq(T|R) ) should not differ substantially from PROB( 

freq(T|S)  freq(T|R) | freq(T|S)   freq(T|R) ). After all, although we expect S to agree with both 

R and R, regarding T, learning that S disagrees with R should not change our assessment of the 

probability that it will agree with R. Rather: evidence that S disagrees with R is evidence that R 

is an unrepresentative subset of R, with respect to T. 

Beyond such intuitive considerations, it is possible to integrate the two sorts of reasoning 

concerning the value of E[freq(T|R)]. It is important that the two sorts of reasoning can be 

integrated, since despite the presumed preference for the inductive inference, in the case where 

our sample, S, of R is large, there are also cases where our sample is quite small. In such cases, 

both the frequency of T among our sample of R, and the value of freq(T|R) may be relevant to 

drawing a conclusion about the value of E[freq(T|R)]. Beyond this, the application of the method 

of the preceding section yields implausible conclusions about the value of the E[freq(T|R)] in 

cases where we have sample-based information concerning the value of freq(T|R).
7
 For example, 

suppose we know |R| = 10,000, |R| = 1,000, and freq(T|R) = 0.8, and we have drawn a sample of 

the elements of R that tells us that it is (virtually) certain that freq(T|R)  [0.45, 0.55] (and there 

is no S  [0.45, 0.55], such that it is certain that freq(T|R)  S). In this case, the method 

presented in the preceding section yields the conclusion that E[freq(T|R)]  0.5497. This 

conclusion is implausible, as it takes too little account of our sample-based evidence bearing on 

the value of freq(T|R). The example shows that the method presented in the preceding section is 

quite limited in its proper domain of application.
8
 Beyond this, it is clear that we need an 

alternative to this method, that is applicable in cases where our judgments about the possible 

values of freq(T|R) are based on a sample of the elements of R, if we are going to address 

worries about the incredulity of the doctrine advocated in Section 2 (i.e., the doctrine that 

minimal frequency information regarding R is sufficient to defeat a direct inference based on 

R).
9
 

In fact, the sort of reasoning described in the preceding section can be integrated with 

sample-based inductive inference. The trick to seeing how the two sorts of reasoning may be 
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integrated is to notice that inductive inference, based on the likes of Theorem 3 (or on some short 

run variant of the Law of Large Numbers), generally licenses conclusions about the probability 

that the value of freq(T|R) lies within an interval that spans freq(T|S), for our sample S. For 

example, given a sample of sufficient size, we may apply Theorem 3 to infer that the probability 

is at least 0.95 that freq(T|R) lies within freq(T|S)  0.05. In fact, we will generally be in a 

position to infer various probabilities regarding the possible values of freq(T|R) – that the 

probability is at least 0.98 that freq(T|R) lies within freq(T|S)  0.1, for example. 

Rather than describing a general schema for integrating the two sorts of reasoning, I here 

present an example that illustrates the proposed method of integrating the two sorts of reasoning. 

The example consists of an elaboration of the example considered in the preceding section. In the 

original variant of the example, we were warranted in accepting that freq(T|R) = 0.5 and that 

freq(T|R)  {0.4, 0.6}, along with the fact that |R| = 100 and |R| = 10. For the variant, suppose 

that instead of knowing that freq(T|R)  {0.4, 0.6}, we observed a two element sample from R, 

and found that neither element of the sample is an element of T. The small sample size, in this 

case, will simplify the needed calculations, while providing an apt illustration of the inferences 

that we ought to make in the described circumstances. After walking through this ‘toy’ example 

in detail, I will briefly present some additional examples that show how the method performs in 

the case where R, R, and our sample are much larger. 

The first step in dealing with the toy example is to calculate the frequencies with which 

two element subsets of a ten element population (in this case R), are guaranteed to agree with 

that population, to various degrees, on the frequency of T. This results in the following 

conclusions (that are the strongest ones that can be drawn, in the present case): (i) at least    % 

(of the two element subsets of a ten element set) differ (from the set with respect to the frequency 

of T) by no more than 0.2, (ii) at least    % differ by no more than 0.3, (iii) at least    % differ by 

no more than 0.4, (iv) at least    % differ by no more than 0.5, (v) at least    % differ by no more 

than 0.6, and (vi) none differ by more than 0.8. It is also possible that none of the two element 

subsets of a ten element set differ from the set (at all) on the frequency of T (as is the case when 

no elements of R are in T). Now given the preceding, and given that freq(T|S) = 0, for our 

sample S, it is reasonable to draw the following conclusions (via direct inference): (i) 

PROB(freq(T|R)  {0, 0.1, 0.2})  [     , 1], (ii) PROB(freq(T|R)  {0, 0.1, 0.2, 0.3})  

[     , 1], (iii) PROB(freq(T|R)  {0, 0.1, 0.2, 0.3, 0.4})  [     , 1], (iv) PROB(freq(T|R)  

{0, 0.1, 0.2, 0.3, 0.4, 0.5})  [     , 1], (v) PROB(freq(T|R)  {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6})  

[     , 1], and (vi) PROB(freq(T|R)  {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}) = 1. 

I now propose that we treat the preceding conclusions ((i) through (vi)) as expressing 

higher order probabilities about the set of values in which freq(T|R) lies. I describe these 

(imprecise) probabilities as “higher order probabilities”, since (as we will see in a moment) I will 

also consider assignments of first order probability to the possible values of freq(T|R), according 

to varied assumptions about the set in which freq(T|R) lies. A difficulty with applying the 

probabilities expressed by (i) through (vi) is that they are imprecise. However, since the final 

goal is to form a judgment about the possible values of E[freq(T|R)], we can use the imprecise 

probabilities in order to reason by cases. In particular, we treat (the set of) upper bounds specified 

by (i) through (vi) as point-valued probabilities, in order to infer a lower bound on E[freq(T|R)]. 

Similarly, we treat the lower bounds specified by (i) through (vi) as point-valued probabilities, 

in order to infer an upper bound on E[freq(T|R)]. Taken as point-valued probabilities, the set of 

upper bounds specified by (i) through (vi) entail that PROB(freq(T|R)  {0, 0.1, 0.2}) = 1. 

Taken similarly, the lower bounds entail that: (i*) PROB(freq(T|R)  {0, 0.1, 0.2}) =      , (ii*) 



PROB(freq(T|R) = 0.3) =      , (iii*) PROB(freq(T|R) = 0.4) =      , (iv*) PROB(freq(T|R) = 

0.5) =      , (v*) PROB(freq(T|R) = 0.6) =     , and (vi*) PROB(freq(T|R)  {0.7, 0.8}) =      . 

Our reasoning according to the two cases proceeds as follows. 

For the first case, we assume that PROB(freq(T|R)  {0, 0.1, 0.2}) = 1. In this case, it is 

reasonable to infer the value of E[freq(T|R)] by application of the method of the preceding 

section, which requires making three direct inferences in order to draw three conclusions about 

the probability that freq(T|R) is 0, 0.1, and 0.2, respectively. Given the conclusions of the 

aforementioned direct inferences (whose description is omitted here), it follows that the value of 

E[freq(T|R)] (according to the first case) is (approximately) 0.1816. For the second case, we 

assume that (i*) PROB(freq(T|R)  {0, 0.1, 0.2}) =      , (ii*) PROB(freq(T|R) = 0.3) =      , 

etc. For each of (i*) through (vi*), we compute the value of E[freq(T|R)], by application of the 

method of the preceding section, on the assumption that the object of the respective probability 

statement obtains (i.e., on the assumption that freq(T|R)  {0, 0.1, 0.2}, and then on the 

assumption that freq(T|R) = 0.3, etc.). We then form a weighted average of the resulting values 

of E[freq(T|R)], according to the (higher order) probabilities associated with (i*) through (vi*). 

So, for (i*), we have E[freq(T|R)]  0.1816, with weight      , and for (ii*), we have 

E[freq(T|R)] = 0.3, with weight      , etc. Averaging the respective values of E[freq(T|R)] 

according to the described weights yields the result that E[freq(T|R)] is (approximately) 0.3520 

(according to the second case). The pair of conclusions, E[freq(T|R)]  0.1816 and E[freq(T|R)] 

 0.3520, correspond to the upper and lower bounds specified by (i) through (vi), so it is correct 

to use these conclusions as bounds on E[freq(T|R)], namely: E[freq(T|R)]  [0.1816, 0.3520]. 

The preceding illustrates my proposed approach to integrating the two sorts of reasoning 

about the value of E[freq(T|R)]. It is important to note that the integrated method ratifies the 

intuition that a conclusion about the value of E[freq(T|R)] based on a (very) large sample of the 

elements of R takes precedence over a competing inference based on the value of freq(T|R). 

Indeed, as the size of our sample of R increases, the size of the smallest set V such that we are 

warranted in inferring that PROB(freq(T|R)  V)  r, for some r > 0, will shrink. At the same 

time, the warranted values of r for PROB(freq(T|R)  V)  r, for various fixed V, will increase. 

As a result, the impact of our judgment of the value of freq(T|R) upon our conclusion about the 

possible values of E[freq(T|R)], as licensed by the proposed method will decrease as a function 

of the size of our sample of R. For example, suppose we know that 10,000,000 Bavarians voted 

in the last German federal election, with about 20% casting their vote for the Social Democratic 

Party (SPD). In addition, suppose we know that 100,000 of these voters were from Nuremberg. 

Finally, suppose we drew a sample of 1,000 of the 100,000 Nurembergers, and found that 40% of 

these voters cast their vote for the SPD. In this case, we can apply the proposed method to 

conclude that the expected frequency of voters from Nuremberg that cast their vote for the SPD is 

in the interval [0.3864, 0.3991], which closely approximates our sample frequency (which is 0.4). 

Note that the narrowness of the inferred interval licensed by the method is primarily a function of 

the size of the sample drawn from the relevant R, rather than the relative size of the sample in 

relation to the size of R. For example, if we had drawn a 1,000 element sample of the set of 

1,000,000 voters from Munich (and found that 40% of these voters cast their vote for the SPD), 

then the method would have licensed the conclusion that the expected frequency of voters from 

Munich that cast their vote for the SPD is in [0.3864, 0.3991].
10

 It should also be observed that 

the relative size of our sample need not be enormous, in order to exert a significant influence on 
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 Though not identical, the bounds licensed in the two cases differ by less than 0.0001. 



the conclusions licensed by the proposed method. For example, in a variant of the above example 

where we drew a sample of only 100 of the 100,000 Nurembergers, the method would license the 

conclusion that the expected frequency of voters from Nuremberg that cast their vote for the SPD 

is in the interval [0.3569, 0.3941]. 

It should be acknowledged that the computations required in applying the proposed 

method are not of the sort that could be performed on the back of an envelope, save in cases 

where all of the relevant sets are quite small (as in the toy example considered above). However, 

if we are willing to accept modest approximation, the method can be applied in cases where the 

size of R, R, and our sample are relatively large (as in the examples of the preceding paragraph), 

using a typical modern personal computer, with a reasonable run time (i.e., more than a minute, 

but less than a day).
11

 

 

 

5  Conclusion 

 

In the present paper, I articulated an objection to the view that modest frequency information 

concerning a (non-gerrymandered) reference class, R, is sufficient to trigger the defeat of a direct 

inference based on a broader reference class, R. In particular, the view appears to imply an overly 

incredulous account of direct inference. As a means of addressing this objection, I appealed to a 

method of inferring the expectation of freq(T|R) by appeal to the value of freq(T|R). I then raised 

an objection to that method, noting that it cannot be used to draw plausible conclusions in cases 

where our frequency information about R is based on an inductive inference from a sample of 

the elements of R. In order to address this problem, I introduced a new method for inferring the 

expectation of freq(T|R). This method integrates the two sorts of inference concerning the value 

of freq(T|R), that is, reasoning based on the value of freq(T|R), and reasoning based on the 

frequency of T among a sample drawn from R. While the new method is sensitive to both sorts 

of information (i.e., about the superset and the sample), information based on a large sample 

correctly trumps information based on a superset. 
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 The bottleneck in applying the method to large sets derives from the requirement of computing large binomial 

coefficients. Computing such coefficients,  
 
 
 , for large values of   and   is problematic. For example,  

          
         

  is 

greater than 10
1,000,000

. Nevertheless, large binomial coefficients can be computed in linear time,     , assuming the 

cost of multiplication is not dependent on the size of the factors multiplied. Although the latter assumption is clearly 

false, it is possible to execute accurate calculations of large binomial coefficients (i.e., accurate to some reasonable 

number of significant digits), where the cost of multiplication increases very slowly, as a function of  . As a further 

point of reference, note that, at present, the fastest computers in the world are tens of millions of times faster than a 

typical personal computer. It should also be observed that the need for repeated calculations of the same binomial 

coefficient could be eliminated by the use of a lookup table, which is feasible assuming we store approximate 

(though highly accurate) values of the relevant binomial coefficients. 
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