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Abstract. Under the assumption of Martin’s Conjecture, we prove a strong

ergodicity result for the Turing equivalence relation ≡T .

1. Introduction

Throughout this paper, ≡T denotes the Turing equivalence relation on P(N),

which is identified with the Cantor space 2N by identifying subsets of N with their

characteristic functions. By Martin [11, 12], if A ⊆ 2N is a ≡T -invariant Borel

subset, then either A contains a cone or else 2N rA contains a cone. (Here a subset

A ⊆ 2N is said to be ≡T -invariant iff A is a union of ≡T -classes.) This easily

implies that if f : 2N → 2N is a Borel function which takes a constant value on each

≡T -class, then there exists a cone C such that f � C is a constant function. As

Friedman [5] points out, this can be regarded as an ergodicity result for ≡T . In

this paper, we shall show that if Martin’s Conjecture [9] on degree invariant Borel

maps is true, then ≡T satisfies a much stronger ergodicity result.

Before we can give a precise statement of our main result, we first need to recall

some of the basic notions of the theory of countable Borel equivalence relations.

Suppose that E, F are countable Borel equivalence relations on the standard Borel

spaces X, Y respectively. Then the (not necessarily Borel) map f : X → Y is said

to be a homomorphism from E to F iff x E y implies f(x) F f(y) for all x, y ∈ X.

If f is a Borel map and satisfies the stronger condition that xE y iff f(x)F f(y) for

all x, y ∈ X, then f is said to be a Borel reduction and we write E ≤B F . Finally,

if there exists a countable-to-one Borel homomorphism f : X → Y from E to F ,

then we say that E is weakly Borel reducible to F and write E ≤w
B F . In this case,

we say that f is a weak Borel reduction from E to F .
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Definition 1.1. (a) A countable Borel equivalence relation E is said to be

universal iff F ≤B E for every countable Borel equivalence relation F .

(b) A countable Borel equivalence relation E is said to be weakly universal iff

F ≤w
B E for every countable Borel equivalence relation F .

For example, by Dougherty-Jackson-Kechris [3], the orbit equivalence relation

E∞ arising from the shift action of the free group F2 on two generators on 2F2

is a universal countable Borel equivalence relation. Of course, if E is a universal

countable Borel equivalence relation, then E is weakly universal. It is currently not

known whether the converse holds. However, Kechris [18, Corollary 4.9] has pointed

out that the Turing equivalence relation ≡T is weakly universal; and Dougerty-

Kechris [4] have shown that if Martin’s Conjecture holds, then ≡T is not universal.

(The material in Thomas [18, Section 4] is entirely due to Kechris and Miller.) In

the final section of this paper, we shall prove the following result.

Theorem 1.2. Assuming Martin’s Conjecture, there exist uncountably many weakly

universal countable Borel equivalence relations up to Borel bireducibility.

Theorem 1.2 is a straightforward consequence of the techniques of Thomas [18],

together with the following strong ergodicity result for ≡T . (For the standard

measure-theoretic version of strong ergodicity, see Definition 4.1.)

Definition 1.3. Let E be a countable Borel equivalence relation on the standard

Borel space X. Then ≡T is said to be E-m-ergodic iff for every Borel homomor-

phism f : 2N → X from ≡T to E, there exists a cone C ⊆ 2N such that f maps C

into a single E-class.

Theorem 1.4. Assuming Martin’s Conjecture, if E is any countable Borel equiv-

alence relation, then exactly one of the following conditions holds:

(a) E is weakly universal.

(b) ≡T is E-m-ergodic.

Of course, if E is a weakly universal countable Borel equivalence relation, then

≡T ≤w
B E and hence ≡T is not E-m-ergodic. Thus conditions 1.4(a) and 1.4(b)

are mutually exclusive.
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As we mentioned earlier, Martin’s Theorem on the ≡T -invariant Borel subsets

of 2N easily implies that ≡T is ∆(2N)-m-ergodic, where ∆(2N) denotes the identity

relation on 2N. On the other hand, there are currently no nonsmooth countable

Borel equivalence relations E for which it has been proved that ≡T is E-m-ergodic.

In particular, it is not known whether ≡T is E0-m-ergodic, where E0 denotes the

Vitali equivalence relation on 2N.

This paper is organised as follows. In Section 2, we shall first formulate the

version of Martin’s Conjecture that we will be assuming throughout this paper and

then we shall derive some simple but useful consequences. In Section 3, we shall

prove Theorem 1.4; and in Section 4, we shall prove Theorem 1.2. In Section 5, we

shall present two easy applications of the results of the earlier sections, which answer

questions of Boykin-Jackson [2] and Thomas [18], modulo Martin’s Conjecture.

Acknowledgements: I would like to thank Alexander Kechris and John Steel

for very helpful discussions concerning the material in this paper.

2. Martin’s Conjecture

Throughout this paper, by Martin’s Conjecture, we shall always mean the fol-

lowing special case of the more general conjecture (also known as the 5th Victoria

Delfino Problem) formulated by Martin in Kechris-Moschovakis [9].

Martin’s Conjecture (MC). If f : 2N → 2N is a Borel homomorphism from ≡T

to ≡T , then exactly one of the following conditions holds:

(i) There exists a cone C ⊆ 2N such that f maps C into a single ≡T -class.

(ii) There exists a cone C ⊆ 2N such that x ≤T f(x) for all x ∈ C.

In the remainder of this paper, we shall write (MC) to indicate that the (cur-

rently known) proof of a given statement makes use of Martin’s Conjecture.

Theorem 2.1 (MC). If f : 2N → 2N is a Borel homomorphism from ≡T to ≡T ,

then exactly one of the following conditions holds:

(i) There exists a cone C ⊆ 2N such that f maps C into a single ≡T -class.

(ii) There exists a cone C ⊆ 2N such that f � C is a weak Borel reduction from

≡T � C to ≡T . Furthermore, in this case, if D ⊆ 2N is any cone, then

[ f(D) ]≡T
contains a cone.
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Proof. Suppose that (i) fails. By Martin’s Conjecture, there exists a cone C ⊆ 2N

such that x ≤T f(x) for all x ∈ C. Clearly f � C is countable-to-one and so f � C is

a weak Borel reduction. Let D ⊆ 2N be any cone and let D0 = D ∩C. Since f � C

is countable-to-one, it follows that f(D0) is a Borel subset of 2N and this implies

that the ≡T -saturation [ f(D0) ]≡T
is also a Borel subset. By Martin’s Theorem

[11, 12], since [ f(D0) ]≡T
is a ≤T -cofinal ≡T -invariant Borel subset of 2N, it follows

that [ f(D0) ]≡T
contains a cone. �

Condition 2.1(ii) is reminiscent of the conclusion of the “unique ergodicity ar-

gument” first introduced by Adams [1] in the measure-theoretical setting and later

exploited by Thomas [16, 17] and Hjorth-Kechris [7]. Of course, the following result

is an immediate consequence of Theorem 2.1 and implies that ≡T is not countable

universal. (Here ≡T t ≡T denotes the disjoint union of two copies of the Turing

equivalence relation ≡T .)

Corollary 2.2 (MC). ≡T <B (≡T t ≡T ).

Observation 2.3. Suppose that C = {x ∈ 2N | z ≤T x} is a cone. Then the map

y 7→ y ⊕ z, where y ⊕ z denotes the usual disjoint sum, is a weak Borel reduction

from ≡T to ≡T � C and hence ≡T � C is weakly universal.

Corollary 2.4 (MC). If A ⊆ 2N is a ≡T -invariant Borel subset, then ≡T � A is

weakly universal iff A contains a cone.

Proof. If ≡T � A is weakly universal, then there exists a weak Borel reduction

f : 2N → A from ≡T to ≡T � A. By Theorem 2.1, it follows that [ f(2N) ]≡T

contains a cone. �

On the other hand, if ≡T is countable universal, then (≡T t ≡T ) ≤B ≡T and

this easily implies that there exists a cone C ⊆ 2N such that ≡T � ( 2N r C ) is

also countable universal. Consequently, it would be very interesting to obtain lower

bounds on the Borel complexity of ≡T � ( 2N r C ) for cones C ⊆ 2N. In Section

5, we shall prove that there exists a cone C ⊆ 2N such that ≡T � ( 2N r C ) is not

essentially free.

Remark 2.5. In [6], answering a question of Thomas [18], Hjorth proved that the

universal countable Borel equivalence relation E∞ was not Borel bireducible with
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a smooth disjoint union of essentially free countable Borel equivalence relations.

This can also be seen as follows. Suppose that E =
⊔

z∈2N Ez is the smooth disjoint

union of the essentially free countable Borel equivalence relations {Ez | z ∈ 2N} and

that f : 2N →
⊔

z∈2N Xz is a Borel reduction from ≡T to E. Then there exists a

cone C ⊆ 2N such that f(C) ⊆ Xz for some fixed z ∈ 2N; and since ≡T � C is weakly

universal, it follows that Ez is also weakly universal. But this contradicts Thomas

[18, Corollary 4.8], which says that weakly universal countable Borel equivalence

relations are not essentially free.

3. The Proof of Theorem 1.4

Theorem 1.4 is a straightforward consequence of Theorem 2.1, together with the

following characterization of weak Borel reducibility.

Theorem 3.1 (Kechris-Miller). If E, F are countable Borel equivalence relations

on the uncountable standard Borel spaces X, Y respectively, then the following

conditions are equivalent:

(i) E ≤w
B F .

(ii) There exists a countable Borel equivalence relation S ⊆ F on Y such that

S ∼B E.

Proof. It is clear that condition (ii) implies condition (i), since if f : X → Y is a

Borel reduction from E to S, then f is a weak Borel reduction from E to F . The

more interesting converse direction is an immediate consequence of Theorem 4.4

and Proposition 4.10 of Thomas [18]. (As we mentioned earlier, the material in

Thomas [18, Section 4] is due Kechris-Miller.) �

Proof of Theorem 1.4. As we pointed out earlier, it is clear that conditions (a) and

(b) are mutually exclusive. Suppose that f : 2N → X witnesses the failure of

condition (b). Since ≡T is weakly universal, it follows that E ≤w
B ≡T . Hence,

applying Theorem 3.1, we can suppose that X = 2N and that E ⊆ ≡T . Then f

is also a Borel homomorphism from ≡T to ≡T . By assumption, f does not map

any cone into a single E-class and this easily implies that f does not any cone into

a single ≡T -class. Hence, by Theorem 2.1, there exists a cone C ⊆ 2N such that

f � C is countable-to-one. Since ≡T � C is weakly universal and (≡T � C) ≤w
B E, it

follows that E is also weakly universal. �
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The following corollary appears to be consistent with Kechris’s Conjecture that

≡T is countable universal and even with Hjorth’s Conjecture that every weakly

universal countable Borel equivalence relation is countable universal. (I should

perhaps point out that Hjorth denies having ever made this conjecture.)

Corollary 3.2 (MC). Let E, F be countable Borel equivalence relations on the

standard Borel spaces X, Y respectively. Suppose that E is weakly universal and

that F is not weakly universal. If f : X → Y is a Borel homomorphism from E to

F , then there exists a Borel subset Z ⊆ X such that:

(i) E � Z is weakly universal; and

(ii) f maps Z into a single F -class.

Proof. Let g : 2N → X be a weak Borel reduction from ≡T to E. Then h = f ◦ g is

a Borel homomorphism from ≡T to F . By Theorem 1.4, ≡T is F -m-ergodic and

hence there exists a cone C ⊆ 2N such that h maps C to a single F -class. Since

g is countable-to-one, it follows that Z = g(C) is a Borel subset of X; and since

(≡T � C) ≤w
B (E � Z), it follows that E � Z is weakly universal. Thus Z satisfies

our requirements. �

4. The Proof of Theorem 1.2

Before we begin the proof of Theorem 1.2, we first need to recall the standard

measure-theoretical version of strong ergodicity.

Definition 4.1. Suppose that E, F are countable Borel equivalence relations on

the standard Borel spaces X, Y and that µ is an E-invariant probability measure

on X. Then E is said to be F -ergodic iff for every Borel homomorphism f : X → Y

from E to F , there exists a Borel subset Z ⊆ X with µ(Z) = 1 such that f maps

Z into a single F -class.

Remark 4.2. More generally, if E is F -ergodic and f : X → Y is a µ-measurable

homomorphism from E to F , then there exists a Borel subset Z ⊆ X with µ(Z) = 1

such that f maps Z into a single F -class. To see this, recall that there exists a

Borel map g : X → Y such that g(x) = f(x) for µ-a.e. x. It is easily checked that

W = {x ∈ X | g( [x]E ) is not contained in a single F -class }
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is an E-invariant Borel subset of X with µ(W ) = 0. Hence, after adjusting the

values of g on W , we can suppose that g is a Borel homomorphism from E to F .

The result follows easily.

We shall make use of the following result, which was proved in Thomas [18].

Theorem 4.3. There exists a Borel family G = {Gα | α ∈ 2N} of finitely generated

groups, each with underlying set N, such that the following conditions are satisfied:

(a) Gα has an infinite normal subgroup Nα such that Nα
∼= SL3(Z).

(b) Gα has no nontrivial finite normal subgroups.

(c) If α 6= β, then Gβ does not embed into Gα.

For each α ∈ 2N, consider the shift action of Gα on 2Gα = 2N. Then the usual

product probability measure µ on 2N is Gα-invariant and the free part of the action

Xα = {x ∈ 2N | g · x 6= x for all 1 6= g ∈ Gα}

has µ-measure 1. Let Eα be the corresponding orbit equivalence relation on Xα.

Then the following result is an easy consequence of Popa’s Cocycle Superrigidity

Theorem [14]. (For example, see Thomas [18, Section 5].)

Theorem 4.4. If α 6= β, then Eβ is Eα-ergodic with respect to µ.

Clearly (≡T ×Eα ) is weakly universal for each α ∈ 2N. Hence Theorem 1.2 is

an immediate consequence of the following result. (In an earlier version of the proof

of Theorem 4.5, I assumed Σ1
1-Determinacy in order to obtain the measurability

of Σ1
2 sets. I am grateful to Alexander Kechris for providing the following elegant

method for eliminating the hypothesis of Σ1
1-Determinacy.)

Theorem 4.5 (MC). If α 6= β, then (≡T ×Eβ ) �B (≡T ×Eα ).

Proof. We shall first prove Theorem 4.5 under the additional assumption that the

universe V also satisfies MA+ 2ℵ0 > ℵ1. Notice that Theorem 4.4 implies that Eα

is not weakly universal. Suppose that

f : 2N ×Xβ → 2N ×Xα

is a Borel reduction from (≡T ×Eβ ) to (≡T ×Eα ) and let λ, ρ be the Borel

functions defined by

f(r, x) = (λ(r, x), ρ(r, x) ).
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For each x ∈ Xβ , let ρx : 2N → Xα be the map defined by ρx(r) = ρ(r, x). Then

ρx is a Borel homomorphism from ≡T to Eα. Since Eα is not weakly universal,

Theorem 1.4 implies that there exists a cone Cx ⊆ 2N such that ρx maps Cx to a

single Eα-class; say, dx. If yEβx and r ∈ Cx, then ρy(r)Eαρx(r) and so ρy(r) ∈ dx.

Hence if y Eβ x, then dy = dx. Let R ⊆ Xβ ×Xα be the Σ1
2 subset defined by

(x, z) ∈ R iff (∃s ) (∀r ) ( s ≤T r implies ρ(r, x) Eα z ).

Applying Kondô’s Theorem [10], let h : Xβ → Xα be a Σ1
2 uniformizing function

for R. If U ⊆ Xα is an open set, then

h−1(U) = {x ∈ Xβ | (∃y ) ( y ∈ U and h(x) = y }

is a Σ1
2 set. By Martin-Solovay [13], since MA + 2ℵ0 > ℵ1 holds, every Σ1

2 set is

µ-measurable and hence h is µ-measurable. Clearly h(x) ∈ dx for all x ∈ Xβ and

it follows that h is a µ-measurable homomorphism from Eβ to Eα. Since Eβ is

Eα-ergodic, there exists a Borel subset X0 ⊆ Xβ with µ(X0) = 1 such that h maps

X0 into a single Eα-class; say, c.

For each x ∈ X0, let λx : 2N → 2N be the map defined by λx(r) = λ(r, x). Then

λx is a Borel homomorphism from ≡T to ≡T . If r, s ∈ Cx, then ρ(r, x), ρ(s, x) ∈ c

and it follows that

r ≡T s iff λx(r) ≡T λx(s).

Thus λx induces a Borel reduction from ≡T � Cx to ≡T . Hence, by Theorem 2.1, it

follows that [ ranλx � Cx ]≡T
contains a cone Dx. In particular, choosing x, y ∈ X0

with [x ]Eβ
6= [ y ]Eβ

, there exist r ∈ Cx and s ∈ Cy such that λx(r) ≡T λy(s). But

this means that f(r, x) (≡T ×Eα ) f(s, y), which is a contradiction.

Finally we shall explain how to eliminate the addtional assumption that V satis-

fiesMA+2ℵ0 > ℵ1. First note thatMC is equivalent to the following Π1
2 statement.

(MC ′) If f : 2N → 2N is a Borel homomorphism from ≡T to ≡T , then either:

(a) for all x ∈ 2N, there exists x ≤T y such that f(y) <T y; or

(b) for all x ∈ 2N, there exists x ≤T y such that y ≤T f(y).

To see this this, suppose that MC ′ holds and let f : 2N → 2N be a Borel homo-

morphism from ≡T to ≡T . If (a) holds, then A = { y ∈ 2N | f(y) <T y } is a

≤T -cofinal ≡T -invariant Borel subset of 2N; and hence, by Martin’s Theorem, A

contains a cone C. Applying Slamen-Steel [15], it follows that there exists a cone
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D ⊆ C such that f maps D into a single ≡T -class. Similarly, if (b) holds, then

there exists a cone C such that y ≤T f(y) for all y ∈ C. (Of course, it is clear that

MC implies MC ′.)

Fix some α 6= β and let V P be a generic extension which satisfies MA+2ℵ0 > ℵ1.

Then by the Shoenfield Absoluteness Theorem [8, Theorem 25.20], it follows that

V P also satisfies MC. Furthermore, it is clear that conditions 4.3(a), (b) and (c)

are absolute and so Eβ remains Eα-ergodic in V P. Hence, by our earlier argument,

V P � (≡T ×Eβ ) �B (≡T ×Eα ).

By the Shoenfield Absoluteness Theorem, since this is a Π1
2 property of α and β,

it follows that

V � (≡T ×Eβ ) �B (≡T ×Eα ).

�

5. Some applications

In this final section, we shall present two easy applications of the results of the

earlier sections, which answer questions of Boykin-Jackson [2] and Thomas [18],

modulo Martin’s Conjecture. Throughout this section, if c, d ∈ NN, then c ≤∗ d iff

c(n) ≤ d(n) for all but finitely many n ∈ N; and c =∗ d iff both c ≤∗ d and d ≤∗ c.

Similarly, we shall write c < d iff c(n) < d(n) for all n ∈ N.

It is well-known that the countable Borel equivalence relation =∗ is Borel bire-

ducible with the Vitali equivalence relation E0. In particular, =∗ is not weakly

universal.

Definition 5.1 (Boykin-Jackson [2]). Let E be a Borel equivalence relation on the

standard Borel space X. Then E is said to be Borel-Bounded iff for every Borel

map ϕ : X → NN, there exists a Borel homomorphism g : X → NN from E to =∗

such that ϕ(x) ≤∗ g(x) for all x ∈ X

In [2], Boykin-Jackson proved that every hyperfinite countable Borel equivalence

relation is Borel-Bounded and asked whether the converse was true. On the other

hand, they also pointed out that there are currently no examples of countable Borel

equivalence relations which are known not to be Borel-Bounded.

Theorem 5.2 (MC). The Turing equivalence relation ≡T is not Borel-Bounded.



10 SIMON THOMAS

Proof. Identifying each r ∈ 2N with the corresponding subset of N, let ϕ : 2N → NN

be the Borel map such that:

• ϕ(r) is the strictly increasing enumeration of r ∩ 2N, if r ∩ 2N is infinite;

• ϕ(r) is the zero function, otherwise.

Then it is clear that for each function h ∈ NN, the ≡T -invariant Borel set

Sh = { r ∈ 2N | (∃s ∈ 2N ) ( s ≡T r and h < ϕ(s) ) }

contains a cone. Now suppose that g : 2N → NN is a Borel homomorphism from

≡T to =∗ such that ϕ(r) ≤∗ g(r) for all r ∈ 2N. Applying Theorem 1.4, it follows

that there exists a cone C ⊆ 2N such that g maps C into a single =∗-class; say,

[h]=∗ . But this means that Sh ∩ C = ∅, which is a contradiction. �

Corollary 5.3 (MC). If E is a weakly universal countable Borel equivalence rela-

tion, then E is not Borel-Bounded.

Proof. If E is weakly universal, then ≡T ≤w
B E. Hence, by Theorem 3.1, there

exists a countable Borel equivalence relation S ⊆ E such that S ∼B ≡T . Applying

Boykin-Jackson[2, Lemmas 10 and 11], it follows that E is not Borel-Bounded. �

The proof of Theorem 5.2 makes use of the E0-m-ergodicity of the Turing equiv-

alence relation ≡T . Unfortunately, this argument cannot be carried out within

the usual measure-theoretic setting. To see this, suppose that (X,µ ) is a stan-

dard Borel probability space and that θ : X → NN is a Borel map. Then the

Borel-Cantelli Lemma implies that there exists a function h ∈ NN such that

µ( {x ∈ X | θ(x) ≤∗ h } ) = 1.

This simple observation has the following striking consequence.

Theorem 5.4 (MC). Let E be a countable Borel equivalence relation on the stan-

dard Borel space X and let µ be a (not necessarily E-invariant) probability measure

on X. Then there exists a Borel subset Y ⊆ X with µ(Y ) = 1 such that E � Y is

not weakly universal.

Proof. Let ϕ : 2N → NN be the Borel map defined in the proof of Theorem 5.2.

Then, by an easy application of the Feldman-Moore Theorem, there exists a Borel

map ψ : 2N → NN such that for all r, s ∈ 2N, if s ≡T r, then ϕ(s) ≤∗ ψ(r). Let
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f : X → 2N be a weak Borel reduction from E to ≡T and let θ : X → NN be the

Borel map defined by θ = ψ ◦ f . Then there exists a function h ∈ NN such that the

Borel subset

Y = {x ∈ X | θ(x) ≤∗ h }

satisfies µ(Y ) = 1. Let Z = [ f(Y ) ]≡T
. Then for each r ∈ Z, we have that

ϕ(s) ≤∗ h for all s ≡T r. As in the proof of Theorem 5.2, this implies that

2N r Z contains a cone. Applying Corollary 2.4, if follows that ≡T � Z is not

weakly universal. Since (E � Y ) ≤w
B (≡T � Z), it follows that E � Y is not weakly

universal. �

In particular, assuming Martin’s Conjecture, the complexity of a weakly univer-

sal countable Borel equivalence relation always concentrates on a null set. This

answers Thomas [18, Question 3.22].

Remark 5.5. In [6], Hjorth proved that there exists a countable Borel equivalence

relation E on a standard Borel space X with an invariant probability measure µ

such that E � Y is not essentially free whenever Y ⊆ X is a Borel subset with

µ(Y ) = 1. Arguing as in the proof of Theorem 5.4, it follows that there exists a

cone C ⊆ 2N such that ≡T � ( 2N r C ) is not essentially free.
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