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Abstract 

In the multi-disciplinary field of developmental cognitive neuroscience, statistical 

associations between levels of description play an increasingly important role. One 

example of such associations is the observation of correlations between relatively 

common gene variants and individual differences in behavior. It is perhaps surprising that 

such associations can be detected despite the remoteness of these levels of description, 

and the fact that behavior is the outcome of an extended developmental process involving 

interaction with a variable environment. Given that they have been detected, how do such 

associations inform cognitive-level theories? To investigate this question, we employed a 

multi-scale computational model of development, using a sample domain drawn from the 

field of language acquisition. The model comprised an artificial neural network model of 

past-tense acquisition trained using the backpropagation learning algorithm, extended to 

incorporate population modeling and genetic algorithms. It included five levels of 

description, four internal: genetic, network, neurocomputation, behavior; and one 

external: environment. Since the mechanistic assumptions of the model were known and 

its operation was relatively transparent, we could evaluate whether cross-level 

associations gave an accurate picture of causal processes. We established that 

associations could be detected between artificial genes and behavioral variation, even 

under polygenic assumptions of a many-to-one relationship between genes and 

neurocomputational parameters, and when an experience-dependent developmental 

process interceded between the action of genes and the emergence of behavior. We 

evaluated these associations with respect to their specificity (to different behaviors, to 
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function versus structure), to their developmental stability, and to their replicability, as 

well as considering issues of missing heritability and gene-environment interactions. We 

argue that gene-behavior associations can inform cognitive theory with respect to effect 

size, specificity, and timing. The model demonstrates a means by which researchers can 

undertake modeling multi-scale modeling with respect to cognition, and develop highly 

specific and complex hypotheses across multiple levels of description. 

 

 

Keywords: Multi-scale models, artificial neural networks, population modeling, gene-

behavior associations, gene-environment interactions, missing heritability, socio-

economic status, development, individual differences
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 1. Introduction 

Developmental cognitive neuroscience is an intrinsically multi-disciplinary endeavor, 

where theoretical findings from multiple levels of description are integrated into an 

overall account of the origins of behavior. One source of empirical data that increasingly 

constrains theories is that of statistical associations between levels of description; for 

example, gene variants that correlate with individual differences in behavior, or structural 

and functional properties of the brain that correlate with behavior across individuals or 

within individuals over time. However, it is a significant challenge to construct causal 

accounts of development that span levels of description and thereby unify the correlations 

by appeal to explanatory mechanism (Johnston & Lickliter, 2009). This is particularly 

true for gene-behavior associations, because so many levels of description can be 

specified in between, and so many contributory factors interact to produce high-level 

behavior. Genetic effects are cellular but must be linked to behavior via neural circuits 

and global brain function. Moreover, the contribution of some genetic activity to 

individual differences in behavior occurs via an extended developmental process. 

 

One recent response to this challenge is the use of multi-scale computational modeling. 

This approach originated in systems biology, where the availability of more powerful 

computers has enabled the coupling of complex models across multiple spatial and 

temporal scales and for multiple physical processes (Southern et al., 2008). The aim of 

multi-scale models is to integrate relevant information at multiple levels of organization 

to recreate dynamic interactions, where the complexity of the underlying interacting non-

linear processes necessitates simulation via computational methods. Within biology, 
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Southern et al. (2008, p.67) define a multi-scale model as one ‘which includes 

components from two or more levels of organization (multiple length scales) or if it 

includes some processes that occur much faster in time than others (multiple time 

scales)’. The levels they characterized ranged from the quantum to molecular, macro-

molecular, sub-cellular, tissue, organ, organ system, organism, and environment. 

Southern et al. exemplified the approach via research on the dynamics of ion channels 

and on cardiac modeling. The work of Karr et al. (2012) represents a more recent 

example, where the authors constructed a multi-scale model of a whole cell, including all 

of its molecular components, in order to predict phenotype from genotype. 

 

Dammann and Follett (2011) have argued that multi-scale computational models may be 

equally applicable to developmental cognitive neuroscience. In particular, they 

considered the use of computational models with respect to developmental disability. 

They identified in silico approaches as complementary to in vivo and in vitro studies in 

teasing apart the complicated inter-relationships between etiological exposures and 

pathological mechanisms on developmental outcomes. Dammann and Follett reviewed 

work at the systems level, where the target outcomes are located at the behavioral level, 

and the lower levels of description comprise phenomena such as activity-dependent 

plasticity and the response of neural networks to neuronal dysfunction. 

 

In this paper, we employed multi-scale computational modeling to investigate gene-

behavior associations, and in particular, the extent to which reliable associations from the 

low level of genes to the high level of behavior shed light on the causal processes that 
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take place at the intervening levels of description. Since the mechanistic assumptions of 

the model were known and its operation was relatively transparent, we could evaluate 

whether cross-level associations gave an accurate picture of causal processes. More 

specifically, where genes are taken to impinge on learning abilities, we could explore 

how the developmental process itself, involving interaction with a structured learning 

environment, impacted on the relationship between gene variants and eventual behavioral 

outcomes. As a sample domain, we used a well-known cognitive model drawn from 

research on language acquisition, which captured the development of past tense 

formation. The architecture we utilized combined artificial neural network models of 

development with genetic algorithms and population modeling techniques. In the 

following paragraphs, we characterize the way in which association analyses have been 

used as a source of constraining data in developmental cognitive neuroscience, before 

identifying the key phenomena that were the target of our multi-scale model. 

 

1.1 Association studies in developmental cognitive neuroscience 

Based on quantitative behavioral genetic methods such as twin studies, individual 

differences in behavior, including cognitive skills and personality dimensions, have been 

found to be highly heritable (Plomin et al., 2012). Frequently, between a half and three 

quarters of the phenotypic variability may be explained by genetic factors in the 

populations that have been studied. Separately, indices of brain structure have also been 

found to be highly heritable – though notably, these indices are not always tightly 

correlated with behavior. For example, in one study by Posthuma et al. (2003), the 

heritability of global grey matter volume was reported to be 82% and the heritability of 
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verbal comprehension was reported to be 84%, while the correlation between these two 

indices was only .06 (see also Wallace et al., 2010). Given evidence of high heritability in 

individual differences at brain and behavioral levels, we should in theory be able to find 

gene variants across individuals that predict these differences. 

 

Two main approaches have been used to uncover gene variants associated with 

phenotypic variability (see Ronald, 2011, for discussion). In candidate gene association 

studies, researchers have identified variants in genes that are hypothesized to play a role 

in brain development and function. The genes are involved in processes such as 

neurotransmitter regulation, synaptic plasticity, or neural migration. Researchers have 

then investigated whether the variants show reliable associations with differences in high-

level behavior, either in explaining normal variation or occurring more frequently in 

atypical populations. As examples of studies using this approach, genetic variations have 

been proposed to modulate attention skills via a pathway that alters the efficiency of 

dopamine receptors in the fronto-striatal systems delivering behavioral control (Posner, 

Rothbart & Sheese, 2007). Developmental language impairment and autism have both 

been linked to a gene variant (CNTNAP2) that alters production of a protein sitting in the 

membranes of neurons. The protein influences interactions between different cells during 

the development and wiring up of the nervous system (Vernes et al., 2008; see 

Peñagarikano & Geschwind, 2012). Developmental dyslexia has been linked to four gene 

variants (DYX1C1, KIAA0319, DCDC2 and ROBO1) associated with neuronal cell 

adhesion, perhaps pointing towards regional disruptions of neural migration and axonal 

guidance in early brain development (Galaburda et al., 2006). 
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On the whole, associated gene variants appear to relate to fairly general 

neurocomputational properties. For example, two genes whose variants have been much 

studied (COMT: catechol-O-methyl-transferase, and BDNF: brain-derived neurotrophic 

factor) have basic neural functions and their effects in the brain are likely to be 

widespread in terms of structure and function (Kovas & Plomin, 2006; Plomin & Kovas, 

2005). Where gene-behavior associations have been found, effect sizes are usually small, 

each explaining less than 1% of the behavioral variance. The implication is that multiple 

gene variants contribute jointly to variations at the level of behavior (Plomin et al., 2012). 

Even though effect sizes are small, they can nevertheless be observed for one behavior 

and not for another even in the same domain. For example, in individuals with specific 

language impairment, an association was observed between variants of two genes on 

chromosome 16 (CMIP and ATP2C2) and non-word repetition performance, but no 

association was observed for recalling sentences or for reading (Newbury et al., 2009). 

Since the contribution of individual gene variants to predicting behavior is usually so 

small in association analyses, even with large populations, there are many false alarms 

and failures to replicate across different samples in candidate gene association studies 

(Posthuma & de Geus, 2006). 

 

The second main approach used to uncover gene variants associated with phenotypic 

variability is genome-wide association studies (GWAS). In GWAS, researchers seek 

associations with markers of genetic variation that span the whole genome. If an 

association is found between a particular marker and a high-level trait, researchers infer 



9 
 

that the location of the causal variant is close to the marker (based on the principle of 

linkage disequilibrium, whereby locations that are closer on a chromosome have a greater 

probability of being inherited together; see Visscher et al., 2012). A large number of 

markers are used, allowing some localization of causal variants on the genome, though 

the actual causal variants must then be identified. To date, GWAS have been more often 

used to study genetic variation associated with complex diseases, often conceptualized as 

a dichotomous outcome. Visscher et al. (2012) reported that well over 2000 locations 

have now been significantly and robustly associated with one or more disease traits, 

generating novel hypotheses about causal pathways generating disease. In most cases, 

multiple loci are associated with a given trait, implicating the joint contribution of 

multiple gene variants to variations in behavior (so called polygenic effects). 

 

Visscher et al. (2012) interpreted genetic findings from the study of disease to support the 

common disease-common variant hypothesis. This hypothesis states that disease causing 

gene variants are common in the population, with a large number of variants each 

conferring a small amount of additional risk of disease. Thus a given variant may 

increase the odds of having a disease 1.1 to 1.5-fold (Altshuler et al., 2008). For an odds 

ratio of 1.1, the variant will be found in 11 individuals who have the disease for each 10 

controls who do not. Gene variants also appear to be associated with more than one trait 

(known as pleiotropy) (Trzaskowski et al., 2013). However, the total phenotypic variation 

explained by observed associations tends not to exceed 10-20%, less than the heritability 

implied by twin studies. This has led to the proposal that there is ‘missing heritability’ 

(Manolio et al., 2009). New methods might reduce or eliminate the problem of missing 
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heritability: Yang et al. (2010) introduced the method of genome-wide complex trait 

analysis (GCTA). In GCTA, the genetic similarity between individuals is assessed not by 

family relatedness but by number of shared single nucleotide polymorphisms (SNPs; 

these are differences in a single ‘letter’ of the genetic code). This between-individual 

genetic similarity is then used to predict phenotypic variance. Using this approach, 

Benyamin et al. (2013) found that the similarity between SNPs could explain between 22 

and 46% of phenotypic variation in childhood intelligence in three large cohorts totaling 

18,000 individuals aged between 6 and 18 (see also Plomin et al., 2013). Despite this 

encouraging result, when it comes to cognitive and behavioral phenotypes rather than 

complex diseases, GWAS have generally struggled to find significant associations with 

markers of genetic variation, possibly suggesting a greater problem with missing 

heritability for these phenotypes than medical disease (Ronald, 2011). Rietveld et al. 

(2013) recently used a GWAS to identify SNPs predicting variation in educational 

achievement in a large sample of 120,000 individuals. Together, the identified markers of 

genetic variation predicted around 2% of variation in educational achievement, compared 

to around 10% in a similar study of height (Speliotes et al., 2010). This led the authors to 

propose that the genetic architecture of complex behavioral traits may be more diffuse 

than that of complex physical traits. 

 

GWAS are not ideal for detecting the contribution of rare variants to disease, since by 

definition these will have low frequency in the population, thereby compromising the 

statistical power to detect associations. There is increasing evidence that rare copy 

number variations (CNVs) and de novo mutations may also play a role in producing 
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phenotypic variation. For example, the contribution of rare CNVs and de novo mutations 

has been identified in cases of autism (e.g., Levy et al., 2011) and schizophrenia (e.g., 

Kirov et al., 2012; The International Schizophrenia Consortium, 2008). 

 

1.2 The puzzle of gene-behavior associations 

From one perspective, it is surprising that it is possible to detect any associations between 

individual gene variants and high-level behavior.1 This is for two reasons: the remoteness 

of these levels of description, and the fact that behavior is the outcome of an extended 

developmental process involving interaction with a variable environment. We expand on 

each of these points in turn. 

 

With respect to remoteness, the genetic level of description here pertains to variation 

between individuals in the DNA code which codes for the production of proteins in cells, 

while behavior pertains to the whole organism as a single system embedded in a physical 

and social context. The heritability of individual differences in behavior tells us that there 

are genetic effects, but unpacking the causal pathways through which they operate on 

behavior is a daunting prospect. Genetic effects on cognition must, presumably, operate 

via their effect on neurocomputation and/or network topology. However, two examples 

suffice to illustrate the complexity of the problem at hand.  

 

                                                
1 Under the hypothesis that common variants contribute to normal variability. It is less 

surprising where a rare mutation causes a (large) pathological effect on the organism. 
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First, a gene codes for a protein; Plomin et al. (2008) pointed out that each synapse is 

affected by more than a thousand protein components. Understanding the factors that 

cause variations in the efficiency of the synapse is still a long way from understanding 

even a functional neural circuit, let alone brain networks generating behavior. There must 

be many points of convergence of genetic variation as one ascends levels of description. 

Moreover, recent research has pointed towards the complexity of the process by which 

genes contribute to cellular function, identifying their role as part of a dynamical system 

that includes multiple points of regulation of gene expression, such as modification of 

messenger RNA, DNA methylation and histone modification (Charney, 2012). 

 

Second, Sapolsky (2005) outlined the multiplicity of low-level variations that one might 

conservatively expect to contribute to the functioning of neural circuits: at the level of 

individual neurons, one might expect variation between individuals in the number of 

dendritic spines, the number of axon terminals, the level of resting potentials, the size of 

the dendritic wavelet caused by pre-synaptic activity, the excitability of the axon hillock, 

and the speed of propagation of the axon potential; at the level of two neurons 

communicating, one might expect individual variations in the amounts of 

neurotransmitter released, the numbers of receptors, the efficiency of receptors in binding 

neurotransmitters, the efficiency of producing neurotransmitters, the efficiency of 

producing receptors, and the proportions of different types of receptors; at the level of 

long-term potentiation, one might expect variation between individuals in how much 

glutamate neurotransmitter is released, the number of glutamate receptors, the ratio of 

glutamate receptor types, the level of calcium ion release, and the level of 
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phosphorylation of the receptors. It is possible that a range of gene variants contribute to 

each of these neural parameters. It does not follow that all these variations would 

necessarily be meaningful, and development must in some sense be robust to variations in 

such low-level properties to be successful. Nevertheless, finding significant associations 

between individual gene variants and high-level behavior through this conflagration of 

causal processes is both impressive and somewhat unexpected; and perhaps even more 

so, given that genotyping data and behavioral data are both likely to contain measurement 

error. 

 

With respect to development, cognitive abilities are the outcome of an extended and 

dynamic developmental process involving interaction with the physical and social 

environment, an environment that the individuals themselves play a role in specifying 

(Flynn et al., 2013). The environment also varies, contributing to individual differences in 

behavior. The nature of the developmental process itself is considered to be an important 

component of the explanation of cognitive variability (Karmiloff-Smith, 1998). This is 

illustrated by the fact that relationships between genotypes and phenotypes are not stable 

across development, even for neurogenetic developmental disorders. For example, 

Paterson et al. (1999) found that the relative pattern of cognitive strengths and 

weaknesses in Down syndrome and Williams syndrome altered between infancy and 

adulthood; that is, the effects of the respective genetic mutations depended on what stage 

of development the phenotype was measured. Association studies only give an askew 

picture of the developmental process because they rely on differences between 

individuals of similar ages or at similar developmental stages. Development can be 
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studied with association studies by examining whether the associations between gene 

variants and individual differences in behavior are stable across development, or whether 

associations reduce or increase (Ronald, 2011). Changes in gene expression are expected 

since they are a key component of development. However, the actual relationship 

between individual differences and development as mechanistic processes (Bechtel, 

2011) has yet to be determined, and quite diverse hypotheses are still in play. For 

example, within the study of cognition, there are competing theoretical proposals that 

range from the idea that individual differences and development represent variations 

along orthogonal mechanistic dimensions, to the idea that they are variations over the 

same dimensions (see, Thomas & Karmiloff-Smith, 2003a, for discussion). For example, 

under one hypothetical scenario (borrowing proposals from the psychology literature), it 

might turn out that individual differences are generated by differences in inhibitory 

control, while development corresponds to changes in processing capacity; here the 

dimensions would be orthogonal. Under an alternative hypothetical scenario, both 

individual differences and development might represent variations in processing speed; 

here there would be a single common dimension. Now, if the dimensions are orthogonal, 

then the study of individual differences will tell us little about the developmental process; 

but if they are common, the study of individual differences will provide a direct window 

onto the developmental process. 

 

From a computational modeling perspective, development and individual differences 

have rarely been considered within the same framework (see Garlick, 2002, for an 

exception), so these issues are not typically addressed. Developmental computational 
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models that specify mechanisms of experience-dependent learning usually attempt to 

capture the development of the ‘average child’, while models of individual differences 

usually focus on the intrinsic and extrinsic factors contributing to the variation at a single 

age, excluding the developmental origins of behavior. There is a pressing need to begin to 

consider development and individual differences within a common computational 

framework. 

 

1.3 Using multi-scale models to understand the implications of associations between 

levels of description 

In principle, multi-scale modeling can complement genetic association analyses by 

demonstrating how, in a system where multiple levels of description are implemented, 

associations from low to high levels of description reflect the causal mechanisms best 

characterized as operating at the intermediate levels. In practice, the contribution of a 

given multi-scale model depends on the constraints it embodies at different levels, the 

interfaces it specifies between levels, and the set of simplifying assumptions. 

 

The notion of ‘level’ here is somewhat tricky, because it combines several distinctions. 

These include intra-personal versus extra-personal (e.g., brain processes versus the 

environment); levels of a mechanism that characterize the combination of smaller 

components into larger components; and levels of analysis in describing a phenomenon 

(e.g., one might describe a real neural network as performing a computational function) 

(see, e.g., Bechtel, 2008; Bechtel & Mundale, 1999; Craver, 2007; Eliasmith, 2002, 2013; 

Marr & Poggio, 1976; Potochnik & McGill, 2012). Our modeling framework indexes 
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each of these ideas, but our main theoretical reference point is the causal modeling 

approach proposed by Morton (2004) to understand the causes of developmental 

disorders. In this approach, the individual is distinguished from the environment; within 

the individual, Morton then distinguishes biological, cognitive, and behavioral levels. In 

our multi-scale model, the biological level is represented by a genetic level, the cognitive 

level is represented by neurocomputation, and the behavioral level is represented by the 

output of the model (see Figure 1). 

 

To construct the current multi-scale model, we began by taking advantage of the fact that 

artificial neural networks have been used as models of cognitive development (see, e.g., 

Elman et al., 1996; Mareschal & Thomas, 2007). Behavioral change is captured as the 

outcome of an experience-dependent developmental process taking place in a structured 

learning environment. These models therefore allow us to separately characterize 

behavior and the structure of the learning environment. Artificial neural network models 

are based on abstractions of neurocomputation, and include parameters that are analogous 

to neurocomputational properties. Moreover, the networks encode knowledge by 

changing their structure, in terms of their connectivity. We can therefore discern the 

intra-personal properties of neurocomputation and network structure. Lastly, using 

methods from genetic algorithms within machine learning, the parameters of the artificial 

neural networks can be encoded in an artificial genome. Variations in the genome specify 

variations in network parameters, which then influence learning ability. We therefore 

posit a lowest level of artificial genome. The artificial genome is part of the biological 

level whereby many smaller components produced the operation of the larger component 
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that is the neural network. This sets the stage to investigate associations that span levels 

of description. 

 

In order for us to simulate association studies, two further steps were necessary. First, 

such studies take place at a population level. Therefore we needed to simulate a 

population of artificial neural networks undergoing development (see Thomas, 

Baughman, et al., 2012; Thomas, Knowland & Karmiloff-Smith, 2011). Second, 

association studies rely on variability. We created both genetic and environmental 

sources of variation to produce variability in acquired behavior. These methods ensured 

that we could consider association analyses within a developmental framework: the 

associations between individual differences in the artificial genome and individual 

differences in behavior could be assessed at any point in development, whilst 

simultaneously capturing the developmental origins of behavior via an experience-

dependent process. This was the principal innovation of our model. 

 

The aim of our multi-scale model was to investigate associations between levels of 

description, such as genes to behavior, genes to network structure, and 

neurocomputational parameters to behavior. In particular, because the mechanistic 

assumptions of the model were known and its operation was relatively transparent, the 

model could inform the extent to which gene-behavior associations gave an accurate 

picture of neurocomputational causal processes operating at the intermediate level. For 

example, if we know that variation in two artificial genes contributes independent 
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influences on the operation of two neurocomputational parameters, do we observe 

additive statistical effects of these genes in their associations to behavior? 

 

Given the assumptions of the model, the simulations addressed the following specific 

questions: (1) Can statistically significant associations be observed between artificial 

gene variants and individual differences in behavior, given many-to-one gene-to-

neurocomputational parameter mappings and an intervening experience-dependent 

developmental process? (2) Do such associations show specificity to different behaviors 

generated by the system or are they general? (3) What is the stability of the associations 

over developmental time – are associations modulated by the developmental process? (4) 

Do associations replicate across populations? (5) Are associations observed from 

artificial genome to network structure and activation levels, and if so, are these the same 

as the associations observed from artificial genes to network output (behavior)? (6) Are 

associations modulated by the quality of the environment, producing gene x environment 

interactions? (7) Can interactions between genes be observed in the way that they 

influence behavior? (8) When all sources of variability are known, is all the population 

variance explained or is some ‘missing’? We then discuss whether observed cross-level 

statistical associations accurately reflected the causal operation of the model. 

 

2. Method 

The model we utilized to simulate gene-behavior associations was taken from the domain 

of language development, and has been successfully used to simulate socio-economic 

status effects on language development (Thomas, Forrester & Ronald, 2013), as well as 
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sub-types of language delay (Thomas & Knowland, 2014). The model was addressed to 

the domain of English past tense formation. Here, we employed the model in an 

illustrative setting. The model is intended only as an example of a developmental system 

applied to the problem of extracting the latent structure of a cognitive domain through 

exposure to a variable training environment. Past tense has been used similarly to study 

phenomena such as critical periods in development (Marchman, 1993) and 

developmental regression in autism (Thomas, Knowland & Karmiloff-Smith, 2011). The 

English past tense provides a useful sample domain because it is quasi-regular. It is 

characterized by a majority of past tenses that follow a productive rule (add ‘ed’ to the 

verb stem) but a minority of exceptions to this rule, forming their past tenses in a variety 

of ways. Performance on regular verbs and irregular verbs form two different behaviors 

that the system must acquire. A range of empirical research indicates that children’s and 

adults’ performance on regular and irregular verbs differs in its characteristics, 

sufficiently so that some have argued that different processing mechanisms are needed to 

acquire the verb types (e.g., Pinker, 1994). The two types of behavior allow us to test the 

specificity of associations between artificial genes and behavior. 

 

In the following sections, we first outline the base model. We then consider the 

implementation of constraints at each level: Environment, Behavior, Network structure 

and activation, Neurocomputation, and Artificial Genome. Finally, we outline the 

simulation design. Further implementation details can be found in Supplementary 

Materials. 
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2.1 Base model 

A 3-layer, backpropagation network was used to learn to map between a phonological 

representation of verb stems and their past tense forms. The architecture is shown in 

Figure 1.  

 

The results we report come from the simulation of 6000 artificial neural networks. Some 

simplifications of network scale were employed for computational tractability. First, an 

artificial language was used rather than a corpus of real English verbs, per the work of 

Plunkett and Marchman (1991, 1993). The training set comprised an artificial language 

constructed to reflect many of the important structural features of English past-tense 

formation. Artificial verbs were monosyllabic and encoded used articulatory feature-

based codes drawn from English phonology. Second, the model employed a simplified 

architecture in restricting mappings to be between phonological codes. More recent, 

larger scale models have included additional information in the input, such as lexical 

semantic information (e.g., Joanisse & Seidenberg, 1999; Woollams et al., 2009), and 

acquire multiple inflectional paradigms rather than just the past tense of verbs (e.g., 

Karaminis & Thomas, 2010). These simplifications are not relevant given the abstract 

aims of the model. 

<Insert Figure 1 about here> 

 

The training set was the “phone” vocabulary from Plunkett and Marchman’s past tense 

model (1991, p. 70). There were 508 monosyllabic verbs, constructed using consonant-

vowel templates and the phoneme set of English. Phonemes were represented over 19 
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binary articulatory features (Thomas & Karmiloff-Smith, 2003b), a distributed encoding 

based on standard linguistic categorizations (Fromkin & Rodman, 1988). Separate banks 

of units were used to represent the initial, middle, and final phonemes of each 

monosyllable. The output layer incorporated an additional 5 features to represent the affix 

for regular verbs. Networks thus had 57 input units and 62 output units. There were four 

types of verbs in the training set: (1) regular verbs that formed their past tense by adding 

one of the three allomorphs of the +ed rule, conditioned by the final phoneme of the verb 

stem (examples from English: tame-tamed, wrap-wrapped, chat-chatted); (2) irregular 

verbs whose past-tense form was identical to the verb stem (e.g., hit-hit); (3) irregular 

verbs that formed their past tenses by changing an internal vowel (e.g., write-wrote; (4) 

irregular verbs whose past-tense form bore no relation to its verb stem (e.g., go-went). 

There were 410 regular verbs, and 20, 68, and 10, respectively, of each irregular verb 

type. A generalization set was also created with 410 novel verbs, each of which rhymed 

(shared two phonemes) with an existing regular verb. Generalization was assessed by the 

accuracy of outputting the regularized past tense form. Networks learned by repeated 

presentations of the training set, with verbs presented in random order, and operation of a 

gradient-descent supervised learning algorithm (backpropagation). One presentation of 

the training set is referred to as an ‘epoch’. All networks were trained for 1000 epochs.  

 

2.2 Environment 

The environmental level was defined as an extrapersonal influence on development. Each 

network simulated a child raised in a given family, and families were assumed to vary in 

the richness of the language used. The language input was assumed to vary to some 
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extent according to socio-economic status (SES) (Hart & Risley, 1995). A training set 

was created for the past-tense information available in each family environment. SES was 

implemented through generating a family quotient for each simulated child. The family 

quotient was a proportion between 0 and 100%. This value was used as a probability to 

determine whether each verb in the full training set would be included in the family’s 

vocabulary. The family training set was then fixed throughout development. Performance 

was always assessed against the full training set (analogous to a standardized test of past-

tense formation applied to all children). The family quotient manipulation corresponded 

to a reduction in type frequency for both regular and irregular verbs. Based on the 

findings of Thomas, Forrester, and Ronald (2013) on the appropriate range of intrinsic 

versus extrinsic variation to capture data on past tense acquisition, family quotients were 

sampled from a uniform distribution from 60% to 100% of the perfect training set, 

corresponding to learning environments with reasonably high quality. This translates to 

the assumption that there is at least a minimum amount of linguistic information typically 

available to a child. 

 

Note that, in principle, the extrapersonal environment may also play a role in influencing 

the value of neurocomputational parameters across child development, for example via 

prenatal maternal nutrition, post natal diet, stress, and other effects on brain development 

(see Hackman, Farah & Meaney, 2010; Thomas, Forrester & Ronald, 2013, for 

discussion). Whether environment primarily affects neurocomputational properties or the 

subjective information content of the environment may depend on the absolute level of 
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SES. For the purposes of the current model, we restricted extrapersonal environmental 

effects to information. 

 

Environments were determined independently of artificial genomes. That is, we assumed 

no gene-environment correlations in our initial simulations. 

 

2.3 Behavioral level 

The past tense was an advantageous illustrative domain because the same processing 

system acquired both regular verbs and irregular verbs (Rumelhart & McClelland, 1986). 

The dimension of regularity permitted consideration of the specificity of simulated gene-

behavior associations: were observed artificial gene-behavior associations always the 

same for regular verb performance as irregular verb performance or could they differ?  

Some degree of specificity might be predicted because it is known that in artificial neural 

networks, the two verb types are differentially sensitive to variations in the 

neurocomputational parameters (Kello, Sibley & Plaut, 2005; Mareschal et al., 2007; 

Thomas & Karmiloff-Smith, 2003b). Results will focus on the contrast between regular 

verb performance and performance on the most common irregular verb type, vowel-

change irregulars. 

 

2.4 Network structure and activation 

When used as cognitive models, artificial neural networks are fairly rudimentary in terms 

of neural realism. Nevertheless, they can still offer some suggestive ideas on the relation 

of brain to behavior. For example, for the networks we used, two different network 
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properties showed similar developmental trajectories to those observed in, respectively, 

global gray matter volume and global white matter volume: total number of connections, 

and total magnitude of connection strength (both excitatory and inhibitory). This analogy 

is of course, tentative. There is more in both gray and white matter than connections. 

However, as well as cell bodies, gray matter does include facilities for local connectivity 

(dendrite arbors, synapses); and white matter includes myelin that enhances axonal 

conductance, reflecting activity-dependent strengthening of long-range connections. The 

analogy between properties of the model and these two types of brain matter is based on 

their respective developmental profiles (Gogtay et al., 2004; Shaw et al., 2008). After the 

onset of pruning, gray matter and number of connections in the model both show an 

exponential decline, while both white matter and total connection strength show a linear 

increase. In the model, number of connections offers plasticity, such that the network’s 

ability to change reduces as pruning takes place, in line with sensitive periods observed in 

the cognitive system (Thomas & Johnson, 2006); while increasing connection magnitude 

reflects experience-dependent strengthening, in line with white matter changes that are 

observed during skills acquisition (Bengtsson et al., 2005; Scholz, Klein, Behrens & 

Johansen-Berg, 2009). These two metrics, total number of network connections and total 

connectivity magnitude, served as our indices of network structure, measured 

independently of behavior. 

 

In addition, we took a measure of the activation states within the network. Individual 

networks varied in the number of hidden units they possessed. The average activity 

across the hidden units (that is, the sum of activation divided by the number of hidden 
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units in that network) was calculated, either over items in the training set or over items in 

the generalization set. 

 

2.5 Neurocomputation 

Artificial neural networks contain a range of parameters that increase or decrease their 

ability to learn a given training set. Parameters such as learning rate, momentum, and 

number of hidden (internal) processing units feature in most published simulations. In 

models of normal/average development, parameters are optimized to achieve best 

learning (usually in the presence of the perfect training set). In the current model, a 

number of parameters were simultaneously varied across individual networks, with 

learning ability determined by their cumulative affect. Multiple parameters were varied at 

the same time to reflect the expectation articulated by Sapolsky (2005) that many low-

level neural properties are likely to vary between individuals. Variations occurred over 

fourteen computational parameters, in principle allowing for over 2 trillion unique 

individuals. Parameters determined four broad properties of the artificial neural networks: 

network construction, network dynamics, network adaptation, and network maintenance. 

 

In line with the arguments of Plomin and Kovas (2005), the parameters had general 

computational functions, and no specific relation to the problem domain that the system 

was acquiring. The parameters were as follows. Network construction: Architecture, 

number of hidden units, range for initial connection weight randomization, and 

sparseness of initial connectivity between layers. Network dynamics: unit threshold 

function (or ‘temperature’), processing noise, and response accuracy threshold. Network 
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adaptation: backpropagation error metric used in the learning algorithm, learning rate, 

and momentum. Network maintenance: weight decay, connectivity pruning onset, 

pruning probability, and pruning threshold. These parameters have derivations in 

neurocomputational theory, and differences in their settings have been used in models to 

simulate variations in cognition, including those found in general intelligence, specific 

language impairment, dyslexia, schizophrenia, autism, and ageing (see Supplementary 

Materials for description and citations). A range of variation in the population was 

established for each parameter (see Supplementary Materials for details of the calibration 

procedure, as well as plots of the sensitivity of network performance to variations in each 

parameter). Model performance was fairly robust to variations in each parameter: 

calibration was carried out to establish extremes.  

  

2.6 Genetic level 

An artificial genome was created, variation in which produced variation in the 

neurocomputational parameters. We assumed that a full genome would contain three 

portions, of which we only implemented one. The first portion would be genes not 

relevant to the functioning of our modeled system (though if measured in a GWAS, 

variations in these genes would be candidates to produce false positive associations). The 

second portion would be genes that were species universal and did not vary across 

individuals, and whose on-going dynamics of expression and regulation delivered the 

functionality of the network itself, in terms of the existence of processing units, 

connections, activation dynamics, the sensorium, the input-output connectivity, and the 

mechanics of experience-dependent learning systems. The third portion would be genes 
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that were influential in the initial growth of the network, and which influenced 

particularly the effective computational properties of the system once its experience-

dependent properties came on-line. The neurocomputational properties were therefore 

conceived of as the outcome of a growth process, in the way that the number of neurons 

in different brain areas is the outcome of neural proliferation and migration. This portion 

of the genome was assumed to show variation across individuals, and was the only 

portion we implemented. For simplicity, we assumed that the relevant genes were the 

sole source of variance in the growth of neurocomputational parameters (i.e., contributing 

biochemical environmental factors were constant across individuals) and that the 

relationship was non-stochastic. We stipulated that multiple genes would contribute to the 

setting of each parameter (polygenicity), but did not implement pleiotropy, where a single 

gene could contribute to the setting of more than one parameter. The values of the 

neurocomputational properties for each individual were encoded in the artificial genome. 

 

The idea of encoding the properties of a computer program in the form of an artificial 

genome is familiar from the machine learning technique of genetic algorithms. Genetic 

algorithms are a method of optimizing computer programs by breeding generations of 

programs and selecting the ‘fittest’ (according to performance on the target problem) to 

populate the next generation (see Mitchell, 1997, for introduction). In principle, genetic 

algorithms can be applied to any computer program. The minimal requirement is that the 

parameter settings for the program (here, artificial neural network) must be encodable in 

a genome, and every version of the genome created by mechanisms that induce genetic 

variability (such as breeding) must correspond to a legal computer program, that is, one 
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that obeys the syntax of the computer language. The combination of artificial neural 

network models, genetic algorithms, and population modeling has been used extensively 

to consider how evolution may serve to optimize properties for learning, for instance in 

the domain of language (e.g., Batali, 1994; Reali & Christianson, 2009). 

 

For the current model, we encoded the values of the 14 neurocomputational parameters in 

an artificial genome and then produced a population of 1000 individuals with randomly 

created genomes. We did not produce further generations via breeding and selection, with 

one exception: in related work, we used breeding alone to create monozygotic and 

dizygotic twin pairs from the initial population. This allowed us to simulate twin study 

designs and thereby assess the heritability of various properties of the population, such as 

behavior and network structure (Thomas, Forrester & Ronald, in preparation; see Kohli, 

Magoulas & Thomas, 2012, for further discussion of the technique). 

 

The artificial genome contained several simplifications. Our starting point was to create 

conditions that allowed a fair opportunity to observe gene-behavior associations. We 

therefore created a population where genetic variation rather than environmental variation 

was responsible for the majority of individual differences in behavior (i.e., behavior was 

highly heritable); and we allowed gene variants to be common, so that there was no 

reduction in statistical power associated with rare variants. Artificial genes were binary 

digits, holding the value 1 or 0. Thus there were only two variants of each gene. We 

consider populations where these variants were equally frequent (so the initial population 

of random genomes was generated by setting each bit to 1 or 0 with 50% probability of 
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each); or where one variant was more common than the other (either: 1-valued alleles had 

70% probability and 0-valued alleles 30% probability, or the reverse). Several binary 

genes encoded the value of each parameter, with more binary genes employed where a 

parameter took up a wider range of values. For example, the unit threshold function was 

encoded over 10 binary genes. The binary gene set was converted into a parameter value 

using the following method. The number of 1-valued alleles was summed. A look-up 

table was then used to convert the sum to a parameter value. Tables were constructed 

such that increasing sums corresponded to monotonic changes in the parameter. 

Intermediate valued sums corresponded to the average value of the parameter, and lower 

or higher sums corresponded to more extreme settings of the parameter in either direction 

from the average. An example of the lookup table for the unit threshold function is 

included in Figure 3. The full set of lookup tables is included in the Supplementary 

Materials. 

 

The polygenic, binary coding of parameters ensured that average values were most 

common in the population, and more extreme values less common. Lookup tables were 

constructed to ensure that parameter changes above or below the average value 

corresponded to symmetric improvements or decrements in behavior. This meant that 

parameter value changes were not always linear. For example, the ‘average’ number of 

hidden units, ensuring a mediocre rate and final level of development, was 50 (with all 

other parameters at average values). Reducing this value to 30 caused poor development, 

but an equivalent improvement above average required an increase to 200. Such a non-

linear relation from artificial genome to parameter ensured strong genetic effects, and 
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thus the best chance of observing these effects in single gene-behavior associations 

(Thomas, Forrester & Ronald, in preparation). 

 

The artificial genome comprised 126 bits (split into two strings or chromosomes of 63). 

The numbers of binary genes per parameter were: hidden units: 10; unit threshold 

function: 10; processing noise: 8; learning rate: 12; momentum: 8; weight variance: 8; 

architecture: 6; learning algorithm error metric: 4; response threshold: 10; pruning onset: 

10; pruning probability: 8; pruning threshold: 10; weight decay: 10; sparseness: 12. These 

values were determined during a calibration phase in order to accommodate different 

ranges of variation for the respective parameters in how they influenced behavior (though 

in principle, the number of genes per parameter could be held constant). 

 

2.7 Simulation Design 

Six populations of 1000 networks were run. In each case, (i) artificial genomes were 

generated at random; (ii) each genome was converted into an instantiated network; (iii) a 

family training set was created for the individual; and, (iv) development was tracked for 

1000 epochs (presentations of the training set). The majority of results are reported from 

the first population, where the gene variants at each location on the artificial chromosome 

were equally frequent. We then considered five further populations in order to evaluate 

the replicability of artificial gene-behavior associations. First, we took the same set of 

genomes and exposed the networks to different environments. Second, we re-sampled the 

genomes with random binary values, but used the same lookup tables and therefore 

probabilistic distribution of the parameter values in the population; and then exposed 
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these networks to different environments. This was carried out twice to create two 

resamplings. Fourth, we re-sampled the genomes but now changing allele frequencies, 

with the 1-valued allele given 70% probability and the 0-valued allele 30%. The same 

look-up tables were used to convert artificial genomes to neurocomputational parameter 

values. Last, we re-sampled the genomes, but with the 1-valued allele now given 30% 

probability and the 0-valued allele 70%.  

 

3. Results 

We first consider the variability present in the behavior of the population. Figure 2 shows 

the population distribution of performance on regular and irregular verbs at three points 

in training, which we will refer to as early (50 epochs), mid (100 epochs), and late (750 

epochs) in development. These points were chosen to capture different developmental 

phases, but before performance had entrenched at its final performance level. Table 1 

shows the mean performance level and standard deviation for each past tense verb type at 

each measure point. These are the data at the behavioral level. At the genetic level, the 

artificial genome constituted 126 binary values per individual, for 1000 individuals. For a 

given point in development and a given behavior, a correlation could be computed 

between the value of each artificial gene (1 or 0) and the target behavior. In what follows, 

we report the variance explained by the association (that is, the square of the correlation). 

Associations had to exceed a certain size to be rated greater than chance. This threshold 

was determined via bootstrap methods, by repeatedly generating a random gene (with 

two possible values, 0 and 1) and associating variations in this gene to the target measure. 

One thousand iterations generated a distribution of the association sizes one might expect 
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by chance. Ninety-five percent and 99% confidence intervals could then be generated for 

this distribution to identify the association sizes that would occur by chance less either 

than 1 in 20 times or 1 in 100 times. A similar approach was used to compute how large a 

difference between two associations had to be before it could be viewed as significant. 

For most target measures, the 0.05 criterion corresponded to an effect size of around 

0.5% and the 0.01 criterion to an effect size of around 0.75%. At these levels, for each 

100 other unrelated genes on the (unimplemented wider) genome that one associated with 

the behavioral or structural measure, 5 would be expected give false positive associations 

at the .05 level and 1 would be expected to give a false positive association at the .01 

level. We could have used more sophisticated methods that corrected for multiple 

comparisons but chose not to, first for the sake of simplicity, and second because the 

sources of variation in the modeled system were well understood. 

 

<Insert Table 1 and Figure 2 about here> 

 

Figure 3 shows the possible associations between different levels of the model, for one 

neurocomputational parameter, the unit threshold function or ‘temperature’. Figure 3(a) 

shows the relationship between the parameter value and behavior on irregular verbs 

established during calibration. Like many neurocomputational properties, the relationship 

is non-linear. Figure 3(b) shows this relationship when plotted from the full population, 

with unequal frequencies of parameter values and all other parameters varying, in this 

case at the early point of development. Extreme values of the parameter were relatively 

less frequent than the average value. Figure 3(c) shows the lookup table that was used to 
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convert the binary genes to the parameter value. Figure 3(d) shows the associations that 

were then observed between genes and behavior, when behavior was plotted according to 

genotype. 

 

We now turn to our equivalent of a GWAS, examining effect sizes across the full 126-bit 

artificial genome. We report the results relevant to our 8 questions. 

 

<Insert Figure 3 about here> 

 

3.1 Can statistically significant associations be observed between artificial gene variants 

and individual differences in behavior, given many-to-one gene-to-neurocomputational 

parameter mappings and an intervening experience-dependent developmental process? 

Figure 4 depicts the association size between the neurocomputational parameter values 

and behavior, using individual linear regressions. It demonstrates there are large effect 

sizes, which are modulated both by behavior type (regular vs. irregular mappings) and 

over development. Were these associations observable at the level of artificial genes? 

Figure 5 shows associations between genome and behavior, again split by regular and 

irregular verb type, and for three points in development. Ninety-five per cent confidence 

intervals on effect sizes were produced by generating a random binary allele for each 

individual and using this to predict the individual’s behavioral score; this procedure was 

repeated 1000 times to generate a distribution of effect sizes; the distribution was used to 

derive the effect size value that would be produced by chance less than 1 time in 20. The 

significance levels were therefore specific to the population size that was simulated. 
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A number of gene-behavior associations were indeed observable, despite the fact that the 

genes acted only on parameters in a many-to-one fashion and that behavior was the 

outcome of a variable developmental process. Early in development, for regular verbs 

there were 33 reliable associations from artificial genes to behavior at p<.05 and 24 at 

p<.01 out of a possible 126. For irregular verbs, there were 40 reliable associations at 

p<.05 and 26 at p<.01. By chance, 6 or 7 would be expected at .05 and 1 or 2 at .01. 

Across all three stages of development, effect sizes ranged from 0 to 4.4% of the variance 

(mean effect size: 0.4% standard deviation: 0.6%); 91 of the effect sizes fell between 0 

and 0.5%, 19 between 0.5 and 1.0%, 8 between 1.0 and 1.5%, and 8 were greater than 

1.5%. Larger effect sizes were seen on regions of the artificial chromosome influencing 

the neurocomputational parameters which themselves showed larger effect sizes on 

behavior in Figure 4. On the whole, a substantial number of small effect sizes were seen 

in the associations between artificial gene variants and behavior, despite the interceding 

developmental process. 

 

Artificial gene variants were also assessed by their ability to predict whether an 

individual would fall in the top 10% or bottom 10% of the population by rank (simulating 

precocious or delayed development). Individual artificial gene variants altered the 

likelihood of falling in the tails of the population distribution by a maximum of 2.89 

times (mean: 1.15, standard deviation: 0.16); 56 of the ratios were between 1 and 1.1, 35 

between 1.1 and 1.2, 20 between 1.2 and 1.3, and 15 were greater than 1.3 (recall, an 

odds ratio of 1.1 means 11 individuals with the variant will show the phenotype, for 
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every 10 with the variant who will not). Thus artificial gene variants could predict 

performance in the tails, with relatively modest odds ratios. 

 

<Insert Figures 4 & 5 about here> 

 

3.2 Do associations show specificity to different behaviors generated by the system or are 

they general? 

We compared associations to performance on regular verbs and irregular verbs, early in 

development. Once more, bootstrapping methods were used to derive 95% confidence 

intervals on the differences between effect sizes. Out of the 126 possible associations, 

there were 37 that differed significantly in effect size at p<.05 between the two types of 

behavior, 10 where effect sizes were larger for regular verbs, and 27 where they were 

larger for irregular verbs. Twenty-seven differences were significant at p<.01, 10 where 

effect sizes were larger for regulars and 17 where effect sizes were larger for irregulars. 

Thus, despite the general nature of the neurocomputational parameters, and the absence 

of processing structures specific to the types of behavior, associations from artificial 

genes to behavior could demonstrate specificity to behavior type. However, the majority 

of associations were not significantly different across the two behaviors, in line with the 

fact that these behaviors were generated by the same network structure. 

 

3.3 What is the stability of the associations over developmental time? 

Associations changed over development. Focusing on regular verbs, between early and 

mid development, there were 12 significant differences in effect size at p<.05 out of a 

possible 126. Seven of these 12 were cases where effect sizes were larger early in 
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development, 5 were cases where they were larger in mid development. Only 3 

developmental changes in associations were reliable at p<.01, all larger early in 

development. A comparison between early and late development revealed 33 reliable 

differences in effect size at p<.05, 14 where effect sizes were larger early and 19 where 

they were larger late. There were 20 differences reliable at p<.01, 7 where effect sizes 

were larger early, 13 where they were larger late. Thus associations between artificial 

genes and behavior could both decrease and increase across development within the 

model. 

 

Figure 4 indicates that developmental sensitivity was also apparent in the associations 

between neurocomputational parameters and behavior, with some associations 

strengthening across development and some weakening. Within a given 

neurocomputational parameter, the rank order of performance between individuals with 

different settings of the parameter value was generally stable across development. 

However, it was possible to find cases where individuals with one parameter value scored 

higher than individuals with another parameter value earlier in development, while later 

the order was reversed. For example, after 30 epochs of training, the 212 individuals with 

the temperature value of 1.25 scored higher on irregular verbs than the 254 individuals 

with a temperature value of 1.00 (23.9% versus 21.6% accuracy), while by epoch 200 the 

pattern of performance had reversed (60.6% versus 63.8%; interaction of epoch x 

parameter value: F(1,464)=8.31, p=.004, effect size ηp
2 =.018). The behavioral advantage 

to an individual of possessing a given neurocomputational parameter value could, 

therefore, be specific to a particular developmental stage. 
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3.4 Do associations replicate across populations? 

Figure 6 displays between-level associations when the same set of artificial genomes was 

instantiated as a new set of networks, and trained in new randomly sampled 

environments. The figure incorporates the effect sizes between neurocomputational 

parameters and behavior, and between artificial genes and behavior. We picked one of 

the behavior types, irregular verb performance, and one developmental stage, early, for 

our comparisons. There was a fairly close replication of associations at both levels. For 

artificial gene-behavior associations, there were only 8 significant differences at p<.05 

and 3 at p<.01, close to chance levels. Figure 7 depicts the same plots when a new set of 

artificial genomes was sampled, with the same allele frequencies and parameter 

frequencies across the population; these new genomes were instantiated as networks and 

trained in new environments. Figure 7 includes two such resamplings. Here, the 

replication was fairly good at the neurocomputational-to-behavior level, but poorer at the 

artificial gene-to-behavior level. For the first resampling, 39 associations were 

significantly different at p<.05, and 17 were significant at p<.01, out of 126. For the 

second resampling, 36 associations were significantly different from the original at p<.05 

and 20 different at p<.01. Figure 8 depicts the situation where allele frequencies were 

changed, either making the 1-valued allele more frequent than the 0-valued (70:30), or 

less frequent (30:70). Once more, a population of genomes was generated, instantiated as 

networks, and trained in new environments. Replication was now poor for both 

neurocomputation-to-behavior and gene-to-behavior associations. For the latter, there 

were 54 significant differences between the original and the 70:30 population at p<.05 
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and 33 at p<.01. There were 41 significant differences between the original and the 30:70 

population at p<.05 and 30 at p<.01. In sum, replication was variable, depending on the 

details of the resampling, and the levels between which associations were observed.  

 

<Insert Figures 6, 7 and 8 about here> 

 

3.5 Are associations observed from artificial genome to network structure and activation, 

and if so, are these the same as the associations observed from genes to behavior 

(network function)? 

Figure 9 shows associations between the artificial genome and two indices of network 

structure, the total magnitude of network connectivity, and the total number of connection 

weights, for early in development. Associations for irregular verb behavior (network 

function) are also included for comparison. Large effect sizes were apparent for both 

magnitude and number, with 28 and 15 associations significant at p<.01, respectively. 

When these two structural indices were compared with the effect sizes for irregular verb 

behavior at the same point of development (which had 26 reliable associations at p<.01), 

there were 41 and 35 significant differences at p<.01, for magnitude and number, 

respectively. In other words, for connection magnitude, 13 associations were shared with 

behavior and 41 differed, while for connection number, 6 were shared and 35 differed. 

Thus, the majority of the associations between artificial genes and network structure, and 

between artificial genes and behavior (network function), were separate – even though it 

was the structure of the artificial neural networks that generated their behavior. 
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This is perhaps not surprising given the correlations between these structural indices and 

behavior. Table 2 shows the correlation matrix for structural (number and magnitude of 

connections) and functional (regular, irregular performance) indices for early, mid, and 

late in development. It reveals a pattern of strong correlations within structural indices 

and within functional indices, but weak correlations between structural and function 

indices. This pattern has also been observed in empirical studies (example data from 

Posthuma et al., 2003, are included in Table 3 for comparison). In the model, while, to 

some extent, more total connections necessarily entails greater total connection strength, 

the correlation is not guaranteed. Several factors can modulate the relationship. These 

include differential loss of connections through pruning, differential decay of connection 

strengths, differential strengthening of connections due to variations in learning 

environments, and the differential effect of other parameters that modulate how learning 

experiences strengthen the connections. Together, these factors can all serve to weaken 

the initial correlation between the two structural measures. This is confirmed in Table 2, 

which demonstrates how their correlation weakens over development. 

 

We next assessed the correlation across individuals between measures of network 

structure and network activation, where the latter was calculated by the average hidden 

unit activation levels produced while generating behavior.2 Hidden unit activation states 

were very similar when processing items in the training set and items in the 

generalization set (a correlation of 1.00), though greater activity was induced in networks 

by novel items than by items in the training set (training set: mean = .295, standard 

                                                
2 This calculation could only be performed for networks with hidden layers. The 
calculations therefore excluded the 102 networks with only a 2-layer architecture. 
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deviation = .159; novel: mean = .328, standard deviation = .179; t(897) = 50.19, p<.001, 

Cohen’s d = .198). Novel items have also been observed to induce more neural activity 

than familiar items in some functional brain-imaging experiments, an effect which has 

been ascribed to greater neural efficiency in processing the latter (see, e.g., Poldrack, 

2014). In the model, more activation represented less certainty about the identity of the 

input. However, the neural realism of the distributed codes acquired in backpropagation 

networks is too remote infer any much from the similarity to brain imaging results. 

Correlations between structural measures and activation levels were high, .89 for 

connection number and activity, and .63 for connection strength and activity (both 

p<.01). Figure 10 shows associations from the artificial genome to, respectively, number 

of connections, activation induced by processing novel verbs, and the generalization 

performance on novel verbs. Associations for activation states more closely tracked 

differences in the connectivity of the network rather than behavior. That is, variations in 

the representational codes across networks were tied to structural properties of those 

networks rather than how well the networks were performing in inflecting novel verbs. 

 

<Insert Figures 9 and 10 about here> 

<Insert Tables 2 and 3 about here> 

 

3.6 Are associations modulated by the quality of the environment, producing gene x 

environment interactions? 

Our illustrative model was drawn from the study of language development, where in 

another context, it has been used to simulate SES effects on past tense acquisition via 
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modulation of the information content of the environment (Thomas, Forrester & Ronald, 

2013). Did variations in this information content affect the associations observed between 

levels? SES was modeled by the family quotient factor, which served as a filter on the 

full training set, and which varied in value from 0.6 to 1.0. Note, by design, genomes 

were randomly assigned to environments. We split the population into high and low SES 

groups at a quotient of 0.8, yielding sub-groups of N=502 and N=498, respectively. 

Figure 11 shows the neurocomputational parameter-to-behavior and artificial gene-to-

behavior associations for irregular verbs early in development. There were modulations 

of effect size by SES in both cases. For artificial gene-behavior associations, there were 

39 associations out of 126 that significantly differed between high and low SES groups at 

p<.05 and 24 at p<.01 (with confidence intervals recalculated to reflect the smaller 

sample size). An equivalent analysis of SES effects on regular verb associations yielded 

38 at p<.05 and 15 at p<.01, respectively. This result demonstrates evidence of gene-

environment interactions in our model system, at least in the way that SES modified 

gene-behavior associations. But did these effects translate into a modification of the 

relationship between SES and behavior according to genotype? We took the artificial 

gene with largest effect from Figure 11 (gene no. 68, predicting 6% of the variance in the 

high SES group but only 1% in the low SES group). In the group of individuals with the 

1-valued allele, the effect of SES was to modulate behavioral performance by 8.9% (high 

SES, accuracy=40.4, N=230 versus low SES=31.5, N=248); for the 0-valued allele, the 

effect of SES was a negligible 0.4% (27.7, N=272 versus 27.3, N=250). This gene-

environment interaction had a small effect size of 0.8% of the variance, but was 

statistically significant in our sample size (F(1,996)=8.10, p=.005, ηp
2 = .008). 



42 
 

 

  <Insert Figure 11 about here> 

 

3.7 Can interactions between genes be observed in the way that they influence behavior? 

By design, at the level of artificial genome, there were no causal interactions between the 

genes in the way that they influenced different neurocomputational parameters. Thus, for 

example, the value of the hidden unit parameter depended only on the values of the 

relevant artificial genes encoding this parameter, and did not depend, say, on the values 

of the artificial genes determining the learning rate parameter. 

 

However, based on machine-learning principles, we viewed it as likely that 

computational parameters in an artificial neural network would interact with each other in 

their effect on behavior. We explored whether this phenomenon might then generate 

statistical interactions between different gene-behavior associations, for the artificial 

genes encoding different computational parameters. 

 

We took two parameters, number of hidden units and learning rate, which we expected on 

computational grounds to interact in their effect on behavior. Figure 12 plots the 

population performance for individuals split by whether they had 40 or 50 hidden units 

(where more hidden units implies greater computational power), and whether their 

learning rate was 0.075 or 0.125 (where a higher learning rate indicates a more plastic 

learning system). We compared regular and irregular verb performance and contrasted 

early and late phases in development. For the networks with 40 hidden units, the less 
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plastic systems scored higher, while for 50 hidden units, the more plastic systems scored 

higher. The numerical difference was present for both verb types and both stages of 

development but was significant only for irregular verbs (regular, early: p=.173; late: 

p=.323; irregular, early: F(1,111)=4.14, p=.044, ηp
2 = .036; late: F(1,111)=5.53, p=.020, 

ηp
2 = .047). As we expected, then, these two neurocomputational parameters interacted in 

their effect on behavior. 

 

We explored whether this interaction was visible in artificial gene-behavior associations. 

We picked two alleles with significant associations, one from the hidden unit (HU) region 

and one from the learning rate (LR) region (effect sizes of 1.39% and 2.37%, 

respectively). We compared them with two alleles from these regions that showed non-

significant associations (0.00% and 0.09%). The alleles with significant associations 

showed main effects but did not exhibit an interaction (main effect of HU: 

F(1,996)=13.78, p<.001, ηp
2 = .014; main effect of LR: F(1,996)=24.09, p<.001, ηp

2 = 

.024; HU x LR interaction: F(1,996)=1.27, p=.261, ηp
2 = .001). By contrast, the alleles 

without individually significant associations showed no main effects but a reliable 

interaction (main effect of HU: F(1,996)=.03, p=.871, ηp
2 = .000; main effect of LR: 

F(1,996)=1.21, p=.271, ηp
2 = .001; HU x LR interaction: F(1,996)=4.07, p=.044, ηp

2 = 

.004). The observed interaction was in the expected direction given Figure 12: for the 1-

valued hidden unit allele (contributing to more hidden units), individuals with the 1-

valued learning rate allele (contributing to more plasticity) scored higher. For the 0-

valued hidden unit allele (contributing to fewer hidden units), individuals with the 0-

valued learning rate allele (contributing to less plasticity) scored higher. 
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  <Insert Figure 12 about here> 

 

3.8 When all mechanistic sources of variability are known, can all the population 

variability in behavior be explained? 

Due to the relative range of variation of genetic and environmental factors in the current 

simulation, the majority of the population variability was due to genetic factors. When 

the simulations were extended to a twin study design (see Thomas, Forrester & Ronald, 

in preparation), the monozygotic (MZ) twin correlation for regular verbs early in 

development was .98 and dizygotic (DZ) was .40 (note, behavior was computed without 

measurement error). An MZ correlation more than twice DZ implies dominant genetic 

effects. Could the population variability in behavior exhibited by the simulated 

population be explained by the associations at each lower level of description, 

respectively at the neurocomputational and genetic levels? Since we knew the 

contribution to individual differences in behavior due to the environment (stemming from 

a single parameter, the family quotient factor), the remaining variance should be 

accounted for by the genetically determined neurocomputational parameters. Together, 

the family quotient factor and the neurocomputational parameter values should predict all 

the population variance in behavior. 

 

The neurocomputational parameters, along with the measure of environmental quality 

(family quotient), were used in independent linear regressions to predict regular verb 

performance early in development. The summed variance of behavior explained by the 



45 
 

parameter values was 48.1%, less than half the population variability, with the family 

quotient factor accounting for 0.7%. Separate regressions inflated the variability 

explained due to (in this case, chance) correlations between the neurocomputational 

parameters, thereby double-counting some of the variance that the parameters predicted. 

Simultaneously entering the parameters in a multiple linear regression reduced the 

explained variance to 43.4%. The inflation of independent fits was therefore around 5%. 

 

Linear methods were not entirely appropriate, however. As exemplified in Figure 3(a), in 

most cases the relationship between a neurocomputational parameter and its effect on 

behavior was non-linear, with the appropriate function differing depending on the 

parameter. The best non-linear fit was computed for each neurocomputational parameter-

behavior relationship from the set {linear, log, inverse, quadratic, cubic, power, logistic, 

growth, and exponential}. If only non-linear functions with two regression-parameters 

were used (the same number as a linear function), the total variance explained now rose 

to 70.1% (though this includes the inflation due to independent fitting). If non-linear 

functions with 2, 3, or 4 regression-parameters were permitted, the explained variance in 

population behavior rose to 77.1%, although the additional 7% explained variance was 

gained at the expense of 17 more regression-parameters (degrees of freedom).  The 

maximum explained variance, combining knowledge of neurocomputational parameter 

values and environmental quality, was a little under 80%. 

 

One possible source of the additional variance was higher order interactions between 

neurocomputational parameters. We saw once such interaction in the previous section. 
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Given that there were 14 parameters, there were a large number of possible interactions. 

To test the principle that interactions might account for missing variation, we re-ran the 

linear multiple regression, but now entering several interaction terms. These terms were 

educated guesses based on computational theory, and involved interactions between 

parameters such as hidden unit number (H), learning rate (LR), temperature (T), 

sparseness (S), architecture (A), response threshold (RT), noise (N), initial weight 

variation (W), and family quotient (FQ). (Two examples: a lower activation function 

temperature might mitigate the entrenchment caused large initial weights; a less 

representative view of the latent structure of the problem domain caused by a low family 

quotient might be mitigated by a more tolerant response threshold). Of the dozen 

interaction terms we guessed (entered into the regression as products of the parameter 

values), 5 explained statistically reliably amounts of the variance. These included three 2-

way, one 3-way, and one 4-way interaction (H*LR, H*T, T*W, LR*RT*FQ, 

H*LR*T*S). The total variance explained in this regression model rose from 43.4% to 

46.0%, a gain of 2.6%, thereby confirming that interactions between parameters could 

account for some of the missing population variance. 

 

Finally, turning to the artificial-gene level, summing all associations plus variance 

explained by the environment yielded a total of 79.4%. Again, this method includes 

inflation due to independent fitting. Simultaneously entering all alleles plus environment 

into a multiple linear regression yielded a total of 61.3% variance explained. 
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In sum, in the absence of measurement error, subtracting the known contribution of the 

manipulated environmental factor to population variation in behavior, and the known 

contribution of stochastic factors computed from MZ correlations, we expected the other 

deterministic mechanistic factors producing variability to explain up to 97% of the 

variance. These mechanistic factors represented the genetic contribution to individual 

differences. However, only around 80% of the variance could be explained by these 

factors. In these simulations, one could say that around 20% of the variance expected to 

be explained by genetic factors was ‘missing’. 
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4. Discussion 

We begin by considering the following specific question: For the preceding analyses, do 

observed cross-level statistical associations give an accurate picture of the causal 

processes which, with knowledge of the operation of the model, we know generated the 

behavior? We then turn to consider the broader theoretical issues raised by the multi-

scale model, as well as the limitations of the simplified modeling framework. 

 

4.1 Correlation and causality within the model 

Small but statistically reliable associations were observed between the artificial genome 

and behavior from around a quarter of the alleles on the artificial genome. These were 

observable through the filter of the genes’ many-to-one impact on neurocomputational 

parameters in a system that engaged in an extended, experience-dependent developmental 

process. On the one hand, this is impressive. On the other hand, no artificial genes were 

included in the genome that did not influence neurocomputational properties. Therefore, 

every artificial gene was causal. For three quarters of the artificial genes, there was 

causality without statistically significant correlation. There were two reasons why only a 

quarter showed reliable correlations to behavior: the polygenic relationship between the 

artificial genes and the neurocomputational parameters, and the differential predictive 

power of the neurocomputational parameters that they influenced. For the former, the 

reliable associations corresponded to the genes that happened, by chance, to contribute to 

setting the value of the computational parameter for this population. That is, causation 

was not fully manifested in correlations because of sampling. The divergence between 

correlation and causation was possible because of the many-to-one mapping between 
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artificial genes and neurocomputational parameters, and the many-to-one relationship 

between neurocomputational parameters and behavior.3 

 

Some associations showed specificity to different behaviors. For this model, the 

specificity of artificial gene-behavior associations did not imply specificity of 

computational mechanisms responsible for processing each behavior type. Regular and 

irregular past tenses were generated by the same structure via parallel distributed 

processing. Specificity of associations occurred because the two behaviors had 

differential sensitivity to variations in different neurocomputational parameters. 

Therefore, the behaviors were able to show different associations to genes influencing the 

setting of those parameters. For example, irregulars are harder to learn and require more 

computational power. As a consequence, irregulars are more sensitive than regulars to 
                                                
3 Where several genes contribute to the setting of a neurocomputational parameter, in 

small samples, it may turn out that statistically, variation in some genes contributes 

disproportionately to predicting the value of the parameter (and by extension, its 

influence on behavior). As the population sample size gets larger, the combined 

contribution of the set of genes should become more apparent. The effect sizes of 

associations should become more even across the set. We verified this with a simple 

example where 10 binary artificial genes were used to determine the value of a notional 

parameter in an additive fashion. In a population of N=1000, the effect sizes of the 

associations between individual genes and the subsequent parameter value were 

somewhat uneven, with a mean of 11.1% and a standard deviation of 1.4% across the 10 

artificial genes. When the sample was raised to 3000, the effect sizes become more even, 

with a mean of 10.3% and a reduced standard deviation of 0.8%. With a sample of 

10,000, the mean effect size was 10.1% and the standard deviation was again reduced at 

0.6%.  
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variations in the architecture of the network, one of the key determinants of processing 

power. In turn, variation in irregular verb performance can then show larger associations 

to variants of the artificial genes determining the architecture. 

 

A particular relationship between variation in certain high-level behaviors and variation 

in certain low-level neurocomputational properties has been referred to as ‘domain-

relevance’. The concept has been used to explain why uneven cognitive profiles can 

occur in developmental disorders in the face of apparent brain-wide genetic effects 

(Karmiloff-Smith, 1998). A brain-wide parameter difference may differentially impact on 

behaviors for which the parameter is more developmentally relevant. In sum, while 

specificity of gene-behavior associations could indeed imply specificity of processing 

mechanisms, it need not and did not in our model. Instead, it could imply domain 

relevance of processing properties to problem domains. 

 

We observed that some associations changed across development, either increasing or 

decreasing in size. In terminology sometimes used in association studies, the ‘genetic 

architecture’ of the system altered across development. However, by design, in the 

simulations there was no alteration in the genetic influence on variation in the 

neurocomputational parameters across development; the genes were taken to influence 

growth processes that led to a network with certain learning properties. In our 

simulations, associations changed, either rising or falling, because the computational 

properties that they influenced became more or less relevant to behavior at different 

phases of development. In the same way as computational parameters can be ‘domain-
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relevant’, they can be ‘phase-relevant’. For example, the response threshold parameter 

(indexing the notional settling of attractor networks at output; see Supplementary 

Materials) determined how ‘clean’ a response had to be before it could generate a 

behavioral output. Variations in the response threshold were more influential early in 

development when processing was less accurate; but when accuracy increased later in 

development, variations in the response threshold themselves became less relevant. By 

contrast, variation in the learning algorithm became increasingly relevant because it 

determined the final representational states that could be reached by the system by the 

end of development. In sum, developmental changes in gene-behavior associations could 

indeed (and presumably often do) imply changes in gene expression – after all, in many 

cases, biological development is defined by changes in gene expression; but they need 

not and did not in our model. Instead, they could imply phase-relevance at the 

computational and genetic levels. 

 

Associations showed poor replication across populations. This was not due to an 

intrinsically noisy developmental process – replication of artificial gene-behavior 

associations was good if the population set of genomes was re-instantiated in a different 

set of randomly assigned environments. Lack of replication arose when the genomes 

were re-sampled, even with the same probabilistic distributions of parameter values. This 

is because, through polygenic coding, different alleles could be responsible for producing 

the same computational value in different populations. Neurocomputation-behavior 

associations were, however, more robust. If a move from a low level to a high level of 

description involves a sequence of many-to-one causal relations, associations become 
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more robust as more causal factors are resolved into fewer. This is related to the idea of 

endophenotypes (de Geus et al., 2001; Gottesman & Gould, 2003; Kendler & Neale, 

2010). Proponents of endophenotypes argue that intermediate levels of description 

between the molecular level of genes and the whole system level of behavior are more 

likely to show links to the genetic level. For the model, we observed that measures at the 

intermediate level showed stronger and more replicable links to behavior. However, if 

allele frequencies differed between populations, while associations were still observed, 

these differed, even for neurocomputation-behavior mappings. This was because the 

computational balance of the systems had changed. For example, the population in which 

1-alleles had 30% frequency and 0-alleles had 70% frequency, the corresponding 

computational parameters were less optimal and population performance was poorer. 

Networks, therefore, tended to rely on the response threshold far more to accept ‘just 

good enough’ output activations as correct answers, exaggerating the predictive power of 

variations in the response threshold parameter. Further simulations are required to 

consider scenarios where unequal allele frequencies are the norm. However, the 

implication of the differential allele frequency conditions was as follows. Given there 

will be a function linking the set of gene variants to their effect on neurocomputational 

properties, the cross-level associations that are observed will be influenced by the 

frequency of the different variants in a given population. Overall, then, the results point 

to the population-specific nature of between-level associations, and that many-to-one 

causal relations can lead more distant levels of description to have less replicable 

associations than more proximate ones (where distance refers to a hierarchy of larger 

components made from smaller components). 
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Associations were observed between artificial genome and both network structure and 

activation states. However, these were different from the associations observed between 

artificial genome and network function (behavior). This is consistent with the low 

correlation found between individual differences in network structure properties and 

individual differences in behavior, a divergence that has also been observed empirically 

(e.g., Posthuma et al., 2003). To some extent, one might expect weaker correlations 

between structure and function within the artificial neural network, at least at a global 

level, because the same structure has to produce different behaviors in a distributed 

processing system. Perhaps in our model, a more fine-grained analysis of network 

structure than total connectivity would have produced structural associations closer to 

those observed for behavior. This is far from guaranteed, because it was the same units 

and connections that processed regular and irregular verbs in this system, with specificity 

only arising via the different levels of activation propagating along different pathways 

(Thomas, Purser et al., 2012). One reason for the lack of overlap between genome-to-

structure associations and genome-to-function associations was that some 

neurocomputational parameters contributed much more to structural variation. For 

example, the number of internal processing units greatly influenced structural measures 

based on total connectivity. However, behavior was more dependent on the quality of the 

processing occurring within that connectivity: function, therefore, was influenced by 

many other parameters with subtler effects not obviously detectable via the structural 

measures. One might expect a similar effect with current brain imaging techniques, since 

measures such as gray matter and white matter, or blood oxygenation, are unlikely to 
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capture all the properties that affect neurocomputation. Lastly, the degree of activation in 

the networks was more closely tied to structure than to function, indicating that 

alterations in computational capacity led to the adoption of different representational 

codes. In short, associations from gene-to-structure and gene-to-function can diverge, 

even when (as we know for the model) all the genes being measured influence aspects of 

neurocomputational processing. 

 

Associations from artificial genes to behavior were reliably modulated by the quality of 

the environment (here, taking advantage of the fact that the model was drawn from work 

investigating the effects of socio-economic status on language development; the 

population could therefore be median-split into those developing in high SES and low 

SES families). It was also possible to identify artificial genes where the allele value 

altered the relationship between SES and behavior. In the simulated population, gene-

environment interactions arose because those networks with better computational 

learning systems were more able to exploit the information available in better 

environments. Variation in performance due to the quality of the environment was 

therefore more apparent in those with higher ability than lower ability (Thomas, Forrester 

& Ronald, 2013). However, the proportion of gene-behavior associations showing 

modulation by SES was surprisingly high. Even though we expected gene-environment 

interactions for this model system, the overall behavioral effect sizes were relatively 

modest. For example, where intrinsic ability was taken to be the composite of all 

neurocomputational settings, and for performance early in development, the gene-

environment interaction for regular verbs explained only 1.1% of behavioral variance 
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(F(1,996)=11.0, p=.001), and that for irregular verbs explained only 0.4% of the 

behavioral variance (F(1,996)=4.0, p=.047; see Thomas, Forrester & Ronald, 2013, for 

the method of calculating these effects). The number of artificial gene-behavior 

associations modulated by the environment exceeded the size of the gene-environment 

interaction observed in behavior. The explanation is that many of these apparent 

modulations were a consequence of the between-subjects design – the low SES and high 

SES groups were different sub-populations; therefore one would predict the poor 

replicability of artificial gene-behavior associations discussed earlier. In short, the model 

suggests that although one might expect gene-environment interactions to be observed in 

gene-behavior associations, evidence of interactions may also be the artefactual / 

confounded consequence of measuring associations in populations with (stochastically) 

different genomes. 

 

By design, artificial genes influencing variation in separate neurocomputational 

parameters did not interact with each other. Genes for a given parameter determined the 

value of that parameter independently of the genes for other parameters. Nevertheless, it 

was possible to detect statistical interactions between artificial genes for separate 

parameters in their associations with behavior. This is because the neurocomputational 

properties, which the artificial genes influenced, themselves interacted during the 

developmental process. In the example we gave, a system with more resources did better 

with higher plasticity than with lower plasticity, while a system with fewer resources did 

better with lower plasticity than higher. The computational explanation of this interaction 

is that in networks with less representational capacity, a more precise combination of 
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connection weight values must be reached to accommodate the set of mappings 

demanded by the training set. During training, this solution must be approached in the 

smaller iterative steps provided by a lower learning rate. In a network with more 

resources, less exact weight values are necessary, and less care is therefore necessary in 

the adjustment of weight values; faster learning is merely developmentally advantageous. 

 

Finally, we used a system in which most of the population variability in behavior was 

caused by intrinsic factors, which we defined as genetic in origin. That is, the system 

generated highly heritable behavior. Given we knew all of the causal mechanistic settings 

that generated population variability in behavior (albeit via a developmental process), and 

given we had an estimate for the contribution of stochastic factors such as initial weight 

randomization of initial weights, pruning of weights, processing noise and randomization 

in exposure to the training set, could we then explain all of the observed behavioral 

variance, or was some of the variance ‘missing’? It would be comforting if in a relatively 

simple system where the causal processes were transparent (even if some of the 

properties of the model were emergent), all the behavioral variability could be explained. 

However, around 20% of the behavioral variance remained unexplained. We identified 

two possible sources of this phenomenon in the simulations. First, there are limitations in 

the statistical techniques used to assess variance explained based on the predictor 

variables. In artificial neural networks, many of the relationships are non-linear. As we 

saw, use of linear methods under-estimates the variance that can be explained. 

Nevertheless, while use of non-linear statistical methods increased the amount of 

variance explained, it still left a fifth of the variance unexplained. Second, variance may 
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be left unexplained because there are complex interactions among the 

neurocomputational parameters, and between the parameters and the environment, during 

development. With many parameters, there are large numbers of possible interactions. 

We supported this source of unexplained variance by demonstrating that some sample 

interaction terms indeed accounted for reliable amounts of variance, although the few we 

chose only increased the explained variance by a small amount. To the extent that 

neurocomputational factors are genetically influenced, then, the interactions between 

them may constitute a source of missing heritability: variance that stems from genetic 

factors but that is not predicted by the factors in isolation. 

 

4.2 Wider implications 

Gene-behavior associations offer an exciting window onto the mechanisms by which the 

brain realizes cognition. Candidate gene association studies have suggested possible 

mechanistic pathways by which genetic variation produces individual variation, for 

instance via influences on neurotransmitter regulation, synaptic plasticity, or neural 

migration during development. Genome-wide association studies provide the opportunity 

for a systematic search for causal variants associated with variations in behavior. 

However, candidate gene studies have suffered from problems of replicability, while 

GWAS studies have had, as yet, more success in informing the biological pathways of 

common diseases than variations in high-level behavior. 

 

Gene-behavior associations span many intermediate levels of description, including the 

cognitive level. What can gene-behavior associations tell us about cognition? Three 
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characteristics of associations are able to inform cognitive theories. These are effect size, 

specificity, and timing. A large effect size suggests how much of the causal pathway is 

being indexed by the genetic (or environmental) measure. Specificity suggests possible 

dissociations between mechanisms underlying different behaviors. Relatedly, modulation 

of environmental influences by genetic factors may point to mechanisms for resilience in 

development. With respect to timing, changes in associations over development may 

imply differential involvement of mechanisms at different ages (Ronald, 2011). 

 

However, the use of genetic association findings to constrain cognitive theories is 

compromised by the complexity of the systems under consideration, and the fact that an 

extended developmental process is necessary before the emergence of high-level 

behaviors whose variation can be linked with genetic variation. We argued here that 

multi-scale models provide one method to investigate the relationship between 

associations that cross levels of description, and causal processes best characterized as 

operating at intermediate levels. In this case, we employed a modeling framework drawn 

from research on language development, which incorporated the levels of artificial genes, 

neurocomputation, network structure, behavior, and environment. Importantly, the model 

captured individual differences within a developmental framework. The results suggested 

the following. 

 

Statistical associations spanning disparate levels of description will not always offer 

strong constraints on theories developed at intermediate levels of description, for a 

number of reasons. Specificity in associations may not be reflected in specificity of 
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mechanism. Timing effects in associations may arise for neurocomputational reasons 

without changes in genetic effects. Associations between structure and function may 

differ, even when genetic effects operate on the structure that realizes the function. Even 

without measurement error, non-linear relationships and complex interactions in learning 

systems may limit how much behavioral variance can be predicted from known 

parameters, leading to ‘missing’ variance. Many-to-one relationships between genes and 

neurocomputational parameters suggest inherent problems in replicability due to 

sampling differences across populations, and therefore difficulties with between-

participants designs.4 Some results from the model were more encouraging for the utility 

of cross-level associations. Measures that are intermediate to genes and behavior, where 

some of these many-to-one relationships have resolved, may improve replicability across 

populations, consistent with the idea of endophenotypes. Moreover, the presence of 

associations between artificial genes and behavior supports the principle that statistical 

associations can bear on intermediate-level mechanism, because in many cases these 

associations had clear computational explanations. 

 

                                                
4 To some extent, this result depends on the assumed scale of the model. We stipulated 

the granularity of the genomic encoding by virtue of our assumption of a polygenic 

relationship between genes and neurocomputational parameters. However, one could take 

a different view: that the 1s and 0s of the artificial genome correspond to ‘base pairs’ and 

the regions for each parameter correspond to the ‘genes’. This view would predict much 

stronger associations between gene variants and behavior, since each polymorphism 

would influence a computational parameter value. And it would predict greater 

replicability across association studies for whole genes but potentially lower replicability 

for associations between single nucleotide polymorphism (SNPs) and behavior. 
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Multi-scale simulation framework that combines individual differences with development 

provide a foundation to consider wider issues, such as the causes of developmental 

deficits like autism, and mental health conditions like depression and schizophrenia. In 

particular, the specification of genetic and environmental causes of individual variation in 

high-level behavior firstly permits investigation of whether a disorder lies on a 

mechanistic continuum with normal variation; and secondly, where a distinct 

pathological effect is identified (of either genetic or environmental origin), how this 

effect interacts with protective and risk factors understood as population-wide causes of 

individual variation. For example, the current simulation framework has been applied to 

study of risk and protective factors for developmental regression in autism (Thomas, 

Knowland & Karmiloff-Smith, 2011), and the study of environmental factors 

contributing to the resolution of delay in language development (Thomas & Knowland, 

2014).  

 

4.3 How transferable are the model behaviors to real biological systems? 

How severely to the simplifications of the model limit the generality of its findings to 

biological systems? In some senses, the modeling enterprise here is an unusual one. 

Mostly, models seek to capture a specific quantitative pattern of empirical data, or if they 

are more abstract (like the current model), seek to capture a wide set of phenomena using 

as few parameters as possible to provide a parsimonious causal account. In our model, we 

instead added a small degree of the complexity that we know exists in real biological 

systems. The aim was not parsimony but to evaluate the consequences of this complexity 

in drawing inferences from the kinds of cross-level association data emerging from 
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developmental cognitive neuroscience. We believe multi-scale modeling is an essential 

tool to address the complexity of the systems under consideration, but we recognize there 

is a clear tension in such models. This concerns simplification at the interface between 

levels of description. As Dammann and Follett (2011) put it, ‘the trade-off between 

necessary simplification and necessary detail remains a major challenge in all 

computational modeling of complex processes. While the former is needed to achieve a 

reasonable level of modeling feasibility, the latter is needed to retain sufficient detail to 

render the model biologically meaningful. Moreover, assessment of reasons for model 

success or failure is difficult due to this tradeoff, especially in a multi-scale model, where 

important aspects of overall mechanistic complexity may have been sacrificed for the 

sake of modeling simplicity.’ 

 

One example of a simplification in the current model was the use of backpropagation 

networks to represent the neurocomputational level. The neural plausibility of the 

backpropagation algorithm has been questioned. At best, it represents a shorthand for a 

Hebbian-based algorithm that uses bidirectional connections to spread error signals 

throughout a neural network (Cowell, Bussey & Saksida, 2012; Thomas & McClelland, 

2008; Xie & Seung, 2003). For a multi-scale model, contact with lower levels of 

description is important, and one might ask whether the use of the backpropagation 

learning algorithm restricts the generality of the findings. Certainly, it is possible that 

algorithms that are closer to those operating in neural systems might involve 

neurocomputational parameters with larger effects on behavior; if so, genes that influence 

their setting would produce larger associations in gene-behavior association studies. One 
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key distinction is between error-correction and self-organizing learning algorithms 

(O’Reilly, 1998). The former involves associations between codes, such as in the current 

model, while the latter involves the development of higher-order representations of input 

information without a training target. Kan et al. (2010) suggested that in self-organizing 

systems, initial (potentially stochastic) differences in start states could produce divergent 

developmental trajectories (see also Oliver, Johnson, Karmiloff-Smith & Pennington, 

2000). Applied to the current framework, this would serve to reduce the size of gene-

behavior associations. The choice of learning algorithm for a multi-scale model of 

development, and its implemented parameters, will clearly be important. The plausibility 

of the artificial neural network itself rests on a range of properties it shares with 

biological systems: its use of an associative network with distributed processing across a 

network of simple integrate-and-fire processing units, where behavior is acquired via an 

experience-dependent learning process involving interaction with a structured and 

variable learning environment, and the developmental trajectory and final 

representational states are constrained by parameters that have analogues in 

neurocomputation, such as the activation function of the neurons, the number of neurons, 

the connection density, the level of processing noise, and the onset and rate of pruning. 

 

By design, the current modeling framework included significant simplification at the 

lower levels of description because it emphasized contact with the behavioral level, and 

the specification of a developmental process that was influenced by the information 

content of the environment. The gap between gene function – the production of proteins – 

and neurocomputational function remains large. Other models may emphasize inclusion 
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of more lower-level assumptions at the expense of making contact with high-level 

behavior. For example, the computational neurogenetics approach advocated by Kasabov 

and Benuskova (2004) restricts its focus to integrating the study of dynamic neuronal 

models and gene models. The ultimate challenge is to combine both. 

 

Our model included assumptions that the relationship of genes to neurocomputational 

parameters is many-to-one, that gene variants relate to fairly general neurocomputational 

properties, and that gene variants are reasonably common in the population. These 

assumptions were sufficient to simulate a range of empirical effects, including the small 

effect sizes observed between gene variants and individual differences in behavior, the 

possibility that these associations can be behaviorally specific, the modest odds ratios 

when gene variants were used to predict performance in the tails of the population 

distribution, poor replicability of associations under certain conditions, and the 

divergence between structural measures and functional measures of the system despite 

tight correlations within these measures. We believe these results are likely to be 

transferrable to real biological systems. 

 

The model’s simplifications included a highly simplified and deterministic mapping from 

artificial genes to neurocomputational properties, a stationary environment, no gene-

environment correlations, no alteration in the influence of genes on variation in 

neurocomputational processes during the model’s acquisition of the domain (i.e., no 

consideration of earlier stages of biological development defined by changes in gene 

expression), two variants at each locus, an absence of rare gene variants with large 
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effects, no pleiotropy (i.e., genes only influenced variation in one parameter), no epistasis 

(interaction between genes), and no assortative mating. Moreover, since we only 

considered a single cognitive system, both the effects of developmental interactions with 

other systems, and issues surrounding the generality or specificity of genetic effects 

across multiple systems fell beyond the scope of the project. We should be frank, then, 

that this model only represents a small step, serving to demonstrate the importance of 

including multiple scale and combining development and individual differences in a 

single framework; serving to set out the implications for cross-level associations of the 

set of assumptions we initially incorporated; and serving to identify the way ahead for 

future models.  

 

Gradual expansion of the complexity of the modeled system is necessary to evaluate how 

each of these simplifications would alter the main results with respect to effect size, 

specificity, and timing of associations. The results of expanding the complexity of the 

model are not necessarily anticipatable in advance. For example, pleiotropy might 

enhance gene-behavior associations if the multiple influences of a given gene variant on 

neurocomputation produced behavioral consequences in a similar direction; or pleiotropy 

might reduce associations if the influences mitigate each other. Gene-environment 

correlations might exaggerate associations, if the correlated environment contributes to 

the same behavioral characteristic that the gene is influencing (such as children with 

ADHD inheriting both genes influencing impulsivity and an unpredictable family 

environment); or gene-environment correlations might attenuate associations, if genes 
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and environment contribute opposite effects (such as a night-owls ‘self-medicating’ with 

coffee in order to be more alert in the mornings). 

 

4.4 Conclusion 

Associations between levels of description rely on the existence of individual differences 

at each level. In this paper, we have emphasized the importance of considering individual 

differences within a developmental framework. With respect to cognition, this implies an 

experience-dependent process involving interaction with a structured (physical and 

social) learning environment. What is the relationship between individual differences and 

development? We raised this question in the introduction and referred to theories that 

view them either as a single dimension or as different dimensions. The model’s first 

important message is that this conceptualization may be incorrect. Individual differences 

and development are not two phenomena to be related. Instead, they are two views of the 

same thing. In a population, there are simply variations in developmental trajectories, 

with diverse genetic and environmental causes. 

The model’s second important message is that although one may be able to 

identify correlations between genes and behavior, this is only the beginning of the 

challenge – to understand these effects, one has to understand mechanisms at many 

different levels through which the effects are produced. Some of the model’s findings 

could be deemed as skeptical about gene-behavior associations – for instance, as showing 

how hard it could be to learn anything from such associations in systems with many-to-

one mappings and highly non-linear processes. The simulation was deliberately 

constructed in ways to enhance the possibility of finding gene-behavior associations. In 
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biological organisms, individual gene variants may have much smaller effects and so be 

harder to find. Perhaps one way to put the point is that if one cannot find correlations and 

interpret them the current model, the prospects with real cognitive systems would seem 

even more remote. It is therefore notable that even in the model, while all artificial genes 

contributed to variation, only some associations to behavior were detected for a given 

population.  

 

One of the key motivations for constructing multi-scale models of complex systems is 

because the impact of individual assumptions cannot be anticipated in advance. The 

complexity of the underlying interacting non-linear processes necessitated simulation via 

computational methods. To finish, here are some of the main findings that we had not 

necessarily anticipated when we set out to build our model. 

• Associations between artificial genes and behavior were observable despite an 

intermediate neurocomputational level of description where many-to-one causal 

relationships occurred, and despite extended developmental process involving 

interaction with a variable environment 

• Larger effect sizes were seen on regions of the artificial chromosome influencing 

neurocomputational parameters which themselves showed larger effect sizes on 

behavior; but not all artificial genes in these regions showed significant 

associations. 

• Despite the general nature of the neurocomputational processing properties and 

the absence of specific-specific processing structures, associations could be 
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specific to behaviors, due to the ‘domain-relevance’ of neurocomputational 

parameters. 

• Associations between artificial genes and behavior could both increase and 

decrease across development without changes in gene regulation, due to the 

‘phase-relevance’ of neurocomputational parameters. 

• Replication of artificial gene-behavior associations was poor whenever the 

population of genomes was re-sampled (as in between-participant designs); but 

replication was better for associations between neurocomputational parameters 

and behavior. 

• The majority of associations between artificial genes and network structure, and 

between genes and behavior (network function), were separate, even though it 

was the network structure that was generating the behavior. 

• The environment could modulate the size of gene-behavior associations. 

• The multi-scale model suggested some possible limitations on the inferences that 

can be drawn from cross-level associations in the absence of specification of 

intermediate level mechanisms. 
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Tables 
 
 
Table 1. Population mean and standard deviation for verb types at early (50 epochs), mid 

(100 epochs) and late (750 epochs) of training. Generalization was assessed by correct 

application of the past tense rule to novel verbs that rhymed with existing regulars in the 

training set. 

  Early Mid Late 

Regular  75.3 (23.8) 82.3 (19.7) 89.3 (13.9) 

Irregular Identity 45.3 (23.3) 57.5 (24.8) 74.6 (22.3) 

 Vowel change 31.5 (24.0) 47.2 (28.0) 68.6 (26.4) 

 Arbitrary 51.3 (31.6) 61.3 (29.7) 71.6 (23.8) 

Generalization Rule 59.3 (19.7) 63.0 (16.5) 65.9 (12.9) 
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Table 2. Correlations between structural indices (summed magnitude of connection 

weights, total number of connection weights) and functional indices (performance on 

regular verbs, performance on irregular verbs) for the simulated population, at early, mid, 

and late points of development.  

Early      

  Magnitude Number Regular  

Structure Magnitude     

 Number .623 ** 

 

   

Function Regular .007 .086 **   

 Irregular .106 ** .185 ** .640 ** 

 

 

Mid      

  Magnitude Number Regular  

Structure Magnitude     

 Number .602 ** 

 

   

Function Regular .036 .083 **   

 Irregular .073 * .120 ** .698 ** 

 

 

Late      

  Magnitude Number Regular  

Structure Magnitude     

 Number .583 ** 

 

   

Function Regular .149 ** .160 **   

 Irregular .122 ** .199 ** .720 ** 

 

 

*. Correlation is significant at the 0.05 level (2-tailed)  
**. Correlation is significant at the 0.01 level (2-tailed) 
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Table 3. Empirical data from Posthuma et al. (2003, Table 2) for structural indices of 

white matter volume and grey matter volume, and functional indices of performance on 

verbal comprehension and on working memory tests. Correlations within structural 

indices and within functional indices are shown in boxes. 

  White 

matter 

volume 

Grey 

matter 

volume 

Verbal 

comprehension 

Working 

memory 

Structure White matter 

volume 

    

 Grey matter 

volume 

.59 **    

Function Verbal 

comprehension 

.01 .06   

 Working 

memory 

.28 ** .27 ** .54 ** 

 

 

*. Correlation is significant at the 0.05 level (2-tailed)  
**. Correlation is significant at the 0.01 level (2-tailed) 
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Figure captions 

 

Figure 1: The architecture of the target developmental system, identifying separate levels 

according to the causal modeling framework of Morton (2004). 

 

Figure 2: The population distribution of performance on regular and irregular verbs at 

three points in training, early (50 epochs), mid (100 epochs), and late (750 epochs) in 

development. 

 

Figure 3: Example of associations between levels of description for one 

neurocomputational parameter, the unit threshold function or ‘temperature’, for irregular 

verb behavior early in development. (a) The function linking behavior with the parameter 

value, with all other parameters held constant. (b) The association between behavior and 

parameter in the population, with uneven parameter frequencies and all parameters 

varying. (c) The look-up table used to derive the neurocomputational parameter from the 

artificial genome. (d) The association between behavior and the artificial genes, with the 

10 alleles split into 5 genotypes. 

 

Figure 4: Effect sizes of (linear) associations between neurocomputational parameter 

values and behavior, for regular verbs and irregular (vowel-change) verbs. 

 

Figure 5: Effect sizes of artificial gene-behavior associations. Variation in population 

performance was predicted from individual binary allele values (0 or 1), for (a) regular 
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verbs and (b) irregular verbs. Early = 50 epochs of training; Mid = 100 epochs of 

training; Late = 750 epochs of training. There were 126 binary alleles, split into regions 

coding for each computational parameter: hidden units (HU), temperature (TMP), noise 

(NS), learning rate (LR), momentum (MO), weight variance (WV), architecture (ARC), 

learning algorithm (LA), nearest-neighbor threshold (NNT), pruning onset (PO), pruning 

probability (PP), pruning threshold (PT), weight decay (WD), sparseness of connectivity 

(SP). 

 

Figure 6. Replicability of simulated association analyses. (a) Comparison of effect sizes 

for original population and for a population trained with the same artificial genomes but 

re-sampled environmental variation; (b) comparison of computational parameter effect 

sizes for those populations. 

 

Figure 7: Replicability of simulated association analyses. (a) Comparison of effect sizes 

for original population and for two populations with re-sampled genomes (same allele 

frequency) and re-sampled environments; (b) comparison of computational parameter 

effect sizes. 

 

Figure 8: Replicability of simulated association analyses. (a) Comparison of effect sizes 

for original population and for two populations with different allele frequencies. In the 

70:30 population, the 1-valued allele had a frequency of 70% while the 0-valued allele 

had a frequency of 30%. In the 30:70 population, the 1-valued allele had a frequency of 
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30% while the 0-valued allele had a frequency of 70%. (b) Comparison of computational 

parameter effect sizes. 

 

Figure 9: Associations between the artificial genome and the structural indices of total 

magnitude of network connection strengths, and total number of connection weights, for 

early in development. Associations for the functional index of irregular verb behavior are 

also included. (a) Artificial gene to structural / functional index; (b) computational 

parameter to structural / functional index. 

 

Figure 10: A comparison of associations between the artificial genome and: (1) the 

structural index of total number of connection weights, (2) the mean network activation 

level in processing novel verbs, and (3) the behavioral performance on novel verbs 

(correct application of the past tense rule). Associations were computed for the early 

point of development. (a) Artificial gene to structural / activation / behavioral index; (b) 

computational parameter to structural / activation / behavioral index. 

 

Figure 11: Associations when the population was split by (simulated) socio-economic 

status (SES). (a) Effect sizes for associations between artificial genome and behavior 

(irregular verb performance early in development); (b) effect sizes for associations 

between neurocomputational parameters and behavior. 
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Figure 12: Interactions between the effects of neurocomputational parameter values on 

behavior. Performance on (a) regular and (b) irregular verbs, for early (50 epochs) and 

late (750 epochs) in training, split by two Hidden Unit levels (40 or 50) and by two 

Learning Rate levels (0.125 or 0.075) 
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Figure 2 

 

     

 

 

 

(a) Regular verbs (b) Irregular verbs 
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Figure 3 
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Figure 4 

 

  (a) Regular verbs    (b) Irregular verbs 
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Figure 5 

 

(a) Regular verbs 

 

 

 

 

 

 

(b) Irregular vowel change verbs 
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Figure 6 

 

(a) Replication with re-sampled environment 

 

 

 

 

 

 

(b) Equivalent parameter effect sizes 
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Figure 7 

 

(a) Replication with re-sampled genomes and environment 

 

 

 

 

 

 

(b) Equivalent parameter effect sizes 
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Figure 8 

 

(a) Replication with populations with different allele frequencies 

 

 

 

 

 

 

(b) Equivalent parameter effect sizes 
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Figure 9 
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Figure 10 

 

(a) 
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Figure 11 
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Figure 12 

 

(a) Regular verbs 

 

 

 

 

 

 

(b) Irregular verbs 
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Supplementary Material 

To accompany the article ‘Multi-scale modeling of gene-behavior associations in an 

artificial neural network model of cognitive development’ by M. S. C. Thomas, N. A. 

Forrester, and A. Ronald 

 

Introduction 

This document contains technical details to accompany computer simulations that explore 

a population of networks acquiring the past tense domain. This domain is here used as a 

representative abstract learning problem within cognition. Individual variability is 

included both in the parameters of the artificial neural networks which model the 

children’s learning systems, and the learning environment to which they are exposed. The 

parameters of the artificial neural networks are encoded in an artificial genome. 

Population variability in parameters is created by generating populations of artificial 

genomes. Each genome is realized as a parameterized network. The network is exposed 

to an individualized learning environment, generating a trajectory of behavioral 

development. The inclusion of an artificial genome level in the simulations allows us to 

study the associations that can arise between values on the artificial genome and 

behavioral variability that is the product of an implemented developmental process. 

In the following, we describe the computational parameters that varied in the 

artificial neural networks. We outline how the range of variation for each parameter in 

the population was established. We then describe the method for designing the artificial 

genome, and the assumptions that this method embodies. Finally, a set of lookup tables is 
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included detailing how values on the artificial genome were mapped to computational 

parameter values in the artificial neural networks. 

 

The base past-tense model 

Model architecture and parameters  

The original connectionist model employed a three-layer artificial neural network, 

comprising an input layer, a layer of internal or ‘hidden’ units, and an output layer. It was 

trained using the backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986), a 

type of supervised learning. The free parameters in the model were the number of hidden 

units, the learning rate, and the momentum (see below). An expanded set of 14 

parameters was employed in the current simulations, in many cases to allow for 

additional analogues to known neurocomputational properties. However, 

backpropagation itself is not viewed as fully biologically plausible. We use it here in 

place of a more biologically plausible error-correction algorithm (see Thomas & 

McClelland, 2008, for discussion). An introduction to the idea that parameters in 

connectionist models can explain types of cognitive variability can be found in Thomas 

and Karmiloff-Smith, 2002a). The parameters and model architecture are depicted 

schematically in Figure 1. 
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Figure 1: Architecture of the connectionist model of English past-tense acquisition, 

showing the internal parameters that varied in the population. 
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The parameters were as follows: 

Building the network: 

- Architecture: In addition to the 3-layer network, a 2-layer network without a layer of 

hidden units, and a fully connected network were used. A 2-layer network has less 

computational power than a 3-layer network but learns more quickly. A fully 

connected network contains both direct connections from input to output and a hidden 

layer, and produces a computationally more powerful system. Networks could 

therefore have 1, 2, or 3 layers of connection weights. Previous connectionist models 

have proposed single or multiple pathways may be available to connect input and 

output (e.g., Westermann, 1998; Zorzi, Houghton & Butterworth, 1998), and that 

differential use of routes may explain individual differences in behavior (Harm & 

Seidenberg, 2004; Plaut, 1997; Thomas & Karmiloff-Smith, 2002b). Recent functional 

brain imaging of reading lend support to this proposal (e.g., Richardson et al., 2011; 

Seghier et al., 2008).  

- Hidden units: For networks with a hidden unit layer, the number of hidden units could 

vary. Variations of the number of hidden units have been proposed to account for 

developmental deficits such as dyslexia (e.g., Harm & Seidenberg, 1999) and autism 

(e.g., Cohen, 1998), as well as individual differences (Richardson et al., 2006a, b). We 

did not vary the number of hidden layers. More hidden units within a layer increases 

computational power and the rate of learning, while more layers of hidden units 

increases computational power but slows down learning, since error must be 
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propagated from the output more deeply into the network to improve learning (see 

Richardson et al., 2006a,b, for a comparison of these conditions). 

- Sparseness: The architecture determined how many layers of connection weights 

existed. Of the potential connections in a layer, only a certain proportion was created. 

The sparseness parameter set the probability that any given connection would be 

created. Greater connectivity increases computational power, but can lead to slower 

learning. Under some conditions, it can also lead to poorer generalization, since 

greater integration of information causes more item-specific and context-specific 

learning (see McClelland, 2000, for a proposal that conjunctive coding may cause 

autistic symptoms; and conversely, Beversdorf, Narayanan & Hughes, 2007, for a 

proposal that the symptoms arise from sparse connectivity). 

- Weight variance: Connection weights were assigned an initial random value within a 

range depending on this parameter. E.g., if set to 0.5, weights would be randomized 

between +/- 0.5. Large initial weights take time to unlearn, which slows learning (an 

effect known as entrenchment; see Munakata & McClelland, 2003, for discussion). 

 

Processing dynamics: 

- Processing noise: The net activation a receiving unit receives from a given sending 

unit is a product of the sending unit’s activation and the connection strength between 

them. Transmission noise was added to this net activation. Gaussian noise was used 

and the parameter specified the standard deviation of the noise distribution around 

zero. Noise has been used to simulate under-specified representations in development 

(e.g., to simulate Specific Language Impairment: Joanisse & Seidenberg, 2003; or as a 
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candidate explanation of autistic symptoms: Simmons et al., 2007), and has also been 

proposed as an essential primitive in neural processing (McClelland, 1993). 

- Unit threshold function: A receiving unit sums the net activation from all sending units 

and uses an activation function to determine its consequent output. We used a 

common non-linear activation function, the sigmoid or logistic function, equivalent to 

a smoothed threshold. This function has a free parameter, the ‘temperature’, which 

makes the smoothed threshold either steeper or shallower. The activation function 

was: 

€ 

Output =
1

1+ e− temperature× netinput+bias( )  

where netinput is the summed activation to a unit, bias is the negative of the unit’s 

threshold, and Output is the unit’s activation state in response to this input. A shallow 

function (low temperature) denies a unit the opportunity to make large output changes 

in response to small changes in net input, whereas a steep function (high temperature) 

approximates a non-smoothed threshold, thereby producing a unit with binary 

response characteristics. Variations in the slope of the sigmoid function have been 

proposed as candidate explanations of disorders such as specific language impairment 

(Thomas, 2005) and schizophrenia (Cohen & Servan-Schreiber, 1992), as well as 

ageing (Li & Lindenberger, 1999). Changes to the slope of the sigmoid have a number 

of effects on learning. A shallow slope means that processing units are less sensitive to 

small differences in their input. This poor discriminability means they will be slow to 

learn categorizations that rely on small distinctions in the input. Secondly, in the 

backpropagation algorithm, weight update for a given error signal is proportional to 

the slope on the sigmoid (the differential of the function). If the function resembles a 
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gentle S-shape, then the slope across the range of unit activations will be small. A 

shallow sigmoid will lead directly to slower learning. Conversely, if the temperature is 

very high, producing a sigmoid similar to a step function, for most inputs to a unit, it 

will be jammed on or off (‘saturated’) rather than in its dynamic range. When a unit is 

saturated, the slope on the sigmoid function is flatter (the regions below or above the 

step). When it is in its dynamic range it is steep (the step). If a unit is predominantly 

saturated due to a high temperature, the flat slope will again lead to small weight 

changes for a given error signal and therefore slow learning. Finally, units with high 

temperatures flip between being saturated on or off. They are therefore ill suited to 

learning mappings requiring graduations of activation states. In sum, temperatures that 

are either too high or too low can delay learning. 

 

Network maintenance: 

- Connection weight decay: each connection’s magnitude was reduced by a small 

proportion on each presentation of a training pattern, according to the weight decay 

parameter. The approximate range of weight decay values was derived by estimating a 

percentage of weight value that could plausibly be lost overall all of training (e.g., 

50%), and then dividing this proportion by the number of training epochs (e.g., 1000) 

and the number of training patterns presented on each epoch (e.g., 508), to give a 

proportional reduction in the connection weights to be applied on each pattern 

presentation (e.g., 0.5/1000/508=9.84 x 10-7). To our knowledge, weight decay has not 

been used as a candidate mechanism to explain individual variability. 
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- We did not simulate the increase in synaptic density observed in human cortex during 

infancy and early childhood, instead simulating the outcome of this process through 

variations in the sparseness of connectivity; we did, however, implemented the 

pruning of spare resources from mid-childhood (Huttenlocher, 2002). The pruning 

process eliminated small connection weights. Variations in pruning have been 

proposed as an explanation of autistic symptoms, and specifically developmental 

regression (Thomas, Knowland & Karmiloff-Smith, 2011). The pruning process 

involved three parameters: onset, threshold, and probability: 

- Connection pruning – onset: Connections that were not being used were 

probabilistically pruned away after a certain point in training. The onset parameter 

determined the point in training when pruning began (see Thomas & Johnson, 2006, 

for simulations of pruning applied to sensitive periods in plasticity). 

- Connection pruning – threshold: Connections stood a chance of being pruned after 

onset only if their magnitude fell below a threshold determined by this parameter. The 

rationale is that small weights are assumed not to transmit strong activations and 

therefore not to be playing a key role in computations. They may therefore be removed 

to save on resources. 

- Connection pruning – probability: If the magnitude of a connection fell below 

threshold after pruning had begun, it was eliminated probabilistically based on this 

parameter. High probability leads to faster loss of unused connections. Low 

probability leads to slower loss. 
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Network adaptation: 

- Learning algorithm error measure: The backpropagation algorithm was used with two 

different metrics to determine the error signal marking the disparity between the 

network’s current output and its intended target. These were Euclidean distance and 

cross-entropy (Hinton, 1989). The Euclidean distance metric produces less weight 

change for a unit when it is committed to an erroneous response than the cross-entropy 

measure. That is, when a unit is stuck on in a saturated state but the learning algorithm 

requires it to be off, or vice versa, cross-entropy will lead to faster changes to its 

weights to change its activation state than Euclidean distance. Under some conditions, 

cross-entropy can therefore be a more plastic learning algorithm, leading to faster 

learning and higher ceiling performance.  

- Learning rate: This parameter determined how much the connection weights were 

altered in response to a certain disparity between output and target during supervised 

learning. A large learning rate produces a system that learns more quickly but that also 

may be unstable, flipping between good performance on different parts of the problem 

domain. Differences in learning rate have been proposed as explanations of individual 

differences in cognitive ability (Richardson et al., 2006a,b) and general intelligence 

(Garlick, 2002), as well as developmental deficits (e.g., dyslexia; Harm & Seidenberg, 

1999). 

- Momentum: This parameter allowed some proportion of the weight change on the 

previous learning trial to be carried over. It serves a smoothing function to prevent 

learning from getting stuck in local, sub-optimal solutions. While a parameter often 
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varied in connectionist models of development, it has not to my knowledge been used 

as a candidate explanation for individual differences in learning. 

 

Network response: 

- Nearest neighbor threshold: Network output comprised a vector of continuous 

activation values between 0 and 1, while legal responses of the network were binary 

vectors. An algorithm determined which legal phoneme was closest to the activation 

patterns at onset, nucleus, and coda. However, the phoneme was only recognized as a 

response if the activation was sufficiently close to the legal phoneme (using a root 

mean square or RMS measure). This was determined by the nearest neighbor 

threshold. (The legal phonemes could of course still be the incorrect ones for the target 

verb). The nearest neighbor computation may be viewed as equivalent to the settling 

of an unimplemented recurrent attractor network into a particular response state (see 

Plaut et al., 1996, for a model of reading development in which this attractor network 

was implemented). The nearest neighbor threshold parameter then indexes the 

efficiency of this attractor network to generate a response within some notional 

deadline. A high threshold allows an approximate output to be recognized as correct 

(i.e., larger error is tolerated); a low threshold requires a more exact initial output. The 

use of a nearest neighbor algorithm allowed the network to generate accuracy levels. 

Differences in the functioning of the attractor network (sometimes called ‘clean-up’ 

units) have been proposed as a candidate explanation of developmental deficits (e.g., 

dyslexia; Harm & & Seidenberg, 1999). 
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Calibrating parametric variation 

Calibration was carried out to establish the full range of variation for each parameter over 

which the artificial neural network exhibited some degree of learning. In general, the 

network was fairly robust to variation in its parameters, as illustrated in Appendix A. 

Two of the network parameters were categorical: the architecture and learning 

algorithm metric. The others were continuously valued. In order to produce variability in 

the population according to these remaining parameters, they were calibrated as follows. 

An initial ‘normal’ set of parameters was defined. These were estimated based on 

previous research. Each of the continuously valued parameters was then varied in turn, 

holding the all other parameters at their initial values. For each parameter, the range was 

derived that produced failure of learning up to highly successful learning. In some cases, 

parameters had a monotonic relationship to performance (e.g., hidden units, where more 

was better); in other cases, there was an optimal intermediate value (e.g., activation 

function). The functions linking a given parameter and behavioral outcomes, with all 

other parameters held constant, are included in Appendix A. The aim was to determine an 

average or adequate value for each parameter, which was defined heuristically as ‘just 

enough to succeed and then a little bit more’. Values were then derived that would cause 

increasingly poorer or increasingly better performance around this value. We attempted 

to make poorer and better performance roughly symmetrical around average performance 

for each parameter. This caused some parameter ranges to be skewed. For example, 50 

hidden units was determined as the average value in a 3-layer network. Values of 40 or 

30 would cause poorer performance. However, to achieve equivalent differences above 

average level, 100 or 200 hidden units might be necessary. We chose to emphasize 
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behavioral symmetry around the average parameter value rather than parametric 

symmetry, on the grounds that the symmetrical bell curve is a common pattern observed 

in human abilities. The ranges for each parameter for the phonology-to-phonology 

network are included in Figure 2. 

We chose not to vary the input and output coding scheme. Our previous work 

suggests that, within certain limits, varying the problem encoding has similar effects on 

the developmental trajectory to altering computational parameters (Thomas & Karmiloff-

Smith, 2003). However, recoding the problem domain can in principle have extreme 

effects on learnability, if key distinctions in the input or output are lost in the recoding. 

Some models of developmental language impairment and dyslexia propose that 

differences in the representation of phonology cause subsequent behavioral deficits in 

grammar and reading acquisition (e.g., Harm & Seidenberg, 1999; Hoeffner & 

McClelland, 1993; Joanisse, 2004). 

 Although only main effects of each parameter were considered as sources of 

variability during calibration, we expected interactions between these 

neurocomputational parameters in subsequent learning. To pick four examples: (i) large 

numbers of hidden units can partially compensate for a shallow sigmoid function in those 

processing units; (ii) having a more sparse initial connectivity is likely to reduce the 

amount of weights eliminated via pruning because their magnitudes will be larger; (iii) 

high weight decay can be countered by a higher learning rate; (iv) an over-aggressive 

pruning process (e.g., with a high threshold and high probability) can be alleviated if its 

onset occurs very late in training when weights have become large, but exacerbated if the 

onset is early. Large numbers of parameter combinations were possible within our 
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scheme: given the number of levels specified for each parameter, approximately two 

trillion unique parameter combinations were available. 
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Figure 2: Parameter values and target population frequencies (dark lines). 
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In Figure 2, dark lines show parameter values (x-axis) and their target frequencies in the 

population (y-axis) for each of the 14 computational parameters. Each gene had two 

alleles, coded as binary values. Several genes coded for each parameter value. Sets of 

binary values were summed and a look-up table used to derive each parameter value. The 

numbers of binary alleles for each parameter were as follows: hidden units: 10; 

temperature: 10; noise: 8; learning rate: 12; momentum: 8; weight variance: 8; 

architecture: 6; learning algorithm: 4; nearest neighbor threshold: 10; pruning onset 

epoch: 10; pruning probability: 8; pruning threshold: 10; weight decay: 10; sparseness: 12 

(total 126 bits). The grey lines show the functions for a condition in which parameter 

variation was narrower. We do not consider this condition further here. 

 
 
Specifying an artificial genome for the model 

The use of genetic algorithms entails creation of an artificial genome to encode the neural 

network’s parameter values, such that all possible genomes correspond to legal parameter 

sets. In creating the genome, we made the following assumptions: 

 

• There were two copies of each gene, with genes residing on pairs of 

chromosomes.  

• For simplicity, each gene had only two variants or alleles.  

• The two alleles produced different outcomes in the functionality of the 

neurocomputational parameter which they encoded.  

• The influence of genes was intended to be additive: we did not include dominant 

or recessive effects, and genes had the same effect in combination as in isolation. 
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This constraint was motivated by the finding within behavioral genetics that the 

effect of gene variants is predominantly additive on phenotypic outcomes (Plomin 

et al., 2008). Nevertheless, our method of implementing the mapping between 

gene variants and neurocomputational parameters did inadvertently produce some 

non-additive effects. 

• All neurocomputational parameters were polygenic. That is, their value was 

determined by the additive action of a collection of genes.  

• In the first instance, we assumed that the action of genes was not pleiotropic; that 

is, with respect to neurocomputational parameters, we assumed that no gene 

affected the value of more than one parameter at once. This simplification likely 

will not hold in many cases, and certainly the current theoretical view is that the 

relationship between genes and cognitive processes is pleiotropic (see, e.g., Kovas 

& Plomin, 2006). 

 

The assumption of polygenicity was motivated by the fact that we are using 

computational models to capture cognitive-level phenomena, and is a point worth 

emphasizing. We expect many low-level neural variations to influence 

neurocomputational functions at the level of cognitive processes in neural circuits. We 

therefore view it as unlikely that a single gene would modulate a neurocomputational 

parameter responsible for normal cognitive variation.  

We assumed, for reasons of simplification only, that the combination of alleles for 

each polygenic neurocomputational parameter had a deterministic relation to the value of 

that parameter in the instantiated network: that is, the allele set alone determined the 
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parameter value. Alternatively, this may be viewed as the assumption that the relation 

between alleles and parameter setting relied on an environment that did not vary across 

the individuals in the simulated population. We assumed (and did not instantiate) a much 

larger part of the genome that was species universal and was responsible for the basics of, 

for example, creating the processing units, the connections, the activation dynamics, the 

sensorium, the input-output connectivity pathways, and the mechanics of experience-

dependent systems. 

 

Parameter values and their link to the artificial genome for the past tense network 

For the basic past tense network, the total of number of genes used to encode the value of 

the 14 computational parameters was 126 (or two copies of 63) as follows – hidden units: 

10; temperature: 10; noise: 8; learning rate: 12; momentum: 8; weight variance: 8; 

architecture: 6; learning algorithm: 4; nearest neighbor threshold: 10; pruning onset 

epoch: 10; pruning probability: 8; pruning threshold: 10; weight decay: 10; sparseness: 12 

(total 126 bits). 

 

Figure 2 plots the range of values for each parameter against their target frequency of 

occurrence in the population. The translation of a genome into a parameter set was 

implemented by assigning alleles the value of 1 or 0, and then deriving the total for all the 

genes influencing the parameter. The parameter value was calculated from the total using 

a lookup table, created by hand for each parameter to reflect the range of values identified 

during the calibration stage. The lookup tables for the 14 parameters (in the Wide Genetic 

used) condition used in the association simulations are shown below. 
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Table 1. Lookup table linking the artificial genome to the Hidden Unit parameter, for the 

Wide Genetic Variation condition 

 Hidden Unit Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 10 20 30 40 50 60 75 100 200 350 500 
 

Table 2. Lookup table linking the artificial genome to the Temperature parameter, for the 

Wide Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 0.0625 0.125 0.25 0.5 0.75 1 1.25 1.5 2 3 4 
 

Table 3. Lookup table linking the artificial genome to the Noise parameter, for the Wide 

Genetic Variation condition 

 Noise Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

- 0.04 0.11 0.22 0.27 0.22 0.11 0.03 0.00 

Parameter value 0 0 0.05 0.1 0.2 0.5 2 4 6 
 

Table 4. Lookup table linking the artificial genome to the Learning Rate parameter, for 

the Wide Genetic Variation condition 

 Learning Rate Parameter Value 

Number of 
1-valued 

0 1 2 3 4 5 6 7 8 9 10 11 12 
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alleles 
Population 

probability  
0.0002 0.0029 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.0029 0.0002 

Parameter 
value 

0.005 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.25 0.3 0.5 

 

Table 5. Lookup table linking the artificial genome to the Momentum parameter, for the 

Wide Genetic Variation condition 

 Momentum Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 0.22 0.27 0.22 0.11 0.03 0.004 

Parameter value 0 0.05 0.1 0.15 0.2 0.35 0.5 0.6 0.75 
 

Table 6. Lookup table linking the artificial genome to the Weight Variation parameter, 

for the Wide Genetic Variation condition 

 Weight Variation Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 0.22 0.27 0.22 0.11 0.03 0.004 

Parameter value 0.01 0.05 0.1 0.25 0.5 0.75 1 2 3 
 

Table 7. Lookup table linking the artificial genome to the Architecture parameter, for the 

Wide Genetic Variation condition. (0 = 2-layer, 1 = 3-layer, 2 = fully-connected) 

 Architecture Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

- 0.109 - 0.781 - 0.109 - 

Parameter value 0 0 1 1 1 2 2 
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Table 8. Lookup table linking the artificial genome to the Learning Algorithm parameter, 

for the Wide Genetic Variation condition. (0 = Euclidean distance error metric, 1 = cross-

entropy error metric) 

 Learning Algorithm Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.063 0.938 - - - 

Parameter value 0 1 1 1 1 
 

Table 9. Lookup table linking the artificial genome to the Nearest Neighbor Threshold 

parameter, for the Wide Genetic Variation condition 

 Nearest Neighbor Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.010 0.044 0.117 0.451 - 0.205 0.117 0.044 0.011 - 

Parameter 
value 

0.0025 0.005 0.01 0.025 0.1 0.1 0.15 0.2 0.25 0.5 0.5 

 

Table 10. Lookup table linking the artificial genome to the Pruning Onset parameter, for 

the Wide Genetic Variation condition 

 Pruning Onset Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 - 0.45 0.21 0.12 0.04 0.01 0.001 

Parameter value 1000 500 250 150 100 100 75 50 25 20 0 
 

Table 11. Lookup table linking the artificial genome to the Pruning Probability 

parameter, for the Wide Genetic Variation condition 

 Pruning Probability Parameter Value 

Number of 1- 0 1 2 3 4 5 6 7 8 
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valued alleles 
Population 

probability 
0.004 0.03 0.11 - 0.49 0.22 0.11 0.03 0.004 

Parameter value 0 0.01 0.025 0.05 0.05 0.1 0.5 0.75 1 
 

Table 12. Lookup table linking the artificial genome to the Pruning Threshold parameter, 

for the Wide Genetic Variation condition 

 Pruning Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 
(%) 

0.001 0.01 0.04 0.12 - 0.66 - 0.12 0.04 0.01 0.001 

Parameter value 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.75 1 1.25 1.5 
 

Table 13. Lookup table linking the artificial genome to the Weight Decay parameter, for 

the Wide Genetic Variation condition 

 Weight Decay Parameter Value 

Number of 1-
valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

- - - - 0.38 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter 
value 

0 0 0 0 0 1x10-7 2x10-7 9.8x10-7 19.7x10-7 98.4x10-7 196.9x10-7 

 

Table 14. Lookup table linking the artificial genome to the Sparseness parameter, for the 

Wide Genetic Variation condition 

 Sparseness Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability 

- - - - - - 0.61 0.19 0.12 0.05 0.02 0.003 0.0002 

Parameter 
value 

0 0 0 0 0 0 0 0.05 0.1 0.2 0.3 0.4 0.5 
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Appendix A 

Parameter-behavior functions for the basic past tense network 

All other parameters were held at default values, while a single parameter was varied. 

Performance is reported for regular verbs on the past tense task. The shape of the function 

is displayed for three points in training, 50, 100, and 250 epochs. The default parameter 

values were: hidden units: 50; temperature: 1; noise: 0; learning rate: 0.01; momentum: 

0.2; weight variance: 0.5; architecture: 3-layer; learning algorithm: back propagation 

error measure; nearest neighbor threshold: 0.1; pruning onset epoch: 50; pruning 

probability: 0.1; pruning threshold: 0.5; weight decay: 0.000019; sparseness: 90% 

connectivity. 

 

Hidden units: 

 

 

 

 

 

 

 

 

 

 

 



128 
 

Unit threshold function (temperature) 

 

 

 

 

 

 

 

Processing noise: 
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Momentum: 

 

 

 

 

 

 

 

Initial weight variance??? 

 

 

 

 

 

 

 

Initial weight variance???? 
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Architecture (0=2-layer; 1=3-layer; 2=fully connected): 

 

 

 

 

 

 

 

Learning algorithm error metric (0=Euclidean distance; 1=Cross-entropy): 

 

 

 

 

 

 

 

 

Nearest neighbor response threshold: 
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Pruning onset: 

 

 

 

 

 

 

 

Pruning probability: 

 

 

 

 

 

 

 

Pruning threshold: 
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Weight decay: 

 

 

 

 

 

 

 

 

Sparseness of initial connectivity (proportion removed): 

 

 

 

 

 

 

 

 

 

 

 
 


