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Risk writ large

Johanna Thoma1 • Jonathan Weisberg2

� The Author(s) 2017. This article is an open access publication

Abstract Risk-weighted expected utility (REU) theory is motivated by small-world

problems like the Allais paradox, but it is a grand-world theory by nature. And, at the

grand-world level, its ability to handle the Allais paradox is dubious. The REU model

described in Risk and Rationality turns out to be risk-seeking rather than risk-averse

on one natural way of formulating the Allais gambles in the grand-world context. This

result illustrates a general problem with the case for REU theory, we argue. There is a

tension between the small-world thinking marshaled against standard expected utility

theory, and the grand-world thinking inherent to the risk-weighted alternative.

Keywords Decision theory � Risk � Expected utility � Risk-weighted expected

utility � Allais paradox

Buchak’s Risk and Rationality opens with four examples where the risk-averse

choice seems rational, despite violating expected utility theory. These alluring

choices appear compatible with Buchak’s risk-weighted expected utility theory,

however, making it an attractive alternative view of rational choice.

Here we challenge whether REU theory really does accommodate these

examples. We will focus on the most famous of the four, the Allais paradox. Our

argument is that REU theory struggles to handle this paradox on the theory’s own
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terms. Because REU theory is not partition invariant, it is best understood as a

‘‘grand world’’ theory. It should take into account every possible eventuality of

concern to the agent. But the treatment sketched in Risk and Rationality follows the

usual, ‘‘small world’’ framing appropriate only to partition-invariant theories, like

expected utility theory. Moving to the grand-world perspective hampers REU

theory’s ability to handle the Allais paradox. To recover the usual preferences,

strong and implausible assumptions are required.

1 Allais, EU, and REU

Between the two gambles A and B, which do you prefer?

A ¼ ð$1 million; 1Þ
B ¼ ð$0; :01; $1 million; :89; $5 million; :1Þ

Most people prefer A to B. Better to walk away with a safe $1 million than to risk it

all for a 10% chance at $5 million, even if that risk is a meagre 1% chance. Many of

these same people prefer C to D given the following choice:

C ¼ ð$0; :9; $5 million; :1Þ
D ¼ ð$0; :89; $1 million; :11Þ

With a substantial chance of walking away empty-handed already on the table, they

are willing to take on an extra 1% risk of empty-handedness in exchange for a 10%

chance at $5 million. But, famously, expected utility theory forbids this combination

of preferences (Allais 1953). If that trade-off is acceptable to you in the second case,

it should be acceptable in the first case, too. So you can’t simultaneously prefer A to

B and C to D.1

REU theory is more permissive here. It allows us to accept the trade-off between

an extra 1% risk of empty-handedness and a 10% chance at $5 million in the risky

context while rejecting it in the ‘‘safe’’ context, where a guaranteed $1 million is an

option. Risk & Rationality illustrates with a simple and plausible model on which

the risk-weighted expected utility of A exceeds that of B, yet the risk-weighted

expected utility of C still exceeds that of D (Risk and Rationality: 71). The model’s

utility assignments are:

uð$0Þ ¼ 0

uð$1 millionÞ ¼ 1

uð$5 millionÞ ¼ 2

These concave utilities seem plausible enough to us. They don’t help expected

utility theory explain the usual Allais preferences, though. For that, Buchak argues,

we need a new ingredient: the risk function.

1 For present purposes, we follow Buchak (2013, Sect. 4) and bracket the possibility of ‘‘redescription’’.

See Pettigrew (2014) for some critical discussion.
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The risk function alters how probabilities weigh against utilities in a gamble’s

evaluation. To see how the risk function operates, we start by ordering a gamble

from the worst outcome u1 to the best un:

G ¼ ðu1; p1; u2; p2; . . .; un; pnÞ:

The usual expected utility formula is:

EU ðGÞ ¼ u1p1 þ u2p2 þ � � � þ unpn

A less familiar but equivalent way of writing this formula weights utility increases

instead of utilities, as we move from the worst possible outcome to the best:

EU ðGÞ ¼ u1 þ
Xn

i¼2

pi

 !
ðu2 � u1Þ þ

Xn

i¼3

pi

 !
ðu3 � u2Þ þ � � � þ pnðun � un�1Þ

The weights here are also different than in the usual expected utility formula: the

increase from ui to uiþ1 is weighted by the probability that things will be at least as

good as uiþ1. So we can rewrite this formula:

EU ðGÞ ¼ u1 þ
Xn

i¼2

pðu� uiþ1Þðuiþ1 � uiÞ

It’s these at-least-as-good-as weights that REU theory adjusts using a risk function,

r. We apply r to the probability that things will be at least as good as uiþ1:

REU ðGÞ ¼ u1 þ
Xn

i¼2

rðpðu� uiþ1ÞÞðuiþ1 � uiÞ

If an agent generally gives less weight to the probability that the outcome will be at

least as good as uiþ1, she will be risk-averse. She will be less influenced by potential

gains than a vanilla expected utility maximizer. If instead she gives more weight to

these probabilities, she will be risk-seeking:

rðpÞ[ p for all p 62 f0; 1g ) risk-seeking

rðpÞ\p for all p 62 f0; 1g ) risk-averse

Risk & Rationality uses rðpÞ ¼ p2 as its running example of a risk-averse r function.

When combined with the u values above, it generates the usual Allais preferences:

REU ðAÞ ¼ 1

REU ðBÞ ¼ :9901

REU ðCÞ ¼ :02

REU ðDÞ ¼ :0121

So A � B and C � D, as desired.
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2 A grand-world theory

Savage (1954) famously noted that every decision really has countless possible

outcomes. Even if you take the safe $1 million, life can still turn out any which way.

You might encounter family or health problems that offset the monetary gain, or

your winnings might be wiped out in a stock market crash or a lawsuit. Or, things

might go the other way, turning out much better than expected, over and above the

benefits of your new fortune. So the safe-seeming million is really a gamble, with

outcomes of every possible utility.

Expected utility theory can group these numerous possibilities into a handful of

‘‘coarse’’ outcomes because the theory is partition invariant, at least when

formulated appropriately (Joyce 1999, 2000). We just need to set the utility of each

coarse outcome equal to the weighted average of the numerous, fine-grained

eventualities it comprises. Expected utility theory then gives the same results either

way. If we calculate the expected utility at the fine-grained level, we get the same

evaluation as we do at the coarse-grained level. Expected utility theory gives the

same results in the grand-world problem as in small-world formulations of the same

problem.

But REU theory is essentially different in this regard (Risk and Rationality: 93).

If we lump outcomes together, we alter the gamble’s riskiness. We change its

structure, e.g. by making the worst possible outcome more probable, or less bad.

Consider a three-outcome gamble with uniform probabilities, and outcomes of

utility 0, 1, and 2:

G

2

1

0

1/3

1/3

1/3

If we lump together the bottom and middle outcomes, and assign the lumped

outcome a utility equal to its risk-weighted average, 1/4, we change the distribution

of risk.
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G

2

1/4
2/3

1/3

The worst outcome isn’t quite as bad now, 1/4 rather than 0. But it’s still not great,

and it’s now twice as likely you’ll end up with that measly 1/4 of a utile. REU

theory is expressly designed to be sensitive to such differences, and the lumping

changes its evaluations accordingly: REU ðGÞ ¼ 5=9 while REU ðG0Þ ¼ 4=9.

So REU theory is not partition invariant, but partition sensitive. Coarse-graining

a gamble’s outcomes changes REU theory’s recommendations by altering the very

risky structure the theory is designed to respond to. For this reason, Buchak says,

REU theory must be viewed as a grand-world-only theory. It’s to be applied to final

outcomes: ‘‘outcomes whose value to the agent does not depend on any additional

assumptions about the world.’’ (Risk and Rationality: 93) Using the theory correctly

requires fine-graining the outcomes until they specify everything the decision-maker

cares about (Risk and Rationality: 226–9). Yet we used a small-world rendering of

the Allais problem to motivate REU theory in the previous section.

Does it matter?

It does. The model of Sect. 1 mishandles the Allais paradox in the grand-world

context, at least on one natural way of projecting the small-world Allais gambles

onto the big picture. This raises the question whether any plausible model of REU

theory can handle the grand-world Allais problem. For if none can, the theory’s

central motivation is lost.

3 Grand-world allais

The safe million of option A is really a gamble. Life might still turn out terrific,

terrible, or anywhere in between. How should we represent this gamble?

3.1 Normal projections

Let’s start by considering the status quo. If you’re just going about your life as

usual, you probably expect things to go reasonably well, though there’s a chance

they could end up more extreme. You might meet with an unexpected number of

life’s little setbacks, you might even meet with severe tragedy. On the other hand,

things might go significantly better than expected, or even much, much better. How

your life will turn out depends on many different events, many flips of fate’s coin.

So your expectations, we will assume, are captured by the familiar bell-shaped

curve of the normal distribution, Nðl; rÞ.
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Following Buchak, we can set the status quo as the zero-point of our utility scale.

So before the Allais gambles come into the picture, your expectations are normally

distributed around the mean l ¼ 0.

What should the standard deviation r be? We will start with the somewhat

arbitrary but charitable assumption that r ¼ :2. Smaller values of r are better for

REU theory, as we’ll see, and r ¼ :2 is quite small. On Buchak’s utility scale, a gain

of $1 million increases your utility from 0 to 1, which is five standard deviations if

r ¼ :2. That means r ¼ :2 is so small, you are more than .9999997 confident that

life without the $1 million will be less good than what you would normally expect

with the $1 million.

Grand-world versions of the Allais gambles can now be obtained by adjusting

your expectations from the status quo. For example, the ‘‘safe’’ $1 million of gamble

A shifts the mean up to l ¼ 1. If you gain a million dollars right now, other events

in your life could still turn out any which way. But most likely, things will go as

expected, with the $1 million improving things in the way one ordinarily hopes. In

other words, gamble A corresponds to the normal distribution Nð1; :2Þ depicted in

Fig. 1.

What about gamble B? It has three small-world outcomes: $0, $1, and $5 million.

So we replace each of these with a normal distribution centered on its utility, though

scaled down according to its probability. Applying the same method to gambles

C and D we get the distributions illustrated in Fig. 1.

These are continuous distributions, whereas Buchak defends REU theory in a

finite, discrete setting. But we can bridge the gap in a couple of ways, and it turns

out not to matter which we choose. So we reserve discussion of this wrinkle for the

Appendix, and proceed with our continuous approach.
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Fig. 1 grand-world gambles A and B (top), and C and D (bottom)
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3.2 The challenge for REU theory

What does REU theory say about our grand-world Allais gambles? Assuming

rðpÞ ¼ p2, we find that REU theory is actually risk-seeking! B is now preferable to

A:

REU ðAÞ � :887

REU ðBÞ � :900

While C continues to be preferable to D:

REU ðCÞ � �:073

REU ðDÞ � �:079

In other words, REU theory now apes EU theory’s preferences. It does no better at

explaining risk-aversion in the Allais paradox than the theory it was meant to

replace.

In a way, this is not surprising. From the grand-world perspective, option A is not

really a sure thing. Though it may secure the $1 million, it cannot secure a life of

utility 1 rather than utility 0. From the grand-world perspective, A is risky, much

like B.

So the challenge for REU theory is a tension between the grand-world context it

embraces, and the small-world thinking it seeks to validate. The appeal of option

A is its certainty, the opportunity to avoid any risk. But REU theory insists on the

grand-world context, where that appeal dissolves. At the grand-world level, A is

risky and may not be preferable as a result. Indeed, we’ve just seen that it is not

preferable on one natural way of modeling the grand-world context.

Other models might be more friendly to the REU theorist’s cause, though. To

meet the challenge, they might try altering some of the parameters we’ve

introduced. Or they might defend an altogether different model.

We have examined several variations on the present model and found them all

wanting. To summarize, the only way we have found for REU theory to recover the

Allais pattern is to make r implausibly small, and the risk function r implausibly

extreme or specific. We go into more detail in the next section, and then discuss the

broader significance of our findings in Sect. 5.

4 Tweaking the model

4.1 Varying levels of risk aversion

Would a more risk-averse r function make A preferable? Let’s consider rðpÞ ¼ px

with other values of x besides 2.

We examined values of x ranging from 1 to 10 at intervals of .01.2 The result: A

did eventually become preferable to B, as expected. But D became preferable to C

2 Why start with 1 instead of 2? Just to be thorough.
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first. As described in the Appendix, a careful search suggests strongly that there is

no value of x that recovers the Allais pattern, given r ¼ :2. Evidently,

REU ðDÞ[REU ðCÞ for x� 2:57, while REU ðAÞ[REU ðBÞ only for values of

x strictly greater than 2.57.

But even if there were a value of x[ 2 that succeeded, we would have

reservations. The risk function rðpÞ ¼ p2 is already pretty extreme. An agent with

this risk function would reject a gamble that gives her a 50% chance of losing $100

and winning $299, given utility linear in dollars. At rðpÞ ¼ p3, she would reject such

a gamble up until a potential gain of $699.3

4.2 Larger values of r

We suggested that r ¼ :2 is implausibly small when we first introduced this value,

adopting it only to be charitable. If we make the model more realistic by increasing

r, the Allais pattern fails to emerge, as expected. Instead, REU theory’s preference

for B over A only gets stronger. We explored the range :2 � r � 1 at .01 intervals

and found that REU ðAÞ � REU ðBÞ only becomes more negative as r increases.

(Again, see the Appendix for details.)

4.3 Smaller values of r

To put our cards on the table though, we selected r ¼ :2 as our working ‘‘small’’

value because it’s about as small as r can get before the above results fail to hold. If

we set the standard deviation lower, the Allais pattern can be recovered.

At r ¼ :1, a slight adjustment to the r function is all we need to recover the

pattern. Just bump x from 2 up to 2.05 and we get the desired result. We have

already expressed reservations about rðpÞ ¼ p2 implying an extreme level of risk-

aversion. All the more for rðpÞ ¼ p2:05. But bracket that concern for a moment.

Consider what r ¼ :1 would mean on its own. You would have to be at least this

certain:

:99999999999999999999999

that fate will not decide against you to the tune of 1 utile, roughly the equivalent of

$1 million. You would have to be that certain that life with the $1 million dollars

will be better than the life you expected to lead without it. Can you really be so

certain that fate will treat you so well? Couldn’t you encounter enough misfortune

that the $1 million is effectively spent just bringing you up to the quality of life you

expected from the status quo?

We think r ¼ :2 is already implausible, and r ¼ :1 is beyond the pale. REU

theorists could stay just within the pale by picking a r value in between. But it’s

shaky terrain. The larger r is, the more fragile REU theory’s ability to recover the

3 These are small-world examples, but with an appropriate back story, the small-world problem can be

made the same as the grand-world problem. For example, the gambles might be offered by God on the last

day of your life, with currency replaced by heavenly utiles.
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Allais pattern becomes. As r increases from .1 to .2, the range of successful values

for x in rðpÞ ¼ px narrows and then vanishes. At r ¼ :1 we can set x anywhere from

2.05 up to almost 2.9. But by the time we get to r ¼ :19, the range of successful

x values narrows to a subinterval of (2.5, 2.6). One must have a very specific

r function to have the usual preferences. And an extreme one to boot.

So there is a tension between r and x. The larger r is, the less room there is to

find an x that recovers the Allais pattern. Once r gets to .2, there is no room. REU

theory thus faces a dilemma. Very small values of r, like .1, are too implausible.

And merely small values, like .19, make the r function too fragile, and too extreme.

4.4 A dilemma

The REU theorist’s original response to grand-world worries about the Allais

preferences may have been that, while the ‘‘safe’’ $1 million is not perfectly safe, it

is still safe enough for REU theory to recommend it. Our numerical analysis

challenges this response. The response amounts to insisting that r should be small,

smaller even than .2. And here we get caught in the dilemma just mentioned.

The first horn comes from the long game of life, the many flips of fate’s coin.

Even with $1 million dollars in hand, life is still a series of unpredictable events.

Health, wealth, family, and friends are all still uncertain, and could go any number

of ways. So there is a limit on how safe the REU theorist can insist the ‘‘safe’’ $1

million is, in the grand scheme of things.

The second horn we might call the ‘‘Joe Average’’ problem. The kind of risk-

aversion displayed in the Allais paradox is quite ordinary and widespread (Huck and

Muller 2012). So it’s unlikely to be the result of a fragile tendency or a highly

specific character trait. It should be robust. Yet the less safe we admit a ‘‘safe’’ $1

million dollars really is, the less robust is the range of potential REU models capable

of accounting for Joe Average’s risk-aversion. Indeed, as we have seen, Joe Average

can become Joe Impossible quite easily, even while allowing that a ‘‘safe’’ $1

million really is quite safe (r ¼ :2).

5 Discussion

Stepping back, a larger point emerges. There is a kind of paradoxical irony to REU

theory.

The theory is meant to sympathize with our aversion to uncertainty. It allows us

to eschew options whose outcomes are less predictable—more ‘‘spread out’’ as

Buchak says—in favour of options whose outcomes are more determinate. To

achieve this effect though, the theory appears to bind itself to the grand-world

problem. It rejects the additive approach of expected utility theory, apparently

sacrificing the ability to work at the small-world level as a result.

The irony is that, at the grand-world level, everything is spread out. Every choice

has innumerable possible outcomes, and it is never certain how one’s choice right

now will play out in the grand scheme of things. Even a ‘‘safe’’ $1 million might

leave you destitute and miserable in the end. And that possibility threatens to
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undercut the initial motivation for the theory. It doesn’t necessarily recommend the

‘‘safe’’ option anymore once it’s in scare-quotes, which it is in the grand scheme of

things.

REU theorists might try to answer this challenge a number of ways. Let’s explore

two of them, and see what challenges they face.

5.1 Response #1: small worlds after all

REU theorists might point out that people don’t usually think about the Allais

gambles anything like the way we have described them. One doesn’t normally view

them from the grand-world perspective, but rather just sees the $1 million as a

guaranteed improvement by 1 utile over the status quo. And, framed this way, REU

theory easily sympathizes, as Buchak’s original model shows.

But this may be sympathy for the devil. Perhaps it’s a descriptive truth that

people view these gambles in small-world terms. But as we have seen, Buchak

herself claims that REU theory forbids small-world thinking, because the theory is

partition-sensitive.

Could framing a decision problem in small-world terms be permissible, despite

REU theory’s partition-sensitivity? Given partition-sensitivity, using a more fine-

grained description of a decision problem can change the theory’s recommenda-

tions. It is usually held that we should go with the most fine-grained description in

such circumstances. Two main considerations support this view.

First, we may think that the grand-world decision problem is ultimately what we

should be solving. If small-world decision problems are just attempts at modeling

the grand-world decision problem, then partition-sensitivity implies that small-

world problems can be bad models. One reason for thinking it’s ultimately the

grand-world decision problem we ought to be solving is that fine-grained outcomes

are the location of value. And decision theory is supposed to capture how to best

achieve ends we value.

Second, one might think that a description of a decision problem should capture

everything that is relevant for the agent. One criterion for relevance could be that

any detail that may change the agent’s decision should be included in the

specification of the decision problem. And then, under partition-sensitivity, small-

world decision problems may leave out relevant detail.

There may be some room for challenging these ideas. We could be permissive

about the framing of decision-problems despite partition-sensitivity. In response to

the arguments just provided, one might hold that the agent herself can decide how

much detail is relevant to her decision, and that value resides at whatever level of

description she chooses. McClennen expresses this view when he writes, ‘‘If the

world in fact opens to endless possibilities, still evaluation of risks and uncertainties

requires some sort of closure [...] Wherever the agent sets his horizons, it is here that

he will have to mark outcomes as terminal outcomes—as having values that may be

realized by deliberate choice, but nevertheless as black boxes whose contents, being

undescribed, are evaluatively irrelevant.’’ (McClennen 1990, p. 249)

The problem with this response is that it makes the recommendations of REU

theory highly sensitive to framing and context. The detail that the small-world
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version of the Allais problem leaves out is detail that the agent will likely find

relevant in other choice contexts. In many contexts, it will presumably matter, for

instance, how much interest you can get on your $1 million, or whether some

disease will keep you from enjoying it. If we are permissive about framing, then we

need to hold that the choice context changes what the agent finds relevant, and at

what level of description she assigns ultimate value. We suspect most decision

theorists will not be willing to bite this bullet.

Of course, even if ideal REU theory is a grand-world theory, bounded rationality

might still call for smaller, more tractable frames. But then small-world EU would

be the better heuristic. As Buchak notes, given some plausible assumptions, EU

maximizers and REU maximizers make pretty much the same choices in the grand-

world problem (Risk and Rationality: 227–228). And since EU is partition-invariant,

small-world EU will match grand-world EU, which will closely match grand-world

REU. Whereas small-world and grand-world REU can come well apart, as we’ve

seen.

So the challenges here are, first, to rationalize the use of small-world reasoning.

And then, second, to rationalize the use of REU-maximization rather than EU-

maximization in small-world problems.

5.2 Response #2: varying the variance

Gamble A doesn’t just promise safety in that you definitely get the $1 million. It also

promises the safety of financial security. Those with $1 million in the bank are less

vulnerable to many of life’s setbacks; they are not as easily ruined as the rest of us.

And this points up an unrealistic feature of our model: we assumed the same value

of r across the board. But really, it should vary.

If $1 million shrinks r by providing a measure of financial security, then $5

million shrinks it even more. So we need three values to replace r, one for each

small-world outcome: r0 for utility 0, r1 for utility 1, and r2 for utility 2. The

general constraint we have to work with is:

r0 [ r1 [ r2

For example, we might set r0 ¼ :4, r1 ¼ :2, and r2 ¼ :1. If we do, we find the same

problem as before. REU theory is still risk-seeking given rðpÞ ¼ p2, preferring

B over A and C over D.4

We conducted a search of what values of x and of the triple ðr0, r1, r2Þ may

recover the Allais preferences. We let the ri range from .1 to 1, and let x range from

1 to 4 at invervals of 0.1, taking values outside of these ranges to be too implausible

to consider. Some values within these ranges indeed recover the Allais preferences.

However, as before, a highly specific combination of values is needed. Solutions

only appear to exist for 2:1 � x � 2:7. So recovering the Allais preferences

requires a fairly extreme level of risk aversion. And even then, very specific

combinations of ri are needed, involving very small r1 and r2. The Mathematica

4 REU ðAÞ � 0:944;REU ðBÞ � 0:945;REU ðCÞ � �0:0263;REU ðDÞ � �0:0333.
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notebook supplementing this article contains more details on the search and our

results.

We thus face the same problems as before: The Allais preferences cannot be

recovered with a large and robust range of REU models. And the REU models that

do recover them involve implausibly high levels of risk aversion and security.

Even if more plausible models could be found, there might still be cause for

concern. Though it’s true that A is safe in the sense of promising financial security,

its advantage over B is supposed to come from the other kind of safety it promises:

the short-run guarantee of walking away $1 million dollars richer. So there is a

concern about getting the right results in the wrong way. If REU theory does

manage to capture the usual Allais preferences, but only by appealing to reasons

separate from those that drive actual agents to have those preferences, it becomes

doubtful whether capturing those preferences really vindicates the theory.

6 Conclusion

The moral we draw is that REU theory doesn’t clearly handle the very problems it

was designed to solve. It’s not that REU theory is flat-out inconsistent with the usual

Allais preferences in the grand-world context. To the contrary, we provided some

grand-world REU models that suggest the opposite. The trouble is that the only such

models we found weren’t very plausible. They come too close to the small-world

problem by setting r implausibly low.

Of course, there are many other shapes the risk function might take besides rðpÞ ¼ px,

and other shapes may do better. Also, there are surely more realistic ways of projecting

the Allais gambles onto the grand-world context. We only scratched the surface on one

of these, when we briefly considered using different ri’s for different small-world

outcomes. So there may yet be models of REU theory that fit the bill. For the theory to

live up to its promise, however, we need to actually identify plausible candidates. Until

we do, it’s unclear how successful REU theory really is at achieving its own ends.
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Appendix

Here we describe the results of Sects. 3–4 and how they are obtained. The

Mathematica code described below is available for download in electronic

supplementary material.

Code for the three-r model discussed in §5.2 can also be found there.
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Analogue versus digital

As noted in Sect. 3.1, Buchak defends REU theory in a discrete, finite context,

though we used continuous distributions in the main text. There are two ways to

bridge this gap.

The first way is to extend REU theory to the continuous context. Given a gamble

represented by a continuous density p(u) over an interval of utilities ½umin; umax�, we

calculate its REU using p’s cumulative distribution function, P(u):

REU ðGÞ ¼ umin þ
Z umax

umin

rð1 � PðuÞÞ du

This formula is just what we get from the discrete REU formula if we regard G as a

discrete gamble with evenly spaced outcomes, with utilities D apart, and then let

D ! 0.

The second way is to work with discrete gambles directly. For example, we could

let Allais’ gamble A have finitely many outcomes, with utilities:

�5:0;�4:9;�4:8; . . .; 4:8; 4:9; 5:0

We could then assign discrete probabilities that approximate the continuous dis-

tribution Nð1; :2Þ. For example, an outcome of utility 1 would be assigned:

pðu ¼ 1Þ ¼
Z 1:05

:95

Nð1; :2Þ du

And likewise for the other 100 possible utility values.

These ‘‘fragmentations’’ of the continuous gambles give us finite and discrete

representations of the grand-world context, as illustrated in Fig. 2. We can then

apply the standard, discrete REU formula Buchak defends.

Whether we go discrete or continuous, we will have to work with numerical

approximations. The normal distribution is central to both approaches. But, if we

take the discrete approach yet make it very fine, the numerical REU values can be

arbitrarily close to those of the continuous approach. In fact, the discrete approach

−1 0 1 2 3
0

0.1

0.2

utility

pr
ob

ab
ili
ty

−1 0 1 2 3
0

0.1

0.2

utility

pr
ob

ab
ili
ty

−1 0 1 2 3
0

0.1

0.2

utility

pr
ob

ab
ili
ty

−1 0 1 2 3
0

0.1

0.2

utility

pr
ob

ab
ili
ty

Fig. 2 fragmented gambles A (top-left) through D (bottom-right)
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needn’t be very fine at all to match the results of the continuous approach that we

will use here. The discrete model just described, where possible utilities range from

�5 to 5 at intervals of 0.1, gives the same results as the continuous model. So we

will describe only the continuous approach here. (The supplementary Mathematica

notebook provides code for both approaches.)

Programming the model

We start by defining the Q-function, the complement of the normal distribution’s

cumulative distribution function:

Q½l ; r � :¼ 1:� CDF½NormalDistribution½l; r�; u�

Then we define four functions, one for each Allais gamble, to compute its REU

given a standard deviation r and a power x for the risk function rðpÞ ¼ px:

REUA½r ; x � :¼ �5:þ
Z 5:

�5:

ð1:	 Q½1:; r�Þx du==N

REUB½r ; x � :¼ �5:þ
Z 5:

�5:

ð:01	 Q½0:; r� þ :89	 Q½1:;r� þ :1	 Q½2:; r�Þx du==N

REUC½r ; x � :¼ �5:þ
Z 5:

�5:

ð:9	 Q½0:; r� þ :1	 Q½2:; r�Þx du==N

REUD½r ; x � :¼ �5:þ
Z 5:

�5:

ð:89	 Q½0:; r� þ :11	 Q½1:;r�Þx du==N

We have chosen �5 and 5 as the minimum and maximum utility values because

they are quite extreme, and more extreme values are so improbable as to have no

impact on the results that follow.

Results for r ¼ :2

First we verify that REU theory is risk-seeking in the grand-world context given

rðpÞ ¼ p2 and r ¼ :2:

REUA½:2; 2:�\REUB½:2; 2:� && REUC½:2; 2:�[ REUD½:2; 2:�
True

So we consider other risk functions of the form rðpÞ ¼ px, and examine the range

1� x� 10 at intervals of .01:

AminusB ¼ Table½fx; REUA½:2; x� � REUB½:2; x�g; fx; 1:; 10:; :01g�;
CminusD ¼ Table½fx; REUC½:2; x� � REUD½:2; x�g; fx; 1:; 10:; :01g�;
ListPlot½AminusB; CminusD�

Though it’s not immediately obvious from the graph (Fig. 3), REU ðDÞ overtakes

REU ðCÞ before REU ðAÞ overtakes REU ðBÞ. By the time x ¼ 2:57, C is no longer

preferable to D while A has yet to become preferable to B:
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REUA½:2; 2:57�\REUB½:2; 2:57� && REUC½:2; 2:57�\REUD½:2; 2:57�
True

Evidently, there is no r function of the form rðpÞ ¼ px capable of producing the

Allais pattern in the grand-world context when r ¼ :2.

Results for r[ :2

Unsurprisingly, increasing r isn’t promising. Still, for completeness, we check the

range :2� r� 1 at .01 intervals to see if the Allais pattern might re-emerge:

AminusB ¼ Table½fr; REUA½r; :2� � REUB½r; :2�g; fr; :2; 1:; :01g�;
ListPlot½AminusB�

As expected, increasing r only decreases the appeal of A relative to B: see Fig. 4. So

we turn instead to examine smaller values of r.

Results for r\:2

Setting r ¼ :1 doesn’t by itself recover the Allais pattern. Given rðpÞ ¼ p2, we still

have REU ðAÞ\REU ðBÞ:

1 2 3 4 5 6 7 8 9 10

−0.05

0

0.05

REU (A)− REU (B)
REU (C)− REU (D)

Fig. 3 REU ðAÞ � REU ðBÞ and REU ðCÞ � REU ðDÞ for 2� x� 3
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Fig. 4 REU ðAÞ � REU ðBÞ for :2�r� 1
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REUA½:1; 2:�\REUB½:1; 2:�
True

But a slight increase in risk-aversion is now sufficient to reverse this. Just by setting

rðpÞ ¼ p2:05, we recover the Allais pattern:

REUA½:1; 2:05�[ REUB½:1; 2:05� && REUC½:1; 2:05�[ REUD½:1; 2:05�
True

On the other hand, too large an increase revives the problem of D being preferable

to C. For example, if we set rðpÞ ¼ p2:9:

REUC½:1; 2:9�\REUD½:1; 2:9�
True

And as r increases, the range of viable x-values narrows. For example, at r ¼ :15, x

has to be in a subinterval of (2.2, 2.7):

fREUA½:15; 2:2�[ REUB½:15; 2:2�; REUC½:15; 2:2�[ REUD½:15; 2:2�g
fFalse; Trueg
fREUA½:15; 2:7�[ REUB½:15; 2:7�; REUC½:15; 2:7�[ REUD½:15; 2:7�g
fTrue; Falseg

And at r ¼ :19, x has to be in a subinterval of (2.5, 2.6):

fREUA½:19; 2:5�[ REUB½:19; 2:5�; REUC½:19; 2:5�[ REUD½:19; 2:5�g
fFalse; Trueg
fREUA½:19; 2:6�[ REUB½:19; 2:6�; REUC½:19; 2:6�[ REUD½:19; 2:6�g
fTrue; Falseg

So increasing r tightly constrains x.

References

Allais, M. (1953). Le comportement de l’Homme rationnel devant le risque: Critique des postulats et

axiomes de l’Ecole Americaine. Econometrica, 21(4), 503–546.

Buchak, L. (2013). Risk and rationality. Oxford: Oxford University Press.

Huck, S., & Muller, W. (2012). Allais for all: Revisiting the paradox in a large representative sample.

Journal of Risk and Uncertainty, 44(3), 261–293.

Joyce, J. M. (1999). The foundations of causal decision theory. New York, NY: Cambridge University

Press.

Joyce, J. M. (2000). Why we still need the logic of decision. Philosophy of Science, 67(S1), S1–S13.

McClennen, E. F. (1990). Rationality and dynamic choice: Foundational explorations. New York, NY:

Cambridge University Press.

Pettigrew, R. (2014). Buchak on risk and rationality III: The redescription strategy. http://m-phi.blogspot.

ca/2014/04/buchak-on-risk-and-rationality-iii.html.

Savage, L. J. (1954). The foundations of statistics. Hoboken, NJ: Wiley.

J. Thoma, J. Weisberg

123

http://m-phi.blogspot.ca/2014/04/buchak-on-risk-and-rationality-iii.html
http://m-phi.blogspot.ca/2014/04/buchak-on-risk-and-rationality-iii.html

	Thoma_Risk writ large_2017_cover
	Thoma_Risk writ large_2017_author
	Risk writ large
	Abstract
	Allais, EU, and REU
	A grand-world theory
	Grand-world allais
	Normal projections
	The challenge for REU theory

	Tweaking the model
	Varying levels of risk aversion
	Larger values of \sigma
	Smaller values of \sigma
	A dilemma

	Discussion
	Response #1: small worlds after all
	Response #2: varying the variance

	Conclusion
	Acknowledgements
	Appendix
	Analogue versus digital
	Programming the model
	Results for \sigma = .2
	Results for \sigma \gt .2
	Results for \sigma \lt .2

	References





