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                                            Abstract 
 

The article begins by describing two longstanding problems associated with direct 

inference. One problem concerns the role of uninformative frequency statements in 

inferring probabilities by direct inference. A second problem concerns the role of 

frequency statements with gerrymandered reference classes. I show that past approaches 

to the problem associated with uninformative frequency statements yield the wrong 

conclusions in some cases. I propose a modification of Kyburg’s approach to the problem 

that yields the right conclusions. Past theories of direct inference have postponed 

treatment of the problem associated with gerrymandered reference classes by appealing 

to an unexplicated notion of projectability. I address the lacuna in past theories by 

introducing criteria for being a relevant statistic. The prescription that only relevant 

statistics play a role in direct inference corresponds to the sort of projectability 

constraints envisioned by past theories. 

 

 

1.  Introduction 
 

It is common to use frequency information to form probability judgments. For example, given 

the premise that 5% of dogs have fleas, I may (in some circumstances) justifiably infer that 

the probability is 0.05 that my neighbor’s dog, Flint, has fleas. The inferences that we make 

when we draw a conclusion about the probability of a proposition on the basis of frequency 

information are called “direct inferences”.
1
 Although the expression “direct inference” is 

                                                 
1 I will assume that the conclusions of direct inference are single-case probability statements whose truth 

conditions (or acceptability conditions) are implicitly relativized to the epistemic situation of respective 

agents. The proposed account of direct inference could also be formulated so that the conclusions of direct 
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rarely used, direct inference has many applications and is widely used in areas such as 

insurance pricing, weather forecasting, and medical diagnosis. 

A major obstacle to defending the objectivity of direct inference is called “the Problem of 

the Reference Class”. This problem derives from the fact that every object may be located in 

many different reference classes, and from the fact that direct inference using frequency 

information for different reference classes will often yield mutually inconsistent conclusions. 

For example, in the case regarding my neighbor’s dog, the conclusion that the probability is 

0.05 that Flint has fleas is based on my frequency information about the set of dogs. But Flint 

is a member of numerous reference classes (in addition to the set of dogs), such as the set of 

small-breed dogs, the set of dachshunds, the set of brown dogs, etc., and direct inference 

based on frequency information for the different reference classes may lead to mutually 

inconsistent conclusions.
2
 

The classic response to the Problem of the Reference Class derives from Hans 

Reichenbach.
3
 When preparing to make a direct inference, Reichenbach recommended that 

one base one’s inference on the narrowest reference class for which one is able to make a 

reliable frequency judgment (Reichenbach 1949, p. 374).
4
 For example, if I am only able to 

make reliable judgments about the frequency of dogs having fleas and about the frequency of 

dachshunds having fleas, I should apply the latter frequency judgment in forming a belief 

about the probability that Flint, a dachshund, has fleas. 

Where “PROB(cT)” denotes the probability that an object, c, is an element of a set, T, 

and “freq(T|R)” denotes the relative frequency of elements of a set, T, among a set, R, the 

essence of Reichenbach’s theory may be encapsulated by two principles. Following Pollock 

(1990), I call the second principle “subset defeat”, since it states the conditions under which a 

                                                                                                                                     
inference are tantamount to defeasible prescriptions about what an agent’s degrees of belief in given 

propositions should be. 
2 The Problem of the Reference Class is often presented as a decisive objection to the objectivity of direct 

inference. But arguments for the claim that the problem is decisive typically go no further than describing the 

problem as I have here (cf. Fitelson et al. 2005; Rhee 2007). See also (Hájek 2007, p. 568-9), where 

skepticism about direct inference vis-à-vis the Problem of the Reference Class is premised on idiosyncratic 

features of Reichenbach’s account of direct inference. A presentation of the problem by means of an 

interesting example can be found in (Colyvan and Regan 2001) and (Colyvan et al. 2007), though the theory 

of direct inference presented here, and the theory presented in (Pollock 1990), have the resources to 

adequately address the example. 
3 The key elements of Reichenbach’s account of direct inference are also present in (Venn 1866). 
4 Almost all accounts of direct inference adopt some form of this prescription, which is closely related to the 

principle of specificity which is an element of many approaches to defeasible reasoning in the field of 

artificial intelligence (cf. Horty et al. 1990; Kraus et al. 1990; Geffner and Pearl 1992). Even Salmon’s 

proposal that direct inferences be based on the broadest homogeneous reference class is similar to 

Reichenbach’s proposal inasmuch as: (1) the non-homogeneity of a proposed reference class compels one to 

reason from statistics for a proper subset of that reference class (if a direct inference is possible), and (2) the 

possession of statistics for a homogeneous subset of a proposed reference class demonstrates the non-

homogeneity of the proposed reference class, if the statistics for the two sets differ (Salmon 1971). 
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proposed direct inference, based on frequency information for a given reference class, is 

defeated in virtue of frequency information for a subset of that reference class:
5
 

 

[RDI] Reichenbachian Direct Inference  

If an agent, A, is justified in believing that freq(T|R) = u and that c  R, then A has a 

defeasible reason for believing that PROB(cT) = u. 

 

[RSD] Reichenbachian Subset Defeat  

A respective instance of [RDI] is defeated for A, if there is an R such that A is justified in 

believing:  

(i) c  R, 

(ii) R  R, and  

(iii) freq(T|R)  u. 

 

Although Reichenbach’s approach to the Problem of the Reference Class has served as a 

touchstone for subsequent studies of direct inference, his approach is known to be limited in a 

number of respects. The most well known limitation of Reichenbach’s theory concerns cases 

where one has reliable information regarding the incidence of a particular property among 

two overlapping reference classes, and one is unable to make a reliable judgment about the 

incidence of the property among the intersection of the two sets. For example, suppose I want 

to know how likely it is that Flint, my neighbor’s dachshund, will live at least twelve years. 

Let us suppose that I do not have any information about the mortality rate of dachshunds, but 

I do know that sixty percent of small-breed dogs live at least twelve years, and I also know 

that forty percent of boarhounds live at least twelve years. (Suppose that I know that a 

dachshund is a type of small-breed boarhound, and that there are some large-breed 

boarhounds.) In this case, the prescription to prefer narrower reference classes is unhelpful, 

since neither of the two candidate reference classes is narrower than the other. 

In cases where there is no narrowest relevant reference class about which one can make a 

reliable frequency judgment, Reichenbach prescribed that one not form a judgment regarding 

the probability that a given object is an element of a respective target class (Reichenbach 

1949, p. 375). Reichenbach’s prescription will keep us from forming unjustified beliefs. On 

                                                 
5 According to Reichenbach’s official view, the statistical statements that may serve as premises for direct 

inference are statements of frequency in the limit. Roughly: limiting frequencies are defined relative to an 

infinite sequence, R, and the limiting frequency of T among R is defined as the frequency of elements of T 

among the first n elements of R as n approaches  (provided that the frequency of T among R goes to a limit 

as n approaches ). In what follows, I will mostly ignore this detail of Reichenbach’s theory, and 

acknowledge Reichenbach’s official view only at relevant points. 
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the other hand, there may be cases where it is possible to draw a reasonable conclusion even 

if our body of data includes frequency statements that individually support mutually 

inconsistent conclusions. For example, in a case where one knows that cR1R2, that 

freq(T|R1) = 0.4, and that freq(T|R2) = 0.6, and one has no other frequency information 

relevant to PROB(cT), it appears reasonable to conclude that PROB(cT)  [0.4, 0.6] (cf. 

Kyburg and Teng 2001; Thorn 2007). 

Another difficulty with Reichenbach’s account of direct inference concerns the role of 

gerrymandered reference classes, and is similar (at least superficially) to the problem of 

induction that Goodman uncovered (Goodman 1955). Henry Kyburg was the first person to 

notice this problem (Kyburg 1961).
6
 Typical examples of this problem, in the case of direct 

inference, involve a reference class that is described as the union of (1) the unit set of the 

object about which one wishes to draw a conclusion, and (2) a set of objects that is known to 

have a very high (or very low) incidence of elements of a respective target class. For example, 

in a case where one is trying to draw a conclusion about the probability that Flint will live 

twelve years, a gerrymandered reference class (that illustrates the problem) would be the set 

composed of Flint and all of the dachshunds whose life span is less than twelve years. The 

frequency of dogs that live at least twelve years among such a gerrymandered reference class 

is guaranteed to be nearly zero. While the gerrymandered reference class is narrower than the 

other reference classes mentioned earlier, one should not rely on frequency information for 

this reference class in judging how likely it is that Flint will live twelve years. 

Theories of direct inference that have been proposed since Reichenbach have postponed 

treatment of the preceding problem.
7
 It is typical to regard the problem as analogous to the 

projectability problem associated with induction, and argue that a theory such as 

Reichenbach’s must be amended to require that correct direct inferences be formulated using 

target and reference classes that correspond to projectable predicates (Kyburg and Teng 2001) 

or projectable properties (Pollock 1990).
8,9

 In a similar vein, Bacchus (1990) proposed that 

                                                 
6 Kyburg also showed that gerrymandered target classes are sufficient to lead to unreasonable direct 

inferences (Kyburg 1974). My approach to the ‘projectability’ problems associated with direct inference 

applies equally to problems generated by gerrymandered target classes. 
7 Although Salmon does not discuss the problem of gerrymandered reference classes, his account of direct 

inference (Salmon 1971, 1977, and 1984) is adequate to address some of the projectability problems 

associated with direct inference. However, there is no obvious way to modify Salmon’s restrictive paradigm, 

which identified reference classes with infinite sequences of temporally ordered of events, in order to apply 

Salmon’s account of direct inference to typical cases where we would like to use frequency information about 

a population that is not temporally ordered to make a direct inference regarding one of its members. 
8 Hempel’s closely related account of inductive-statistical explanation also appeals to an unexplicated notion 

of law-like statistical generalizations as a proxy for projectability constraints (Hempel 1968). 
9 In (Pollock 2007) and other unpublished essays, Pollock developed an approach to direct inference that 

appears not to rely on projectability constraints in the same manner as his earlier approach (Pollock 1990). 

However, Pollock’s more recent approach still relies, at the foundational level, on a variety of direct 



 

Two Problems of Direct Inference 

 

5 

the problem calls for a “theory of relevance” that will allow us to recognize misleading 

statistical statements, and thereby bar their use as premises for direct inference. 

A final inadequacy of Reichenbach’s theory concerns the role of uninformative and less 

informative frequency statements. This problem was first described by Kyburg, and is easily 

grasped when one reflects carefully on Reichenbach’s proposal that frequency data regarding 

narrower reference classes is to be preferred as a basis for direct inference. For one, consider 

the reference class consisting of the unit set containing the object about which one wishes to 

draw a conclusion. If frequency data regarding narrower reference classes is to be preferred in 

general, then it seems that we should always prefer frequency data about unit set reference 

classes, and in that case, all interesting instances of direct inference would be defeated. 

Indeed, the frequency of elements of a given target class among a unit set reference class will 

always be one or zero, and direct inference based on such reference classes would seem only 

to allow the conclusion that a respective probability is one or zero.
10

 

The focus of the discussion that follows will be on outlining a theory of direct inference 

that remedies the problem associated with uninformative frequency statements. I will also 

briefly address the problem associated with gerrymandered reference classes. Although I 

regard the problem involving gerrymandered reference classes as distinct from the one 

involving uninformative frequency statements, it is difficult to address the latter problem 

without touching upon the former, since the former problem is omnipresent, in the following 

sense: Every case is a case where it is possible to introduce a frequency statement with a 

gerrymandered reference class that will lead to an unreasonable conclusion if it is used as a 

premise for a direct inference. I will not provide a detailed treatment of the problem of 

making a direct inference in cases where there is no narrowest relevant reference class about 

which one can make a reliable frequency judgment, although I will comment briefly on this 

problem in the closing section of the article. 

 

 

 

                                                                                                                                     
inference (what Pollock calls “the statistical syllogism”) that invokes an unexplicated notion of projectability. 

Pollock’s recent work also bears similarities to the random-worlds approach to inferring single-case 

probabilities, as proposed in (Bacchus et al. 1996) and (Halpern 2003), inasmuch as the outputs of Pollock’s 

approach are sensitive to the manner in which inputs to the theory are represented. The indifference 

principles presented in (Pollock unpublished) are particularly suggestive of this problem. 
10 To generate a corresponding problem for Reichenbach’s official view (which identifies reference classes 

with infinite sequences), we need only consider the limiting frequency for a given target property among a 

reference class defined by an exhaustive listing of the known properties of the individual about which we 

wish to make a direct inference. For such reference classes, we are rarely in a position to make an informative 

judgment regarding the value of the relevant limiting frequency. See (Fetzer 1977), for a discussion of the 

present problem in connection with a close reading of Reichenbach’s official view. 
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2.  Past Approaches to the Problem of Uninformative Statistics 
 

The case of the unit set reference class is a paradigmatic example of the Problem of 

Uninformative Statistics. A solution to the difficulty must accomplish two things. First, a 

solution must explain why direct inferences based on uninformative frequency information 

generally yield conclusions that are consistent with the intuitively correct conclusions based 

on informative frequency statements for broader reference classes (or, alternatively, explain 

why direct inferences based on uninformative frequency information for narrow reference 

classes are generally defeated). Second, a solution must explain why uninformative frequency 

information for narrow reference classes does not ordinarily undermine (via a principle such 

as [RSD] Reichenbachian Subset Defeat) direct inferences that are based on informative 

frequency statements for broader reference classes. 

Kyburg’s proposed remedy to the Problem of Uninformative Statistics is the most well 

known, and was the first to appear in the literature. It is also representative of other proposals 

that have appeared since. Kyburg’s approach has two parts. First, Kyburg proposed that the 

only statements that may serve as statistical premises for direct inference are statements that 

describe a relevant frequency as residing within an interval. In other words, a statistical 

premise for direct inference is always of the form: freq(T|R)  [r, s]. Second, Kyburg 

maintained (modulo projectability considerations) that a frequency statement for a relevant 

narrower reference class will defeat a direct inference based on a broader reference class if 

and only if the range of values judged to be possible for the broader class is not a subset of the 

range of values judged to be possible for the narrower class.
11

 For example, if one knows that 

the frequency of university degree holders among Californians is 0.25, and [0.1, 0.4] is the 

narrowest interval within which one may locate the frequency of university degree holders 

among southern Californians, then Kyburg’s theory deems it permissible to use one’s 

frequency information about Californians to draw a conclusion about the likelihood that a 

particular southern Californian has a university degree. 

Kyburg’s approach promises to thwart the Problem of Uninformative Statistics by 

converting frequency data that is uninformative into frequency data that does not play a role 

in direct inference. For example, the statement that a given relative frequency is in the set {0, 

1} is transformed into the statement that the relative frequency is in the interval [0, 1]. 

Kyburg’s approach thereby provides a possible means to dissolving the problem associated 

with unit set reference classes, since the interval [0, 1] will be less precise than any interval 

associated with a frequency statement that we would like to use as a premise for direct 

inference. 

                                                 
11 It is understood that the range of values for the broader class and for the narrower class are interval-valued. 
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Other approaches to the Problem of Uninformative Statistics (including my own) are 

similar to Kyburg’s. Like Kyburg’s approach, the other approaches combine two parts: (1) a 

thesis about the sort of statistical statements that may serve as premises for direct inference, 

and (2) a thesis about the conditions under which a statistical statement about a narrower 

reference class will defeat an instance of direct inference based on statistics for a broader 

class. For each approach, the first thesis is intended to ensure that uninformative statistical 

statements for narrower reference classes do not yield conclusions (via direct inference) that 

will contradict the correct conclusions based on informative statistical statements for broader 

reference classes. The second thesis is intended to ensure that uninformative statistical 

statements for narrow reference classes do not undercut the correct direct inferences (via 

subset defeat). I will refer to the conditions under which a statistical statement about a 

narrower reference class results in the subset defeat of a direct inference based on statistics 

for a broader class as the “incompatibility conditions” for proposed reference classes and their 

subsets. The idea is that statistics for a narrower reference class, R, will defeat a direct 

inference based on statistics for a broader class, R, only if R and R are incompatible in a 

relevant respect. 

The two existent alternatives to Kyburg’s approach to the Problem of Uninformative 

Statistics were outlined by Pollock (1990) and Bacchus (1990). Unlike Kyburg who 

maintained that interval-valued frequency statements are the proper premises for direct 

inference, Pollock assigned the privileged role to statements of nomic probability, and 

Bacchus assigned the role to statements of expected frequency. The accounts of Pollock and 

Bacchus also differ from the account of Kyburg concerning the conditions under which 

statistics for a narrower reference class will defeat a direct inference based on a broader 

reference class. Both Pollock and Bacchus maintain (modulo projectability considerations) 

that a direct inference is defeated by statistics for a narrower reference class if and only if 

direct inference based on statistics for the narrower reference class would yield a conclusion 

that is inconsistent with the one that would have otherwise been drawn using statistics for the 

broader class. 

As it turns out, the incompatibility conditions proposed by Kyburg, Pollock, and Bacchus 

are each too permissive (since they each allow cases where a direct inference goes undefeated 

when it should not). On the other hand, each proposal regarding the proper statistical premises 

for direct inference is in some sense ‘workable’ as a partial solution to the Problem of 

Uninformative Statistics.
12

 For the moment, I will focus on demonstrating the problem with 

                                                 
12 The workability of the doctrines of Pollock and Bacchus regarding the sort of statistical statements that are 

appropriate to serve as premises for direct inference is similar to the doctrine of Kyburg. For all three 

accounts: (1) statistical statements of the preferred sort may take on values other than one and zero in the case 

of unit set reference classes, and (2) the use of known frequencies in the course of direct inference is usually 
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the incompatibility conditions that have been proposed in the past, and on proposing a new 

incompatibility condition that delivers the right conclusions. Later on, I will return to briefly 

argue in favor of the proposal that it is statements of expected frequency that properly serve as 

the statistical premises for direct inference. 

  

 

3.  The ACME Urn Example 
 

A problem with past approaches to the Problem of Uninformative Statistics can be illustrated 

by a simple example.
13

 Suppose that one is certain that the following propositions are true: 

 

[1] Many urns exist that were produced by the ACME Urn Company. 

[2] Many of the urns produced by the ACME Urn Company contain balls. 

[3] 51% of all of the balls held in urns produced by the ACME Urn Company are red. 

[4] b is a ball held in an urn produced by the ACME Urn Company. 

[5] The urn, Ub, that contains b contains exactly one hundred balls. 

 

Now make the further assumption that one lacks any additional information about the 

ACME Urn Company, about the likely distributions of balls of various colors held within 

urns produced by the ACME Urn Company, and, generally, any information that is relevant 

to the probability that b is red, that is not already implicit in [1] through [5]. In that case, 

theories of direct inference prescribe that we assign probability 0.51 to the proposition that b 

is red.
14

 This is the correct conclusion to draw in the present case. It is, of course, 

unreasonable to think that the relative frequency of red balls among Ub is 0.51. But because it 

is correct to regard the set of ball in Ub as an unexceptional (one hundred member) subset of 

the set of balls held in ACME urns (relative to the relative frequency of red balls), it is 

reasonable to apply our information regarding the frequency of red balls among the full set of 

balls held in ACME urns in order to conclude that the probability is 0.51 that b is red. 

                                                                                                                                     
permitted, since point-valued frequency statements usually entail a respective preferred statistical statement 

of identical (or similar) value. 
13 The example presented here is adapted from (Stone 1987). 
14 One exception is the theory of Isaac Levi (1982). Levi proposed, roughly, that correct instances of direct 

inference presuppose that the object of interest, c, is presented to us as a trial of a stochastic process that 

generates varying results with certain chances, and that the probability we assign to c having a respective 

target property be identical to the chance of a trial of the respective sort (i.e., a trial which has the relevant 

reference property) having the respective target property. Since these preconditions are not satisfied in the 

ACME Urn case, Levi’s theory will not permit a direct inference. Levi’s theory sets an extremely high 

threshold to surpass before one is permitted to make a direct inference. I share the view of other advocates of 

direct inference that Levi sets the bar too high. 
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Now suppose that one has additional information regarding Ub. In particular, suppose that 

one is able to inspect the contents of Ub under conditions that allow one to determine, with 

certainty, the number of balls in Ub that are white. Imagine, for example, that one is permitted 

to inspect the contents of Ub under unusual lighting conditions which permit one to 

determine, for each ball, whether or not it is white, and nothing else. As a result, suppose one 

determines that Ub contains exactly forty-nine white balls. It is thereby correct to conclude 

that the probability is zero that the frequency of red balls among Ub is greater than 0.51. 

Given the additional information gained by one’s inspection of the elements of Ub, the 

theories of Kyburg, Pollock, and Bacchus each agree that one’s judgment regarding the 

probability that b is red should not change, and each theory permits one to draw the 

conclusion that the probability that b is red is 0.51.
15

 But that conclusion is unreasonable. 

Given our new information, it is still incorrect to assume that the relative frequency of red 

balls among Ub is 0.51. Moreover, because there is zero probability that the frequency of red 

balls among Ub is greater than 0.51, it is no longer reasonable to treat Ub as an unexceptional 

(one hundred member) subset of the set of balls held in ACME urns, and thereby assign 

probability 0.51 to the proposition that b is red, based on the frequency of red balls among the 

full set of balls held in ACME urns. Without appealing to that basis, it is unreasonable to 

assign probability 0.51 to the proposition that b is red. 

 

 

4.  Relative Informativeness 
 

We are faced with the problem of determining the sort of incompatibility (between a reference 

class and one of its subsets) that will result in the defeat of a direct inference. According to 

Kyburg’s theory, we have subset defeat only when our frequency information for a subset of a 

proposed reference class is more informative than it should be. Specifically, our frequency 

information for a relevant subset of a proposed reference class is deemed too informative if 

and only if the range of values judged to be possible for the broader class is not a subset of the 

range of values judged to be possible for the narrower class. I concur with Kyburg’s idea that 

subset defeat only occurs when our frequency information for a subset of a proposed 

reference class is too informative. But in order to extricate ourselves from the problem 

                                                 
15 According to Kyburg’s theory, the direct inference based on the set of all balls held in ACME Urns goes 

through, since one’s frequency information regarding the set of balls held in Ub (namely, that the frequency 

of red balls among Ub is in [0,0.51]) is less precise. The theories of Pollock and Bacchus, respectively, permit 

us to draw the conclusion that the nomic probability and the expected frequency of red balls among the set of 

all balls held in ACME Urns is 0.51. Since the theories of Pollock and Bacchus do not permit a direct 

inference based on the set of balls held in Ub that contradicts the conclusion that the probability that b is red 

is 0.51, the conclusion that the probability that b is red is 0.51 goes through, according to their theories. 
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presented by the ACME urn example, I propose that we apply a different test than Kyburg’s. 

In particular: where A is an agent, T a given target class, R a proposed reference class, and R 

is a subset of R (where R contains c, the object of interest), A’s information regarding R is 

too informative if it is not the case that, for all U and V, A is justified in accepting 

PROB(freq(T|R)U)V if and only if A would be justified in accepting PROB(freq(T|R*) 

U)V, in a situation identical to A’s actual situation save that the name “R*” is introduced 

to A by a definite description that confers only the information that R* is a subset of R, and 

that R* is the same size as R.
16

 

It is intended that the preceding ‘informativeness’ test be triggered in cases where an 

agent has information about R that makes R an exceptional subset of R vis-à-vis the 

incidence of elements of T (from the agent’s perspective). So the test is triggered in cases 

where an agent has any information about the possible values of freq(T|R) that is not entailed 

by the agent’s judgment that R is a subset of R, and the agent’s judgments regarding the 

possible values of freq(T|R), and the possible sizes of R and R. The condition is also in sync 

with a natural conception of the justificatory basis of direct inference. In particular, when one 

makes a direct inference about an object, one assumes that the object is as likely to have a 

given target property as an object that is drawn at random from the proposed reference 

class.
17

 Given such an assumption, direct inference using frequency information for a given 

reference class is permissible only if the object about which one is reasoning is in relevant 

respects indiscernible from the other elements of the proposed reference class. Corresponding 

to this conception of the justificatory basis of direct inference, we see that cases where the 

proposed informativeness test is triggered are cases where an object of interest, c, is 

relevantly discernible among R, since, in such cases, c’s membership in R relevantly 

distinguishes c from the elements of R that are not elements of R. 

In addition to capturing an intuitively correct criterion for when an agent’s frequency 

information for a subset of a set is too informative (relative to a proposed direct inference), 

the test properly handles the case of unit set reference classes. Indeed, consider any case 

where it is correct to infer PROB(cT) = r, by direct inference from the premises c  R and 

freq(T|R) = r. In such cases, our narrowest estimate of the set of possible values for 

freq(T|{c}) and freq(T|R*) (where R* is known only as a one element subset of R) will be 

identical (i.e., {0, 1}). We also have PROB(freq(T|{c}) = 1) = PROB(freq(T|R*) = 1) = r, 

                                                 
16 Suppose, for example, that “R*” is introduced as a name for the first element of some ordering, , of the 

subsets of R that contain |R| elements, where our agent has no information regarding the principle according 

to which the elements of  were ordered. 
17 Here as elsewhere, I will say that c is a random element of R, if c was selected from among the elements of 

R, by a process that was equally likely to yield each element of R. 
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since, where R* = {c*}, it is correct to infer PROB(c*T) = r, by direct inference from the 

premises c*  R and freq(T|R) = r. 

The proposed condition also properly handles the ACME urn example. In the ACME urn 

example, the lowest upper bound, 0.51, corresponding to our estimate of the frequency of red 

balls among balls that are in Ub (after we inspect the elements of Ub) differs, and is more 

informative than, the lowest upper bound that may be inferred from the given information 

regarding the number of balls in Ub (the size of the relevant R), the number of balls held in 

urns produced by the ACME Urn Company (the size of the relevant R), and the frequency of 

red balls among balls held in ACME urns. In this case, we are justified in holding that 

PROB(freq(red-balls|balls-in-Ub) 0.51) = 0, but where R* is known only as a one hundred 

member subset of the set of balls held in ACME urns, we are not justified in holding that 

PROB(freq(red-balls|R*) 0.51) = 0. 

 

 

5.  Highly Informative Complement Classes 
 

In the ACME urn example, our frequency information for a relevant subset of a proposed 

reference class is too informative. The result is that direct inference based on the proposed 

reference class (the set of balls held in ACME urns) is defeated. A problem related to the one 

illustrated by the ACME urn example arises in cases where our frequency information for the 

relative complement of a subset of a proposed reference class is too informative. Once again, 

the problem can be illustrated by a simple example.
18

 Suppose that one is certain of the 

following propositions: 

 

[1] At least 90 percent of birds are capable of flight. 

[2] There are at least 10 times as many birds as sea tortoises. 

 

In addition, suppose that one has absolutely no information about the frequency with which 

sea tortoises are able to fly, so that one is only justified in believing that the frequency of sea 

tortoises that are able to fly is in the interval [0, 1]. Despite the absence of information about 

the proportion of sea tortoises that are able to fly, one may deduce, from [1] and [2], that the 

frequency of creatures that are able to fly among the set of creatures that are birds or sea 

                                                 
18 The example is adapted from Pollock (1990, p. 84). A second example, from Pollock, that I will not discuss 

concerns the inference to the conclusion that a given bird with a broken wing is likely to be able to swim the 

English Channel, by appeal to the statistic that most birds can fly or swim the English Channel (which is true 

in virtue of the fact that most birds can fly). The condition that is used to address the example presented here 

applies equally to the case of the bird with the broken wing. 
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tortoises is in the interval [9/11, 1]. This is a problem for the theories of Kyburg, Pollock, and 

Bacchus, in the case where one wants to draw a conclusion about the probability that a 

particular sea tortoise, Herman, is able to fly. Indeed, in the absence of an additional 

constraint on direct inference, the theories of Kyburg, Pollock, and Bacchus allow one to 

draw the conclusion that the probability that Herman is able to fly is in the interval [9/11, 1]. 

Kyburg, Pollock, and Bacchus all acknowledge the difficulty that these sorts of case present 

for their theories. Bacchus postpones treatment of the problem, while Kyburg and Pollock 

address the problem by claiming that the set of creatures that are birds or sea tortoises does 

not correspond to a projectable predicate/property, so that the set of creatures that are birds or 

sea tortoises cannot be used as a reference class for a direct inference. While Kyburg and 

Pollock invoke the notion of projectability to deal with such examples, they do not provide 

criteria for determining when a predicate or property is projectable. Rather the notion of 

projectability is invoked to deal with counterexamples to their theories in an ad hoc manner. 

As it turns out, the case of Herman the sea tortoise can be dealt with by a variant of the 

approach that was used in dealing with the ACME urn example. In the ACME urn example, 

we found that direct inference about an object, c, based on a reference class, R, may be 

defeated due to c’s membership in a narrower reference class, R, in cases where our 

frequency information for R is more informative than it should be. In light of the example of 

Herman the sea tortoise, I propose that a direct inference based on a reference class, R, may 

also be defeated due to c’s membership in a narrower reference class, R, in cases where our 

frequency information for the relative complement of R (i.e., RR) is more informative than 

it should be. More precisely: where A is an agent, T a given target class, R a proposed 

reference class, and R is a subset of R (where R contains c, the object of interest), A’s 

information regarding R is too informative if it is not the case that, for all U and V, A is 

justified in accepting PROB(freq(T|RR)U)V if and only if A would be justified in 

accepting PROB(freq(T|RR*)U)V, in a situation identical to A’s actual situation save 

that the name “R*” is introduced to A by a definite description that confers only the 

information that R* is a subset of R, and that R* is the same size as R. 

Like the condition used to remedy the ACME urn example, the present informativeness 

test is triggered in cases where an agent has information about R that makes R an 

exceptional subset of R vis-à-vis the incidence of elements of T (from the agent’s 

perspective). And, once again, the present condition is defensible by appeal to the idea that 

justified instances of direct inference presuppose that a respective object of interest is 

relevantly indiscernible among a proposed reference class. In the case of Herman, our 

knowledge that Herman is an element of the set of sea tortoises relevantly distinguishes 

Herman from members of the set of creatures that are birds or sea tortoises that are not also 



 

Two Problems of Direct Inference 

 

13 

members of the set of sea tortoises (relative to the target class, creatures that are able to fly). 

Moreover, the proposed condition applies in the case of Herman, since Herman (Herman = c) 

is a member of the set of sea tortoises (the set of sea tortoises = R), and our judgments 

regarding the possible values of the frequency of creatures able to fly (creatures able to fly = 

T) among the set of birds (the set of birds = RR) are more precise than we would expect 

(given only our judgments regarding the size of the set of creatures that are birds or sea 

tortoises, our judgments regarding the size of the set of sea tortoises, and our judgments 

regarding the frequency of creatures able to fly among the set of creatures that are birds or sea 

tortoises). Indeed, the narrowest interval in which we can locate the frequency of creatures 

able to fly among the set of birds (RR) is [0.9, 1]. But if we consider a set R*, which is 

known only as a subset of set of creatures that are birds or tortoises, whose size is the same as 

the set of sea tortoises, then the narrowest interval in which we can locate the frequency of 

creatures able to fly among RR* is [8/11, 1] (so that we are justified in accepting 

PROB(freq(creatures-able-to-fly|RR)  [0.9, 1]) = 1, but we are unjustified in accepting 

that PROB(freq(creatures-able-to-fly|RR*)  [0.9, 1]) = 1). 

I have proposed two similar conditions in order to deal with the ACME urn case and the 

case of Herman the sea tortoise. When either of the these conditions hold for a reference 

class, R, and one of its subsets, R, I will say that R and R are informativeness incompatible 

for the agent, A, and the target class, T. The following definition collects the two conditions 

(which I now state in the negative). 

 

Definition: R and R are not informativeness incompatible for the agent, A, and the target 

class, T, if and only if for all U and V: (1) A is justified in accepting PROB(freq(T|R)U)V 

if and only if A would be justified in accepting PROB(freq(T|R*)U)V, and (2) A is 

justified in accepting PROB(freq(T|RR)U)V if and only if A would be justified in 

accepting PROB(freq(T|RR*)U)V, in a situation identical to A’s present situation save 

that the name “R*” is introduced by a definite description that confers only the information 

that R* is a subset of R, and that R* is the same size as R. 

 

Described as a modification of Reichenbach’s theory (as expressed by [RDI] and [RSD]), 

I propose to amend (iii) of [RSD], so that an instance of direct inference is defeated only if R 

and R are informativeness incompatible, for the given agent and target class. Modulo 

considerations that forbid gerrymandered target and reference classes (to be discussed in 

section 7), the definition of informativeness incompatibility is meant to capture the precise 

conditions under which our information about a subset of a proposed reference class is too 

informative, where the satisfaction of this condition entails that direct inference based on the 
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proposed reference class is subject to subset defeat. There is good reason to think that the 

definition is correct for that purpose. First, the two components of the proposed test 

(regarding R and RR) proceed from the intuitive justificatory foundation of direct 

inference. This gives us reason to think that the applicability of the definition is relatively 

general. Second, it is difficult to imagine a more stringent test for whether an agent has any 

special information regarding a subset of a proposed reference class (relative to the incidence 

of some target property). 

 

 

6.  Expected Frequencies 
 

The informativeness criterion introduced in the preceding section specifies the conditions 

under which information about a narrower reference class will defeat an instance of direct 

inference based on statistics for a broader class. This informativeness criterion provides a 

partial solution to the Problem of Uninformative Statistics, by insuring that uninformative 

frequency information does not in general result in the (subset) defeat of direct inferences 

based on informative frequency information for broader reference classes. In order to fully 

address the Problem of Uninformative Statistics, one must also explain why direct inferences 

based on uninformative frequency information generally yield conclusions that are consistent 

with the intuitively correct conclusions based on informative frequency statements for 

broader reference classes. Within Kyburg’s theory, the latter is accomplished by the 

requirement that the major premises for direct inference be interval-valued frequency 

statements. While Kyburg’s approach achieves the desired effect, the restriction to interval-

valued frequency statements is ad hoc, inasmuch as the restriction is not adequately 

motivated. As an alternative to Kyburg’s approach, I adopt Bacchus’s proposal that it is 

statements of expected frequency that serve as the proper statistical premises for direct 

inference. 

In probability theory, a random variable is identified with the range of numeric values 

corresponding to the possible outcomes of a trial. In turn, random variables may be assigned 

an expectation (or expected value). The expected value of a random variable is simply the 

average of the possible values of the random variable weighted by the probabilities of the 

respective values. In general, the probability of a proposition may be identified with the 

expectation of the proposition’s truth-value, where being true is identified with the value one, 

and being false is identified with the value zero. Similarly, one may speak of the expected 

value of a relative frequency. Here the expectation is identified with the average of the set of 

possible values of the relative frequency weighted by the probabilities of the respective 
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values. As a special case, probability statements regarding singular propositions are 

equivalent to statements of expected relative frequency regarding unit set reference classes. 

Before describing the main reason for regarding statements of expected frequency as the 

proper premises for direct inference, I will explain why using frequency statements as 

premises for direct inference is a special case of using statements of expected frequency. By 

demonstrating this connection, I will discharge the demand to explain the manner in which 

frequency statements are relevant to direct inference. As a corollary, we will see why the use 

of expected frequency statements as the major premises of direct inference serves as a partial 

solution to the Problem of Uninformative Statistics. 

In general, if one knows only a set of possible values for a relative frequency, then one’s 

best estimate of the expectation of the relative frequency will be that the expectation lies 

within the narrowest interval that covers the range of possible relative frequencies. Moreover, 

in circumstances where a set of possible values is assigned to a given relative frequency, 

upper and lower bounds on the possible values of the expectation of the relative frequency 

can easily be calculated, by appeal to the following theorem. (Here I use the notation 

E[freq(T|R)] to denote the expectation of the relative frequency of T among R.) 

 

Theorem: T, R, S, U: if PROB(freq(T|R)  S) = 1 and U is the smallest interval such that  

S  U, then E[freq(T|R)]  U. 

 

The preceding theorem illustrates the relevance of frequency information to direct 

inference (assuming that expected frequency statements are the proper statistical premises for 

direct inference), since it describes an important deductive relationship between frequencies 

and expected frequencies, and thereby accounts for the use of point-valued and interval-

valued frequency statements in the course of direct inference. Note, for example, the 

implication between PROB(freq(T|R) = r) = 1 and E[freq(T|R)] = r. The theorem also 

illustrates why restricting the major premises of direct inference to statements of expected 

frequency ensures that direct inference based on uninformative frequency information does 

not yield conclusions that will contradict the conclusions of direct inference based on 

informative frequency information. The point becomes clear when one considers the case of 

unit set reference classes. Consider any case where it is correct to infer PROB(cT) = r, by 

direct inference from the premises c  R and freq(T|R) = r. In such cases, we invariably know 

that PROB(freq(T|{c})  {0, 1}) = 1. Based on this frequency information, we may conclude 

that E[freq(T|{c})] [0, 1] and that PROB(cT)  [0, 1], which is consistent with the 

conclusion that PROB(cT) = r. 
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The doctrine that it is statements of expected frequency that are the proper major 

premises for direct inference serves as a partial solution to the Problem of Uninformative 

Statistics. Another reason for taking statements of expected frequency as the proper major 

premises for direct inference is connected to the intuitive justificatory basis of direct 

inference. When making a direct inference, one assumes that the object about which one is 

reasoning, c, is as likely to be a member of a respective target class, T, as a random element 

of the proposed reference class, R. On the assumption that c is as likely to be in T as a random 

element of R, one is obliged to conclude that the probability that c is in T is equal to the 

frequency of elements of T among R, in cases where one is aware of the value of this 

frequency. Similarly, in cases where one is aware of the correct assignment of probabilities to 

the values of a given relative frequency, one may calculate the probability of a random 

element of R being in T by considering the likelihood that freq(T|R) takes on respective 

values.
19

 For parallel reasons, one is obliged to conclude that the probability that c is in T is 

equal to the expected frequency of elements of T among R, since the expected value of 

freq(T|R) simply encodes a weighting of the possible values of freq(T|R) according to 

probability, and since the likelihood that a random element of R is an element of T is equal to 

the expected frequency of elements of T among R. 

In accordance with the preceding observations, I will assume that proper instances of 

direct inference proceed from premises of the form E[freq(T|R)]  U and c  R to 

conclusions of the form PROB(cT)  U. But given the deductive relations between 

statements of frequency and statements of expected frequency, it is usually permissible to 

formulate instances of direct inference using frequency statements, and I will do so for the 

sake of convenience. 

 

 

7.  The Problem of Relevant Statistics 
 

Consider a case where one is justified in accepting the following propositions: 

 

[1] 40% of dogs live at least twelve years. 

[2] 70% of dachshunds live at least twelve years. 

[3] Flint is a dachshund. 

 

                                                 
19 The best way to see this point is to imagine the situation as a two-tiered lottery, where, first, the frequency 

of elements of T among R is selected and, next, an element of R is selected at random. 
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On the supposition that the three preceding propositions encapsulate one’s knowledge of 

the factors that are relevant to judging the probability that Flint will live at least twelve years, 

it seems that one should conclude that the probability is 0.7 that Flint will live at least twelve 

years. In order to justify such a conclusion, it is typical to appeal to a principle that tells one 

to prefer frequency information for narrower reference classes, in cases where one has 

relevant frequency information for two or more sets. But the story does not end there, for it is 

possible to formulate a gerrymandered reference class RG, where RG is formed from Flint 

along with all of the dachshunds who will not live twelve years. In that case, RG is narrower 

than the set of dachshunds, and Flint is an element of RG. The problem, then, is that the 

frequency of elements of RG that will live twelve years is guaranteed to be very near to zero. 

Indeed, if we suppose that there are only one hundred dachshunds, then freq( creatures-that-

will-live-twelve-years | RG )  {0, 1/31}.  

The problem with which we are faced is that of explaining why one is permitted to 

conclude that the probability that Flint will live twelve years is 0.7, and one is not permitted 

to conclude that the probability that Flint will live twelve years is in the interval [0, 1/31]. 

Following a suggestion of Bacchus (1990), I call the present problem “the Problem of 

Relevant Statistics” with the idea being that certain statistical statements (such as the one 

involving the reference class RG) are not relevant to direct inference.  

The correct explanation of what goes wrong in the case of Flint and the gerrymandered 

reference class, RG, flows from the assumptions that underlie justified instances of direct 

inference. Recall that in making a direct inference, one assumes that the object about which 

one is reasoning, c, is as likely to be a member of a respective target class, T, as a random 

element of the proposed reference class, R. In cases where direct inference is used correctly, 

the conclusion that c is as likely to be in T as a random element of R will be justifiable by 

appeal to the fact that c is in relevant respects indiscernible among the other elements of R. 

In the case of Flint, the conclusion that Flint is as likely to live twelve years as a 

randomly selected dachshund is not defeated by the statistical fact that a very high proportion 

of the elements of the gerrymandered reference class, RG, will not live twelve years. 

Similarly, we are not permitted to make a direct inference using frequency information for RG 

to draw the conclusion that it is probable that Flint will not live twelve years. In the case of 

Flint and RG, the defeasible presumption in favor of narrower reference classes is superseded, 

because Flint is relevantly discernible among RG (relative to the property of being a creature 

that will live at least twelve years). A relevant difference, in this case, is demonstrable from 

the fact that our narrowest estimate of the set of possible values of freq( creatures-that-will-

live-twelve-years |{Flint}) is {0, 1}, while our narrowest estimate of the set of possible values 



 

Two Problems of Direct Inference 

 

18 

of freq( creatures-that-will-live-twelve-years | RG{Flint}) is {0}. In other words, we are 

aware of a relevant difference between Flint and the other elements of RG. 

There is one feature that is characteristic of all the examples that have appeared in the 

literature to illustrate the ‘projectability’ problems associated with direct inference. In each 

example, the reference or target class for the key statistical premise is formulated using a 

description that is known to pick out a proper subset, , of the proposed reference class, where 

 is known to contain the object about which we wish to make a direct inference.
20

 Through 

the use of such a description, the value of the key statistic is computed via a reference class 

that is literally gerrymandered relative to the given target class. In particular, the value of the 

statistical statement is computed by appeal to the possible sizes and statistical values for its 

subsets, where one of the subsets is known to contain the object about which one wishes to 

make a direct inference. For example, in the case of Flint, the range of possible values for the 

frequency of creatures that will live twelve years among the gerrymandered set, RG, is 

computed by appeal to the possible values for the frequency of creatures that will live twelve 

years among RG{Flint}, and by appeal to the possible values for the frequency of creatures 

that will live twelve years among {Flint}. Where “L12” stands for the set of creatures that 

will live twelve years, and “DH” stands for the set of dachshunds (so that RG = 

(DHL12){Flint}), the computation proceeds by cases: 

 

Case 1: 

If Flint  L12, then 

freq(L12|(DHL12){Flint}) = 0/29, 

|(DHL12){Flint}| = 29, 

freq(L12|{Flint}) = 0/1, and 

freq(L12|(DHL12){Flint}) = 0/30. 

 

Case 2:  

If Flint  L12, then  

freq(L12|(DHL12){Flint}) = 0/30, 

|(DHL12){Flint}| = 30, 

freq(L12|{Flint}) = 1/1, and 

freq(L12|(DHL12){Flint}) = 1/31. 

 

Therefore, freq(L12|(DHL12){Flint})  { 0/30, 1/31 }. 

                                                 
20 This feature is also common to all of the examples that I have been able to concoct. Many of these 

examples are more insidious than the examples found in the literature.  
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It is easy to see why the preceding sort of gerrymandering violates the indiscernibility 

condition that is tacitly assumed when one makes a direct inference. In the computation just 

described, Flint is treated separately from the other elements of the proposed reference class, 

so that Flint is literally discerned from the other elements of the reference class in the chain of 

reasoning that leads to our judgment regarding the possible frequency values for the proposed 

reference class. 

To remedy the problem associated with gerrymandered statistics, we must restrict 

dependence on certain types of descriptions in the computation of the value of the statistical 

statements that will be used in direct inference. Now, in ‘real life’, an agent may allow all 

sorts of extraneous descriptions to appear in her computation of the value of a given statistical 

statement. Since we do not wish the results of a theory of direct inference to depend on 

accidental features of an agent’s computation of a given statistical statement, we should not 

restrict the use of any particular description in the course of reasoning. Rather than concern 

ourselves with the actual descriptions that an agent employs in the computation of a given 

statistic, we need only require that the agent could have justified her conclusion through a 

chain of reasoning that does not rely on a problematic description. 

In line with my characterization of the problem in view as the Problem of Relevant 

Statistics, I will describe cases where a statistic is gerrymandered (in a problematic way) as 

cases where the statistic is not relevant to the probability that a given object is a member of a 

respective target class. 

 

Definition: E[freq(T|R)]  V is (potentially) relevant to the value of PROB(cT) for an 

agent, A, if and only if there exists a chain of inference
21

, C, sufficient for justifying A’s belief 

that E[freq(T|R)]  V, where, for all R: if R is describable using only vocabulary occurring 

in the course of C, then 

(i) A is not justified in believing that R  R, 

(ii) A is not justified in believing that c  R, or 

(iii) R and R are not informativeness incompatible, relative to A and T.
22

 

 

                                                 
21 Assuming that chains of inference resemble proofs in a formal language, it is intended that membership in 

a set, R, be characterized by the satisfaction of a first order formula, (x), with a single free variable x. We 

may then regard R as the set of objects that satisfy (x). 
22 In determining the applicability of the present definition, it is assumed that beliefs about the value of an 

expected frequency cannot be justified on the basis of testimony (or similar means) in cases where one is 

aware of the basis upon which the testifier formed her judgment. In other words, the more fundamental 

evidence must be given priority when that evidence is available. (The present proviso is made for the 

purposes of the definition of relevance, and is not proposed as essential to the concept of justification.)   
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In cases where the present definition fails to apply to a given expected frequency 

statement (relative to a corresponding single-case probability), the statement is deemed 

irrelevant (to that single-case probability). Note that whether a given statistic is irrelevant (to 

a given single-case probability) may be practically inaccessible in some cases, since a statistic 

is irrelevant just in case for every chain of inference capable of justifying the agent’s belief in 

the statistic, vocabulary is employed that is sufficient to describe some ‘suspect’ set, R. But 

the problem here is not grave, since the conditions under which a given expected frequency 

statement is relevant are (relatively) accessible, and the account of direct inference that I will 

finally propose requires only that any statistic that serves as a premise for a direct inference, 

or as a subset defeater for a direct inference, be relevant. So an agent may apply the proposed 

account of direct inference by simply certifying that any statistic she uses (in making or 

defeating a direct inference) is relevant. In any case, it is often possible to see that a given 

statistic is irrelevant by observing that the calculation of the statistic (by a given agent) can 

only proceed by a chain of inference which does involve vocabulary sufficient to describing 

some suspect set. One such example is the case of Flint and the gerrymandered reference 

class RG. 

Applied to the case of Flint, we see that the expected frequency statement 

E[freq(L12|(DHL12){Flint})]  [0/30, 1/31] is irrelevant to the probability that Flint 

will live twelve years, since there is no way to compute this statistic (based on the described 

assumptions) that does not appeal to some variant of the predicate x = Flint, where the set 

{Flint} satisfies the following three conditions, for any agent, A, whose evidence is as 

described in the example: 

 

(i) A is justified in believing that {Flint}  (DHL12){Flint}, 

(ii) A is justified in believing that Flint  {Flint}, and 

(iii) (DHL12){Flint} and {Flint} are informativeness incompatible, relative to A and 

L12. 

 

That condition (iii) holds can be seen inasmuch as freq(L12|((DHL12){Flint}){Flint}) 

= 0, while the smallest set in which we may locate the value of freq(L12|((DHL12) 

{Flint})R*) is {0/30, 1/30} (where R* is known only as a subset of (DHL12){Flint} 

whose cardinality is one).
23

 

                                                 
23 Because (DHL12){Flint} and {Flint} are informativeness incompatible, it may appear that the 

application of the definition of informativeness incompatibility (as a criterion for subset defeat) is sufficient 

to address the Problem of Relevant Statistics. In fact, applications of that definition are not sufficient to 

address the problem. For one, we must restrict the application of informativeness incompatibility, as a 
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The prescription that irrelevant statistics not be used as premises for direct inference, or 

to defeat instances of direct inference via subset defeat, makes sense in light of the precept 

that correct direct inferences presuppose the relevant indiscernibility of an object of interest 

from the other elements of a proposed reference class. Indeed, in cases where a statistic is 

deemed irrelevant, we know that the object of interest is discernable from other elements of 

the proposed reference class, R, in the course of a respective agent’s reasoning about the 

value of statistics for R. 

 

 

8.  Conclusion 
 

With the notions of relevance and informativeness incompatibility in place, I am in a position 

to propose some fairly traditional looking principles of direct inference. The principles 

incorporate three amendments to Reichenbach’s theory of direct inference (as expressed by 

[RDI] and [RSD]). As a remedy to the problem associated with gerrymandered reference 

classes, I require that only relevant statistics play a role in direct inference. As a remedy to 

the Problem of Uninformative Statistics, I require: (1) that the proper statistical premises for 

direct inference are statements of expected frequency, and (2) that a direct inference is subject 

to subset defeat by statistics for a narrower reference class only if the two reference classes 

are informativeness incompatible. These amendments yield the following: 

 

[DI] Direct Inference 

If A is justified in believing that E[freq(T|R)]  V and c  R, then A has a defeasible reason 

to believe that PROB(cT)  V, so long as E[freq(T|R)]  V is relevant to the value of 

PROB(cT) for A. 

 

[SD] Subset Defeat 

A respective instance of [DI] is defeated for an agent, A, if there exists an R such that: 

(i) A is justified in believing that R  R, 

(ii) A is justified in believing that c  R, 

(iii) R and R are informativeness incompatible, relative to A and T, and  

(iv) E[freq(T|R)]  U is relevant to the value of PROB(cT) for A, where U is the narrowest 

set of values that A is justified in accepting for E[freq(T|R)].
24

 

                                                                                                                                     
criterion for subset defeat, to cases where an agent’s statistics for a subset of a proposed reference class are 

relevant. 
24 I leave the treatment of reference classes corresponding to reference properties of differing arity for another 

day (cf. Pust 2011; Thorn forthcoming). 
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Taken together, [DI] and [SD] still allow for the possibility of cases where two instances 

of [DI] yield reasons for assigning conflicting probabilities to a proposition, where both 

instances of [DI] are based on relevant statistics and neither of the two inferences is defeated 

via [SD]. The paradigm example of such cases occurs when an agent has relevant informative 

statistics, regarding a given target class T, for two overlapping reference classes, but lacks 

informative statistics, regarding the incidence of T, among the intersection of the two 

reference classes. I believe that it is sometimes possible to make a reasonable direct inference 

in such cases, but I will not defend that claim here. In any case, the problem is far from being 

grave, since we may follow Reichenbach’s recommendation and simply suspend judgment in 

the face of such conflicting reasons. Adherence to Reichenbach’s proposal will keep us from 

forming unjustified beliefs in the face of conflicting reasons for belief, even if there are cases 

where Reichenbach’s proposal is too restrictive.  
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