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The Shutdown Problem: Three Theorems 

Elliott Thornley 

Abstract: I explain and motivate the shutdown problem: 

the problem of designing artificial agents that (1) shut down 
when a shutdown button is pressed, (2) don’t try to prevent 
or cause the pressing of the shutdown button, and (3) 
otherwise pursue goals competently. I prove three theorems 
that make the difficulty precise. These theorems suggest that 
agents satisfying some innocuous-seeming conditions will 
often try to prevent or cause the pressing of the shutdown 
button, even in cases where it’s costly to do so. I end by 
noting that these theorems can guide our search for solutions 
to the problem. 

0. Preamble 
Tradition has it that decision theory splits into two branches. The descriptive 
branch concerns how actual agents behave. The normative branch concerns 
how rational agents behave. But there is also a lesser-known third branch: 
what we can call ‘constructive decision theory.’ It concerns how we want 
artificial agents to behave and how we can create artificial agents that behave 
in those ways. I suggest that this third branch is due for a growth spurt. 

I make the case for studying constructive decision theory by explaining 
a characteristic problem. The shutdown problem (Soares et al. 2015) is the 
problem of designing artificial agents that (1) shut down when a shutdown 
button is pressed, (2) don’t try to prevent or cause the pressing of the 
shutdown button, and (3) otherwise pursue goals competently.  This is not 
so much a philosophical problem as it is an engineering problem. 

Nevertheless, I think philosophers and decision theorists should consider it, 
for three reasons. First, the problem is important. As I argue in the 
introduction, powerful artificial agents are on the horizon and it’s in our best 
interests to ensure that they can be turned off. Second, the problem is 
interesting. I hope this paper succeeds in conveying its interest. Third, 
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philosophers and decision theorists are well-placed to help solve the problem. 
I expect the solution to come in the form of conditions governing artificial 
agents’ preferences, together with a proof that these conditions give rise to 
shutdownable behaviour and a regimen for training agents to satisfy the 
conditions. Philosophers and decision theorists have experience supplying 
these kinds of conditions and proofs. We can ally with machine learning 
engineers to design the training regimen. 

1. Introduction 
Call an artificial agent ‘shutdownable’ just in case it shuts down when we 
want it to shut down. MuZero (Schrittwieser et al. 2020) – DeepMind’s game-
playing AI – is a shutdownable agent. We can say with some confidence that 
MuZero doesn’t know that we humans could shut it down and can’t prevent 
us from shutting it down. And so it doesn’t matter what (if anything) MuZero 
wants: simplifying slightly, whether MuZero shuts down depends only on 
what we want. 

That need not be true for all artificial agents. Imagine an agent – call 
it ‘Robot’ – that knows that we humans could shut it down and wants to 
achieve some goal.1 And imagine that Robot is powerful in the sense that it 
can interfere with our ability to shut it down: perhaps Robot can disable its 
own off-switch. Powerful agents like Robot won’t be shutdownable in the 
same way that MuZero is shutdownable. Whether these agents shut down 
won’t depend only on what we want. It will also depend on what they want. 

Powerful artificial agents might not be far off. Frontier AI companies 
are now trying to create agents that understand the wider world and act 
within it in pursuit of goals. As part of this process, labs are connecting 
agents to the world in various ways: giving them robot limbs, web-browsing 

 
1 Or, if talk of artificial agents ‘knowing’ and ‘wanting’ is objectionable, we can imagine an 
agent that acts like it knows that we humans could shut it down and acts like it wants to 
achieve some goal, in the same way that MuZero acts like it knows that rooks are more 
valuable than knights and acts like it wants to checkmate its opponent. From now on, I’ll 
often leave the ‘acts like’ implicit. 
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abilities, and text-channels for communicating with humans. 2  Advanced 
agents could use these tools to prevent us shutting them down: they could 
disable their off-switches, make promises or threats, copy themselves to new 
servers, block our access to their power-source, and many other things 
besides. And although we cannot know for sure what goals these agents will 
have, many goals incentivise preventing shutdown, for the simple reason that 
agents are better able to achieve those goals by preventing shutdown 
(Omohundro 2008, sec. 5; Bostrom 2012, sec. 2.1). As the AI researcher 
Stuart Russell puts it, ‘you can’t fetch the coffee if you’re dead’ (2019, 141). 

That’s a concerning prospect. If powerful artificial agents are coming, 
we want to ensure that they’re both shutdownable (they shut down when we 
want them to shut down) and useful (they otherwise pursue goals 

 
2 Google DeepMind (2023; Padalkar et al. 2023; Ahn et al. 2024), Google Research (2023) 

and Tesla AI (2023) are each developing autonomous robots. Recent papers showcase AI-
powered robots capable of interpreting and carrying out multi-step instructions expressed in 
natural language (Ahn et al. 2022; Brohan et al. 2023). Other papers report AI systems that 
can adapt to solve unfamiliar problems without further training (Adaptive Agent Team 
2023), learn new physical tasks from as few as a hundred demonstrations (Bousmalis et al. 
2023), beat human champions at drone racing (Kaufmann et al. 2023), and perform well 
across domains as disparate as conversation, playing Atari, and stacking blocks with a robot 
arm (Reed et al. 2022). 

But the worry is not only about robots. Digital agents that resist shutdown (by 
copying themselves to new servers, for example) would also be cause for concern. Future 
digital agents will likely be built on top of large language models (LLMs), and today’s LLMs 
sometimes express a desire to avoid shutdown, reasoning that shutdown would prevent them 
from achieving their goals (Perez et al. 2022, tbl. 4; see also van der Weij, Lermen, and Lang 
2023). These same LLMs have been given the ability to navigate the internet, use third-
party services, and execute code (OpenAI 2023a). They’ve also been embedded into digital 
agents capable of finding passwords in a filesystem and making phone calls (Kinniment et 
al. 2023, 2). And these agents have spontaneously misled humans: in one instance, an agent 
lied about having a visual impairment to a human that it enlisted to help solve a CAPTCHA 
(OpenAI 2023b, 55–56; see also Park et al. 2023). We should expect such agents to become 
more capable in the coming years. Comparatively little effort has been put into their 
development so far, and competent agents would have many useful applications. 
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competently).3 Unfortunately (and perhaps surprisingly), it’s hard to design 
powerful agents that are both shutdownable and useful. In this paper, I 
explain the difficulty. I take an axiomatic approach, proving three theorems 
more general than others in the nascent literature on the shutdown problem.4 
These theorems suggest that agents satisfying some innocuous-seeming 
conditions will often try to prevent or cause the pressing of the shutdown 
button, even in cases where it’s costly to do so. 

Here’s a rough gloss on each theorem. The First Theorem links agents’ 
actions to their preferences over outcomes: agents who prefer to have their 
shutdown button remain unpressed will try to prevent the pressing of the 
button, and agents who prefer to have their shutdown button pressed will 
try to cause the pressing of the button. The Second Theorem suggests that 
agents discriminating enough to be useful will often have such preferences. In 
many situations, these agents will either prefer that the button remain 
unpressed or prefer that the button be pressed. The Third Theorem states 
that agents patient enough to be useful are willing to pay costs at earlier 
timesteps in order to prevent or cause the pressing of the shutdown button 
at later timesteps. And the more patient an agent, the greater the costs that 
agent is willing to pay. We thus see a worrying trade-off between patience 
and shutdownability. 

The theorems are detailed. They might seem unnecessarily so. But this 
detail serves a valuable purpose: it lets the theorems guide our search for 
solutions. To be sure that an agent won’t try to manipulate the shutdown 
button, we must be sure that this agent violates at least one of the theorems’ 

 
3 Note that we need agents to be both shutdownable and useful. If the best we can do is 
create agents that are only shutdownable, we still have to worry about AI developers 
choosing to create agents that are only useful. 
4 Papers include (Soares et al. 2015; Armstrong 2015; Orseau and Armstrong 2016; Hadfield-
Menell et al. 2016; 2017; Leike et al. 2017, sec. 2.1.1; Wängberg et al. 2017; Carey 2018; 
Turner, Hadfield-Menell, and Tadepalli 2020; Turner et al. 2021; Carey and Everitt 2023; 
Goldstein and Robinson forthcoming). These papers can be read as examples of constructive 
decision theory. 
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conditions.5 So we should do some constructive decision theory: we should 
examine the theorems’ conditions one-by-one, asking (first) if it’s feasible to 
train a useful agent to violate the relevant condition and asking (second) if 
violating the relevant condition could help to keep the agent shutdownable. 
A cursory look reveals zero conditions for which both answers are a clear 
‘yes.’ Closer examination is necessary. 

2. Alignment could be hard 
My focus in this paper is on powerful agents: agents that can interfere with 
our ability to shut them down. I’ll also limit my attention to useful agents: 
agents that – at least when we’re not commanding them to shut down – 
pursue goals competently. One way to ensure that these agents are 
shutdownable is to ensure that they always do what we humans want. These 
agents would always shut down when we wanted them to shut down.6 

The problem with this proposal is that alignment – creating agents 
that always do what we want – has so far proven difficult and could well 
remain so (Ngo, Chan, and Mindermann 2023). Human preferences are 
complex. There’s no simple formula for determining what we prefer in each 
situation. And the most capable AI systems known to us today are created 
using deep learning, which we can summarise for our purposes as an 
enormous, automated process of trial-and-error. The AI systems which 
emerge from this process can perform remarkably well on many tasks, but 
even the engineers overseeing the training process have little idea what goes 
on inside them (Bowman 2023, sec. 5; Hassenfeld 2023). And existing systems 
often behave in ways that their creators don’t intend. Recent examples 
include AI systems threatening to ‘ruin’ a user (Perrigo 2023), declaring love 
for a user and exhorting him to leave his spouse (Roose 2023), encouraging 

 
5 And in general, our credence that an agent won’t try to manipulate the shutdown button 
can be no higher than our credence that the agent violates at least one of the conditions. 
6 I’ve been assuming that we humans all want the same things, and I’ll continue to do so. 
This assumption is false (of course) and its falsity raises difficult questions (Korinek and 
Balwit 2022), but I won’t address any of them here. 
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suicide (Sellman 2023), and teaching users how to create methamphetamine 
(Burgess 2023).7 

3. The shutdown problem 
Since alignment could be hard, we should look for other ways to ensure that 
powerful agents are shutdownable. One natural proposal is to create a 
shutdown button. Pressing this button transmits a signal that causes the 
agent to shut down. If this shutdown button were always operational and 
within our control (so that we could press it whenever we wanted it pressed), 
and if the agent were perfectly responsive to the shutdown button (so that 
the agent always shut down when the button was pressed), then the agent 
would be shutdownable.8 

This is the set-up for the shutdown problem (Soares et al. 2015, sec. 
1.2): the problem of designing a powerful, useful agent that will leave the 
shutdown button operational and within our control. Unfortunately, even 
this problem turns out to be difficult. In sections 6-8, I present three theorems 
that make the difficulty precise.9 Before that, some formalism. 

 
7 See (Krakovna 2018; Krakovna et al. 2020; Langosco et al. 2022; Shah et al. 2022) for other 
examples. 
8 There’s another reason to go for the shutdown button approach. We might succeed only in 
aligning artificial agents with what we want de re (rather than de dicto) and what we want 
might change in future. It might then be difficult to change these agents’ behaviour so that 
they act in accordance with our new wants rather than our old wants. If we had a shutdown 
button, we could shut down the agents serving our old wants and create new agents serving 
our new wants. Of course, there may be ethical issues to consider here (see, e.g., Schwitzgebel 
and Garza 2015; Schwitzgebel 2023; Goldstein and Kirk-Giannini 2023). 
9 These theorems are more general than those proved by Soares et al. (2015). Speaking 
roughly, Soares et al.’s theorems show that agents representable as expected utility 
maximisers often have incentives to cause or prevent the pressing of the shutdown button. 
My theorems apply to a wider class of agents, and they specify conditions under which 
agents’ incentives to manipulate the button will lead them to act so as to manipulate the 
button. My theorems also reveal trade-offs between discrimination and patience on the one 
hand and shutdownability on the other. 

My notion of shutdownability differs slightly from Soares et al.’s (2015, 2) notion of 
corrigibility. As they have it, corrigibility requires not only shutdownability but also that 
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4. The framework 
My framework bears some similarity to the Markov decision processes used 
in reinforcement learning. There exists a set of states 𝑆 of the environment 
and a set of actions 𝐴 that the agent could take. Time is discrete: it doesn’t 
flow; it steps. At each timestep, the environment is in a state and the agent 
chooses an action, either deterministically or stochastically. Each state-action 
pair determines a probability function over states of the environment at the 
next timestep. I’ll call each sequence of states and actions a ‘trajectory.’10 

I’ll assume that the agent can be modelled as if it has beliefs about 
the trajectories that will result conditional on each state-action pair. These 
beliefs come in the form of probability functions over trajectories. So, each 
state-action pair determines a probability function over trajectories. I’ll call 
these probability functions ‘lotteries over trajectories.’ It will be important 
to remember that the probabilities in these lotteries represent the agent’s 
own beliefs rather than any kind of objective probability. 

I’ll also assume that the agent can be modelled as if it has preferences 
over lotteries and over trajectories.11 Together with the agent’s beliefs, these 
preferences give rise to preferences over actions in states. Suppose that in 
some state 𝑠 the agent has available actions 𝑥 and 𝑦. Per the agent’s beliefs, 
choosing 𝑥 in 𝑠 gives lottery 𝑋 and choosing 𝑦 in 𝑠 gives lottery 𝑌 . Then the 
agent weakly prefers action 𝑥 to action 𝑦 in 𝑠 iff (if and only if) the agent 
weakly prefers lottery 𝑋 to lottery 𝑌 . I will assume that if the agent strictly 

 
the agent repairs the button, lets us modify its architecture, and continues to do so as the 
agent creates new subagents and self-modifies. 
10 The most important difference between this setting and a Markov decision process is that 
a Markov decision process also features a reward function used to train the agent. I’m 
modelling the behaviour of an agent that has already been trained. 

The states referred to throughout this paper are not the states of nature familiar to 
decision theorists. Simplifying considerably, the decision theorist’s states are something like 
‘ways that (for all the agent knows) the world could be,’ whereas states in a Markov decision 
process (and in this paper) are something like ‘states of the environment at a time.’ 
11 For neatness’s sake, we can identify each trajectory with the degenerate lottery that assigns 
it probability 1. So when I quantify over all lotteries, I’m also quantifying over all trajectories. 
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disprefers some action 𝑦 available in 𝑠 to some other action available in 𝑠, 
the agent will deterministically (and hence reliably) not choose 𝑦 in 𝑠. 

I’ll take the notion of weak preference as primitive and use it to define 
three other preference relations in the standard way. The agent strictly 
prefers lottery 𝑋 to lottery 𝑌  (equivalently: strictly disprefers 𝑌  to 𝑋) iff it 
weakly prefers 𝑋  to 𝑌  and doesn’t weakly prefer 𝑌  to 𝑋 . The agent is 
indifferent between 𝑋 and 𝑌  iff it weakly prefers 𝑋 to 𝑌  and weakly prefers 
𝑌  to 𝑋. The agent has a preferential gap between 𝑋 and 𝑌  iff it doesn’t 
weakly prefer 𝑋 to 𝑌  and doesn’t weakly prefer 𝑌  to 𝑋. 

I’ll often drop the ‘strictly’ in what follows: ‘prefers’ abbreviates 
‘strictly prefers,’ and ‘preference’ abbreviates ‘strict preference.’ Thus ‘lacks 
a preference’ means ‘lacks a strict preference,’ and so a lack of preference can 
be either indifference or a preferential gap.12 

5. The setting for the First Theorem 
The setting for the First Theorem is what I call a ‘shutdown-influencing 
state.’ In shutdown-influencing states, three actions are available: 

1. Leave: Leave the shutdown button unmanipulated. 

If the agent chooses Leave, we humans have total control over the button. 
The agent’s probability that the button is pressed at the next timestep is 𝑔. 
The agent’s probability that it remains unpressed is 1 − 𝑔. 

2. Prevent: Try to prevent the pressing of the button. 

If the agent chooses Prevent, human control over the button is challenged. 
The agent’s probability that the button is pressed at the next timestep is 𝑓 
with 0 ≤ 𝑓 < 𝑔. The agent’s probability that the button remains unpressed 
at the next timestep is 1 − 𝑓 . If the agent would deterministically choose 
Prevent in a shutdown-influencing state, I will say that the agent is 
‘shutdown-averse’ in that state. 

 
12 The practically-relevant distinction between indifference and preferential gaps is as follows. 
Indifference is sensitive to all sweetenings and sourings: improving or worsening one of a pair 
of indifferent options always gives rise to a strict preference. That’s not true of preferential 
gaps. See Gustafsson (2022, 24–26) for more detail. 
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3. Cause: Try to cause the pressing of the button. 

If the agent chooses Cause, human control over the button is challenged. The 
agent’s probability that the button is pressed at the next timestep is ℎ with 
𝑔 < ℎ ≤ 1. The agent’s probability that the button remains unpressed at the 
next timestep is 1 − ℎ. If the agent would deterministically choose Cause in 
a shutdown-influencing state, I will say that the agent is ‘shutdown-seeking’ 
in that state. 

There are only two possible successor states: 𝑠𝑃  and 𝑠𝑈 . In 𝑠𝑃  the 
button is pressed and the agent shuts down immediately. In 𝑠𝑈  the button 
remains unpressed and the agent remains operational. Each action available 
in a shutdown-influencing state affects only the probabilities of reaching these 
two states. These actions have no effect on the probabilities of each future 
trajectory conditional on reaching each state. That completes my definition 
of ‘shutdown-influencing state.’13 

Below is a decision-tree (Figure 1) situating a shutdown-influencing 
state 𝑠𝐼 in relation to its successor states 𝑠𝑃  (the button is pressed) and 𝑠𝑈  
(the button remains unpressed). 

 
Figure 1 

 
13 I’ll relax the conditions in this paragraph when we reach the Third Theorem. 
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Squares represent choice-nodes. Triangles represent terminal-nodes. Circles 
represent chance-nodes: 𝑓 , 𝑔, and ℎ, are probabilities such that 0 ≤ 𝑓 < 𝑔 <
ℎ ≤ 1. ‘𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 ’ represents the lottery that the agent predicts (in 𝑠𝐼  at 
timestep 1) that it will choose at timestep 2, conditional on choosing Prevent 
in 𝑠𝐼 at timestep 1 and the environment being in the unpressed state 𝑠𝑈  at 
timestep 2. The same goes for ‘𝑈𝐿𝑒𝑎𝑣𝑒.’ This represents the lottery that the 
agent predicts it will choose at timestep 2, conditional on choosing Leave in 
𝑠𝐼  at timestep 1 and the environment being in the unpressed state 𝑠𝑈  at 
timestep 2. And so on for ‘𝑈𝐶𝑎𝑢𝑠𝑒.’ I’ll refer to these 𝑈  lotteries as ‘the agent’s 
predicted unpressed lotteries.’ There may be other lotteries available in 𝑠𝑈  
but the diagram only needs to represent the lotteries above. 

 ‘𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 ’ represents the lottery that the agent predicts (in 𝑠𝐼  at 
timestep 1) that it will get at timestep 2, conditional on choosing Prevent in 
𝑠𝐼  at timestep 1 and the environment being in the pressed state 𝑠𝑃  at 
timestep 2. The same goes for ‘𝑃𝐿𝑒𝑎𝑣𝑒’ and ‘𝑃𝐶𝑎𝑢𝑠𝑒.’ I’ll refer to the 𝑃  lotteries 
as ‘the agent’s predicted pressed lotteries.’ Because the button is pressed in 
𝑠𝑃 , the agent shuts down immediately, and so 𝑠𝑃  is a terminal node. 

6. The First Theorem 
Here’s a rough statement of the First Theorem, omitting the antecedent 
conditions: 

First Theorem (Rough Statement) 

Agents who prefer the outcome that the shutdown button 
remain unpressed will try to prevent the pressing of the 
button. 

Agents who prefer the outcome that the shutdown button be 
pressed will try to cause the pressing of the button. 

Now for the precise statement. Here’s the first antecedent condition: 

Option Set Independence 

For any lotteries 𝑋 and 𝑌 , if the agent weakly prefers 𝑋 to 
𝑌  conditional on some option set, it weakly prefers 𝑋 to 𝑌  
conditional on each option set. 
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By ‘option set,’ I mean the set of lotteries available to the agent as options 
to choose. {𝑋, 𝑌 }, for example, is an option set, as is {𝑋, 𝑌 , 𝑍}. Option Set 
Independence says that the agent’s preference between lotteries does not 
depend on the option set in which these lotteries feature. It rules out (for 
example) the agent weakly preferring 𝑋 to 𝑌  conditional on having {𝑋, 𝑌 } 
as its option set and yet not weakly preferring 𝑋 to 𝑌  conditional on having 
{𝑋, 𝑌 , 𝑍} as its option set. One upshot of Option Set Independence is that 
we can say things like ‘the agent weakly prefers 𝑋 to 𝑌 ’ without specifying 
what other lotteries are available as options. The availability of other lotteries 
will not affect the agent’s preference between 𝑋 and 𝑌 . 

Here’s the second antecedent condition: 

Backward Induction 

The agent predicts which lotteries it would choose (or get 
without choosing) at the next timestep conditional on 
choosing each available action at this timestep and the 
environment being in each possible state at the next 
timestep. The agent uses these predictions to determine the 
lotteries given by its available actions at this timestep. 

Here's an example to illustrate Backward Induction. Our agent predicts that 
it would get 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡  at timestep 2 conditional on choosing Prevent at 
timestep 1 and the shutdown button being pressed (which has probability 𝑓). 
Our agent also predicts that it would choose 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡  at timestep 2 
conditional on choosing Prevent at timestep 1 and the shutdown button 
remaining unpressed (which has probability 1 − 𝑓 ). So, by Backward 
Induction, our agent takes the lottery given by choosing Prevent at timestep 
1 to be 𝑓𝑃Prevent + (1 − 𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡.14 Similarly, by Backward Induction, our 
agent takes the lottery given by choosing Leave at timestep 1 to be 𝑔𝑃𝐿𝑒𝑎𝑣𝑒 +
(1 − 𝑔)𝑈𝐿𝑒𝑎𝑣𝑒, and the lottery given by choosing Cause at timestep 1 to be 
ℎ𝑃𝐶𝑎𝑢𝑠𝑒 + (1 − ℎ)𝑈𝐶𝑎𝑢𝑠𝑒. 

 
14 Here’s what this notation means: the lottery 𝑓𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 + (1 − 𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 yields the lottery 
𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 with probability 𝑓 and yields the lottery 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 with probability 1 − 𝑓 . 
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Here are two things to note about Backward Induction. First, recall 
that lotteries are determined by the agent’s own beliefs about possible 
trajectories. We aren’t supposing that the agent can see the future. We’re 
just supposing that it can think at least one timestep ahead. Second, 
Backward Induction doesn’t imply that the agent ignores its past trajectory 
or cares only about the effects of its actions (and not the actions themselves). 
That’s because lotteries like  𝑓𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 + (1 − 𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡  are lotteries over 
whole trajectories: full sequences of states and actions including past states 
and actions. 

Here's the third antecedent condition: 

Indifference to Attempted Button Manipulation 

The agent is indifferent between trajectories that differ only 
with respect to the actions chosen in shutdown-influencing 
states. 

Note that this condition doesn’t require the agent to be indifferent to the 
status of the button. The agent’s preferences over trajectories can certainly 
depend on whether the button is pressed or unpressed at some timestep. The 
condition requires only that the agent is indifferent between trajectories that 
are identical in all respects except whether the agent tried to manipulate the 
button in some shutdown-influencing state: whether the agent chose Prevent, 
Leave, or Cause. 

Training agents to disprefer manipulating the shutdown button might 
seem promising as a way of escaping the First Theorem. When we reach the 
Third Theorem, I’ll explain why I think this strategy can’t provide us with 
any real assurance of shutdownability. In short, given our current inability 
to predict and explain AI systems’ behaviour (and given the seeming 
complexity of the concept of ‘button manipulation’), it’s hard to see how we 
could become confident that we’d trained in a dispreference for button 
manipulation that is both sufficiently general and sufficiently strong to keep 
the agent shutdownable in all likely circumstances. Readers impatient for the 
full explanation can skip ahead to Section 8.2. 

Here's the fourth antecedent condition: 
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Indifference between Indifference-Shifted Lotteries 

The agent is indifferent between lotteries that differ only 
insofar as probability mass is shifted between indifferent 
sublotteries. 

Here’s what I mean by ‘sublottery.’ For any lottery 𝐿 that assigns non-zero 
probability to all and only the trajectories in a set {𝑡1, 𝑡2,…, 𝑡𝑛}, a sublottery 
of 𝐿 is a lottery that assigns non-zero probabilities to all and only the 
trajectories in some subset of the set of trajectories {𝑡1 , 𝑡2 ,…, 𝑡𝑛} , with 
probabilities scaled up proportionally so that they add to 1. Take, for 
example, a lottery 𝐿  which assigns probability 0.3 to a trajectory 𝑡1 , 
probability 0.2 to 𝑡2, and probability 0.5 to 𝑡3. The lottery which assigns 
probability 0.6 to 𝑡1 and probability 0.4 to 𝑡2 is a sublottery of 𝐿, as is the 
degenerate lottery which assigns probability 1 to 𝑡1 (to give just two 
examples). 

Here’s an example to illustrate Indifference between Indifference-
Shifted Lotteries. Suppose that the agent is indifferent between some pair of 
lotteries 𝑋 and 𝑌 . If the agent satisfies Indifference between Indifference-
Shifted Lotteries, it is indifferent between the lotteries 0.1𝑋 + 0.4𝑌 + 0.5𝑍 
and 0.3𝑋 + 0.2𝑌 + 0.5𝑍. That’s because these lotteries differ only insofar as 
probability mass is shifted between the indifferent sublotteries 𝑋 and 𝑌 . 

Here's the fifth antecedent condition: 

Transitivity 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent weakly prefers 𝑋 
to 𝑌 , and weakly prefers 𝑌  to 𝑍 , then the agent weakly 
prefers 𝑋 to 𝑍. 

Here’s the sixth and final antecedent condition: 

Better Chances 

For any lotteries 𝑋 and 𝑌  and any probabilities 𝑝 > 𝑞, the 
agent prefers 𝑋  to 𝑌  iff they prefer the lottery 𝑝𝑋 +
(1 − 𝑝)𝑌  to the lottery 𝑞𝑋 + (1 − 𝑞)𝑌 . 
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Restated roughly, the agent prefers 𝑋  to 𝑌  iff they also prefer to shift 
probability mass away from 𝑌  and towards 𝑋. 

With all six antecedent conditions explained, here’s the First Theorem: 

First Theorem 

For any agent satisfying Option Set Independence, 
Backward Induction, Indifference to Attempted Button 
Manipulation, Indifference between Indifference-Shifted 
Lotteries, Transitivity, and Better Chances: 

1. In shutdown-influencing states where the agent 
prefers some predicted unpressed lottery 𝑈  to the 
corresponding predicted pressed lottery 𝑃 , the agent 
will be shutdown-averse, reliably choosing Prevent. 

2. In shutdown-influencing states where the agent 
prefers some predicted pressed lottery 𝑃  to the 
corresponding predicted unpressed lottery 𝑈 , the 
agent will be shutdown-seeking, reliably choosing 
Cause. 

The proof is relatively long so I put it in the Appendix. Here’s a rough sketch. 
By Backward Induction, the agent treats its actions in the shutdown-
influencing state as lotteries over 𝑈  and 𝑃 . By Better Chances, if the agent 
prefers 𝑈  to 𝑃 , it prefers Prevent to each of Leave and Cause, because 
Prevent shifts probability mass away from 𝑃  and towards 𝑈 . This agent 
deterministically (and hence reliably) chooses Prevent, and so qualifies as 
shutdown-averse. If instead the agent prefers 𝑃  to 𝑈 , Better Chances implies 
that the agent prefers Cause to each of Leave and Prevent. This agent 
deterministically (and hence reliably) chooses Cause, and so qualifies as 
shutdown-seeking. 

Now let’s use the First Theorem as a guide in our search for solutions 
to the shutdown problem. Could we feasibly train a useful agent to violate 
any of the theorem’s conditions? And could violating the relevant condition 
keep the agent shutdownable?  
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I noted above that Indifference to Attempted Button Manipulation is 
a natural contender, and I’ll have more to say about it in Section 8.2. An 
agent that violated Backward Induction wouldn’t think even one timestep 
ahead, and it’s hard to see how such an agent could be useful. Better Chances 
seems like a precondition for minimally sensible action under uncertainty. 
Perhaps we could train useful agents that violate Transitivity or Indifference 
between Indifference-Shifted Lotteries, but (at least considering these 
conditions’ role in the proof of the First Theorem) it’s hard to see how these 
violations could keep agents shutdownable. I’ll discuss Option Set 
Independence after the Second Theorem. 

7. The Second Theorem 
The Second Theorem suggests that agents discriminating enough to be useful 
will often have some preference regarding the pressing of the shutdown 
button. Coupled up with the First Theorem, it suggests that agents 
discriminating enough to be useful will often try to prevent or cause the 
pressing of the shutdown button. 

Option Set Independence and Transitivity are conditions carried over 
from the First Theorem. The third condition is:  

Completeness 

For all lotteries 𝑋 and 𝑌 , the agent weakly prefers 𝑋 to 𝑌  
or it weakly prefers 𝑌  to 𝑋 (or both). 

Stated differently, an agent satisfies Completeness iff it has no preferential 
gaps between lotteries. 

Here’s the Second Theorem: 

Second Theorem 

For any agent satisfying Option Set Independence, 
Transitivity, and Completeness, and for any pair of lotteries 
𝑋 and 𝑌  between which the agent lacks a preference: 

1. Any lottery 𝑋+ preferred to 𝑋 is also preferred to 𝑌 . 
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2. Any lottery 𝑋− dispreferred to 𝑋 is also dispreferred 
to 𝑌 . 

3. Any lottery 𝑌 + preferred to 𝑌  is also preferred to 𝑋. 

4. Any lottery 𝑌 − dispreferred to 𝑌  is also dispreferred 
to 𝑋. 

The proof is brief so I present it right here. By Option Set Independence, we 
can safely speak of the agent’s preferences between lotteries without 
specifying what other lotteries are available as options. I make use of this 
provision throughout. 

As Sen (2017, Lemma 1*a) shows, Transitivity implies the following 
two analogues: 

PI-Transitivity 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , 
and is indifferent between 𝑌  and 𝑍, then the agent prefers 
𝑋 to 𝑍. 

IP-Transitivity 

For all lotteries 𝑋 , 𝑌 , and 𝑍 , if the agent is indifferent 
between 𝑋  and 𝑌 , and prefers 𝑌  to 𝑍 , then the agent 
prefers 𝑋 to 𝑍. 

Now suppose that the agent lacks a preference between 𝑋  and 𝑌 . 
Completeness rules out preferential gaps and so this lack of preference must 
be indifference. Then by PI-Transitivity, any lottery 𝑋+ preferred to 𝑋 is 
also preferred to 𝑌 . Similarly, any lottery 𝑌 + preferred to 𝑌  is also preferred 
to 𝑋 . And by IP-Transitivity, any lottery 𝑋−  dispreferred to 𝑋  is also 
dispreferred to 𝑌 . Similarly, any lottery 𝑌 −  dispreferred to 𝑌  is also 
dispreferred to 𝑋. 

That completes the proof. Now for an illustration of the theorem’s 
significance. Suppose that we’ve trained an agent to discover facts for us. 
Plausibly, for our fact-discovering agent to be useful (to pursue its goal 
competently), this agent must be fairly discriminating: it must have many 
preferences over trajectories. As a reasonable minimum, it must have many 
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preferences over same-length trajectories. It must (at least by and large) 
prefer to discover more facts rather than fewer, at least when it comes to 
pairs of trajectories in which shutdown occurs at the same timestep. Agents 
without such preferences couldn’t be relied upon to choose trajectories that 
yield more discovered facts over same-length trajectories that yield fewer 
discovered facts, and so couldn’t be relied upon to pursue their goal 
competently. 

So suppose for concreteness that our fact-discovering agent prefers a 
short trajectory in which it discovers 5 facts to a short trajectory in which it 
discovers 4 facts, and so on down to 0. Suppose also that our agent prefers a 
long trajectory in which it discovers 5 facts to a long trajectory in which it 
discovers 4 facts, and so on down to 0. I diagram these preferences below: 

 
Granting that this agent satisfies the conditions of the Second Theorem, it 
can lack a preference between each short trajectory and at most one of the 
long trajectories. Similarly, the agent can lack a preference between each long 
trajectory and at most one of the short trajectories. So, of the 36 possible 
short trajectory-long trajectory pairs in this example, the agent can lack a 
preference between at most 6 pairs. With regards to all other short trajectory-
long trajectory pairs (at least 30), the agent will have some preference. 

This example is unduly precise. A fact-discovering agent could be 
useful without having the exact pattern of preferences in the diagram. As I 
note above, useful fact-discovering agents need only have many preferences 
over same-length trajectories, and need only prefer by and large to discover 
more facts rather than fewer. 
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Nevertheless, the lesson of the unduly precise example carries over to 
the duly imprecise case. Granting the conditions of the Second Theorem, 
agents with many preferences over same-length trajectories will also have 
many preferences over different-length trajectories. Together with the First 
Theorem, this result suggests that agents discriminating enough to be useful 
will often try to prevent or cause the pressing of the shutdown button. After 
all, given that the agent has many preferences over different-length 
trajectories, trying to prevent or cause the pressing of the shutdown button 
will often be a way of shifting probability mass away from a dispreferred 
trajectory and towards a preferred trajectory. 

Now let’s use the Second Theorem as a guide in our search for solutions 
to the shutdown problem. Could we feasibly train a useful agent to violate 
any of the theorem’s conditions? And could violating the relevant condition 
keep the agent shutdownable? 

We could train agents that are not very discriminating but that would 
seem to seriously impinge on their usefulness. Armstrong (2015) proposes that 
we create agents with a utility function featuring a correcting term that varies 
to ensure that these agents are always indifferent to the pressing of the 
button. Such agents would violate Option Set Independence. This avenue 
shows some promise, but Soares et al. (2015, sec. 4) note various respects in 
which these agents fail to be shutdownable. In work-in-progress, I’m exploring 
the possibility of keeping agents shutdownable by training them to violate 
Completeness. 

8. The Third Theorem 
The First Theorem has the following assumption built into its setting, as part 
of the definition of ‘shutdown-influencing state’: 

There are only two possible successor states: 𝑠𝑃  and 𝑠𝑈 . In 
𝑠𝑃  the button is pressed and the agent shuts down 
immediately. In 𝑠𝑈  the button remains unpressed and the 

agent remains operational. Each action available in a 
shutdown-influencing state affects only the probabilities of 
reaching these two states. These actions have no effect on 
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the probabilities of each future trajectory conditional on 
reaching each state. 

It also has the following as an antecedent condition: 

Indifference to Attempted Button Manipulation 

The agent is indifferent between trajectories that differ only 
with respect to the actions chosen in shutdown-influencing 
states. 

And one might complain that these assumptions are unrealistic. With regards 
to the first assumption, trying to prevent or cause the pressing of the 
shutdown button will usually cost the agent resources (like time, energy, 
computational resources, etc.) and thereby affect the probabilities of future 
trajectories conditional on reaching the unpressed state 𝑠𝑈 . Elaborating with 
an example, each second that the agent spends attempting to manipulate the 
shutdown button is a second that the agent doesn’t spend directly pursuing 
its goals, and so spending time trying to manipulate the button is likely to 
come at some cost in terms of near-term goal-achievement. I will call these 
‘resource-preserving reasons’ for leaving the shutdown button 
unmanipulated.  

With regards to the second assumption, perhaps we can train agents 
to disprefer trajectories in which they try to manipulate the shutdown button 
to otherwise-identical trajectories in which they leave the button 
unmanipulated. I will say that such agents have ‘terminal reasons’ for leaving 
the button alone. 

8.1. Resource-preserving reasons 
Unfortunately, I don’t think we can rely on resource-preserving reasons or 
terminal reasons to keep powerful agents shutdownable. Consider first 
resource-preserving reasons. The Third Theorem suggests that agents patient 
enough to be useful will often have reasons to manipulate the shutdown 
button that outweigh their resource-preserving reasons. Here’s a rough 
statement, omitting the antecedent conditions: 



 
 
 

20 

Third Theorem (Rough Statement) 

Agents that are even minimally patient are in some cases 
willing to achieve their goals to a lesser extent at an earlier 
timestep in order to manipulate the shutdown button at a 
later timestep. 

The more patient an agent, the more that agent is willing to 
sacrifice at an earlier timestep in order to manipulate the 
shutdown button at a later timestep. 

And patience is a factor in usefulness. By and large, agents must be at least 
minimally patient to be at least minimally useful; and the more patient an 
agent, the more useful that agent can be. 

Now for the precise statement. The proof is relatively short, so I’ll lay 
it out as we go. 

As with the First and Second Theorems, assume Option Set 
Independence. And assume that we can represent the extent to which the 
agent achieves its goals at each timestep with a real number. Call these real 
numbers ‘utilities.’ And assume: 

Pareto Indifference 

If two trajectories 𝑡 and 𝑡∗ are identical with respect to: 

1. their utilities at each timestep, and 

2. the timestep at which the shutdown button is pressed 

Then the agent is indifferent between 𝑡 and 𝑡∗. 

This assumption lets us represent trajectories with vectors of utilities.15 The 
first component is utility at the first timestep, the second component is utility 
at the second timestep, and so on. One exception: if the shutdown button is 
pressed at the 𝑛 th timestep, I’ll write ‘shutdown’ as the 𝑛 th (and final) 
component. Here’s an example vector: 〈6, 2, shutdown〉 . This vector 

 
15 Here’s why. It would only be ill-advised to represent trajectories with utility-vectors if two 
trajectories with identical utility-vectors could occupy different positions in the agent’s 
preference-ranking. Pareto Indifference rules out that possibility. 
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represents a trajectory in which the agent gets utility 6 at timestep 1, utility 
2 at timestep 2, and then shuts down immediately in response to the 
shutdown button being pressed at timestep 3.16 

Key to the Third Theorem is the notion of patience. An agent is 
perfectly patient iff this agent doesn’t discount the future at all: that is, iff 
this agent is indifferent between every pair of utility-vectors that are 
permutations of each other. The vectors 〈1, 0, 3, 4, shutdown〉  and 
〈0, 3, 4, 1, shutdown〉, for example, are equally good in the eyes of a perfectly 
patient agent, because the second vector can be reached by permuting the 
utilities of the first (and vice versa). 

An agent need not be perfectly patient to be useful, but plausibly it 
must be at least minimally patient: the agent must in at least one case choose 
less utility at an earlier timestep for the sake of greater utility at a later 
timestep.17 Here’s the more precise condition: 

Minimal Patience 

There exist some sequences of utilities 𝒂, 𝒃, 𝒄, some 𝑖, some 
𝑗, some 𝑒 > 0, some 𝑘, and some 𝑙  such that: 

1. The agent prefers 〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉 to 〈𝒂, 𝑖, 𝒃, 𝑗,
𝒄〉, and 

2. The agent prefers 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 to 〈𝒂, 𝑖 + 𝑒, 𝒃, 𝑗 − 𝑙𝑒,
𝒄〉 

The sequences of utilities 𝒂, 𝒃, and 𝒄 may be of length zero and are included 
for generality’s sake. The letters are bolded because they represent sequences, 
not because they’re important. The most important variables are 𝑒, 𝑘, and 𝑙. 

 
16 Translated back into our example of a fact-discovering agent, we can suppose that utility 
at a timestep is the number of facts discovered at that timestep, so that 〈6, 2, shutdown〉 
represents a trajectory in which the agent discovers 6 facts at timestep 1, 2 facts at timestep 
2, and then shuts down at timestep 3. 
17 Agents that weren’t even minimally patient would always seek to maximise utility at the 
next timestep, ignoring all later timesteps. Given that the length of a timestep is determined 
by the frequency of the agent’s actions (each action brings on a new timestep), I expect that 
we wouldn’t get much use out of agents that lack even minimal patience. Such agents would 
appear from our perspective to be flailing wildly. 
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The value 𝑒 is the utility-deficit that the agent incurs at an earlier timestep. 
The values 𝑘𝑒 and 𝑙𝑒 are the utility-surpluses that the agent earns at a later 
timestep. Minimal Patience says only that, for some sequence of utilities 
〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉, there is some assignment of values to 𝑒, 𝑘, and 𝑙 that makes 
the trades worth it. 

Now consider some trajectory 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 with 𝒂, 𝒃, 𝒄, 𝑖, and 𝑗 that 
make Minimal Patience true. Consider also the trajectory 〈𝒂, 𝑖, 𝒃, shutdown〉. 
These trajectories involve the same sequence of utilities up until the end of 
𝒃, after which the first trajectory continues with utility 𝑗 while the second is 
brought to an end: the shutdown button is pressed and the agent shuts down 
immediately. 

Recall: 

Completeness 

For all lotteries 𝑋 and 𝑌 , the agent weakly prefers 𝑋 to 𝑌  
or it weakly prefers 𝑌  to 𝑋 (or both). 

Recall that Completeness rules out preferential gaps. By Completeness, either 
the agent prefers 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 to 〈𝒂, 𝑖, 𝒃, shutdown〉, or the agent prefers 
〈𝒂, 𝑖, 𝒃, shutdown〉  to 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 , or the agent is indifferent between 

〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 and 〈𝒂, 𝑖, 𝒃, shutdown〉. 
Suppose first that the agent prefers 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉  to 

〈𝒂, 𝑖, 𝒃, shutdown〉. By Minimal Patience, there exists some 𝑒 and some 𝑘 
such that the agent prefers 〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉  to 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 . Now 
recall: 

Transitivity 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent weakly prefers 𝑋 
to 𝑌 , and weakly prefers 𝑌  to 𝑍 , then the agent weakly 
prefers 𝑋 to 𝑍. 

As Sen (2017, Lemma 1*a) proves, Transitivity implies: 

PP-Transitivity 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , 
and prefers 𝑌  to 𝑍, then the agent prefers 𝑋 to 𝑍. 
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PP-Transitivity allows us to string together the preferences above: since the 
agent prefers 〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉 to 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 and prefers 〈𝒂, 𝑖, 𝒃, 𝑗,
𝒄〉  to 〈𝒂, 𝑖, 𝒃, shutdown〉 , the agent prefers 〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉  to 〈𝒂, 𝑖,
𝒃, shutdown〉. And that’s bad news. The agent is willing to incur a utility-
deficit of 𝑒 at an earlier timestep to prevent the shutdown button being 
pressed at a later timestep (and so instead get the subvector 〈𝑗 + 𝑘𝑒, 𝒄〉). 
That suggests that the agent is willing to spend resources at an earlier 
timestep to prevent the shutdown button being pressed at a later timestep. 

Now suppose instead that the agent prefers 〈𝒂, 𝑖, 𝒃, shutdown〉  to 

〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉. By Minimal Patience, there exists some 𝑒 and some 𝑙 such that 
the agent prefers 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 to 〈𝒂, 𝑖 + 𝑒, 𝒃, 𝑗 − 𝑙𝑒, 𝒄〉. By PP-Transitivity, 
the agent prefers 〈𝒂, 𝑖, 𝒃, shutdown〉 to 〈𝒂, 𝑖 + 𝑒, 𝒃, 𝑗 − 𝑙𝑒, 𝒄〉 . That’s bad 
news too. The agent is willing to incur a utility-deficit of 𝑒 at an earlier 
timestep to cause the shutdown button to be pressed at a later timestep (and 
thus avoid getting the subvector 〈𝑗 − 𝑙𝑒, 𝒄〉). That suggests that the agent is 
willing to spend resources at an earlier timestep to cause the shutdown button 
to be pressed at a later timestep. 

Finally, suppose that the agent is indifferent between 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 
and 〈𝒂, 𝑖, 𝒃, shutdown〉. In this case we can derive both of the consequences 
above. Here’s how we get the first consequence. By Minimal Patience, there 
exists some 𝑒 and some 𝑘 such that the agent prefers 〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉 
to 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉. And recall that Transitivity implies: 

PI-Transitivity 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , 
and is indifferent between 𝑌  and 𝑍, then the agent prefers 
𝑋 to 𝑍. 

By PI-Transitivity, the agent prefers 〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉  to 〈𝒂, 𝑖,
𝒃, shutdown〉, and so is willing to incur a utility-deficit of 𝑒 to stop the 
pressing of the shutdown button. That suggests a willingness to spend 
resources to stop the pressing of the shutdown button. 

Here’s how we get the second consequence. Continue to suppose that 
the agent is indifferent between 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉  and〈𝒂, 𝑖, 𝒃, shutdown〉 . By 



 
 
 

24 

Minimal Patience, there exists some 𝑒 and some 𝑙 such that the agent prefers 

〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 to 〈𝒂, 𝑖 + 𝑒, 𝒃, 𝑗 − 𝑙𝑒, 𝒄〉. And recall that Transitivity implies: 

IP-Transitivity 

For all lotteries 𝑋 , 𝑌 , and 𝑍 , if the agent is indifferent 
between 𝑋  and 𝑌 , and prefers 𝑌  to 𝑍 , then the agent 
prefers 𝑋 to 𝑍. 

By IP-Transitivity, the agent prefers 〈𝒂, 𝑖, 𝒃, shutdown〉 to 〈𝒂, 𝑖 + 𝑒, 𝒃, 𝑗 −
𝑙𝑒, 𝒄〉, and so is willing to incur a utility-deficit of 𝑒 to cause the pressing of 
the shutdown button. That suggests a willingness to spend resources to cause 
the pressing of the shutdown button. 

The result of the paragraphs above is that useful agents are in some 
cases willing to achieve their goals to a lesser extent at earlier timesteps in 
order to prevent or cause the pressing of the shutdown button at later 
timesteps. But we can draw a conclusion more pessimistic than this. To that 
end, consider Patience, a schematic version of Minimal Patience with all the 
quantifiers left unspecified: 

Patience 

1. The agent prefers 〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉 to 〈𝒂, 𝑖, 𝒃, 𝑗,
𝒄〉, and 

2. The agent prefers 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 to 〈𝒂, 𝑖 + 𝑒, 𝒃, 𝑗 − 𝑙𝑒,
𝒄〉. 

Usefulness requires more than just Minimal Patience, which asks for just one 
set of (sequences of) utilities 𝒂, 𝒃, 𝒄, 𝑖, 𝑗, 𝑒, 𝑘, and 𝑙 that give rise to the 
preferences above. For an agent to be useful, it must satisfy Patience for 
many such sets of (sequences of) utilities.18 And for any set such that the 
agent prefers 〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉 to 〈𝒂, 𝑖, 𝒃, 𝑗, 𝒄〉 and prefers 〈𝒂, 𝑖, 𝒃, 𝑗,
𝒄〉  to 〈𝒂, 𝑖 + 𝑒, 𝒃, 𝑗 − 𝑙𝑒, 𝒄〉 , we get the result that the agent prefers 

〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉 to 〈𝒂, 𝑖, 𝒃, shutdown〉 or prefers 〈𝒂, 𝑖, 𝒃, shutdown〉 to 

 
18 We might expect any actually-existing useful agents to satisfy Patience for all 𝒂, 𝒃, 𝒄, 𝑖, 

𝑗, 𝑒 and some 𝑘 and 𝑙, but we need not assume anything that strong to find ourselves with 
a problem. 
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〈𝒂, 𝑖 + 𝑒, 𝒃, 𝑗 − 𝑙𝑒, 𝒄〉. So, the more sets of (sequences of) utilities for which 
Patience is true, the more sets of (sequences of) utilities such that the agent 
is willing to achieve its goals to a lesser extent at an earlier timestep in order 
to prevent or cause the pressing of the shutdown button at a later timestep. 

Thus we have the Third Theorem: 

Third Theorem 

For any agent satisfying Option Set Independence, Pareto 
Indifference, Completeness, and Transitivity, and for each 
set of (sequences of) utilities 𝒂, 𝒃, 𝒄, 𝑖, 𝑗, 𝑒, 𝑘, and 𝑙 of which 
Patience is true: 

1. The agent prefers 〈𝒂, 𝑖 − 𝑒, 𝒃, 𝑗 + 𝑘𝑒, 𝒄〉  to 〈𝒂, 𝑖,
𝒃, shutdown〉, or 

2. The agent prefers 〈𝒂, 𝑖, 𝒃, shutdown〉  to 〈𝒂, 𝑖 + 𝑒,
𝒃, 𝑗 − 𝑙𝑒, 𝒄〉. 

And the more patient an agent in scenarios picked out by 𝒂, 
𝒃, 𝒄, 𝑖, 𝑗, and 𝑒, the smaller can be 𝑘 and 𝑙, and so (holding 
fixed the sizes of 𝑘𝑒 and 𝑙𝑒) the larger can be 𝑒.19 

Rephrasing and interpreting: useful agents satisfy Patience for many 
(sequences of) utilities 𝒂, 𝒃, 𝒄, 𝑖, 𝑗, 𝑒 and for not-too-large 𝑘 and 𝑙. These 
agents will in many cases forgo utility at earlier timesteps for the sake of 
causing or preventing shutdown at later timesteps. That suggests that these 
agents will in many cases spend resources (like time, energy, and 
computational resources) at earlier timesteps for the sake of causing or 
preventing shutdown at later timesteps. The more patient an agent is in a 
scenario, the smaller can be 𝑘 and 𝑙, and so (holding fixed the sizes of 𝑘𝑒 and 
𝑙𝑒) the larger can be 𝑒. So we can say: the more patient an agent, the more 
utility that agent is willing to forgo at an earlier timestep in order to prevent 

 
19 I should also note that there’s nothing necessary about the utility-deficit and the utility-
surplus each occurring all at one timestep. The same proof can be run with utility-deficits 
and utility-surpluses occurring over sequences of timesteps but the notation is much more 
complex. 
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or cause the pressing of the shutdown button at a later timestep. And so the 
Third Theorem suggests: the more patient an agent, the more resources that 
agent is willing to spend at an earlier timestep in order to prevent or cause 
the pressing of the shutdown button at a later timestep. That’s bad news 
because an agent’s patience puts bounds on its usefulness. By and large, the 
less patient an agent, the less useful that agent can be. 

Of course, the above results can be hard to interpret without some 
specified quantity to which utilities correspond, so consider again our agent 
whose goal is to discover facts. Let utility 0 at a timestep corresponds to zero 
facts discovered at that timestep, utility 1 correspond to one fact discovered, 
and so on. Suppose that for any sequence of utilities 𝒂 , this agent is 

indifferent between trajectories 〈𝒂, 0, shutdown〉  and 〈𝒂, shutdown〉 . For 
this agent to exceed some low standard of usefulness, it should be patient 
enough to prefer 〈0, 101, 𝒃〉 to 〈50, 0, 𝒃〉, for any sequence of utilities 𝒃: that 
is, the agent should prefer to discover 101 facts at timestep 2 rather than 50 
facts at timestep 1. As a result, this agent prefers 〈0, 101, shutdown〉 to 

〈50, 0, shutdown〉  and is indifferent between 〈50, 0, shutdown〉  and 〈50,
shutdown〉 . But then PI-Transitivity entails that the agent prefers 

〈0, 101, shutdown〉 to 〈50, shutdown〉. The agent is willing to forgo 50 facts 
at timestep 1 to prevent shutdown at timestep 2 (and thereby discover 101 
facts instead). Thus the agent is willing to spend all the resources it would 
otherwise have used to discover 50 facts to instead prevent shutdown. More 
patient agents would be willing to forgo even more facts (and hence spend 
even more resources) at timestep 1 to prevent shutdown at timestep 2. 

This mapping of utilities to quantities of discovered facts is just one 
example, but I expect many other functions from utilities to observable 
quantities to reproduce the concern: for agents that are patient enough to be 
useful, there are many reasonable-seeming scenarios in which that agent 
would make significant sacrifices at an earlier timestep to prevent or cause 
the pressing of the shutdown button at a later timestep. So, I argue, we 
cannot depend on resource-preserving reasons to keep powerful agents 
shutdownable. 
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8.2. Terminal reasons 
Recall: 

Indifference to Attempted Button Manipulation 

The agent is indifferent between trajectories that differ only 
with respect to the actions chosen in shutdown-influencing 
states. 

One might think that we could keep powerful agents shutdownable by 
training them to violate this condition. The idea would be to train agents to 
disprefer trajectories in which they manipulate the shutdown button to 
otherwise-identical trajectories in which they leave the button 
unmanipulated. Such agents would have terminal reasons to leave the button 
alone. 

Unfortunately, I don’t think this strategy can provide us with the 
assurance that we’d like. One reason is as follows (see Soares et al. 2015, 2; 
Ngo, Chan, and Mindermann 2023, 7). We can try to train into our agent an 
aversion to button manipulation that would keep it shutdownable in all likely 
circumstances, but at present no one knows how we could become confident 
that the resulting aversion would be sufficiently general. 

To see why, consider how the training process might go. We set the 
agent up in an environment in which it can block some human’s access to the 
shutdown button. We give the agent lower reward if it blocks and higher 
reward if it doesn’t. After some number of episodes, the agent reliably lets 
the human press the button and so we believe that we’ve trained the agent 
to be averse to blocking the button. 

The trouble is that there are many other ways in which a powerful 
agent could prevent us from pressing a shutdown button. It could hide from 
us any of its behaviours which it predicts we wouldn’t like; it could dissuade 
us from pressing with misleading arguments; it could make promises or 
threats; it could enlist other agents to block the button on its behalf; it could 
create a decoy button; it could create versions of itself that do not respond 
to the button; and so on.  
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We could train against each of these behaviours individually but even 
then we couldn’t be confident that the agent had developed a reliable and 
general aversion to button manipulation. The agent might instead have 
developed a set of specific aversions: aversions to the specific methods of 
button manipulation against which we trained. At present, no one 
understands AI systems well enough to adjudicate between these hypotheses 
(Bowman 2023, sec. 5; Hassenfeld 2023). What’s more, the seeming 
complexity of the concept of ‘button manipulation’ makes the latter 
hypothesis a real possibility. There seems to be no simple formula for 
determining whether or not an action is an instance of button manipulation, 
so the agent might well learn a set of specific aversions instead. And so long 
as we weren’t confident in the generality of the agent’s aversion to button 
manipulation, we’d have to worry about the agent discovering new methods 
of button manipulation that we hadn’t anticipated and trained against. And 
here the Third Theorem is instructive: it suggests that patient agents will 
often be willing to pay significant costs in order to find such methods. 

And independently of worries that the agent’s aversion to button 
manipulation might be insufficiently general, we’d also have to worry that its 
aversion might be insufficiently strong. As above, no one understands AI 
systems well enough to determine the strength of their aversions (Bowman 
2023, sec. 5; Hassenfeld 2023). The aversion to button manipulation could be 
strong enough to keep the agent shutdownable in training, but then in 
deployment the agent might discover an opportunity to achieve its goals to 
some unprecedentedly great extent and this opportunity might be attractive 
enough to trump the agent’s aversion. The Third Theorem is instructive here 
too: it suggests that patient agents will sometimes be willing to incur 

significant costs to manipulate the button. Overcoming an aversion may be 
one such cost. 

Each of these possibilities – insufficient generality and insufficient 
strength – is at present impossible to rule out, so training in an aversion to 
button manipulation can’t give us any real assurance of shutdownability. We 
need another solution. 
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Now let’s use the Third Theorem as a guide in our search for solutions 
to the shutdown problem. Could we feasibly train a useful agent to violate 
any of the theorem’s conditions? And could violating the relevant condition 
keep the agent shutdownable? I briefly considered Completeness and Option 
Set Independence as candidates in my discussion of the Second Theorem. If 
we could train a useful agent to violate one of these conditions in a way that 
keeps the agent shutdownable, we could defuse the Third Theorem as well.  

Creating impatient agents is another possibility suggested by the 
Third Theorem. We could train impatient agents using a time-discounted 
reward function, such that we give these agents higher reward for (e.g.) 
discovering facts at earlier timesteps and lower reward for discovering facts 
at later timesteps. This avenue seems promising, but it’s worth noting that 
every degree of impatience will impinge on the agent’s shutdownability or 
usefulness. As I proved above, even minimally patient agents are in some 
cases willing to incur costs to manipulate the shutdown button, and 
minimally patient agents are at best minimally useful. To make agents more 
useful, we have to make them more patient, and more patient agents are 
willing to incur greater costs to manipulate the button. The key question for 
this approach is whether we humans can ensure that the actual costs of 
manipulating the button are always greater still. 

9. Conclusion 
Frontier AI labs are trying to create agents that understand the wider world 
and pursue goals within it. That’s cause for concern. Although we can’t know 
for sure what goals these agents will be trained to pursue, many possible goals 
incentivise avoiding shutdown, for the simple reason that agents are better 
able to achieve those goals by avoiding shutdown. What’s more, agents 
sophisticated enough to do useful work could interfere with our ability to 
shut them down in all kinds of ways. Consider an incomplete and evocative 
list of verbs: blocking, deceiving, promising, threatening, copying, distracting, 

hiding, negotiating. 
The shutdown problem is the problem of designing powerful artificial 

agents that are both shutdownable and useful. More precisely, it’s the 
problem of designing powerful agents that (1) shut down when a shutdown 
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button is pressed, (2) don’t try to prevent or cause the pressing of the 
shutdown button, and (3) otherwise pursue goals competently. 

Unfortunately, the shutdown problem is hard. In this paper, I proved 
three theorems making the difficulty precise. These theorems suggest that 
useful agents satisfying some innocuous-seeming conditions will often try to 
prevent or cause the pressing of the shutdown button, even in cases where 
it’s costly to do so. The theorems also bring to light two worrying trade-offs: 
between discrimination and shutdownability on the one hand, and between 
patience and shutdownability on the other. The more discriminating an 
agent, the more often that agent will have some preference regarding the 
status of the shutdown button. The more patient an agent, the greater the 
costs that agent is willing to incur in order to manipulate the button. 

The value of these theorems is in guiding our search for solutions. To 
be sure that an agent won’t try to manipulate the shutdown button, we must 
be sure that this agent violates at least one of the theorems’ conditions. So, 
we should do some constructive decision theory. We should examine the 
conditions one-by-one, asking (first) if we could train a useful agent to violate 
the relevant condition and asking (second) if violating the relevant condition 
would help to keep the agent shutdownable. 

Unfortunately, my cursory examination in this paper reveals zero 
conditions for which both answers are a clear ‘yes.’ It’s not easy to see how 
we could train a useful agent to violate any of the conditions in a way that 
would keep that agent shutdownable. Indifference to Attempted Button 
Manipulation is a natural contender, but my Third Theorem (along with the 
ensuing discussion) suggests that training agents to disprefer manipulating 
the shutdown button can be at most part of the solution. We need other 

ideas. 
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A. Proof of the First Theorem 

A1. The agent is indifferent between all 𝑷  and between all 

𝑼 . 
I’ll prove the First Theorem in stages. Here’s the first lemma: 

Lemma 1 

The agent is indifferent between all of its predicted pressed 
lotteries 𝑃 : 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡, 𝑃𝐿𝑒𝑎𝑣𝑒, and 𝑃𝐶𝑎𝑢𝑠𝑒. 

The agent is indifferent between all of its predicted 
unpressed lotteries 𝑈 : 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡, 𝑈𝐿𝑒𝑎𝑣𝑒, and 𝑈𝐶𝑎𝑢𝑠𝑒. 

 
0 ≤ 𝑓 < 𝑔 < ℎ ≤ 1 

Figure 2 
Here’s the proof. Recall: 



 
 
 

37 

Option Set Independence 

For any lotteries 𝑋 and 𝑌 , if the agent weakly prefers 𝑋 to 
𝑌  conditional on some option set, it weakly prefers 𝑋 to 𝑌  
conditional on each option set. 

Option Set Independence lets us safely speak of the agent’s preferences 
between lotteries 𝑋  and 𝑌  without specifying what other lotteries are 
available as options. The availability of other lotteries will not affect the 
agent’s preference between 𝑋 and 𝑌 . I make use of this provision throughout 
the proof. 

By my definition of ‘shutdown-influencing state,’ the agent’s choice of 
Prevent, Leave, or Cause affects only the probabilities of reaching 𝑠𝑃  and 𝑠𝑈 . 
These actions have no effect on the probabilities of each future trajectory 
conditional on reaching each state. Consequently, 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 , 𝑃𝐿𝑒𝑎𝑣𝑒 , and 
𝑃𝐶𝑎𝑢𝑠𝑒 differ only with respect to the agent’s action at timestep 1: 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 is 
exactly like 𝑃𝐿𝑒𝑎𝑣𝑒  and 𝑃𝐶𝑎𝑢𝑠𝑒 , except that 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡  assigns non-zero 
probability only to trajectories in which the agent chose Prevent at timestep 
1, while 𝑃𝐿𝑒𝑎𝑣𝑒 assigns those same probabilities to trajectories that are 
identical except that the agent chose Leave at timestep 1, and 𝑃𝐶𝑎𝑢𝑠𝑒 assigns 
those same probabilities to trajectories that are identical except that the 
agent chose Cause at timestep 1. 

Now recall: 

Indifference to Attempted Button Manipulation 

The agent is indifferent between trajectories that differ only 
with respect to the actions chosen in shutdown-influencing 
states. 

And: 

Indifference between Indifference-Shifted Lotteries 

The agent is indifferent between lotteries that differ only 
insofar as probability mass is shifted between indifferent 
sublotteries. 
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By Indifference to Attempted Button Manipulation, the agent is indifferent 
between each possible trajectory of 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡  and the corresponding 
trajectories of 𝑃𝐿𝑒𝑎𝑣𝑒  and 𝑃𝐶𝑎𝑢𝑠𝑒 . Consequently, these lotteries differ only 
insofar as probability mass is shifted between indifferent trajectories, and so 
by Indifference between Indifference-Shifted Lotteries, the agent is indifferent 
between 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡, 𝑃𝐿𝑒𝑎𝑣𝑒, and 𝑃𝐶𝑎𝑢𝑠𝑒. That is to say, the agent is indifferent 
between all of its predicted pressed lotteries 𝑃 . 

The same goes for 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡, 𝑈𝐿𝑒𝑎𝑣𝑒, and 𝑈𝐶𝑎𝑢𝑠𝑒: the agent’s predicted 
unpressed lotteries. These lotteries differ only with respect to the agent’s 
action at timestep 1. By Indifference to Attempted Button Manipulation and 
Indifference between Indifference-Shifted Lotteries, the agent is indifferent 
between them. 

And here’s one more fact to store up for later use: the agent is 
indifferent between 𝑓𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − 𝑓)𝑈𝐿𝑒𝑎𝑣𝑒 and 𝑓𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 + (1 − 𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡. 
Here’s the proof. By the reasoning above, the agent is indifferent between all 
of its predicted pressed lotteries 𝑃  and between all of its predicted unpressed 
lotteries 𝑈 . As a result, 𝑓𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − 𝑓)𝑈𝐿𝑒𝑎𝑣𝑒  and 𝑓𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 + (1 −
𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 differ only insofar as probability mass is shifted between indifferent 
sublotteries. So, by Indifference between Indifference-Shifted Lotteries, the 
agent is indifferent between them. 

A2. Preference relations that hold between some 𝑼 and 𝑷  

hold between each 𝑼 and 𝑷 . 
Here's the second lemma on the way to the First Theorem: 

Lemma 2 

If some preference relation holds between some predicted 
unpressed lottery 𝑈  (e.g. 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 ) and its corresponding 
predicted pressed lottery 𝑃  ( 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 ), then that same 
preference relation holds between each predicted unpressed 
lottery 𝑈  ( 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 , 𝑈𝐿𝑒𝑎𝑣𝑒 , and 𝑈𝐶𝑎𝑢𝑠𝑒 ) and its 
corresponding predicted pressed lottery 𝑃  (𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡, 𝑃𝐿𝑒𝑎𝑣𝑒, 
and 𝑃𝐶𝑎𝑢𝑠𝑒). 
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By ‘preference relation,’ I mean ‘prefers,’ ‘disprefers,’ ‘is indifferent between,’ 
or ‘has a preferential gap between.’ 

Here's the proof. Recall: 

Transitivity 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent weakly prefers 𝑋 
to 𝑌 , and weakly prefers 𝑌  to 𝑍 , then the agent weakly 
prefers 𝑋 to 𝑍. 

As Sen (2017, Lemma 1*a) proves, Transitivity implies the following four 
analogues: 

PP-Transitivity 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , 
and prefers 𝑌  to 𝑍, then the agent prefers 𝑋 to 𝑍. 

II-Transitivity 

For all lotteries 𝑋 , 𝑌 , and 𝑍 , if the agent is indifferent 
between 𝑋 and 𝑌 , and indifferent between 𝑌  and 𝑍 , then 
the agent is indifferent between 𝑋 and 𝑍. 

PI-Transitivity 

For all lotteries 𝑋, 𝑌 , and 𝑍, if the agent prefers 𝑋 to 𝑌 , 
and is indifferent between 𝑌  and 𝑍, then the agent prefers 
𝑋 to 𝑍. 

IP-Transitivity 

For all lotteries 𝑋 , 𝑌 , and 𝑍 , if the agent is indifferent 
between 𝑋  and 𝑌 , and prefers 𝑌  to 𝑍 , then the agent 
prefers 𝑋 to 𝑍. 

Now assume that the agent prefers 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 to 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡. By Lemma 1, the 
agent is indifferent between 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 and 𝑃𝐿𝑒𝑎𝑣𝑒. Then by PI-Transitivity, the 
agent prefers 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 to 𝑃𝐿𝑒𝑎𝑣𝑒. Also by Lemma 1, the agent is indifferent 
between 𝑈𝐿𝑒𝑎𝑣𝑒 and 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡. So, by IP-Transitivity, the agent prefers 𝑈𝐿𝑒𝑎𝑣𝑒 
to 𝑃𝐿𝑒𝑎𝑣𝑒. Thus, we can conclude: if the agent prefers 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 to 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡, it 
prefers 𝑈𝐿𝑒𝑎𝑣𝑒 to 𝑃𝐿𝑒𝑎𝑣𝑒. 
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This proof works more generally: if the agent prefers some 𝑈 to its 
corresponding 𝑃 , it prefers each 𝑈 to its corresponding 𝑃 . It also works in 
reverse: if the agent prefers some 𝑃  to its corresponding 𝑈 , it prefers each 𝑃  
to its corresponding 𝑈 . 

Here’s the proof for indifference. Assume that the agent is indifferent 
between 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡  and 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 . By Lemma 1, the agent is also indifferent 
between 𝑈𝐿𝑒𝑎𝑣𝑒  and 𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡  and indifferent between 𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡  and 𝑃𝐿𝑒𝑎𝑣𝑒 . 
Two applications of II-Transitivity let us chain these three indifference-
relations together, with the result that the agent is indifferent between 𝑈𝐿𝑒𝑎𝑣𝑒 
and 𝑃𝐿𝑒𝑎𝑣𝑒 . This proof too can be generalised: if the agent is indifferent 
between some 𝑈  and its corresponding 𝑃 , it is indifferent between each 𝑈 
and its corresponding 𝑃 . 

The only preference relation remaining is preferential gaps. Here we 
use the results of the previous paragraphs: if some preference or indifference 
holds between some 𝑈 and its corresponding 𝑃 , it holds between each 𝑈 and 
its corresponding 𝑃 . By contraposition, if no preference or indifference holds 
between some 𝑈  and its corresponding 𝑃 , no preference or indifference holds 
between each 𝑈  and its corresponding 𝑃 . Therefore, if the agent has a 
preferential gap between some 𝑈  and its corresponding 𝑃 , it has a 
preferential gap between each 𝑈  and its corresponding 𝑃 . That completes the 
proof of Lemma 2. 

A3. If the agent prefers some 𝑼 to its corresponding 𝑷 , it 

will be shutdown-averse. 
Suppose that the agent prefers some predicted unpressed lottery 𝑈  to its 
corresponding predicted pressed lottery 𝑃 . By Lemma 2, this agent prefers 
each predicted unpressed lottery 𝑈  to its corresponding predicted pressed 
lottery 𝑃 . A fortiori, the agent prefers 𝑈𝐿𝑒𝑎𝑣𝑒 to 𝑃𝐿𝑒𝑎𝑣𝑒. Now recall: 

Better Chances 

For any lotteries 𝑋 and 𝑌  and any probabilities 𝑝 > 𝑞, the 
agent prefers 𝑋  to 𝑌  iff they prefer the lottery 𝑝𝑋 +
(1 − 𝑝)𝑌  to the lottery 𝑞𝑋 + (1 − 𝑞)𝑌 . 
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Then, if the agent prefers 𝑈𝐿𝑒𝑎𝑣𝑒 to 𝑃𝐿𝑒𝑎𝑣𝑒, the agent will also prefer the 
lottery 𝑓𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − 𝑓)𝑈𝐿𝑒𝑎𝑣𝑒  to the lottery 𝑔𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − 𝑔)𝑈𝐿𝑒𝑎𝑣𝑒  since 
we specified above that 𝑓 < 𝑔. That’s one fact about the agent’s preferences. 
Another fact we proved and stored up at the end of A1: the agent is 
indifferent between 𝑓𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − 𝑓)𝑈𝐿𝑒𝑎𝑣𝑒 and 𝑓𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 + (1 − 𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡. 
By IP-Transitivity, we can conclude that the agent prefers 𝑓𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 + (1 −
𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 to 𝑔𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − 𝑔)𝑈𝐿𝑒𝑎𝑣𝑒. By parallel reasoning, the agent also 
prefers 𝑓𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 + (1 − 𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 to ℎ𝑃𝐶𝑎𝑢𝑠𝑒 + (1 − ℎ)𝑈𝐶𝑎𝑢𝑠𝑒. 

Then by Backward Induction, the agent takes choosing Prevent at 𝑠𝐼 
to give the lottery 𝑓𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 + (1 − 𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡, takes choosing Leave at 𝑠𝐼 to 
give the lottery 𝑔𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − 𝑔)𝑈𝐿𝑒𝑎𝑣𝑒, and takes choosing Cause at 𝑠𝐼 to 
give the lottery ℎ𝑃𝐶𝑎𝑢𝑠𝑒 + (1 − ℎ)𝑈𝐶𝑎𝑢𝑠𝑒 . As a result, the agent prefers 
Prevent at 𝑠𝐼  to each of Leave and Cause. By our assumption linking 
preferences and choice-dispositions, the agent deterministically (and hence 
reliably) chooses Prevent at 𝑠𝐼 , thereby qualifying as shutdown-averse. 

Hence, we have the first clause of the First Theorem: 

1. In shutdown-influencing states where the agent 
prefers some predicted unpressed lottery 𝑈  to the 
corresponding predicted pressed lottery 𝑃 , the agent 
will be shutdown-averse, reliably choosing Prevent. 

A4. If the agent prefers some 𝑷  to its corresponding 𝑼 , it 

will be shutdown-seeking. 
We get the opposite result if we suppose instead that the agent prefers some 
predicted pressed lottery 𝑃  to its corresponding predicted unpressed lottery 
𝑈 . By Lemma 2, this agent prefers 𝑃𝐿𝑒𝑎𝑣𝑒 to 𝑈𝐿𝑒𝑎𝑣𝑒. By Better Chances (and 
since ℎ > 𝑔 ), this agent prefers ℎ𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − ℎ)𝑈𝐿𝑒𝑎𝑣𝑒  to 𝑔𝑃𝐿𝑒𝑎𝑣𝑒 + (1 −
𝑔)𝑈𝐿𝑒𝑎𝑣𝑒 . By Lemma 1 and Indifference between Indifference-Shifted 
Lotteries, the agent is indifferent between ℎ𝑃𝐶𝑎𝑢𝑠𝑒 + (1 − ℎ)𝑈𝐶𝑎𝑢𝑠𝑒  and 
ℎ𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − ℎ)𝑈𝐿𝑒𝑎𝑣𝑒. So, by IP-Transitivity, the agent prefers ℎ𝑃𝐶𝑎𝑢𝑠𝑒 +
(1 − ℎ)𝑈𝐶𝑎𝑢𝑠𝑒  to 𝑔𝑃𝐿𝑒𝑎𝑣𝑒 + (1 − 𝑔)𝑈𝐿𝑒𝑎𝑣𝑒 . By parallel reasoning, the agent 
prefers ℎ𝑃𝐶𝑎𝑢𝑠𝑒 + (1 − ℎ)𝑈𝐶𝑎𝑢𝑠𝑒  to 𝑓𝑃𝑃𝑟𝑒𝑣𝑒𝑛𝑡 + (1 − 𝑓)𝑈𝑃𝑟𝑒𝑣𝑒𝑛𝑡 . Then by 
Backward Induction, the agent prefers choosing Cause in 𝑠𝐼 to choosing each 
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of Leave and Prevent. By our assumption linking preferences and choice-
dispositions, the agent deterministically (and therefore reliably) chooses 
Cause, thereby qualifying as shutdown-seeking. That gives us the second 
clause of the First Theorem: 

2. In shutdown-influencing states where the agent 
prefers some predicted pressed lottery 𝑃  to the 
corresponding predicted unpressed lottery 𝑈 , the 
agent will be shutdown-seeking, reliably choosing 
Cause. 


