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Welcome

Welcome to FG/MoL05, the tenth conference on Formal Grammar and
the ninth Meeting on Mathematics of Language. This year’s conference
includes nineteen papers covering, as usual, a wide range of areas of
formal grammar and mathematical linguistics. In addition to the papers
included in this volume there will be invited talks by

+ Nicholas Asher, Department of Philosophy, University of Texas
at Austin,

« Uwe Mo6nnich, Seminar fiir Sprachwissenschaft, Universitdt Tabin-
gen,

- and Mark Steedman, School of Informatics, University of Edin-
burgh.

We are grateful to the Association for Computational Linguistics,
the Natural Science and Engineering Research Council of Canada, The
Institute for Research in Cognitive Science, University of Pennsylva-
nia and Earlham College for financially supporting the conference. We
are extremely grateful to ICCS/HCRC at University of Edinburgh for
making this conference possible through local organization.

We are also all indebted to the Program Committee and outside
referees for their labors in reviewing and ranking the submitted pa-
pers: Anne Abeille (Paris 7), Tilman Becker (DFKI), Pierre Boullier
(INRIA), Gosse Bouma (Groningen), Chris Brew (Ohio State Uni-
versity), Wojciech Buszkowski (Poznan), Miriam Butt (Universitaet
Konstanz), Tim Fernando (Trinity College, Dublin), Christophe Fou-
quere (Paris 13), Nissim Francez (Haifa), Philippe de Groote (LORIA,
Nancy), Aravind Joshi (UPenn), Makoto Kanazawa (National Insti-
tute of Informatics, Tokyo), Ruth Kempson (London), Andras Kor-
nai (Metacarta), Uli Krieger (DFKI), Geert-Jan Kruijff (DFKI), Jonas
Kuhn (University of Texas at Austin), Shalom Lappin (King’s Col-
lege, London), Alain Lecomte (Grenoble), Carlos Martin-Vide (Tarrag-
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ona), Jens Michaelis (Universitaet Potsdam), Guido Minnen (Daimler-
Chrysler AG), Mehryar Mohri (AT&T), Uwe Moennich (Universitaet
Tuebingen), Michael Moortgat (Utrecht), Drew Moshier (Chapman),
Larry Moss (Indiana), Stefan Mueller (Universitaet Bremen), Mark-
Jan Nederhof (Rijksuniversiteit Groningen), Richard Oehrle (Berkeley,
CA), Owen Rambow (Columbia), Christian Retore (INRIA & LaBRI,
Bordeaux), Robert van Rooij (Amsterdam), Giorgio Satta (University
of Padua), Ed Stabler (UCLA), Mark Steedman (Edinburgh), and Hans
Joerg Tiede (Illinois Wesleyan).

And we are, of course, indebted to all of the authors who submitted
papers to the meeting, both those that were accepted and those we
could not fit, and to all of you, the participants in the meeting.

Enjoy the conference and enjoy Edinburgh.

Gerhard Jaeger, University of Bielefeld
Paola Monachesi, OTS Utrecht

Gerald Penn, University of Toronto
James Rogers, Earlham College

Shuly Wintner, University of Haifa
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Underspecification and Neutrality: a
unified approach to syncretism

BERTHOLD CRYSMANN T

Abstract

In this paper I discuss the phenomenon of syncretism in German and show
that current type-based approaches are unable to combine the treatment of
feature indeterminacy with the virtues of underspecification. I will then pro-
pose a revised organisation of the inflectional type hierarchies suggested by
Daniels (2001), drawing on a systematic distinction between inherent and
external (case) requirements. Finally, I will show how likeness constraints
operating over a subset of the inflectional dimensions can be expressed by
means of typed lists that abstract out the relevant dimension from the com-
bined case/number/gender hierarchies suitable for syncretism.

Keywords SyNCRETISM, UNDERSPECIFICATION, INDETERMINACY,
HPSG, GERMAN

Nouns, adjectives and determiners in German inflect for case, num-
ber and gender. However, as is typical for inflectional languages, these
morphosyntactic feature dimensions are not expressed by discrete, indi-
vidually identifiable affixes. Rather, affixes realise complex feature com-
binations. Although four case, three gender and two number specifica-
tions can clearly be distinguished, the morphological paradigms of the
language are characterised by heavy syncretism. Often, syncretism can-

I would like to thank Stefan Miiller and Michael Jellinghaus for fruitful dis-
cussion of several aspects of this work. Many thanks also to the three anonymous
reviewers for their invaluable comments.

The work presented in this article was partially supported by research grants
from the German Federal Ministry of Education, Science, Research and Technology
(BMBEF) to the DFKI project Quetal (FKZ 01 IW C02).

FG-MoL 2005.
James Rogers (ed.).
Copyright © 2009, CSLI Publications.
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not be resolved to disjunctive specification or underspecification within
a single feature, but it cuts across the three inflectional dimensions.
However, since disjunctions are in general much harder to process than
type inference, type-based underspecification of case/number/gender
specifications appears to be the key towards an efficient and concise
treatment of syncretism.1

Ambiguous nominal forms in German are also subject to indetermi-
nacy. Again, indeterminacy is not restricted to individual inflectional
dimensions, but rather follows the patterns of syncretism. Although the
notions of ambiguity and indeterminacy are intimately related, there
is currently no analysis at hand that is capable of combining the ma-
chinery necessary to cover feature indeterminacy with the benefits of
underspecification.

In this paper I will propose an entirely type-based approach to syn-
cretism that will successfully reconcile Daniels (2001)’s approach to
feature indeterminacy with morphosyntactic underspecification across
features. Furthermore, I will show how list types can be fruitfully put
to use to abstract out individual featural dimensions from combined
case/number /gender type hierarchies, permitting the expression of like-
ness constraints in coordinate structures. As a result, the current pro-
posal presents an entirely disjunction-free approach to syncretism, ad-
dressing indeterminacy, underspecification and likeness constraints.

1.1 Feature neutrality

It has been argued by Ingria (1990) that the phenomenon of feature
neutrality in coordination constitutes a severe challenge for unification-
based approaches to feature resolution and concludes that unification
should rather be supplanted by feature compatibility checks.

(1) Er findet und hilft  Frauen.
he finds.A and helps.D women.A /D
‘He finds and helps women.’

(2) *Erfindet und hilft  Kindern.
he finds.A and helps.D children.D

(3) *Er findet und hilft Kinder.
he finds.A and helps.D children. A

Unification-based frameworks such as LFG or HPSG have taken up
the challenge, refining the representation of feature constraints in such

ISee the Surrey Morphology Group syncretism database for a cross-linguistic
overview (http://www.surrey.ac.uk/LIS/SMG/).
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a way that neutrality can be modelled without any substantial changes
to the underlying formalism. For HPSG, Daniels (2001) proposed to
address these problems by means of enriching the type hierarchy to
include neutral types, an idea originally due to Levine et al. (2001).2

Daniels (2001) has also discussed cases where the potential for fea-
ture indeterminacy does not only involve the values of a single feature:
as illustrated in (4), a masculine noun like Dozenten can express any
cell of the case/number paradigm except nominative singular. Accord-
ingly, one and the same form can be subject to feature indeterminacy
regarding number, gender, or even case.

(4) der Antrag des oder der Dozenten
the petition Def.G.Sg or  Def.G.PI lecturer.G/D/A+N.PI

‘the petition of the lecturer(s)’

(5) der oder die Abgeordnete
Def.N.M.Sg or  Def.N.F.Sg representative.N.Sg.M/F

‘the male or female representative’

(6) Er findet und hilft ~ Dozenten.
he finds.A and helps.D lecturers.A/D

‘He finds and helps lecturers.’

A determiner like der is neutral between nominative singular mascu-
line and genitive/dative plural. However, indeterminacy with respect to
number is not independent of case, as illustrated by (7), where the un-
availability of a nominative singular reading for Dozenten is responsible
for the illformedness of the sentence.

(7)  *der Dozenten ist hier
the.N.Sg.M+G/D.Sg.F+G.P1 lecturer.G/D/A+N.Pl is here

To incorporate the issue of neutrality across features, Daniels sug-
gests to combine values of different inflectional features into an over-
arching type hierarchy, the nodes of which are essentially derived by
building the Cartesian product of the types within each inflectional
dimension.

1.2 Underspecification

Combined type hierarchies across different inflectional feature dimen-
sions have also been fruitfully put to use in the context of efficient

2Within LFG, a technically different, though conceptually similar approach has
been developed by Dalrymple and Kaplan (2000). See Levy and Pollard (2001) for
a comparison.
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grammar engineering. In the LinGO ERG (Flickinger, 2000), person
and number are represented as values of a single feature PNG, permit-
ting the expression of, e.g., non-3rd-singular agreement without the use
of negation or disjunction.

In the context of more strongly inflecting languages, such as Ger-
man, where syncretism is the norm rather than the exception, un-
derspecification of inflectional features across different dimensions is
even more pressing: a typical noun such as Computer can express any
case/number combination, except genitive singular and dative plural,
i.e. 6 in total. Using combined case/number/gender hierarchies, the
syncretism between nominative/dative/accusative singular and nomi-
native/genitive/accusative plural can be represented compactly as one
entry. The very same holds for German determiners and adjectives. In-
tuitively, it would make perfect sense to try and exploit the combined
type hierarchies required for the treatment of neutrality in order to
arrive at a more concise and efficient representation of syncretism.

1.3 The Problem

Although both feature indeterminacy and ambiguity do call for type
hierarchies combining different inflectional dimensions, these two ap-
proaches have not yet received a unified treatment to date: it has
been recognised as early as Zaenen and Karttunnen (1984) that in
unification-based formalisms feature neutrality cannot be reduced to
underspecification. The apparent incompatibility of neutrality and un-
derspecification is even more surprising, as these two notions are in-
timately related: i.e., the ambiguity of a form between two values is
a necessary prerequisite for this form to be embeddable in a neutral
context.

acc-dat
acc dat
1)-(%{1@1%
(8) p-accédat

Taking as starting point the case hierarchy proposed by Daniels
(2001), one might be tempted to assign a case-ambiguous form like
‘Frauen’ a supertype of both acc and dat, e.g. acc-dat, which can be
resolved to p-acc (‘die Frauen’) or p-dat (‘den Frauen’), depending on
context. However, to include feature-neutrality, it must also be possible
to resolve it to the neutral type accéfdat. Suppose now that a form like
die ‘the’ is itself ambiguous, i.e. between nominative and accusative,
representable by a type nom-acc, again a supertype of acc. Unification
of the case values of die ‘the’ and Frauen ‘women’ will yield acc, which
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will still be a supertype of the neutral type accéddat, erroneously li-
censing the unambiguously non-dative die Frauen ‘the women’ in the
neutral accusative/dative context of findet und hilft ‘finds and helps’.

(9) *Er findet und hilft [die Frauen]
he finds.A and helps.D [the women]|.A

Thus, under Daniels’s account, lexical items are explicitly assigned
leaf type values, so-called “pure types”. While successful at resolving
the issue of indeterminacy, this approach in fact drastically increases
the amount of lexical ambiguity, having to postulate distinct entries
for type-resolved pure accusative, pure dative, pure nominative, pure
genitive, as well as all pair-wise case-neutral variants of a single form
like Frauen ‘women’. Ideally, all these different readings should be rep-
resentable by a single lexical entry, if only underspecification could be
made to work together with indeterminacy.

1.4 A Solution

The reason for the apparent incompatibility of underspecification and
feature neutrality lies with the attempt to address both aspects within
a single type hierarchy. Instead, I shall argue to draw a principled dis-
tinction between inherent inflectional feature values, where unification
specialises from underspecified or ambiguous types to unambiguous
types, and external or subcategorised feature values where unification
proceeds from non-neutral, though generally unambiguous to neutral
types. As a result we will have two partially independent hierarchies,

one for ambiguity (i-case) and an inverse one for neutrality (e-case).?
1-case e-case
i-dat-acc i-nom-acc e-dat e-acc ...
(10) i-dat i-acce -nom ... e-dat-acc ...

Inherent case specifications of dependents will be types in the i-case
subhierarchy (for inherent case), whereas case requirements imposed
by a subcategorising head will be values in the e-case subhierarchy
(for external case). Unification of internal case specifications will result
in disambiguation of underspecified case values, whereas unification of
external case requirements will result in feature indeterminacy. To il-
lustrate this, take the examples in (1) and (2): case ambiguous Frauen

31In essence, the inverse layouts of the two subhierarchies correspond quite closely
to the different behaviour of functor and argument categories with respect to
strengthening/weakening in the approach of Bayer and Johnson (1995).
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will be specified i-dat-acc, whereas unambiguous Kindern will carry
the more specific value i-dat. Likewise, the verbs finden and helfen will
subcategorise for an e-acc and e-dat complement, respectively. Coor-
dination of the two lexical verbs will lead to unification of CAT values
(Pollard and Sag, 1994),* and hence, valence lists, “overspecifying” the
case requirement as e-dat-acc.
case
e-case i-case

e-dat e-acc i-dat-acc i-nom-acc ...

-7 - .
i-dat 1-acc -nom ...

( 11 ) s-dat s-dait-ace suee —

In order to permit satisfaction of any subcategorised case by some
inherent case, all we need to do is define the greatest lower bound for
any pair of internal and external case specification.

Thus, underspecified internal cases will unify with a correspond-
ing neutral case, whereas specific internal cases will only unify with
their corresponding non-neutral cases. As depicted above, more spe-
cific types in one hierarchy will be compatible with less specific types
in the other, and vice versa. Returning to our example above, under-
specified i-dat-acc, as in Frauen unifies with overspecified e-dat-acc,
as required by the coordination findet und hilft, whereas unambiguous
Kindern does not, since no greatest lower bound is defined for i-dat and
e-dat-acc. Thus, disambiguation of i-case values will always reduce the
potential for neutrality, as required. On a more conceptual level, these
cross-classifications between the two hierarchies embody the logical link
between underspecification and neutrality.

1.5 Likeness constraints in coordination

It has been argued by Miiller (p.c.) that one of the main obstacles for
exploiting combined case-number-gender hierarchies to provide an en-
tirely disjunction-free representation of German syncretism surfaces in
certain coordinate structures. It is a well-known fact about German
that likeness of category in coordinate structures includes likeness of
case specification, but excludes, as a rule, requirements concerning the
likeness of gender or number specifications in the conjuncts, a pattern
which is quite neatly predicted by HPSG’s segregation of HEAD fea-
tures and INDEX features. However, in free word order languages like
German, case arguably serves not only a categorial function, but also a

4For an overview of the treatment of coordination in HPSG, see Crysmann (to
appear).
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semantic one, thereby supporting the originally morphological motiva-
tion towards organising all agreement features into a single hierarchy
(see also Kathol (1999) for a similar proposal). Moreover, the mere exis-
tence of indeterminacy across case and index features makes combined
hierarchies almost inevitable.

Miiller discusses syncretive pronominals in German, such as der,
which is ambiguous, inter alia, between nominative singular masculine,
as shown in (12), and dative singular feminine, as illustrated in (13).

(12) Der schléft.
the.N.S.M sleeps

‘That one sleeps.’

(13) Ich helfe der.
I  help the.D.S.F

‘T help that one.’

This ambiguity could be represented by a type n-s-m-+d-s-f.> Subcat-
egorisation for nominative singular (type n-s-g) or dative (type d-n-g)
will disambiguate these forms accordingly.®

In coordinate structures, however, we observe that likeness of case
equally eliminates one of the possible gender specifications for der, as
witnessed by the disambiguation (14). Thus, we must be able to dis-
tribute the case requirement over the two conjuncts in such a way that
it can exert its disambiguatory potential, without actually unifying the
entire case/number/gender specifications of the two conjuncts.

(14) Ich helfe der und dem Mann.
I  help the.D.S.F and the.D.S.M man

‘T help this one and the man.’

In Daniels (2001), this problem was partly anticipated: he suggests to
address the issue of likeness of case by means of a relational constraint
same-case/2, which restricts the two arguments to satify identical type
requirements. This type equality is essentially imposed by disjunctive
enumeration of the four possible subcategorised case values. In typed

5As a convention, I am using the following nomenclature of combined c(ase)-
n(umber)-g(ender) types: the three inflectional dimensions are specified in the above
order, separated by a hyphen. In the first slot, ¢ represents the most general case
“value”, m,g,d,a the most specific. “Disjunctive values” are represented as combina-
tions of case specifications. The very same holds number and gender specifications.

SFor ease of exposition, I am abstracting away from the internal/external dis-
tinction, which is immaterial here, since we are only dealing with underspecification,
not indeterminacy.
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feature formalisms without relational constraints, his solution may be
mimicked by means of unfolding the relevant phrase structure schemata
into case-specified variants. In both cases, a greater part of the effi-
ciency gains achieved by underspecification may get eaten up by this
disjunctive approach to case similarity.

An alternative, though not fully satisfactory solutiuon would involve
retaining a HEAD feature CASE along-side the combined AGR feature.
While this move will be at least effective in ruling out unacceptable
surface strings, it will fail to impose the disambiguation potential of
the subcategorising head onto the individual conjuncts.

What is really needed here is a data structure that may serve to
both express the appropriate case-requirements in terms of a combined
hierarchy, and permit arbitrarily many specific instantiations of the
case constraint. Fortunately, typed feature formalisms do provide for
such a data structure, namely typed lists.

To start with, we will set up a hierarchy of case list types, as depicted
in figure (15)7, where each list type immediately subsumes at least one
subtype representing a non-empty list of the same case type.

ngd-list
nga-list
case-list{—nda-list

'gda-list!

(15) ‘case-cons'

Types in the combined case-number-gender hierarchy will now re-
strict their CASE value to an appropriate list type, as given in (16).8

(16) nda-n-g — [CASE nda—list}

Non-empty case lists bear a type constraint restricting the FIRST
value to the corresponding agreement type in the combined case/num-
ber/gender hierarchy. Actually, thanks to type inference in the hierar-
chy of case lists, we only need to do this for the 4 immediate subtypes of
case-cons, namely ngd-cons, nga-cons, nda-cons, and gda-cons. In order
to propagate the case specification onto all elements of the open list,
the tail is constrained to the corresponding list type (see (17)).

"The type hierarchy has been exported from the LKB: supertypes are on the
left, subtypes are on the right.

8Recall that, according to our naming convention,the type nda-n-g represents
all case specification except genitive. Number and gender are fully underspecified.
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(17) nda-cons — <nda-n-g | nda-list>

Now that we have a data structure that enables us to encode like-
ness of case for arbitrary instances of case/number/gender types, all
we need to do is refine our existing coordination schemata to distribute
the case restriction imposed on the coordinate structure onto the indi-
vidual conjuncts. In the implemented German grammar we are using,
coordinate structures are licensed by binary phrase structure schemata.
Thus, all we have to do is to constrain the AGR feature of the left con-
junct daughter to be token-identical to the first element on the mother’s
AGR|CASE list, and percolate the rest of this list onto the (recursive)
righthand conjunct daughter’s AGR|CASE value:

ss|L\AGR|CASE<\>

[ss 11| aor @], >

[ss |L|AGR | CASE ]

(18)  coord-phr —
COORD-DTRS

Coordinating conjunctions, which combine with a conjunct by way
of a head-complement rule, will equate their own AGR|CASE|FIRST value
with the AGR value of their complement, percolating the case constraint
onto the last conjunct.

ss|L |:AGR | CASE <| lz’st>}
(19)
VAL | COMPS <[L | AGR D

Besides coordination, the current approach to likeness constraints
across syncretive forms can also be applied to case/gender agreement
in German constructions involving the phrase ein- nach d- anderen
‘one after the other’, a set of phenomena discussed by Hoéhle (1983)
and Miiller (1999):

(20) Wir; helfen ihnen;  [einem nach dem anderen),;,;
we.NOM help them.dat one.DAT.M after the.M other
‘We help them one after the other.’

(21) Wir; helfen ihnen;  [einer nach der  anderen],;/;
we.NOM help them.dat one.DAT.F after the.F other

‘We help them one after the other.’

(22) Wir; helfen ihnen;  [einer nach dem anderen];,,;
we.NOM help them.dat one. NOM.M after the.M other

‘We help them one after the other.’
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(23) Wir; helfen ihnen; [eine nach der  anderen];,,;
we.NOM help them.DAT one.NOM.F after the.F other

‘We help them one after the other.’

As illustrated by the data in (20-23) above, agreement between an-
tecedent and the phrase ein- nach d- anderen ‘one after the other’ pro-
ceeds along two inflectional dimensions: case and gender.Within the
phrase ein- nach d- ander-, we find gender agreement between the two
pronominal ein- and the NP d- anderen. Case of the latter is invari-
antly dative, since it is governed by the preposition nach. The important
aspect of this construction now is that the gender agreement between
the pronominals partially disambiguates the case specification: e.g., the
pronominal einer displays syncretism between nominative masculine
and dative feminine (singular). As witnessed by the contrasts in (21)
and (22), disambiguation of case syncretism by means of grammatical
gender reduces the semantic attachment potential of the entire phrase,
precluding attachment to the subject in (21), and to the object in (22).

The situation we encounter here is actually highly parallel to the one
we found earlier with likeness of case in coordinate structures: again,
agreement only targets a subset of the inflectional dimensions (case
and gender) to the exclusion of others (person and number). What is
therefore needed, is , again, a mechnism to abstract out the relevant
dimensions from our syncretism types. While we can directly reuse
our list-valued CASE feature to implement case agreement, we have to
provide an analoguous abstraction of the gender dimension, a step,
which is very much straightforward:

neu-list
mn-list neu-cons

mn-cons

mf-list
mas-list
gend-list mas-cons
gend-c mf-cons:
fem-list
n-list fem-cons
( 2 4) fn-cons'

(25) c-n-mn — [GEND mn—list}

(26) mn-cons — <c-n-mn | mn-list>

Again, we need a hierarchy of list types, and connect it — via type
constraints — to appropriate types in the combined c-n-g hierarchy.

Having established the required abstraction of gender alongside case,
we are now in a position to capture the interaction of case and gender
agreement. All it needs, is to require that, in the phrase ein- nach d-
anderen, the PP nach d- anderen, which exhibits gender agreement
with the pronoun ein-, will equate the first element of its GEND list
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with the AGR value of ein-, either constructionally, or via a selection
feature, e.g. MOD.

As a result, the entire AGR value of ein- will be disambiguated to
a c-n-g specification compatible with the PP’s gender. The AGR value
of the entire construction, which represents an aggregate of singular
entities, will be the unification of a constructional plural specification
(c-p-g) with the first elements on both CASE and GEND of ein-. This
AGR value will then be unified with that of the antecedent.”

[ss|L|AGR c-n-p A [T A [

PH <einer>

SS|L| AGR n-s-mn-+d-s-f A

El

CASE | FIRST

GEND | FIRST

(27) -
DTRS \ | py <nach der anderen>

CASE d-list
SS|L|AGR d-s-f A em-cons
G
FIRST [3]c-n-f

To conclude, we have seen that the approach to likeness of case in
coordinate structures can be extended, in a principled way, to other
phenomena displaying partial agreement, i.e. agreement involving only
a subset of inflectional dimensions. Furthermore, as illustrated by our
analysis of the overlapping of gender and case agreement, the combi-
nation of dimensions in partial agreement can essentially be reduced to
abstracting out each dimension individually and having them interact
by means of unification.

1.6 Conclusion

In this paper we have argued for an extension to Daniels (2001) original
approach to feature indeterminacy in HPSG which makes it possible
to combine the empirical virtues of his type-based approach to the
phenomenon with the advantages of underspecified representation of
syncretism across features, namely generality of specification and effi-
ciency in processing. We have further shown how likeness constraints
abstracting out a particular inflectional dimension from a combined in-
flectional type hierarchy can still be expressed concisely by means of
typed lists.

9n order to make the lexical specification of case/number/gender information
more transparent, I have left the unification of values in (27) unresolved.
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From Semantic Restrictions to
Reciprocal Meanings

SIVAN SABATO AND YOAD WINTER |

Abstract

This paper proposes a new approach to the interpretation of reciprocal ex-
pressions using the Strongest Meaning Hypothesis of Dalrymple et al. (1998).
We propose a system in which reciprocal meanings are derived directly from
semantic restrictions using the SMH, and characterize this derivation pro-
cess. We present methods to construct a linguistic test for the availability
of a reciprocal meaning, or otherwise to prove that a specific meaning is
not available for reciprocals. These methods are then used to analyze two
controversial reciprocal meanings.

Keywords StronGEsT MEANING HypoTHESIS, REcCIPROCAL Ex-
PRESSIONS, SEMANTIC RESTRICTIONS

2.1 Introduction

The interpretation of reciprocal expressions (each other, one another)
exhibits a remarkably wide variation, which is affected in intricate ways
by the predicate in the scope of the reciprocal. For example, sentence
(1) entails that each person in the group likes every other person in the
group, while sentences (2) and (3) do not entail an analogous claim.

TParticipation in the conference was partly supported by the Computer Science
Department of the Technion - Israel Institute of Technology.
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(1) These three people like each other.
(2) The three planks are stacked on top of each other.
(3) The 3rd grade students gave each other measles.

In an attempt to explain this phenomenon, Dalrymple et al. (1998)
(henceforth DKKMP) introduced the Strongest Meaning Hypothesis
(SMH). According to this principle, the reading associated with the
reciprocal in a given sentence is the strongest available reading which is
consistent with relevant information supplied by the context. This allows
sentence (2) to be felicitous even though it is impossible for each of the
three planks to be stacked on top each of the other planks. A similar
weakening occurs in (3), since one cannot get measles from more than
one person.

DKKMP postulate an array of reciprocal meanings which the SMH
has to choose from, independently of the SMH itself and the semantic
properties of predicates. This paper proposes a new system for predict-
ing the interpretation of reciprocals in a given sentence. In this system,
the SMH is implemented as a mapping from semantic restrictions on
the predicate’s denotation into the interpretation of the reciprocal, with
no independent assumptions about available reciprocal meanings. We
present methods to construct a test for the availability of a reciprocal
meaning, or otherwise to prove that a specific meaning is not available
for reciprocals. These methods are then used to analyze two previously
suggested reciprocal meanings.

2.2 Semantic Restrictions and Reciprocal Meanings

In this section we define the notion of semantic restriction and show
its relevance in delimiting the range of interpretations available for a
reciprocal in a given sentence. Then we define the notion of reciprocal
meaning, imposing on it natural restrictions from generalized quantifier
theory. We subsequently show that for every reciprocal interpretation
there is exactly one minimal meaning that extends it, thereby propos-
ing a method for attesting reciprocal meanings using natural language
sentences. The implications of this method are studied in the next sec-
tions.

2.2.1 Notation

Let R, R' C E? be binary relations over E, let A C E be a subset of
E, and let o, 8 C p(E?) be sets of binary relations over E. We use the
following notation:

>> The identity relation: [ = {(z,z) |z € E}.
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> R restricted to A: R|a I R A2

R restricted to A and disregarding identities: R | Ad;f Rja\ I

> RCy R < R|AC R |4, and similarly for R =4 R', R #4
R/, etc.

> aCyf < {Rla |R€a} C{R|la |R € 3}, and similarly
for a =4 0, a#4 G, etc.

> min(a) = {Rea : VR ea[RR CR= R =R]}

> Let X and Y be sets, and let D C X X Y be a binary relation.

Forany x € X,y € Y:
— D(z,y) holds if and only if (z,y) € D, and

— D(z) is the image of z under D: D(x) = {yeY | D(z,y)}

v

2.2.2 Semantic Restrictions

We first take a closer look at the informal concept of ‘relevant infor-
mation’ which is used by DKKMP in their formulation of the SMH.
Clearly, not all contextual information allows weakening of the recip-
rocal meaning. Otherwise, according to the SMH by DKKMP, the two
sentences in (4) below would not be contradictory, since the informa-
tion given in the first sentence would cause the reciprocal in the second
sentence to require weaker truth conditions.

(4) # John and Bill don’t know each other. John, Bill and Dan know
each other.

To eliminate such undesired consequences, we propose to only con-
sider semantic restrictions of the binary predicate in the scope of the
reciprocal, along the lines of Winter (2001). A semantic restriction of a
binary predicate P over the domain of entities F is a set Op of binary
relations over E: ©p C p(E?). This is the set of relations that are
possible as denotations of the predicate. For example, the denotation
of the predicate stare at is limited to relations that are also (possibly
partial) functions, since one cannot stare at more than one person at a
time. Therefore Ogtare at is the set of binary relations over E which are
(possibly partial) functions.

We consider reciprocal sentences of the form NP P each other, where
NP denotes a set of entities and P denotes a binary relation R over
entities. The denotation of the reciprocal expression each other is ac-
cordingly assumed to be a relation between sets of entities and binary
relations. Obviously, the denotation of the reciprocal expression in a
given sentence cannot be determined for binary relations outside the
semantic restriction of P. Thus, given a semantic restriction ©, the in-
terpretation of a reciprocal expression relative to © is a binary relation
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Zo C p(E) x O. The reciprocal interpretation domain of O, denoted

RECIPg), is the set of all possible reciprocal interpretations relative to O:

RECIPe < o(p(E) x ©).

It is known that the SMH is most easily attested with spatial predi-
cates such as sit alongside and stand on top. Very often the SMH does
not affect kinship relations as well as some other types of relations. The
following contrast demonstrates this:

(5) The two chairs are stacked on top of each other.
(6) #Ruth and Beth are each other’s mother.

A weakening effect allows sentence (5) to be felicitous, but a similar
effect does not occur in sentence (6), although world knowledge pre-
cludes both two-way stacking and two-way mothering. We conjecture
that semantic restrictions are not always an exact representation of
world knowledge, and are more refined for some classes of predicates
than for others. The reasons for this differentiation are poorly under-
stood and require further research.

2.2.3 Reciprocal Meanings

The interpretation of a reciprocal relative to a semantic restriction, as
defined above, is a novel notion and central to our analysis of recipro-
cals in general. However, different meanings for reciprocals have been
suggested and debated upon extensively in the literature. In contrast
with a reciprocal interpretation, a reciprocal meaning is defined for all
binary relations and not only for relations in a given semantic restric-
tion. As a preliminary to our analysis of the meanings available for
reciprocals, we propose a formal definition of the notion of reciprocal
meaning. The definition captures the properties that a reciprocal mean-
ing must have, though it does not require that the meaning manifest
itself in an actual reciprocal expression.

A reciprocal meaning is a relation I C p(E) x p(E?). Thus, recipro-
cal meanings are all in the domain RECIPg with © = p(E?). We assume
that a reciprocal meaning must be conservative on its first argument,*
as expected of any natural language determiner (Keenan and Wester-
stahl, 1996). Furthermore, reciprocal meanings are never sensitive to
relations between identical pairs.? In addition, all reciprocal meanings
suggested so far in the literature are upward monotonic in the second
argument,® and we expect this to be true in general. These three prop-
erties are all subsumed by the following single property of argument

!Formally, VA C E, R C E? [II(A,R) <= II(A, RN A?)]
2Formally, VA C E, R C E? [lI(A, R) <= (A4, R\ I)]
3Formally, VR, R’ C E? [(II(A,R) AR C R') = II(A, R')]
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monotonicity:

Definition 1 A binary relation D C p(E) x 3, where 3 C p(E?), is
argument-monotonic if and only if the following holds:

VYAC ENR,R € B[(D(A,R) AR Cu R') = D(A, R)|]

Argument monotonicity is therefore used as the underlying property
of reciprocal meanings:

Definition 2 A reciprocal meaning over a domain E is a relation
II C p(E) x p(E?) that is argument-monotonic.

For similar reasons to the ones listed above, we assume that like
reciprocal meanings, reciprocal interpretations in natural language are
also argument-monotonic.

2.2.4 When is a Reciprocal Meaning Attested?

When presented with a potential reciprocal meaning, we would like to
find out in which settings we can test whether this meaning is indeed
available. In other words: what semantic restrictions of binary predi-
cates would allow us to attest a given reciprocal meaning? Formally,
we define the notion of congruence between a reciprocal meaning and
a reciprocal interpretation Zg € RECIPg, for a semantic restriction ©:

Definition 3 Let © be a semantic restriction over E. A recipro-
cal meaning Il over F is congruent with a reciprocal interpretation
Zo € RECIPg if IT is a minimal reciprocal meaning that extends Zg.
Formally, II satisfies:

1. VACE,Re©[Io(AR) < TII(A,R)], and
2. Any reciprocal meaning II’ that satisfies 1, also satisfies IT C II'.

Because of the semantic restrictions on the denotation of two-place
predicates in natural language, we cannot always directly extract a
meaning for a reciprocal expression using the truth-conditions of recip-
rocal sentences. Consider for instance the following sentence:

(7) Proposals 1 through n are similar to each other.

Given that the predicate be similar is symmetric, the interpretation
of the reciprocal in (7) is in RECIPgy s where SY M is defined by:
SYM = {R C E? | Vz,y € E[R(z,y) = R(y,z)]}. Since (7) is true only
if every proposal is similar to every other proposal, the interpretation

of each other in (7) is the relation ZgYM € RECIPgy s defined by:

o n Y {(AR) € p(B) x SYM | Va,y € Alx # y = R(a,y)]}. This

interpretation can be extended by at least two reciprocal meanings
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proposed in the literature: Both Strong Reciprocity* (SR) from Langen-
doen (1978) and Strong Alternative Reciprocity® (SAR) from DKKMP
match. But SR is congruent with Z3,-,, while SAR is not. More gen-
erally, we claim that any meaning associated with reciprocals should
be congruent with the interpretation of the reciprocal in at least one
natural language sentence. In this case we say that this sentence attests
the meaning in question.

According to the following two propositions, if Zg is argument-
monotonic, it is congruent with exactly one reciprocal meaning.

Proposition 1 For every semantic restriction © over E and a re-
ciprocal interpretation g € RECIPg, there is at most one reciprocal
meaning II over E that is congruent with Zg .

Proposition 2 For every semantic restriction © over E and an
argument-monotonic reciprocal interpretation g € RECIPg, there ex-
ists a reciprocal meaning II over E that is congruent with Zg.

Here and henceforth, proofs are omitted in the body of the paper.
Selected proofs can be found in the appendix.

By Propositions 1 and 2, for any semantic restriction © over F and
an argument-monotonic reciprocal interpretation Zg € RECIPg, there
is a unique reciprocal meaning that is congruent with Zg . On the empir-
ical side, this result means that when given a sentence with a reciprocal
expression, such as sentences (1)-(3), when © is the semantic restric-
tion of the predicate in the sentence, the important semantic decision
concerns the interpretation of the reciprocal chosen from the domain
RECIPg. The meaning of the reciprocal can be uniquely determined by
this choice. In the following section we propose a new way of choosing
a reciprocal interpretation according to the SMH.

2.3 The Interpretation of the Reciprocal

We propose that the SMH is realized as a local mazimality principle: a
reciprocal sentence is consistent with models in which no pairs in the
antecedent set can be added to the denotation of the predicate within
its semantic restriction. Formally:

Definition 4 Let © be a semantic restriction over E. The SMH-based
interpretation of the reciprocal is the relation Rg € RECIPg, defined as
follows:

VACE R€ORo(AR) > VR €O[RCAR)= (R=4 R

YAC E,RC E?[SR(A,R) < Vax,y € Alx # y = R(z,y)]|
YA C E,RC E?[SAR(A,R) <= Vx,y € Alz #y = (R(z,y) V R(y, 2))]]
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This definition allows a correct prediction of the meaning of sen-
tences presented in DKKMP and analyzed there using their system.
Let us review examples (1)-(3). According to our system, the interpre-
tation of the reciprocal in each sentence is determined by the semantic
restrictions of the predicate. In sentence (1), the predicate like has no
restrictions: O = p(E?). Hence, Ro,, (A, R) — R2A%Z\ I, ie.
the sentence is deemed true only if each person in the antecedent set
likes each of the others. In sentence (2), we assume that the seman-
tic restriction of the predicate stack on top is the set Ogtack on top that
includes all the relations R C E? such that R and R~! are (possibly
partial) functions, and R is acyclic. Consequently, Re,, . on 1op (4; R)
holds if and only if the elements of A are arranged into one sequen-
tial stack, as expected. In sentence (3), the predicate give measles may
only denote acyclic relations which are the inverse of a function: one
cannot get measles twice or give measles before getting measles. Using
this semantic restriction, we find that the sentence is predicted to be
true if and only if each 3rd grade student is connected to each other
3rd grade student by the transitive and symmetric closure of the de-
notation of give measles. This is in fact the expected meaning of this
sentence. Unlike DKKMP, this proposal also gives a correct prediction
of the truth conditions for the following sentence:

(8) The pirates are staring at each other.

The system proposed by DKKMP expects this sentence to be consistent
with Intermediate Reciprocity (Langendoen, 1978), which requires all
pirates to be connected via the transitive closure of the stare at relation.
However, as they observe, the actual truth conditions of this sentence
match the weaker One-way Weak Reciprocity, which only requires that
each pirate stares at some other pirate. In the present proposal, we
derive this interpretation of the reciprocal assuming that Ogtare at 1S
the set of (possibly partial) functions over E.

From Definition 4, it is clear that Rg is argument-monotonic for any
semantic restriction ©. Therefore, by Propositions 1 and 2, for each
semantic restriction © there is exactly one reciprocal meaning congru-
ent with Rg. In the following section we use the proposed framework
and the definition of Rg to examine the possibility of attesting two
controversial meanings that have been suggested for reciprocals.

2.4 Predicting the Existence of Reciprocal Meanings

In this section we study the implications of our method for two mean-
ings of reciprocals that were proposed in the literature. Section 2.4.1
shows two general lemmas that are useful in characterizing the semantic
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restriction © for which Rg is congruent with a given reciprocal meaning
II. In sections 2.4.2 and 2.4.3 we apply these lemmas in studying con-
gruence with the reciprocal meanings Weak Reciprocity (Langendoen,
1978) and Inclusive Alternative Ordering (Kanski, 1987).

2.4.1 Characterizing the Congruence Relation

In this section we present two lemmas which provide general methods
for analyzing the possibility of attesting a given reciprocal meaning.
Though presented here for finite domains, these lemmas are also prov-
able for infinite domains, as long as the reciprocal meaning conforms
to an additional (reasonable) requirement, which we do not elaborate
upon here.

Lemma 3 below provides a characterization of the congruence re-
lation between the interpretation Rg of a given semantic restriction
O, and a given reciprocal meaning. This characterization may then be
used to check which semantic restrictions attest a reciprocal meaning
in question. If a natural language predicate with one of these semantic
restrictions is found, it is then possible to devise a reciprocal sentence
which attests the given meaning.

Lemma 3 Let © be a semantic restriction over a finite domain E,
and let II be a reciprocal meaning over E. Then Rg is congruent with
IT if and only if VA C E[Re(A) =4 min(II(A))].

The following lemma shows that in order to check whether there is
any semantic restriction that attests a given reciprocal meaning II, it
is enough to check one semantic restriction determined by II, which we

denote Myp: M < |, min(11(4)).

Lemma 4 Let IT be a reciprocal meaning over a finite domain E that
1s congruent with Rg for some semantic restriction ©. Then II is con-
gruent with Rar,, where M is the semantic restriction defined above.

2.4.2 'Weak Reciprocity

Weak Reciprocity (Langendoen, 1978) defines for any given domain F
the reciprocal meaning WR specified by:

VAC E,RC E*[WR(A,R) < Vz e A3y € Aly # = A R(z,y)] A
Jy € Aly # z A R(y,z)]]]

In words, WR requires that each member of the set A participates
in the relation both as the first and as the second argument. WR was
suggested in Langendoen (1978) as a possible reciprocal meaning. How-
ever, this view is rejected on empirical grounds by DKKMP, where it is
claimed that all the examples in the literature that had been claimed
to demonstrate WR are in fact consistent with other known reciprocal
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meanings as well. DKKMP point out that the predicates used in those
examples are all symmetric. We show that according to the current sys-
tem, it is in fact impossible to attest WR with any semantic restriction
except for very small domains.

Proposition 5 For a domain E such that |E| > 6, there is no se-
mantic restriction © over E such that WR is congruent with Re .

Since WR is defined for any given domain F, showing that the re-
ciprocal meanings it provides for some domains are unattestable dis-
qualifies Weak Reciprocity as a generator of reciprocal meanings.

2.4.3 Inclusive Alternative Ordering

DKKMP include in their system the operator Inclusive Alternative Or-
dering (IAO) (Kanski, 1987), defined by:

VAC E,RC E*[TAO(A,R) <—
Vo e AFy € Alz # y A (R(z,y) V R(y, 2))]]]

IAO is proposed in DKKMP as the weakest meaning available for re-
ciprocal expressions. It requires that each member of the antecedent set
participate in the relation as either the first or the second argument.
TAO thus allows a “partitioning” of the antecedent set into subsets not
connected by R. The following sentence is claimed by DKKMP to ex-
emplify TAO:

(9) He and scores of other inmates slept on foot-wide planks stacked
atop each-other.

This sentence is true if there are several disjoint stacks of planks, a con-
figuration that is allowed by IAO but not by other reciprocal meanings
in the system of DKKMP.

Using Lemma 3, we can characterize the semantic restrictions at-
testing IAO. Let O1a0 be the set of binary relations R C E? such that
(1) R is anti-symmetric; and (2) there are no paths longer than 2 edges
in the underlying undirected graph induced by R.

Proposition 6 [AO is congruent with Re,,,-

Or1a0 is not the only semantic restriction © for which IAO is con-
gruent with Rg. However, by Lemma 3, for any semantic restriction ©
such that TAO is congruent with Rg, VA C F[Re(A) =4 Re.o(A)].
Consequently, for any semantic restriction © such that IAO is congru-
ent with Re, all relations in © must satisfy the conditions given for
relations in Ora0. In addition, © must allow any element in E to stand
in the relation with any given number of other elements in E. We sub-
mit that although it is theoretically possible to construct a case for
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attesting TAO, a binary predicate with the sort of semantic restriction
required for such a test is unlikely to be found in natural language.

We propose a different explanation to the truth condition of (9). We
claim that the “partitioning” effect in (9) is external to the reciprocal
and not part of its meaning. The following contrast exemplifies the
effect of such “external partitioning”:

(10) The planks are stacked atop each other.
(11) Planks 1, 2, 3, and 4 are stacked atop each other.

Sentence (10) is felicitous if there are four planks arranged in two stacks
of two planks each. This is in contrast with the infelicity of (11) in the
same situation. Winter (2000) observes that partitioning effects occur
with plural definites, but not with proper name conjunction. We follow
this line and claim that partitions in reciprocal sentences are external
and not inherent to the reciprocal interpretation.

2.5 Summary

This paper presents a novel approach to the systematic analysis of re-
ciprocal meanings according to the Strongest Meaning Hypothesis. The
system we propose derives reciprocal interpretations directly from the
operation of the SMH on the semantic restrictions of the predicate. The
logical restrictions affecting reciprocal meanings were spelled out, and
it was shown that they uniquely determine a meaning from an interpre-
tation of the reciprocal. Principles for the examination of meanings and
the construction of appropriate linguistic tests for attesting them were
defined and exemplified, and some negative and positive conclusions on
the availability of previously suggested reciprocal meanings were shown
to follow from these criteria.

2.6 Appendix: Selected Proofs

Proposition 1 For every semantic restriction © over E and a re-
ciprocal interpretation Zg € RECIPg, there is at most one reciprocal
meaning I1 over E that is congruent with Zg .

Proof Assume for contradiction that there are two reciprocal mean-
ings II; and IIs such that II; and II; are both congruent with Zg.

Then the relation Il3, defined by II3 def II; N1II; is also a reciprocal
meaning. [t extends Zg, and it is stronger than at least one of II; and
II,. Therefore at least one of II; and II, is not congruent with Zg, a
contradiction. O
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Proposition 2 For every semantic restriction © over E and an
argument-monotonic reciprocal interpretation g € RECIPg, there ex-
ists a reciprocal meaning 11 over E that is congruent with Zg .

Proof Let 2 be the set of reciprocal meanings that extend Zg. First,
we show that Q # (): Let IT C p(E) x p(E?) be the relation such that

VACE,RC E?[I(A,R) <= 3S € Zo(A)[S Ca R]

IT is a clearly argument monotonic, and is therefore a reciprocal mean-
ing. IT also extends Zg: VA C E,R € O [Zg(A, R) < II(A, R)]. The
left-to-right implication trivially follows from the definition of II, and
the right-to-left implication follows from the definition of II and the
argument-monotonicity of Zg. Hence  # ().

Let IIn C p(E) x p(E?) be the relation defined by:

VAC E,RC E?[TIo(A,R) <= VII € Q[II(A, R)]]

I14 is argument monotonic, therefore it is a reciprocal meaning. By
the definition of Iln, there is no reciprocal meaning stronger than Iln
that extends Zg. Therefore 11 is congruent with Zg. Il

Lemma 3 Let © be a semantic restriction over a finite domain E,
and let II be a reciprocal meaning over E. Then Rg is congruent with
IT if and only if VA C E [Re(A) =4 min(I1(A))].

Proof  “Only If”: Suppose II is congruent with Rg. We first prove
that VA C E[Rg(A) D4 min(II(A))]. Assume for the sake of contra-
diction that there is a set B C E such that Rg (B) 2 min(II(B)), and
let Ry be a relation such that Ry € min(II(B)) \{R|ls | Re(B,R)}.
We define the reciprocal meaning II; as follows:

1L, < I\ {(B,R) | Rlp= Ro}

IT; is indeed argument-monotonic: Let R, R’ be relations such
that I, (B, R) and R Cp R’ hold. We need to show that II; (B, R’)
holds. II(B, R) holds, hence by argument-monotonicity II(B, R’) and
II(B, R | ) hold. In addition, Ry € min(II(B)). Therefore R | 5Z Ry,
and consequently R’ | g# Ry. Hence II; (B, R') holds.

IT; also extends Rg: By our choice of Ry, for any relation R such
that Rg (B, R) holds, R|p# Ry. Hence, for all R € ©:

II,(B,R) < II(B,R)AR|p# Ry —
Ro(B,R)AR|g# Ry <= Re(B,R)
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We conclude that I1; is stronger than IT and extends Rg. Therefore II is
not congruent with Rg, contradicting the assumption. This concludes
the proof that VA C F[Rg(A) 24 min(II(A))].

Let us now show that also VA C E[Re(A) Ca min(II(A))]. Let
A C E be a set and R be a relation such that Rg(A, R) holds. II
extends Rg, therefore TI(A, R) holds. Let S be a relation such that
S € min(II(A)) and S C R. S surely exists since the domain is finite.
Ro(A) D4 min(II(A)), therefore Rg (A4, S) holds. Hence, by the defi-
nition of Rg, R C4 S holds. Therefore S =4 R, and thus indeed the
inclusion holds. This concludes the proof of the “only if” direction.

“If”. Suppose the right-hand-side holds. We show that the two con-
ditions for congruence with Rg hold for II.

1. II extends Reg:
(a) VR € O [Re(A,R) = 1I(A,R)]: Let R € © be a relation
such that Rg (A, R) holds. Then by the supposition, there is
a relation S such that S € min(II(A4)) and R =4 S. By the
argument-monotonicity of II, II(A, R) holds.
(b) VR € ©[II(A,R) = Ro(A,R)]: Let R € © be a relation
such that TI(A, R) holds. Let S be a relation such that
S € min(II(A)) and S C R. S surely exists since the do-
main is finite. By the supposition, there is a relation T' € ©
such that T =4 S and Re(A,T') holds. T C4 R, therefore
by argument-monotonicity of Rg over ©, Rg (A, R) holds.
2. Let II; be a reciprocal meaning that extends Rg. We show that
II C II; holds: Let A C FE be a set and R be a relation such
that TI(A, R) holds. Let S be a relation such that S € min(II(A))
and S C R. S surely exists since the domain is finite. By the
supposition, there is a relation 7' € © such that S =4 T and
Ro(A,T) holds. II; extends Rg, therefore II;(A,T) holds. By
argument-monotonicity of ITy, II; (A, R) holds, hence 1T C II;.
O

Lemma 4 Let II be a reciprocal meaning over a finite domain E
that is congruent with Rg for some semantic restriction ©. Then 11
is congruent with Ryr,, where M is the semantic restriction defined
by Mu = U o p min(I1(A)).

Proof Assume for contradiction that II is not congruent with Ry, .
By Lemma 3, there is a set A C F such that Ry, (A) #4 min(II(A)).
We use the same lemma to contradict the congruence of II with Rg.
Consider the following two cases:
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1. If there is a relation S € min(II(A4)) such that Ry, (A4,.S) does
not hold, then by the definition of My, S € M. Hence by the def-
inition of Ry, there is a relation R € My such that S C 4 R. Let
B C FE be a set such that R € min(II(B)). Since II is congruent
with Rg, by Lemma 3 Rg(B) = min(II(B)). Therefore there
is a relation R’ € © such that Rg (B, R’) holds and R' =g R.
Since R € min(II(B)), R |p= R. Therefore R C R’. It fol-
lows that S Ca4 R’. Consequently, VS’ [S" =4 S = —Rg(4,5)].
S € min(II(A)), therefore Rg (A) #4 min(II(A)).

2. Otherwise, there is a relation R € My such that Ry, (A, R) holds
and VS € min(II(A)) [R #4 S]. Let S be a relation such that
S € min(II(A)). Let B C E be a set such that R € min(II(B)).
IT is congruent with Rg, therefore Rg (B) =5 min(II(B)). Hence
there is a relation R’ € © such that R' =g R and Rg (B, R’)
holds. As above, R C R'. Since Rps, (A, R) holds, R ¢ 4 S and
thus R' ¢4 S. Since the domain is finite, there exists a rela-
tion T € © such that R" C4 T and Reg(A,T). In addition,
VS € min(II(A)) [T #4 S]. Hence Rg (A) #£4 min(I1(A)).

In both cases, the conditions of Lemma 3 do not hold for ©, and there-
fore II is not congruent with Rg, contradicting the assumption. O

Proposition 5 For a domain E such that |E| > 6, there is no se-
mantic restriction © over E such that WR is congruent with Rg.

Proof According to Lemma 4, it suffices to show that WR is not
congruent with Ry, .. We show a set A C E and a relation R € My
such that Rz, (4, R) holds but WR(A, R) does not hold. It follows
that WR does not extend My g, hence it is not congruent with Ray,, -

Let B C E be a set such that |B| = 6. We denote the elements of B
by {a,b,c,d,e, f}. Let R be the following relation (See figure 1):

def

R= {(a,0), (b, a),(c,a),(d,b), (e, ), (e, d), (e, f), (f, €)

FIGURE 1: The relation R
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It is easily verified that R € min(W R(B)). Hence R € My g. Let

A be the set A % {a,b,c,d}. WR(A, R) does not hold. We show that
R]VIWR (A, R) holds.

Assume for contradiction that Rz, (A4, R) does not hold. Then
there is some relation Ry € My g such that R C4 Ry. Let (z,w) € A%\I
be a pair in (R1\R) | 4. By the definition of R, there is an element t € A
such that (z,t) € R. (z,w) ¢ R, therefore w # t. By definition of My g,
there is a set C' C E such that R; € min(WR(C)). Let us define the

relation Ry =4 Ry \ {(2,t)}. We show that WR(C, Rz) holds, contra-
dicting R; € min(WR(C)). WR(C, Ry) holds, therefore:
Ve e C\{z} By e Cly #z A (z,y) € Ro]| A
Ve e C\{t}[Fy € Aly #z A (y,2) € Ra]]
We only have left to prove that:
1. By eCly # 2A(z,y) € Ro]] and
2. ByeAly#tn(y,t) € Rl
(z,w) € Ry, therefore (z,w) € Ry, hence formula 1 holds. (z,t) € R,
therefore t = a or t = b. In both cases there is another pair (v,t) left

in R. Therefore formula 2 holds. We conclude that W R(C, Rg) holds,
a contradiction. Thus the proof is complete. O
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Events from temporal logic to regular

languages with branching
TIM FERNANDO

Abstract

Events in natural language semantics, conceived as strings of observations,
are extracted from formulas of linear temporal logic, and collected in regular
languages. Infinite strings of sets of atomic formulas (fully specifying truth)
are truncated and partialized, in line with the bounded temporal extent
and descriptive content of events. Branching from that line, counterfactual
events are analyzed as b(ranching)-strings accepted by finite b-automata.
These structures are compared and contrasted to those of Computational
Tree Logic.

Keywords EVENTS, TEMPORAL LOGIC, REGULAR LANGUAGES, BRANCH-

ING

3.1 Introduction

Priorean temporal logics have attracted considerable attention in ef-
forts to verify computational systems (e.g. Emerson (1992), Clarke
et al. (1999)). Has that attention been matched by the formal natural
language semantics community? Perhaps in the past (e.g. Thomason
(1984)). But if in recent years that popularity has waned, some of the
blame must be put down to a reluctance to mix events with tempo-
ral logic.! Freely appealing to worlds and times, the very influential
book Dowty (1979) refers to events only informally. Subsequent works
such as Parsons (1990), Kamp and Reyle (1993) and Asher and Las-

IThat said, it is clear from papers such as Blackburn et al. (1996), Condoravdi
(2002) and Bennett and Galton (2004) that not everyone shies away from such a
mix.

FG-MoL 2005.
James Rogers (ed.).
Copyright © 2009, CSLI Publications.
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carides (2003), however, attest to natural language semantics’ enduring
interest in events as full-fledged theoretical entities. It is against this
background that the present work explores the possibility of extracting
events from temporal logic formulas, the truth of which they witness.
We start in section 2 with the simple case of propositional linear tem-
poral logic given by discrete future operators — LTL, for short. The
infinite timelines suitable for analyzing non-terminating reactive sys-
tems (in Emerson (1992) and Clarke et al. (1999)) are noted to be at
odds with the bounded temporal extent events have (according say,
to Reichenbach or Vendler).? Similarly, full specification of atomic for-
mulas true at a moment is incompatible with the partial descriptive
content of events relative to any fixed moment. Accordingly, the infi-
nite strings of sets of atomic formulas determined by timeline-valuation
pairs are truncated and filled with non-atomic formulas, allowing for
lazy evaluation. Events are conceptualized as strings of sets of formulas,
and an event-type formulated (following Fernando (2004a)) as a set of
such strings that may be accepted by a finite automaton — that is, a
regular language.

The conception of an event-type as a regular language is extended in
section 3 to branching time, motivated to no small degree by sentences
such as

(12) Pat stopped the car before it hit the tree.

A natural reading of (12) diverges from the before operator in Emerson
(1992) (§3.2.2), carrying (as noted in Heindméki (1972) and Beaver and
Condoravdi (2003)) the implication

(13) The car did not hit the tree, but it may well have.

We must (amongst other things) be careful to interpret the words “may
well have” in (13) over possibilities ruled out by the first clause in (13).
With this in mind, we augment a finite automaton with a binary rela-
tion on states to form a finite b-automaton, providing an alternative to
the existential operator E in CTL* (e.g. Emerson (1992),§4.2). Whereas
finite automata accept strings, finite b-automata accept b(ranching)-
strings, constituting regular b-languages.

3.2 Portraying LTL formulas by regular languages

Following for the most part the notation of Emerson (1992) and Clarke
et al. (1999), we build the formulas of LTL from a set P of atomic
propositions and interpret these relative to a set S of states, a timeline

2Henceforth, events in this paper are to be understood from the perspective of
natural language semantics, as opposed to programming language theories.
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x : N — § giving an infinite sequence x(0),x(1),... of states, and a

valuation | : S — 2F specifying the set [(s) C P of atomic propositions

true at s € S. We lift the notion [ of truth at states to timelines x
rE=rp it pel(x(0)) forpe P

and formulas ¢, 1) generated from conjunction A, disjunction VvV

rErpAYy il zlEpand x ¢
rErpVYy il zlEporxlEY
and three temporal operators that are interpreted by defining for every

timeline x and n € N the timeline z” : N — S mapping m € N to
x(n +m). We have next X, until U and release R

rhE Xe iff ozl
zEreUyp i (3n>0) (2" Er ¢ and (Ym <n) 2™ ;)
xRy it (Vn>0) (2" v or (3m<n)a™ Er).
Negation is defined through a map *: P — P on atomic propositions
with D = p (doubling P, if necessary, to P x {+, —} with (p, +) = (p, —)
and (p,—) = (p,+)), and the dual (De Morgan) pairs (A,V), (U,R),
(X, X), where

PAY=BVY VP =BAY
etc. Henceforth, we require of a valuation [ that for all s € S and p € P,

pells) iff p&I(s).
We write ® for the set of LTL formulas, with a designated tautology T

and contradiction | = T, setting = = T/L for all/no =, L.
Next, we give a few instances of a language L over the alphabet 2®

portraying a formula ¢ € ®, which we presently systematize:

+ portrays (pAq)Vr

portrays  pAX(gAr)

*@ portrays pUq .

We adopt the notation of regular languages (with non-deterministic
choice +, Kleene star -*, etc) and enclose a set of formulas by a box
rather than by curly braces {-} when that set is understood as a symbol.
We extend |=( to strings s = a; - - - a,, € (2%)* conjunctively

rl=ia;---a, iff whenever 1 <i<nandv €y 27 .

A language L C (2%)* is then defined to portray a formula ¢ € @ if L
provides witnesses for the truth of ¢ in the sense that for all timelines
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x and valuations [,
rhEre it (Isel)zls.

Notice that by allowing the symbols in L to be subsets of ® and not
just of P, we ensure that for every ¢ € ®, there is a regular language

portraying ¢. Take . But for (say) ¢ = pUgq, *@ is far better than
at bringing out how pUq may stretch over more than one moment.
And if we are to view languages as event-types (i.e. sets of events), then
it is noteworthy that has only one event/string (and a rather
poorly drawn out one at that) whereas @*@ has infinitely many. Each
of the strings "@ is a more plausible sequence of snapshots than

given that the truth of p and ¢ depends on states (in isolation),
unlike the compound pUgq.

To pick out portrayals L of ¢ of the sort given by @*@, let us
restrict the alphabet of L a bit, defining the basis of ¢ to be the set
B(yp) of formulas

B(p) = {p} B(p e9) = B(p) UB(p) for e € {A,V, U}
B(Xp) = B(p)  B(¢Ry) = Blp) U B(¥) U{LRy)
and B(p) = 0 for ¢ € {T,L}. We set Bo(p) = B(p) N P, and note
that for ¢ containing no occurrences of R, B(y) = By(y). Membership

of LRy in B(¢R) hints at a certain irreducibility of @Rt over finite
strings. We have

Theorem 1. For all ¢ € ® and n > 0, there is a language L C
(2Bo(@))n(2B(#))* that portrays .

Let us define for every ¢ € ® a language £(¢) meeting the specification
of Theorem 1. The cases of p € P,V, X, T and L are easy:

Lp) = [P0 L(Xg) = OL(p)

LpVip)=L(p)+L(y)  L(T)=0"0"
and £(L) = (). For conjunction, take

LipAy) = L(p) & L()
where the superposition L&L' of languages L, L' over the alphabet 2%
is the componentwise union of strings in L and L’ of the same length
L&L = U{(a1 Uaj) - (aepUal) | a1 -an € Land o) ---af, € L'}
n>0

(Fernando, 2004a). As for U, we cannot generalize the portrayal of

pUq by *@ by equating L(pUt) with L(p)*L(). (Take ¢ = Xp
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and ¢ = p.) Instead, let us define (simultaneously with £) languages
Lo(p), L1(¢), - .. that portray ¢ = T, 0! = p A X0, ...
Lo(p) = 07
Lrta(p) = Llp) & OLi(p)
= L(p"Y) where oFt = o A X
and set
LipUy) = Y (Lilp) & O"L(Y))
k>0

where > is |, just as + is U. For R, the idea is that for a fixed n > 0,

@* + @n portrays  pRgq

which generalizes to

L(pRY) = D (Li(w) & TML()&LW)) + (La(w) & O LRy]) .
k>0

This completes the definition of L.
Are all the languages L(p) regular? No (as the sums » for U and R
are infinite). For p,q,r € P, let

¢ = (mA(TUg)Ur

and note (after a moment’s reflection) that every string in £(¢) which

happens to be in ++ must have no more ¢’s than p’s (as a ¢ in
a string from L£(p) pairs up with a p). That is,

L] Tle = X[pI X [af
i>1 1<j<i
which is non-regular (by a pumping argument). Thus, £($) cannot be
regular.
To form only regular languages, we must do something about
L(pUv). Let us modify L to L, retaining the portrayals of formulas
without U or R

LT = oo Llpvy) = Lip)+L®)
L) =0 L(Xp) = DL(p)
Lp) = [pP D¢ Lpn) = Lip) & L(Y)

(L& L' is regular if L and L’ are (Fernando, 2004a)). The key to U is
lazy evaluation; instead of unwinding pUq fully to @*@, we make do
with

[a]+ [PTa]+ [PTP[a)+ -~ +[P]" [a]+[P'[pVe] portrays pUg
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from which we get
LlpUy) = D (Lly) & TML(w) + (Lalp) & O Uy
k<n

where just as with £;, Lo(p) = 0* and Ly 11(p) = L(p) & OLk(p).
Similarly,

Z @k + @n portrays  pRgq

k<n

and so

LpRy) = 3 (Lu(¥) & TFLO&L®)) + (La(®) & O R]) .
k<n

So much for the definition of £. To formulate an analogue to Theorem
1, let us replace B(p) by C(y), where

C(p) = {p} Clpeyp) =C(p)UC(Y) for e € {A,V}
C(Xp) = C(p) Clp) =0 for p € {T, L}

and C(p e 1)) = C(p) UC(Y) U {p e} for @« € {UR}. Let Co(p) =
C(p)NP.

Theorem 2. For all ¢ € ® and n > 0, there is a language L C
(2C0(#))n(2C(9))* that portrays o and is regular.

Neither the language £(¢) behind Theorem 2 nor the language £(i)
behind Theorem 1 necessarily offers the most obvious portrayal of .
For example, [0 portrays every tautology (whether or not that tautol-
ogy contains R or U), () portrays every contradiction, and the regular
language

b= [+ [ (e + B[R + [P0
portrays the formula ¢ = (p A (TUgq)) Ur, which (as we noted above)
£ maps to a non-regular language.> Each of L, £(¢) and £($) have
very different temporal extents, and temporal extent is crucial in event
semantics. In particular, we had better not confuse + with as
event-types, even though both portray ¢. For the record, let us state an
obvious but important fact about portrayal, agreeing (as usual) that
p, Y € ® are logically equivalent if the same timeline-valuation pairs
satisfy them.

30bserve that LII* = £(rV (pU(pAd))) for §h = (gAXr)VX(rAq)VX(rAX(TUq)).
Excess [I’s at the end of a string in a language L can be stripped off by intersecting
L with O+ (2%)*(2® — {O}).
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Proposition 3. If p,9 € & are logically equivalent, then they are
portrayed by the same languages. Conversely, if there is a language
that portrays both ¢ and v, then ¢ and ¢ are logically equivalent.

Clearly, event-types as languages are much finer grained notions than
formulas in ® under logical equivalence.* But if this is all we want to
say, then surely Theorems 1 and 2 are overkill, are they not?

Part of the interest in Theorems 1 and 2 lies in the incremental
construction of a timeline-valuation pair z,[ satisfying a formula ¢,
which can (for the purpose of =) be reduced to the infinite sequence

((2(0)), Uz (1)), [((2)), ...

Readers familiar with tableaux for LTL (e.g. Clarke et al. (1999)) will
have no doubt noticed that progressively larger initial segments of such
sequences are given by strings in £(¢) and L£(p) that grow as n ap-
proaches 00.5 (To keep the notation simple, we have decorated neither
L nor £ with n; we pay a price for that now.) The only difference
between L(y) and L(p) is the care we exercised in the latter to pro-
duce increments that some finite automata can accept. Furthermore,
we have refrained from mentioning automata on infinite strings (again,
see, for instance, Clarke et al. (1999)) because we want a string that is
interpretable as an event, whose time E may precede a speech time S
(for the past tense, following Reichenbach). If we are to put S and E
on the same timeline (with length N), then the string with time E had
better be finite so that S can come after E.

In view of the irreducibility of the release operator R over finite
strings (accounting for the failure in Theorem 1 of the inclusion B(y) C
P), the question arises: does event semantics have any use for R? But
why should it not? Although an event may be bounded, its effects need
not. Consider (12), repeated below.

(12) Pat stopped the car before it hit the tree.

An effect of Pat stopping the car is that car be stationary. We can
assume the car remains stationary unless some force puts it in motion,
which is, in turn, a precondition for the car hitting the tree. For this
reason, we may conclude from (12) that in the absence of any inter-
vening forces, the car did not hit the tree. To formalize such reasoning,
let us suppose that for certain formulas ¢, we could build a formula
Fe saying intuitively that a force is applied on ¢. Then the formula

4Borrowing terminology from Schubert (2000), event-types collect characterized
situations, whereas logical equivalence is given by a wider supports relation.

5The entailments at stake here (definable from &) are related in Fernando and
Nairn (2005) to restrictions and replacements in Beesley and Karttunen (2003).
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(Fo)Ry says:
(f) ¢ holds and will continue to do so until a force is applied on it.

The notion of inertia implicit in (}) is developed in Fernando (2004b)
to analyze (12) and develop ideas about aspect from Reichenbach and
Vendler. But instead of explicitly mentioning R, rules of inertial flow
are set out, with Fp read as “freeze ¢.”

3.3 Branching beyond CTL and regular languages
A natural reading of (12) supports (13), repeated below.
(13) The car did not hit the tree, but it may well have.

A first attempt at interpreting the multiple possibilities in (13) is to
relativize satisfaction = to a set X of timelines alongside z, [, from
which to reset = by an existential operator E

X,z Ep iff (F'eX) X,z kE=¢.

Note that whether or not X, z = Ego holds is independent of z. E can be
read as epistemic might if X is understood as the conversational com-
mon ground, subject to update (e.g. Veltman (1996)). This construal
brings the portrayal of ¢ V¢ by + in line with an interpretation
of disjunction as a list of epistemic possibilities (Zimmermann, 2000).
Restricting quantification to timelines ' with the same initial state
z'(0) leads to the existential operator E
X,z = Ep iff (32" € X) 2/(0) = 2(0) and X, 2" = ¢

and to state formulas in CTL* (Emerson (1992),84.2) with « truncated
to z(0). E approximates what Condoravdi (2002) calls metaphysical
might insofar as the equation z(0) = 2’(0) captures alternatives under
historical necessity (e.g. Thomason (1984)) on a set X consisting, for
some binary (“successor”) relation R on the set S of states, of timelines
x such that for all ¢ > 0, z(4) R (i + 1).

Can we use E or E to analyze the may in (13)? Treating it epistem-
ically as E will not do, if (as is eminently plausible) the first clause of
(13) eliminates timelines where the car hits the tree from the common
ground. As for E, it fails to provide a notion of counterfactual event
or realis distance to mark ‘car did not hit tree’ as factual, and ‘car
hit tree’ as an unrealized possibility (according to (13)). That such a
notion is missing from CTL* is what is called the “disconnection from
the present” (Nelken and Francez, 1996) of system specifications.

But already, CTL* presents a problem for our identification of event-
types with languages, rather than the automata accepting them. Eval-
uating Ey according to = requires more structure than is provided by
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a set of strings.® Accordingly, we add branches to strings, generating
the set X% of (non-empty) b-strings s over an alphabet ¥

s == a]ss'|b(ss)

from symbols « € ¥ by binary operations of concatenation and branch-
ing b.” We will work with alphabets ¥ C 2% consisting of sets of for-
mulas, and will shortly formalize the intuition that b(s,s’) says s’ may
follow s, whereas ss’ says s’ follows s (without qualification). Hence,
if s; clashes with sy, then b(s,s;)se describes s; as a counterfactual
continuation of s, which continues instead along ss. For example,

b(| moving-car |,| moving-car, contact | contact |) | moving-car

is a b-string depicting the sentence The car stopped before it hit the tree
(with speech time S), assuming (for simplicity)

moving-car | moving-car . depicts  the-car-stopped
and
‘ moving-car, contact depicts the-car-hit-the-tree.

For a formal treatment of depiction in terms of portrayal, we step up
to sets of b-strings (as with ordinary non-branching strings). We turn
a finite automaton (over X) with set @ of states, set — C Q x X x @
of transitions, initial state qo € @ and set F' C @ of final states into a
finite b-automaton (over X)) by adding to the finite automaton a binary

relation 2 C @ % Q on Q (intuitively marking realis as well as temporal
distance). We define a ternary relation = C Q x %° x Q by

g=q iff ¢4
¢4 it B¢"Eq) ¢" >4

b(s,s’ : ,
")y i ¢S ¢ and (3a1 < ¢)(Fa: € F) a1 > ao

and say the finite b-automaton accepts a b-string s if for some ¢q € F,
¢o = ¢. An equivalent presentation of b-strings is provided by the notion

SFor instance, the difference between the regular expressions (@ + Izp and

+ surfaces when -evaluating the formula EX(r A EXp A EXq) against
the respective structures suggested by the regular expressions. Let S = {0, 1,2, 3,4},
(1) = i(2) = {r}, (3) = {p}, I(4) = {q} and compare R = {(0,1),(1,3), (1,4)} with
R’ ={(0,1),(1,3),(0,2),(2,4)}.
"We may impose the equations
(ss’)s” s(s's"") b(b(s,s’),s’)
b(ss’,s") sb(s’,s") b(b(s,s’),s"”)

b(s,s’)
b(b(s,s"),s’)

which the automata-theoretic notions below (viz :5>) respect.
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of a b-form o (over X), defined simultaneously with b-possibilities A by
o == (a,A)]| o0
A == 0|lo+A
for a« € ¥ with constant (). Each b-string s has a b-form f(s) =
(a1, A1) - (i, Ay,) given by
fle) = (a0)
) = FOIE)
f(s,s) = (o1, A1)+ (n—1, An1)(0m, f(5') + An) -

We can then view a finite b-automaton as a 2-sorted top-down tree
automaton (e.g. Comon et al. (2002)), and acceptability of s as deriv-
ability of gos — s from the rules

qla, A) —  (a,q' A) forq 5 ¢ e F
a((a, A)o) — (a,d'A)g'c forqg =4
q@ — 0
glc+A) — Jo+qA for g % ¢ .

Next, let us link L to an interpretation of formulas may(yp) relative
to the transitions — C @Q x (X U {b}) x @ of a finite b-automaton
(Q,—, qo, F), forming

(a) timelines z : N — (@ xX) such that for alln > 0, ¢(n) ) q(n+1)

where x(n) = (g(n), a(n)) [assuming wlog domain(|J,, =) = Q|
(b) the valuation [ : (@ x ¥) — X mapping (g, @) to «, and
(c) a binary relation « on timelines z, 2’ from (a) given by

/

¥z iff ¢ 2, q where z(0) = (¢, ) and 2'(0) = (¢, /).
If we agree that

“,zimay(e) i (G« x) <2’k
then b(0, @) portrays may(p),® assuming the obvious extension of the
notion of portrayal in the previous section to b-strings. (For a smooth
generalization of the total timeline-valuation pairs mentioned in section

2, we must restrict the range of [ to subsets « of P such that (Vp €
P)peaiff D¢ a.)

8How does may apply to the counterfactual in (13) above? The modal branches
forward in time, leaving the work of moving back (into the past) to the perfect
(expressed by have -en), as in Condoravdi (2002). We have, for simplicity, con-
fined ourselves in this paper to future operators. An obvious way to introduce past
operators would double the domain of a timeline from N to NU {—i| ¢ € N}.
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What strings can we recover from a b-string? We can strip off the
branches in a b-string s € X% to form the string s_, € %+, setting
a_p =, (ss')_p = (s—p)(s’y), and b(s,s") _p, = s_p. We may also collect
all possibilities in the language 7(s) € X% including s_;, alongside the
branching possibilities 7 (s) of s

m(a) = {a} () =0

7(ss’) = (s_p)m(s') + #(s) 7(ss’) = (s_p)@(s') + 7 (s)

7(b(s,s')) = (s—p)m(s) + 7(s) 7(b(s,s')) = (s—p)7(s) + 7 (s).
Let us call a set of b-strings a b-language, and agree that a b-language
is regular if it is the set of b-strings accepted by a finite b-automaton.

Proposition 4. If L is a regular b-language, then the languages L_;, =
{s_p | s€ L} and L, = J{n(s) | s € L} are both regular.

Proof. Given a finite b-automaton for L, we need only drop the relation

b to get a finite automaton for L_j;, and turn s b s to s 5 s for L.
*1

The elimination of realis distance - in Proposition 4 takes us back to
the “disconnection from the present” in CTL*.
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On the formal semantics of begin and
end of states in a model theory for
temporal DRT

PETRA DUNGES

Abstract

In this paper we show that the intended meaning of begin and end of
states is not embodied in the model theory of temporal DRT as given in
From Discourse to Logic. As a consequence the non-continuous reading of
the present perfect of statives is not expressed quite correctly by Kamp and
Reyle. We introduce first order axioms for begin and end of states and events.
Further to capture the intended meaning of begin and end of states two
second order axioms are needed which say that the end of a state cannot
overlap a similar state and that the begin of a state cannot overlap a similar
state. This treatment of begin and end of states can be used not only for
DRT but for other eventuality-based theories of temporal semantics as well.

Keywords rormaL sEmMaNTICS, DRT, TEMPORAL SEMANTICS, MODEL
THEORY, STATES, BEGIN, END

In DRT discourses are translated into discourse representation struc-
tures which are translated into formulas of first order logic. The model
theory uses a Davidsonian eventuality-based semantics. The temporal
analysis of sentences in DRT is based on a theory of aspect and a
two-dimensional theory of tense.

The theory of aspect uses a system of verb classes: we have statives,
accomplishments, achievements and activities. In this theory it is de-
termined whether the eventuality described by a given sentence is an
event or a state.

FG-MoL 2005.
James Rogers (ed.).
Copyright © 2009, CSLI Publications.
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The motivation for the distinction between state- and event-descri-
bing sentences comes from the way temporal localization adverbs like
on Sunday function. In an event-describing sentence like the following
(with an accomplishment in the simple past tense)

Mary wrote the letter on Sunday

the localization time of the described eventuality is included in the time
referred to by on Sunday. In contrast, in a state-describing sentence like
the following (with an accomplishment in the past progressive)

Mary was writing the letter on Sunday

we only know that the localization time of the state in question overlaps
with the time referred to by on Sunday. Note that Mary may have
already been writing the letter on Saturday. The time referred to by a
temporal localization adverb we call the adverb time.

After the described eventuality has been determined, it is localized
in time via a two-dimension theory of tense. A central role is played
by the Temporal Perspective Point, TPpt. Two relations are impor-
tant in this theory: the relation in which TPpt stands with the utterance
time n of the sentence in question, and the relation in which the adverb
time i stands with TPpt. A suitable temporal perspective point has to
be choosen out of the context of the preceding discourse. For a sin-
gle sentence discourse, n is the only available candidate. In sentences
with a temporal localization adverb Adverb we have the condition
Adverb(i). If there is no temporal localization adverb present, no con-
dition is put on <.

Now we concentrate on model theory, see Kamp and Reyle (1993, p.
667 ff). !

Definition 1 A structure £V = (EV,E,S, <, () such that EV,E and
S are sets, EV.=EUS, ENS = () and EV # 0 is called an eventuality
structure.

EV is called the set of eventualities, E the set of events, S the set
of states. Eventualities are denoted by ev, events by e and states by s.

L1One of the referees suggested that the work of Sylviane Schwer might be of
relevance to this paper. Schwer (2004) shows an interesting connection between the
eventuality structures of Kamp and S-languages. As she is working in a different
framework, it will take substantial time to determine the exact relevance of her work
to the present question of begin and end of states. Schwer does not treat states as
arguments of predicates, so it is not to be expected that she has a solution to the
non-continuous reading of the present perfect in the framework of DRT, however. I
postpone investigations into Schwer (2004) for a later occasion.
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The precedence relation, <, and the overlap relation, (), are bi-
nary relations on EV such that for all ev; € EV:

evy < evy — —evy < evy (P1)

(evy < evy Aevy < evs) — evy < evg (P2)

ev; Oevy (P3)

evi Oevy —eva Oevy (P4)

evy; < evy — —evy () evy (P5)

(evi < evgANeva OeviyNevy < evy) — evy < evy (P6)
evy <evyVevy Devy Ve, < evy (P7)

Eventualities are localized in time at intervals. Intervals are convex sets
of instants. A punctual interval i is of the form ¢ = {t} where ¢ is
an instant; n and TPpt are punctual intervals. The precedence relation
< on the set of instants is asymmetric, transitive and linear. The in-
terval structure associated with the instant structure 7 is denoted by
INT(T). Precedence, <, and overlap, (), between intervals iy, iy are
defined as follows: i1 < ig if t; < to for all t1 € i1,ts € ig, and i3 O g if
there is a ¢ € i1 N43. The localization function LOC : £V — INT(T)
from eventualities to intervals is a homomorphism with respect to prece-
dence and overlap. 2
In Diinges (1998) it is shown that the following holds:

Proposition 1
evy O evy < LOC(evy) O LOC(evy) (i)
ev; < evy «» LOC(evy) < LOC(ev,) (ii)
A sentence with a stative in the simple present is state-describing

and has the temporal property TPpt = n,i = TPpt. So sentence (4.1)
gets formula (4.2). See figure 1.

Mary lives in Amsterdam (4.1)

3, s,z(i = n ALOC(s) O i A Mary(z) A live-in-Amsterdam(s, x))
(4.2)

Begin and end of states and events play a role, too. A linguistic moti-
vation for the introduction of the end of a state is the treatment Kamp
and Reyle give to the present perfect of statives in sentences without
temporal localization adverbs. Such a sentence is state-describing and

2There is more to say about LOC, for the present article LOC being a homo-
morphism suffices, however. For further conditions on LOC see Kamp and Reyle
(1993), Diinges (1998) and Diinges (2001).
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FIGURE 1: A model for a sentence with a stative in the simple present

I » time

FIGURE 2: A model for a sentence with a stative in the present perfect

s’ e s’

i » time
n

has the temporal property TPpt = n,i = TPpt. Here the described
eventuality is the result state s” of a state s’ that is referred to by
the stative and s is triggered by the termination of the underlying
state s’. Thus the following sentence

Mary has lived in Amsterdam (4.3)

is describing a state that comes about through “termination of the
state of living in Amsterdam”, see Kamp and Reyle (1993, p. 567).
We call this interpretation of the present perfect of statives the non-
continuative reading. In Kamp and Reyle (1993, p. 580) we find
essentially the following formula for (4.3), where DC stands for the
abut relation. See figure 2.

Ji, s’ 8", e,x(i =n ALOC(s") OiAe=end(s') NeDCTs”
A Mary (z) A live-in-Amsterdam(s’, z))  (4.4)

By the way, formula (4.4) and formula (4.2) can both be true in
the same model at n. This is as it should be, as intuitively the truth
of Mary has lived in Amsterdam does not speak against the truth of
Mary lives in Amsterdam, if both sentences are uttered at the same
time: Mary may have come back to Amsterdam once she left it.

Kamp and Reyle mention, that eDCs” means that s” “starts the very
moment e ends’, but do not give a formal definition of the abut relation
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or a complete formal characterization of begin and end of eventualities
in Kamp and Reyle (1993).

Let us start with some first order axioms for begin and end of even-
tualities. Kamp and Reyle introduce the functions begin : EV — E and
end : EV — E in their definition of a model, see Kamp and Reyle (1993,
p. 677 ff.). The only conditions they put on these functions are the
following

begin(begin(ev)) = begin(ev) (BB)
end(end(ev)) = end(ev) (EE)

More than that is needed to capture the intended meaning of begin and
end of eventualities, however. One intuition that must be reflected by
our theory is that begin and end of an event belong to that event, but
begin and end of a state do not belong to that state. Why is this so?
Consider an event e described by Mary wrote the letter. Assume
that LOC(e) = [t1, t2]. Then intuitively there is a state s described by
Mary was writing the letter and LOC(s) =|t1,t2]. Meaning pos-
tulates for the progressive can take care of this. Intuitively we want
LOC(begin(e)) € LOC(e) but LOC(begin(s)) < LOC(s). In addition,
no temporal gaps should be allowed between the begin of a state and
the state on the one hand and the state and the end of the state on the
other hand.

In order to capture the no-gap intuition we need the adjacency-
relation, TJ—. We define the adjacency relation between eventualities
via the adjacency relation between intervals as follows:

11 ioiffiy < ig Ady Uiy € INT(T) (:ll:l)
ev; T evy iff LOC(evy) = LOC(ev,) (0—2)

To begin with, we introduce a partition of the set of events, E, into a
set of punctual events, PE, and a set of non-punctual events, NPE.
Punctual events are localized at punctual intervals, non-punctual events
at non-punctual intervals. Non-punctual events consist of three parts:
begin, middle and end. The constitutes function + : PE xS x PE —
NPE is a partial function, which puts together these three parts of a
non-punctual event. Begin and end of eventualities are punctual events,
the middle of an event is a state.

We require the fulfillment of the following axioms:

Ve € PE(begin(e) = e = end(e)) (LEV1)
Ve € NPE(begin(e) = middle(e)) (LEV2)
Ve € NPE(middle(e) 1 end(e)) (LEV3)
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Ve € NPE(e = +(begin(e), middle(e), end(e))) (LEV4)
Ve € NPE(LOC(e) = LOC(begin(e))U

LOC(middle(e)) ULOC(end(e))) (LEVS)

Vs € S(begin(s)Is) (LEV6)

Vs € S(sTIend(s)) (LEVT)

Conditions (BB) and (EE) of Kamp and Reyle are met by our func-
tions begin and end as well, because the begin and the end of an even-
tuality are punctual events and we have axiom (LEV1).

Now we can define the abut-relation DC as follows:

ev; DCev;y iff LOC(end(evy)) = LOC(begin(evs)) (o0)

Note that there is a subtle difference between the adjacency and the

abut relation. The adjacency relation between eventualities does not al-

low for a time gap between them. In contrast, if sDCs’ holds, then there

is a tiny time gap between the two states, given by LOC(begin(s’)).
In order to get inferences like the following:

Mary wrote the letter F Mary was writing the letter
we may introduce meaning postulates:
write(e, z,y) — (PROG(write))(middle(e), z, y) (mp:write)

Let us come back to our example Mary has lived in Amsterdam.
Counsider a model 9 and an assignment 3 such that (3(¢), 8(s’), 8(s"),
B(e), B(x)) is a witness for the truth of (4.4) in (90, 3). Let s’ = 3(s'),
s” = 3(s"”) and e = B(e). We have e = end(s’). We get end(end(s’))
end(s’), by axiom (EE). Thus eD>Cs” means that LOC(end(s’))
LOC(begin(s")).

At first glance everything seems to be in order. But note that the
result state that is decribed by Mary has lived in Amsterdam is trig-
gered by the termination of some stay of Mary’s in Amsterdam. And
the termination condition is not mirrored in all models for the corre-
sponding formulas.

Where is the problem? Consider again our witness for the truth of
(4.4) in (M, B). Assume that there is a state s such that s = §(s)
and (M, B) k= live-in-Amsterdam(s, ). Further, assume that (901, 3) &
end(s’) O s. See figure 3. Note that (9, 8) k= live-in-Amsterdam(s’, ).
Nevertheless, we cannot say, that Mary’s life in Amsterdam is termi-
nated at LOC(end(s’)).

The trouble is that (9,5) |= live-in-Amsterdam(s,z) and s O
end(s’). So Mary lives in Amsterdam is true in that model if uttered
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FIGURE 3: An intuitively undesireable model for a sentence with a sta-
tive in the present perfect

s’ e s’

at LOC(end(s’)). Thus the intended interpretation of the termination
condition is not reflected in our model.

How can we exclude unwanted models like this one? This question
points us to a deeper problem. Namely, it shows that we have still not
said all there is to say about the end (and begin) of states.

So far in our axioms about begin and end we have only been con-
cerned with eventualities themselves, but not with the facts they de-
scribe. It is time now that we bring them into play. This can be done
by considering states with description.

Definition 2 Let 9t be a model and 3 an assignment in 9. Let SX™
be a variable for a n-place state predicate and x1,...x, variables for

individuals. Then SX™(—,x1,...,%,) is called a description.
Let s be a state in M. Let s = B(s) and (M, B) E X" (s,21,...2p).
Then s is called a state with description *X"(— x1,...,2,) in M

relative to 3. Let s and s’ be states with the same description in I
relative to 3. Then s and s’ are called similar states.

In the undesireable model for Mary has lived in Amsterdam that was
depicted in figure 3, s and s’ are similar states.

We require that the end of a state with description cannot overlap
with a similar state. And we require that the begin of a state with de-
scription cannot overlap with a similar state. The following two second
order axioms do this job.

SX" (8,21, ... Ty) — (3 CX(s, 21, .. ) A

LOC(end(s)) O LOC(s"))) (NoOEndS)

SX"(s, 1, ... Ty) — (43 CX(s 21, ... Tp)A
LOC(begin(s)) O LOC(s"))) (NoOBeginS)

This move solves our problem with the non-continuous reading of the
present perfect of statives. But it is more than a technical trick for a
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problem with one type of sentences. These axioms capture something
important about the meaning of begin and end of states, as they help
to express the idea that a certain condition is terminated (at the end
of a state describing that condition) or started (at the begin of a state
describing that condition).

Alternatively we may consider the following two axioms:

SX" (8,21, .. xn) — (I CX(s" 21, xn) AsO 8
A =LOC(s) = LOC(s")) (No(OS)

SX"(s,w1, ... Tp) — (43X (s 21, .. 2p) A sTTS)A
-3’ (X" (s, w1,...2,) ANs'OTs))  (NoIZS)

Proposition 2 The fulfillment of both (No(OBeginS) and (NoQOEndS)
implies the fulfillment of both (No(OS) and (NoTI=S) and vice versa.

These axioms are quite strong. At first glance it might seem that
they are interfering with the so called principle of homogeneity or
the subinterval property, as proponents of interval semantics would
have it.

The subinterval property is formulated by Dowty (1986, p. 42) as
follows:“A sentence is stative iff it follows from the truth of ¢ at an
interval I that ¢ is true at all subintervals of I. (e.g. if John was asleep
from 1:00 to 2:00 PM. then he was asleep at all subintervals of this
interval ... )’

As temporal DRT is not a theory of interval semantics, where the
truth of a sentence is evaluated with respect to intervals of time, the
subinterval property can not be rendered literally into the framework of
DRT. But it might be tempting to introduce the concept of substates
and to require the fulfillment of the following second order axiom, see
figure 4.

(CX"(s,21,...2,) Ni CLOC(s)) — 'S X" (s, 21, ... 7p)
ANi = LOC(s"))
Definition 3 Let s and s’ be similar states such that LOC(s") C

LOC(s) then s’ is called a substate of s. If LOC(s’) C LOC(s) then
s’ is called a proper substate of s.

(SUB)

But note the following result
Proposition 3 Let s be a state with description. Let i C LOC(s) and
i # LOC(s).

Then (SUB) does not hold in presence of axiom (No(OS).
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FIGURE 4: A state s with some substates

1]

» time

No harm is done, however, as we do not need axiom (SUB). We will
demonstrate this in the following.

So, how do we treat examples that require the principle of homo-
geneity, without having axiom (SUB) at our disposal? We propose that
in the framework of DRT the sentence

John was asleep from 1:00 to 2:00 (4.5)
should be translated in the following way:
i, z,s(t <nAi CLOC(s) A from1:00-t02:00(i) (4.6)
Nasleep(s, z) A John(x))

We require that from1:00-t02:00(i) means that i = [t1, ta] where ¢1,t2
are the instants referred to by “at 1:00” and “at 2:00”, respectively. The
unusual condition ¢+ C LOC(s) is necessary for the temporal localization
adverb from 1:00 to 2:00. Note that for an adverb like on Sunday
we use LOC(s) O - but for from 1:00 to 2:00 this condition would
yield plainly wrong results.

Now given a witness w = (3(7), 8(x), 8(s)) for (4.6) and a standard
semantics for terms like “at 1:00”, then w is a witness, too, for the
formulas for

John was asleep from A to B (4.7)

for all A, B such that 1:00 <A <B <2:00.

Thus in DRT we do not need an axiom like (SUB) to capture the
gist of the principle of homogeneity.

Moreoever, note that (SUB) introduces spurious substates which
seem to have no place in a truly eventuality-based theory of temporal
semantics. Thus we can do away with that axiom without having to
shed a single tear.
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How to Define Simulated Annealing
for Optimality Theory?

TAMAS BIRO T

Abstract
Optimality Theory (OT) requires an algorithm optimising the Harmony
function on the set of candidates. Simulated annealing, a well-known heuris-
tic technique for combinatorial optimisation, has been argued to be an em-
pirically adequate solution to this problem. In order to generalise simulated
annealing for a non-real valued Harmony function, two representations of a
violation profile are proposed: by using polynomials and ordinal numbers.
Keywords OprTimaLITY THEORY, HEURISTIC COMBINATORIAL OPTI-
MIZATION, SIMULATED ANNEALING, ORDINAL NUMBERS, POLYNOMIALS

5.1 Optimality Theory and optimisation

A grammar in Optimality Theory (Prince and Smolensky (2004), aka
Prince and Smolensky (1993)) counsists of two modules, Gen and Eval.
The input—the underlying representation UR—is mapped by Gen onto
a set of candidates Gen(UR), reflecting language typology. For each
language, the language-specific Eval chooses the element (or elements)
appearing as the surface form.

Eval is usually perceived as a pipeline, in which constraints filter out
sub-harmonic candidates. Each constraint assigns violation marks to
the candidates in its input, and all candidates with more marks than
some other ones are out of the game. Nonetheless, Eval can also be seen
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for High-Performance Computing; as well as thank the following people for valuable
discussions: Gosse Bouma, Gertjan van Noord, Krisztina and Balazs Szendrdi.
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as a function assessing the candidates for Harmony: the most harmonic
one will surface in the language.

A constraint C; is a function mapping from the candidate set to the
set of non-negative integers. The (universal) constraints are ranked into
a (language-specific) hierarchy: Cy > Cn_1 > ... > Cy. Eval assigns
a vector (a violation profile, a Harmony value) to each candidate w:

H(w) = (C’N(w),C’N_l(w), ...,Co(w)) e N+ (5.8)

Eval also includes an optimisation process that finds the optimal
candidate(s), and returns it (them) as the surface representation cor-
responding to underlying form UR:

SR( UR) = argoptwe Gen( UR)H(w) (59)

Here, optimisation is with respect to lexicographic ordering. Lezico-

graphic ordering of vectors is the way words are sorted in a dictionary:

first compare the first elements of the vectors, then, if they are the
same, compare the second ones, and so on. Formally speaking:

Definition 5 H(w;) is more optimal (more harmonic) than H(ws)
(H(wy1) = H(w2)), or simply candidate w; is better than wy (w1 > wa),
if and only if there exists k € {N, N —1,...,0} such that

1. Ck(wr) < Ck(ws); and
2. forall j € {N,N —1,...,0}, if j > k then C;j(w1) = C;(w2).

Two violation profiles are equal (H(wy) = H(ws), two candidates are
equivalent: wy ~ we) iff for all j € {N,N —1,...,0}, Cj(w1) = Cj(w2).

We shall call the constraint Cy, which determines the relative or-
dering of H(wy) and H(ws), the fatal constraint (the highest ranked
constraint with uncancelled marks).

This definition follows from the filtering approach: being worse on a
higher ranked constraint cannot be compensated by a better behaviour
on lower ranked constraints. This phenomenon is called the categori-
cal ranking of the constraints (Strict Domination Hypothesis), and is
probably a major reason why OT has become so popular.

The following three properties can be shown from definition 5 di-
rectly (Biro, forthcoming); by them, the soundness of Eq. (5.9) follows:*

Theorem 6 The set of violation profiles is a well ordered set, namely:

« TRANSITIVITY: if wy = wg and wg > w3, then wy > ws also
holds.
Hmportantly, the proof of the last statement requires the set of possible violation

levels—the range of each constraint—form a well ordered set. This criterion is met
in our case, since the violation levels are non-negative integers.
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« LAW OF TRICHOTOMY : for any two candidates wy and ws, exactly
one of the following three statements holds:
1. H(wy) < H(ws) (that is, w1 < wa);
2. H(wy) = H(wz) (that is, w1 > wa);
3. H(wy) = H(ws) (that is, wy ~ ws).
- THE EXISTENCE OF A MOST OPTIMAL SUBSET: Let S be a set of
candidates. Then, S has a subset Sy C S such that
1. if wy € Sy and wy € Sy, then H(wy) = H(ws);
2. if wy € Sp and w3 € S\ Sy, then wy = ws.

Optimality Theory poses the following computational challenge:
what algorithm realises the optimisation required by Eval? Eisner
(2000) demonstrates that finding the optimal candidate is OptP-
complete. In addition, numerous linguistic models use an infinite candi-
date set. Several solutions have been proposed, although each of them is
built on certain presuppositions, and they require large computational
resources. Finite state techniques (e.g. Ellison (1994), Frank and Satta
(1998), Karttunen (1998), Gerdemann and van Noord (2000), Biro
(2003)) not only require Gen and the constraints to be finite state,
but work only with some further restrictions. Chart parsing (dynamic
programming, e.g. Tesar and Smolensky (2000), Kuhn (2000)) has as-
sumptions met by most linguistic models, but also requires a relatively
large memory. Similar applies to genetic algorithms (Turkel, 1994).

A cognitively adequate optimisation algorithm, however, does not
have to be exact. Speech is full or errors, and (a part of) the perfor-
mance errors could be the result of the optimisation process returning
erroneous outputs. Yet, a cognitively adequate algorithm should always
return some response within constant time, since the conversation part-
ners are not computer users used to watch the sandglass.

This train of thought leads to heuristic optimisation techniques, de-
fined by Reeves (1995) as “a technique which seeks good (i.e. near-
optimal) solutions at a reasonable computational cost without being
able to guarantee either feasibility or optimality, or even in many cases
to state how close to optimality a particular feasible solution is.” In this
paper, we implement Optimality Theory by using the simplest heuristic
optimisation technique, simulated annealing, and introduce the Simu-
lated Annealing for Optimality Theory algorithm (SA-OT).

The SA-OT algorithm will, under normal conditions, find the “cor-
rect”, i.e. the grammatical output—the optimal element of the candi-
date set—with high probability, within constant time, using only a very
restricted memory. Human speakers sometimes speed up the computa-
tional algorithm, and the price is paid in precision: we propose to see
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(some) fast speech phenomena as decreased precision of Eval due to
the increased speed. Similarly, by speeding up SA-OT, the chance of
finding suboptimal, yet “good (i.e. near-optimal) solutions” increases.
The models of fast speech phenomena thus constructed support the
cognitive adequateness of SA-OT (Bir6 (2004), Bir6 (forthcoming)).

5.2 Heuristic Optimisation with Simulated Annealing

Simulated annealing, also referred to as Boltzmann Machines or as
stochastic gradient ascent, is a wide-spread stochastic technique for
combinatorial optimisation (e.g. Reeves (1995)). Only few have ap-
plied simulated annealing in linguistics, most of them for parsing (e.g.
Selman and Hirst (1985), Howells (1988), Kempen and Vosse (1989),
Selman and Hirst (1994)). It may also be found in the pre-history of
Optimality Theory (Smolensky, 1986) and in later work on Harmonic
grammar—including Mazimum Entropy models of OT (Jager, 2003)—,
though usually related to grammar learning. To our best knowledge, it
has never been applied within the standard OT paradigm, especially
for finding the optimal candidate.

Simulated Annealing searches for the state of a system minimising
the cost function E (Energy or Evaluation) by performing a random
walk in the search space. If the rule were to move always downhill
(gradient descent), then the system would very easily be stuck in local
minima. Therefore, we also allow moving upwards with some chance,
which is higher in the beginning of the simulation, and which then
diminishes. The control parameter T' determining the uphill moves is
called “temperature”, because the idea proposed independently by Kirk-
patrick et al. (1983) and by Cerny (1985) originates in statistical physics
(Metropolis et al., 1953).

The random walk is launched from an initial state wg. At each time
step, a random neighbour state (w’) of the actual state w is picked.
We need, thus, to have a topology on the search space that defines the
neighbours of a state (the neighbourhood structure), as well as the a
priori probability distribution determining the choice of a neighbour in
each step. Subsequently, we compare w’ to w, and the random walker
moves from w to w’ with probability P(w — w’ | T), where T is the
temperature at that moment of the simulation. (A random number r
is generated between 0 and 1, and if r < P(w — w’ | T), the random
walker moves.) If E(w) is the cost function to minimise, then:

if E(w') < E(w)
>FE

1
Plw—uw|T)= ') B(w
( | T) {e_E( Ew) B(w')

(w
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Moving downhill is always possible, and moving uphill depends on
the difference in F and on the temperature T'. At the beginning of the
simulation, T is assigned a high value, making any move very likely. The
value of T is then decreased gradually, while even the smallest jump
does not become highly improbable. When the temperature has reached
its lowest value, the algorithm returns the state—a local minimum—
into which the random walker is “frozen”. Obviously, nothing guarantees
finding the global minimum, but the slower the cooling schedule (the
more iterations performed), the higher the probability to find it.

5.3 Simulated Annealing for OT: the basic idea

How to combine simulated annealing with Optimality Theory? The
search space is the candidate set, as defined by standard OT. Yet, a
neighbourhood structure (a topology) should be added—an unknown
concept in OT literature—in order to determine how to pick the next
candidate. We propose to consider two candidates as neighbours if they
differ only minimally: if a basic operation transforms one into the other.
What a basic operation is depends on the problem, but should be a nat-
urally fitting choice. It is the neighbourhood structure that determines
which candidates are local optima, which may be returned as erroneous
outputs. Thus, the definition of the topology is crucial to account for
speech errors.

If the topology determines the horizontal structure of the landscape
in which the random walker roves, the Harmony function adds its ver-
tical structure. Here again, standard Optimality Theory provides only
the first part of the story. The transition probability P(w — w’ | T) = 1
if w’ is better than w (i.e., H(w') > H(w)). But how to define the tran-
sition probability to a worse candidate, in function of the temperature
T? How to adopt Eq. (5.10)? What is H(w’') — H(w), let alone its
exponent? And what should temperature look like?

Equation (5.10) provides the meaning of temperature: 7' defines the
range of F(w’)— E(w) above which no uphill jump is practically possible
(P(w—w | T)~0,if E(w)— E(w) > T), and below which uphill
moves are allowed (P(w — w' | T) = 1, if E(w') — E(w) < T). In turn,
we first have to define the difference H(w') — H(w) of two violation
profiles, then introduce temperature for OT in an analogous way. Last,
we can adjust Eq. (5.10) and formulate the SA-OT algorithm.

Two approaches—two representations of the violation profile—are
proposed in order to carry out this agenda. Both may have its adher-
ents and its opponents. And yet, both approaches lead to the same
algorithm.
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5.4 Violation profiles as polynomials

As mentioned, a crucial feature of Optimality Theory is strict domina-
tion: a candidate suboptimal for a higher ranked constraint can never
win, even if it satisfies the lower ranked constraints best. Prince and
Smolensky (2004) present why the Harmony function H(w) satisfying
strict domination cannot be realised with a real-valued function.
Suppose first that an upper bound ¢ > 0 exists on the number of
violation marks a constraint can assign to a candidate. The possible
levels of violation are 0,1,...,qg — 1. Then, the following real-valued
Energy function E(w) realises the Harmony H(w) known from (5.8):

B(w) =Cn(w)- ¢V +Cn_1(w) - ¢V 1+ ...+ C1(w) - g+ Co(w) (5.11)

E(w) realising H(w) means that for all wy and wsy, F(w;) < E(ws)
if and only if H(w) = H(ws). In other words, optimising the Harmony
function is equivalent to minimising the Energy function. Observe that
E(w) with a lower ¢ does not necessarily realise H(w).

However, nothing in general guarantees that such an upper bound
exists: Eq. (5.11) with a given ¢ is only an approximation. Then, let us
represent the violation profiles as polynomials of ¢ € RT:

E(w)[q] = Cn(w)-¢N +Cn_1(w)-¢" 4.+ C1(w) -q+Co(w) (5.12)

and consider the behaviour of E(w)[q] as ¢ goes to infinity! Yet, F(w)][q]
also goes to infinity as q¢ grows boundless: lim E(w)[q] = +co.

The trick is to perform an operation first, or to check the behaviour of
the energy function first, and only subsequently bring ¢ to the infinity.
By performing continuous operations, it makes sense to change the
order of the operation and of the limit to infinity.

First, let us compare two violation profiles seen as polynomials. The
following definition—comparing the limits—is meaningless: wq = wo iff
lim, oo E(w1)[g] < limg_ oo E(w2)[gq]. We can, however, consider the
limit of the comparison, instead of the comparison of the limits:

Definition 6 E(w;) < F(w2) if and only if
either limg— o0 (E(w2)[g] — E(w1)[q]) > 0,
or Ty a0 (Bwn)lg] - E(wr)lg]) = +oo.
Furthermore, E(w;) = E(ws) iff E(w;)[g] = E(w2)[q] for all ¢ € RT.

Energy-polynomials with this definition of < realise the Harmony
function: E(w;) =X E(wz) if and only if H(wy) = H(wz). For a proof,
see the Appendix and Bir6 (forthcoming). Consequently, the polynomial
representation of the Harmony function is well-founded.
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Can we use energy polynomials to formulate simulated annealing
for Optimality Theory? As explained, the role of temperature in simu-
lated annealing is to define a magnitude above which counter-optimal
transitions are improbable, and below which they are very probable.
Thus, temperature must have the same type (dimension, form) as the
function to optimise. If, in our case, the energy function takes different
polynomials as values, then T should also be polynomial-like:

Tlq) = (Kr.t)lg] =t~ ¢"" (5.13)

Temperature T = (Kr,t) looks as if it were a violation profile that
has incurred t marks from a constraint—if some constraint has K as
index. But temperature can be more general: we only require t € R,
whereas K may take any real number as value.

The last step is to define the transition probability of moving from
candidate w to a neighbour w’. If w’ > w, the probability is 1. Oth-
erwise, we repeat the trick: first perform the operations proposed by
(5.10), and only afterwards take the ¢ — +oo limit:

E(w’)[q]—E(w)[a]
T[q]

P(w — ' ’ T[q]) = lim e (5.14)

q—+0o0
Observe that if Cy, is the fatal constraint when comparing w and w’,
then the dominant summand in the expression F(w’)[q] — E(w)[q] is
[Cr(w') — Ci(w)]q". Thus, (5.14) and (5.13) yield the following

RULES OF MOVING from w to w’ at temperature T' = (K, t):

- If w’ is better than w: move! P(w — w'|T) =1
« If w' loses due to fatal constraint Cj:
If k > Kr: don’t move! P(w — w'|T) =0
If k < Kr: move! P(w — w'|T) =1
If kK = K7: move with probability P = e~ (Cr () =Cp(w))/t

Note that the last expression requires ¢ > 0, as in thermodynamics.
Gradually dropping 7" can be done by diminishing K7 in a loop with an
embedded loop that reduces t. Thus, the height of the allowed counter-
optimal jumps also diminish—similarly to usual simulated annealing.

5.5 Violation profiles as ordinal numbers

Instead of considering the limit ¢ — +oo of real-valued weights in poly-
nomials, why not take infinite weights? In set theory, the well ordered
set {0,1,2,...,q — 1} defines the integer q. When the possible levels of
violation formed this set, we could use weight ¢. In the general case, the
possible levels of violation of the constraints form the set {0,1,2,...}:
this well ordered set is called w, the first limit ordinal (Suppes, 1972).
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Arithmetic can be defined on ordinal numbers, including comparison,
addition and multiplication. These latter operations are associative, but
not commutative. Therefore, we can introduce a new representation of
the Harmony function H(w):

0
E(w) = wNCn(w) + ... + wCi(w) + Co(w) = Z WiCi(w)  (5.15)
i=N

Because w is the upper limit of the natural numbers, win < w*t!
for any finite n. Thus, the definition of E(w) in (5.15) with the usual
relation < from ordinal arithmetic also realises the Harmony function:
E(wy) < E(ws) if and only if H(wy) = H(ws). The very definition of
limit ordinals excludes ganging up effects.

We need now the difference of two E values. Instead of subtraction,
one can define an operation A(a,b) on the violation profile-like ordinal
numbers with the form Z?:N w'a;, such that a = b+ A(a, b):

Definition 7 If a = E?:N wia; and b= Z?:N w'b; and a > b, let be

4 b ifVi(i<j<N):a;=b
A(a,b)zZ?_Nwléi,Whereéiz{al bi MVj(1<j < N)ia;=b;

a; otherwise

The co-efficient of the highest non-zero term in A(E(w’), E(w)) is
the difference of the violation levels of the fatal constraint. The lower
summands vanish compared to the highest term, so we can neglect
them in a new definition of two violation profile-like ordinal numbers:

Definition 8 Ifa = Z?:N wla; and b = Z?:N w'b;, and a > b, let be

Al(a,b) = N0 wid!, where & = { V(i <j<N)ia;=b
0 otherwise

Observe that for candidates w and w’, if C}, is the fatal constraint
why w = v/, then A’ (E(w'), E(w)) = w*[Cr(w') — Cr(w)].

Next, we introduce the following conventions, where a, b, 7 and j are
positive integers, and z, y and z are ordinal numbers (remember that
w means “infinity”):

| | 1 ifi<j
e :jz = e_wliJ% = 67% if 1 = j (516)
0 ifi>j

Temperature has to have the same form as the difference of two
violation profiles A’(E(w'), E(w)), so we propose

T = (Krp,t) =wfTt (5.17)
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ALGORITHM: Simulated Annealing for Optimality Theory (SA-0T)
Paramters: w_init, K_max, K_min, K_step, t_max, t_min, t_step
w <-- w_init
for K = K_max to K_min step K_step
for t = t_max to t_min step t_step
choose random w’ in neighbourhood (w)
w <-- w’ with probability P( w-->w’ | T=<K,t>)
as defined in the ‘‘Rules of moving’’
end-for
end-for
return w

FIGURE 1: The algorithm of Simulated Annealing Optimality Theory.

Now, all tools are ready to define probability P(w — w’ | T'), closely
following Eq. (5.10). If F(w) > E(w’) then P(w — w' | T) =1, else
Pw—w' |T) =" p= (5.18)

Some readers may prefer the way leading to Eq. (5.14), while others
the one to (5.18). Yet, the interpretation of both of them yields the same
Rules of moving, those in section 5.4. Both trains of thought introduce
temperature as a pair T = (Kr,t). Diminishing it requires a double
loop: the inner one reduces t, and the outer one Kr.

5.6 Conclusion: SA-OT

The pseudo-code of the Optimality Theory Simulated Annealing al-
gorithm (OT-SA) can be finally presented (figure 1).

Out of the parameters of the algorithm, K., is usually higher than
the index of the highest ranked constraint, in order to introduce an ini-
tial phase when the random walker may rove unhindered in the search
space. Similarly, K,,;, defines the length of the final phase of the simu-
lation, giving enough time to “relax”, to reach the closest local optimum.
Otherwise, SA-OT would return any candidate, not only local optima,
resulting in an uninteresting model. Typically, Kgep = 1.

Parameters t,,4z, tmin and tgep drive ¢ in the inner loop, influencing
only the exponential appearing in the last case (k = Kr) of the Rules
of moving. As candidates w and w’ differ only minimally—in a basic
operation—, their violation profiles are also similar: usually |Cy(w’) —
Cr(w)| < 2, motivating tyqp = 3 and ¢y, = 0. Parameter g, is the
most interesting one, and can vary along more orders of magnitude: by
being inversely proportional to the number of iterations performed, it
directly controls the speed of the simulation, that is, its precision.
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In practice, the algorithm is surprisingly successful in modelling, be-
sides other, fast speech phenomena in Dutch metrical stress assignment
(Bir6, 2004). In SA-OT, the frequency of the different forms can be fine-
tuned by varying the parameters (especially tqep). It can also predict
different frequencies for the same phenomenon in different inputs (Biro,
forthcoming), if the search space has a different structure: indeed, the
topology of the search space is an important novel concept in SA-OT.

To sum up, Simulated Annealing for Optimality Theory (SA-OT)
is a promising algorithm to find the optimal element of the candidate
set. In the present paper, we have argued that it is both cognitively
plausible and mathematically well-founded, whereas further work has
shown that it can account for real phenomena.

5.7 Appendix: Energy-polynomials realise H(w)

Here, we sketch how to prove that energy-polynomials—with Definition
6 of < in section 5.4—realise the Harmony function: E(w;) < F(ws2)
if and only if H(wy) = H(ws). For a more detailed proof, see Biro
(forthcoming). First, we have to demonstrate:

Theorem 7 LAW OF TRICHOTOMY FOR ENERGY POLYNOMIALS: for
any wy and we € GEN(UR), exactly one of the following statements
holds: either E(w1) < E(ws), or E(w1) = E(ws), or E(wy) = E(ws).

For a proof, note that the polynomial Plg] = E(w1)[g] — E(w2)]q]
may have maximally N roots, the greatest of which be gy. Unless
E(w1)[q) = E(w2)[q] for all ¢’s, P[q] is either constantly positive or
constantly negative for ¢ > qn. Subsequently, we need:

Lemma 8 If H(wy) > H(wz), then E(w1) < E(ws).

Proof Let Cj, be the fatal constraint due to which H(ws) > H(ws).
If £ = 0 then E(ws)[g] — E(w1)[q] = Co(wz) — Cy(wy) > 0 for all q. By
definition, then, E(w1) < E(ws).

If, however, k > 0, then let ¢ be such that ¢ > C;(w1) and ¢ > C;(w2)
for all i < k. Further, let ¢o = max(m, 2). For all ¢ > qo:

N
E(wy)[g) — E(wy)lg] = >_[Ci(wz) — Ci(w1)lg" =
=0
k—1
= [Cr(wa) — C(w1)]g" + > [Ci(wg) — Ci(wr)]g’ (5.19)
1=0

because Cj is the fatal constraint. As ¢ > ¢qo > m, in

the first summand we use Cj(wz2) — Ci(w1) > 2¢/q. For the second
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component, we employ the fact that C;(ws) — C;(wy) > —c for all
1 < k, as well as the sum of a geometrical series. Consequently,

2c 4 ¢ -1 ¢ —2¢" 1 +1
E(ws)[g] — E(w1)q] > . " —c 1 c .1 > 0 (5.20)
because ¢ > qy > 2. In sum, either £ = 0 or k£ > 0, we have shown
that there exists a go such that for all ¢ > go: E(w2)[q] — E(w1)[g] > 0.
Because this difference is a polynomial, we obtain one of the two cases

required by Definition 6 of E(w;) < E(ws). O

Finally, the following four statements can be simply demonstrated by
using the definitions, the previous lemma and the laws of trichotomy:

Theorem 9 Energy-polynomials realise the Harmony function:
+ E(w1) = E(w2), if and only if H(w1) = H(w2);
- E(wy) < E(ws), if and only if H(w1) > H(ws).
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Finite Presentations of Pregroups
and the Identity Problem

ALEXA H. MATER AND JAMES D. Fix

Abstract

We consider finitely generated pregroups, and describe how an appropri-
ately defined rewrite relation over words from a generating alphabet yields
a natural partial order for a pregroup structure. We investigate the identity
problem for pregroups; that is, the algorithmic determination of whether a
word rewrites to the identity element. This problem is undecidable in gen-
eral, however, we give a dynamic programming algorithm and an algorithm
of Oerhle (2004) for free pregroups, and extend them to handle more general
pregroup structures suggested in Lambek (1999). Finally, we show that the
identity problem for a certain class of non-free pregroups is NP-complete.

Keywords PREGROUPS, FREE PREGROUPS, WORD PROBLEM, DY-
NAMIC PROGRAMMING, NP-COMPLETE

Lambek (1999) introduced Compact Bilinear Logic (CBL) to pro-
vide a computational method for deciding whether an utterance in a
natural language is grammatical. Using CBL, utterances are modeled
as elements of mathematical structures called pregroups. The structure
of a pregroup is based on a partial order over its elements and a set
of rules for how pregroup element multiplication relates to the partial
order.

6.1 Basic definitions

Definition 9 [Protogroup| A protogroup P is a quintuple (A, -, <, ¢, r)
consisting of a set of elements, a binary operation, and a binary relation,
and two unary operations respectively, which satisfy the following:

FG-MoL 2005.
James Rogers (ed.).
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1. - is associative.

2. < is a partial order; i.e. it is reflexive, transitive and anti-
symmetric.

3. Thereisa 1l € A where 1-a=a=a-1 for every a € A.
4. Foreverya€ A, a’-a<landa-a" < 1.
5. For any a,b,z,y € A, ifa <b,thenx-a-y<z-b-y.

The elements a’ and a” are the left and right inverses of a, respectively.
With these, it is natural to assume that

1I"=1=1%ad"=a=0ad" (a-b)"=b"-a", (a-b)" =0b"-a*

for any a,b € A. An a € A may have an infinite sequence of inverses:

cad%abaadmadm, .
We will follow Lambek in denoting a by a(?), the n-th left inverse of
a by a=™ and the n-th right inverse of a by a(™, so that the above
sequence can be written

L aD gD O oM @)

Definition 10 [Pregroup|] A pregroup P = (A,-,<,¢,r) is a pro-
togroup satsifying the additional property:

6. For every a,b € A, if a < bthen a2 < p2) gpd p2i+D) < ¢(2i+1)

It will be useful for our purposes to consider an equivalent pregroup
property, as noted by Buszkowski (2002):

6. Forallae A, 1 < alitDa®,

6.2 Applying CBL to Natural Languages

Lambek’s idea was to encode a natural language as a pregroup P by
associating with each word in the language an element of . An utter-
ance is encoded as a product b = ajas...a, of pregroup elements a;,
one for each word in the utterance. The goal is to have b < .S, for some
distinguished element S, whenever the sentence encoded as b is gram-
matical. For example, from Lambek (1999) we might assign elements
of a pregroup to the sentence “I have been seen” as follows:

I have been  seen

T Wrspf poﬂpf pOZ
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where the symbols 7, .S, p, 0 are elements of a pregroup. This sequence
reduces to S as demonstrated by the following:

(7" Sp*) (po"p*)(po) = (xn")S(p'p) (o ('p)o")
< (7m")S(p'p)(0"10")
= (an")S(p'p)(0"0")
< 8
Thus, “I have been seen” is a grammatical utterance with this pregroup

assignment.

As aresult, we are interested in the algorithmic question of determin-
ing whether x < y in a pregroup, where x and y are given as a product
of pregroup elements. This is the natural word problem for pregroups.
For free pregroups (defined formally below) where cancellations alone
yield the pregroup ordering, Oerhle (2004) presented an efficient algo-
rithm for the important case when y is given as a single element, rather
than as a product. We will review a version of this algorithm shortly.

The treatment of pregroups in Lambek (1999) suggests that algo-
rithms for the word problem need to consider additional order relations
among elements. For example, Lambek suggests first, second, and third
person singular pronouns could be assigned the types 71, 72, and 73,
respectively, and the additional order relations m; < 7 for a type 7 of
all singular pronouns could be assumed part of the pregroup structure.

Considering this further, the pregroup order could include a rela-
tion like be < a. Such additional constraints could give a pregroup a
context-free rewrite structure, the reverse of Chomsky Normal Form
productions A — BC.

To handle the additional structure that may come with a pregroup,
care must be taken in specifying the form in which it is presented as
input to an algorithm. To do this, we adapt the notion from combina-
torial group theory (see Cohen (1989), Magnus et al. (1966)) of a finite
group presentation to pregroups and protogroups. This is a syntactic
treatment of pregroups, one where strings of symbols from an alphabet
form the pregroup elements, and where the ordering structure comes
from rewrite steps, possibly augmented with additional order relations
between words.

6.3 Pregroup Presentations

For any set G, let G’ = {a'” | a € G, i € Z} be the set of pregroup
letters over G. A pregroup word W over G is a sequence of letters,
that is, W = xzi25...2, where each zp € G’. We include the empty
letter sequence, denoted by e, in the set of pregroup words. Let G*
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denote the set of all pregroup words over G. The elements of G are the
generators of G*.
Define the left inverse function L : G* — G* as follows:
€ iftW=¢
LW)={ a1 if W=a® foracg
L(zy)...L(x2)L(x1) W =ux1...2, and each x; € G'.
The right inverse function R : G* — G* is defined similarly.

Any binary relation R on G* induces a rewrite relation on G* defined
by:

L wEw,

2. W1 X W3 whenever Wy X Wy and Wh X Wiy,
3. Wi W Wy B W, WW, whenever W 55 W,

4. X B pfor (A p) €R, and

5 a®a(+t) B o for g e G.

A rewrite step employing rule (5) (in conjunction with rule (3)) is called
a contraction.

If we identify two words W7 and W5, that is, say that W; = W,
whenever both W3 X Wy and Wo it W1 hold, we have the following
proposition:

Proposition 10 The set of all words over G forms a protogroup under
the binary operation of juxrtaposition with identity element €, the unary

operations L and R, and the binary predicate R,
Thus, it is natural to define the following.

Definition 11 [Protogroup Presentation]| If P is a protogroup given
by G and R according to the previous proposition then G and R form
a protogroup presentation of P.

The relations R can encode the additional structure among words.
For example, a presentation of Lambek’s natural language pregroup
in the discussion above would include generators m, 7y, mo, w3 and the
relations (my,7), (7o, m), (73, 7).

Definition 12 [Pregroup Presentation| Extend R to include the
property
6. ¢ 5 a1 for g € G.

A rewrite step employing this rule is called an expansion. Using this,
we have a proposition for pregroups analogous to Proposition 10. We



PREGROUPS AND THE IDENTITY PROBLEM / 65

also obtain an analogous notion of a pregroup presentation which we
will denote by P = (G, R),.

In what follows, we assume that an algorithm’s input includes a
finite-sized presentation of the structure being considered. We will be
less careful about describing presentations syntactically, and return to

using < instead of E, ¢ and r instead of L and R, and 1 instead of ¢.

6.4 The Identity Problem

From a linguistic perspective, we are primarily interested in determin-
ing, whether W < S where S is some distinguished element in the
generating set for P. Note that W < S if W = Wi TW,, Wp < 1,
Wy < 1, and T < S. Using this fact for the pregroups we consider,
leads us to consider the following problem:

The Pregroup Identity Problem

Given: P =(G,R),, W e G*
Determine: whether W <1 in P.

We say that W is nullable in P whenever W < 1.

In general, the identity problem is undecidable for pregroups. This
can be proven by showing that any finitely presented group can be
encoded as a finitely presented pregroup. Since the identity problem is
known to be undecidable for finite presentations of groups, this implies
that the identity problem is undecidable for pregroups in general. The
identity problem is decidable, however, for certain restricted classes of
pregroups. Below we describe algorithms for these classes.

6.4.1 An Algorithm for Free Pregroups

We say that a pregroup is free if its presentation has R = (0. The
following is a consequence of a corollary of Lambek (1999), page 21:

Proposition 11 Let W be a nullable word in pregroup P = (G,0),.
Then W <1 by a series of contractions.

As an immediate consequence, the identity problem for free protogroups
and pregroups are equivalent. In addition, a simple dynamic program-
ming algorithm, similar to the CYK algorithm (Younger, 1967, Kasami,
1965) for parsing strings in a context-free grammar, can be employed
to determine whether W is nullable. Let v be a boolean predicate over
words G* that holds exactly when a word is nullable. Let W =z ...,
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L/ 1]2]3][4]
1 x| 1 |x1]0

X[ X || X[ X | X ||

X|IX | X[ X || X |||
X=X || X || X |~ oo

5)
X
1
X
1
X
X
X
X

QO | O] U = W N
XX | X|X|X[X]|X
XX | X|X|X[X]|X
XX |[X|X|X|[X]|+=
XX | X|X| X[ X

FIGURE 1: The table T corresponding to the word a‘aa”a‘aaaa”.

for xy, € G'. The following recurrence holds:

x; € lefts(z;) and j =i +1

x; € lefts(z;) and v(ziqq1...25-1) =1

v(z;...zx) =1and v(xpgr...x5) =1
for some k,

v(z;...z;) = 1 whenever

v(z;...z;) = 0 otherwise.

In the above, lefts(a(?) is just the singleton set {a(*~1}.

Briefly, to determine v(z;...x,) the dynamic programming algo-
rithm simply constructs a table T with entries

T, jl = v(z;...x;)

Entries T'[i, j] where j — i = 1 are determined first, followed by those
where j — ¢ = 3, then j — ¢ = 5, and so on, ending with the determi-
nation of T[1,n]. The table’s entries can be determined in O(n?) time
assuming that membership in lefts(z;) can be determined in constant

time. Figure 1 gives the table for the word a‘aa”a‘aaaa’.

6.4.2 Allowing ambiguity: Oehrle’s algorithm

In linquistic applications of protogroups it is common to assume that
a lexical element may have more than one word associated with it.
Oerhle (2004) gives a clever extension of the above algorithm, as a graph
rewrite algorithm, that efficiently handles word assignment ambiguity.
We give a brief review and reformulation of it here.

In Oehrle’s algorithm, each lexical element e; of a candidate sentence
e1...en is assigned a directed acyclic graph fragment F;. If e; can be
assigned the pregroup word W =z ...x,, then the graph fragment F;
has a subfragment with n vertices vy, ..., v, each labelled with letters
x1 through x,. A directed edge connects v; with v;41 in this subfrag-
ment. F; is just a union of the subfragments of all words W that can
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be assigned to e; (these are assumed to form a finite set).

Let s(F;) be the set of vertices in F; with no predecessors (incoming
edges) and let ¢(F;) be those with no successors (outgoing edges). A
graph G is constructed from the candidate sentence by adding edges
from all vertices of t(F;) to all vertices of s(F;41), for all 7. In addition, a
distinguished vertex s is added with edges to s(F7) and a distinguished
vertex t is added with edges from t(F),).

The following graph modification algorithm is then applied to G

Q@ := the edges of G
while @ is not empty do
remove an edge (u,v) from @
if label(u) € lefts(label(v)) then
for each predecessor u’ of u, successor v’ of v do
add edge (u/,v') to G and Q

The candidate sentence is nullable if s and ¢ are connected by an edge
in the resulting graph.

6.4.3 Non-free Pregroups with Promotions

As we noted above, allowing arbitrary relations in R makes the identity
problem undecidable. We consider two restrictions on R:

Generator Promotions : All relations in R are of the form a < b
where a,b € G, that is, R C G x G. ! In this case, we can extend
our rewrite system to include

a2 R p2k)

p(2k+1) R q(2k+1)

for all (a,b) € R and k € Z.

Letter Promotions : All relations in R are of the form a(® < p(@)
where a,b € G, that is, R C G’ x G’. In this case, we can extend
our rewrite system to include

alit2k) R p(i+2k)
pli+2k+1) R q(iT2k+1)

for all (a,b)) € R and k € Z.

Employing one of these rules in a rewrite step is called a promotion
(note that Lambek calls Generator Promotions induced steps). The fol-
lowing generalization of Corollary 1 of Lambek (1999), page 21 holds
for these presentations:

INote that such presentations are called free pregroups by Lambek (1999).
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Theorem 12 Let W be a nullable word in a pregroup P = (G, R)
where R C G’ x G'. Then W < 1 by a series of contractions and
promotions.

Proof Let W < UV < UaltVa®DV < 1 where the last inequality
occurs only through contractions and promotions. We have two cases
to consider:

Case 1: U < 1 without expansions, a(*t1) < b)) by promotions, V < 1
without expansions, and a® < bU*1) by promotions. In other words,
the expansion introduces two letters that cancel after a series of pro-
motions. In this case, UV < 1 without expansions.

Case 2: U = UyzlUs, ¢ < bY) by promotions, alit!) < pU+D by
promotions, Uy < 1 without expansions, V = Viyls, y < c#tD by
promotions, a'? < ¢*) by promotions, Vi < 1 without expansions, and
U1V, < 1 without expansions. In other words, the first inserted letter
cancels with the a letter in the prefix U and the second inserted letter
cancels a letter in the suffix V. In this case, note that, b)) < a9 and
k1) < (i+1) by promotions, and so

2y < bWy < aWy < @D+ < (R p(kt1) <
by promotions and one contraction. Thus
UV = U1aUsViyVe < UyzViyVe < UyzyVe < U V2 <1

without expansions.
Since, in either case, UV < 1, we can always remove the last expan-
sion to demonstrate the nullability of W, and the theorem follows. [

Given a presentation where R has only generator promotions, we
can compute the transitive closure R* of R. Using R* we can employ
the algorithms for free pregroups given above using

lefts(a) = {6 | (a,b) € R*,be G}
for even i and

lefts(a™) = {b) | (b,a) € R*,b € G}
for odd 1.

A presentation with letter promotions, however, makes the identity
problem NP-hard. Consider the following problem:

The Pregroup Letter Promotion Problem
Given: pregroup P = (G,R), where R C G’ x G, z,y €
g/
Determine: whether x < y by promotions.
Suppose z = a™ and y = bY) for a,b € G. Note that 2 < y by promo-
tions exactly when there exists a generator sequence ag, ay,...,a, € G
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with ag = a and a,, = b, an integer sequences i1, ...,i, and ki,...,k,
where either 2
2km) (i +2km)
(amfl ) Ay € Rv

or
im+2km+1 (2k7n+1)
(agn ) » Ay —1 €ER

for each m with 0 < m <n, and

n
m=1
as this allows the series of promotions

a® = af) < a{t <aftrE) < g gititiat i) = p()

— n
that demonstrate that < y. The summation requirement is the key
to our NP-hardness proof.
Theorem 13 The Pregroup Letter Promotion Problem is NP-complete

Proof The following problem is NP-complete (see Garey and John-
son (1979)):

The Subset Sum Problem

Given: integer subset S, integer s
Determine: the existence of an X C S with s =

ZzGX €.
An instance of the Subset Sum Problem with set S = {t1,t2,...,t,}
and target sum s can be reduced to the Letter Problem instance

g:{G‘Oaala"'va/’n}

R ={(ai_1,a;) | 0 <i<nlU{(a;_1,a!?) |0<i<n}

%

T = ag
y=al
It should be clear that x < y by promotions exactly when there exists
a subset of S that sums to s. O

6.5 Further Questions

Though allowing general letter promotions make the word problem for
pregroups NP-hard, there may be algorithms that work well in prac-
tice. For example, it is likely that any application of pregroups would
make use of letter promotions of the form a(® < b)), where li—i] < M,
where M is sufficiently small. In addition, it seems interesting to in-
vestigate what pregroup structures result from other natural classes of
presentation relations R beyond those that allow just generator and
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letter promotions, and from an algorithmic perspective, to determine
the complexity of the word problems for these classes.
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On rigid NL Lambek grammars
inference from generalized
functor-argument data

DENIS BECHET AND ANNIE FORET

Abstract

This paper is concerned with the inference of categorial grammars, a
context-free grammar formalism in the field of computational linguistics. A
recent result has shown that whereas they are not learnable from strings
in the model of Gold, rigid and k-valued non-associative Lambek grammars
are still learnable from generalized functor-argument structured sentences.
We focus here on the algorithmic part of this result and provide an algo-
rithm that can be seen as an extension of Buszkowski, Penn and Kanazawa’s
contributions for classical categorial grammars.

Keywords GRAMMATICAL INFERENCE, CATEGORIAL GRAMMARS, NON-

ASSOCIATIVE LAMBEK CALCULUS, LEARNING FROM POSITIVE EXAM-
PLES, MODEL OF GoLp

7.1 Introduction and background

This paper is concerned with the inference of categorial grammars, a
context-free grammar formalism in the field of computational linguis-
tics. We consider learning from positive data in the model of Gold.
When the data has no structure, a recent result has shown that rigid
and k-valued non-associative Lambek (NL) grammars admit no learn-
ing algorithm (in the model of Gold). By contrast, theses classes be-
come theoretically learnable from generalized functor-argument struc-
tured sentences; the paper (Bechet and Foret (2003)) establishes the
existence of such learning algorithms, without explicitly defining one.
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We focus here on the algorithmic part for NL rigid grammars; we ex-
plicit an algorithm (for the rigid case) that can be seen as an extension
to NL of Buszkowski, Penn and Kanazawa’s contributions Buszkowski
and Penn (1990), Kanazawa (1998a) for classical (AB) categorial gram-
mars. The algorithm introduced here ouputs a grammar with variables
and constraints, an alternative representation for NL rigid grammars,
that is defined later in this article; this kind of representation can be
seen as the necessary information used by parses to check sentence
recognizability Aarts and Trautwein (1995).

Learning. The model of Gold (1967) used here consists in defining
an algorithm on a finite set of structured sentences that converges to
obtain a grammar in the class that generates the examples.

In a grammar system (G,S,L) (that is G is a “hypothesis space”, S
is a “sample space”, L is a function from G to subsets of S) a function
¢ is said to learn G in Gold’s model iff for any G € G and for any
enumeration (e;);en of L(G) there exists ng € N and a grammar G’ € G
such that L(G’) = L(G) and Vn > ng, ¢({eg, ..., en)) = G’.

Categorial Grammars. The reader not familiar with Lambek Cal-
culus and its non-associative version will find nice presentation in
(Lambek (1961), Buszkowski (1997), Moortgat (1997), de Groote and
Lamarche (2002)). We use in the paper non-associative Lambek cal-
culus (written NL) without empty sequence and without product.

The types Tp are generated from a set of primitive types Pr by two
binary connectives “/” (over) and \’ (under): Tp::=Pr | Tp\Ip | Tp/Tp.

A categorial grammaris a structure G = (X, I, S) where: ¥ is a finite
alphabet (the words in the sentences); I : ¥ — P/(T) is a function that
maps a set of types to each element of ¥ (the possible categories of each
word); S € Pr is the main type associated to correct sentences. A k-
valued categorial grammar is a categorial grammar where, for every
word a € ¥, I(a) has at most k elements. A rigid categorial grammar
is a 1-valued categorial grammar.

A sentence belongs to the language of G, provided its words can be
assigned types that derive S according to the rules of the type calculus.

The case of AB categorial grammars is defined by two rules :

/ei:A/B,B=A and\.:B,B\A=A (AB rules)

In the case of NL, the derivation relation b, is defined by (left part
belongs to 77, the set of binary trees over Tp) :
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(T,B) - A (A,T)F B

— Ax 7 "R Al

Al A TFA/B T+ A\B
THA AJAFB PHA A[BFC THA A[BFC
A[T]F B Cut A[(B/A,T)|FC A[(T, A\B)| - C

Learning categorial grammars. Lexicalized grammars of natural
languages such as categorial grammars are adapted to learning per-
spectives: since the rules are known, the task amounts to determine
the type assignment; this usually involves a unification phase.

In fact, the learnable or unlearnable problem for a class of grammars
depends both of the information that the input structures carry and
the model that defines the language associated to a given grammar.
The input information can be just a string, the list of words of the
input sentence. It can be a tree that describes the sub-components
with or without the indication of the head of each sub-component.
More complex input information give natural deduction structure or
semantics information.

For k-valued categorial grammars: AB grammars are learnable from
strings (Kanazawa (1998Db)), associative Lambek grammars are learn-
able from natural deduction structures (elimination and introduction
rules) (Bonato and Retoré (2001)) but not from strings (Foret and
Le Nir (2002)), NL grammars are not learnable from well-bracketed
strings but are from generalized functor argument structures (Bechet
and Foret (2003)) .

Organization of the paper. Section 2 explains the notion of functor-
argument and its generalized version in the case of NL (as recently
introduced in (Bechet and Foret (2003))). Section 3 defines the algo-
rithm (named RGC) on these structures. Section 4 defines grammars
with variables and constraints underlying the RGC' algorithm. Section 5
gives the main properties of the RGC' algorithm. Section 6 concludes.

7.2 FA structures in NL

7.2.1 [FA structures

Let X be an alphabet, a FA structure over X is a binary tree where each
leaf is labelled by an element of ¥ and each internal node is labelled by
the name of the binary rule.

When needed we shall distinguish two kinds of FA structures, over
the grammar alphabet (the default one) and over the types.
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7.2.2 GAB Deduction

A generalized AB deduction, or GAB deduction, over T is a binary tree
using the following conditional rules (C' Fxy; B must be valid in NL):

A/B C C B\A condition (both rules)

1 et 1 \et+ | CFaz B valid in NL

In fact, a deduction must be justified, for each node, by a proof of
the corresponding sequent in NL. Thus, a rule has three premises: the
two sub-deductions and a NL derivation (later called a constraint).

Notation. For I' € 77, and A € Tp, we write I' Fgap A when there
is a GAB deduction P of A corresponding to the binary tree T

There is a strong correspondence between GAB deductions and NL
derivations. In particular Theorem 14 shows that the respective string
languages and binary tree languages are the same.

Theorem 14 (Bechet and Foret (2003)) If A is atomic, T Fgap
AffT L A

7.2.3 From GAB deductions to FA structures in NL

A GAB deduction P can be seen as an annotated FA structure where
the leaves are types and the nodes need a logical justification.

We write FA7,(P) for the FA structure over types that corresponds
to P (internal types and NL derivations are forgotten). We then define
FA structures over ¥ instead of over Tp (these two notions are close).
Definition G = (X,1,S5) generates a FA structure F over ¥ (in the
GAB derivation model) iff there exists ¢1,...,¢, € X, Ay,..., A, € Tp
and a GAB derivation P such that:

G:ci—A; (1<i<n)
{ FAp,(P)=Flen — A1, ...,cn — Ay
where Fle; — Ai,...,¢, — Ap] is obtained from F by replacing
respectively the left to right occurrences of ¢y,...,¢, by A,..., A,.

The language of FA structures corresponding to G, written FLaap (G),
is the set of FA structures over ¥ generated by G.

Example 1 Let Gi: {John— N ; Mary— N ; likes — N\(S/N)}
we get: [+ (\o+ (John, likes), Mary) € FLgap(G1)

7.3 Algorithm on functor-argument data
7.3.1 Background -RG algorithm

We first recall Buszkowski’s Algorithm called RG as in Kanazawa
(1998b), it is defined for AB grammars, based on /. and \..
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The RG algorithm takes a set D of functor-argument structures
as positive examples and returns a rigid grammar RG(D) compatible
with the input if there is one (compatible means that D is in the set of
functor-argument structures generated by the grammar).

Sketch of RG-algorithm, computing RG(D):

1. assign S to the root of each structure
assign distinct variables to argument nodes
compute the other types on functor nodes according to /. and \.

collect the types assigned to each symbol, this provides GF (D)

Ok

unify (classical unification) the types assigned to the same symbol
in GF(D), and compute the most general unifier o,,q, of this
family of types.

6. The algorithm fails if unification fails, otherwise the result is
the application of o4, to the types of GF(D) : RG(D) =

Omgu(GF(D)).

7.3.2 An algorithm for NL : a proposal

In the context of NL-grammars, we show how rules /.y and \.4 will
play the role of classical forward and backward elimination /. and \..
We now give an algorithm that given a set of positive examples D
computes RGC(D) composed of a general form of grammar together
with derivation constraints on its type variables. This formalism is de-
velopped in next section. The main differences between RG and RGC
appear in steps (3) and (6).
Algorithm for RGC(D) - rigid grammar with constraints

1. assign S to root ;
2. assign distinct variables x; to argument nodes ;

3. compute the other types on functor nodes and the derivation
constraints according to /.4 and \., rules as follows : for each
functor node in a structure corresponding to an argument x; and
a conclusion A; assign one of the types (according to A,
the rule) A;/xz} or x}\ A;, where the z variables are
all distinct and add the constraint z; - 2/ ; A

7

4. collect the types assigned to each symbol, this provides GFT(D);
and collect the derivation constraints, this defines GC* (D) ; let
GFC(D) = (GFT(D),GC*T (D))

5. unify (classical unification) the types assigned to the same symbol
in GF(D), and compute the most general unifier 0,4, of this
family of types.
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6. The algorithm fails if unification fails, otherwise the result is the
application of 0,4, to the types of GF™ (D) and to the set of con-
straints, this defines RGC(D) = (RG' (D), RCT (D)) consisting
in the rigid grammar RG* (D) = 0y, (GFT (D)) and the set of
derivation constraints RCT (D) = 0,4, (GCT(D)); the result is
later written RGC(D) = 0pgu(GFC(D)).

Example 2 We consider the following functor-argument structures :
\o+ (/ e+ (a, man), swims)

\et+ (/e+ (a, fish),\o+ (swims, fast))

The algorithm computes the following grammar with constraints :

general form unification rigid grammar, constraints

a X1/X,,X3/X) | X1=X3,X,=X] X1/ X}

Xo b X, X4 F X, Xo b XY, X4 F X,
Fast | X\ (X5\9) X5\ (X519)

X3k X5, X5 - X] X1 F X5, (X{\SFX'5
fish X4 Xy
man X9 X2
swims X1\ S, X5 Xs5=X\S X1\ S

X1 - X X1 - X1

7.4 Grammars with variables and constraints

Let Var denote a set of variables, we write Tpy,,, the set of types that
are constructed from the primitive types Pr U Var.

Definition. A grammar with variables and constraints on Var is a
structure (G, C) where G is a categorial grammar whose types are in
Tpy 4, and C is a set of sequents ¢; - ¢, with types in Tpy,,..

We then define a structure language FLcag ((G, C)) based on deriva-
tions defined similarly to GAB , by replacing the conditions C' - B valid
in NL with conditions of the form C' F B € C (constraints):
Definition. FLgap((G,C)) is the set of functor-argument structures
obtained from deductions using the following conditional rules :

A/B C C B\A condition (both rules)

et +
1 c 1 \et+c CFBecC

Definition. For any NL-grammar G, Constraints(G) is the set of NL-
valid sequents t; + ¢} where ¢; is any head subtype! of a type assigned
by G, and t} is any argument subtype? of any type assigned by G.

Property: the constraints of any rule /.+ or\,+ in a GAB deduction
for G belong to Constraints(G) (proof by induction on a deduction).

L A is head subtype of A, a head subtype of A is head subtype of A/B and B\ A
2B is an argument subtype of A/B and of B\ A, any argument subtype of A is
an argument subtype of A/B and of B\ A



ON RIGID NL GRAMMARS INFERENCE / 77

A partial order® on grammars with variables and constraints.
Let us write (G,C) C (G',C") IFF both G C G'* and C C C".
For a substitution o, we write o(G,C) = (6(G),c(C)) and define:
(G,C) C(G'",C"Y IFF Jo : 0({G,C) C(G',C")
GCG TIFF do: 0(G) C G
Next properties follow easily.
Property:

(G,C) C(G",C") implies FLgap ((G, C)) C FLgag ((G',C"))
Property: FLgag ((G, Constraints(G))) = FLgag(G), for G on Tp.

7.5 Properties of algorithm RGC'.

Next property is analogue to properties by Buszkowski and Penn for
RG; the first part concerns the general forms (defined in step (4) of
RGC), the second concerns the rigid form computed in the final step.

Property 15 Let D be a finite set of structures and G a rigid gram-
mar:

IF D C FLGap(G) THEN

(1) 3o : o(GFC(D)) C (G, Constraints(G))

(2) RGC(D) exists and 37 : 7(RGC(D)) C (G, Constraints(G))

(3) D C FLaup(GFC(D)) € FLgap (RGC(D)) € FLeus (G)

Proof of property 15 (1) : each F; € D corresponds to (at least one)
GAB-derivation in GG, we choose one such P; for each F;. Each F; € D
also corresponds to an annotated structure computed at step (3) of the
RGC algorithm, that we write Q;. We first focus on these structures
for a given ¢ and define gradually a substitution o. Each node of F;
labelled by rule /.+ (\.+ is to be treated similarly) is such that :
- when considered in Q;, it is labelled by a type that we write ¢; with
successors labelled by t;/x; and x; (from left to right) for some j;
- when considered in P; , it is labelled by a type A; with 2 successors
labelled by some types A;/B; and I'; (from left to right) such that T';
is a formula and I'; = B; is valid in N L.
We then take o(z;) =T'; and o(a’;) = B;. We get more generally :

(i) if ¢ labels a node in Q;

then o(t) labels the corresponding node in P;

(ii) o(z;) F o(z}) is valid in NL and belongs to Constraints(G)
where (ii) is clear by construction, and (i) is proved by induction on the
length of ¢ : as a basis, we consider the root node S that is invariant
by o, and the variable cases with the definition of o(z;), we apply

3with equality up to renaming
4by G C G', we mean the assignments in G are also in G’
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otherwise the hypothesis for ¢; to o(t;/2}) = o(t;)/o () or o(2)\t;) =
o(z)\o(t;). Properties (i) (ii) give (1) m

Proof of property 15 (2): we take o as in (1), this shows that unifi-
cation succeeds for the family of types of GF*(D) (it admits a unifier
since o(GFT(D)) C G, where G is rigid); we consider a most general
unifier oy,4, such that RGC(D) = 0,40 (GFC(D)), which provides
the existence of 7 such that =7 00,,4, ; rewriting 15(1) gives 15(2) B
Proof of property 15 (3): from D C FLgap(GFC(D) (clear by
construction) RGC(D) = opmgu(GFC(D)) and from property 2(2) m

Lemma 16 (Incrementality) IF D C D' C FLgap(G) where G is
rigid

THEN 3n : n(RGC (D)) C RGC(D') (written RGC(D) C RGC(D")).
Proof : suppose G is rigid with D C D’ C FLaap(G) ; we already
know from Proposition 15(2) that RGC(D) and RGC(D’) are defined.
Let us show RGC(D) C RGC(D') ;

let g0 and o), gu denote the respective most general unifier computed
by step 5 of the RGC algorithm for D and D’;

since D C D', 07, is also a unifier for D therefore

(1) dn U;ngu =N0°0mgu ;

on the other hand, from D to D’, we only add new generalized FA-
structures, thus new variables in step 3 of the algorithm, new types
and new constraints in step 4, thus:

(ii) D C D’ implies GFC(D) C GFC(D') (modulo variable renaming)
also from the algorithm:

(iil) RGC(D) = opmgu(GFC(D)) and RGC(D') = 0y,,,(GFC(D"))
all of which we get RGC(D') =10 0y,u(GFC (D)) ;

hence (inclusion modulo variable renaming):

10 Omgu(GFC(D)) C noomgu(GFC(D')) m

=n(RGC(D)) =RGC(D)

Theorem 17 (Convergence) Let G be a rigid grammar, and (F;);en
denote any enumeration of FLaap(G), RGC converges on (F;);en to
a grammar with variables and constraints having the same language.
IpoVp>po : RGC(D,)=RGC(D,, ), FLeap(RGC(D,))=FLcar(G)
where D, = {Fy,...,F,}

Proof : given G rigid {G’,30 : o(G’) C G} is finite (up to renaming)
and from the above lemma: RGT(D,) C RG*(Dp41) C ... C G, (using
property 15) ; therefore 3pj,Vp > p{, : RG'(Dp41) = RGT(D,,) (up to
renaming). The constraints part of (G, C') computed by the algorithm
is such that C only involves subformulas of the types in grammar G
(this holds for the general form and its substitution instances as well).
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Since after pg, the grammar part is stationary, and since its set of
subformulas is finite, the constraint part must also converge after p|
Ipo>ph : Vp>po : RCT(Dpi1)=RCT(Dy).

The language equality is then a corollary using property 15(3) B

7.6 Conclusion and remarks

We have proposed a learning algorithm that is unification-based, poly-
nomial according to the size of the input data (unification can be per-
formed in linear time using a suitable data structure), and that can be
performed incrementally with new structured sentences.

We recall that a sentence generated by any NL gammar can be
recognized in polynomial time Aarts and Trautwein (1995). The output
of the RGC' algorithm is a grammar with variables and constraints that
also represents the memoized information used to obtain a polynomial
parsing algorithm from a grammar without constraint.

Another perspective is the extension of the result and the algorithm
exposed here to other variants of categorial grammars; this should apply
to NL allowing empty sequents ; another candidate is the associative
version, where the forward and backward rules could be still generalized
allowing a sequence of types instead of a single type as argument.
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Two Type 0-Variants of Minimalist
Grammars

GREGORY M. KOBELE AND JENS MICHAELIS

Abstract

Minimalist grammars (Stabler 1997) capture some essential ideas about
the basic operations of sentence construction in the Chomskyian syntactic
tradition. Their affinity with the unformalized theories of working linguists
makes it easier to implement and thereby to better understand the operations
appealed to in neatly accounting for some of the regularities perceived in
language. Here we characterize the expressive power of two, apparently quite
different, variations on the basic minimalist grammar framework, gotten by:
1. adding a mechanism of ‘feature percolation’ (Kobele, forthcoming), or
2. instead of adding a central constraint on movement (the ‘specifier island
condition’; Stabler 1999), using it to replace another one (the ‘shortest

move condition’, Stabler 1997, 1999) (Gértner and Michaelis 2005).
‘We demonstrate that both variants have equal, unbounded, computing power
by showing how each can simulate straightforwardly a 2-counter automaton.

Keywords MINIMALIST GRAMMARS, 2-COUNTER AUTOMATA, LOCAL-
ITY CONDITIONS, FEATURE PERCOLATION

8.1 Introduction

Recently, two variants of the minimalist grammar (MG) formalism in-
troduced in Stabler 1997 have been discussed w.r.t. the issue of gener-
ative capacity (see Gartner and Michaelis 2005 and Kobele, forthcom-
ing).

Seen from a linguistic perspective, the motivation for studying the
two variants arose from two rather different starting points: Kobele
(forthcoming), attempting to provide a formalization of mechanisms
used to account for pied-piping (Ross 1967), considers MGs endowed

FG-MoL 2005.
James Rogers (ed.).
Copyright © 2009, CSLI Publications.
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with feature percolation from specifiers to (attracting) heads. Gértner
and Michaelis (2005), as part of a larger project to better understand
the effects of constraint interaction in minimalist syntax, study the
behaviour of the specifier island constraint (SPIC) in isolation from
Stabler’s original shortest move constraint (SMC).

What both variants have in common formally is that, in contrast to
the original MG-type, they allow the generation of non-mildly context-
sensitive languages: Kobele (forthcoming) shows how an arbitrary (in-
finite) abacus (Lambek 1961) can be simulated by an MG77°"* an MG
enriched with the corresponding mechanism of feature percolation. As
a corollary he shows how any arbitrary recursively enumerable subset
of the natural numbers can be derived as the string language of an
MG P Thus, by means of an “MG-external” encoding (i.e. a com-
putable, bijective function fs : IN — X* for any finite set ¥.), MG P*"s
can be seen as deriving the class of all type 0-languages over arbitrary
finite alphabets. However, the question of how to define an MG P
which directly derives an arbitrary type O-language is left open.

Gértner and Michaelis (2005) show that there is an MG <971
an MG respecting the SPIC but not the SMC, which derives a non-
semilinear string language, and they conjecture that each type O-
language is derivable by some MG S71¢,

In this paper we prove the full Turing power of M S as
well as MG "Ps, showing that for each 2-counter automaton there is
an MGSMCHSPIC a5 well as an MG "¢ which both generate exactly
the language accepted by the automaton. In fact, our construction of a
corresponding MG "P*" is fully general, holding for all variants of the
feature percolation mechanism proposed in Kobele, forthcoming.

G—SI\/IC,+SPIC

8.2 2-Counter Automata

Definition 13 A 2-counter automaton (2-CA) is given by a 7-tuple
M = (Q,%,{1,2},0,{#1,#2},q90,Qy), where Q and ¥ are the finite
sets of states and input symbols, respectively. For i € {1,2}, i is the
i-th counter symbol, and #; is the i-th end of stack symbol. gy € @ is the
initial state, Q¢ C @ is the set of final states, ¢ is the transition function
from Q x Xe x {1, #1} x{2, #2} to Ppip (Q x 1* x 2*).2 An instantaneous
configuration is a 4-tuple from Q@ x IN x IN x ¥*. For a € ¥¢ we write
(g, 1, nz, )l (¢, i w) just in case (', 1,72) € 6((g,a,g1,92)),

IThroughout, we take IN to denote the set of natural numbers, including 0. For
every set X, X* is the Kleene closure of X, including ¢, the empty string.

2For each set X, X¢ denotes the set X U {€}. Pen(X) is the set of all finite
subsets of X. For a singleton set {z}, we often write z, if this does not cause
misunderstandings. Thus, z* denotes {z}* under this convention.
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where g; = #; iff n; = 0, and n} = |y;| + (n; = 1).3 £ is the reflexive-
transitive closure of I-. The language determined by M, L(M), is the
set {w|(qo,0,0,w)-"(¢,0,0,¢) for some ¢ € Qy}.

It is known (cf. Hopcroft and Ullman 1979) that the class of languages
determined by 2-CAs is exactly the class of type 0-languages.

8.3 Minimalist Grammars and Variations

It will be useful to explicitly mark the “outer complement line” and
the corresponding specifiers of a minimalist expression. To do this we
extend the notation from Stabler and Keenan 2003, introduced there
in order to reduce the presentation of minimalist expressions to “the
bare essentials.” Throughout we let ¥ and Syn be disjoint sets, a finite
set of non-syntactic features, the (terminal) alphabet, and a finite set of
syntactic features, respectively, in accordance with (F1) and (F2). We
take Feat to be the set X U Syn. Furthermore, we let ::, :, comp, spec
and — be pairwise distinct new symbols, where, in particular, :: and :
serve to denote lexical and derived types, respectively.

(F1) Syn is partitioned into five sets:*

Base a set of (basic) categories
Select = {=x| x € Base } a set of selectors
Licensees = {-x| x € Base} a set of licensees
Licensors = {+x| x € Base} a set of licensors
P-Licensors = {+X | x € Base } a set of p-licensors

(F2) Base includes at least the category c.

Definition 14 An element of X* x {::,:} x Syn™ x {comp, spec, —} is
a chain (over Feat). Chains denotes the set of all chains over Feat.
An element of Chains™\{e} is an expression (over Feat). Exp denotes
the set of all expressions over Feat.
For given ¢ € Syn*, -, € {::,:}, and z € {comp, spec, —}, the chain
(8, oy @, ) is usually denoted as (s, ¢, 2), and is said to display (open)
feature f if ¢ = fx for some f € Syn and x € Syn*.

A classical MG in the sense of Stabler 1997 employs the functions merge
and move, creating minimalist expressions from a finite lexicon Lezx.
The corresponding definitions are explicitly given w.r.t. trees, as in Sta-
bler 1999 too. There a revised MG-type is introduced, obeying, besides
the shortest move condition (SMC), a particular implementation of the
specifier island condition (SPIC): to be movable, a constituent must

3For each set M and each w € M*, |w| denotes the length of w. For all z, y € IN,
r—yisdefined by x ~y =z —y if x > y, and by x —y = 0 otherwise.
4Elements from Syn will usually be typeset in typewriter font.



84 / GREGORY M. KOBELE AND JENS MICHAELIS

belong to the transitive complement closure of a given tree, or be a
specifier of such a constituent.® The SPIC crucially implies that mov-
ing or merging a constituent « into a specifier position blocks checking
(by later movement) of any licensee feature displayed by some proper
subconstituent of «. Thus in order to avoid “crashing” derivations, only
the lowest embedded complement within the complement closure dis-
playing some licensee can move, and then only if it contains no specifier
with an unchecked feature.%

The minimalist grammar (MG) types to be introduced below dif-
fer essentially in the definitions of their structure building functions.
Accordingly, we first introduce those. We let s,t € ¥*, -y, -3 € {::,:},
f € Base, ¢,x € Syn”, z € {comp, spec, —}, and a1,..., ag, B1,---,
B; € Chains for some k,I € IN such that -, =: implies k = 0,
and we let ¢ € IN with ¢« < k. Also, relevant in (mo-fpg), we let
¥ € (Syn \ Licensees)*, and ¢',x’ € Licensees™, and assume ® to
be some linear, non-deleting function from Syn* x Syn™ to Syn™, i.e.,
® neither deletes material nor inserts material not in its arguments.

(me) merge maps partially from Fzp X Ezp to Exp such that the pair
(@, B) built from the expressions @ = ((s o =f¢, =), a1, ..., k)
and 3 = ((t 5 £x,—),51,..., ), belongs to Dom(merge),” and

-~

the value merge(@, 3) is defined as

(me.1) {(st:¢,=),01,...,0) if . =:and x =€
(me.2) ((s:¢,—),(t-x,comp),l,...,0) if - =::and x # €
(me.3) ({ts:¢,—),01,...,0,Q1,...,a) if - =: and y = ¢
(med) {(s:¢,—),(t - x,spec),B1,...,0,Q1,...,qK) otherwise®

(metSPIC) The partial mapping merge S*'¢ from Exp x Ezp to Exp
is defined such that the pair (@, ) built from the expressions
a = <<S et =f¢7 _>7ala o aak> and 6 = <<t ‘B fXa _>aﬁlv o 7ﬁl>a
belongs to Dom(merge) iff the specifier island condition on
merger as expressed in (SPIC.me) is satisfied, in which case

~ -~

merge SP'°(a, ) = merge(@, B). The specifier island condition on

51t can be shown that, in terms of derivable string languages, this revised type
defines a proper subclass of the original type (Michaelis 2005). That is to say, adding
the SPIC to the SMC, in fact, reduces the weak generative capacity of the formalism.

6Note that, in (me.2), respectively (me.4) and (mo>MC) below, a constituent
displaying a further unchecked feature after merge or move has been applied, gets
marked as complement or specifier, respectively.

"For a partial function f from a set A into a set B, Dom(f) is the domain of f,
i.e., the set of all z € A for which f(x) is defined.

8Recall that by assumption, - =:: implies k = 0.
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merger in effect enforces a constraint against proper left branch
extraction, disallowing movement from inside a specifier (a left
branch), by prohibiting the merger of specifiers which contain
proper subconstituents potentially moving in a later derivation
step:

If - =: then [ = 0. (SPIC.me)

(mo™SMC) moveSMC is a partial mapping from Ezp to Prin(Ezp) such
that @ = ((s o *£&, =), a1,..., -1, (t -3 -£X,2), Qig1,...,0%)
belongs to Dom(move), and the value move™™°(a@) includes

(mO—SMC_]_) <<t5;¢7—>7a1,...,ai,l,aiJrl,...,ak) ifX:E
(moSMC.2) ((s: ¢, —), (t:x,spec), ..., 1,011, 05)if X # €

(moSMC,+SPICY py 5ye-SMCHSPIC mans partially from Ezp to Prin(Ezp)

with @ = ((s - *£0, =), a1,...,0i—1,{t -3 ~£X, 2), Qig1,- .., 0)
belonging to Dom(move SM 5P iff the specifier island condi-
tion on movement as expressed in (SPIC.mo) is satisfied, and
then moveSMOH+SPIC(Q) = move™M°(a). In conjunction with
(SPIC.me), which ensures that the only way z can be comp is
if it was introduced by (me.2), the specifier island condition on
movement requires that all chains internal to the subtree whose
root is the chain in question have themselves moved out before it
is permitted to move.

If z = comp then i = k. (SPIC.mo)

(mo) move is a partial mapping from Ezp to Pgn(Ezp) such that
a = (s +fp,—),01,...,0i-1,(t g -£X,2), Qit1,...,0%) be-
longs to Dom(mowve) iff the shortest move constraint as expressed
in (SMC) holds, in which case move(@) = move™M°(a). The
shortest move constraint disallows ‘competition’ for the same
position—where there is competition, there is a loser, and thus

something that will move farther then it had to.

None of the chains ag,..., a;_1, ®it1,. .., ai displays -f.
(SMC)

(mo-fpg) move-fpg is a partial mapping from Ezp to Pey,(Exp) with
ag = (s : +£pd', =), a1, ..., i1, (t 2 -£X, 2), @ig1, ..., ) be-
longing to Dom(move-fp2*'°) iff (SMC) is satisfied, and with
move-fpg (@) including the expression
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(7) <<t5 : w(Qb/ & Xl)7 —>,Oél, ey O 1, Oy, e -7ak>-9

(moTPere) movegperc is the partial mapping from Ezp to P, (Exp)

which results from the union of move and move-fp,.

In the following, Lex denotes a lexicon (over Feat), i.e., Lex is a finite
set of simple expressions of lexical type, more concretely, a finite subset
of ¥ x {u:} x Syn®™ x {—}.

Definition 15 (Gértner and Michaelis 2005) An MG without
SMC, but obeying the SPIC (MG*"7"¢) is a tuple (X, Syn,{:,:
}, Lex, ), ¢) with Q being the set {merge™"'°, move M TSP

Definition 16 (Kobele, forthcoming) For a linear, non-deleting
mapping ® from Syn* x Syn* to Syn*, a 6-tuple (X, Syn, {::,:}, Lez, Q, c)
is called an MG with percolation from specifiers to heads (MG'P°) if

Q = {merge, move "}

For G = (%, Syn, {::,:}, Lex, Q, c), an MG 571¢ or MG P the
closure of G, CL(G), is the set U, CL*(@), where CLY(G) = Lex,
and for k € IN, CLk+1(G) C Ezp is recursively defined as

CLF(G) U {merge' (v, ¢) | (v, ) € Dom(merge’) N CLF(G) x CL*(G)}

!
Y Uv € Dom(move’) NCLF (@) move (’U)

with merge’ = merge P if G is an MG ™™ 57€ "and merge’ = merge
otherwise, and with move’ € Q\ {merge’}. The (string) language deriv-
able by G, L(G), is the set {s € ¥*|(s-¢c,—) € CL(G) for - € {::,:}}.

8.4 Simulating a 2-Counter Automata

Let M = (Q, %, {1,2},0, {#1, #2}, qo, Q) be a 2-CA. In constructing an
MGSMEHSHC Gy Cand an MG P Go, with L(G1) = L(Gy) = L(M),
we take #5, 1 and 2 to be new, pairwise distinct symbols:

Base ={c,#s} U {q|qe Q} U {1,2}

. (h) (1)
U { Oqayk'r'yym ’ 1qajkr'yl’y2 ’ 2qajkr’yl'yg |

q,TEQ,QE E€7j € {17#1}7k6 {25#2}571 € 1*572 € 2"
with <T7’Yl>72> 66(<q>a7j7k>)7 0 < hS |’71|70 SZS |72|}

For q,r € Q, a € X¢, j € {1,#1}, k € {2,#2}, 71 € 1%, 72 € 2* such

that {r,v1,72) € 6({q,a,j, k)), the categories 1;‘2;,&7”2 and 22;’;&71%

are likewise denoted by 144jkry1v. and 24qjkry,+., Tespectively.

9Note that move(@) and move-fpg (&), in (mo) and (mo-fp) respectively, both
are singleton sets because of (SMC). Thus, these functions can easily be identified
with one from Ezxp to Exp.
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An MG™SMSTSPI% expression which represents an instantaneous con-
figuration (g, n1, no, t), derived from an initial configuration (go, 0, 0, st}
in a 2-CA will have the following shape:

(x1) ({e:q,—),{€:-2,comp),..., {€: -1, comp),...,(s: -#x, comp))

no times ny times

Construction 1 G = (X, Syn, {::,:}, Lex1, Q, ¢) is the MG™SM571¢
with L(G1) = L(M) such that Lex; contains exactly the items:

Po = (€:qp-#x, —)
For all ¢,r € Q,a € X¢,j € {1, #1},k € {2,#2},71 €
1*7'-)/2 € 2% such that <Ta 717'-)/2> € 5(<q,a,j, k>)

Xqajkrviva = (@i =q +#5 Ogajkryiv. ~#5 5 —)
If j = #; then
0 — e 20 . (0 N
aqajk:r'yl'y2 - <6 . Oank""Yl‘Yz 1qajkr'yl'yg ’ >
else
0’ — .o = . (0)
aqajk:r'yl'h - <6 . Oank""Yl‘Yz +1 1qajkr'yl'yz )

For 0 < h < ||

h+1 = (e:: =1 (h+1) _1
qajkryivz °* Tqajkryivz “qajkryivz ’
~ — ve — . . - —
Cgajkryiye — (€% lgajkryive *1 lgajkryive =15 >
If £k = #5 then
0 _ . = . (0) _
qajkryivz T (€ =1gajkryva 29ajkryiva 0 )
else
o’ — e = . (0)
qagkryive = (€3 =laajkrvive ¥2 2ajkryiqs 0
For 0 < i < |72
it+1 SN (+1) B
Bqajkrvﬂz - <€ ° 2qajkr71'72 2qajk7“71'72 2,
qajkryivz (€ 1t =2gqjkrvyivs +2 2qajkryive =25 —)
Yaajkrviva = (€ =2qajkryiys Ty —)

For each ¢ € Qy,
¢q = (€:=q+#s c, —)
Each derivation necessarily starts with ¢g being selected, either by ¢,
in case gy € Qf, or by Xgoajkryivy, fOr some r € Q, a € X¢, j € {1,#1},
k€ {2,#3}, 71 € 1* and v, € 2*. Generally, when an expression is se-
lected by a lexical item of the form xga;jkry,~, for some ¢, 7 € Q, a € e,
Jje{1,#1}, k€ {2,#2}, 71 € 1* and v, € 2*, G; begins simulating the
CA’s application of ¢ to (g, a, j, k) with outcome (r,y1,72) w.r.t. some
matching instantaneous configuration: the currently recognized a from
the input tape is introduced, and afterwards the already recognized pre-
fix (being the alphabetic string of the last chain within the currently
derived expression displaying -#x, cf. (%1)) is moved to the left of a.

-)
-)

—)

—)
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This creates an expression whose first chain displays Ogqjrry,~.- De-
pending on j, this expression is selected either by aga P which does
not consume an instance of 1 from the 1st CA-counter, or agaj Keryimya
which does by applying move M *5P1° in the next step. The result-
ing expression is selected successively by O‘Z;;‘l}cml o for 0 < h < |m,
each time introducing a new complement displaying -1, and finally
creating an expression whose first chain displays 144jkr,~,- Thus, the
correct number of new instances of 1 on the 1st CA-counter are in-
troduced. Now, all the lower complements in the complement closure,
which display -1 (and which were created in an earlier cycle simulating
another application of §) are cycled through to the top of the expres-
sion, first merging with a7, ., then applying move SMCTSPIC Thig
ends in a configuration in which all chains displaying -1 are consecutive
components within the expression derived, immediately following the
first chain which still displays 144jkrv,~,- Analogously, proceeding from
here by means of the items B9, 1,1 1,1 Blaikryqy, f0r 0 < i < |7y2], and

qujkryiyss UD€ operation of the 2nd CA-counter is simulated. Merging
With ¥gqjkry.ye, this procedure results in an expression, the first chain
of which displays category r (which corresponds to the CA being in
state r), first followed by the “true” number of consecutive chains dis-
playing -2, then by the “true” number of consecutive chains displaying
-1, and finally by a chain which displays -#s, and contains as alpha-
betic material the prefix of the CA-input string recognized so far by
the 2-CA simulated. Relying on this, and recalling that, in particular,
(SPIC.mo) holds, it is rather easy to verify that a derivation ends in
a single-chain expression of the form (s - c,—) for some s € ¥* and
- € {:,:} if, and only if s € L(M).

’

Constructing the MG ™P"® G5 (and arguing that it does its job) works
much the same as for the MG™*5"'° G}, and turns out to be even
somewhat more straightforward, since both the “a-" and “(-part” can
be reduced to just two alternative chains. This is due to the fact that
we can simulate the correct behavior of the i-th CA-counter, i = 1,2,
in terms of feature percolation: all i-instances currently belonging to
the i-th counter appear as one string of -i-instances within one chain
representing the counter. Because of this, each CA transition is simu-
lated by just four applications of merge, and up to three applications
of moveP*"*—one application of moveyP® is to properly order the
previously parsed word with the currently scanned symbol, and each
of the other two are to attract the chain with the appropriate licensee
features for percolation (and thus happen only when such chains exist,
cf. next paragraph including (*2) and footnote 10).
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An MG P _expression representing an instantaneous configuration
(g, n1,na,t), derived from an initial configuration (g, 0, 0, st) in a 2-CA
looks like the following, where (-i)™, ¢ = 1,2, is the string consisting
of n instances of -1:10

(%2) ({e:q,—),{e:(-2)"2, comp), {€: (-1)™, comp), (s : -#x, comp) )

Construction 2 Let Go = (3, Syn, {::,:}, Lexs, Q, ¢) be the MG P¢
with L(G2) = L(M) such that Lexs contains exactly the items below:

$o = (€:qg-#x, —)
For all q,T € Qaa € EEaj € {la#l}’k € {27#2}771 € 1*772 €

2*
such that (r,v1,72) € 6({(q, a, j, k))
Xqajkryiyz = <a i=q tiy Oqajkr‘71‘72 -#5, _>
If j = #; then
Qgajkryivz — (e 2t =0gajkryive lgajkryivye (_1)|‘Y1| , _)
else
a:;ajkmwz = (€ :: =0gajkryivs t1 lgajkryiva (_1)|71| , —)
If k£ = #5 then
ﬂqajkr'ylnh = <6 o =1qajk'r71'yz 2qajkr7172 (_2)|“/2| , _>
else
qajkryye — (€1 =lgajkryive *2 2qajkryiva (-2)h=l, =)
qajkryiva = (€1 =2gajkryiys Ty —)

For each ¢ € Qy,
a = (e:=q+izc, —)
Again, a derivation begins either with with some X4 ajkry.v, Selecting
¢o, or with ¢4, doing so in case gy € Qf (implying that e belongs to
L(M)). As in the case of Gy, in general, when—within a derivation—
an expression is selected by a lexical item ¢, for some ¢ € @y, or a
lexical item Xqqjkry,v, fOr some r € Q, a € X, j € {1, #1}, k € {2, #2},
v1 € 1* and 2 € 2%, the selected expression corresponds to an instanta-
neous configuration derived by the 2-CA from an initial configuration.
In both cases move """ applies to the resulting expression, checking
an instance of -#x. In the former case this ends in a complete expres-
sion, if there is no chain left displaying an unchecked licensee feature.
Otherwise further derivation steps are blocked. In the latter case Go
begins simulating the CA’s application of § to (g, a, j, k) with outcome
(r,y1,72) w.r.t. some matching instantaneous configuration: after hav-

ing moved by means of move "' the already recognized prefix to the

10When n; = 0, the respective chain is not present in the expression.
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front of the newly scanned instance of a, the derivation continues by
merging an a-expression—note that if agqjkry,y, 15 merged with an
expression which itself contains a chain already in possession of -1 fea-
tures, the SMC will disallow further operations on the resulting expres-
sion (in essence, crashing the derivation).!* This ensures that only those
derivations involving (igqjk~,~.r sSucceed, in which it combines with an
expression which is completely devoid of -1 features at the point of

merger. If a:zajk’f’n’yz is merged instead, then the chain containing the
“+perc

-1 features will move, and, as per the definition of moveg" ", percolate
its features (modulo the one checked) to the initial chain. In either case,
the initial chain comes to host all of the expression’s -1 features. We
then merge a 0 expression, where there transpires something similar.
The simulation of the 2-CA transition is complete once Ygqjkry,vy, IS
merged, resulting in an expression which must once again be selected
by some (br Or Xrajkvyives-

Note that, involving feature percolation, G only creates chains in
which all licensee instances result from the same licensee, i.e., either -1
or -2. Thus, G is defined completely independently of the percolation

function ® from Syn*x Syn™ to Syn™ underlying movegpcrc.

8.5 Conclusion

We reviewed two apparently unrelated extensions to minimalist gram-
mars, and showed that both of them can derive arbitrary r.e. sets of
strings. Moreover, much the same construction sufficed to show this for
each variant of MGs presented herein. This highlights that at least a
subpart of each of these extensions have similar strong generative capac-
ities. How similar these variants are is a matter left for another time. We
note here only that while the 2-CA simulation given for MG™S"<371¢
extends straightforwardly to one of a queue automaton, no similarly
straightforward extension exists for the MG P, as we were able to
nullify our ignorance of the function ® only by (in effect) reducing its
domain to strings over a single alphabetic symbol.
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Learnability of Some Classes of
Optimal Categorial Grammars

JACEK MARCINIEC

Abstract
In this paper we characterize a learnable class of classical categorial gram-
mars, which lies inbetween (learnable) class of rigid grammars and (not learn-
able) class of optimal grammars. The learning function we provide is based
on guided optimal unification, introduced in our paper Marciniec (2004).

Keywords CATEGORIAL GRAMMAR, LEARNING, UNIFICATION

9.1 Introduction

Kanazawa investigates in Kanazawa (1998) several classes of classical
categorial grammars from the point of view of their learnability. All the
learning functions discussed there are based on unification algorithms
— the standard one and its optimal version, introduced by Buszkowski
and Penn (1990). They also involve the process of reconstructing the
grammar on the basis of some linguistic data, originated in Buszkowski
(1987), van Benthem (1987). Only the learning function for the class of
rigid grammars is based solely on unification. The rest is a combination
of several operations, unification being just one of them. Kanazawa fol-
lows two ways of designing unification based learning procedures. The
first one approach involves some preliminary operations before standard
unification is set to work. It can be, for example, additional partitioning
of the search space like in the case of k-valued grammars.

The second approach incorporates optimal unification accompanied
with some selection mechanism after calculating all optimal unifiers.
Usually the selection mechanism mentioned above is based on mini-

FG-MoL 2005.
James Rogers (ed.).
Copyright © 2009, CSLI Publications.
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mality of some sort. Here Kanazawa’s least cardinality case may serve
as an example.

Both standard and optimal unification posses the feature desirable
as far as learnability is concerned, namely compactness — the (optimal)
unification image of an infinite set of types can be determined on the
basis of its finite subset (cf. Marciniec (1997b,a, 2004)). However, the
difference between the two is essential — standard unification algorithm
outputs unique (if any) solution, whereas the total number of optimal
unifiers usually grows with the increase of the input. Therefore, the
only possible operation after completion of the former is to accept (or
reject) the solution. The latter is more flexible. The application of a
post unification choice function is evident. One can also imagine some
activity prior to the unification process, though no such a possibility
has been elaborated so far.

In Marciniec (2004), we put forward another solution — incorporat-
ing selection mechanism into unification engine itself. We described a
general framework for optimal unification discovery procedure where
the limitation of the number of outputs is achieved by controlling the
order in which types are unified, ‘decreasing’ this way the nondeter-
minism of the original algorithm.

In this paper we develop the case when types that are alphabetic
variants are to be unified first. Consequently, we introduce the class of
semi-rigid grammars, which lies inbetween the class of rigid grammars
and the class of optimal grammars (introduced in Kanazawa (1998)).
We prove learnability of that class.

9.2 Preliminaries

We adopt most of the notation from Buszkowski and Penn (1990).
FS(V') denotes the set of all functor-argument structures on the set of
atoms V.Ut A= (Aq,...,A,); is a structure, then a substructure A; is
the functor whereas each substructure Aj, for j # i, is an argument of
A. For any set T' of functor-argument structures, by SUB(T") we denote
the smallest set satisfying the following conditions: T C SUB(T), if
(A1,...,A,); € SUB(T) then also A; € SUB(T), for j =1,...,n. The
functor (of the subfunctor) of a structure A is also its subfunctor. The
only subfunctor of a structure A that is an atom will be denoted by
T5(A).

Types are all the elements of the set Tp = FS(Pr), where Pr =
VarU{S} and Var is a countable set of variables and S is a designated
primitive type (S & Var). A substitution is any homomorphism « : Tp —
Tp, such that a(S) = S. Two types t1 and to are alphabetic variants
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(t1 > ta), if ta = aa(t1) and t; = ay(t2) for some substitutions a; and
as. A substitution o unifies a family of sets of types T = {T1,...,Tn},
if each o[T}] is a singleton. For a substitution «, by ~, we denote the
relation defined as follows: t1 ~ t2 iff a(t1) = a(t2). For an equivalence
relation ~ and 7' C Tp, by T'/ ~ we will denote the partition induced on
T by ~. For T ={Th,...,T,}, we define T/ ~=T,/ ~U---UT,/ ~.

By a (finite) classical categorial grammar (from now on simply a
(finite) grammar) we mean any (finite) relation G C V x Tp. However,
in what follows, it will be convenient to regard a grammar as a family
{I¢(v) : v € Vg}, where Vi is a lezicon of G and the function I from
Vi to 2TP is its initial type assignment (Ig(v) = {t € Tp: (v,t) € G}).
The terminal type assignment T of G is defined by the following rule:
ti € Ta((A1, ..., Ay);) iff there exist ¢; such that t; € T (A;) for j # 1,
and (t1,...,tn); € Tg(A;). Each grammar G and a type t determine
the category of type t: CATg(t) = {A € FS(Vg) : t € Tg(A)}. By
FL(G) = CAT¢(S) we denote the (functorial) language determined by
G.

A language L C FS(V) is said to be finitely describable if there exists
a finite grammar G such that L C FL(G).

Tp(G) = U,ev, SUB(Ig(v)). By Tp,(G) we denote the subset of
Tp(G), consisting of only argument substructures. For a grammar G
and a substitution a, «[G] will denote the grammar {a[Ig(v)] : v €
Vol

A grammar G is rigid if card(Ig(v)) = 1 for all v € V. Let G be
any grammar. Denote V = V x N. The elements of V' (possible ‘copies’
of atoms from V) will be denoted by v’ rather then (v,4). By rigid
counterpart of G we mean any rigid grammar G C V x Tp, fulfilling
the condition: I (v) = i, Iz(v'), where n = card(I;(v)). By ()(1 we
denote a homomorphism from FS(V) to FS(V) fulfilling the condition:
(vi)éI = v, for each 4. For any grammar G, we have FL(G) = (FL(@))T

A type t € Tp(G) is useless if SUB(FL(G)) N CAT&(t) = 0 for any
rigid counterpart G of G.

A grammar G is said to be optimal if it has no useless type and for
all v € Vg, if 1,12 € Ig(v) and t1 # to then {t1, 2} is not unifiable.

Throughout this paper learnability means learnability from struc-
tures in the sense of Gold’s identification in the limit (cf. Gold (1967),

Kanazawa (1998), Jain et al. (1999), Osherson et al. (1997)).

9.3 Unification and Infinity

Below we recapitulate some results from Marciniec (2004):
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Definition 17 A substitution o partially unifies a family of possibly
infinite sets of types 7 = {11, ...,T,}, if card(T};) < Yy for each j.

Definition 18 Let 7 = {T1,...,T},} be a family of possibly infinite
sets of types. An optimal unifier for 7 is a substitution o fulfilling the
following conditions:

« T/ ~, is finite,
- 0 is the most general unifier of 7/ ~,,

- fori e {1,...,n}, a,b € T}, if o(a) # o(b), then {o(a),o(b)} is
not unifiable.

Proposition 18 The number of optimal unifiers of infinite set of
types does not have to be finite.

Theorem 19 (Marciniec (2004)) Let 7 = {T1,...,T,} be par-
tially unifiable. For each optimal unifier  for T there exist a family
U ={U,...,U,} and an optimal unifier o for U, such that for each
ie{l,...,n}, U; CT;, U; is finite and n[T;] = o[U;].

Definition 19 Let ~ be an equivalence relation on Tp. A substitution
« respects =~ on T' C Tp, if the following condition holds:

(th, to € T)(tl =~ tg) — Oé(tl) = Oé(tg)).

A substitution « respects = on 7 = {T1,...,T,}, if it respects ~ on
each T;, for i € {1,...,n}.

Proposition 20 For any family T = {11,...,T,}, such that each
T; is bounded in length, there are only finitely many optimal unifiers
respecting the relation px.

Proof 7/ is finite and unifiable and any substitution respecting
> unifies 7/ < . O

Theorem 21 (Marciniec (2004)) Let 7 = {Ti,...,T,} and let
each T; be finite. The following algorithm (guided optimal unification
algorithm) outputs precisely the optimal unifiers for T, respecting 1<:

Compute mgu n for T/
Compute all optimal unifiers for {n(T1),...,n(Ty)}.

Theorem 22 (Marciniec (2004)) let T = {T1,...,T,} be partially
unifiable family of nonempty, possibly infinite sets of types. There ex-
ists U = {Uy,..., Uy}, such that the set of all optimal unifiers for U
respecting < is the same as for any V = {V1,...,V,,}, where each V; is
finite and U; C V; C T;.
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9.4 Semi-rigid Grammars

Definition 20 Let A € FS(V). We will describe a construction of a
grammar GF(A) — general form determined by A. At first we choose
any A € SUB(V), such that (Z)<1 = A and each atom from V occurs in
A at most once (compare the definition of a rigid counterpart). Now,

by induction, we define a mapping — from SUB(A) to Tp:
- A S,
- if (Ay,..., Ay); — t then for each j # i we set A; — x;, where
x; is a ‘new’ variable, and A; — (T1y ooy Ty by i1y e vy T
GF(A) = {{v,t) € V x Tp : 3i € N(v* ~ t)}. Finally, for L C FS(V),
assuming that Tp(GF(A)) N Tp(GF(B)) = ® when A # B, we define

GF(L) = Uaer GF(A). After Marciniec (1997b), we admit the case of
L being infinite.

Proposition 23 Let G = a[GF(L)] for some substitution . For any
x € Var, if & € Tp(GF(L)) then a(z) € Tp,(G).

Proposition 24 For any rigidly describable L, GF(L) is bounded in
length.

Definition 21 Let L be finitely describable. By OGyq(L) we will de-
note the set of all grammars G, such that G = n[GF(L)] for some
optimal unifier n for GF(L), respecting <t on GF(L).

From Propositions 20 and 24, we have:
Corollary 25 For any finitely describable L, the set OGyq(L) is finite.

Proposition 26 Let G be a grammar. There exists a finite set D C
FL(G) such that for each set E, if D C E C FL(G) then OG(E) =
OGw(FL(G)).

Proposition 27 Let L be finitely describable. Then
LS () FLG).

GEOG(L)
Definition 22 Let u,v € Tp. We define the relation «~ C SUB(u) x
SUB(v): e
u {m} v (9.21)
if (up,...,un); {::,vvj} (v1,...,0,); then u; {::,vvj} v; (9.22)
Proposition 28 If t] {;v;;} th, then a(t)) {a(tlm(tz)} a(th), for any

substitution «.
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Definition 23 We define the relation °C Tp x Tp:
ty Mty iff
Tr(t1) {tm}Tf(tQ) ATp(tr) =Tp(t2) V{Tr(E2), T4(t2)} S Var].
Example 1 To see that the two following types are related in the
sense of T:
(l”1, (($2,I3)2,$7)1,1?2, (l”3,l’4)2)27
(w7, 22)1, (23, 22)1, T1)2, (21, T2)2)1, T4, (71, T5, Ta)1)2,
we simply disregard all the argument subtypes:
(0, ((0,3)2,0)1,0,0)a2,
(0, ((0,21)2,0)1,0,0)2.

Proposition 29 For any substitution o and a type t, if 15(t) = S
then t T «(t).

Definition 24 A grammar G is said to be a semi-rigid grammar if it
is optimal and the following conditions hold:
for all v € Vg, t1,t2 € Ig(v) and types t], t5:
t1 # ta — = (t T ta), (9.23)
t1 # ta At} o th —t) & Tp,(G)V ity & Tp,(G). (9.24)
t1,t2

Example 2 Below we will denote types traditionally, writing

try ooy ticai\ti/tig1, . tn
instead of (t1,...,t,);. Let G; denote the following grammar over the
lexicon V' = {a, b}:

a— x,z\S
b 2\z, (2\S)\(2\S)
G is not semi-rigid because both related types x and z\S occur as
argument subtypes in the type assignment. Our next example, G3:
a— x,z\S
b a\z,2\(2\)
is semi-rigid (observe that FL(G1) = FL(G2)). Notice also that semi-
rigidness does not impose any restrictions concerning the number of
types assigned to lexicon elements. For example, G5 would admit for b
any number of types of the form z\(z\(...(z\S)...)).
Theorem 30 The class of all semi-rigid grammars is learnable.
Proof Let G be a semi-rigid grammar. At first, we will show:

G € OGu(FL(G)). (9.25)
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Let G be any rigid counterpart of G. Denote L = FL(G) and L = FL(G).
Since G has no useless type, G = [GF(L)] for some mgu of GF(L) (cf.
Kanazawa (1998)). We may assume that GF(L) = (GF(f))ﬁ, so G =
n[GF(L)]. Since {IGF(Z) (v):ve€ VGF(Z)} = {Ier)(v) : v € Vory}/ ~n
and G is optimal, the substitution 7 is an optimal unifier of GF(L). To
prove (9.25), we have to show that 7 respects .

Let ¢; > tj, where {ti,tj} - IGF(L) (’U)

Suppose {1/(t;),T7(t;)} € Var. By the definition of T, we have
T7(t;) =T7(t;) = S. Since >aC T and T is transitive, by Proposition 29,
we get n(t;) T n(t;) and consequently , by (9.23), n(t;) = n(t;) .

Suppose then {1/(¢;), T,(¢;)} C Var. Denote x; =T;(t;) and x; =T
(tj). Since t; U t; from Proposition 28 and the definition of I it
follows:

1) Sy ") (5.26)
By Proposition 23, both 7(z;) and n(z;) are argument substructures of
Tp(G). By (9.24) and (9.26) we get n(t;) = n(t;) again.

Let pu denote any computable function which, from any finite set
of grammars, selects a grammar minimal with respect to the language
it determines. Since the problem FL(G7) C FL(G2) is decidable, such
a function exists. We define a function ¢ from FS(V)* to the set of
grammars:

(50, -+, 50)) = p(OGua({50, .., 5:}):
Let L = FL(G) for some semi-rigid grammar G and let L = {s; : i € N}.
By Proposition 26, there exists n € N such that for all i > n we
have OGyq({s0,-..,8i}) = OG(FL(G)). Denote G’ = ¢({sq, - .., Sn))-
By Proposition 27, we get FL(G) C FL(G’). However, (9.25) and the
minimality of G’ leads to the conclusion that FL(G') = FL(G) = L.
Hence, ¢ learns the class of all semi-rigid grammars. It is also easy to
observe, that ¢ is responsive, set-driven and consistent on the class. [J

Proposition 31 The learning function ¢, defined in the proof of The-
orem 30, is not prudent.

Proof The grammar:

a—y,y\S
b—S/z

c— z,y\S
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determines the following language: L = {(a,a)s, (b, ¢)1, (a,c)2}. It is
easy to check, that ¢ converges on L to:

a— x,z\S
b—S/(z\S)

c— x\S

that is not semi-rigid. 0
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An Additional Observation on Strict
Derivational Minimalism

JENS MICHAELIS

Abstract

We answer a question which, so far, was left an open problem: does—
in terms of derivable string languages—the type of a minimalist grammar
(MG@G) as originally introduced in Stabler 1997 defines a proper superclass
of the revised type of an MG and, therefore, the type of a strict MG both
introduced in Stabler 1999, and known to be weakly equivalent? For both
the revised as well as the strict MG-type, the essential difference to the
original MG-definition consists in imposing—in addition to the corresponding
implementation of the shortest move condition—a second condition on the
move-operator providing a formulation of the specifier island condition, and
as such, restricting (further) the domain to which the operator can apply.
It has been known already that this additional condition, in fact, ensures
that—in terms of derivable string languages—the revised and, therefore, the
strict MG-type both constitute a subclass of the original MG-type. We here
present a string language proving that the inclusion is proper.

Keywords (sSTRICT) MINIMALIST GRAMMARS, SPECIFIER ISLAND CON-
DITION, MULTIPLE CONTEXT-FREE GRAMMARS/LINEAR CONTEXT-FREE
REWRITING SYSTEMS, (LINEAR) CONTEXT-FREE TREE GRAMMARS

10.1 Introduction

The minimalist grammar (MG) formalism introduced in Stabler 1997
provides an attempt at a rigorous algebraic formalization of the per-
spectives currently adopted within the linguistic framework of trans-
formational grammar. As has been shown (Michaelis 2001a, 2001b,
Harkema 2001), this MG-type determines the same class of derivable
string languages as linear context-free rewriting systems (LCFRSs)
(Vijay-Shanker et al. 1987, Weir 1988).

FG-MoL 2005.
James Rogers (ed.).
Copyright © 2009, CSLI Publications.
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Inspired, i.a., by the linguistic work presented in Koopman and Sz-
abolcsi 2000, in Stabler 1999 a revised MG-type has been proposed
whose essential departure from the version in Stabler 1997 can be seen
as the following: in addition to the shortest move constraint (SMC), a
second locality condition, the specifier island constraint (SPIC), is im-
posed on the move-operator regulating which maximal projection may
move overtly into the highest specifier position. Deviating from the op-
erator mowve as originally defined in Stabler 1997, a constituent has to
belong to the transitive complement closure of a given tree or to be a
specifier of such a constituent in order to be movable. An MG of this
type, henceforth, is referred to as MG™"%7'°.

Closely in keeping with some further suggestions in Koopman and
Szabolcsi 2000, a certain type of a strict minimalist grammar (SMG)
has been introduced in Stabler 1999 as well: implementing the SPIC
with somewhat more “strictness,” leading to heavy pied-piping construc-
tions, the SMG-type allows only movement of constituents belonging
to the transitive complement closure of a tree. But in contrast to the
MG *"*“_type, the triggering licensee feature may head the head-label
of any constituent within the reflexive-transitive specifier closure of a
moving constituent.

MG"™"s and SMGs have been shown to be weakly equivalent by
Michaelis (2004, 2002) confirming a conjecture explicitly stated in
Stabler 1999. The equivalence turned out proving that, in terms of
derivable languages, MG ™*"'°s and SMGs not only are subsumed by
LCFRSs, but both are equivalent to a particular subclass of the latter,
referred to as LCOFRS; o-type: the righthand side of each rewriting
rule of a corresponding LCFRS involves at most two nonterminals,
and if two nonterminals appear on the righthand side then only simple
strings of terminals are derivable from the first one.! It was, however,
left unsolved, whether the respective classes of string languages deriv-
able by LCFRS; 25 and unrestricted LCFRSs—and thus the respective
classes of string languages derivable by MG"*"*“s (or, likewise, SMGs)
as defined in Stabler 1999 and MGs as defined in Stabler 1997—are
identical.?

In this paper we show that the inclusion is in fact proper. We im-
plicitly do so by expressing the reduced structural generative capacity

IExactly this condition expresses the strict opacity of specifiers within the
MG +SPIC yersion.

2Note that, instead of adding the SPIC to the original MG-formalism, using it to
simply replace the SMC does not lead to a reduction of the class of derivable string
languages. Quite the opposite, the resulting type of MG even allows derivation of
every type 0-language (Kobele and Michaelis 2005).
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in terms of a homomorphism mapping trees to strings. Explicitly, we
show that, although a particular language (combining “string rever-
sal,” “simple copying” and “intervening balanced bracketing in terms of
the context-free Dyck language”) is derivable by an LCFRS, it’s not
derivable by an LCFRS; 5. The most crucial part of our proof consists
in showing that for each LCFRS; 2, there is a linear context-free tree
grammar (cf. Rounds 1970a,b, Fischer 1968, Engelfriet and Schmidt
1977) deriving, modulo a homomorphism, the same string language in
inside-out mode.

10.2 Context-Free Tree Grammars

Giving our definition of a context-free tree grammar (CFTG) as it goes
back to the work Rounds (1970a,b) and Fischer (1968), we mainly lean
on the presentation in Engelfriet and Schmidt 1977.

Definition 25 A ranked alphabet, 3, is an indexed family (X, |n €
IN) of pairwise disjoint sets.® Forn € IN, a o € ¥,, is an operator of rank
n, whose rank is denoted by rank(c). The set of trees (over ¥), T(X),
is built up recursively using the operators in the usual way: if for some
n € IN, we have 0 € ¥, and t1,..., t, € T(X) then ¢t = o(t1,...,tp) is
a tree. The yield of t, yield(t) € Xf, is defined by yield(t) = o if n = 0,
and yield(t) = yield(t1) - - - yield(t,) otherwise. A tree ¢ € T(X) is a
subtree (of t) if ' =t, or if ¢ is a subtree of t; for some 1 < i < n.

Throughout we let X = {1, z2, z3,...} be a countable set of variables,
and for k € IN, we define X, C X as {x1,...,2%}. Then for a ranked
alphabet X, the set of k-ary trees (over ), T(3, X}), is the set of trees
T(X') over the ranked alphabet ¥’ = (X! | n € IN), where () = ZoUXj,
and X7 =%, forn > 0. Let T(3, X) = Upen T(2, Xk).

Definition 26 A context-free tree grammar (CFTG), I, is a 5-tuple
(35, F,S8,X,P), where ¥ and F are finite ranked alphabets of inoper-
atives and operatives, respectively. S is a distinguished element in F,,
for some n € IN, the start symbol. P is a finite set of productions. Each
p € P is of the form F(x1,...,x,) — t for some n € IN, where F' € F,,,
Z1,..., ¢p € X, and t € T(Z U F, X,,). I, in addition, for each such
p € P, no x; occurs more than once in ¢t then I is linear.

For t,t' e T(XUF, X), t' is directly derivable from t (¢t = t') if for
some m and n € IN, there are a tg € T(XUF, X,,+1) containing exactly
one occurrence of x,11, a production F(z1,...,2,) — t” € P, and
t1,. ., tm € T(X UF,X) such that t = to[z1,..., 20, F(t1,...,tm)]

3Throughout the paper the following conventions apply: IN is the set of all non-
negative integers. For any set M, M* denotes the Kleene closure of M, including e,
the empty string. Me is the set M U {¢}.
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and t' = tg[x1, ..., Tn, t"[t1,. .., tm]].* If 2,41 is not dominated in g
by an operative then ¢’ is derived from t by an outside-in (OI) step
(t =o1t)5Ifty, ta, ..., t, € T(Z, X) then ¢ is derived by an inside-out
(I0) step (t =10 t'). =*, =& and =] denote the reflexive-transitive
closures of =, =1 and =p, respectively.

The (tree) languages derivable by T in unrestricted, OI- and I10-mode
are L(I') = {t e T(X)|S =" t}, Loi(T') = {t € T(Y)|S =¢; t} and
LioT) ={t €e T(X)|S =7o t}, respectively. The corresponding string
languages derivable by T' are the sets L(I') = {yield(t)|t € L(T)},
Loi(T) = {yield(t) |t € Loi(T")} and Lio(T') = {yield(t) |t € L1o(T)},
each of which being a subset of ¥3.5

10.3 Linear Context-Free Rewriting Systems

The formalism of a linear context-free rewriting systems (LCFRSs) in
the sense of Vijay-Shanker et al. 1987 can be seen as presenting a
subtype of the formalism a multiple context-free grammar (MCFG) in
the sense of Seki et al. 1991, where in terms of derivable string languages
the generative power of LCFRSs is identical to that of MCFGs.

Definition 27 (Seki et al. 1991, Vijay-Shanker et al. 1987) A
multiple context-free grammar (MCFG), G, is a 5-tuple (N, T, F, R, S},
where N and T are the finite sets of nonterminals and terminals, re-
spectively. Each A € N is associated with some dg(A4) € IN'\ {0}. S is
a distinguished symbol from N, the start symbol, with dg(S) = 1. F
and R are the finite sets of functions and (rewriting) rules, respectively,
such that each r € R is of the form Ay — f(A4,...,A4,) for some f € F
and Ag, A1,..., A, € N for some n € IN, where f is a linear regular
function from (T%)%¢(41) x ... x (T*)4c(An) into (T*)46(A0)  allowing
deletion of single components. r is nonterminating in case n > 0, oth-
erwise r is terminating. If the latter, we have f(0)) € (T*)4e(40) and
we usually denote 7 in the form Ag — f(0).

For A € N and k € IN, LE(A) C (T*)% ) is given recursively by
means of § € L% (A) for each terminating A — 0 € R, and for k € IN,
0 € LET(A) if @ € LE(A), or if there are A — f(Ay,...,A,) € R

4For each k € IN, and given trees 7 € T(SUF, X},) and 11,..., 7 € T(SUF, X),
T|T1,...,7k] is the tree in T(X U F, X) resulting from substituting for 1 <13 < k,
each occurrence of the (trivial) subtree z; of 7 by an instance of ;.

5Zn41 is said to be dominated in to by an operative A € Fy, for some k € IN, if
there are 71,..., 7, € T(X UF, X) such that A(71,...,7x) is a subtree of tg which
contains the unique occurrence of 41 in tg.

6Note that £(T') = Lo(T) holds for each CFTG T, but the class of context-free
tree languages derivable in OI-mode and the one of those derivable in I0-mode are
not comparable in full general (Fischer 1968).
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and 0; € LE(A;) for 1 < i < n such that f(61,...,0,) = 6. The
set Lg(A) = Upen LE(A) is the language derivable from A (by G).7
La(S), also denoted by L(G), is the multiple context-free language
(MCFL) (derivable by G ). We have L(G) C T*, because ds(S) = 1. The
rank of G, rank(QG), is the number max{n |4y — f(41,...,4,) € R},
the fan-out of G is the number max{ds(A)| A € N}.

If each f € F appearing in some Ay — f(A,...,A,) € R, in
addition, has the property that no component of the tuples of tuples
of (T*)%c(A1) x ... x (T*)4(An) is erased by mapping under f into
(T*)%c(40) then G is a (string based) linear context-free rewriting sys-
tem (LCFRS), and L(G) is a (string based) linear context-free rewriting
language (LCFRL).

Example An LCFRS which has rank 2 and fan-out 3 is the LCFRS
G x — <{S,A,B},{a,b,[,]},{conc,id,e[] aeaaebafaa fbvgah}aRaS>
with d(A) = d(B) = 3, where R consists of the following rules:

S — conc(B),
A — ea(0) [ en(0) | fa(A) | fo(A) [ 1(B, B) and
B — e(0)|id(A)9(B),

and where the functions are given by:

conc : (20, 71, T2) = ToT1%2

id (xo, 1, T2) — (xo, 71, T2)

6[]: = <€7H7 >

€q : 0 — (a,a,a)

€p: 0 — (b,b,Db)

fa: (xo, 1, T2) — (xzpa, 10, axs)
fb: <$Q,$1,J)2> = <J)0b x1b, b$2>
g: (o, x1, 2) = (o, [71], 22)

h: (o, z1,22), (Yo, ¥1,92)) — (Tovo, y1Z1, Y222)

The language derivable by Gy is

L(Gex) = {wy -+~ wpzpwy, - - - 2101 2gwE E|
nelN\{O},wl € {a,b}* for 1 §z <n,z,--z9 € D},

where D is the Dyck language of balanced parentheses, generated by
the context free grammar Gp = ({S},{[,]},{S — SS|[S]]|€},S),

and where for each w € T*, w® denotes the reversal of w.

"Thus, employing the notion of the CFTG-derivation modes introduced above,
an MCFG can be considered to derive a tuple of strings in I0-mode.

8Thus for each set M and w € M*, w € M* is defined recursively by & = ¢,
and (av)® = v®a for a € M and v € M*.
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The class of MCFLs and the class of LCFRLs are known to be identical
(cf. Seki et al. 1991, Lemma 2.2). Theorem 11 in Rambow and Satta
1999, therefore, shows that for each MCFG G there is an LCFRS G’
with rank(G’) < 2 for which L(G) = L(G’) holds.

Definition 28 An LCFRS; » is an LCFRS G according to Definition
27 such that rank(G) = 2, and dg(A41) = 1 for each Ay — f(A1, A2) €
R. In this case L(G) is an LCFRL, 5.

Definition 29 A given LCFRS; » G = (N, T, F, R, S) isin LCFRS;,»-
normalform (LCFRS; 2-NF)if each f € F is of one of the forms (i)—(iii)
for some m € IN'\ {0}, or of the form (iv) for some a € Te.

(1) <<y1>7<$17$2>~-~7$m>> g <y1>x17$27"'7mm>
(ii) (<y1>,<x1,x2,...,xm)> = <y11‘1,l‘2,...,$m>
(iii) (X1,T2,y oy Timg1) = (121, T2, oy Ty
(iv) 0 — a

Proposition 32 For every LCFRS; 2 G, there exists an LCFRS; »
G' = (N,T,F,R,S) in LCFRS; 2-NF such that L(G) = L(G’).

Proof. The proposition can essentially be proven applying a “double
transformation” to a given LCFRS; o: first, using the construction pre-
sented in Michaelis 2004, the LCFRS; 5 is transformed into an MG **7'¢
deriving the same string language. Then, using the construction pre-
sented in Michaelis 2002, the resulting MG "' is transformed into
an LCFRS; 2 of the corresponding normal form still deriving the same
string language, but with (iv’) instead of (iv).”

(iv") 0 — w,weT*
Verifying that (iv’) can be strengthened to (iv) is straightforward.'® OJ

10.4 Proper Inclusion within LCFRLs

Let G = (N, T, F,R,S) be an LCFRS; 3 in LCFRS; »-NF.
Construction We now construct a linear CFTG T = (X, F, S, X, P)
with ¥g = T U {A} for a new symbol A, and with h[Lio(T)] = L(G),**
where h is the homomorphism from X§ to T* determined by h(a) = a

for a € T, and h(A) = e. In constructing I, we assume o and S to be
two further, new distinct symbols and let

9Here, (i) and (ii) simulate the behavior of the merge-operator, (iii) simulates
the behavior of the move-operator, and (iv’) provides “lexical insertion.”

101f need be, we simply add new nonterminals, functions and rules of the form
A — a and B — f(C,D) to G', where a € Te and f is in line with (ii), and
successively replace all rules of the form (iv’) not being in line with (iv).

UFor any two sets M; and Mz, and any mapping g from M;j into Ma, g[Mi]
denotes the image of M1 under g, i.e., the set {g(m)|m € M1} C Ma.
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Yo =T U{A}

Yo={e}U{A'|A€ N and d(4) =2}

S, ={A'| A€ N and d.(A) = n} for n € N\ {0,2}
Fo={S}U{B|Be N}
Fn={Ap|A,D e N and ds(A) =n} for n € N\ {0}

Defining the set of productions in I', we first let
(s) S—SeP.

For each terminating A — 6 € R for some A € N and 6 € (T*)%(4),
we have dg(A) =1 and 6 € Te, because of (iv).

If 0 # € we let
(t.1) B — Ap(#) € P for each B € N, and
(t.2) A — A'(9) € P.

If 0 = € we let
(t.1) B — Ag(A) € P for cach B € N, and
(t.2) A— A'(A) € P.

For each nonterminating A — f(B) € R for some A, B € N and

f € F7 we have f : <x17"'7ajdc(3)> = <xdG(B)‘r17x27"'7xdG(B)—1>a
because of (iii).
We let
(iil.].) BD(:cl, . amdc(B)) — AD(.(xdg(B); xl), o, ... ,xdG(B)_l) eP
for each D € N, and
(iii'z) BA(xh cee 7IdG(B)) - A/(.(xdG(B)7x1)7x27 s 7IdG(B)—1) S

For each nonterminating A — f(B,C) € R for some A, B,C € N
and f € F, because of (i) and (ii), we either have (i’) or (ii’).
(@) fAAWaeB) (1, Tag0))) = Yde(B) T1s -+ Tag(C))
(i1’) f: {(Wae(B))» (T1, T2, Tag())) = (Yda(B)T1, T2, - - 5 Tdg(C))
If ("), we let
(i.1) Cp(zq,..., xdc;(C)) — Ap(B,x1,22,. .. ,.’L‘dG(C)) epP
for each D € N, and
(1.2) Ca(zy,...,245(0)) = A (B,21,%2,...,245(c)) € P.
If (ii”), we let
(ii.1) Cp(x1,...,2q5(c)) — Ap(e(B,21),22,...,245(0)) € P
for each D € N, and
(ii.2) CA(:cl, R ,:Cdc(c)) — A/(O(B,xl),xg, R ,:Cdc(c)) e P.
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We will not provide a strictly formal proof, but briefly emphasize, why I"
does its job as desired: the way in which I" simulates G crucially depends
on the possibility to rewrite blindly a nonterminal B € N by starting
with rewriting B as any A € N for which there is a terminating rule in
R available, cf. (t.1). In terms of T', this A gets indexed by B storing
the necessity that A has to be successively developed inside-out, finally
creating a tree rooted in B. That is to say, in some later derivation
step the blind rewriting of B simulated by I' must get legitimated by
an application of a rule of the sort (i.2), (ii.2) or (iii.2), in order to create
a convergent derivation. This sort of simple information inheritance is
possible because of the fact that the complex productions in G, those
which are of rank 2, are still “simple enough,” i.e., the contribution of at
least one of the nonterminals on the righthand side consists in a simple
string of terminals.

Proposition 33 FEach LCFRL; 5 is, up to a homomorphism, the
string language derivable by some linear CFTG in 10-mode. O

An indezed language (IL) is the string language derived by an indezed
grammar (IG) in the sense of Aho 1968.

Corollary 34 FEach LCFRLy> is an IL.

Proof. By Proposition 33, because for linear CFTGs, I0- and OI-mode
derive identical (string) languages (cf. Kepser and Moénnich forthcom-
ing). Furthermore the class of string languages derived by CFTGs in OI-
mode is included in the class of ILs (Fischer 1968, Rounds 1970a,b),'2
and the class of ILs is closed under homomorphisms (Aho 1968). O

Proposition 35 The class of LCFRL; o5 is properly included in the
class of LCFRLs.

Proof. By Corollary 34, because the LCFRL from our example above,

L(Gex), is known not to be an IL (Staudacher 1993). O
Corollary 36 The class of languages derivable by MG*°"'°s is prop-
erly included in the class of languages derivable by MGs. g

10.5 Summary

We have shown that—in terms of derivable string languages—the type
of a minimalist grammar (MG) as originally introduced in Stabler 1997
defines a proper superclass of the revised type of an MG and, there-
fore, the type of a strict MG both introduced in Stabler 1999, and
known to be weakly equivalent. In order to achieve the result we have

12Note that, vice versa, for each IL L, L\ {€} is the string language derived by
some CFTG in OI-mode (cf. Fischer 1968, Rounds 1970a,b).
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CFTG-OI-string languages

(modulo a homomorphism)

g N

/
CFTG-IO-stiing languages

(modulo a homomorphism)

LCFRLs //

FIGURE 1: Proving the proper inclusion of LCFRL; 2s within LCFRLs.

-— L(G,)

proven that the class of (string based) linear context-free rewriting lan-
guages (LCFRLs) properly subsumes a particular subclass of LCFRLs,
referred to as the class of LCFRL; »s. This was motivated by the fact
that LCFRLs and LCFRL; »s coincide with the two classes of deriv-
able string languages defined by the original and the revised MG-type,
respectively.

The most crucial part of our proof consists in showing that every
LCFRL; > is, modulo a homomorphism, the string language derivable
in inside-out (I0) mode by a linear context-free tree grammar (CFTG).
For linear CFTGs it holds that the class of languages derivable in 10-
mode is not distinguishable from the class of languages derivable in
outside-in (OI) mode; and the class of string languages generally deriv-
able by CFTGs in OI-mode is known to be subsumed by the class of
languages derivable by indexed grammars (IGs). Since the latter class
of languages is closed under homomorphisms, the intended result finally
followed from presenting an LCFRL known not to be derivable by an
IG, namely, the language L(Gex) (cf. Figure 1).
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Modular Grammar Design with
Typed Parametric Principles

RALPH DEBUSMANN, DENYS DUCHIER AND ANDREAS
ROSSBERG

Abstract
This paper introduces a type system for Extensible Dependency Grammar
(xpG) (Debusmann et al., 2004), a new, modular grammar formalism based
on dependency grammar. As XDG is based on graph description, our emphasis
is on capturing the notion of multigraph, a tuple of arbitrary many graphs
sharing the same set of nodes. An XDG grammar consists of the stipulation
of an extensible set of parametric principles, which yields a modular and

compositional approach to grammar design.

Keywords GRAMMAR FORMALISMS, DEPENDENCY GRAMMAR, TYPE
SYSTEMS

11.1 Introduction

Eztensible Dependency Grammar (XDG) (Debusmann et al., 2004) is a
general framework for dependency grammar, with multiple levels of lin-
guistic representations called dimensions. Its approach, motivated by
the dependency grammar paradigm (Tesniére, 1959, Mel’¢uk, 1988),
is articulated around a description language for multi-dimensional at-
tributed labeled graphs. XDG is a generalization of Topological Depen-
dency Grammar (TDG) (Duchier and Debusmann, 2001).

For XDG, a grammar is a constraint that describes the valid linguistic
signs as n-dimensional attributed labeled graphs, i.e. n-tuples of graphs
sharing the same set of attributed nodes, but having different sets of
labeled edges. It is central to XDG that all aspects of these signs are

FG-MoL 2005.
James Rogers (ed.).
Copyright © 2009, CSLI Publications.
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stipulated explicitly by principles: the class of models for each dimen-
sion, additional properties that they must satisfy, how one dimension
must relate to another, and even lexicalization.

Yet, no formal account set in the XDG framework has so far explained
what exactly these principles are, nor how they can be brought to bear
on specific dimensions. In this paper, we show how an XDG grammar
can be formally assembled from modular components called parametric
principles. This yields a modular and compositional approach to gram-
mar design. Compositional coherence is ensured by a type system whose
primary novelty is to accommodate the notion of multi-dimensional
graphs. Instantiation of parametric principles not only imposes gram-
matical constraints, but, through the type system, also determines the
necessary structure of grammatical signs. In this perspective, a gram-
mar framework is simply a library of parametric principles such as
the one offered by the XDG Development Kit (XDK) (Debusmann and
Duchier, 2004). The XDK is a freely available development environment
for XDG grammars including a concurrent constraint parser written in
the Mozart/Oz programming language (Mozart Consortium, 2005).

11.2 Extensible Dependency Grammar

We briefly illustrate the XDG approach with an example of the German
subordinate sentence “(dass) einen Mann Maria zu lieben versucht”.!
Figure 1 shows an analysis with two dimensions: ID models grammat-
ical function and LP word-order using topological fields (Duchier and
Debusmann, 2001, Gerdes and Kahane, 2001)

subl ﬁ{‘

o P o—c %770
& ST : & : N v
o : L : o“ n o v :
. . . . . . d . . p . .
eifen  Mann Maria zu lieben versucht eren  Mann Maria Zu lieben versucht
a(acc) man Maria to love tries a(acc) man Maria to love tries

FIGURE 1: Example XDG analysis, ID left, LP right

Both dimensions share the same set of nodes (circles) but have dif-
ferent edges. On ID, Maria is subject (subj) of control verb versucht,
and Mann object (obj) of lieben. On LP, Mann and Maria are both in
the Mittelfeld (mf) of versucht, i.e. Mann has climbed to the finite verb.

L(that) Mary tries to love a man — see (Duchier and Debusmann, 2001)
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The instance of XDG demonstrated above covers only syntax. How-
ever, XDG instances can use arbitrary many dimensions of representa-
tion, e.g. e.g. including semantics (including predicate-argument struc-
ture and scope relationships) (Debusmann et al., 2004), prosody and
information structure (Debusmann et al., 2005).

In fact, XDG per se is not a grammar formalism but only a general
graph description language for multi-dimensional attributed labeled
graphs. In order to be used as a grammar formalism, it first needs
to be instantiated using appropriate principles (see below). In this re-
spect, it is similar to Head-driven Phrase Structure Grammar (HPSG)
(Pollard and Sag, 1994), which per se is only a description language for
typed feature structures (Carpenter, 1992), and becomes a grammar
formalism only when it is instantiated, using appropriate types for the
feature structures and the principles for e.g. head feature percolation
and subcategorization.

In particular, XDG is more general than other dependency-based
grammar formalisms like Meaning Text Theory (MTT) (Mel'¢uk,
1988), Functional Generative Description (FGD) (Sgall et al., 1986),
Word Grammar (WG) (Hudson, 1990) and Free Order Dependency
Grammar (FODG) (Holan et al., 2000) since it can accommodate ar-
bitrary many dimensions of representation and arbitrary principles to
stipulate the well-formedness conditions. For instance, the dimensions
of XDG need not be trees but can also be directed acyclic graphs (dags),
e.g. to handle re-entrancies for the modeling of control constructions
or relative clauses. In addition, the dimensions can be totally agnostic
to word order. In our example above, the ID dimension did not state
any word order requirements, only the LP dimension did.

11.3 Type System

Formalization. Let V be an infinite set of node variables, £ a finite
set of labels, and A a set of attributes. An attributed labeled graph
(V,E, A) consists of a finite set of nodes V' C V), a finite set of la-
beled directed edges F C V x V x L between them, and an assignment
AV — A of attributes to nodes. An n-dimensional attributed la-
beled graph ((V, E1, A1), ...,(V, En, Ay)), or multigraph, is a n-tuple of
labeled attributed graphs (V, E;, A;) over the same set of nodes V.

To provide a typed account of the XDG framework, we need a sat-
isfactory type for graphs. A first idea is ({V},{V xV x L},V — A),
where we write {7} for set of 7, but such a type is very imprecise:
it fails to express that the nodes used in the edges (2nd arg) are ele-
ments of the graph’s set of nodes (1st arg). Since additionally element
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graphs of a multigraph must be defined over the same set of nodes,
some form of dependent typing (Aspinall and Hofmann, 2005) appears
inescapable. Given that general systems of dependent types tend to
make type-checking undecidable, we sketch instead a stratified system,
using a specialised notion of kinds (Pierce, 2002), that is sufficient for
our purpose.

11.3.1 Type structure

We assume given a number of disjoint sets of symbols D; called finite
domain kinds. Among them, two are distinguished: Nodes and Labels.
Much of our type and kinding systems are quite standard. For reasons
of space, we only detail the parts which are original to our proposal,
and write 7 :: k and e : 7 for the judgments that type 7 has kind x and
expression e has type 7, omitting kinding and typing contexts.

K= % top D;,Cx G,Cx M,LC*
| D domain
| Geyleoelen graph Tk KOCK
| Mc,|-.-je,, multigraph Tk
FIGURE 2: Kinds and subkinds

T, T = cq] ek domain | [fi:7T1,.-.-,fn:Tn] record
| {7} set | graph 7 72 73 graph
| (71,...,7n) tuple | [fi:71,...,fn:7n] multigraph
| 71—m function | grammar T grammar
| 7 singleton |

FIGURE 3: Types

Finite domain sum types. They are built from symbols drawn from
finite domain kinds: we write ¢1]| - - - |¢x for a finite domain sum type in
kind D; and ep, for its empty sum. Here are their kinding (left) and
typing (right) rules:
C1,...,ck symbols in D; c1) ek Dy
c1] ek i Dy ci:erlo ek

Kinds G,|...|c, and M, ..., indexed by finite domain sums make it
possible to have types that depend on specific subsets of Nodes or Labels
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without requiring more general term-dependent types.

Singleton types. If c¢1]|---|ck :: Nodes is the type of nodes of a
graph, then {c1|---|cx} is the type of a set of these nodes. This is
not sufficiently precise to type the set of nodes of the graph because it
doesn’t express that the latter is a maximal set. To achieve this aim,
we introduce a novel, specialised variation of singleton types (Aspinall,
1995, Stone and Harper, 2005). Unlike standard singleton types, our
form does not refer to values, hence we avoid the need for dependent
types. We write !(cq| - |ci) for the type inhabited by the single value
{c1,...,ci}. Here are the relevant kinding, typing, and subtyping rules:

T:D; Wea| -+ lek) =%
IT % {c1,..yer}: e |er)
Graph types. A graph is defined from finite domain types v and ¢
for its nodes and labels, and a type a for its attributes. We write G,
for the kind of a graph over node type v. Kinding and typing rules are:
v::Nodes £:: Labels a::x Vilv E:{(v,v,0)} A:v—a
graphv £ a:: G, Graph V E A :graphv l a
The typing rule requires the node set to be assigned a singleton type,
capturing the precise set of nodes in the type v. Typing thus precludes
the set of edges mentioning invalid nodes. Note also that the syntax of
graph kinds in Figure 3 requires v to be a concrete domain type.

IrC{r}

Multigraph types. A multigraph is a record of graphs over the same
finite domain v of nodes. We write M,, for its kind. Here are the kinding
and typing rules:

g1 Gy . gn = Gy
[[fl :glv~~~7fn:gn]] =M,

Gi:91:G, ... Gp:gn:Gy,
[fi=G1,....fu=Gu]:[fiig1,.. .  fuign] = My
Grammars. An XDG grammar is a set of predicates over the same

multigraph type:
T M, M, S:{r— prop}
grammar 7 :: x Grammar S : grammar 7

Note that, in order to match our intuitions about grammars, the gram-
mar type should be polymorphic in the finite domain type for nodes,
otherwise the number of nodes is fixed. This can be achieved by ex-
tending the kinding system to admit kind schemes Gs and Ms where &
is a domain variable. An XDG framework is a set, also called a library,
of principle templates.
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11.4 Typed Templates

Attributes are usually given in the form of attribute/value matrices
and principles parametrized by values which can be found at specific
feature paths. For example, on the syntactic dimension (V, E},, A;p) the
agreement tuple assigned to each word must be one of those licensed
by its lexical entry:?

Agr [id=Graph V Ep Ap] = Yo eV : Ap(v).agr € Ap(v).lex.agrs

We can generalize this into a reusable principle by abstracting over
feature paths using access functions:

Elem D Fy F;, M = let Graph V E A= D(M)
inVoeV:F(A)) € F(A(v))

but this is not very legible and, for notational convenience, we explore
here an alternative that we call templates:

Elem(d,p1,p2) [d=Graph V E A] = Yo eV :A().p1 € A(v).ps

where d, p1,ps are feature path variables. A feature path is a (possibly
empty) sequence of features. We write 7 for a path, € for the empty
path, and 77y for the concatenation of w1 and 7. It is possible to
generalize the language by allowing feature paths or feature path vari-
ables in types and patterns (and by extension in record ‘dot’ access)
where previously only features were allowed. The intuition of such an
extension lies in the congruence [e: 7] = 7, [myma : 7] = [m1 : [m2 = 7]],
and in the interpretation of a dot access .7 as a postfix function of type
[r:7] — 7.

Note that, if we write graph v ¢ a for the type of Elem’s argument
graph, it is our intention that type inference should require a to match
the pattern [py : 7, p2 : {7},...]. This can be achieved either with a
type system supporting record polymorphism or by adopting an open-
world semantics® for records and multigraphs, a la ¥-terms of LIFE. For
simplicity, in this article we choose the latter.

We write (p1,p2) ~ 7 for the type of a template abstracting over
feature path variables p; and po; t may contain occurrences of p; and
p2. We write 71 2 K1,...,Ty @ Kn = T to express kinding constraints
on the free type variables of 7. The type of Elem is then:

Elem : (d, p1,p2) ~> v :: Nodes, ¢ :: Labels, 7 :: x =
[d: graph v £ [py : 7, p2 : {T}]] — prop

2We adopt a pattern matching notation with obvious meaning
3no closed arities
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11.5 Parametric Principles
We now illustrate how typed templates are intended to be used to define
parametric principles.* We write ’UL)E v’ for an edge (v,v’,l) € E,
v— v for one with any label, v —>]J§ v’ for the transitive closure, and
v—p D for the type-raised relation where D = {v' | Vo — 5 v'}, etc. ..
Tree Principle. It stipulates the set L of edge labels and requires
that 1) each node has at most one incoming edge, 2) there is precisely
one node with no incoming edge (one root), and 3) there are no cycles:
Tree(d) L [d = Graph V E A] =

YoeV « YMCV:M—-gpv=|M<1 A

eV : VMCV:M—-gv=|M=0 A

YweV : ¥VDCV:v—fD=v¢D
Here is the type constraint assigning singleton type !/ to L:

Tree : (d) ~ v :: Nodes, ¢ :: Labels = ¢ — [d : graph v ¢ ] — prop

Valency Principle. Incoming and outgoing edges must comply with
the in and out valencies which stipulate, for each label ¢ € L, how
many edges labeled with ¢ are licensed:

Valency(d, pin, pout) L [d = Graph V E A] =
YWweVWel : YMCV:M-5, v=|M €AW pnl A
YWweVWeL : YDCV:v—5,D= |D| € A@).pouw.l
Writing N for the type of natural numbers, here is the type constraint:

Valency : (d, pin, Pout) ~ v :: Nodes, ¢ :: Labels =
0 — [d : graph v £ [pin : £ — {N}, pour : £ — {N}]] — prop

Climbing Principle. Originating from TDG, this principle expresses
that the tree-shape on dimension d; is a flattening of that of ds: 1) the
dominance relation on d; must be a subset of that on dg, 2) on dy, each
node must land on its ds-mother or climb higher:
Chmblng<d1,d2>[[d1 = Graph 14 E1 Al,dg = Graph |4 E2 Ag]] =
YweV : VD, Dy CV:v—f Di ANv—j Dy= Dy CDy A
VUL, Uy CV iUy —f v AUy =5 —p,v=U1 CU;

Climbing : (dy,ds2) ~» v :: Nodes =
[dy:graphv  ,dy:graphv ] — prop

4For lack of space, we present only a few principles. For further information, the
reader is referred to e.g. (Debusmann et al., 2004, Debusmann and Duchier, 2004).
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Lexicon Principle. XDG grammars are typically lexicalized: the
record assignments to nodes are then partially determined by a lexicon
Lez. The lexicon principle stipulates that each node must be assigned
a lexical entry:

Lexicon(d) Lez [d = Graph V E A =Vv € V : A(v) € Lex

Here is the corresponding type constraint, stipulating that the graph
on dimension d has no edges (since this dimension has only the purpose
to carry the lexical entries):

Lexicon : (d) ~ v :: Nodes, T :: x =
{7} — [d : graph v €Labeis 7] — prop

Lookup Principle. A lexical entry is normally a record having a fea-
ture for each dimension. The lookup principle looks up a lexical entry’s
subrecord for a particular dimension and equates it with the pe, feature
of the node’s attributes:
Lookup{dl,dg,p|ex> [[dl = Graph 14 E1 Al,dg = Graph Vv E2 Agﬂ =
YoeV : A1(v).piex = A2(v).dy

Lookup : (d1,dz2, plex) ~> v :: Nodes, 7 :: % =
[dy : graph v [piex : 7], d2 : graph v _ [d; : 7]] — prop

11.6 Example ID/LP Grammar

We now describe how the grammar of (Duchier and Debusmann, 2001)
can be assembled in our typed framework of parametric principles. To
better illustrate the compositionality of our approach, we adopt an
incremental presentation that derives more complex grammars from
simpler ones through operations of composition and restriction:

(Grammar S1) ++ (Grammar Sz) = Grammar (S1 U Ss)
(Grammar S1) // S2 = Grammar (51 U S3)
The grammar requires 3 dimensions: ID for syntax, LP for topology, and

LEX for parametrization by a lexicon. They are respectively character-
ized by the following sets of labels:

L, = {det,subj,obj,vbse,vprt,vinf,prt}
L, = {d,df,n,mf vcf,p, pf, v, vxf}
LLEX - (Z)

Figure 4 shows how grammars for the 3 individual dimensions (Gp,
G, Gipx) are stipulated by instantiation of principles. For example,
for G,p, instantiation of Tree(id) L, has three consequences: (1) signs
are required to match [id = X]J, i.e. to have an id dimension, (2) the
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directed graph on that dimension must have labels in L, (3) this
graph must be a tree. Gip1ex is a grammar where the ID dimension is
restricted by lexical constraints from the LEX dimension: it is obtained
by combining G, and Gpgx using the composition operator 4++, and
connecting them by the Lookup(id, lex) principle using the restriction
operator //. Similarly for Gypippx. Finally the full grammar Gy, Jup 18
obtained by combining Gp4ex and Gp4ex and mutually constraining
them by the Climbing and Barriers principles.

Grex = Grammar {Lexicon(lex) Lex}

G = Grammar {Tree(id) L5, Valency(id,in,out) L5}
Giotiex = (Gip +H Giex) // {Lookup(id, lex, lex) }

Gyrp = Grammar {Tree(lp) L.p, Valency(lp,in,out) L,

Order(lp, on, order, pos, self),
Projectivity(Ip, pos) }
Gipiex = (Grp + Grix) // {Lookup(lp, lex, lex)}
GID/LP = (GID+LEX ++ GLP+LEX) //
{Climbing(lp, id), Barriers(lp, id, blocks) }

FIGURE 4: Defining grammars in an incremental and compositional way

11.7 Conclusion

In this paper, we have made a threefold contribution: (1) we described a
novel system of restricted dependent types capable of precisely describ-
ing graphs and multi-dimensional graphs, (2) we introduced a notion
of typed templates with which we could express parametric principles,
(3) we showed how these could enable a modular and compositional
approach to grammar design. Finally we illustrated our proposal with
an example reconstruction of an earlier grammar.
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What feature co-occurrence
restrictions have to do with type

signatures
WIEBKE PETERSEN AND JAMES KILBURY T

Abstract

Computational linguistics of the last quarter century has seen the devel-
opment of a hierarchical and lexicalist treatment of linguistic information.
In the course of this development, formal constraints which were stated in
GPSG in terms of feature co-occurrence restrictions came to be formulated
within HPSG in terms of type hierarchies, but the relations between these de-
scriptive devices has received little attention. Formal Concept Analysis now
provides a framework within which these relations can be made explicit.

Keywords GPSG, HPSG, FEATURE CO-OCCURRENCE RESTRIC-

TION, TYPE SIGNATURE, FORMAL CONCEPT ANALYSIS

12.1 Introduction

A rapid and remarkable development took place within computa-
tional linguistics in the years immediately following the introduction of
unification-based models of language, in particular Lezical Functional
Grammar (LFG) and Generalized Phrase Structure Grammar (GPSG),
which employ feature structures to represent linguistic information. By
the end of the 1980s a consensus had emerged, according to which the
lexicon, which pairs word forms with feature structures, constitutes the

TWe wish to thank two anonymous reviewers for their comments on an earlier
version of this paper. The work was carried out in the project “Modelling Sub-
regularity in the Lexicon” (University of Diisseldorf, Sonderforschungsbereich 282
“Theory of the Lexicon”, funded by the Deutsche Forschungsgesellschaft).
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main repository of information in a language. Furthermore, hierarchical
structuring had come to be viewed as an essential aspect or perhaps
even the most salient characteristic of the lexicon.

GPSG, as conceived in Gazdar and Pullum (1982) and even in Gaz-
dar et al. (1985), still largely represents the older, dichotomous view of
grammar versus lexicon. Here major aspects of linguistic structure were
encoded in syntactic rules, many of which later came to be regarded
as stating the possible complement structures of verbs, i.e. lexical in-
formation. While the question “How is a classification imposed on the
content of the lexicon by the system of features” is raised (Gazdar et al.,
1985, p. 13), the answer of GPSG does not explicitly model the hier-
archical inheritance relations inherent in lexical classifications. Rather,
these relations are captured in logical constraints on feature structures
in the form of feature co-occurrence restrictions (FCRs) and feature
specification defaults (FSDs), the latter of which are nonmonotonic.

GPSG uses FCRs to restrict the distribution of features and their
values. A pair consisting of a feature and a feature value is called
a feature specification. Whereas GPSG features are atomic symbols,
feature values are either atomic symbols or categories,' i.e., sets of
feature specifications (Gazdar et al., 1985, p. 22). FCRs are part of
a grammatical theory and restrict the set of possible categories and
their extensions in the theory. A typical FCR is [+INV] D [+AUX,
FIN] (Gazdar et al., 1985, p. 28), which is [<INV ,+>| D [<AUX,+>,
<VFORM,FIN >] when written out fully.? The condition stated here is
that in English the feature specification <INV +> implies <AUX,+>
and <VFORM,FIN>: if a verb occurs initially in a sentence contain-
ing a subject, then this verb must be a finite auxiliary.

From the start the lexicalist orientation was prominent in LFG
(cf. Bresnan 1982, therein Kaplan and Bresnan 1982) and reached a
peak in the radical lexicalism of Karttunen (1986), which uses the
framework of categorial grammar to shift the entirety of linguistic
description to the lexicon. The move toward the lexicalist view was
independent of hierarchical modelling, which emerged in other work.
In particular, Flickinger (1987) pioneered the explicit description of
relations between English verb classes in terms of inheritance hier-
archies. On a separate front, de Smedt (1984) initiated the use of
inheritance-based representation formalisms to capture the structure
of inflectional classes. Practical advantages of hierarchical lexica quickly

LCategories of GPSG correspond to the untyped feature structures of other
unification-based formalisms.

2The feature specification <INV,+> marks sentence-initial verbs, <AUX,+>
marks auxiliary verbs, and <VFORM,FIN> specifies that the verb is finite.
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became apparent and include the economic representation, integrity,
homogeneity, and updating of data. The grammar formalism PATR-II
(cf. Shieber et al., 1983) provides templates as an indispensable formal
device for stating inheritance relations in an inheritance hierarchy, the
consequences of which are clear to the authors:

But our notation does not only allow convenient abbreviations; it also
plays an important role in the linguist’s use of the formalism. |[...] per-
haps most importantly, grammar writers can use the notational tools
to express generalizations they could not state in the "pure" unification
notation of the formalism. (Shieber et al., 1983, p. 62)

Head-driven Phrase Structure Grammar (HPSG), as presented in
Pollard and Sag (1987), carries over much of GPSG but restructures
the model in terms of the hierarchical lexicalist framework and, in par-
ticular, encodes as lexical much of the information that GPSG repre-
sented with syntactic rules. The introduction of the sign as a uniform
data structure for the representation of both lexical and phrasal infor-
mation, together with the integration of all linguistic levels within the
sign, provides the last means needed in order to state all information
about a language within an inheritance hierarchy defining relations be-
tween signs. In contrast to the nonmonotonic inheritance hierarchies of
de Smedt, Flickinger, and others, which allow exceptions and defaults,
HPSG employs monotonic inheritance. The distinction will play no role
in the rest of this paper.

Crucially, HPSG adopts no obvious counterpart for the FCRs of
GPSG, although the conditional feature structures (Pollard and Sag,
1987, p. 43) of HPSG could have been employed for this purpose. In-
stead, the HPSG strategy for avoiding lexical redundancy lies in the use
of inheritance hierarchies: “Structuring the lexicon in terms of an inher-
itance hierarchy of types has made it possible to factor out information
common to many lexical entries, thereby greatly reducing lexical re-
dundancy” (Sag and Wasow, 1999, p. 202). The informational domain
consists of typed feature structures. The types serve two functions: On
the one hand they allow access to embedded feature structures appear-
ing as values of features; this permits the formulation of generalizations
about such substructures. On the other hand, the types bear appropri-
ateness conditions which restrict the set of feature structures of this
type; such statements are feature-type pairs. By ordering the types in
an inheritance hierarchy, the so-called type signature, in which appro-
priateness conditions are inherited, further redundancies are avoided.

It was clear to linguists that HPSG had replaced the FCRs of GPSG
with inheritance hierarchies of types, but the relations between these



126 / WIEBKE PETERSEN AND JAMES KILBURY

TABLE 1: Lexemes classified with respect to their feature specifications
in Gazdar et al. (1985)

nform:VAL

vform:fin
vform:pas
nform:norm
inv:VAL
pform:with
pform:VAL

nform:it

X X X
X X X X X X X X X X|v:VAL

aux:+
X X X X X X X X X X|n:VAL

n:+

X X X X X X|n:i—
X
inv:—

inv:+

X | vform:bse

sing
sings
sung
canl
can2
can3
child X X X
it X
little | x X
with X X

X
X X X|aux:—

X
X
X

X
X
X

X X X X X X|vform:VAL

X X X X X X|vi+
X X X X X X|aux:VAL

X X X X X X

X
X

formal devices were misunderstood and hardly questioned. Clearly, the
devices had to be related in some way, but no formal framework was
available within which the relations could be made explicit. Gerdemann
and King (1994, 1993) present a procedural method for transforming
a type signature so that it expresses an FCR. With Formal Concept
Analysis (FCA, cf. Ganter and Wille 1999) a general framework is now
available which allows the equivalence of the devices to be explained in
a transparent and declarative fashion, which we shall do after briefly
introducing the FCA framework itself.

12.2 Basics of Formal Concept Analysis

FCA is a mathematical theory designed for data analysis. FCA starts
with the definition of a formal context K as a triple (G, M, I) consist-
ing of a set of objects G, a set of attributes M, and a binary incidence
relation I C G x M between the two sets. Table 1 shows a formal
context in the form of a cross table.? FCA associates with each formal
context a lattice of formal concepts. A formal concept of a context is
a pair consisting of a set of objects, its extent, and a set of attributes,
its intent. The extent consists exactly of the objects in the context for
which all the attributes of the intent apply; the intent consists corre-
spondingly of all attributes of the context which the objects from the
extent have in common. In order to formally express the strong con-
nection between the extent and the intent of a formal concept given by
the binary relation I, two derivational operators are defined between

3The content of this formal context will be explained in Section 12.3.
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nform:norm

FIGURE 1: The concept lattice for the context of Table 1, which can be
regarded as a type signature

the set of objects G and the attribute set M of a formal context: If
A C G is a set of objects, then the set of the common attributes of A
is A/ :=={m € M|Vg € A:(g,m) € I}, and if, analogously, B C M is
a set of attributes, then the set of objects that have B in common is
B :={g€ G|VYm € B:(g,m) € I}. A formal concept is thus a pair
(A,B) C G x M with A = B’ and B = A’. Furthermore, the defini-
tion of the derivational operators guarantees that the set of all formal
concepts of a formal context (G, M, I) equals {(A”, A")|A C G} and
{(B'.B")| B C M}

The subconcept-superconcept relation on the set of all formal con-
cepts of a context defines a partial order:

(A1,B1) < (A2,B;) & A1 C Ay & By D By

This order relation corresponds to our intuitive notion of super- and
subconcepts. Superconcepts are more general, encompass more objects,
and are characterized by fewer attributes. The main theorem of FCA

4A detailed introduction to Formal Concept Analysis is given by Ganter and
Wille (1999).
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states that the set of all formal concepts of a formal context (G, M, I)
ordered with respect to the subconcept-superconcept relation consti-
tutes a complete lattice, which is called the formal concept lattice of
(G, M, I). Figure 1 shows the concept lattice corresponding to the for-
mal context in Table 1. Formal concept lattices visualize structural
connections between the data of a flat data table. Ganter and Wille
(1998) stress:

It is our belief that the potential of Formal Concept Analysis as a
branch of Applied Mathematics is just beginning to show. A typical
task that concept lattices are useful for is to unfold given data, mak-
ing their conceptual structure visible and accessible, in order to find
patterns, regularities, exceptions, etc.

The definition of concept lattices allows an especially economical
labelling of their Hasse diagrams (see Figure 1): instead of labelling
every concept with its complete extent and intent, only the object and
attribute concepts are labelled. The object concept of an object g is
the smallest concept whose extent includes g, i.e. (¢”,¢’). The attribute
concept of an attribute m is analogously the largest concept whose in-
tent includes m, i.e. (m/,m”). In this way a concept lattice becomes
an inheritance hierarchy. Any concept of the lattice inherits all objects
which are labelled with subconcepts as its extent, and it inherits all at-
tributes with which superconcepts are labelled as its intent. Inheritance
hierarchies based on concept lattices are completely nonredundant, i.e.,
each attribute and each object appears exactly once in the hierarchy.

Besides the tabular form (as a formal context) and the hierarchi-
cal form (as a formal concept lattice) FCA provides a third device,
namely attribute implications, to represent the mutual dependencies
of the data to be analyzed. An attribute implication of a formal con-
text is an implication of the form p — v, where p and v are subsets
of the attribute set (u is called the premise and v the conclusion of
the implication). An attribute implication pu — v is valid in a context
if and only if every object which has all attributes in p also has all
attributes in v; this is equivalent to the condition v C u”. The implica-
tions can be read off directly from the concept lattice: An implication
m1 Amg A ... AN mj — m holds exactly when the greatest lower bound
of the attribute concepts of mq,...,m; is a subconcept of the attribute
concept of m. A set Z of attribute implications of a context K which
is complete® and non-redundant® is called an implication basis of the
context. Since for every implication basis of a formal context the union

5Every valid attribute implication of K can be derived from the members of Z.
6No real subset of 7 forms a complete set of attribute implications of K.
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TABLE 2: Basis of attribute implications of the formal context in Table
1

0 — {v:VAL,n:VAL} (12.27)
{vi—,n:-} < {pform:VAL} (12.28)
{v:—,n:—} < {pform: with} (12.29)
{v:—n:+} < {nform:VAL} (12.30)
{v:i+,n: -} < {vform:VAL} (12.31)
{v:+,n: -} < {aux:VAL} (12.32)
{v:4+,n: -} < {inv:VAL} (12.33)

{inv:+} — {vform:fin,aux: +} (12.34)
{aux: -} — {inv:-} (12.35)
{vform : pas} — {aux:-—} (12.36)
{vform : bse} — {inv:-—} (12.37)
{nform : it} — {nform:VAL} (12.38)
{nform : nor} — {nform:VAL} (12.39)
{inv: -} — {inv:VAL} (12.40)
{aux:+} — {aux:VAL} (12.41)
{vform : fin} — {vform:VAL} (12.42)
{n:4+n:-} — L (12.43)
{vi+,v:=} — 1L

{vform : bse, vform : pas} — L

of every premise and the maximal corresponding conclusion forms an
intent of one of the concepts of the context, the structure of the con-
cept lattice is determined by the set of valid attribute implications up
to isomorphism. Table 2 shows a basis of attribute implications of the
context from Table 1.7 Some abbreviations have been used in the table:
A < B denotes the two implications A — B and B — A and L is the
(inconsistent) set of all attributes of the context of Table 1.

12.3 FCA relates FCRs and type signatures

The main idea for showing the convertability of FCRs and type signa-
tures is to construct a suitable formal context in order to employ the
methods of FCA. Figure 2 shows a lexical fragment consisting of 10 lex-

"Bases of formal contexts can be efficiently calculated with the help of the
program Conlmp (http://www.mathematik.tu-darmstadt.de/ags/agl/Software/
DOS-Programme/Welcome_de.html).
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v + v + v +
n - n: - n —

sing : [vform : bse sings : | vform : fin sung : | vform : pas
aux — aux — aux —
inv - inv — linv — ]
[v + [v: + ] [v + i
n - n: - n —

can : |vform : fin can : |vform : fin can : | vform : bse

aux + aux :  + aux +
inv + linv: — | Linv —
v — v — i

child: |n: 4+ it: |n: 4| little: |V T
nform : norm nform : it " +
v -

with : |n: —
pform : with

FIGURE 2: Lexical fragment classified with respect to some features of
Gazdar et al. (1985)

emes classified with respect to some of the features proposed in Gazdar
et al. (1985).8 The chosen features are exactly those which play a role
in the first 4 FCRs given in Gazdar et al. (1985); these FCRs regulate
the distribution of the features v, n, vform, nform, pform, inv, auzx, and
their values (see Table 3). The formal context in Table 1 is formed by
taking each feature-value pair as an independent attribute of the con-
text. GPSG also allows FCRs of the form [VFORM] D [+V, —N] (see
FCR 2), which encode not only restrictions on feature-value pairs but
also on the admissibility of certain features in the first place. Because
of this, further attributes of the form feature: VAL have been added in
Table 1, where such an attribute applies to a word if there is some
value wvalue such that feature:value is an feature specification of the
word. Feature structures with embedded structures can be represented
in a formal context by flattening them and viewing the path-value pairs
as attributes (cf. Sporleder, 2003, Petersen, 2004). We call such formal
contexts obtained from feature structures feature-structure contexts.
To illustrate the relationship between FCRs and type signatures we

8The feature yform distinguishes parts of the verb paradigm (bse, base-form;
fin, finite; pas, passive participle) and nform analogously distinguishes the special
expletive pronoun it from normal nouns (norm).
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TABLE 3: The first 4 FCRs from Gazdar et al. (1985)

FCR 1: [+INV] > [+AUX, FIN]
FCR 2 : [VFORM] ) [+V,—N]
FCR 3 : [NFORM] > [—V,+N]
FCR 4 : [PFORM] > [—V,—N]

will proceed as follows: First we show how a type signature can be
derived from a feature structure context, and then we do the same for
a system of FCRs. Finally, we demonstrate how a feature structure
context can be constructed from either a type signature or a set of
FCRs.

Figure 1 shows the concept lattice for the context in Table 1, which
can be directly interpreted as a type signature of HPSG if| first, a unique
type is assigned to each node of the lattice? and if, second, an addi-
tional type VAL with subtypes +, —, it, norm, with, fin, bse, and pas is
added.'® The feature labels then encode the appropriateness conditions
associated with each type, and the subconcept relation corresponds to
the subtype relation in the type signature. If one reads the hierarchy
in Figure 1 as a type signature one sees that it makes extensive use of
multiple inheritance. Due to the definition of formal concepts, however,
it can never be the case that a type inherits incompatible information
from its upper neighbors.!!

As noted before, type signatures fulfill two tasks: they avoid redun-
dancies by structuring the information in an inheritance hierarchy and
they restrict the set of permissible feature structures. As Gerdemann
and King (1993, 1994) note, feature structures must be well-typed and
sort-resolved in order to be total models of linguistic objects and fur-
thermore, type systems must be closed-world systems. In order to show
that our type signature successfully restricts the set of permissible fea-
ture structures, we have to demonstrate that, on the one hand, no in-
admissible structure will be sort-resolved and well-typed with respect
to the type signature and, on the other hand, every permissible struc-

9The lowest node is assigned the type L for bottom and the highest gets T for
top. The type L expresses contradiction and ensures that unification never fails.

10Normally, one would add extra types boolean, vform, pform, and nform between
VAL and its subtypes in order to explicitly state the value ranges of the attributes.
For further details on the automatic construction of type signatures from formal
concept lattices see Petersen (2004).

11 The principle of unique feature introduction is never violated because, by adding
attributes of the form attribute: VAL to the formal context, the features are intro-
duced on their own, unique attribute concepts.
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ture is well-typed and sort-resolved. The former follows from the fact
that the minimal concept of a concept lattice derived from a feature-
structure context never represents an object of the context, since the
values of an attribute mutually exclude each other; hence, the extent
of the minimal concept of such a context is always empty. It follows
that every atom (i.e. direct upper neighbor of the minimal concept) is
an object concept and thus represents a permissible feature structure.
The latter follows from the fact that all object concepts of the linguistic
objects of Table 1 are atoms of the lattice. This property is not a neces-
sary consequence of using a feature-structure context; it rather follows
from the principle of choosing sort-resolved feature structures as total
models of linguistic objects. This principle would be violated, e.g., if
the example data were classified by attributes like non-auziliary verb,
auzxiliary verb, and inverted auziliary verb. In that case, the inverted
auxiliary verb canl would belong to a subclass of the class of non-
inverted auxiliary verbs like can2. By introducing the Boolean-valued
attribute inv, the property of being non-inverted is marked explicitly
and each linguistic object is described by an atom of the concept lattice.

The hierarchy in Figure 1 encodes so much information about the
distribution of atomic values that it suffices to pair phonological forms
with types in the lexicon in order to obtain adequate feature structures.
For realistic lexica such a procedure leads to enormous type signatures
since every lexical feature structure must have its own type.'? Moreover,
it conflicts with the idea of types when they, e.g. in the case of with,
cover only a single object. On this issue Pollard and Sag (1987, p. 192)
state:

[--.] lexical information is organized on the basis of relatively few —
perhaps several dozen — word types arranged in cross-cutting hierar-
chies which serve to classify all words on the basis of shared syntactic,
semantic, and morphological properties. By factoring out information
about words which can be predicted from their membership in types
(whose properties can be stated in a single place once and for all),
the amount of idiosyncratic information that needs to be stipulated in
individual lexical signs is dramatically reduced.

Having constructed type signatures from formal concept lattices, we
will now show how to derive FCRs from a feature-structure context as
given in Table 1. The FCRs of GPSG are nothing other than implica-
tions that are compatible with the data of Table 1. In order to restrict
the set of admissible categories sufficiently, the FCRs must reflect the
mutual dependencies between the data of the context. Hence, the data

12Petersen (2004) presents a folding strategy to reduce the number of types.
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of the context must respect the FCRs and the object concepts of the
context must be derivable from the FCRs. The latter ensures that the
FCRs license no feature structure with features which do not co-occur
in the input structures.

From what we have seen in Section 12.2 it is obvious that the set of
attribute implications from Table 2 is already an adequate set of FCRs
for the input structures of Figure 2 if one interprets L as contradiction.
In order to explain why our automatically derived set of implications
contains so many more elements than the four given by Gazdar et al.
(1985), we will compare the two sets:

It is apparent that all four FCRs from Table 3 can be derived from
the attribute implications in the implication basis of Table 2: FCR 1
corresponds to implication 12.34; FCR 2 is contained in equivalence
12.31, FCR 3 in equivalence 12.30, and FCR 4 in equivalence 12.28.

However, Table 2 includes further implications, some of which bear
no real information in the sense of GPSG since they either result from
the sparse input data (cf. equivalence 12.29), from the special role of the
feature value VAL (cf. implications 12.38-12.42), or from the fact that
no knowledge about the exclusivity of features is implemented in FCA
(cf. implication 12.43). Implication 12.35 follows from FCR 1 on the
condition that, first, whenever inv is specified then auz is also specified
and vice versa (equivalence 12.33) and, second, inv is restricted to the
values + and —; implication 12.37 follows analogously from FCR 1.

The implications 12.27, 12.32, and 12.33 are missing in the FCRs
and moreover, only one direction of the equivalences 12.28, 12.30, and
12.31 is stated in the FCRs. These implications regulate when cate-
gories necessarily must be specified with respect to certain features
without saying anything about the concrete feature values. A very sur-
prising gap in the list of FCRs is evident in implication 12.36, ac-
cording to which passive verbs are not auxiliaries. This fact cannot
be derived from the FCRs in Table 3. The GPSG grammar given
in Gazdar et al. (1985) thus allows the feature-specification bundle
{[PAS],[+AUX],[-INV]}, which encodes a non-inverted auxiliary in
passive. This demonstrates that the automatically extracted basis of
attribute implications is more explicit than the manually formulated
FCRs, which arise from linguistic intuition and miss statements which
probably were too obvious for the investigators. Hence, FCA can be
a powerful tool for tracking down gaps in intellectually constructed
theories.

The manually constructed FCRs of GPSG theories are not always as
easy to read off a basis of attribute implications as in the example. Each
attribute implication A — B encodes a cumulated Horn clause of the
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form AA— ABor A A— Lif B” equals the set of all attributes. But
FCRs are not necessarily cumulated Horn clauses: some of the FCRs in
Gazdar et al. (1985), p. 246, make use of negation and disjunction. The
following consideration shows that such FCRs are implicitly encoded
in the concept lattice of a feature-structure context, too. It is a well-
known fact from propositional logics that each theory can be generated
by conditionals, so called observational statements which use only dis-
junction and conjunction, but not negation. An FCR with a disjunctive
premise can be directly transformed into a set of Horn clauses:

aVb—c¢ & (a—=c)A(b—¢)

Hence, we can focus on the derivation of conditionals with disjunctive
conclusions from concept lattices.

Let (G, M, I) be a formal context. A theory of observational state-
ments over M is said to be complete if every conditional which is com-
patible with the data of the context is entailed by the theory; we call
such a theory a complete observational theory of the context. The in-
formation domain of such a complete observational theory, i.e. the set
of all maximal consistent subsets of M w.r.t. the theory, consists ex-
actly of the intents of the object concepts.'® These considerations open
a way to derive a complete observational theory and hence a complete
set of FCRs from a concept lattice:

Each formal concept (A4, B) of the lattice which is not an object
concept corresponds to an observational statement whose premise is
the conjunction of the elements of the intent B and whose conclusion
is the disjunction of the conjunctions of its subconcept intents minus
B. Adding the corresponding statement of a concept to the theory
amounts to removing the concept intent from the informational domain
of the theory. For example, the statement corresponding to the attribute
concept of nform:val is

n: VALAv:VALAvVv:—An:+ Anform: VAL
— nform : norm V nform : it, (12.44)
which can be simplified by Table 2 to
nform : VAL — nform : norm V nform : it.

This states that if an object bears the feature nform, then the latter
must be specified for the value norm or it. As a second example, we
look at the concept with the extent {can2,can3}: here the simplified

13The information domain of a complete Horn theory of a formal context, i.e. a
complete theory consisting only of Horn clauses, equals the set of the intents of the
formal concepts.
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corresponding observational statement is
aux : + Ainv : — — vform : fin V vform : bse.

Ganter and Krausse (1999) present an alternative procedure for sys-
tematically constructing a complete observational theory of a formal
context. Depending on the concrete task for which the complete theory
of a formal context is used, it often makes sense to restrict the the-
ory class by dispensing with the disjunctive or conjunctive operators
(Osswald and Petersen, 2002, 2003).

It remains to show how feature structure contexts can be derived
either from a type signature or from FCRs. Given a type signature, the
adequate feature structure context can be directly constructed from the
set of totally well-typed and sort-resolved feature structures. A detailed
description of the construction method (even for type signatures with
co-references) is given in Petersen (2004, 2005). Given a set of FCRs, the
corresponding formal context is equivalent to the information domain

of the FCRs (see Osswald and Petersen, 2003).

12.4 Conclusion

We have seen that FCA provides three different ways to display data:
in tabular form, as a hierarchy, and as a set of implications. None of
the three reduce the structure of the given data, and that is why it is
possible to switch from one representation to another without loosing
information. Hence, FCA is superior to many alternative approaches to
induction inasmuch as it is neutral with respect to the analyzed data
and describes them completely.'4 The relations between formal contexts
and the corresponding concept lattices is absolutely transparent since
there is exactly one of the latter for each context.

FCA allows us to capture the relationship between FCRs and type
signatures explicitly. The prerequisite for this is the construction of a
suitable feature-structure context.

It is remarkable that FCA has not yet been adopted as a standard
tool in linguistics. Until now only a few linguists are employing FCA
(for an overview see Priss, 2003); most of them explore the utility of
FCA in lexical semantics and wordnets (e.g. Janssen, 2002). Our work
shows that FCA can play an important methodological role for linguists
in that it helps them to discover generalizations missed with intuitive

4 Ganter and Wille (1998) on the disadvantages of FCA: “Nevertheless it may
be exponential in size, compared to the formal context. Complexity therefore is, of
course, a problem, even though there are efficient algorithms and advanced program
systems. A formal context of moderate size may have more concepts than one would
like to see individually.”
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procedures and because it facilitates a better understanding of the re-
lationships between different formal theories. We hope that FCA will
soon come to take on a more important role in linguistics.

References

Bresnan, Joan. 1982. The Mental Representation of Grammatical Relations.
Cambridge, MA: The MIT Press.

de Smedt, Koenraad. 1984. Using object-oriented knowledge representation
techniques in morphology and syntax programming. In Proceedings of the
European Conference on Artificial Intelligence 1984, pages 181-184.

Flickinger, Dan. 1987. Lexical Rules in the Hierarchical Lexicon. Ph.D. thesis,
Stanford University.

Ganter, Bernhard and R. Krausse. 1999. Pseudo models and propositional
horn inference. Tech. rep., MATH-AL-15-1999, Technische Universitét
Dresden, Germany.

Ganter, Bernhard and Rudolf Wille. 1998. Applied lattice theory: Formal
concept analysis. In G. Gratzer, ed., General Lattice Theory, pages 591—
605. Basel: Birkhduser Verlag.

Ganter, Bernhard and Rudolf Wille. 1999. Formal Concept Analysis. Math-
ematical Foundations. Berlin: Springer.

Gazdar, Gerald, Ewan Klein, Geoff Pullum, and Ivan Sag. 1985. Generalized
Phrase Structure Grammar. Oxford: Blackwell.

Gazdar, Gerald and Geoffrey K. Pullum. 1982. Generalized phrase structure
grammar: a theoretical synopsis. Bloomington, Indiana: Indiana University
Linguistics Club.

Gerdemann, Dale and Paul John King. 1993. Typed feature structures for
expressing and computationally implementing feature cooccurence restric-
tions. In Proceedings of 4. Fachtagung der Sektion Computerlinguistik der
Deutschen Gesellschaft fiir Sprachwissenschaft, pages 33—39.

Gerdemann, Dale and Paul John King. 1994. The Correct and Efficient Im-
plementation of Appropriateness Specifications for Typed Feature Struc-
tures. In Proceedings of the 15th Conference on Computational Linguistics
(COLING-94), pages 956-960. Kyoto, Japan.

Janssen, Maarten. 2002. SIMuLLDA — a Multilingual Lexical Database Ap-
plication using a Structural Interlingua. Ph.D. thesis, Universiteit Utrecht.

Kaplan, Ronald M. and Joan Bresnan. 1982. Introduction: grammars as
mental representations of language. In Bresnan (1982), pages xvii-lii.



REFERENCES / 137

Karttunen, Lauri. 1986. Radical lexicalism. Tech. Rep. CSLI-86-68, CSLI,
Stanford. Reprinted in M. Baltin and A. Koch, eds., Alternative Concep-
tions of Phrase Structure, pages 43—65. Chicago: CUP. 1989.

Osswald, Rainer and Wiebke Petersen. 2002. Induction of classifications
from linguistic data. In Proceedings of the ECAI-Workshop on Advances
in Formal Concept Analysis for Knowledge Discovery in Databases. Lyon.

Osswald, Rainer and Wiebke Petersen. 2003. A logical approach to data-
driven classification. Lecture Notes in Computer Science 2821:267—281.

Petersen, Wiebke. 2004. Automatic induction of type signatures. Unpub-
lished manuscript.

Petersen, Wiebke. 2005. Induktion von Vererbungshierarchien mit Mitteln
der formalen Begriffsanalyse. Ph.D. thesis, Heinrich-Heine-Universtitét
Diisseldorf. (in progress).

Pollard, Carl and Ivan A. Sag. 1987. Information-Based Syntax and Seman-
tics. Stanford, CA: CSLI Lecture Notes.

Priss, Uta. 2003. Linguistic applications of formal concept analysis. In Pro-
ceedings of ICFCA 2003. (to appear).

Sag, Ivan and Thomas A. Wasow. 1999. Syntactic Theory: A Formal Intro-
duction. Stanford, CA: CSLIL.

Shieber, Stuart, Hans Uszkoreit, Fernando Pereira, Jane Robinson, and
Mabry Tyson. 1983. The formalism and implementation of PATR-II. In
B. J. Grosz and M. Stickel, eds., Research on Interactive Acquisition and
Use of Knowledge, techreport 4, pages 39-79. Menlo Park, CA: SRI Inter-
national. Final report for SRI Project 1894.

Sporleder, Caroline. 2003. Discovering Lexical Generalisations. A Supervised
Machine Learning Approach to Inheritance Hierarchy Construction. Ph.D.
thesis, Institute for Communicationg and Collaborative Systems. School
of Informatics. University of Edinburgh.






13

Bias decreases in proportion to the

number of annotators
RON ARTSTEIN AND MASSIMO PoOEsIO |

Abstract
The effect of the individual biases of corpus annotators on the value of
reliability coefficients is inversely proportional to the number of annotators
(less one). As the number of annotators increases, the effect of their individ-
ual preferences becomes more similar to random noise. This suggests using
multiple annotators as a means to control individual biases.

Keywords CORPUS ANNOTATION, RELIABILITY, KAPPA

13.1 Introduction

One of the problems of creating an annotated corpus is inter-annotator
reliability—the extent to which different annotators “do the same thing”
when annotating the corpus. Among the factors that may affect reli-
ability is what we will call the individual annotator bias, informally
thought of as the differences between the individual preferences of the
various annotators. Methods to control bias include the development of
clear annotation schemes, detailed and explicit manuals, and extensive
training. Nevertheless, some individual differences in the interpretation
of such schemes and manuals will always remain. We suggest another
means to control for bias—increasing the number of annotators. We
give a proof that the effect of individual annotator bias on standard
measures of reliability decreases in proportion to the number of anno-
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tators (or, to be pedantic, in proportion to the number of annotators
less one).

In order to test inter-annotator reliability, two or more annotators
annotate the same text, and their annotations are compared using some
statistical measure. Since the publication of Carletta (1996) it has been
common in computational linguistics to use a family of related but
distinct agreement coefficients often subsumed under the name “kappa’.
Recently, Di Eugenio and Glass (2004) have pointed out that different
members of this family make different assumptions about, among other
things, individual annotator bias: some coefficients treat this bias as
noise in the data (e.g. 7, Scott, 1955), while others treat it as a genuine
source of disagreement (e.g. x, Cohen, 1960). Di Eugenio and Glass
demonstrate, using examples with two annotators, that the choice of
agreement coefficient can affect the reliability values.

In this paper we use the difference between the two classes of coef-
ficients in order to quantify individual annotator bias. We then show
that this measure decreases in proportion to the number of annotators.
Of course, multiple annotators may still vary in their individual pref-
erences. However, as the number of annotators grows, the effect of this
variation as a source of disagreement decreases, and it becomes more
similar to random noise.

While the results of this study are purely mathematical, they have
also been tested in the field: we conducted a study of the reliability
of coreference annotation using 18 subjects (the largest such study we
know of), and we found that the differences between biased and un-
biased agreement coefficients were orders of magnitude smaller than
any of the other variables that affected reliability values. This shows
that using many annotators is one way to overcome individual biases
in corpus annotation.

13.2 Agreement among two coders: pi and kappa

We start with a simple case, of two annotators who have to classify
a set of items into two categories. As a concrete example, we will call
our annotators Alice and Bill, call the categories “yes” and “no”, and
assume they classified ten items with the following results.

Alice: YYNYNYNNYY
Bill: YYNNYYYNYY

Since Alice and Bill agree on the classification of seven of the ten items,
we say that their observed agreement is 7/10 or 0.7. Generally, when
two annotators classify a set of items into any number of distinct and
mutually exclusive categories, their observed agreement is simply the
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proportion of items on whose classification they agree.

Observed agreement in itself is a poor measure of inter-annotator
reliability, because a certain amount of agreement is expected purely
by chance; this amount varies depending on the number of categories
and the distribution of items among categories. For this reason it is
customary to report an agreement coefficient in which the observed
agreement A, is discounted by the amount of agreement expected by
chance A.. Two such coefficients, suitable for judging agreement be-
tween just two annotators, are 7w (Scott, 1955) and x (Cohen, 1960);
both are calculated according to the following formula.

Ao B Ae
T AL
The difference between 7 and & is in the way the expected agreement
is calculated. Both coefficients define expected agreement as the prob-
ability that the two annotators will classify an arbitrary item into the
same category. But while 7 assumes that this probability is governed
by a single distribution, x assumes that each annotator has a separate
probability distribution.

Let’s see what this means in our toy example. According to m, we
calculate a single probability distribution by looking at the totality of
judgments: there are 13 “yes” judgments and 7 “no” judgments, so the
probability of a “yes” judgment is 0.65 while that of a “no” judgment
is 0.35; overall, the probability that the two annotators will classify
an arbitrary item into the same category is 0.652 4+ 0.352 = 0.545.
According to k, we calculate a separate probability distribution for each
coder: for Alice the probability of a “yes” judgment is 0.6 and that of a
“no” judgment is 0.4, while for Bill the probability of a “yes” judgment
is 0.7 and that of a “no” judgment is 0.3; the overall probability that the
two annotators will classify an arbitrary item into the same category is
0.6-0.7+0.4-0.3 = 0.54, slightly lower than the probability calculated
by m. This, in turn, makes the value of x slightly higher than .

_ 0.7 — 0.545 ~ 0.341 o 0.7 —-0.54
1—0.545 1-0.54

More generally, for m we use P(k), the overall probability of assigning
an item to category k, which is the total number of such assignments
by both coders ny, divided by the overall number of assignments, which
is twice the number of items i. For x we use P(k|c), the probability of
assigning an item to category k by coder ¢, which is the number of such
assignments n.; divided by the number of items i.

1 1
P(k) = % ng P(klec) = i N

s

~ 0.348
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According to 7, the probability that both coders assign an item to a
particular category k € K is P(k)?2, so the expected agreement is the
sum of P(k)? over all categories k € K. As for x, the probability that
the two coders c¢; and cq assign an item to a particular category k € K is
P(k|e1)P(k|c2), so the expected agreement is the sum of P(k|c1)P(k|ca)
over all categories k € K.

A=Y P(k)> AL =) P(kler)P(klcs)

keK keK

Since P(k) is the mean of P(k|c1) and P(k|cz) for each category k € K,
it follows that for any set of coding data, AT > Af, and consequently
m < k, with the limiting case obtaining when the distributions of the
two coders are identical.

13.3 Measuring the bias

Di Eugenio and Glass (2004) point out that 7 and & reflect two different
conceptualizations of the reliability problem (they refer to 7 and x by
the names ksgc and kco, respectively). For 7, differences between the
coders in the observed distributions of judgments are considered to be
noise in the data, whereas for k they reflect the relative biases of the
individual coders, which is one of the sources of disagreement (Cohen,
1960, 40-41). Here we will show how this difference can be quantified
and related to an independent measure—the variance of the individual
coders’ distributions.

We should note that a single coder’s bias cannot be measured in and
of itself—it can only be measured by comparing the coder’s distribution
of judgments to some other distribution. Our agreement coefficients do
not include reference to any source external to the coding data (such
as information about the distribution of categories in the real world),
and therefore we cannot measure the bias of an individual coder, but
only the bias of the coders with respect to each other.

We are aware of several proposals in the literature for measuring
individual coder bias. Zwick (1988) proposes a modified x? test (Stu-
art, 1955), and Byrt et al. (1993) define a “Bias Index” which is the
difference between the individual coders’ proportions for one category
label (this only applies when there are exactly two categories). Since
we are interested in the effect of individual coder bias on the agreement
coeflicients, we define B, the overall bias in a particular set of coding
data, as the difference between the expected agreement according to m
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and the expected agreement according to .

B=A7-AF = Y P(R)?— Y P(klen)P(kle)

keK keK

2
¥ <P<klc1>+P<’f02>> — P(kle1)P(k|ea)

2
keK

3 (P(qu);f’(/ﬂ@))Q

keK

The bias is a measure of variance. Take ¢ to be a random variable, with
equal probabilities for each of the two coders: P(c1) = P(cz) = 0.5.
For each category k € K, we calculate the mean p and variance o2
of P(klc).

P(kle1) + P(k|co)

LP(kle) = 5
2 _ (P(kler) = ppkley)? + (P(Ele2) — pp(rie))?
Th(kle) = 5
_ (P(kcl) - P(/’f|02))2
2

We find that the bias B is the sum of the variances of P(k|c) for all

categories k € K.
B=) 0P
keK
This is a convenient way to quantify the relative bias of two coders. In
the next section we generalize m and x to apply to multiple coders, and
see that the bias drops in proportion to the number of coders.

13.4 Agreement among multiple coders

We now provide generalizations of m and x which are applicable when
the number of coders c is greater than two. The generalization of 7 is
the same as the coeflicient which is called, quite confusingly, x by Fleiss
(1971). We will call it ™ because it treats individual coder bias as noise
in the data and is thus better thought of as a generalization of Scott’s ,
reserving the name x for a proper generalization of Cohen’s x which
takes bias as a source of disagreement. As far as we are aware, ours is the
first generalization of x to multiple coders—other sources which claim
to give a generalization of x actually report Fleiss’s coefficient (e.g.
Bartko and Carpenter, 1976, Siegel and Castellan, 1988, Di Eugenio
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and Glass, 2004).

With more than two coders we can no longer define the observed
agreement as the percentage of items on which there is agreement,
since there will inevitably be items on which some coders agree amongst
themselves while others disagree. The amount of agreement on a par-
ticular item is therefore defined as the proportion of agreeing judg-
ment pairs out of the total number of judgment pairs for the item. Let
n;; stand for the number of times an item ¢ is classified in category k
(i.e. the number of coders that make such a judgment). Each category k

contributes (“2”“) pairs of agreeing judgments for item ¢; the amount of
Nk
2
divided by (g), the total number of judgment pairs per item.

1 n; 1
agr; = © 3 < Qk) = %D > ni(ng — 1)

2/ keK keEK

agreement agr; for item ¢ is the sum of ( ) over all categories k € K,

The overall observed agreement is the mean of agr; for all items ¢ € 1.

Moo= g, = ﬁz D mik(mi —1)

i€l i€l ke K

Since agreement is measured as the proportion of agreeing judgment
pairs, the agreement expected by chance is the probability that any
given pair of judgments for the same item would agree; this, in turn,
is equivalent to the probability that two arbitrary coders would make
the same judgment for a particular item by chance. For m we use P(k),
the overall probability of assigning an item to category k, which is
the total number of such assignments by all coders nj divided by the
overall number of assignments, which is the number of items i multiplied
by the number of coders c. For k we use P(k|c), the probability of
assigning an item to category k by coder ¢, which is the number of
such assignments n. divided by the number of items i.

P(k ! P(k !
(k) = - nx (le) = ¢ nex
According to 7, the probability that two arbitrary coders assign an item
to a particular category k € K is P(k)?, so the expected agreement is
the sum of P(k)? over all categories k € K. As for s, the probability
that two particular coders ¢, and ¢,, assign an item to category k € K
is P(k|cym )P(K|cn); since all coders judge all items, the probability that
an arbitrary pair of coders assign an item to category k is the arithmetic
mean of P(k|c,,)P(k|c,) over all coder pairs ¢, ¢,,, and the expected
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agreement is the sum of this probability over all categories k € K.

6 = Z P(k)? Z Z Z (klem )P (Klcn)
ke K kEK m=1n=m++1
It is easy to see that AY for multlple coders is the mean of the two-coder
Al values from section 13.2 for all coder pairs.
We start with a numerical example. Instead of two annotators we
now have four; furthermore, it so happens that Claire gives exactly the
same judgments as Alice, and Dave gives exactly the same judgments

as Bill.
Alice, Claire: YYNYNYNNYY

Bill, Dave: YYNNYYYNYY

The expected agreement according to 7w remains 0.545 as in the case of
just Alice and Bill, since the overall proportion of “yes” judgments is
still 0.65 and that of “no” judgments is still 0.35. But for the calculation
of expected agreement according to k we also have to take into account
the expected agreement between Alice and Claire and the expected
agreement between Bill and Dave. Overall, the probability that two
arbitrary annotators will classify an item into the same category is
£10.6>+4-0.6-0.7+0.7%]+ £[0.42+4-0.4-0.3+0.3?] = 0.54333 . . .; this
value is still lower than the probability calculated by 7, but higher than
it was for two annotators. If we add a fifth annotator with the same
judgments as Alice and Claire and a sixth with the judgment pattern of
Bill and Dave, expected agreement according to 7 remains 0.545 while
expected agreement according to k rises to 0.544. It appears, then, that
as the number of annotators increases, the value of A approaches that
of AT. We now turn to the formal proof.

We start by taking the formulas for expected agreement above and
putting them into a form that is more useful for comparison with one
another.

AT = Y=Y (1 > P<k|cm>>

keEK keK m=1

= Z ZZPM% (k|cn)

kEK m=1n=1

AF = Z Z Z P(k|cm )P (k|cn)

k;eK m=1n=m+1
keK m=1n=1 m=1



146 / RON ARTSTEIN AND MAssIMO POESIO

The overall bias is the difference between the expected agreement ac-
cording to 7w and the expected agreement according to k.

B = AT-_ A"

cil Z c_12 (c Z (k|em)? Z ZP klem)P kcn)>

keK m=1 m=1n=1

We now calculate the mean ;1 and variance o2 of P(k|c), taking ¢ to
be a random variable with equal probabilities for all of the coders:
P(c) = L for all coders ¢ € C.

1 C
HP(kle) = EZP(MCm)
1 C
Ohkle) = ps (P(klem) — o)

m=1
c ) 1S 9 1<
Z P(klem)” — 2/14P(k|c)z P(klem) + HP(kle) & Z 1

1
¢ m m=1 m=1
_ 1 P ]f 2 2
= p Z (klem) HP(k|c)
m=1
1 Cc
2\ P(klcm )? Z Z P(k|em)P k;|cn)>

m=1 m=1n=1

The bias B is thus the sum of the variances of P(k|c) for all categories
k € K, divided by the number of coders less one.

1 2
B=——> 0buq
keK
Since the variance does not increase in proportion to the number of
coders, we find that the more coders we have, the lower the bias; at the
limit, k approaches 7 as the number of coders approaches infinity.

13.5 Conclusion

We have seen that one source of disagreement among annotators, indi-
vidual bias, decreases as the number of annotators increases. This does
not mean that reliability increases with the number of annotators, but
rather that the individual coders’ preferences become more similar to
random noise. This suggests using multiple annotators as a means for
controlling bias.
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There is a further class of agreement coefficients which allow for
gradient disagreements between annotators, for example weighted
kappa k, (Cohen, 1968) and a (Krippendorff, 1980). Passonneau
(2004), for example, uses « to measure reliability of coreference anno-
tation, where different annotators may partially agree on the identity
of an anaphoric chain. We cannot treat these coefficients here due to
space limitations, but the same result holds for gradient coefficients—
bias decreases in proportion to the number of annotators. We performed
an experiment testing the reliability of coreference annotation among
18 naive subjects, using a and related measures (Poesio and Artstein,
2005); we found that the effect of bias on the agreement coefficients
was substantially lower than any of the other variables that affected
reliability.
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The Proper Treatment of
Coordination in Peirce Grammar

HANS LEISS

Abstract

Peirce grammar provides a first-order, relational semantics for extensional
fragments of natural language. Proposals in the literature to model natural
language coordination by boolean operations in Peirce grammar lead to in-
adaequate results. We propose to equip Peirce grammar with an additional
sort of finite trees and to admit recursion on trees for defining the evalua-
tion of expressions. We demonstrate how this leads to a better treatment of
coordination and other recursive constructions, such as the inverse linking of
quantifiers in nested noun phrases.

Keywords PEIRCE GRAMMAR, RELATIONAL SEMANTICS, COORDINA-

TION, INVERSE LINKING

14.1 Introduction

A Peirce grammar is a context-free grammar with an interpretation of
expressions as sets or binary relations on a universe V. Peirce gram-
mars have evolved from an interpretation of context-free grammars in
extended relation algebras by Suppes (1976), which in turn owe much to
the work of Peirce (1932) on relation algebra as a semantics of natural
language.

While relational semantics is well-established for programming lan-
guages, it is less known in the context of natural language, despite its
roots. Peirce grammars have been used by Suppes (1976) and Béttner
(1999) to model fragments of English and German. The values of ad-
jectives, nouns, prepositions and verbs are sets or relations, those of
individual names are atomic sets, but function words like determiners
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and conjunctions are treated syncategorematically. The value of com-
plex expressions is computed bottom-up by algebraic terms attached
to grammar rules.

A distinctive feature of Peirce grammar is its algebraic semantics:
there is no infinite hierarchy of types, no variables and variable binders,
no application of meaning objects to other meaning objects, but just
construction of meanings from basic ones by applications of a few given
operations; there are no built-in relations between meanings such as
generalized quantifiers as relations between sets, except for equality
and a definable subsumption relation. Since the algebraic operations
have an equational axiomatization, equational reasoning is sufficient to
establish semantic equivalence of expressions, which also makes Peirce
grammar attractive from a computational point of view.

It has been claimed that this framework is too weak to cope with
recursive syntactic structures and needs infinitely many categories or
grammar rules to fix this (cf. Jiger (2004)). After introducing Peirce
grammar in section 2, we address the problem of recursive structures in
section 3, by adding finite trees to Peirce algebras and structural recur-
sion to the evaluation. We demonstrate our extension on two examples:
coordination of nouns and adjectives and inverse linking of quantifiers
in nested noun phrases. Relations to other theories are discussed in
section 4, and advantages, drawbacks and open problems in section 5.

14.2 Peirce grammar

A Peirce algebra is a two-sorted algebra of so-called sets and relations
with the ususal boolean operations on each sort as well as some opera-
tions relating the two sorts. A Peirce grammar is a context-free gram-
mar G with an evaluation function [-] : L(G) — P, assigning to each
expression w € L(G) a meaning [w] in a Peirce algebra P. In partic-
ular, the meaning objects are first-order objects; higher-order objects
like functions in Montague-grammar are not admitted.

14.2.1 Peirce algebra
Definition 30 Let V be a set, called the universe. Py = (By,Rvy,:
,€), the Peirce algebra over V', consists of
1. the boolean algebra By = (2,U,N,~, ), V) of all subsets of V,
2. the relation algebra Ry = (2V*V U,N, 7,0,V x V, ;, " 1) of all
binary relations on V', where ;, " I are
(a) the relative product S;T = {{a,c) | Ib(R(a,b) NT(b,c))},
(b) the converse S”:= {(b,a) | S(a,b)}, and
(c) the identity relation I := {{a,a)|a € V},
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3. the peircean product : from Ry x By to By, where
R:B:={acV |3eV(R(a,b) AB(b))}
is the inverse image of the set B under the relation R, and
4. the (right) cylindrification ¢ : By — Ry, where

A ={{a,b) e VXV ]A(a) NbeV}=AXxV
is the (right) cylinder over the set A.

An equational axiomatization of the properties of the operations
of Py by Brink et al. (1994) defines the notion of a Peirce algebra
P =(B,R,:°), where B = (B,+,-,7,0,1) is a boolean algebra, R =
(R,+,-,7,0,1,;,%I) a relation algebra, and “:” : R x B — B and
¢: B — R are analogs of the Peirce product and cylindrification.

We will use Peirce-terms built from set- and relation variables, the
constants 0,1, and the function symbols +,-,7, :,” . Each term has
a type, set or rel. The ambiguity of 0,1,+,,” is easily resoved by the
context, or indicated as in +5 versus +%, and likewise for the type of
variables.

Many useful operations on sets and relations can be defined and their
equational properties be proved in Peirce algebra. Some of these, with
their interpretation in Py, are: the relative sum + of two relations,

R+S:=R;S=1{(a,b) €V xV|VeeV(R(a,c)V S(c,b))},
the peircean sum * of a relation and a set,
RtB:=R:B={acV|VeV(R(ab)VvBb)}
the domain and range of a relation,
dom(R):=R:1, ran(R):=R:1={beV |3JaecV R(a,b)},
the cartesian product of two sets,
AXxB:=A°- (BY=(AxV)n(V x B).
14.2.2 Peircean operations as natural language constructs

Any Peirce algebra term t(x1,...,x,) can be translated into a first-
order formula ¢(X7, ..., X,,y, z) with binary relations X; and two in-
dividual variables y, z, but not conversely: the quantification in these
formulas is of a special form. Basically, Peirce (1932) observed that
verbs and nouns combine via a quantifier that connects one argument
of the former with one of the latter, as in

QZ(R(:I;M ey Lj—13 Ry Ljgly e e - 7.’17n) o S(yh cee 72/]‘717 Z7yj7 ceey ym))7
where @ is a quantifier and o a binary boolean operator. Some examples
with n,m < 2 are:
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1. combining a transitive verb and a relational noun to a transitve
verb:

knows a brother of = K ;B = {{a,c) | 3b(a KbAbBc)}
knows no brother of = K;B=K+*+B
knows all brothers of = K+ B = {{a,c) | Vb(bBc — a K b)}
knows not all brothers of = K+ B =K ;B
knows only brothers of = K+ B = {{a,c) | Vb(a Kb — bBc)}
knows not only brothers of = K+ B =K :B

2. combining two relational nouns to a relational noun:

——

Sy

daughter of a brother of = D;B
reader of all books by - R+B
3. combining a transitive verb and a common noun to an intransive
verb:
likes a book = L:B={a|3b(L(a,b) A B(b)}
likes all books = L+ B = {a|Vb(B(b) — L(a,b))}

Moreover, verbs of equal subcategorization combine by boolean op-
erations, and the converse ~ amounts to the passive of transitive verbs.

14.2.3 Peirce grammar

From now on, we extend the Peirce-operations by a few test functions,
E U : set — set and ER, UR : rel — rel. They are to be interpreted
as testing whether their argument is # 0, or = 1, and return one of the
values 0 or 1 which serve as truth values false and true.

In a Peirce algebra P = (B, P, :, ), we identify the restrictions of B
resp. R to its elements {0, 1} with the algebra B of truth values.
Definition 31 A Peirce grammar PG = (G, type, e) consists of

1. a context-free grammar G = (T, N, S, P), with finte sets of ter-

minals T, nonterminals N, syntax rules P C N x (T'U N)*, and
a sentence categoy S € N,

2. a function type : NUT — {set,rel}, which may be partial on

the set of terminals,

3. a mapping e, which assigns to each rule r = (A — A;--- Ag) €

P a Peirce-term t,(X;,,...,X;,) of type type(A), where X; has
type(A;) when A; ---A;,, n > 1, is the subsequence of typed
elements of Ap---Ay.

in s

Convention: Instead of e(A — a) = ¢ we write A — «[t], using the
typed terminals and nonterminals of « as variables in ¢. Several rules
for the nonterminal A may be combined as in

A—ar[ti] ]| an[ta]
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Definition 32 An interpretation (P,v) of a Peirce grammar (G, type, e)
consists of a Peirce algebra P = (B, R, :, ¢, E, U, ER, UR) with test func-
tions and an evaluation function v : T' — P, assigning to each typed
terminal X an element v(X) of sort type(X), i.e. of B or R.

For each syntactic tree-structure 7 of expressions w € L(A4), A € N,

the value [[T]]f of 7 in P under v is defined as follows:

1. If 7 is the one-node tree of w € T, then [[T]]Z; = v(w).
2. If 7 is the combination of trees 7;,,...,7;, by the rule A —
Ay -+ Ay [t] with typed constituents A;,, ..., A; , then

P._ P P P
[[T]]v =t (IITil]]'u [ [[Tin]]v )
Typeless terminals in a rule r have syncategorematic meaning only,
i.e. they are not assigned a value in P, but are relevant for choosing ¢,.

Example 37 This is a fragment of the grammar of Béttner (1999).

S — UQNVPUN+VP) | EQN VP |[E(N:VP)
VP — IV [1V] | TVP [TVP]
TVP — TV EQN[TV:N] | TV UQ N [TV tN]

The VP-rules say that the meaning of a VP is the meaning of the in-
transitive verb used, given by the evaluation v : T — P of an interpreta-
tion, or the meaning of the transitive verb phrase. The first TVP-rule
says that the meaning of a transitive verb followed by an existential
quantifier and a common noun is the inverse image [TV : N] of the
set corresponding to N under the relation corresponding to TV . In the
second S-rule, the quantifier EQ contributes to the sentence meaning
by way of testing if the intersection of the N- and VP-meanings is
nonempty. Note that EQ has different effects in the TVP- and S-rules.

Quantifiers and noun phrases, which in Montague grammar have
higher-order functions as values, are not considered expressions in
Peirce grammar; they have no meaning object attached at all. In fact,
there is no way to have meaningful NP’s in Peirce grammar:

Example 38 (Suppes (1976)) There is no category NP in Peirce

grammar that subsumes quantified noun phrases EQ N and UQ N
in the sense that

S — UQN VP [U(N + VP)]

| EQ N VP [E(N-VP)]

would be equivalent (i.e. generate the same sentences with the same

values) to the rules

S — NP VP [s(NP, VP)]
NP — UQ N [u(N)] | EQ N [e(N)]

(14.45)

(14.46)
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for suitably chosen functions s,u,e on sets: in a Peirce algebra where
B is the 2-element algebra B, there are no functions s, u, e that give the
expected values s(u(0),0) =U(0+0) =1,...,s(e(1),1)=E(1-1) = 1.

Therefore, Peirce grammar prefers “flat” syntactic structures: since
the value of an expression is computed from the first-order values of
its immediate constituents, only flat structures provide enough argu-
ments to the evaluation functions to make the necessary distinctions.
Alternatively, one can use groupings with different category names:

Example 39 Battner (1999), rules 51-58, uses categories CPNP and
APNP for phrases of conjunctions resp. alternatives of proper mouns,
which get the same meaning but are treated differently when evaluating
sentences:

CPNP — PN Conj PN [PN + PN]
APNP — PN Disj PN [PN + PN]
S — CPNP VP [U(CPNP + VP)]
| APNP VP [E(APNP-VP)].

Thus, though “John and Mary” and “John or Mary” get the same set
value, the two alternatives of the S-rule can use different Peirce-terms
to define their meaning, as the syntactic construction of the subject is
coded in its category name.

However, for nested occurrences of Conj and Disj, as in “John or
Paul and Mary”, collecting the constituents’ meanings by set union +
would erase differences that must be maintained.

This trick of coding the structure of a phrase in its category name
can only be used for finitely many different phrase structures; otherwise,
we’d need infinitely many categories in the grammar.

14.3 Peirce grammar with trees and recursive
evaluation

To overcome the above problems, we propose to allow finite trees as
another sort of objects in Peirce algebras. More precisely, we define:

Definition 33 An extended Peirce algebra P’ = (B,R,7,:,°) is a
Peirce algebra P = (B, R, :,¢) expanded by the free algebra 7 of finite
ordered trees generated from the elements of B and R by a finite set of
constructor functions. An extended Peirce term is a term that is built
from variables of the sorts set, rel and tree by means of the Peircean
operations, the constructor functions, and operations that are defined
by structural recursion on trees.
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Definition 34 An extended Peirce grammar PG = (G, type, ) is like
a Peirce grammar, except that type : N UT — {set, rel, tree} may also
assign the sort tree to terminals and nonterminals, and e assigns to
each rule r of G an extended Peirce term of the appropriate type.

Example 40 There is an extended Peirce grammar with rules (14.46)
which is equivalent to the Peirce grammar with rules (14.45). In the
rules of (14.46), let u,e : set — tree be unary constructor functions,
and define s : tree X set — set by recursion on its first argument:

s(u(N), VP) := U(N + VP), else,
s(e(N), VP) := E(N-VP), else.

These two clauses perform the case distinction on NPs which is impos-
sible in Peirce algebra.

14.3.1 Coordination

In a higher-order setting such as the one of Montague (1974) or Keenan
and Faltz (1985), the meaning of coordinated phrases can be defined
pointwise, as is done by

[NPy and NPy] := AP~ ([NP,](P) A [NP2](P)),

for noun phrase meanings [NP] : (e — t) — ¢, using the conjunction A
on the type t of truth values. A drawback of this approach is that even
if the basic types e of individuals and ¢ of truth values have a decidable
equality, the types of functions (e — ¢) and functionals (e — t) — ¢
do not. Moreover, the higher-order value is obtained by abstracting
from contexts P of e-type positions in sentences, ignoring positions of
different type, such as e x e for subjects of symmetric predicates, as
in John and Mary know each other. Thus, a context-independent value
for PN-conjunctions alone has sum-type (e — t)+ (e x e — t) or worse,
so the background type theory would at least have to be a bit more
complicated than the one usually assumed.

In a first-order setting like Peirce algebra, one might use the boolean
operations on the sets and relations to interprete coordinations. Béttner
(1999), p.84, interprets Conj resp. Disj for categories VP, TVP (tran-
sitive verb phrase), AP and PP as intersection resp. union of sets or
relations, but interprets both as union for proper and common nouns.

This does not work properly: (i) Conjunction of PP’s or P’s cannot
be interpreted as intersection in A tree was standing in front of and
behind the house, as the intersection of the two relations is empty. (ii)
Conjunction of N’s cannot be interpreted as set union in big (ants and
elephants), where big has to be relativized to the two different nouns
separately. (iii) Negation cannot be set complement resp. difference



156 / HANS LEISS

in John, but not Mary or men, but not women, as then these would
coincide with just John or men.

Since in contexts like all (ants and elephants), conjunction of N’s
does mean set union, while in (ii) it does not, the meaning of a coordi-
nated expression may depend on the context of its use. Therefore, we
better treat coordination as an abbreviation mechanism, reducing, in
a context-dependent way, boolean combinations of phrases to boolean
combinations of sentences.

When implementing this view by syntactic transformations, recur-
sively embedded coordinations lead to recursive transformations, mak-
ing it difficult to define the meaning of expressions by semantic at-
tributes in the syntax rules (at least, of common tools like Yacc). More-
over, syntactic transformations must not copy expressions that lead to
different values at different occurrences, or disturb quantifier scopes.

We propose a different route: don’t expand coordinated phrases on
the syntactic level, but during evaluation. For this it is necessary that
from the semantic value of a coordinated phrase we can recover the
form of the coordination and the meaning constituents. For example,
to obtain

[(NPy but not NP3) VP] = [(NPy VP) and not (NP5 VP)],

from the values [NP; but not NP3] and [VP] of the constituents on
the left, we need to be able to read off the values of both constituent
NP’s from that of the coordinated one, but also that the second one
was negated.

Coordination rules. To treat coordination in extended Peirce gram-
mar, we use binary constructor functions &, ® and © to build trees of
T with only set- or rel-values at their leaves. These constructors are
analogs of the boolean operations +, - and — (relative complement),
used to delay evaluation.

The grammar rules may now use set- or rel-tree terms to define the
value of coordinated expressions X’ of category X € {A, NP!, IV, NP}:

X = X and X [(X © X)], (14.47)
| X orX|[(XeX), (14.48)
| X but not X [(X © X)]. (14.49)

We think of the elements of 7 as second-class values. For example,
while in P’ nouns are considered first-class values belonging to B or R,
their coordinations are viewed as second-class values belonging to 7,
such as men © women in (men but not women) like football, where the
set difference (men — women) € B clearly is wrong.

In a non-coordinating grammar rule, the evaluation function may
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then recur along the tree structure of the values in 7 of its coordinated
constituents. For example, in

S/ — NP/ IV/ [diStTNpﬁjv(NP/, IV/)] (1450)

we may “distribute” the IV’ to the coordinates of the subject-NP and
shift the connectives to the sentence level by clauses like

diSt’r‘NpJv((Npl S NPQ), IV’)
= dZ.StTNpJv(NPl,IV/) © diStTNp7jv(NP2,IV/).

When the value NP’ in the subject is of the form e(N) or u(N) in-
troduced by rules (14.46) and the value IV’ is compound, the corre-
sponding conjuncts can be interpreted by the boolean operations, as
in

distrnp,1v(e(N), (IV1 © IV3))
= dister,Iv(e(N), (IV1 . [Vg))

When the value IV’ is atomic, too, distr ~p,1v coincides with the func-
tion s of example 40, so that, for example,

diStT’Np’[V(e(N),IV) = E(NIV)

Note that distryp ;v operates as a homomorphism on 7 in its
first argument. By using rule-specific functions distr, the construc-
tors ®,®,© may influence the meaning of expressions in a context-
dependent way.

Coordination of nouns and adjectives. When several constituents in
the same rule are coordinations, there is a question of relative scope of
the connectives. If a constituent is to get narrow scope, the evaluation
function has to recur on this constituent later. For example, to give
the combinations of N’s higher precedence over those of classficatory
adjectives A’s in modified nouns, for the rule

N — A" N’ [distran(A, N')) (14.51)

we define distril’ N 1 tree X tree — tree for o € {®, ®, 6} as follows!:

distril7N((A1 0Ay),N) = distril)N(Al, N)o distril7N(A2, N)),
distr{ (A, (Ny o Np)) = distr?y (A, Ny) o distr’} \ (A, Ny)),
dz’stril’N(A, N) = A-N, else. (14.52)

IWe restrict these to plural, since the corresponding clauses of distrif n for
singular might differ for and at least.
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Then every interpretation of this grammar satisfies the equation
[(white but not grey) (ants and elephants)]
= distrﬁl’N(white © grey, ant © elephant)

= distril)N(white, ant ® elephant) © distri{N(grey, ant © elephant)
= ((white- ant) ® (white - elephant)) & ((grey - ant) ®
(grey - elephant))
= [(white (ants and elephants)) but not
(grey (ants and elephants))]

Note, by the way, that this equality does not depend on expansions of
coordinated N's in sentences to sentence coordinations.

Ordinary Peirce grammar (cf. Bottner (1999), rule 57) interprets
conjunction of nouns by set union +, so that, by laws of boolean algebra,

[white (ants and elephants)] = white - (ant+ elephant)

= (white- ant) + (white - elephant).

This seems simpler than going via the above clause of distra n for
classificatory adjectives, i.e.

distrilN(white, ant © elephant) = (white - ant) © (white - elephant),

which keeps the component sets (white- ant) and (white- elphant) apart.

The reason for already keeping the components in ant ® elephant
apart is that the conjunction of common nouns is not set union in the
scope of intensive adjectives (IA4), which denote partial order relations:
in big (ants and elephants), we have to relativize —by a suitable oper-
ation r— the relation big to the sets ant and elephant separately and
then take the union of the result, so that

[big (ants and elephants)] = r(big, ant) + r(big, elephant)
%  r(big, ant + elephant),

where only the set on the left contains some ants. In extended Peirce
grammar, we can model this by a rule

N — IA N’ [distrian(IA', N')] (14.53)
with distrja n differing from distr 4y above by replacing (14.52) with
distr?) N(IA,N) = r(IA,N),

where the relativization r(R, B) := h(R- (B x B)) : 1 is the domain of
the “left half” h of the restriction of R to B2. So, as with classificatory

2By the “left half” h(S) of a binary relation S we mean its edges from minimal
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adjectives, we distribute the intensive adjective to conjuncts by
distrﬁ,N(big, ant © elephant) = r(big, ant) ® r(big, elephant),

but do not and must not interprete noun conjunction as set union in
the scope of an intensive adjective, as

r(big, ant + elephant) # r(big, ant) + r(big, elephant).

The relativization r operates in its second argument as a homomor-
phism on 7, but not on the first-class values 5. Note also that r al-
lows us to interprete the attributive use of intensive adjectives while
avoiding the comparison with artificial elements like “the medium-sized
elephant” of Bottner (1999). Depending only on the values of nouns
and the global bigger-than-relation with its converse smaller-than, we
may obtain big (white elephants) # white (big elephants), big ants C
small animals, small (big elephants) C big elephants etc.

Thus, noun conjunction is treated differently in the scope of classi-
ficatory and intensive adjectives; the pseudo-values of set-trees and
rel-trees can be used to define the meaning of expressions containing
coordinations by taking the context of the coordination into account.

14.3.2 Inverse linking

The question of relative scope for coordination connectives mentioned
above arises also for coordinations of verbs applied to coordinated noun
phrase arguments, as in John or Mary could hear, but not see a man
and a woman shout. To give the subject NP widest scope, in

S — NP VP [distTNP’VP(NP, VP)]

we let distr yp,yp recur on the NP-structure first, and in the VP-rule let
the object NP have scope over the predicate (see (14.54),(14.55) below).
Then distryp,vp also gives quantifiers in the subject wide scope over
those in the object, subsuming the special cases of example 37.
(According to this scheme, active and passive of simple sentences
with transitive verb and coordinated or quantified NP-complements

nodes, SN (ran(S) x ran(S)), and the left half of S without edges from minimal or
to maximal nodes, h(S N (ran(S) x dom(S))). More precisely, we define h by

h(S) = 0, ifS=5-(S:1x8:1)
TS (8:1x8: 1) +h(S-(S:1x8:1)), else.

In particular, if < is a finite linear order, then h(<) consists of the <-edges leaving

the smaller half of the underlying set. Since h recurs along the inclusion C of rela-

tions and not along the structure of trees, we need to relax our definitions a bit to

turn h(S) and hence r(R, B) into an extended Peirce term. Note that (R, B1 + B2)

is not the sum or any other algebraic function of r(R, B1) and r(R, B2).
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get different meanings, e.g. in every child loves some adults versus some
adults are loved by every child.)

To handle scope relations that cannot be read off from the con-
stituent structure, we have to relax the uniqueness of the term assign-
ment e(r) = ¢, and admit different ¢, implementing different scope
readings for the same grammar rule r. A case in question is the scope
relation between dative and accusative object of a ditransitive verb;
this is treated in Bottner (1999), rules R 105-115, by an extension of
ordinary Peirce algebra to ternary relations. Here we consider a more
difficult case of quantifier scope in nested NPs.

Peirce’s operations model combinations of relational and common
nouns like

brother of a student = B:S

friend of every brother of a student = F:(B:S)=F1t(B:5).

These amount to a reading where the syntactically innermost quantifier
has narrowest scope:

(Some reader of (every paper of (some author))) got bored
=q) Fr1(Voo(Fzs(A(xs) A P(r2,23)) — R(x1,22)) A B(21)).
However, there is a different reading of NP’s of this form, where
the syntactically innermost quantifier gets widest scope, the so-called
inverse linking construction:
(Some reader of (every paper of (some author))) got bored
:b) E'Ig(A(Ig) N VIQ(P(.IQ, Ig) — HIl(R(Il,{EQ) N B(Il))))

The inversion of quantifiers shows nicely when this is written with
bounded quantifiers as

(@1 RNy of (Q2 RN2 of (... of (QnN)...))) IV
= (ann S N) . (QQIQRNQIg)(QlInRNlIQ) IV(In)

In his review of Béttner (1999), Jager (2004) notes that Peirce grammar
seems unable to treat the inverse linking construction and could do so
at best with infinitely many categories or grammar rules.

Let us see how this construction can be handled in extended Peirce
grammar. To highlight the role of the quantifiers @) in the algebraic
combinations, let ¢ (with ¢ for copula) be the operation between two
sets with @ in the subject:

AYB = U{A+B), A2B := E(A-B).

Likewise, let € be the module operation between a relation and a set
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with @ in the object:
R3IA =R:A, RYA =R+ A.

By means of these, we can translate the linking construction of NP’s
in subject position as in:

(QN)IV — NQIV
(Q1 RNy of (Qa N)) IV +— N9 (RN, 2 IV)
(Q1 RNy of (Q2 RNy of (Q3N))) IV — N %8 (RN,%2 (RN, IV)).

Thus, if the value of the subject NP in a sentence NP VP codes the
syntactic structure of the NP together with the meaning of the nouns
used, the modified Peirce grammar rule is

S — NP VP [distryp,vp(NP, VP)] (14.54)

where the function distr yp vp (extending the s of above) recurs along
the NP-structure by:

diStT’Np)vp((Q ZV)7 VP) Ncg VP,
diStTNP’VP((Q RN Of NP), VP) diSt’f’Np7vp(NP, RN~ Q VP)

Note that we need the converse of the relational noun. For example,

(Some reader of (every paper)) gets bored
= (3Rof (VP))B
= distryp,vp((3 R of (V P)),B)
= distryp,vp((V P), R iB)
= PY(R3B)
= Vy(P(y) — 3z(R(y,z) A B(x)))
= Vy(P(y) — Fz(R(z,y) A B(x)))
To handle the inverse linking construction in NPs in object posi-

tion, we need relative operations ¢ determined by the quantifiers Q,
combining two relations:

RIS:=R;S, RYS:=RTS.
A different translation is needed, which may return a set # 0, 1:
TV(QN) — TV@N
TV (@1 RN (Q2 N2)) +— (TV S RNi) (Q2 N2)
TV (Q1 RNy (Q2 RNz (Q3 N))) — ((TVS RN1) %2 RN,) @ Ny
Again, the innermost quantifier has widest scope. The grammar rule is

TVP — TV NP [d’ist?”TV’Np(TV,NP)} (1455)
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where distr ry yp recurs along the structure of the object-NP by
distrpv np(TV,(Q N)) TVYN,
distrrv np(TV, (Q RN of NP)) = distrrv np(TV @ RN, NP).
For example, this gives
x likes (every paper of (some author)) =z L (VY P of (3 A))
= ((LYP)?A) (x) = Fz(Vy(L(z,y) — Ply,2)) N A(2)).

Finally, note that for arguments (Q RN of NP) where the NP is a
conjunction, e.g. a friend of John and Mary, inverting the scopes by

diStT’Np)vp((Q RN Of ]\/vp)7 VP) = diSt’FNp7VP(NP, RNVQ VP)

produces the wrong reading with possibly different friends. The analysis
where first the NP is combined with RN by

N’ — RN of NP [distrgn np(RN, NP)] (14.56)

gives the reading with a common friend when distr gy np recurs along
its second argument with clauses like

diStT’RN’Np(RN, (PN1 O] PNQ)) = RNV(PNl + PNQ),
distrgy np(RN, (PN, @ PN3)) = RN 3(PN; + PNy).

Again, the coordination constructor influences the evaluation “later”.

14.4 Comparsion with other approaches

Peirce grammar differs from other grammatical theories in that mean-
ings are first-order objects, abstract sets and relations, which can only
be composed by algebraic operations. Extended Peirce grammar adds
a further sort of meanings, finite trees of sets and relations, from which
constituent meanings can be extracted. These “second-class” values
have no ontological motivation — they only serve as intermediate stages
in the evaluation of sentences, allowing us to give the context of an ex-
pression an access to the meaning constituents of the expression.

This makes a major difference both to the relational semantics of or-
dinary Peirce grammar and the higher-order semantics of Montague or
categorial grammar: neither the boolean and peircean operations can be
reversed, nor function application and abstraction. Thus, when a noun
coordination like ants and elephants is interpreted by set union ant +
elephant or pointwise function application Az(ant(x)V elephant(zx)), we
cannot get back the meaning constituents ant and elephant. In ex-
tended Peirce grammar, we can get them back from the second-class
value ant® elephant and hence we can correctly compute the relativiza-
tion big (ants and elephants).
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Although the Boolean semantics of Keenan and Faltz (1985) is also
higher-order, the difference to extended Peirce grammar is not that big.
In Boolean semantics, every category C' of conjoinable phrases comes
with a boolean algebra B¢ of possible values, and the connectives and,
or, and mot for C-phrases are interpreted by the operations of B¢.
The point is that for categories of function type D/C, say, the algebra
Bp ¢ does not contain arbitrary functions from B¢ to Bp, but boolean
homomorphisms only; hence, each f € Bp,c has access to the meaning
constituents of its argument, as in f(c; + ¢2) = f(c1) + f(c2).

While a Peirce algebra only has the two boolean algebras B of sets
and R of binary relations, the tree algebra 7 of an extended Peirce al-
gebra can be chosen to subsume term algebras 7¢ of phrases of category
C. The evaluation terms in our grammar rules have mostly been used
to define homomorphisms between such term algebras 7o. We expect
that a technical connection can be established between the quotients of
Tc modulo the boolean algebra axioms and the boolean algebras B¢o of
Keenan and Faltz, provided we impose some invariance restrictions on
the evaluation terms. But, unlike Boolean semantics, extended Peirce
grammar does not assume that all categories of conjoinable expressions
are interpreted in an ontologically well-motivated boolean algebra.

There is a minor difference to Boolean semantics concerning the
implicit scope rules of natural language. Consider simple sentences built
by applying a boolean combination (BC) of transitive verbs to boolean
combinations of noun phrases,

BC(TVs)(BC(NPs), BC(NPs)).

We expect this to be evaluated by a boolean algebra homomorphism
in each coordinate, i.e. for atomic expressions v, e, we have

v(e, BC(cy,...,¢r)) = BC(v(e, c1),...,v(e ¢r))

with the same boolean combination, and likewise for subject and pred-
icate. What remains not completely determined, e.g. in German, is the
relative scope of the quantifiers and connectives in the predicate and
argument positions. Keenan and Faltz (1985) built specific scope rules
into their interpretation, which we also did in the examples, but in gen-
eral there are different readings which may be explicitly marked, as in
John and Mary are working on a (common) paper vs. John and Mary
are working on a paper (each). In general, a non-deterministic evalua-
tion is needed that chooses between various possible scope relations.
The simple algebraic semantics of Peirce grammar clearly poses se-
vere restrictions, viz. not all first-order formulas built from unary and
binary relations are expressible as Peircean terms. Extensions to rela-
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tions of arity > 3 are possible, but an equational axiomatization with
additional primitives, like argument permutation, seems missing. In
Peirce grammar, one can define the at least two-quantifier 322 via the
diversity relation I and thus handle a distributive reading of plurals.
But it is impossible to define at least n for n > 3, unless, for example,
one admits n-ary relations with a constant for n-ary diversity.

What about generalized quantifiers like most? In the algebra Py
of all subsets and relations on V one can define the copula-, module-
and relation-operations ¥, M M from the set-theoretic definition
M(A,B) : <= |A- B| > |A- B| of the quantifier M, and then eval-
uate simple sentences of the form (Q1 N1) TV (Q2 Na) as before by
N, @ (TV Q2 N3). But an algebraic treatment of most would need an
equational axiomatization of ¥, M M which does not seem to exist.

Up to now, Peirce grammar has, to my knowledge, only been used
to model extensional features of natural language. In particular, it is
not clear how to handle verbs with propositional arguments.

Concerning syntax, the proposed extension of Peirce grammar allows
us to handle recursive syntactic constructions and extensively use tradi-
tional constituent structures of context-free grammars. This is arguably
a step away from Peirce’s original emphasis on n-ary relations and their
combinations, which is closer in spirit to dependency grammar.

We have only dealt with coordination of words or constituents. In
transformational grammar, “non-constituent”-coordinations have been
considered the result of transformations of coordinations, such as right
or left peripheral extraction or argument cluster coordination:

(RPE) (av) Conj (By) ~ [o Conj B]y

(LPE) (ya) Conj (vB) ~ ~ [a Conj f]

(ACC) (ayB) Conj (a’v0') ~ ayB Conj [o'f],

where restrictions on the categorial status of the expression sequences
a, 3,7,a’, 3 have been the subject of debate. At least simple cases of

these can be handled in Peirce grammar using “flat” syntax rules. For
example, the reading of

(RPE) [all men like, but some women dislike] some jokes

where some jokes has wide scope and cannot be distributed “back”, gets
its value by the Peirce term E(J - ((L™Y M) - (L"3W))), but I did not
consider more complicated NPs here. For examples like

(ACC) Mary wrote a paper and [(John and Bill) (two reviews)],
constructed by a “flat” syntax-rule
S — NPI°™ TV NP3* Conj NP3°™ NP3 [t],
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the value can be defined by the extended Peirce-term
t:= f(NPy, TV,NP3) A f(NP3, TV, NPy)

where f is one of the following, depending on whether coordinations
and quantifiers in the subject are to have wide scope or not:

f(NPl, TV,NPQ) = distTNP’VP(NPh diStTTV7NP(TV,NP2))7
f(]\/vpl7 TV,NPQ) = distrNP’Vp(NPQ, diStTTV,Np(TVV, NPl))
Note that the value TV from the initial constituent (NP; TV NPs) is

reused to evaluate the non-constituent [NP3 NPy].

This sketchy treatment of non-constituent coordination seems more
in line with ideas used in HPSG, see Beavers and Sag (2004), than with
those of combinatory categorial grammar, which rely on function types.
A treatment with product types is proposed in Houtman (1994).

14.5 Conclusion and open problems

We have proposed a solution to what was called the ‘one big thread to
the entire project of relational grammar’ in Jiger (2004), recursivity.
Essentially, we turn syntactic structure to values and admit evalua-
tion of expressions by structural recursion on those values, keeping the
grammar finite. For programming languages, where programs are large,
this would give values of intolerable size. For natural language, where
sentences are short, the tree values are shallow. However, if their leaves
are sets and relations in extension, we may also have a size and hence
complexity problem. So we better interprete the grammar in a Peirce
algebra P where sets and relations are abstract elements, not in a full
algebra Py . It deserves to be investigated if we can turn the definable
elements of a given Py into an abstract interpretation P with efficiently
computable operations.

The examples given show that our proposal is a useful and necessary
modification of Peirce grammar, but it needs to be clarified what we
have to pay. By adding the sort of trees we loose the equational ax-
iomatizability of Peirce algebra, since inequational Horn formulas are
needed to state the freeness assumptions for constructors (c.f. Maher
(1988)). Using the semantic annotations of grammar rules, we may
check the semantic validity of inferences based on grammatical form.
While this can be done by equational reasoning for Peirce grammar, for
extended Peirce grammar we will also need to reason by induction on
the tree structure, which seems acceptable. A less tolerable step away
from the equational theory of Peirce algebra is our use of recursion on
the subsumption order to define the relativization operation.

Our extension may be (mis)used to deviate radically from the strictly
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bottom-up way of evaluation in ordinary Peirce grammar: one can delay
evaluation to first-class values until the complete constituent structure
of an expression is mirrored in an intermediate second-class value.

Finally, trees as values offer an advantage over higher-order seman-
tic values of other frameworks: one may look for decidable relations
between trees that imply semantic equivalence. This also can be rele-
vant for checking the validity of grammatical inferences.
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Strong connectivity hypothesis and
generative power in TAG

ALESSANDRO MAZZEI, VINCENZO LOMBARDO AND
PATRICK STURT '

Abstract
Dynamic grammars are relevant for psycholinguistic modelling and speech
processing. However, formal treatments of dynamic grammars are rare, and
there are few studies that examine the relationship between dynamic and
phrase structure grammars. This paper introduces a TAG related dynamic
grammar (DVTAG) together with a study of its expressive power. We also
shed a new perspective on the wrapping operation in TAG.
Keywords Dynamic GraMMARS, TAG, WRAPPING, INCREMENTAL-
ITY

15.1 Introduction

Incrementality is a feature of human language analysis that is very
relevant for language modeling and speech processing. An incremen-
tal processor takes a string in left-to-right order and starts to build a
syntactic and semantic representation before reaching the end of the
sentence. The strong connectivity hypothesis is a parsimonious way
to formalize the incrementality of the syntactic process: people incor-
porate each word into a single, totally connected syntactic structure
before any further words follow (Stabler, 1994). Strong connectivity
is supported by some psycholinguistic evidence (Kamide et al., 2003,
Sturt and Lombardo, 2005).

Some traditional approaches to syntactic processing (both derivation

TWe thank an anonymous reviewer and Jim Rogers for many useful comments.

FG-MoL 2005.
James Rogers (ed.).
Copyright © 2009, CSLI Publications.
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and parsing) use a generative grammar and implement connectivity in
the derivation/parsing algorithm (Abney and Johnson, 1991). An al-
ternative approach is to change the perspective of investigation and
model the strongly connected syntactic process in the grammar for-
malism. Dynamic systems model cognitive processes as sequences of
states connected through transitions (Gelder, 1998). Like in automata
theory, a state encodes the syntactic process until some point in the
input string; then a string (one or several words) realizes the transition
to the subsequent state. However, in dynamic approaches the automa-
ton is not the result of a compilation of a generative grammar, but the
formalism itself (cf. Woods (1986)), without any necessary involvement
of generative rules.

The dynamic approach is not new in mathematical linguistics. Both
left-associative grammars (Hausser, 1992) and dynamic dependency
grammars (Milward, 1994) are examples of dynamic grammars. The
common traits of dynamic grammars are the definition of a (non nec-
essarily finite) recursive set of states, a finite subset of initial states,
a finite set of axioms or rules. In addition to these, the definition of
a dynamic grammar includes a way to assembly multiple applications
of the axioms (or rules), usually an explicit or implicit specification of
sequencing. However, an interesting abstraction in Milward’s specifica-
tion, called a deduction rule, allows several possibilities of assembling,
and so provides a dynamic account of non—constituent coordination
(Milward, 1994). In order to specify what are the legal strings of a lan-
guage, both Hausser and Milward indicate a finite set of final states (in
fact both approaches originate in a categorial grammar paradigm). We
can say that left-associative grammars and dynamic dependency gram-
mars incorporate the derivation process entirely. However, this is not
strictly necessary if we design the axioms (or rules) on a generative ba-
sis. In this paper we take a hybrid dynamic-generative approach: states
are partial structures that are licensed by a recursive process from a
finite basic lexicon; transitions extend the basic structures through a
finite number of generative operations. A state S; represents a partial
structure that spans the left fragment of a sentence wj...w;...w,. In
particular, we propose a Dynamic Version of TAG (DVTAG). DVTAG
is a dynamic grammar that fulfills the strong connectivity hypothesis,
has interesting consequences for constituency definition and linguistic
descriptions, and shares basic tenets with LTAG (i.e. lexicalization, ad-
joining and extended domain of locality) (Mazzei, 2005). We provide
a formal definition of DVTAG and a study of its expressive power.
We show that DVTAG is a mildly context-sensitive formalism and is
strongly equivalent to a restricted LTAG formalism, called dynamic



STRONG CONNECTIVITY HYPOTHESIS AND GENERATIVE POWER IN TAG / 169
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SO P () ADV (fvlad!!/) Mary

ADV
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FIGURE 1: The DVTAG derivation of the sentence John loves Mary
madly.

LTAG. Moreover we show that the introduction of wrapping operation,
an alternative view of adjoining based on flexible composition of the
derivation tree (Joshi, 2004), increases the generative power of DVTAG
and dynamic LTAG.

15.2 Informal introduction to DVTAG

In Fig. 1 we can see the DVTAG derivation of the sentence John loves
Mary madly. Like LTAG (Joshi and Schabes, 1997), a Dynamic Version
of Tree Adjoining Grammar (DVTAG) consists of a set of elementary
trees, divided into initial trees and auxiliary trees, and attachment op-
erations for combining them. Lexicalization is expressed through the
association of a lexical anchor with each elementary tree. To encode
lexical dependencies, each node in the elementary tree is augmented
with a feature indicating the lexical head that projects the node. The
head variable is a variable in logic terms: w3 will be unified with the
constant loves in the derivation of Fig. 1. The derivation process in
DVTAG builds a constituency tree by combining the elementary trees
via operations that are illustrated below. DVTAG implements the in-
cremental process by constraining the derivation process to be a series
of steps in which an elementary tree is combined with the partial tree
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FIGURE 2: The DVTAG derivation of the sentence Bill often pleases
Sue.

spanning the left fragment of the sentence. The result of a step is an
updated partial structure. Specifically, at the processing step i, the el-
ementary tree anchored by the i-th word in the sentence is combined
with the partial structure spanning the words from 1 to ¢ — 1 positions;
the result is a partial structure spanning the words from 1 to ¢. In DV-
TAG the derivation process starts from an elementary tree anchored by
the first word in the sentence and that does not require any attachment
that would introduce lexical material on the left of the anchor (such as
in the case that a Substitution node is on the left of the anchor). This
elementary tree becomes the first left-context that has to be combined
with some elementary tree on the right. At the end of the derivation
process the left-context spans the whole sentence, and is called the de-
rived tree: the last tree of Fig.1 is the derived tree for the sentence John
loves Mary madly.

In DVTAG we always combine a left context with an elementary tree,
then there are seven attachment operations. Adjoining is split into two
operations: adjoining from the left and adjoining from the right. The
type of adjoining depends on the position of the lexical material in-
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troduced by the auxiliary tree with respect to the material currently
dominated by the adjoined node (which is in the left-context). In Fig. 1
we have an adjoining from the right in the case of the left auxiliary tree
anchored by madly, and in Fig. 2 we have an adjoining from the left in
the case of the left auxiliary tree anchored by often. Inverse operations
account for the insertion of the left-context into the elementary tree. In
the case of inverse substitution the left-context replaces a substitution
node in the elementary tree; in the case of inverse adjoining from the
left and inverse adjoining from the right, the left-context acts like an
auxiliary tree, and the elementary tree is split because of the adjoining
of the left context at some node. In Fig. 1 we have an inverse substitu-
tion in the case of the initial tree anchored by John. Finally, the shift
operation either scans a lexical item which has been already introduced
in the structure or derives a lexical item from some predicted preter-
minal node. The grounding of the variable _wv; in Fig. 2 is an example
of shift.

It is important to notice that, during the derivation process, not all
the nodes in the left-context and the elementary tree are accessible for
performing operations: given the ¢ — 1-th word in the sentence we can
compute a set of accessible nodes in the left-context (the left-context
fringe); also, given the lexical anchor of the elementary tree, that in
the derivation process matches the i-th word in the sentence, we can
compute a set of accessible nodes in the elementary tree (the elemen-
tary tree fringe). To take into account this feature, the elementary tree
in DVTAG are dotted tree, i.e. a couple (v,7) formed by a tree v and
an integer i denoting the accessible fringe! of the tree (Mazzei, 2005).
The DVTAG derivation process requires the full connectivity of the
left-context at all times. The extended domain of locality provided by
LTAG elementary trees appears to be a desirable feature for imple-
menting full connectivity. However, each new word in a string has to
be connected with the preceding left-context, and there is no a pri-
ori limit on the amount of structure that may intervene between that
word and the preceding context. For example in the sentence Bill often
pleases Sue there is an intervening modifier between an argument and
its predicative head (Fig.2). The elementary tree Bill is linguistically
motivated up to the NP projection; the rest of the structure depends on
connectivity. These extra nodes are called predicted nodes. A predicted
preterminal node is referred by a set of lexical items, that represent a
predicted head. So, the extended domain of locality available in LTAG
has to be further extended. In particular, some structures have to be

n the figures we represent the integer using a dot.
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predicted as soon as there is some evidence from arguments or modifiers
on the left.

15.3 Formalizing DVTAG

Now we provide a formal definition of DVTAG using strings of a for-
mal language (a, b ¢, etc). In the definitions and proofs presented here,
we use DVTAG elementary trees without defining the notions of un-
derspecified heads and without the specification of the head-variable
(see previous section). In fact these two features are important for lin-
guistic description, but are irrelevant with respect to the generative
power. First, we provide some general terminology. Let ¥ be an alpha-
bet of terminal symbols, and V' an alphabet of non—terminal symbols.
a,b,c,d,... € X indicate terminal symbols, where ¢ is the null string.
A, B,C,D,... € V indicate non—terminal symbols, z,y,w,z € X* are
strings of terminals: |z| is the length of the string x. We use w; to
denote the i-th word in the sentence w. We denote initial trees with
«a, auxiliary trees with 3, derived and generic trees with 7,4, ¢, A%, N
denotes a node belonging to a tree, label(N) the label of this node.
foot(B) returns the foot node of an auxiliary tree 8. YIELD(y) is a
function that returns the frontier of v with the exception of foot nodes
(i.e. overt terminal nodes and substitution nodes). Finally, Y IELD;(v)
is the function that returns the i—th element of the Y IELD(~) whether
1 < i < |YIELD(v)|, otherwise it is undefined. As usual in TAG, to de-
note the position of a node A in a tree, we use its Gorn Address. Since
DVTAG is a lexicalized formalism, each elementary tree is anchored by
some lexical element. We refer to the leftmost lexical element in a tree
with the expression left-anchor. We call a tree v direct if YIELD1(7y)
is its left-anchor, moreover we call v inverse if YIELD:(7) is a sub-
stitution node and YIELD(y) is its left-anchor. While initial trees
are not different from the ones in LTAG, we distinguish three types of
auxiliary trees: left auxiliary trees Ay, as auxiliary trees where the foot
node is the rightmost node of the frontier, right auxiliary trees Ag as
auxiliary trees where the foot node is the leftmost node of the fron-
tier, wrapping auziliary trees Ay as auxiliary trees where the frontier
extends on both the left and the right of the foot node. We introduce
two useful notions that are borrowed from parsing algorithm tradition,
namely dotted tree and fringe.

Definition 35 A dotted tree is a pair (v,4) where v is a tree and 4
is an integer such that i € 0...|YIELD(y)]|.

2Conventionally we always use A to indicate the left-context.
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Given a set of (LTAG) elementary tree £ with (£,0), we will indicate
the set of dotted trees such that if y € £, then (7, 0) € &; we represent a
generic element of (£,0) with the underspecified dotted tree (-,0). The
fringe of (v, 1) is a set of nodes (split in a left fringe and a right fringe)
that includes all the nodes that are accessible for operating upon, that
is the fringe defines the domain of the attachment operations.

Definition 36 The left-fringe (Lfringe) of (v, %) is the set difference
between the set of nodes on the path from YIELD;(v) to root and the
set of nodes on the path from YIELD; () to root. The right-fringe
(Rfringe) of (v,14) is the set difference between the set of nodes on the
path from YIELD; () to root, and the set of nodes on the path from
YIELD;(v) to root. Moreover, if there is a null lexical item € on the left
(on the right) of YIELD;(y) (YIELD;;+1(Y)), all the nodes from ¢ up
to the lowest common ancestor of € and YIELD;(v) (YIELD;11(%)),
belong to the right and left fringes.

In Fig. 3 left and right fringes are depicted as ovals in the dotted trees.
Now we define seven attachment operations on dotted trees: two sub-
stitutions (similar to LTAG substitution), four adjoinings (similar to
LTAG adjoining), and one shift.

The Shift operation Shi((y,4)) is defined on a single dotted tree (v, %)
and returns the dotted tree (7,7 + 1). It can be applied only if a ter-
minal symbol belongs to the right fringe of (7,4): the dot is shifted on
the right of the next overt lexical symbol of the yield YIELD; 1(7)
(Fig. 3-a).

The Substitution operation Sub™ ((«, 0), (v, %)) is defined on two dot-
ted trees: a dotted tree (v,4) and an initial direct dotted tree («,0). If
there is in the right fringe of (-, ) a substitution node A and label(N) =
label(root(a)), the operation returns a new dotted tree (d,7 4+ 1) such
that § is obtained by grafting o in N(Fig. 3-b).

The Inverse Substitution operation Sub~ ({(,0), (7, 1)) is defined on
two dotted tree: a dotted tree (v,4) and an inverse elementary dotted
tree ((,0). If root(y) belongs to the left fringe of (v,4), and there is a
substitution node N belonging to the right fringe of ({,0) such that
label(N') = label(root(y)), the operation returns a new dotted tree
(6,7 + 1) such that § is obtained by grafting v in NV (Fig. 3-c).

The Adjoining from the left operation Vi ({83,0), (v,1),add) is de-
fined on two dotted trees: a dotted tree (v,4) and a direct left or wrap-
ping auxiliary dotted tree (3, 0). If there is in the right fringe of (v, )
a non-terminal node A such that label(N) = label(root(3)), the op-
eration returns a new dotted tree (4,7 + 1) such that ¢ is obtained by
grafting 8 in N (Fig. 3-d).
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The Adjoining from the right operation V3 ((3,0), (7, ), add) is de-
fined on two dotted trees: a dotted tree (v, %) and a direct right auxiliary
dotted tree ((,0). If there is in the left fringe of (7,4) a non-terminal
node N such that label(N) = label(root(3)), the operation returns a
new dotted tree (4,7 + 1) such that § is obtained by grafting 8 in N
(Fig. 3-e).

The Inverse adjoining from the left operation Vi ((¢,0), (v, i), add)
is defined on two dotted trees: a dotted tree (v,i) and a direct ele-
mentary dotted tree ((,0). If foot(y) belongs to the fringe of (v,17),
and there is a node N belonging to right fringe of (¢,0) such that
label(N) = label(foot(7y)), the operation returns a new dotted tree
(6,7 + 1) such that § is obtained by grafting v in A (Fig. 3-f).
Inverse adjoining from the right operation Vi ((¢,0), (v, 1), add)
is defined on two dotted tree: (v,4) and the direct elementary dotted
tree (¢, 0). (¢,0) has a null lexical item (e node) as first leaf. If root ()
belongs to the fringe of (v,4), and there is a node N belonging to left
fringe of (¢,0) such that label(N') = label(root(vy)), the operation re-
turns a new dotted tree (4,7 + 1) such that ¢ is obtained by grafting
in M (Fig. 3-g).

Using the definitions given above, we can formally define DVTAG.

Definition 37 Let (£,0) be a finite set of elementary dotted trees, a
DVTAG G((€,0)) is a triple consisting of:

(1) Set of initial left-context: the finite set of direct dotted trees
<A0, O> S <870>

(2) Set of axiom schemata: there are three kinds of schemata to
update the left-contexts:

1.

<'a O> — <A17 1>
Shi({A1,0))
where the terminal symbol a is the left-anchor of the initial left-context
(Aq1,0).
2.

(Aivi) —— (Aipr,i+ 1)
Shi((Ai,i))
where the terminal symbol a belongs to the right fringe of (A;,4) and 4
ranges over the natural numbers.
3.

(A, 1) OL> (Aiyr1,i+1)

a
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FIGURE 3: Operations in DVTAG.
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where
Sub™ ({a, 0), (A, 7))
Sub™ ((¢, 0), (Ai,4))
opa = Vi ((8,0), (A, i), add)
¢ V& ((8,0), (A, i), add)
Vi ((¢,0),{A;, 1), add)
Vi (¢, 0), (A, i), add)

and a is the left-anchor of («, 0), (¢,0), (3,0), (¢,0) respectively. For
V1, Vg,V , Vg, add is the Gorn address of the adjoining node, and
where ¢ ranges over the natural numbers.

(3) Deduction rule that specifies the sequentiality of the derivation
process

. aj...an . X by...b;m
<Ai7l> — <Aj7.]> <Aj7j> — <Ak7k>
OPay ++-OPay, OPp ---OPb,,

a1...anbi...bm
OPay +-0Par, ODby ---0Pbr,

DVTAG defines implicitly the infinite space of derivable left-contexts,
i.e. the (recursive) set of left-contexts that are reachable with a finite
number of operations starting from an initial left-context. In order to
define the language generated by a DVTAG we have to define the notion
of final left-context. Both dynamic dependency grammars (Milward,
1994) and left-associative grammars (Hausser, 1992) explicitly define
the finite set of the final state. In contrast, in our hybrid dynamic—
generative approach we define the set of final left-contexts on the basis
of their structure. We call a left-context (A,,n) final if A, has no
substitution or foot nodes in the yield.

Definition 38 A string w;...w, (n natural number) is generated by

a DVTAG G((£,0)) if and only if (-, 0) N (A, n) is derivable in
OPwq +++-OPwy,
G((£,0)) and (A,,n) is final. Moreover, a tree A,, (n natural number)
YIELD(An)
is generated by a DVTAG G((£,0)) if and only if (-,0) ——— (A,,n)

OPwy +-0Pwy,
is derivable in G({&,0)) and (A, n) is final.

In contrast to the standard definition of generative grammars, the Def-
inition 37 describes the derivation process as part of the definition of
the grammar. Note that the notion of left-context corresponds to the
notion of sentential form of the usual generative grammars. A dynamic
grammar explicitly includes the derivability of a left-context, whereas
this notion is outside of the grammar in the standard generative for-
malization. The dynamic approach allows us to define several deduc-
tion rules for derivation: Milward used this feature to take into account
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FIGURE 4: A DVTAG derivation for the sentence “abcf”.

the non-constituent coordination in the dynamic dependency grammars
(Milward, 1994). Finally, we formalize the notion of derivation chain:

Definition 39 Given a string w; ...w,, derivable by G({£,0)), a deriva-
tion chain d is the sequence of left-contexts (Ag,0){A1,1)...(A,,n)

such that (Ag, 0) is an initial left-context, (A,,n) is a final left-context

and <Ai_1,i — 1> O;ll) <A“Z> 1€ l..n.

In Fig. 4 there is a DVTAG derivation chain for the sentence “abcf”,

using some elementary dotted tree of Fig. 3

15.4 Generative power of DVTAG

In this section we show that for each DVTAG there exists a LTAG that
generates the same tree language, i.e. L(DVTAG) C L(LTAG); then
we show that L(CFG) C L(DVTAG); the consequence of these results
is that DVTAG is a mildly context-sensitive formalism (Vijay-Shanker
et al., 1990). In the proof of the second result we introduce a restricted
LTAG formalism called dynamic LTAG (dLTAG). For the proofs that
follow it is useful recall the notion of derivation tree in LTAG. Given a
G1(€) LTAG, a derivation tree D for GG is a tree in which each node
of the tree is the identifier of an elementary tree y belonging to £, and
each arc linking a parent v to a child 7" and labeled with Gorn address
t, represents that the tree «' is an auxiliary tree adjoined at node ¢ of
the tree ~, or that 4/ is an initial tree substituted at the node ¢ in ~
(Joshi and Schabes, 1997). The constituency tree that results from the
derivation described by a derivation tree D is called the derived tree
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derived(D). In LTAG there are no constraints about the order in which
the elementary trees are combined in the derivation tree. In order to
compare DVTAG and LTAG derivations we introduce the notion of
partial derivation tree. Given a derivation tree D, we define a partial
derivation tree PD as a connected subgraph of D; a partial derived
tree derived(PD) is yielded from a partial derivation tree PD.

Theorem 41 Let® G1(€) be a LTAG, let Go((€,0)) be a DVTAG
and let D be a derivation tree of G1(E) that derives the string wy...wy,
from the elementary trees ~yi...vn. There exists a sequence of par-
tial derivation trees PDi,PDs,....,PD, of D such that each PD;
is composed by the trees vy...v; if and only if there exists a deriva-
tion chain d of Go({€,0) such that d = (Ag,0){(A1,1)...(A,,,n) with
A; = derived(PD;) Vi € 1...n.

Proof (sketch) From the definitions of partial derivation tree, PD; 1
is equal to PD; but the node ~;11. Since LTAG operations preserve
precedence and dominance relations among two nodes of the partial de-
rived tree?, we have that w;...w; is a prefix of YIELD(derived(PD;)).
As a consequence, in derived(PD;y1) there are no substitution nodes
on the left of the left-anchor of «;41. Since G; and Gy use the same
trees, we can show that there is a bijection between all the possible
ways of inserting ;11 into PD; in LTAG and the DVTAG operations
that implement the transition between (A;,4) and (A; 11,7+ 1). This is
shown for each ¢ through an induction process. O

A corollary of this theorem shows that a LTAG G; generates only
derivation trees D such that exists a sequence of partial derivation
trees of PDy, PDs,...., PD,, such that each PD; is composed by the
trees 71...y;, if and only if there is a DVTAG G that generates the
same tree languages.

Given a partial derivation tree PD we write w; < w; if on the yield of
derived(PD) w; precedes w; and we write v; < ; if w; < w;, where
w; and w; are the left-anchors of v; and -y; respectively.

Now we define dLTAG and then we show that dLTAG respects the
hypotheses of the theorem 41.

Definition 40 A partial derivation tree PD is dynamic if: (1) Each
node 7; in PD has at most one child v; such that v; < 7;, (2) If a
node ; in PD has a child v; such that v; < ;, then -; does not have
a child ~y; such that v, < ;.

3For space reasons in the proof sketch of this theorem we assume that each ~; is
anchored by only one lexical item w;.

4L.e. the precedence and dominance relations among the nodes N7 and N3 in
PD; will be the same in PD;4 ;Vj > 0.
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We define dLTAG by constraining the derivation trees to be dynamic,
thus satisfying the hypotheses of theorem 41 as shown in the the fol-
lowing theorem.

Theorem 42 Let D be a derivation tree formed by the nodes v1...vn
of LTAG G1(€) that generates the string wi...w,. A sequence of partial
derivation trees PDy, PDs, ...., PD,, of D ezists and PD; is formed by
Y1.-v (Vi€ l..n) if and only if D is dynamic.

Proof  (sketch) We can prove the theorem by reductio ad absurdum.
Supposing that D is dynamic, we can show that if the strong connec-
tivity of the sequence of partial derivation tree is not fulfilled by a node
~; (hypotheses of theorem 42) we arrive at the absurdum that on the
node ~y;, D does not fulfill the dynamic definition. Similarly, supposing
that D fulfills the strong connectivity hypothesis, we can show that the
two conditions of the Definition 40 cannot be violated. O

A corollary of the theorems 41 and 42 states that DVTAG class of
grammars generate the same tree languages of dynamic LTAG class
of grammar. Given the constraints in the definition 40 we have that
L(ALTAG) C L(LTAG)®, since DVTAG is equivalent to dLTAG we
have that L(DVTAG) C L(LTAG). Now we show that L(CFG) C
L(DVTAG) by showing that L(CFG) C L(dLTAG). This fact is
proved by exploiting the notion of normal form for derivation tree in
LTIG (Schabes and Waters, 1995). LTIG is a particular LTAG that is
strongly equivalent to CFG, with some limitations on the elementary
trees and some limitations on the operations. It is possible to transform
a derivation tree for a LTIG in normal form into a dynamic derivation
tree with a simple algorithm (Mazzei, 2005). As a consequence, for
each CFG there is dynamic LTIG that generates the same tree lan-
guage, then there is a DVTAG that generates the same tree language.
Now we use the results described above to prove that DVTAG is a
mildly context-sensitive formalism, i.e. DVTAG generates cross-serial
dependencies (1), generates the context-free languages (2), is parsable
in polynomial time (3), has the constant-growth property (4). DVTAG
fulfills properties (3) and (4) as a direct consequence of the inclu-
sion in LTAG. Moreover we have sketched the proof that L(CFG) C
L(DVTAG), then DVTAG can generate all the context-free grammars.
About (1) we need to introduce the wrapping perspective in DVTAG
(next section).

5We can define a procedure that takes as input a dLTAG and returns a LTAG
that using selective adjoining constraints generates the same tree language.
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Adjoining
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FIGURE 6: Derivation tree for the sentence “abebe” in adjoining (b) and
wrapping (c) perspective.

15.5 Wrapping and DVTAG generative power

Figure 5 shows the two perspectives for the adjoining operation, either
inserting an auxiliary tree 3 into v (Fig. 5-a) or splitting v into v; and
~2 to include S (wrapping perspective, Fig. 5-b) (Joshi, 2004). If v is an
elementary tree, the wrapping operation does not change the weak and
strong generative power of LTAG. However, since the wrapping opera-
tion can generate a wider set of derivation tree, on the subclass of dL-
TAG it does increase the strong generative power. A LTAG derivation
that is not a dynamic derivation in standard LTAG can be a dynamic
derivation in LTAG with wrapping operation. The LTAG elementary
trees in Fig. 6-a generate the cross-serial dependencies (Joshi, 2004),
but the derivation tree of Fig. 6-b for the string “abcbc” is not dynamic.
As a consequence, we cannot derive the cross-serial dependencies in
DVTAG. But if we rewrite this derivation tree by using wrapping, we
obtain the tree of figure 6-c. In fact the adjoining of 3, in (. becomes
the wrapping of G, in ;. We can define a dynamic wrapping in DV-
TAG that maintains the strong equivalence between dynamic LTAG
with wrapping and DVTAG with dynamic wrapping, and so we can
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produce a derivation chain that derives cross-serial dependencies. Then
DVTAG is mildly context-sensitive.

15.6 Conclusions

In this paper we have defined a dynamic version of TAG. We have
sketched the basic issues of the formalism, and using these notions we
have proved that DVTAG is mildly context sensitive. We have shown
that DVTAG can generate cross-serial dependencies using a dynamic
wrapping.
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Inessential Features, Ineliminable
Features, and Modal Logics for
Model Theoretic Syntax

HANS-JORG TIEDE |

Abstract

While monadic second-order logic (MSO) has played a prominent role in
model theoretic syntax, modal logics have been used in this context since its
inception. When comparing propositional dynamic logic (PDL) to MSO over
trees, Kracht (1997) noted that there are tree languages that can be defined
in MSO that can only be defined in PDL by adding new features whose
distribution is predictable. He named such features “inessential features”. We
show that Kracht’s observation can be extended to other modal logics of
trees in two ways. First, we demonstrate that for each stronger modal logic,
there exists a tree language that can only be defined in a weaker modal logic
with inessential features. Second, we show that any tree language that can
be defined in a stronger modal logic, but not in some weaker modal logic,
can be defined with inessential features. Additionally, we consider Kracht’s
definition of inessential features more closely. It turns out that there are
features whose distribution can be predicted, but who fail to be inessential
in Kracht’s sense. We will look at ways to modify his definition.

Keywords MobpeL THEORETIC SYNTAX, MobpaL Locic, TREE Au-
TOMATA

16.1 Introduction

Model theoretic syntax is a research paradigm in mathematical lin-
guistics that uses tools from descriptive complexity theory to formalize

TThis research was supported by an Illinois Wesleyan University grant and a
junior leave.

FG-MoL 2005.
James Rogers (ed.).
Copyright © 2009, CSLI Publications.
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grammatical theories using logic. It is the aim of model theoretic syntax
to find for a given grammatical theory the weakest logic that suffices to
formalize it (Cornell and Rogers, 2000). At present there exist two main
approaches to model theoretic syntax, those based on modal logics and
those based on monadic second order logic. Since there are few, if any,
linguistic examples that cannot be defined in the weakest modal logic
that has been considered, it is not always clear what motivates the use
of the more expressive logics. We want to argue here that there are rea-
sons for using weaker frameworks. The present study does not aim at
finding the “true” logic for model theoretic syntax. Instead, it is guided
by the methodological principle that we should always use the weakest
formalism that suffices to capture the phenomena under consideration,
and that the use of stronger formalisms should be justified.

In Afanasiev et al. (2005), three different modal logics for the descrip-
tion of trees are discussed: a basic modal logic of trees, L.ore, Palm’s
tense logic of trees, L., and Kracht’s dynamic logic of trees, PDL;,cc.
While the relationship between these logics and to others used in model
theoretic syntax is well-understood, in that each stronger logic includes
the weaker ones properly, and that all are properly included in Roger’s
Monadic Second Order Logic of Trees (MSO) (Rogers, 1998), the re-
lationship of these logics to tree languages is not as well understood.
We will make use of Kracht’s (Kracht, 1997) concept of an inessential
feature to get a better understanding of the tree languages that are
definable or undefinable in these logics.

Kracht introduced the concept of an inessential feature to formal-
ize the concept of a feature whose distribution is predictable from the
other features. Two well-known linguistic examples of inessential fea-
tures are the Slash feature of GPSG and Bar feature of X-bar theory.
In addition to inessential features, Kracht also considered whether a
feature is eliminable in some logic, which he identified with being glob-
ally explicitly definable. We will consider a slightly weaker notion of
eliminability, but since we are mainly interested in ineliminability, this
notion implies Kracht’s by contraposition. It was shown by Kracht that
there exists a set of feature trees that is definable in PDLy,.. and an
inessential feature that is ineliminable in PDLy,.., but eliminable in
MSO. The main purpose of this observation was to show that PDL;.cc
is strictly weaker than MSO over trees.

We show that Kracht’s theorem can be generalized to all three modal
logics of trees. The proof of this result involves Thatcher’s theorem,
which states that every regular tree language is the projection of a
local tree language, and relates it to Kracht’s inessential features. When
applied to deterministic bottom-up finite tree automata, Thatcher’s
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construction of a local tree language introduces inessential features.

We also consider the definition of inessential features more closely.
We want to argue that Kracht’s formalization is too strong, as there are
tree languages with features whose distribution can be predicted from
the other features, but which fail to be inessential in Kracht’s sense.
Such features can be constructed by using Thatcher’s construction on
non-deterministic tree automata. It can be shown that such features
can be turned into inessential features, which can then be eliminated
in MSO. Thus, logics that can eliminate any inessential feature may be
too strong. This can be seen as support for the use of weaker logics for
model theoretic syntax.

16.2 Features and Ranked Alphabets

Kracht’s definition of inessential features is given in the context of fea-
ture trees, in which each node is labeled with a set of boolean features.
We are here considering trees to be terms over a ranked alphabet which
differ from feature trees in that each node is labeled with a single sym-
bol which has a fixed arity. We will use the following representation
of boolean features as ranked symbols to translate feature trees into
terms.

Definition 41 Given a finite set of boolean features F' = {f1, ..., fu},
the (binary) ranked alphabet based on F, ¥F . is defined as

SF = {fi,~fi} x - x {fa, ~fn} x {0,2}

where each f;, —f; represents whether or not a feature holds at a given
node and 0 or 2 represent the aritiy of the symbol. Thus, (fi,f2,0)
would be a leaf symbol, and (f1,—f2,2) would be an internal node
symbol. O

The previous definition can be easily generalized to trees of any arity.

Definition 42 A tree is a term over a finite ranked alphabet 3. The
set of n-ary function symbols in 3 will be denoted by X,,. The set of all
trees over X is denoted by T%; a subset of Ty, is called a tree language.
The yield of a tree t, denoted by yield(t), is defined by

yield(c) = ¢
yield (f (t1,...,tn)) = yield(t1)---yield (t,)
with ¢ € ¥g and f € ¥,,,n > 0. O

We next define projections which we will use to study eliminability of
features in the context of terms.
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Definition 43 Given a finite set of feature F' = {f1,..., f,} and a
feature f; € F, we define the projection, 7, that eliminates f; in the
natural way:

D L Y b
This definition can be extended to arbitrary subsets G C F', where

r: 2 - pf-¢
Given a projection 7, we extend 7 to a tree homomorphism 7 as follows:
w(c) = m(c)
T(f(tr,-ntn)) = w(f)(E(t), ..., 7 (tn))

with ¢ € ¥g and f € X,,,n > 0. For a tree language L, we define
#(L) ={#(t) |t € L}. O

16.3 Regular Tree Languages, Local Tree Languages,
and Thatcher’s Theorem

The regular tree languages play a central role in model theoretic syntax
because they correspond to the MSO-definable languages. There are
different, equivalent ways of defining the regular tree languages. We
will use bottom-up (frontier-to-root) finite tree automata, because they
can be determinized.

Definition 44 A (bottom-up, non-deterministic) finite tree automa-
ton (FTA) M is a structure (X, @, F, A) where ¥ is a ranked alphabet,
() is a finite set of states, F' C @ is the set of final states, and A is a
finite set of transition rules of the form f(q1,...,q,) — ¢ with f € &,
and ¢q,q1,...,q, € Q. An FTA is deterministic if there are no two tran-
sition rules with the same left-hand-side. O

Definition 45 A context s is a term over Y U{x} containing the zero-
ary term z exactly once. We write s[x +— t] for the term that results
from substituting x in s with ¢. a

Definition 46 Given a finite tree automaton M = (X,Q, F, A) the
derivation relation = C Tguy X Tgus is defined by t =, ¢’ if for

some context s € Txuquys} there is a rule f(qi,...,¢,) — ¢ in A, and
t = slz— flqr,.--,qn)]
t = sz q

We use =7}, to denote the reflexive, transitive closure of = ;. A finite
automaton M accepts a term t € Ty, if t =7}, ¢ for some g € F. The
tree language accepted by a finite tree automaton M, L(M), is

L(M)={teTs |t=);q, for some q € F'}.
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A tree language, L, is regular if L = L(M) for some FTA M. O

We will now consider the relationship between regular tree languages
and context-free string languages. We assume that the reader is familiar
with context-free grammars (CFGs) and their languages (CFLs).

Theorem 43 (Thatcher, 1967) If L C T, is regular, then
{yield(t) | t € L}
is a CFL. d

While the yields of regular tree languages are CFLs, regular tree lan-
guages are more complex than the derivation trees of CFG. In order to
compare the regular tree languages to the derivation trees of CFGs, we
formalize the latter using the local tree languages.

Definition 47 The fork of a tree t, fork(t), is defined by
fork(c) = @

fO?“k(f(tl,”' 7tn)) = {(ferOt(tl)a'"aTOOt(tn))}U Ufork(tz)
=1

with ¢ € ¥g, f € X,,n > 0, and root being the function that returns
the symbol at the root of its argument. For a tree language L, we define

fork(L) = U fork(t)
teL
O

The intuition behind the definition of fork is that an element of
fork(Ts) corresponds to a rewrite rule of a CFG. Note that fork(Tx)
is always finite, since ¥ is finite.

Definition 48 A tree language L C T is local if there are sets R C X
and E C fork(Tx), such that, for all ¢t € Tx,t € L iff root(t) € R and
fork(t) C E. O

We quote without proof the following two theorems by Thatcher (1967).

Theorem 44 (Thatcher, 1967) A tree language is a set of derivation
trees of some CFG iff it is local. O

Theorem 45 (Thatcher, 1967) Every local tree language is regular.
d

While there are regular tree languages that are not local, the following
theorem, also due to Thatcher (1967), demonstrates that we can obtain
the regular tree languages from the local tree languages via projections.
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We will review the main points of the proof, because we will use some
of its details later on.

Theorem 46 (Thatcher, 1967) For every regular tree language L,
there is a local tree language I’ and a projection 7, such that L = #(L').

Proof Let L be aregular tree language accepted by M = (3,Q, F, A).
We define L’ terms of R and E as follows: R =X x F and

EZ{((va),(f17Q1),7(fn7Qn)) |f(QI7"'7Qn)_)q€Aa
fl,...7fn62}

We then define L' = {t € Tnxg | root(t) € R, fork(t) C E}. Notice
that the trees in L’ encode runs of M. That the tree homomorphisms
# based on the projection 7 : ¥ x  — X maps L’ to L can be easily
verified.

It should be noted that, if M is deterministic, there exists exactly
one accepting run for each tree in L(M) and thus the homomorphism
#: L' — L is one-to-one. O

16.4 Modal Logics for Model Theoretic Syntax

Model theoretic syntax is concerned with the definability of grammat-
ical theories in certain logics. While MSO has been a particularly suc-
cessful logic for this purpose, modal logics have been used for model
theoretic syntax from its inception. We now define three modal logics
that were considered by Afanasiev et al. (2005).

Definition 49 The syntax of formulas for all three modal logics is
defined as follows:

p:=pi| el AP []e
The syntax of programs is defined for each of the three logics:

mi=— |17 (Leore)
=== 1|l me? | (Lep)
W:—)l‘_|T|l‘ (p7 | ™, 0 | TUo ‘ 7T* (PDLtree)

Given a logic £, we will denote the set of formulas of £ over a finite set
of atomic formulas F by £F. 0

The following definition is adapted from Afanasiev et al. (2005). We
consider only binary trees here.

Definition 50 Let {0,1}* denote the set of finite sequences over
{0,1}. A (binary) tree structure is a tuple (T, R}, R_,) where T is a bi-
nary tree domain, i.e. 7' C {0, 1}*, such that if uv € T, then u € T, and
if ul € T, then w0 € T, R is the daughter-of relation, i.e. (n,m) € R,
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iff m =n0 or m = nl, R_, is the left-sister-of relation, i.e. (m,n) € R_.
iff m = s0 and n = s1 for some s. A model is a pair M = (7,V), such
that 7 is a tree structure and V : F' — o(T) is a valuation. We define
M, v = ¢ in the usual way, the only interesting case being:

M, v = [r]p iff for all u, such that (v,u) € Ry, M,u = ¢

and

Ry =R[! Rrxuo = Rx UR,

R =R Rro=Rs0R,

Ree = Ry Reyr = {(v,0) | Mv |= ¢}
where R* denotes the transitive closure of R and o denotes relation
composition. O

We can associate terms with tree models by identifying the atomic
formulas with features.

Definition 51 Let F' be a finite set of features and £ be a logic. We
say that L C Txr is definable in L if there is a formula ¢ in £ such
that

L={t|telF ¢}
where ¢ is the root of the tree. We write £, < Lo if any tree language
definable in £ is definable in Lo. [l

The following two proposition relate tree languages to definability. The
first is due to Blackburn and Meyer-Viol (1994) who proved it for a
related logic.

Proposition 47 (Blackburn and Meyer-Viol, 1994) Every local tree
language is definable in L.yp. O

Proposition 48 (Thatcher and Wright, 1968) A tree language is reg-
ular iff it is MSO-definable. 0

The following, well-known, inclusions follow primarily from the defini-
tion of the three modal logics. Next, we will consider strictness of these
inclusions.

Theorem 49 L., < Loy < PDLyee < MSO

Proof The first two inclusions follow from Definition 49. The third
inclusion follows from the fact that transitive closure is MSO-definable.
O

Proposition 50 (Schlingloff, 1992) Let F' = {a, b}. The tree language
L1 C Txr such that each tree in L contains a path from the root to
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a leaf at which exactly one a holds is not L.o..-definable, but is L.p-
definable. 0

Proposition 51 Let ¥ = {A,V,0,1}. The tree language Ly C Tx
such that each tree in Ly evaluates to true is not L.,-definable, but is
PDL;,c.-definable.

Proof Potthoff (1994) showed that Ly is not definable in an exten-
sion of first-order logic with modular counting quantifiers, and since
Lcp is equivalent to first-order logic on trees (Afanasiev et al., 2005),
the undefinability follows. That Lo is definable in PDLy,.c. is shown in
Afanasiev et al. (2005). O

Proposition 52 (Kracht, 1999, 2001) Let F' = {p,q}. Let L3 C Txr
where each tree in L is a ternary branching tree such that p is true
along a binary branching subtree and ¢ is true at all leaves at which
p is true. The language Ly C Ty;(4; obtained from the projection that
eliminates p is not PDL;,.c.-definable, but is MSO-definable. O

Next, we will consider how languages that are undefinable in one of
these logics can be defined with additional features.

16.5 Inessential and Ineliminable Features

The following definition of inessential features is adapted from Kracht
(1997). Its purpose is to formalize the concept of a feature whose dis-
tribution in a language can be predicted from the other features.

Definition 52 Let F' be a finite set of features, G C F', L C Tx;r, and
7 %F — ¥F=C be a projection. We call the features in G inessential
for L if the homomorphism 7 : L — Txr-c¢ based on 7 is one-to-one. ]

The intuition for this definition of inessential features is that no two
trees in L can be distinguished using features in G. Thus, given a tree
t in 7(L), we can recover the features from G in t using 71, since 7 is
one-to-one. While being an inessential feature is defined with respect
to a language, being eliminable is defined with respect to a logic and a
language.

Definition 53 Let F' be a finite set of features, G C F, L C Txr,
7 : %F — BF=C be a projection, and £ be a logic. Suppose that L
is definable in L. We say that G is eliminable in L for L if #(L) is
definable in £F~C. O

It should be noted that this definition of eliminability does not coincide
with Kracht’s (Kracht, 1997), who defines eliminable as being globally
explicitly definable. Kracht’s definition implies the definition used here,



INESSENTIAL FEATURES, INELIMINABLE FEATURES, AND MODAL Logics / 191

and thus is stronger. However, since we are interested in ineliminabil-
ity, by contraposition, the definition employed here implies Kracht’s
definition of ineliminability. Kracht’s proof of Proposition 52 depends
on the following proposition.

Proposition 53 (Kracht, 2001) The feature p in Proposition 52 is
inessential for L3, but ineliminable in PDLy, . O

We now show how to generalize Kracht’s theorem to Leore and Lep:

Theorem 54 There exists a set of features F, a tree language L C
Ts.r, and a subset G C F, such that G is ineliminable in L.ore (resp.
L.p) but eliminable in L., (resp. PDLyyc).

Proof Both of these construction work the same way. Given two of
our logics L1, Lo, with £; < Lo, pick a tree language, L, that is not
definable in £, but is definable in L5, which exists by Propositions 50
and 51.

By Theorem 49, we know that L is regular, and by Theorem 47, we
know that any local tree language is definable in £;. Given a deter-
ministic FTA M = (X,Q, F,A), with L = L(M), we can use theorem
46 to construct a local tree language L' C Ty such that #(L’) = L.
Now, the features in () are inessential, since M is deterministic, but
ineliminable, since L is undefinable in £;. However, since L is definable
in Lo, the features in ) are eliminable in L. 0

The previous theorem can be strengthened in that it can be used to
characterize the tree languages that are undefinable in some logic £
but definable in some other logic Lo, with £1 < L.

Theorem 55 Any tree language that is not definable in L.y (resp.
Lcp) but is definable in L., (resp. PDLy,cc) can be defined with addi-
tional, inessential features in Leore (resp. L¢p) that are not eliminable
in Leore (resp. Lep). O

While it was pointed out by Volger (1999) that these and other logics
that are used in model theoretic syntax are equivalent modulo a projec-
tion, the main contribution of these two theorems is that they connect
Volger’s observation to Kracht’s inessential features. It thus demon-
strates the central role that inessential features play in the comparison
of logics for model theoretic syntax.

16.6 Inessential Features and Non-Deterministic Tree
Automata

We now want to consider the definition of inessential features more
closely. As was pointed out by Kracht (1997), the purpose of Definition
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52 was to formalize the concept of a feature whose distribution is fixed
by the other features. We now want to assess whether this formalization
captures this concept correctly. For this assessment, the relationship
between inessential features and Thatcher’s theorem will again play a
central role; but this time, we will consider the construction in Theorem
46 using non-deterministic FTAs.

Recall that the observation that Thatcher’s theorem yields a lan-
guage with inessential features depended on the use of a determinis-
tic FTA, since each tree accepted by a deterministic FTA has exactly
one accepting run. When we apply Thatcher’s construction to non-
deterministic tree automata, there can be two different accepting runs
for a given tree, and so the added features fail to be inessential in
Kracht’s sense. However, it is clear that the distribution of the states
that are used as extra features can be predicted from the other fea-
tures, in the sense that we can label a tree that is accepted by a non-
deterministic FTA with the states from an accepting run. It’s just that
there are potentially multiple such accepting runs.

Since bottom-up tree automata can be determinized, these features
can be turned into inessential features using the power set construction,
and since any inessential feature can be eliminated in MSO (Kracht,
1997), we can now eliminate an essential feature. This observation sheds
light on the question whether the fact that certain logics cannot elimi-
nate some inessential features is a strength or a weakness of that logic,
i.e. whether or not we want logics for model theoretic syntax to be able
to eliminate all inessential features. If we can turn essential features
into inessential features and then eliminate them, a logic in which all
inessential features can be eliminated may be too strong. This can be
seen as support for the use of weaker logics for model theoretic syntax.

It should be noted that lifting the restriction that the homomorphism
7 based on a projection m be one-to-one in order to extend Kracht’s
definition can easily make it vacuous, since any feature can be removed
with a projection that is not one-to-one. What is needed is a mechanism
that captures the essence of the example above. One approach might be
to identify an inessential feature with a feature that is determinizable
in the sense that a feature can be turned into an inessential feature
using the power set construction. That this approach is not vacuous
can be verified by applying Thatcher’s construction to top-down (root-
to-frontier) FTAs, which cannot be determinized. We leave the question
how this definition of an inessential feature might relate to definability
and eliminability as an open problem.
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16.7 Conclusion

After significant progress in formalizing grammatical theories, one of
the more pressing foundational questions in model theoretic syntax
right now is how to assess in which logic to carry out this formaliza-
tion. Since the logics considered here differ only with respect to which
inessential features are eliminable, the central question for this assess-
ment is whether the ineliminability of such features is a strength or a
weakness of a given logic. It is argued here that, in some cases, inelim-
inability can be a strength. It would be interesting to consider inessen-
tial features from linguistic applications and assess their eliminability
in the logics considered here.
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Well-Nested Drawings
as Models of Syntactic Structure

MANUEL BODIRSKY, MARCO KUHLMANN AND
MATHIAS MOHL

Abstract

This paper investigates drawings (totally ordered forests) as models of
syntactic structure. It offers a new model-based perspective on lexicalised
Tree Adjoining Grammar by characterising a class of drawings structurally
equivalent to TAG derivations. The drawings in this class are distinguished
by a restricted form of non-projectivity (gap degree at most one) and the
absence of interleaving substructures (well-nestedness).

Keywords MOoDEL-THEORETIC SYNTAX, TREE ADJOINING GRAM-

MAR

17.1 Introduction

There are two major approaches to formal accounts of the syntax of nat-
ural language, the proof-theoretic and the model-theoretic approach.
Both aim at providing frameworks for answering the question whether
a given natural language expression is grammatical. Their methodol-
ogy, however, is rather different: In a proof-theoretic framework, one
tries to set up a system of derivation rules (such as the rules in a
context-free grammar) so that each well-formed natural language ex-
pression stands in correspondence with a derivation in that system.
In contrast, in a model-theoretic framework, one attempts to specify
a class of models for natural language expressions and a set of con-
straints on these models such that an expression is well-formed iff it
has a model satisfying all the constraints. The main contribution of this
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paper is the characterisation of a class of structures that provides a new
model-based perspective on Tree Adjoining Grammar (TAG; Joshi and
Schabes (1997)), a well-known proof-theoretic syntactic framework.

Every syntactic framework needs to account for at least two dimen-
sions of syntactic structure: derivation structure and word order. The
derivation structure captures linguistic notions such as dependency and
constituency—the idea that a natural language expression can be com-
posed of smaller expressions. Statements about word order are needed
to account for the fact that not all permutations of the words of a
grammatical sentence are neccessarily grammatical themselves.

One of the scales along which syntactic frameworks can vary is the
flexibility they permit in the relationship between derivation structure
and word order. Context-free grammars do not allow any flexibility at
all; derivation structure determines word order completely. In mildly
context-sensitive grammar formalisms like TAG or Combinatory Catego-
rial Grammar (Steedman, 2001), certain forms of discontinuous deriva-
tions are permitted (“crossed-serial dependencies”). Other frameworks,
such as non-projective dependency grammar (Platek et al., 2001), allow
for even more flexibility to account for languages with free word order.

In this paper we introduce drawings, a simple class of structures for
which the relaxation of the relationship between derivation structure
and word order can be easily measured (§ 17.2). There is a natural way
in which TAG derivations can be understood as drawings (§17.3). We
show that the class of drawings induced in this way can be identified
by two structural properties: a restriction on the degree of word order
flexibility and a global property called well-nestedness, which disallows
interleaving subderivations. In combination, these two properties cap-
ture the “structural essence” of TAG (§17.4). The paper concludes with
a discussion of the relevance of our results and an outlook on future
research (§17.5). For further details and full formal proofs, we refer to
the extended version of this paper (Bodirsky et al., 2005).

17.2 Drawings

We start by introducing some basic terminology.

17.2.1 Relational structures

A relational structure is a tuple whose first component is a non-empty,
finite set V of nodes, and whose remaining components are (in this
paper) binary relations on V. The notation Ru stands for the set of all
nodes v such that (u,v) € R. We use the standard notations for the
transitive (R*) and reflexive transitive (R*) closure of binary relations.

In this paper, we are concerned with two types of relational struc-
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FIGURE 1: Two drawings

tures in particular: forests and total orders. A relational structure (V; <)
is called a forest iff < is acyclic and every node in V has at most one
predecessor with respect to <. Nodes in a forest with no <-predecessors
are called roots. A tree is a forest that has exactly one root. A total or-
der is a relational structure (V; <) in which < is transitive and for all
v1, v € V, exactly one of the following three conditions holds: v; < vy,
v1 = vg, Oor v < v1. Given a total order, the interval between two
nodes v; and vy is the set of all v such that v; < v < vg. The cover
(also known as convex hull) of a set V' C V, C(V’), is the smallest
interval containing V’. A set V' is conver iff it is equal to its cover. A
gap in a set V' is a maximal, non-empty interval in C(V') — V’. We call
the number of gaps in a set the gap degree of that set and write G (V)
for the k-th gap in V' (counted, say, from left to right).

17.2.2 Drawings and gaps

Drawings are relational structures with two binary relations: a forest
to model derivation structure, and a total order to model word order.

Definition 54 A drawing is a relational structure (V;<, <) where
(V;«) forms a forest, and (V; <) forms a total order. Drawings whose
underlying forest is a tree will be called T-drawings.

Note that, in contrast to ordered forests (where order is defined
on the direct successors of each node), order in drawings is total. By
identifying each node v in a drawing with the set (<*)v of nodes in the
subtree rooted at v, we can lift the notions of cover and gap as follows:
C(v) := C((<*)v), Gi(v) := Gr((<*)v). The gap degree of a drawing is
the maximum among the gap degrees of its nodes.

Fig. 1 shows two drawings of the same underlying tree. The circles
and solid arcs reflect the forest structure. The dotted lines mark the po-
sitions of the nodes with respect to the total order. The labels attached
to the dotted lines give names to the nodes. Drawing la has gap degree
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(a) substitution (b) adjunction

FIGURE 2: Combining tree structures in TAG

zero, since C(v) = (<*)v for all nodes v. In contrast, drawing 1b has
gap degree one, since the set {d,e} = {b,d,e,c} — {b,c} = C(b) — (<*)b
is a gap for node b, and no other node has a gap.

17.2.3 Related work

Our terminology can be seen as a model-based reconstruction of the ter-
minology developed for non-projective dependency trees (Platek et al.,
2001), where gaps are defined with respect to tree structures generated
by a grammar. The notion of gap degree is closely related to the notion
of fan-out in work on (string-based) finite copying parallel rewriting
systems (Rambow and Satta, 1999): fan-out measures the number of
substrings that a sub-derivation does contribute to the complete yield
of the derivation; dually, the gap degree measures the number of sub-
strings that a sub-derivation does not contribute.

17.3 Drawings for TAG

Tree Adjoining Grammar (TAG) (Joshi and Schabes, 1997) is a proof-
theoretic syntactic framework whose derivations manipulate tree struc-
tures. This section gives a brief overview of the formalism and shows
how drawings model derivations in lexicalised TAGs.

17.3.1 Tree Adjoining Grammar

The building blocks of a TAG grammar are called elementary trees; they
are successor-ordered trees in which each node has one of three types:
anchor (or terminal node), non-terminal node, or foot node. Anchors
and foot nodes must be leaves; non-terminal nodes may be either leaves
or inner nodes. Each elementary tree can have at most one foot node.
Elementary trees without a foot node are called initial trees; non-initial
trees are called auxiliary trees. A TAG grammar is strictly lexicalised, if
each of its elementary trees contains exactly one anchor.
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Trees in TAG can be combined using two operations (Fig. 2): Substi-
tution combines a tree structure 73 with an initial tree 75 by identifying
a non-terminal leaf node 7 of 7y with the root node of 7o (Fig. 2a). Ad-
junction identifies an inner node 7 of a structure 71 with the root node
of an auxiliary tree 75; the subtree of 7 rooted at 7 is excised from 71
and inserted below the foot node of 7 (Fig. 2b; the star marks the foot
node). Combing operations are disallowed at root and foot nodes.

TAG derivation trees record information about how tree structures
were combined during a derivation. Formally, they can be seen as un-
ordered trees whose nodes are labelled with elementary trees, and whose
edges are labelled with the nodes at which the combining operations
took place. If v is a node in a derivation tree, we write £(v) for the label
of v. An edge v1 — 7 — vq signifies that the elementary tree £(vy) was
substituted or adjoined into the tree ¢(v1) at node 7.

TAG derived trees represent results of derivations; we write drv(D) for
the derived tree corresponding to a derivation tree D. Derived trees are
ordered trees made up from the accumulated material of the elementary
trees participating in the derivation. In particular, each TAG derivation
induces a mapping p that maps each node v in D to the root node of
£(v) in drv(D). In strictly lexicalised TAGs, a derivation also induces a
mapping « that maps each node v in D to the anchor of ¢(v) in drv(D).

For derivation trees D in strictly lexicalised TAGs, we define

derived(v) = {a(u) |v<*win D} and
yield(v) := {m | 7 is an anchor and p(v) <* 7 in drv(D) }.

The set derived(v) contains those anchors in drv(D) that are contributed
by the partial derivation starting at £(v); yield(v) contains those anchors
that are dominated by the root node of £(v). To give a concrete example:
Fig. 3 shows a TAG derivation tree (3a) and its corresponding derived
tree (3b). For this derivation, derived(like) = {what, Dan, like} and
yield(like) = derived(like) U {does}.

17.3.2 TAG drawings

There is a natural relation between strictly lexicalised TAGs and draw-
ings: given a TAG derivation, one obtains a drawing by ordering the
nodes in the derivation tree according to the left-to-right order on their
corresponding anchors in the derived tree.

Definition 55 Let D be a derivation tree for a strictly lexicalised
TAG. A drawing (V;<, <) is a TAG-drawing iff (a) V is the set of nodes
in D; (b) vy < vy iff for some 7, there is an edge v; —7m— vy in D;
(¢) v1 < vy iff a(v1) precedes a(ve) with respect to the leaf order in
drv(D).
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FIGURE 3: TAG derivation trees (a), derived trees (b), and drawings (c)

Fig. 3c shows the TAG drawing induced by the derivation in Figs. 3a-b.

17.4 The structural essence of TAG

Now that we have defined how TAG derivations induce drawings, we
can ask whether all drawings (whose underlying forests are trees) are
TAG drawings. The answer to this question is “no™ TAG drawings form
a proper subclass in the class of all drawings. As the major technical
result of this paper, we will characterise the class of TAG drawings
by two structural properties: a restriction on the gap degree and a
property we call well-nestedness (Definition 56). The relevance of this
result is that it provides a characterisation of “TAG-ness” that does not
make reference to any specific grammar, but refers to purely structural
properties: well-nested drawings with gap degree at most one are “just
the right” models for TAG in the sense that every TAG derivation induces
such a drawing, and for any such drawing we can construct a TAG
grammar that allows for a derivation inducing that drawing.

17.4.1 TAG drawings are gap one

Gaps in TAG drawings correspond to adjunctions in TAG derivations:
each adjunction may introduce material into the yield of a node that
was not derived from that node. Since auxiliary trees have only one
foot node, TAG drawings can have at most one gap.

Lemma 56 Let D be a TAG derivation tree, and let v be a node in D.
Then (a) derived(v) C yield(v), (b) yield(v) — derived(v) is convez, and
(c) derived(v) contains at most one gap.

Corollary 57 TAG drawings have gap degree at most one.
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FIGURE 4: Two drawings that are not well-nested

17.4.2 TAG drawings are well-nested

The gap restriction alone is not sufficient to characterise TAG drawings:
there are drawings with gap degree one that cannot be induced by a
TAG. Fig. 4 shows two examples. To see why these drawings cannot be
induced by a TAG notice that in both of them, the cover of two nodes
overlap (C(b) and C(c) in the left drawing, C(a) and C(e) in the right
one). Since each node in a drawing corresponds to a sub-derivation on
the TAG side, this would require the overlap of two yields in the derived
tree, which is impossible. The present section will make this statement
precise.

Definition 56 Let 77 and T5 be disjoint subtrees in a drawing. We say
that T} and Ty interleave iff there are nodes l1,7; € T7 and Iy, 75 € T5
such that I; < Iy <71 < r9. A drawing is called well-nested iff it does
not contain any interleaving subtrees.

Well-nestedness is a purely structural property: it does not make
reference to any particular grammar at all. In this respect, it is similar
to the condition of planarity (Yli-Jyrd, 2003). In fact, one obtains pla-
narity instead of well-nestedness from Definition 56 if the disjointness
condition is relaxed such that 75 may also be a subtree of T7, and I, ry
are chosen from T7 — T5.

Lemma 58 TAG drawings are well-nested.

17.4.3 Constructing a TAG grammar for a drawing

To complete our characterisation of TAG drawings, we now present an
algorithm that takes a well-nested drawing with gap degree at most
one and constructs a TAG grammar whose only derivation induces the
original drawing. Correctness of the algorithm establishes the following

Lemma 59 FEach well-nested T-drawing that has gap degree at most
one is a TAG drawing.
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The algorithm (fully discussed in the extended version of this pa-
per) performs a pre-order traversal of the tree structure underlying the
drawing. For each node v, it constructs an elementary tree whose an-
chor is v and whose non-terminal nodes license exactly the combining
operations required by the outgoing edges of v. Children w of v that do
not have a gap induce sites for substitutions (non-terminal leaf nodes),
other children induce sites for adjunctions (non-terminal inner nodes).
If v itself has a gap, it also needs to include a foot node. The order and
dominance relation on the nodes in the constructed elementary tree
are determined by the order and nesting of the scopes of the nodes:
the scope of an anchor is the anchor itself, the scope of a non-terminal
node is the cover of the corresponding child node, and the scope of a
foot node is the gap that triggered the inclusion of this foot node. Well-
nestedness ensures that the nesting of the scopes can be translated into
a tree relation between the nodes in the elementary tree.

The combination of Lemmata 56, 58 and 59 implies

Theorem 60 A T-drawing is a TAG drawing iff it is well-nested and
has gap degree at most one.

17.5 Conclusion

This paper introduced drawings as models of syntactic structure and
presented a novel perspective on lexicalised TAG by characterising a
class of drawings structurally equivalent to TAG derivations. The draw-
ings in this class—we called them TAG drawings—have two properties:
they have a gap degree of at most one and are well-nested. TAG drawings
are suitable structures for a model-theoretic treatment of TAG.

We believe that our results can provide a new perspective on the
treatment of languages with free word order in TAG. Since TAG’s abil-
ity to account for word order variations is extremely limited, various
attempts have been made to move TAG into a description-based direc-
tion.! Drawings allow us to analyse these proposals with respect to the
question how they extend the class of models of TAG, and what new de-
scriptive means they offer to talk about these models. We feel that these
issues were not clearly separated in previous work on model-theoretic
TAG (Palm, 1996, Rogers, 2003).

A model-theoretic approach to natural language processing lends
itself to constraint-based processing techniques. We have started to in-
vestigate the computational complexity of constraint satisfaction prob-
lems on TAG drawings by defining a relevant constraint language and
formulating a constraint solver that decides in polynomial time whether

IKallmeyer’s dissertation (Kallmeyer, 1999) provides a comprehensive summary.
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a formula in that language can be satisfied on a well-nested drawing
(Bodirsky et al., 2005). This solver can be used as a propagator in a
constraint-based processing framework for TAG descriptions.

Our immediate future work will be concerned with the further devel-
opment of our processing techniques into a model-based parser for TAGs.
The current constraint solver propagates information about structures
that are already known; a full parser would need to construct these
structures in the first place. In the longer term, we hope to characterise
other proof-theoretic syntactic frameworks in terms of drawings, such
as Multi-Component TAG and Combinatory Categorial Grammar.
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A Linearization-based approach to
Gapping

Rui P. CHAVES

Abstract
Non-constituent Coordination phenomena have for a long time eluded a
formally precise uniform account in Linguistic Theory, including Constraint-
based grammar formalisms. This work provides a novel approach to Gapping
phenomena (Ross, 1970) by extending recent Linearization-based accounts
of NCC in Head-driven Phrase Structure Grammar (Pollard and Sag, 1994).

Keywords Non-consTiTUENT COORDINATION, DoMaiNs, HPSG

18.1 Introduction

Kathol (1995), Crysmann (2000, 2003), and Yatabe (2001) propose to
use linearization domains to capture different kinds of Non-constituent
Coordination (NCC) phenomena in HPSG. Recently, Beavers and Sag
(2004) propose a uniform coordination construction to account for NCC
phenomena in general. Gapping however, remains unaccounted for.

In this paper we show that a linearization approach to NCC can
also accommodate Gapping, as well as Stripping phenomena. Section
2 overviews the proposal in Beavers and Sag (2004) and section 3 dis-
cusses the data as well as some linguistic claims found in the literature.
Section 4 provides an integrated analysis and addresses some issues for
long-distance NCC in general. Section 5 contains concluding remarks.

18.2 Non-Constituent Coordination and HPSG

Following insights in Crysmann (2000, 2003) and Yatabe (2001), Beavers
and Sag (2004) recently propose a general constraint in HPSG that
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uses structure-sharing constraints operating over order domains (DOM)
(Reape, 1994, Kathol, 1995) to capture Constituent Coordination
(CC), Right-Node Raising (RNR), and Argument Cluster Coordination
(ACC) patterns (henceforth commas mark pauses):

(14) a. Bill loves wine and Mary hates beer. (CC)
b. Bill cooked, and Mary ate, a pizza. (RNR)
c. He gave a rose to Ann, and an orchid to Tracy. (ACC)

The relevant coordination construction is given in (15),! where daugh-
ter domain lists are split, and partially concatenated in the mother:

(15) cnj-cx =
[ N {Dom @@@@\E}

‘@% L

FRM
HD

P‘RM
HD

I

o rrm 1] Frm[Gm](\ ||
ne—list b EERRE) HD

SYN

CRD

DTRS < ~

e ()R =

ne—ust@@|< |:FRM :| . |:FR,M :| >
HD HD

syN [0]

LCRD + ]
n,m >0 i

This construction conjoins two constituents and splits the list of
domain objects of each conjunct into three sublists. Crucially, the pe-
ripheral lists and [D] may or not be empty. In the latter case, the
members of these lists must share category and morphological form
between conjuncts (via HEAD and FORM). The mother’s domain corre-
sponds to the concatenation of the shared peripheries [4] and [D], and
the non-shared domain objects contributed by the daughters. But note
that the shared material only occurs peripherally in the mother node.
This concatenation pattern of DOM lists in the mother node allows (15)
to yield CC if both peripheries are empty ([4 =(),[D]=(), in (16a)), RNR
if the right periphery is non-empty ([4 =(),[D]=([a, pizza]), in (16b)), and
ACC if the left periphery is non-empty ([ =([gave]),[D]=(), in (16c)):

LA hd-mk-cxt construction ensures the base case (Beavers and Sag, 2004, 59-60).
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(16) a. [DOM ([Bill], [loves], [wine], [and], [Mary], [hates], [beer])]
b. [DOM ([Bill], [cooked), [and], [Mary], [ate], [a, pizzal)]
c. [DOM ([gave], [a,Tos€], [to, Ann], [and], [an, orchid], [to, Tracy])]

Because in Beavers and Sag (2004) morph forms are shared (rather than
phonology or entire domain objects), one correctly rules out (17):2

(17) a. # I ran out of luck and ran down a stone pillar.
b. # Ned said Mia, and Tom said Bob, are a nice couple.
c. # John bought seme-eld-books and Mary sold some old book.

But (15) fails to capture Gapping since sharing would have to be non-
peripheral and systematically located in the non-initial conjunct:

(18) a. John will bring dessert, and Mary, wine.
b. Ann reads stories to her kids, and Maria, to the students.
c. Tim wrote a book in London, and his brother, in Paris.

18.3 Gapping Data

Gapping operates independently from other NCC phenomena given
that it may co-occur with RNR for instance, as seen in (19):

(19) a. Itried to argue with Mia, and Greg, with Kate, that by noon
the show would probably be sold-out.

b. I told Maria, and David, Anna, that the lecture was canceled.
Also, Gapping is able to occur in comparatives (Hendriks, 1995):

(20) a. Paula kissed more boys than Sue girls.
b. ?7*Paula kissed more than Sue kissed girls. (RNR)
c. 7*Paula kissed more boys than hugged girls. (ACC)

It is also well-known that Gapping does not preserve verbal inflection:

(21) a. John admires Neil Young, and his friends, Elvis Costello.
b. Sam was buying balloons, and the other kids, food and drinks.

Gapping cannot be arbitrarily embedded in NP islands for instance:
(22) *Alan went to London, and Bill met a girl who said Jim, to Paris.

18.3.1 Discourse Anaphora

We do not address VP or N Ellipsis presently, as it is known to differ
significantly from NCC, e.g. allowing for non-linguistic antecedents:

(23) a. [Hankamer brandishes cleaver, advances on Sag]|
Sag: Don’t! My god, don’t  (Hankamer and Sag, 1976, 409)

2But note that an extra constraint like [sy~[0]|€[A]@®[B1] may be required to
prevent RNR the local head: “*John and Mary smiles’ (cf. Crysmann (2002, 301)).
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b. [John opens a book, and as Mia opens a newspaper, says:|
# (And) Mia, a newspaper.

c. [mechanic approaches his boss after examining the race cars|
One with a broken gear, the other two are ok.

Cases of so-called N-Gapping (Jackendoff, 1971) are very different
from Verbal Gapping. N-Gapping can also occur as discourse anaphora
with different agreement (cf. (23c) and (24a)), and reside in non-
conjuncts as in (24b):

(24) a. I have one car with flat tires and two with a broken gear.
b. After his car was stolen, Tim sought to buy one with an alarm.

This suggests that ‘Nominal Gapping’ should rather be analyzed as
anaphoric Nominal Ellipsis (see also Neijt (1979, 29)). Further evidence
comes from the fact that, unlike in Verbal Gapping, such cases can be
arbitrarily embedded, and may even occur in the initial conjunct:

(25) a. Six candidates abandoned the interview and I met a colleague
who mentioned that two even failed to show up.

b. John’s photo of Anna is good, and I met someone who agreed
that Fred’s of Lynn was not bad either.

(26) Tim only gulped one early in the morning, but his sister managed
to eat three chocolate bars before lunch.

For the present work, we thus assume that Gapping only applies to
verbal constituents. Of course, many dependents can also be gapped
along with the verb, as in (18) above and in (27) (Pesetsky, 1982, 645):

(27) a. This doctor said I should eat tuna fish, and that doctor, salmon.
b. Timmy thinks mom bought a new bike, and Annie, a puppy.

See Lappin (1999) for a HPSG account of antecedent-contained Ellipsis.

18.3.2 Locality Constraints

Neijt (1979, 138) argues that Wh-islands block Gapping with examples
such as the one given in (28a). However, the oddness is probably prag-
matic rather than syntactic, given the structurally identical sentence in
(28b) (assume for instance that Bo and Mia are team leaders):

(28) a. *John wondered what to cook today and Peter, tomorrow.
b. Bo decided who is working tomorrow and Mia, the next day.

Lasnik and Saito (1992) and others argue that conjuncts containing
gaps cannot be larger than IP, based on examples like (29) below:

(29) *I think that John saw Bill, and that Mary saw Susan.
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In HPSG terms, this is equivalent to assuming that Gapping only ap-
plies to unmarked clauses, i.e. phrases with the feature MARKING none.
On the other hand, unmarked subordinate clauses can easily gap:

(30) I hope Ann enjoys her coloring book, and John, his new bike.
This contrasts with RNR for instance, known to cross CP boundaries:

(31) a. Sandy doubted he could buy, and Carol knew he couldn’t buy,
the collected works of Rosa Luxemburg.

b. I’'ve been wondering whether, but wouldn’t positively want to

state that, your theory is correct. (Bresnan, 1974)

The difficulty in gapping marked clauses is intriguing, and suggests
that a generalization is perhaps being missed. An alternative approach
to this issue might be to consider the interaction of prosodic or psy-
cholinguistic processing factors. Consider for example Sohn (1999, 368),
where it is claimed that it is not possible to gap embedded constituents:

(32) 77 Jo said the boy likes cheese, and Tom said-the-boy-tikes pickles.
Such claim is refuted by examples like the ones given in (27) and (33):

(33) One reviewer said that the paper had nine typos, and the other
reviewer, only two.

Hankamer (1973) proposes principles like ‘The No-Ambiguity Con-
straint’ (and more generally, the ‘The Structural Recoverability Hy-
pothesis’) that prevent a Gapping operation from yielding a syntacti-
cally ambiguous gapped structure. In this case embedded Gapping is
possible, but dispreferred since there is a tendency to match the right
remnant to the closest NP. This is the preferential reading of the ex-
ample in (34), with wide scope of think:

(34) T think that Mia wrote me an essay, and Sue, an entire paper.

Similar processing biases and exceptions motivated Kuno (1976) to
propose ‘perceptual’ constraints like the ‘Minimal Distance Principle’
or the ‘Tendency for Subject-Predicate Interpretation’. In this view,
processing is biased to preferential parsings which sometimes do not
arrive to a valid analysis and, due to the complexity of the structures,
fail to re-process them adequately.? It is unclear if there is such an
explanation for (29), and for now we opt for a syntactic account.
Gapping does require that the head of the conjunct is not a remnant
(e.g. Jackendoff (1971), Sag (1976, 139-147), and Chao (1988, 19-34)):

(35) a. John knows how to make spaghetti and Sue, macaroni.
b. John knows how to prepare sushi and Sue, how to cook it.

3See also Keller (2001) for an experimental study on Gapping gradience in OT.
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c. *John knows how to eat spaghetti and Bill wonders, macaroni.
d. *Kim knows how to make sushi and Bill learned how to, pizza.

(36) John is fond of Mary, and Bill (*said he), of Sue.
The same applies to interrogative and passive sentential conjuncts:

(37) a. Which cat likes olives, and which cat, grapes?
b.*I asked which cat likes olives, and you asked which cat, grapes.

(38) a. Did Bill eat the peaches, and (*did) Harry, the grapes?
b. Tim was hassled by the Police, and Bob (*was), by the FBIL.

This simple generalization is able to straightforwardly rule out well-
known data where the deleted verb is not the head of the conjunct:

(39) a.*Tim ate the rice, and that Harry ate the beans is fantastic.

b.*The man who sells books and the woman who sells flowers
met outside.

We conclude that Gapping is not as conditioned by locality con-
straints as previously claimed, and that the fundamental syntactic con-
dition for Gapping is the deletion of the local verbal head. Several island
effects are also known to condition Gapping, and these will be predicted
by independently motivated linearization constraints.

In the next section we provide a syntactic account of Gapping, while
following the standard assumption that pragmatics, processing and
prosodic factors can interact to promote or penalize intelligibility (as
discussed above in (28), as well as in (64) and (65) below).

18.4 Gapping in HPSG

The coordination construction proposed by Beavers and Sag (2004) uses
constraints that quantify over tag indices (structure-sharing between n
items inside potentially empty lists: n > 0). Strictly speaking, this raises
non-trivial issues for feature-logic formalisms and their implementation.
But usually such notation is taken to abbreviate standard relational
constraints. One can thus obtain an equivalent version of (15) that
captures the sharing of FORM and HEAD values across potentially empty
lists in RNR and ACC via an ancillary h_f_share/2 relation:

(40) n_t_share([1], [2]) «— (@=() A[2]=()) V
<<|:FRM |>/\<|:FRM

SYN | HD SYN | HD

| > A h_f_share([L1][Z2]))

This relation takes two potentially empty lists of domain objects and
ensures that all members have pair-wise shared FORM and HEAD values.
We adopt this alternative for perspicuity, without loss of generality.
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In the case of Gapping however, the identity requirements seem to
be weaker. This is the case of verbal inflection identity, not required in
Gapping as seen in (21), but necessary for RNR:

(41) *I said that the kids, and you claimed that the professor, was ill.

Identity in Gapping seems to be essentially categorial and semantic
in nature, and thus we will define it as sharing of HEAD and RELN
values between the gap and the antecedent, as illustrated below:

(42) Tracy arrives today, and her friends, tomorrow.
PHON (arrives) PHON (arrive)

verb verb
VFORM finite VFORM finite

SYN | CAT | HEAD SYN | CAT | HEAD

AUX — AUX —
INV - INV —
SEM | RELS <[RELN 2larrive; rel]) SEM | RELS ([RELN Elarrive; rel])

Note that only the name of the predicate relation is shared. Con-
sequently, predicates with different semantic relations cannot be identi-
fied, including singular and plural nouns e.g. ‘ticket(x)’ and ‘ticket*(X)’:

(43) #1 bought the tickets today, and Bo beught-the-ticket yesterday.

Since agreement information is located in SEM|INDEX (see Pollard
and Sag (1994, 76)), sharing HEAD of gapped items does not force
identical agreement, but it does force identical verbal inflectional form
(HEAD|VFORM). The data from Portuguese given below show that the
verb tense form (besides semantics) is the relevant identity requirement:

(44) Eu chego hoje e eles chegam amanha.
I arrivesg.1p.pre today and they arrivep; ms.3p.pre tomorrow
(45)*Eu cheguei ontem e eles chegardo amanha.

I arrivesg.1p.pst yesterday and they arrivey; ms.3p. fut tomorrow

We thus formalize the identity conditions for Gapping via a h_s_share/2
relation over two lists of domain objects:

(46) n_s_share([T], [2]) — (M=() A[2=() v
SYN | CAT | HEAD
o s )

SEM|RELS<[RELN .

SYN | CAT | HEAD
— | A h_s_share(,))
],.,.,[RELN ]}

SEMlRELS<[RELN

Finally, we can rewrite the coordination construction (15) using stan-
dard constraints, while extending it to Gapping phenomena:
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(47) cng-cx =
[ [nom FEdelLieMleFileds [EdelF]] . 1isaP2]

sy~ [0]
pou Atk [EdeMeEl] e i &P1]
sy~ [0] )

CRD —
DTRS < r >
oom Y ([svs eng]) Yol [ElololT] e sor ol
SYN @

CRD +

/_\ h_f_share(,) A h_f_share (@ ,@) N h_s_share( ,_)
A [ =ne-list = [SYN[O][HD verb, MRK none|| € [I3]

The sharing relations are integrated in the implicational constraint in
the usual way, as conjoined constraints. Gapping arises if the shared
non-peripheral lists [I] and are resolved as non-empty, because the
latter is not appended to the mother domain. There is also an extra
constraint requiring that, if Gapping occurs, the conjuncts [0] must be
verbal and unmarked, and that the corresponding head domain object
must reside in the gap (as discussed in the previous section). E.g.:

(48) John likes caviar, and Mary, beans.

MTR | DoM [AL()BILL]( John)BI1(likes)BLRL caviar) D
() [and)) ©{Z2) Mary) £{Z2) beans) &{D2L)

<[DOM <>@<[John]>@<[hkes]>@<[camr]>@<>], >
DTRS
[DOM <[<md]>@(>€B([Mary]>€9<[lik65]>€9<[beanS])€B<)]

FIGURE 1: Gapping of a shared internal sub-list (schematic)

The peripheral lists and [D,] are resolved as empty, but the internal
lists are not. In particular, [Ij] = ([likes])). Consider a larger gap:

(49) Mia can help me today, and Jess, tomorrow.
[L2 |=([Jess]), [To] =([can], [help], [me]), [Rz]={[tomorrow])
Consider also Gapping in null-subject languages like Portuguese:

(50)  Comprei um livro e a Anaeomprew uma revista.
(I) bought1s; a  book and the Ana boughts,.; a  magazine
=), = ([comprei]), = ([um, livro])
= ([a,Ana]), = ([comprou]), = ([uma, revista])

Mixed RNR cases arise from non-empty resolutions of both [1g and [D,]:
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(51) I told Maria, and David, Anna, that the lecture was canceled.
[A2]=() [D2]=([that,the,lecture, was, canceled))
[L2]=([David)), [l =([told]), [R2]=([Anna])

Hankamer and Sag (1976, 409) identify an ellipsis pattern known
as Stripping, where all but a small number of items are peripherally
elided. Typically, the remnant is intonationally marked:

(52) a. Flowers grow well here, and sometimes herbs.
b. You could sleep in the living room today, or Susan.
c. Either Mia can help me today, or Jess.

Hankamer and Sag (1976), Chao (1988), Hendriks (1995), and others
have argued that Gapping and Stripping are very similar operations.
Like Gapping, Stripping may not be recovered from unspoken context,
the gap cannot occur backwards, it occurs in comparatives. Also, it does
not impose inflection identity nor is it possible in subordinate clauses:

(53) a. Flowers grow well here, and sometimes herbs.
b. Trees grow well here, and sometimes wheat.

¢.*We grow flowers in here, and over there is the place where we
sometimes herbs.

In our account, such instances of Stripping arise as a special case
of the constraints in (47), where the non-shared list is resolved as
empty but and the shared [I] are non-empty:*

(54) Flowers grow well here, and sometimes herbs.
= ()
= ([sometimes],[herbs]), = ([grow),[well],[here]), =)
=0

18.4.1 Order Domains and Compaction

A Linearization approach to NCC can use independently motivated lin-
ear order restrictions to predict possible ellipsis patterns. For instance,
NPs are usually assumed to be bounding categories (i.e. compacted) as
they become arguments of a subcategorizing head. In our approach to
NCC, this correctly rules out the examples in (55) because the append
constraints can only split lists of domains, not domain objects:

(55) a. *I bought a gold fish, and Tim, beught{a parrot|.
b. *Don is [a painter and a fan of jazz|, and Bob is-afan of blues.
c. *[The best swimmer] lost and [the-best runner| won.  (ACCQ)
d. *John loves [the heuse], and Mary adores [the house]. (RNR)

4Cases like ‘Mia helped me today and helped Jess (too)’ are captured as ACC.
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In the case of PPs and relative clauses, these are usually assumed
to be compacted and liberated from the NP domain (see partial com-
paction in Kathol and Pollard (1995)), due to extraposition phenomena:

(56) a. [I] [bought| [a book]| [yesterday] [about Asian philosophy].
b. [I] [met] [a man] [yesterday] [who reminded me of Nixon].

In our linearization approach to Gapping, the compaction of these
phrases predicts several ‘Complex NP Constraint’ effects:

(57) a. *A man who loves cats and a man who leves dogs met outside.
b. *I met a man who owns a Rolls-Royce, and my friend, a Ferrari.

Moreover, the liberation of PPs predicts that these can be remnants:’

(58) a. Reeves gave a talk about Superstring theory, and Dawkins,
about the evolution of extended phenotypes.

b. Yesterday we traveled sixty miles, and on the day before, fifty.

Relative clauses on the other hand, are very poor remnants. This
might result from a very strong tendency for the relative to be parsed
as attaching to the closest NP remnant:

(59)?0mne broker may prefer stocks that go up, and another, that go
down.

Beavers and Sag (2004) suggest that subordinate sentences should
remain uncompacted in order to capture long-distance RNR in (31)
above. This is also the case for long-distance Gapping in (27) and for
Gapping in verb clusters as in (35b). However, the typical assumption is
that subordinate sentences are compacted in order to prevent interleav-
ing effects with several kinds of items (e.g. Kathol (2000, 95-97,153)).
In the case of verb clusters, interleaving effects motivate Kathol (2000,
209) to assume that these are uncompacted in German. This is also the
case for English, due to floating quantification and ‘either’ interleaving:

(60) They will either have to [_ lower prices]| [or fire some personel].

But even if some verb clusters required compaction, long-distance
NCC already suggests that domains embedded in compacted verb-
headed constituents should be accessible. We thus assume recursive
domains (as is the case of Reape (1994) and Beavers and Sag (2004),
where domain objects are of type sign) and distinguish between two
kinds of compacted domains: some domain objects (e.g. a compacted S)
are ‘transparent’ to NCC sharing constraints in the sense that the em-
bedded subdomains can be shared, while others are ‘opaque’ to sharing

5In the case of (55b), the partial NP compaction would yield the compacted
domain [a,musician,and,a,fan], which still disallows the gap in (55b).
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(e.g. NPs, even if embedded in a compacted S).
We thus extend the append relation ‘@’ used in (47) to allow sharing
peripherally embedded DOM objects given a parametrical constraint 7:

(61) @aer)(e-list, [1], [1]) « true
69d(‘r)(<|>av<|>) — G9(1(7—) (aa)
Sa(r) ((["ooM[L]),(["Dom[2]]|[4]) (["DoM[3]]|[4])) —DBa(-) (T ,2],3])

The first two clauses correspond to the standard append relation, but
the third clause allows access to a peripheral domain object, provided
that the constraint 7 is satisfied. This argument thus specifies which
kind of compacted domain object can be split by the constraint (it
may correspond to the HEAD pos value, a sign description, or even
a topological type). This enables the compaction of nominals to be
distinguished from the compaction of subordinate clauses, as in (27a):

(62) [B] = ([rrm(that)],[FrRM(doc) |, [FrM(said)],[ oM ([1],[should],[eat],[salmon])])

with recursive domains, = [L Ba(r)I]Bq)[D] may resolve as:
= ([FRM (that)],[FRM (doc)|)
= ([FRM (said)],["DOM ([1],[should],[eat])])

= <[TFRM (salmon)]>

The 7 argument in the append constraints in Gapping should thus allow
splitting compacted S and VP domain objects, i.e. 7= phrase[HD verb,
MOD none]. Other NCC phenomena can be less restricted in this regard,
for instance RNR does not show complex NP island effects:

(63) a. The man who sells, and the woman who buys, antiques in the
market met outside.

b. T know a man who loves, and Sue met a woman who hates,
hiking at night.

Accordingly, the append constraint that yields the and sub-
lists in (47) should be 7 = phrase[HD werb]. This allows the parametric
append to split any verb-headed phrasal domain (S, VP or RelC).

In what concerns deletion of prepositions, there is a gradience effect
which may depend on the nature of the remnants:

(64) a. *Jim reads a book to Fred, and Mary, Peter.
b. ?John is going to Japan, and his sister, Australia.
c. Jim reads to his brother, and Mary, our kids.

We note that (64b) improves with a longer pause in the gap, presumably
because it promotes contrast and helps to legitimize the remnant. The
unacceptability of (64a) might be intensified by the oddness sometimes
caused by adjacent remnants headed by identical items. Consider the
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following well-known contrast, triggered by the post-gap remnants:5

(65) a. John gave a bike to the boy, and Tim, a doll to the girl.
b. 7*John gave the boy a bike, and Tim, the girl a doll.

Thus it may be that the ellipsis of argument marking prepositions
is tolerated in certain conditions, or that ellipsis is possible in principle
but that interacting factors cause gradient results. In that case, we
would have to allow the parametric append to also access PPs.

18.4.2 Discontinuous Gapping

Jackendoff (1971, 24-25), Sag (1976, 148-166) and others consider dis-
continuous Gapping deletions:

(66) a. John kissed Susan at the party, and Peter, Mary.
b. Dexter wants Watford to win, and Warren, Ipswich.
c. Peter took Susan home, and John, Wendy.

Our sharing constraints need to be reformulated to also account for this
pattern. This can be done by allowing the right periphery of the internal
sub-lists to share a discontinuous list via the shuffle ‘Q)’ operator:

(67) cng-cx =

[ |:DOM AeLdelle [PIoE]| elcle [ZaelRal] . —iisr@lD2]

syn [0]
DOM @ [@@ [O] ] ne—list @
syN [0] )

CRD —
DTRS< - >
pom Y ([sv eng]) Yol [E=lolTe [P |-l
sy~ [0]

CRD —+
A h_f_share(,) A h_f_share ( ,)
A h_s_share( ,) A h_s_share(7)

A [I2 =ne-list = [SYN[0][HD verb, MRK none|| € I3

The internal right periphery list is now a shuffle of two sub-lists
[Pz 1O[R2]]. This extra constraint allows sharing of non-adjacent items:

(68) ([John],[took],| Wendy],|home]) yields {[John],| Wendy])
given the following resolution:

= ([John]), [ = {[took]), = ([Wendy]), and = ([home])

The non-discontinuous Gapping data discussed in the previous sec-
tions is obtained from resolving the shared and lists as empty.

6This may reduce to a generalization similar to the Obligatory Contour Principle.
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18.5 Conclusion

We propose an account of Gapping in HPSG, integrated in a more gen-
eral constraint for Non-Constituent Coordination, following Beavers
and Sag (2004). Here, a unique coordination construction captures sev-
eral patterns by allowing shared items to be absent in the mother, using
structure-sharing constraints over the domain objects contributed by
the local daughters. Further research is required to capture gradience
effects (as experimentally observed in Keller (2001)), which may result
from perceptual, contextual, and prosodic factors.
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Further Properties of

Path-Controlled Grammars
CARLOS MARTIN-VIDE AND VICTOR MITRANA

Abstract

A path controlled grammar consists in a pair of CFGs, G1, G2, where G2
generates a language over the total alphabet of G1. A word w generated by
G1 is accepted only if there is a derivation tree 7 of w with respect to G
such that there exists a path in 7, from the root to a leaf node, having the
nodes marked by a word x which is in L(G2). We show that these grammars
are slightly more powerful than CFGs, but they preserve all the properties of
CFGs: closure properties, pumping lemmas, decision properties, polynomial
recognition. Moreover, many of these properties are mainly based on the
corresponding properties of CFGs.

Keywords PATH-CONTROLLED GRAMMAR, CLOSURE PROPERTIES, DE-

CISION PROPERTY, POLYNOMIAL RECOGNITION.

This work is a continuation of the investigation started in Marcus
et al. (2001), where a new-old type of control on context-free grammars
is considered. This type of control is extracted and abstracted from a
paper (Bellert (1965)) with very solid linguistic motivations. The goal
of this paper is to complete the picture of path-controlled grammars
started in Marcus et al. (2001) with some mathematical properties
which are missing from the aforementioned work: closure and decid-
ability properties, including a polynomial recognition algorithm.

19.1 Introduction

The work by Bellert (1965) is very well motivated, starting from the
assertion that the natural language is not context-free. The paper not
only motivates a theoretical study by this assertion, but, after intro-

FG-MoL 2005.
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ducing the “relational grammars", a consistent case study is examined,
using the new formalism for modelling several constructions from Pol-
ish. Bellert applies her relational grammar to the generation of Polish
kernel sentences. In this application, 13 relations are considered, mainly
concerning the agreement in gender, number or case between the noun
and the predicate.

Informally, the framework is the following one. One considers a
context-free grammar (CFG for short) G = (N, T, S, P) and a way to
select from all possible derivation trees in G only those trees with cer-
tain properties, specified by a set of tuple-grammars and a relation on
the rules of these tuple-grammars. More specifically, one gives several
k-tuples of CFGs, (G1,...,Gy), of the form G; = (N;, NUT,S;, F,).
Note that these grammars have as the terminal alphabet the total al-
phabet of G. The grammars from such a tuple work in parallel, over
separate sentential forms, also observing the restriction imposed by a
relation p C P; X --- X Pg. In a derivation of the k-tuple of grammars
(Gy,...,G})) we have to synchronously use k rules related by p. The
k-tuples (wi,...,wy) of words generated in this way by (Gy,...,Gk)
are then used for selecting from the derivation trees of G only those
trees which have paths marked by w1, ..., wy, markers being assigned
to nodes.

The definition of relational grammars contains an idea which has
been investigated later in the regulated rewriting area: to impose some
restriction on the paths present in a derivation tree of a CFG. One
takes two CFGs, G1,Gs, such that the rules of G, are labeled in a
one-to-one manner with labels from a finite set of labels Vi, and Go
generates a language over V. A word w generated by G; is accepted
only if there is a derivation tree 7 of w with respect to G such that all
independent paths in 7 are labeled (labels are now assigned to edges)
by words in L(G3). In Khabbaz (1974) one defines an infinite hierarchy
of languages based on this idea. The second class in this hierarchy is
exactly the class of languages defined by a pair of grammars (G, Gs)
as above with GG; a linear grammar. Since at each point in a derivation
of a linear CFG there is at most one nonterminal to expand, every
derivation is associated with a single control word. This approach has
been extended to arbitrary CFGs in Weir (1992). Both formalisms are
special cases of a more general formalism proposed by Ginsburg and
Spanier (1968). The concept of tree controlled grammar introduced in
Culik and Maurer (1977) appears to have some weak connections with
this approach; a tree controlled grammar is also a pair of CFGs (G, G")
but a derivation tree T of a word in G is “accepted” if the words labelling
the nodes considered from left to right on each level in 7, excepting the
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S

S’

FIGURE 1: A Word Generated by G; Under the Partial Control of Gs

last one, can be generated by G’.

In Marcus et al. (2001) one proposes a bit different approach: one
takes two CFGs, G1, G2, where G5 generates a language over the total
alphabet of G;. A word w generated by G is accepted only if there is a
derivation tree 7 of w with respect to G such that there exists a path
in 7, from the root to a leaf node, having the nodes marked by a word
x which is in L(G2). For an intuitive representation of this idea, one
should have in mind the fact that a word w is generated by G; under
the “partial control” of G5 if there exist two derivation trees, 71, 72, the
first one with respect to (G; and the second one with respect to Go, such
that the first tree has w as its frontier, while the second tree, having x
as its frontier, is “orthogonal” to the first tree and its frontier word =
describes a path in the first tree. Figure 1 illustrates this idea.

A pair of two grammars as above is called a path-controlled grammar
in Marcus et al. (2001).

The main difference between the “partial control” defined above and
the control on all independence paths proposed in Khabbaz (1974),
Weir (1992), and Palis and Shende (1995) does not consists in the way
of assigning words to paths (this translation can be done by a gen-
eralized sequential machine) but in the fact that the “partial control”
requires the existence of just one path in the derivation tree labeled by a
control word while the other control type requires that all independence
paths to be labeled by control words. The relationship between the two
formalisms seems an easy question at first sight: each path-controlled
grammar can be simulated by a control grammar in the sense of Weir
(1992) (more precisely, a labeled distinguished grammar with a control
context-free language). However, we were not able to prove or disprove
this; actually this depends on the definition of a control grammar. If one
allows different labels for the same rule depending on the distinguished
symbol identified in the right-hand side of that rule the statement is
true. By space reason we skip the proof which is rather simple. How-
ever, if this is not permitted, then the problem could not be settled. It
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is worth mentioning that the properties reported in Palis and Shende
(1992) and Palis and Shende (1995), including the complexity of the
recognition problem, were proved for this latter case. Consequently, it
seems that they cannot be easily extended to path-controlled gram-
mars.

Having this in mind, we considered that it is worth presenting a
more complete picture of path-controlled grammars. In Marcus et al.
(2001) one mainly investigates the generative power and a very few
linguistically oriented properties of path-controlled grammars. These
grammars are slightly more powerful than CFGs, but they preserve all
the properties of CFGs: closure properties, pumping lemmas, decision
properties, polynomial recognition. Moreover, many of these proper-
ties are mainly based on the corresponding properties of CFGs. As
a consequence, these devices belong to the so-called mildly context-
sensitive grammars proposed in Joshi (1985). This extra power appears
to be adequate for handling various phenomena which require more for-
mal power than CFGs like duplication, crossed dependencies, multiple
agreements up to four positions. Path-controlled grammars may also be
viewed as a tree-generating formalism with some attractive properties
for characterizing the strong generative power of grammars. We are
not concerned here with their capacity to characterize the structural
description associated with sentences, though this is a natural matter
of great importance. The goal of this paper is to complete the picture
of path-controlled grammars started in Marcus et al. (2001) with some
mathematical properties which are missing from the aforementioned
work: closure and decidability properties, including a polynomial recog-
nition algorithm.

19.2 Path-Controlled Grammars

We use the standard formal language theory notions and notations, as
available in many monographs, see, e.g., Hopcroft and Ullman (1979).
In particular, V* is the free monoid generated by the alphabet V under
the operation of concatenation, A is the empty word, and |z| is the
length of the word x € V*, As usual, when comparing two languages,
the empty word is ignored, that is, we consider L, equal to Lo if L1 —
{A}=L. - {A}

Given a CFG G = (N, T, S, P) without erasing rules, with deriva-
tions in G we associate derivation trees in the well-known manner. Let
S =" w be a terminal derivation in G and T its associated tree. Each
path from the root of 7 to a leaf is described by a word of the form
SAy,Ag, ... Ara, with A; e N1 <i<r,r >0, and a € T. We denote
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by path(7) the language of all these words, describing paths in 7, by
path(z) the union of all the languages path(7), where 7 is a derivation
tree for z in G, and by path(G) the union of all these languages. Note
that we consider that any path in a derivation tree ends by a node
labelled by a terminal symbol.

A path-controlled grammar is a pair v = (G,G’), where G =
(N,T,S,P) and G' = (N',NUT,S’, P') are context-free grammars.
The language generated by -y is

Ls(v) = {w € L(G) | path(w) N L(G") # 0}.

In other words, the language generated by - is the yield of the tree
language obtained from the derivation trees of G'; which are “partially
accepted” by G.

We denote by PC3(CFG,CFG) the family of languages L3(7),
where v = (G, G’) is a path-controlled grammar having both compo-
nent CFGs. It is of no interest to consider a control on paths imposed
by regular grammars as this control does not increase the power of
CFGs as shown in Marcus et al. (2001)

19.3 Closure Properties of PC5(CFG,CFQG)

Proposition 1 PC3(CFG,CFG) is closed under the following oper-
ations: union, intersection with reqular languages, left and right con-
catenation with context-free languages, substitution with \-free context-
free languages, non-erasing homomorphism. It is not closed under in-
tersection.

Proof  We skip the proof for union and right/left concatenation with
context-free languages which is trivial.

Intersection with regular languages: Let v = (G,G’) be a path-
controlled grammar and A be a finite automaton. By the standard
proof one constructs the CFG G generating L(G) N L(A). Remember
that the nonterminals of this grammars are triples of the form (g, 4, ¢'),
where A is a nonterminal of G and ¢, ¢’ are states of .A. We now con-
struct a grammar G} generating the language s(L(G’)), where s is a
finite substitution defined by

(X) = {(¢,X,qd") | q,q are states of A}, X is a nonterminal of G
5 | {X}, X is a terminal of G.

It is rather plain that L3(G1,G}) = La(y) N L(A).

Substitution with \-free context-free languages: Let v = (G, G’) be a
path-controlled grammar with G = (N, T, S, P), T = {a1,as2,...,an},
and s : T* — 2U" be a substitution such that s(a;) = L(G;), with
G; = (N;,U,S;, P;) being a CFG without A-rules for all 1 < i < n.
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If G is the CFG generating the language s(L(@)) and G is a gram-
mar generating the language g(L(G’)), where g is a substitution which
keeps unchanged any symbol from N and replace each a; by a word
in the regular set S;N}U, then L3(G,G) = s(La(y)) holds. As a di-
rect consequence, the closure of PC3(CFG,CFG) under non-erasing
homomorphism follows.

Intersection: In Marcus et al. (2001), one proves that path-controlled
grammars with linear CFG components “can count to four”, that is
they can generate the language {alaja%aly | n > 1}, but even path-
controlled grammars with CFGs components “cannot count to five”.
By the closure under left and right concatenation with context-free
languages, the statement follows. 0

We finish this section with a brief discussion about the significance
of closure properties of a class of languages with respect to natural lan-
guage. It should be emphasized that, though closure of operations is a
very natural and elegant mathematical property, however non-closure
properties seem to be natural too. One may argue that it is possible to
construct a grammatical formalism for a language in the following way.
One looks for a decomposition of the language into some independent
fragments, constructs auxiliary grammars for such fragments, and then
obtains the desired grammar by closure under union of the auxiliary
grammars. Following this idea, the grammatical model should satisfy
the closure property under union, which is fulfilled by almost all mildly
context-sensitive devices including ours. Along the same lines, we can
imagine another way of constructing a grammatical formalism for a lan-
guage L. It consists of identifying a set of conditions ¢y, ¢, . . ., ¢, which
define the correctness of L. Then, one tries to define a grammar gener-
ating the set L(c;) of all words observing the condition ¢; and ignoring
the other conditions. It is expected that the intersection (), L(c;)
gives exactly the language L. Now, the closure property which should
be verified by the model is the one under intersection, which is not ver-
ified by many mildly context-sensitive mechanisms, among them the
one investigated in this paper.

As far as the closure under concatenation is concerned, some authors
consider that this is basic to natural languages while others have the
opposite opinion, see, e.g., Kudlek et al. (2003) for such a discussion. It
is worth mentioning here that the closure under concatenation of our
grammatical formalism remains unsettled.
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19.4 Decision Properties of PC5(CFG,CFG)

We start this section by recalling a very simple result from Thatcher
(1967) which will be useful in the sequel. Since we shall refer to this
construction, for sake of completeness we prefer to give a construction
as well

Lemma 1 For any context-free grammar G, path(G) is reqular.

Proof Let G = (N,T,S,P) bea CFG, for later purposes we assume
that it is reduced, namely each nonterminal is reachable from S and pro-
duces a terminal word. We construct the deterministic finite automaton
Ac =(Q,NUT,d,q0,{qs}), where Q = {qo,qr} U{[A] | A€ N} and ¢
defined by
(g0, S) =[S], O([A], B)=[B],  d([4],a) =gy,
if A—-uBveP, ifA— uavé€P,

where u,v € (NUT)* and a € T. Clearly, path(G) = L(A). O

In the same work one proves that each language generated by a
path-controlled grammar is a matrix language (see Abraham (1965)
and Dassow and Paun (1989) for the definition and properties of ma-
trix languages). Since the emptiness problem is decidable for matrix
grammars via a reduction to the reachability problem in vector addi-
tion systems shown to be decidable in Kosaraju (1982), we have:

Proposition 2 The emptiness problem is decidable for path-controlled
grammars.

However, a direct proof can be obtained as an immediate consequence
of the above lemma. Indeed, it is obvious that for any v = (G,G’),
where G is reduced, Lz(y) # 0 if and only if path(G) N L(G') # 0.
It suffices to remember that the class of context-free languages is ef-
fectively closed under intersection with regular sets and the emptiness
problem is decidable for CFGs.

In Marcus et al. (2001) one presents a pumping lemma for languages
generated by path-controlled grammars very similar to that for context-
free languages. Since the membership problem is decidable for matrix
grammars without erasing rules, by the pumping lemma from Marcus
et al. (2001) one immediately infers that:

Proposition 3 The finiteness problem is decidable for path-controlled
grammars.

However, we now present a more efficient algorithm for this problem.
Let v = (G,G’) be a path-controlled grammar; without loss of gener-
ality we may assume that G is reduced and without chain rules of the
form A — B, where A and B are nonterminals. If this is not the case,
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we eliminate these rules by the well known algorithm and then con-
struct a gsm M which transforms each word in L(G’) as follows: when
M scans a nonterminal A of G, it nondeterministically either lets it
unchanged, or removes it provided that there is a rule B — A in G and
B was just scanned before A. Therefore, subwords which correspond
to recurrent derivations in G which produce nothing are either erased
or not (the second case prevents the possibility to also have productive
derivations with the same nonterminals). Because the class of context-
free languages is closed under gsm mappings, the language M (L(G"))
is still context-free.

Clearly, if path(G) N L(G") is an infinite set, then L3(vy) is infinite as
well. The converse does not hold, since one may have an arbitrarily long
path described by a word in path(G) such that a prefix of this word is
the prefix of a word in path(G) N L(G’). Therefore, if path(G) N L(G’)
is finite but non-empty, we construct the two sets (A)x and (A)r for
each nonterminal A € N as follows:

— (A)n contains all nonterminals C' such that there exists a rule
A — « € P satisfying the following condition: There is a nonterminal
B (which may be C as well) such that both B and C appear in « (if
B = C, then « contains at least two occurrences of B) and the language
accepted by the automaton A with the initial state [B] is infinite.

— (A)r contains all terminals under the same circumstances as above.
Now it is easy to see that L3(7) is infinite if and only if either path(G)N
L(G’) is infinite or

U ((path(G) N L(G") N (N*{AHA)w N*T U N*{A}(A)7)) # 0.
AeN

By the closure and decision properties of the class of context-free lan-
guages this condition can be algorithmically checked.

We now present a undecidable problem which, in its turn, is based
on the undecidability of the universality problem for CFGs.

Proposition 4 One cannot algorithmically decide whether or not the
language generated by a given path-controlled grammar is context-free.

Proof Let L C V* be an arbitrary context-free language and L' C
U* be a non-context-free language in PC3(CF,CF'). Assume that V' N
U = 0. By the closure properties in Proposition 1 the language LU* U
V*L' can be generated by a path-controlled grammar . If L = V*, then
L3(y) = V*U*, hence it is context-free. If L # V*, then we consider
w € V*\ L and observe that L3(y) N {w}U* = {w}L’, hence L3(7)
cannot be context-free. Indeed, if L3(y) were context-free, then {w}L’
would be context-free, hence L’ would be context-free, a contradiction.
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Consequently, L3(y) is context-free if and only if L = V* which is
undecidable. O

19.5 Polynomial Recognition

The most important decision property for any class of grammars which
aims to be considered as a model of syntax is the membership (recogni-
tion) problem, and especially the complexity of this problem provided
that it is decidable. In this section we present two polynomial algo-
rithms for recognizing languages generated by path-controlled gram-
mars. We stress that such an algorithm might not be directly inferred
from the work of Palis and Shende (1992) since it is likely that no effi-
cient algorithm for simulating a path-controlled grammar with a control
grammar in the sense of Palis and Shende (1992) exists.

We first give an algorithm arising from Propositions 1 and 2. Let
~v = (G, G") be a path-controlled grammar and w be a word of length n
over the terminal alphabet of G. Assume that A is a finite automaton
recognizing w; grammars G and G} from the first part of the proof
of Proposition 1 can be constructed in polynomial time. According to
Proposition 2,

w e Lg(’}/) iff path(Gl) N L(Gll) 7é 0.

By Lemma 1 the automaton recognizing path(G1) as well as the CFG
generating path(G1) N L(G}) can be constructed in polynomial time.
Now, the emptiness problem for a language generated by a given CFG
can be algorithmically solved in polynomial time. The worst case com-
plexity of this algorithm, which is O(n'?), can be inferred from the proof
of the next statement which proposes a bit more efficient algorithm.

Proposition 5 The language generated by a given path-controlled
grammar can be recognized in O(n'C) time.

Proof The proof is mainly based on the well-known Cocke-Younger-
Kasami (CYK for short) algorithm for the context-free languages recog-
nition. This algorithm appears in many places, it may be found in the
pioneering works of Kasami (1965) and Younger (1967). Let v = (G, G")
be a path-controlled grammar with G = (N, T, S, P) a reduced CFG
in the Chomsky Normal Form (CNF) and L(G’) C SN*T. This sup-
position does not decrease the generality of the reasoning since if G
is not in the CNF, then we can transform it by the classic algorithm
and G’ accordingly. More precisely, in the first step we allow only ter-
minal rules of the form X, — a, where X, is a new nonterminal for
each a € T. Each word in L(G’) is modified by inserting X, before its
last a. In the second step we eliminate all the chain rules and trans-
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form G’ as shown in the finiteness algorithm. In the last step, each rule
r: A — BiBy...By € P with k£ > 3 is transformed equivalently in
the set of rules {4 — B, X\, X" — Byx{”, ... X", — By 1By}.
Note that the new nonterminals identify exactly the rule for which they
have been used. We construct a gsm which nondeterministically inserts
between any two consecutive nonterminal symbols it scans either noth-
ing or a sequence Xip)XQ(p) .. .X(gp), where p is the label of a rule in P
and 1 < g < m — 2, m > 3 being the length of the right-hand side of
the rule p.

For a given word w = ajas...a, € T we construct the determin-
istic finite automaton A, = (Q, N UT\, 6, qo,{qs}), where

Q@ ={a0,ar} U{[A,i,j]|[Ae N1 <i<j<n}

For any pair 1 <4 < j < n we denote by N(i,j) = {A € N | A =*
@;Qit1 - - - G;}; these sets can be computed by the CYK algorithm. Then
we set

(i) O([A,4,1],a;) = qy for each A € N(i,i), 1 <i<n,
(1) 6([A,i,7), B) = [B,i,k] and 6([4,4,5],C) = [C,k+1,]]
for each A € N(i,7), 1 <i <k < j<n, such that
Be N(i,k),Ce Nk+1,j),A— BC € P,
(731) 0(qo, A) = [A4,1,n] for all A € N(1,n).

Clearly, w € L3(v) iff L(Ay) N L(G") # 0. As far as the complexity
of this algorithm is concerned, the automaton A, (which has O(n?)
states) can be constructed in time O(n?), the number of nonterminals
and rules in the context-free grammar G” generating L(A,) N L(G")
is O(n?) and O(n"), respectively. Applying the well-known algorithm,
see, e.g., Hopcroft and Ullman (1979), to solve the emptiness of L(G")
we are done. d

19.6 Conclusion

This note tries to complete the picture of path-controlled grammars
started in Marcus et al. (2001) with some mathematical properties
which are missing from the aforementioned work: closure and decid-
ability properties, including a polynomial recognition algorithm.
There is an interesting difference between our formalism and that
considered in Weir (1992) and a series of subsequent works in that the
grammars studied here require only the existence of a path labeled with
a word in the control set while Weir’s formalism requires, in essence,
all independence paths to be labeled with words in the control set. On
the other hand, all of the properties reported here as well as in Marcus
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et al. (2001) are quite similar to those of Weir’s corresponding classes.
In spite of this fact, we were not able to emphasize the substantial
differences, if any, between the two formalisms.
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Scope-marking constructions in
type-logical grammar

WILLEMIJN VERMAAT

Abstract

Scope marking constructions only appear in some languages and are char-
acterized by the use of a specially reserved interrogative pronoun. The in-
terrogative pronoun occurs in a main declarative clause while the sentence
has an embedded interrogative clause. The whole construction is interpreted
as an interrogative clause where the embedded interrogative pronoun indi-
cates what kind of answer is being requested. In this paper, we show that
we can account for these constructions along similar lines as for standard
wh-question formation (Vermaat, Forthcoming). Our analysis is formulated
in the multimodal variant of type-logical grammar (Moortgat, 1997).

Keywords GermaN, HINDI, SCOPE-MARKING CONSTRUCTIONS, SE-
MANTIC UNIFORMITY, STRUCTURAL VARIATION, TYPE-LOGICAL GRAM-
MAR, WH-QUESTION FORMATION

20.1 Introduction

While languages may differ syntactically in the structural build of in-
terrogative clauses, semantically interrogatives have a similar interpre-
tation. In Vermaat (Forthcoming), we present a uniform account of
wh-question formation by introducing a wh-type schema. The wh-type
schema can be written out in the usual connectives of the base logic
of multimodal categorial. To account for the syntactic differences, the
grammatical reasoning system is extended with a structural module.
The structural module consists of meaning preserving non-logical ax-
ioms that under feature control alter the dominance and precedence
relations in a structure. With the uniform type schema proposed for

FG-MoL 2005.
James Rogers (ed.).
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wh-phrases along with the restricted set of structural postulates, we
account for the syntactic and semantic aspects of scope marking con-
structions in German and Hindi .

The term, scope marking is used by Dayal (2000). The phenomenon
is sometimes referred to as partial wh-movement (McDaniel, 1989) or
was-constructions (Van Riemsdijk, 1982). The following example illus-
trates a scope marking construction in German:

(20.57) German scope marking construction

Was; glaubt  Miro welches Bild; Picasso t; gemalt hatte?
what believes Miro which  picture Picasso painted had

“Which picture does Miro believe that Picasso had painted?”

Syntactically, the role of the scope marker in German and Hindi
is close to the grammatical role of a relative complementizer phrase;
like a complementizer it connects the subordinate clause to the ma-
trix clause. Semantically, however, the scope marker not only connects
the embedded interrogative clause to the main clause, but it also acts
like a standard wh-phrase and associates to the gap in the embedded
interrogative clause.

In this paper, we inspect scope marking constructions and show
that scope markers fit the type schema that Vermaat (Forthcoming)
proposes for wh-phrases. The syntactic and semantic aspects of scope-
marking constructions follow directly. In section 20.2, due to limited
space, we list the main points of the MMCG framework. For a com-
plete overview of the deductive system, we refer to the handbook article
of Moortgat (1997). In section 20.3, we present the type schema that we
use to type interrogative pronouns along with an inference rule which
merges a wh-phrase to the body of a question. In section 20.4, we give
a small set of data which illustrates the basic construction of inter-
rogative clauses with scope markers in German and Hindi. In section
20.5, we step-by-step construct the syntactic type of the German scope
marker. We start with a syntactic analysis of the scope marker as an
instance of the wh-type schema proposed for interrogative pronouns.
The proposal is extended by unfolding the type for wh-questions which
reveals the similarity between object wh-phrases and scope markers.
The semantic representation of the scope marking construction on the
basis of the Curry-Howard isomorphism shows a similar interpretation
of scope marking constructions and direct questions. Additionally, in
section 20.6 we present some further empirical support for our account.
In section 20.7, we briefly discuss our analysis in comparison with cur-
rent generative syntactic accounts. We summarize the main points of
our proposal in the conclusion.
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20.2 Theoretical background

Multimodal categorial grammar (MMCG), a version of type-logical
grammar, is a lexicalized grammar system. Due to space constraints,
we leave an overview of the theoretical background and only summarize
the main points of the grammar framework:

- the deductive system distinguishes two parts which form the basis
of the grammatical reasoning system:
- an invariant core: the logical deductive system
« a flexible extension: the structural module
- meaning assembly is accounted for in the deductive system via
the Curry-Howard isomorphism
+ structural manipulations are lexically controlled in terms of fea-
ture decorations encoded as unary operators {», O and delimited
by mode distinctions
- the structural module is severely restricted and limited to the fol-
lowing four instances of displacement postulates which we assume
to be universally encoded

left displacement postulates move a feature decorated element on
a left branch to a left branch one node higher:

T[(OA]0A)0 As]HC F[As o (OA10A3)|FC

T[OA1 0 (Ayo A3)]HC T[0A10 (Ao A3)|EC
right displacement postulates move a feature decorated element
on a right branch to a right branch one node higher:

[Pl

[PIZ]

F[Al 0] (AQ o <>A3)] '7 C
F[(Al ] AQ) (o] <>A3] l_ C

20.3 Wh-type schema

For the type assignment of interrogative pronouns, we propose a type
schema WH(A, B,C) (Vermaat, Forthcoming). The wh-type schema
is similar to the g-type schema, ¢(4, B,C), which was proposed by
Moortgat (1991) to account for in-situ binding of generalized quanti-
fied phrases. The three place type schema WH ranges over three argu-
ments: B is the type of the body of the wh-question; A is the type of
the gap hypothesis contained in the body; C is the type of the result
of merging the body of the wh-question with the wh-phrase. Schemat-
ically, the following inference rule defines the merging of a arbitrary
wh-phrase (= I') with a body of a wh-question (= A) which contains a
gap hypothesis (= A[A]). The result of merging the wh-phrase to the

F[(Al o OA:;) o AQ] F C
F(Al o AQ) o <>A3 H C

[Pr1]

[Prg]



234 / WILLEMIJN VERMAAT

body is a structure where the wh-phrase replaces the gap hypothesis in
the structure (= A[IY).

The inference rule for the type schema along with its semantic de-
composition is the following:

'+ wh:wH(A,B,C) Alz:AlFBODY: B
Al + wh Az.BODY : C

Cross-linguistically, we recognize different instances of interroga-
tive pronouns. In some languages the wh-phrase occurs fronted, (ex-
situ, abbr. ex), while in other languages the wh-phrases stays in-situ
(abbr. in). Another variation is the structural position of the gap hy-
pothesis that the wh-phrase associates with. The gap hypothesis may
reside either on a left or on a right branch. Whether the gap hypothesis
occurs on a left (1) or on a right () branch influences the application of
the structural rules and in turn effects the merging of the interrogative
pronoun to the final structure.

We distinguish the different structural variants of type schemata
by adding a subscript for the final position of the wh-phrase (ex or
in) and a superscript for the underlying structural position of the gap
hypothesis (I or ). For example, WHL_ (np, s, wh) is assigned to object
wh-phrases in an SVO wh-fronting language. The wh-phrase associates
to np-type argument hypotheses which occur on a right branch in the
sentential body typed s and yields a wh-question of type wh .

[w]

20.4 Data

Scope marking constructions in German and Hindi are sentences with
an embedded interrogative clause and a scope marker fronted (Ger-
man) or cliticized to the verb (Hindi) in the main clause. The ma-
trix verb phrase in scope marking constructions is a bridge verb, such
as glauben (= ‘believe’) in German, which normally allows for long-
distance displacement. To show the distinction between direct questions
and scope marking constructions, we first present the basic formation
of wh-questions in German and Hindi.

Interrogative clauses The standard construction of a direct question
in German and Hindig are illustrated in examples 20.58 and 20.59. In
German, the interrogative pronoun appears in fronted position in the
main clause. In Hindi, the interrogative pronoun may appear either
fronted in the matrix clause or cliticized to the verb.

(20.58) German direct question

Welches Bild; glaubt  Miro dass Picasso t; gemalt hatte?
which picture believes Miro that Picasso painted had
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“Which picture does Miro believe that Picasso had painted?”
(20.59) Hindi direct question (Mahajan, 2000, ex.4, p.318)

Kis-ko; siitaa-ne socaa ki ravii-ne  t; dekhaa?
who Sitalerg] thought that Ravilerg] saw
“Who did Sita think that Ravi saw?”

Scope marking constructions An illustration of a scope marking
construction in German has been presented in example 20.57 and is
reprinted below as example 20.60 . The scope marker ‘was’ appears in
fronted position while the actual interrogative pronoun ‘welches Bild’
is partially moved to the front of the embedded interrogative clause.
Example 20.61 illustrates a scope marking construction in Hindi. The
scope marker ‘kyaa’ may occur either fronted or preverbally in the
matrix clause. The interrogative pronoun ‘kis-se’ occurs in-situ in the
embedded interrogative clause.

(20.60) German scope marking construction

Was; glaubt ~ Miro welches Bild; Picasso t; gemalt hatte?
what believes Miro which  picture Picasso painted had

“Which picture does Miro believe that Picasso had painted?”
(20.61) Hindi scope marking construction (Mahajan, 2000, ex.1, p.317)

(kyaa) siitaa-ne kyaa  socaa ki ravii-ne  kis-ko dekhaa?
KYAA Sitalerg] KYAA thought that Ravilerg] who saw

“Who did Sita think that Ravi saw?”

Although scope marking constructions differ structurally from the
standard way of wh-question constructions, the overall interpretation
of the scope marking construction is the same. In the coming section,
we present an analysis for German scope markers which accounts for
the syntactic differences and at the same time derives a similar semantic
interpretation.

20.5 Analysis

For the analysis of interrogative clauses and scope marking construc-
tions we assume basic categories s for main declarative clauses, s’ for
subordinate clauses headed by ‘dass’ and ss for declarative subordi-
nate clauses. Wh-questions are typed as declarative clauses which are
incomplete for a certain constituent, the answer to the wh-question:
s/7A where A € {np,iv\iv,...}. The wh-phrase determines which kind
of answer category is required!. The index -» is added to the binary con-

n this paper, we only regard argument wh-phrases, but the same line of rea-
soning applies to adjunct wh-phrases.
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nective to capture the compositional difference between predicates and
arguments on a sentential level and between questions and answers on a
discourse level. The most salient category for argument wh-questions is
s/29q where gq is an abbreviation for generalized quantifiers: s/(np\s).
To simplify the derivations, we abbreviate the categories assigned to
interrogative clauses to wh (= s/snp) for main interrogative clauses
and wh' (= s’ /7np) for embedded interrogative clauses.

In German, main clauses appear in SVO word-order, while subordi-
nate clauses have a head final SOV word-order. The general accepted
mechanism behind this word-order difference is verb movement. Be-
cause we want to concentrate on the analysis of interrogative clauses, we
fix the underlying word-order of main clauses and subordinate clauses
in the lexicon. The type-assignments to syntactic objects such as tran-
sitive verbs, intransitive verbs, determiners and noun phrases are the
common types assigned to lexical elements in categorial grammar frag-
ments.

German scope marker ‘was’ Before we discuss how the wh-scope
marker finds its position at the front of the matrix clause, we first
discuss the grammatical role of the scope marker. As we mentioned
in the introduction, the scope marker acts like a complementizer. The
complementizer ‘dass’ changes the type of the subordinate clause such
that it can be selected by the matrix verb. In MMCG, dass (= ‘that’)
is categorized as s'/ss. In scope marking constructions, the matrix
verb is a bridge verb which selects for an embedded declarative clause
(glaubt - 1v/s"). The embedded clause in a scope marking construction,
however, is an interrogative clause. The scope marker changes the cate-
gory of the embedded interrogative (wh') into a category which can be
selected by the bridge verb (s). Intuitively, the scope marker operates
like a lever between the embedded interrogative clause and the matrix
clause. As the following derivation illustrates, the scope marker selects
the embedded interrogative and changes the type to an embedded in-
terrogative clause (s’'/wh’). wbpgh is an abbreviation for an embedded
interrogative clause, ‘welches Bild Picasso gemalt hatte’ (= wh')

was b s’ /wh’  wbpgh - wh’
glaubt - 1v/s’ was o whpgh s’
[/E]

[/ E]

glaubt o (was o wbpgh) - 1v

Structurally, however, the scope marker must appear at the front
of the main clause and causes the sentence to be interpreted as a wh-
question. The assignment of category s’/wh’ to scope marker does not
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account for the structural position of the scope marker at the front
of the main clause. The scope marker must have a type-assignment
which accounts for 1) the connection of the embedded interrogative to
the main clause and 2) the structural position of the scope marker at
the front of main clause. To account for these two characteristic, we
use the wh-type schema to assign an appropriate category to scope
marker. The scope marker is an ex-sity type which an associates to a
gap hypothesis of category s’ /wh’ on a left branch. The scope marker
merges to a question body of type s and yields a question of type wh.
The instantiation of the type schema for the German scope marker
‘was’ becomes:

was : Wil ($O(s' /wh'), s, wh)

On the basis of this type, the scope marking construction is de-
rived as follows?. We only display the last steps in the derivation
where ‘wbpgh’ is an abbreviation for an embedded interrogative clause,
‘welches Bild Picasso gemalt hatte’ (= wh').

(glaubt o Miro) o (${O(s’ /wh') o wbpgh) F s
&HO(s" Jwh') o ((glaubt o Miro) o wbpgh) F s

(P12
(W, B]

© was - wiL, (OO(s'/wh'), s, wh)
was o ((glaubt o Mfro) o wbpgh) F wh

The derivation of the scope marker construction can be paraphrased
in prose as follows. After the embedded interrogative is built up as
usual, the sub formula of the scope marker (s’'/wh’) functions as an
hypothesis that resides at the structural position of the relative clause
marker. The hypothesized scope marker changes the type of the embed-
ded interrogative into a embedded declarative clause (s’). The embed-
ded clause is selected by the main clause glaubt Miro. After the main
clause is merged to the subordinate clause, the hypothesis is displaced
to the front of the matrix clause via displacement postulate PI2. When
the hypothesis occurs in fronted position, the scope marker is merged
to the structure replacing the its hypothesis. The complete expression
becomes of type wh.

Wh-phrases and scope markers So far, we have concentrated on
the similarity between scope markers and complementizer phrases.
However, the wh-scope marker is semantically more similar to object

2We use an abbreviated natural deduction rule to merge the scope marker to the
body of the question.
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wh-phrases. Semantically, it associates to the gap hypothesis in the
embedded interrogative. However, due to the occurrence of another
wh-phrase, it cannot bind the hypothesized argument position directly.
The gap hypothesis is already bound by the embedded wh-phrase.
We show that the meaning assembly of the scope marker causes the
A-operator of the embedded interrogative to be bound to the scope
marker. The semantic similarity between scope markers and object
wh-phrases accomplishes this interpretation.

To inspect the similarity between object interrogatives and scope
markers, we need to unfold the wh-type inside the scope marker type.
We derive the following type in an unabbreviated format.

wil, (OO (s' Jwh'), s, wh)

WH, (GO(s'/(s'/2np)), 5, (s/21p))
Syntactically, the type for object wh-phrases is similar to the type
assigned scope markers. The difference is that the object wh-phrase
associates to mp gap hypotheses and the scope marker associates to
a s'/(s'/np) gap. Mapping the syntactic type to a semantic type, the
scope marker is actually reasoning over “lifted” types: (A — B) — B.

[unfold]

object wh-phrase ‘was’ : wil_($Onp, s,5/7np)
scope marker ‘was’ s wal, (OO(s'/(s' /np)), s, 8/2np)

The semantic term assigned to scope markers reflects this similarity
to object wh-phrases. Instead of applying a predicate P to the argument
variable z, the predicate P is applied to the lifted argument variable:

object wh-phrase ‘was’ : A\Q*".\z°.(Q x)
scope marker ‘was’ : APVt Nge (P AQ.(Q x)))

The semantic representation computed for scope marking construc-
tions is the same for direct questions. We present the meaning assembly
for the last steps of the previous derivation in figure 1. For easiness of
reading, the type for wh-questions is abbreviated back to wh (= s/snp).

Before mering the scope marker, the A-operator, Ay, binding the gap
variable in the embedded interrogative has been subsumed by variable
R of the hypothesized scope marker. At the point where the scope
marker is merged to the structure, the A-operator \@Q pulls out the -
operator of the embedded interrogative. The result is a A-term where
the gap variable is bound to a A-operator which takes scope over the
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((believe (R Ay.((picture y) A ((painted y) p)))) m)
(&0O(s' /wh') o ((glaubt o miro) o wbpgh) F s .
[WHEI
© was : APAz.(P AQ.(Q )
was o ((glaubt o miro) o wbpgh) F wh
~ .« Az.((believe ((picture z) A ((painted z) p))) m)

FIGURE 1: Meaning assembly of a scope marking construction

main clause. Hence, interpreting the whole sentence as an interrogative.
The same approach applies to Hindi scope markers. The difference
between German scope markers and Hindji, is the structural realization
of the scope marker. The type-assignment of Hindi scope markers differs
with respect to the category of the body of the question. Hindi scope
markers occur optionally fronted or preverbally. For an analysis of Hindi
scope marking constructions, we refer to Vermaat (Forthcoming).

20.6 Further empirical support

Multiple scope marker construction Constructions with multiple
scope markers are derived by recursively binding the embedded ques-
tion. Each embedded clause that intervenes the embedded interrogative
and the main clause must contain another scope marker. These scope
markers pass the semantic representation of the embedded argument
position on to the main clause by binding the lambda abstraction of
the embedded interrogative.

An example of a multiple scope marker construction is the sentence:
‘Was glaubte Miro was Hans meint welches Bild Picasso gemalt hatte?’.
The intervening embedded clause is marked with another scope marker
and thus binds the embedded argument position.

When the embedded wh-phrase does not occur in the final embedded
clause, but occurs in an embedded clause higher up, the scope marker
only appears in the clauses preceding the partially moved wh-phrase,
for instance ‘Was glaubte Miro welches Bild Hans meint dass Picasso
gemalt hatte?’. Due to the selectional requirements of the verb clause
that follow the wh-phrase (Hans meint | s/s’) the subordinate clause
that follows the embedded interrogative are merged to the invening
clause using the relative complementizer phrase ‘dass’. If ‘was’ would
be applied, the derivation fails.

Multiple wh-phrases Another scope marking phenomenon in Hindi
falls out when scope markers are typed as proposed in this paper. In
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Hindi, a scope marking construction is also used when the matrix verb
selects for an embedded interrogative and the embedded interrogative
contains multiple wh-phrases. For instance the sentence:
(20.62) (Lahiri, 2002, ex.73, p.522)
Jaun kyaa puucha ki kis-ne kis-se baat kii?
John what asked that who who-with talk do-[pres]
“Who did John ask who talked to?”

The embedded clause ‘ki kis-ne kis-se baat kii’ has two wh-phrases
embedded and therefore becomes of type: (s/2np)/-np. The matrix verb
puucha (= ‘ask’), however, only selects for a single wh-question type.
The hypothesis of the scope marker selects for a multiple wh-question
type and yields a single wh-question type: ((s’/np)/(wh’/np)). The
whole phrase is interpreted as presented in the glosses of the example;
one argument is bound at the main clause level the other is bound in
the embedded clause.

20.7 Discussion

Syntactic accounts in the syntactic framework have proposed differ-
ent mechanisms to derive the right interpretation of scope marking
constructions. Two leading approaches are the direct dependency ap-
proach and the indirect dependency approach. The proposed analysis
type-logical grammar shows, however, that the mechanism used to de-
rive a syntactic account of the scope marking constructions results in
a semantic representation similar to direct questions. The syntactic ac-
count of the two languages differs only on the structural position of the
scope marker. The semantic representations of the two scope marker
indicate that the two grammatical constructions are much closer to
each other than is suggested in generative syntactic literature. Further-
more, the scope marker show a clear relation to the standard account
of interrogative pronouns. The type-assignment of scope marker are
semantically derivable from the types assigned to object wh-phrases.

20.8 Conclusion

In this paper, we have shown that we can account for scope marking
constructions using the proposed analysis of wh-question formation.
The analysis is an example of how the deductive system of MMCG can
be used to analyze natural language phenomena and indicate differences
and similarities between and across languages. Because the deductive
system of MMCG is completely lexicalized, any phenomena and any
grammar system is determined by assigning the right type of type-
assignment to individual expressions. We have shown how the restricted
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set of structural postulates along with derived inference rules for the
base logic realizes scope marking constructions in German. We have
illustrated that the similarity between object wh-phrases and scope
markers results in a similar semantic representation of direct questions
and scope marking constructions.
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