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A simple and effective algorithm for the identification of optimal time delays based on the geometrical properties of the embedded
attractor is presented in this paper. A time series synchronization measure based on optimal time delays is derived. The approach is
based on the comparison of optimal time delay sequences that are computed for segments of the considered time series. The
proposed technique is validated using coupled chaotic Rössler systems.

1. Introduction

The reconstruction of geometry from a time series is one of
the paradigmatic algorithms used for the computational
analysis of nonlinear dynamical systems. There is a number
of algorithms for the analysis of time series that consider
phase spaces, that is, the set of all possible system states, of
dynamical systems. For a deterministic dynamical system,
the phase space is known from the mathematical model
(equations of motion). Thus, with the knowledge of the
system state at a particular time, it is always possible to deter-
mine the future states. However, real-world or experimental
dynamical systems are usually too complex, and phase spaces
of such systems are unknown due to the chaotic nature of the
analyzed data. Therefore, phase space reconstruction
methods had to be developed. A branch of applied dynamical
system theory, analyzing such algorithms, that is, extracting
the information about geometrical and topological properties
of the phase space of time series obtained by performing
measurements on an evolving system, is called embedology
[1]. One of the first methods for reconstructing the phase
space system from a time series by using a time delay var-
iable was proposed several decades ago [2]. A complex
time series has an inherent geometry, and Packard et al.
[2] were first to show that a representative geometry of a

dynamical system can be obtained by using a time series
of one of its observables.

The much celebrated Takens embedding theorem proved
that it is possible to reconstruct the attractor of a dynamical
system using only a single time sequence of scalar measure-
ments [3]. The vectors accomplishing this reconstruction
have the form x t = x t , x t − τ ,… , x t − m − 1 τ ,
where x t are the observations on the system, the integer
m is the embedding dimension, and τ is the time difference
between consecutive components (also called the time lag
or the delay time) and is a multiple of the sampling time step.
Takens assumed an infinite sequence of noise-free measure-
ments and proved the existence of a diffeomorphism
between the original and the reconstructed attractors for
almost any choice of positive delay times τ and a suffi-
ciently big dimension m.

Although the application of the Takens time delay tech-
nique is straightforward for almost any time series, the selec-
tion of optimal reconstruction parameters τ and m is a
nontrivial problem due to their dependence on the nature
of the analyzed data. Thus, numerous studies have been
made in this area. The selection of optimal time delay value
is usually based on the optimization of a particular target
function that corresponds to some measures of the quality
of phase space reconstruction. Classical statistical approaches
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for the construction of the target function include the auto-
correlation function method and the mutual information
method [4–6]. Such techniques are based on maximizing
the independence between the coordinates of the delay vec-
tor. This approach is heavily reliant on the geometry of the
phase space reconstruction, which is appropriate for the
study of parameters such as fractal dimension and Lyapunov
exponents. However, the selection of such target function
does not always yield best results for nonlinear time series
prediction problems [7].

Another class of methods for the selection of an opti-
mal τ is based on the concept of phase space expansion.
The “fill factor” as a spatial measure of the phase space
was first introduced by Buzug and Pfister in [8, 9]. The fill
factor quantifies an attractor’s utilization of the embedding
space as a function of τ. While this method does not pos-
sess the drawbacks of statistical techniques with respect to
nonlinear data, it is computationally intensive (for m > 3)
and is prone to overfolding of the attractor [10]. A more
computationally effective algorithm based on the expan-
sion of the area for all pairwise planar projections of the
embedded attractors is presented in [11]. Similar
approaches based on the spatial properties of phase spaces
include the average displacement method [10], the SVF
method [12], and the wavering product [13] method.

A different viewpoint considers both phase space recon-
struction parameters m, τ simultaneously since some experi-
ments indicate that an irrelevant relationship betweenm and
τ may impact the congruence between the original system
and the reconstructed phase space. This class of methods
includes the small-window solution [14] and the C-C
method [15].

Novel approaches to the selection of embedding
parameters have been developed in recent years. It is
shown in [16] that an improved phase space reconstruc-
tion method based on manifold embedding and Laplacian
eigenmaps can reveal the structure of the chaotic attractor.
A new algorithm for the estimation of the dimension of
chaotic dynamical systems using neural networks and
robust location estimate is proposed in [17]. Statistical
analysis of the nearest neighbors is exploited for the
reliable estimation of minimum embedding dimension
for noisy time series in [18].

It has been demonstrated in [11, 19–21] that nonuni-
form embedding (when all time delays are not equal) per-
forms better than uniform embedding in a variety of
applications—typical examples are causality and coupling
detection and time series prediction. However, the proce-
dure for the selection of time delays is usually related to
a particular application and is implemented by introducing
a specific target function which determines the utility gen-
erated by a concrete nonuniform embedding.

This paper has two main objectives. The first objective
is to introduce a simple and effective algorithm for the
identification of optimal time delays which is based on
the geometrical properties of the embedded attractor and
is applicable for short time series.

The second objective is to introduce a time series syn-
chronization measure based on optimal time delays. A short

review of commonly applied methods for the detection of
synchronization is given below.

The first linear synchronizationmeasures based on corre-
lation analysis, namely, cross correlation and coherence
functions, are widely applied due to their computational
effectiveness [22]. However, such measures can only detect
the most straightforward regimes of synchronization.

Nonlinear synchronization measures were introduced in
order to quantify more complex synchronization effects.
The mutual information measure is based on Shannon
entropy and takes into account not only linear but also non-
linear dependencies [23]. Phase synchronization measure is
used to quantify similarity between cyclic signals and time
series. Two approaches—based on the Hilbert or wavelet
transform—can be used to implement the phase synchroni-
zation detection algorithm [22].

A new form of synchronization between coupled cha-
otic oscillators called amplitude envelope synchronization
has been discovered in [24]. Generalized synchronization
of dynamical systems occurs if dynamical variables from
one subsystem are a function of the variable of another
subsystem [25]. A nonlinear interdependence of dynamical
systems based on state space reconstruction is a similar
approach to generalized synchronization but does not
require a functional relationship between the dynamics of
the underlying systems [26]. The function projective syn-
chronization in relay coupled systems is studied in [27].
A novel sort of synchronization called complex antilag
synchronization is introduced in [28]. A new approach
for the investigation of hybrid chaos synchronization in
discrete-time hyperchaotic dynamical systems based on
stability theory of linear discrete-time systems and Lyapu-
nov stability theory was proposed in [29].

This paper presents a novel time series synchroniza-
tion measure based on the geometrical approach towards
optimal time delays. This approach is based on the deter-
mination of time lags that maximize the volume of the
state space occupied by the embedded segments of the
time series. The sequences of obtained time lags reveal
the level of synchronization between 2 time series. The
presented algorithm for the identification of synchroniza-
tion between two time series is validated using coupled
chaotic Rössler systems.

2. Preliminaries

2.1. Two-Dimensional Delay Coordinate Space. Let us con-
sider a harmonic function x t = sin ωt + ϕ , where ω is
the angular frequency and ϕ is the phase of harmonic oscilla-
tions, and the amplitude is set to 1. A pair of function values
x t and x t + τ , where τ is the time lag, is mapped into a
point x t ; x t + τ in the phase plane X1OX2, where X1
and X2 are the coordinates of the delay coordinate plane.
Two-dimensional time delay embedding maps the harmonic
function into an ellipse; the equation of that ellipse reads

X2 = X1 cos τ + 1 − X2
1 sin τ 1

2 Complexity



The geometrical shape of the ellipse can be exploited for
the quantification of the quality of the embedding. Such geo-
metric approach (for a two-dimensional phase plane) was
firstly proposed by Buzug and Pfister in 1992 [9]. The radi-
uses of the embedded ellipse r1 and r2 can be directly
expressed from (1):

r1 =
sin ωτ

1 − cos ωτ
,

r2 =
sin ωτ

1 + cos ωτ

2

Thus, the area of the ellipse E reads

E = π ⋅ r1r2 = π sin ωτ 3

The maximum area of the ellipse is π (when the ellipse
becomes a circle). Now, the function representing the quality
of embedding into a two-dimensional delay coordinate space
can be defined as a ratio between the area of the ellipse and
the area of the circle:

Q τ, ω = sin ωτ 4

2.2. m-Dimensional Delay Coordinate Space

2.2.1. The Embedding Quality Function. The geometrical
approach for embedding a harmonic function into a two-
dimensional phase plane is generalized for the m-dimen-
sional delay coordinate space in [11]. The coordinates of
the reconstructed point in the m-dimensional delay coordi-
nate space read

x t , x t + τ1 , x t + τ1 + τ2 ,… , x t + τ1 +⋯ + τm−1 ,
5

where τ1, τ2,… , τm−1 is the time delay vector; ∑m−1
k=1 τk is

the total embedding window. It can be observed that there
exist m m − 1 /2 planar projections of the embedded ellipse.
The function representing the quality of embedding into the
m-dimensional delay coordinate space is constructed as an
arithmetic average of all quality functions is all possible pla-
nar projections [30]:

In the case of the uniform embedding (when τ1 =
τ2 =⋯ = τm−1 = τ), (6) reads

Q τ, ω = 2
m m − 1 〠

m−1

k=1
m − k sin kωτ 7

The equality Q = 0 implies that the harmonic function
is compressed into line segments in all possible planar
projections. The maximization of Q in respect of time lags
results in a maximum average area of ellipses in all possi-
ble planar projections.

2.2.2. A Nonharmonic Function. Let us consider a function
x t defined in the time interval t0 ≤ t ≤ t1, where t0 and
t1 are the limits of the observation window. Every
harmonic component of x t is affected by the quality
function Q τ1, τ2,… , τm−1, ω when the appropriate har-
monic signal is embedded into the m-dimensional delay
coordinate space. Harmonic components with frequencies
where Q is small will be suppressed (in average) in all
possible planar projections more than those harmonic
components where Q is large. Such motivation did help
to construct the optimization problem for the identifica-
tion of an optimal set of time delays which do result in
the richest representation of the attractor in the delay
coordinate space:

τ∗1 ,… , τ∗m−1 = arg max S τ1,… , τm−1 , 8

where

S τ1,… , τm−1 = π

2

∞
0 A ω Q τ1,… , τm−1, ω dω

∞
0 A ω dω

, 9

τ∗1 ,… , τ∗m−1 is the optimal set of time delays and A ω
is the Fourier amplitude spectrum of the signal in the
observation window [11]. The integral in the denomina-
tor is used in order to normalize the target function in
respect of the signal (this integral can be computed once
at the beginning of the optimization process). The multi-
plier π/2 is used to normalize the target function in
respect of the white noise (the value of the target func-
tion for the white noise signal now becomes equal to 1
for any time delays not equal to 0) [11].

3. The Proposed Algorithm

The technique proposed in [11] enables a fast and effec-
tive determination of the optimal set of time delays by
assessing the geometrical properties of the embedded
attractor. However, the optimization problem in [11] does
not asses the phase spectrum of the Fourier transform. In
other words, [11] is an approximate algorithm for the
determination of optimal time delays when every discrete

Q τ1, τ2,… , τm−1, ω = 2
m m − 1 〠

m−1

k=1
sin ωτk + 〠

m−1

k=1
sin ω τk + τk+1 +⋯ + sin ω 〠

m−1

k=1
τk 6
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harmonic component of the Fourier amplitude spectrum
is treated as a separate individual harmonic component.
Nevertheless, such an approximating approach appears
to be useful in practical applications—especially in time
series forecasting algorithms based on fuzzy neural
networks [31–33]. However, it is clear that the Fourier
phase spectrum does have an impact on the geometrical
representation of the reconstructed attractor in the phase
space. In other words, a more accurate assessment of the

geometrical properties of the reconstructed attractor is
required. Let us consider a continuous function f t in
the observation window 0 ≤ t ≤ T and the m-dimensional
delay coordinate space with the set of time lags τ = τ1,
τ2,… , τm−1 . Then, instead of computing any projections
of the embedded attractor into a 2-dimensional phase
planes, we compute the average distance of the attractor
points to the origin of the embedding frame:

3.1. Properties of D τ1, τ2,… , τm−1 : Embedding a Harmonic
Function. Let us consider that the embedding is uniform τ1
= τ2 =⋯ = τm−1 = τ ; T →∞ and the embedded function is
a harmonic function f t = a sin ω0t + ϕ , where a, ω0, and
ϕ are the amplitude, the circular frequency, and the phase,
accordingly. Then,

D τ = a

m
lim
T→∞

1
T

〠
m−1

k=0
sin2 ω0 t + kτ + ϕ dt 11

The change of variables ω0t + ϕ = x yields

D τ = a

ω0 m
lim
T→∞

1
T

ω0T+ϕ

ϕ

〠
m−1

k=0
sin2 x + ω0kτ dx

= a

ω0 m

1
2π

2π

0
〠
m−1

k=0
sin2 x + ω0kτ dx

12

Now,

Let us denote z = ei2ω0τ. Then,

D τ1, τ2,… , τm−1 = 1
T m

T

0
f 2 t + f 2 t + τ1 + f 2 t + τ1 + τ2 +⋯ + f 2 t + 〠

m−1

k=1
τk dt 10

D τ = a

ω0 m

1
2π

2π

0
sin2x 〠

m−1

k=0

1
2 + 1

2 cos 2ω0kτ + 1
2 sin2x 〠

m−1

k=0
sin 2ω0kτ + cos2x 〠

m−1

k=0

1
2 −

1
2 cos 2ω0kτ

1/2

dx

= a

ω0 2m
1
2π

2π

0
m − cos 2x 〠

m−1

k=0
cos 2ω0kτ + sin 2x 〠

m−1

k=0
sin 2ω0kτ dx

13

D τ = a

ω0 2m
1
2π

2π

0
m − cos 2x 〠

m−1

k=0
Re zk + sin 2x 〠

m−1

k=0
Im zk dx

= a

ω0 2m
1
2π

2π

0
m − cos 2x Re 1 − zm

1 − z
+ sin 2x Im 1 − zm

1 − z
dx

14
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Note that 1 − zm / 1 − z = 0 when τ = π/mω0. Thus,

D
π

mω0
= a

ω0 2m
1
2π

2π

0
m dx = a

2ω0
15

is the maximal value for the harmonic function. On the
opposite, the pole z = 1 is a removable singularity at τ = π/
ω0 and

D
π

ω0
= a

ω0 2
1
2π

2π

0
1 − cos 2x dx = 2a

ω0π
16

is the minimal value for the harmonic function.

3.2. The Comparison between D τ and S τ . We continue
with the harmonic function f t = a sin ω0t + ϕ and uni-
form embedding. Then, A ω = δ ω − ω0 and (9) yields
S τ = π/2 Q τ, ω0 , where δ is the Dirac delta function.
Without the loss of generality, we assume that a = 1 and
ω0 = 1. Then, Dmin = 2/π ≈ 0 637; Dmax = 1/ 2 ≈ 0 707.
Graphs of D τ and S τ are illustrated in Figure 1.

The first observation is that graphs of D τ and S τ
are similar at m = 2 (Figure 1(a)). The best embedding of
the harmonic signal into the 2-dimensional delay coordi-
nate space is produced at τ = π/2 + πk, k ∈ℤ (then the

harmonic function is embedded into a circle). The har-
monic function is embedded into a line interval on one
of the diagonals of the frame at τ = πk, k ∈ℤ. The differ-
ence is that now S πk = 0, but D πk = 2/π (note that
the scale of the y-axis for S τ is shown on the left, but
the scale for D τ is shown on the right side of
Figure 1(a)).

The differences between D τ and S τ are more clear at
m = 3 (Figure 1(b)). The harmonic function cannot be
mapped into circles in all 3 projections at a fixed τ; therefore,
the maximum value of S τ at m = 3 is lower than that at m
= 2 (note that the scales of the axes are the same for different
m in Figure 1). But Dmax remains the same and does not
depend on the dimension of the delay coordinate space. Both
D τ and S τ yield the best embedding at π/3 l, where l ∈
ℤ/ 3k , k ∈ℤ.

The maximum value of S τ at m = 4 becomes smaller
than the one at m = 3 (Figure 1(c)). But now a major dif-
ference between D τ and S τ can be observed in terms
of the best embedding. S τ yields the best embedding at
± π/4 + πk, but D τ yields the best embedding at π/4
l, where l ∈ℤ/ 4k , k ∈ℤ. Clearly, S τ misses the time
delay τ = π/2 + πk. That can be explained by the fact
that S τ measures the average area of the mapped attrac-
tor in all possible plane projections of the m-dimensional
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Figure 1: The comparison of functionsD τ (solid line) and S τ (dashed line). The parameterm is set to 2, 3, 4, and 20 in (a), (b), (c), and (d),
respectively.
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delay coordinate space. On the contrary, D τ directly
measures the geometrical volume occupied by the attractor
without considering any projections of that attractor.

The maximum value of S τ tends to 1 when m→∞
(Figure 1(d)). Note that S τ1,… , τm−1 = 1 when the
embedded time series is the white noise [11]. However,
as mentioned previously, Dmax is an invariant value in
respect of m. What is more important, D τ yields the best
embedding at π/m l, where l ∈ℤ/ mk , k ∈ℤ, which is in
stark contrast to S τ (Figure 1(d)).

3.3. Embedding a Discrete Time Series. Let us consider a
finite scalar discrete time series x1, x2,… , xn , where n
is the number of observation points uniformly spread in
the time axis. Let the sampling rate of the time series
(the time interval between adjacent observations) be δ.
Then, all time delays are multiple values of δ τk = ikδ, ik
∈ℕ, k = 1, 2,… ,m − 1. Let us denote Δ =∑m−1

k=1 ik. Then,
(10) reads

Note that δ does not play any role on the right-hand
side of (17)—because the definite integral in (10) is
replaced by the limit sum in (17). Now, the problem of
the identification of the optimal set of time delays is for-
mulated as follows:

max
1≤i1,…,im−1≤L

1
n − Δ m

〠
n−Δ

k=1
x2k + x2k+i1 + x2k+i1+i2 +⋯ + x2k+Δ ,

18

where L is the upper limit for every individual time delay.
The total embedding window (the time delay between the
first and the last time delay coordinates) is Δδ, and it
could be also used for the estimation of L. It is clear that
n must be greater than Δ. However, n must be at least 10
times greater than m − 1 L in order to produce a mean-
ingful optimization result (18).

3.4. Properties of D τ1, τ2,… , τm−1 : Embedding the Random
Noise. It is well known that embedding of the random
noise is invariant to time delays. In other words, the geo-
metric shape of the reconstructed attractor does not
depend on time delays (if only the embedded time series
is an ergodic random process and the realization of that
process is long enough). This geometric feature is
exploited in one of the tests used to measure the quality
of random number generators. For example, if a random

number generator yields a sequence of numbers distrib-
uted uniformly in the interval 0, 1 , then the density of
the embedded points should be the same in any location
of a two-dimensional square 0, 1 × 0, 1 for a sufficiently
long sequence and any time delay greater than 1 [34]. It is
clear that D i1δ,… , im−1δ must be invariant to time
delays if only the embedded time series is random. We
demonstrate the properties of D i1δ,… , im−1δ for the
random time series distributed uniformly in the interval
a, b , a ≥ 0 and for the Gaussian time series. Of course,
the invariance in respect to time delays does hold, but
some features of D i1δ,… , im−1δ are interesting and are
presented below.

3.4.1. Embedding the Uniform Noise. Let us consider a dis-
crete random variable X distributed uniformly in the interval
a, b , a ≥ 0. Initially, let us consider m = 1 and n→∞. In
fact, this situation cannot be considered an embedding
because all values of the time series are mapped on a single
one-dimensional axis without any time delays. However,
the formal result reads

lim
n→∞

D∣m=1 = lim
n→∞

1
n
〠
n

k=1
xk = a + b

2 19

Now, let us consider the situation when m→∞ (for
any n):

D i1δ, i2δ,… , im−1δ = 1
n − Δ m

〠
n−Δ

k=1
x2k + x2k+i1 + x2k+i1+i2 +⋯ + x2k+Δ 17

lim
m→∞

D i1δ,… , im−1δ = lim
m→∞

1
n − Δ m

〠
n−Δ

k=1
x2k + x2k+i1 + x2k+i1+i2 +⋯ + x2k+Δ

= lim
m→∞

1
n − Δ m

〠
n−Δ

k=1
m ⋅

a2 + ab + b2

3 = a2 + ab + b2

3

20
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Thus, finally,

a + b
2 <D i1δ,… , im−1δ < a2 + ab + b2

3 , 21

if the embedded random time series is distributed uniformly
in the interval a, b , a ≥ 0.

3.4.2. Embedding the Gaussian Noise.Now, let us assume that
a discrete random variable X is the Gaussian noise, with the
mean value μ and standard deviation σ. Firstly, let us
consider m = 1 and n→∞:

lim
n→∞

D∣m=1 = lim
n→∞

1
n
〠
n

k=1
xk = μ 22

Now, let us consider the case when m→∞ (for any n):

Thus, finally,

μ <D i1δ,… , im−1δ < μ2 + σ2, 24

if the embedded random time series is the Gaussian noise,
with the mean μ and the standard deviation σ.

3.5. Computational Experiments: Optimal Embedding of
Mackey-Glass Time Series. Equation (18) is a nonlinear inte-
ger optimization problem. The full sort method could be
used for the identification of the optimal set of time delay-
s—only if m, L, and n are not very large and computational
resources are not strictly limited. Otherwise, soft computing
techniques could be exploited for the determination of the
near-optimal set time delays [30]. Let us consider Mackey-
Glass time series [35] the discrete numerical solution to cha-
otic Mackey-Glass delay differential equation that reads

dx t
dt

= a ⋅ x t − c
1 + x10 t − c

− bx t , 25

where a = 0 2, b = 0 1, and c = 17; the observation window is
0 ≤ t ≤ 1000 and the time step δ = 1 (Figure 2). The standard
FNN algorithm [36] yields (5) as the minimum embedding
dimension for the investigated chaotic Mackey-Glass series.

Now, we use (18) to determine the optimal uniform
time lag in the interval 1 ≤ τ ≤ 100 (Figure 3). The maxi-
mum value of D is reached at τ = 27 D 27, 27, 27, 27 =
0 2248 (Figure 3). Note that this value of D can be used
as a lower bound for the integer programming problem
when the near-optimal set of nonuniform time delays is
sought using branch-and-bound [37] or other soft optimi-
zation algorithms.

The full sort method is used to determine the optimal
time delay vector for nonuniform embedding. 1004 different
combinations 1 ≤ i1, i2, i3, i4 ≤ 100 are assessed in 8.14
hours on a two-kernel 2.20GHz processor with 8GB RAM.
As mentioned previously, soft computing techniques can be
effectively exploited for the determination of the near-
optimal set of time delays. Finally, the optimal set of time

lim
m→∞

D i1δ,… , im−1δ = lim
m→∞

1
n − Δ m

〠
n−Δ

k=1
x2k + x2k+i1 + x2k+i1+i2 +⋯ + x2k+Δ

= lim
m→∞

1
n − Δ m

〠
n−Δ

k=1
m ⋅ μ2 + σ2 = μ2 + σ2

23
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Figure 2: Mackey-Glass time series at a = 0 2, b = 0 1, and c = 17.
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Figure 3: Plot of D τ for the Mackey-Glass time series (uniform
embedding in the 5-dimensional delay coordinate space). The
maximum value of D τ is attained at τ = 27.
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Figure 4: All possible planar projections of the embedded Mackey-Glass attractor occupy the largest area (in average) at τ1 = 23, τ2 = 66,
τ3 = 16, and τ4 = 20.
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Figure 5: Coupled Rössler attractors (26) in the phase space: (a, b) uncoupled systems at ε = 0; (c, d) coupled systems at ε = 0 15; (e, f) coupled
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delays reads 23, 66, 16, 20 ; D 23, 66, 16, 20 = 0 2264. All
possible planar projections of the embedded Mackey-Glass
attractor are illustrated in Figure 4.

3.6. Synchronization Measure Based on a Geometric
Approach to Attractor Embedding. The proposed technique
for the determination of optimal time delays is based on a
straightforward geometric approach. Such an approach can
be effectively exploited for comparing geometric properties
of attractors embedded from different time series. Moreover,
we will demonstrate that such an approach is working well
with short time series.

The basic idea of the proposed synchronization feature
is based neither on the direct comparison between geo-
metric shapes of the reconstructed attractors nor on global
characteristics of those attractors (like averaged maximum
Lyapunov exponent). We will use the optimal time delay
as a single numerical characteristic describing the geome-
try of the reconstructed attractor in a 2-dimensional delay
coordinate space. The reasoning for such a measure is
straightforward. It follows from the properties of the
reconstructed attractor (Figure 4). Such synchronization
measure is much more general compared to synchroniza-
tion measures used to detect identical, phase, amplitude
envelope, lag, or even generalized synchronization. Two
attractors are considered to be similar if their optimal time
lags are the same. The higher the difference between opti-
mal time lags, the more different these attractors are con-
sidered (from the geometrical point of view).

We will demonstrate that such an approach for detect-
ing synchronization between two different time series is
highly feasible—especially if those time series are far from
being similar.

Let us consider two paradigmatic chaotic Rössler systems
with diffusive coupling:

dX1
dt

= −Y1 − Z1 + ε X2 − X1 ,

dY1
dt

= X1 + a1Y1,

dZ1
dt

= b + Z1 X1 − c ,

dX2
dt

= −Y2 − Z2 + ε X1 − X2 ,

dY2
dt

= X2 + a2Y2,

dZ2
dt

= b + Z2 X2 − c ,

26

where a1 = 0 2, a2 = 0 3, b = 0 2, and c = 5 7; ε is the coupling
parameter. The initial condition is set to X1 = X2 = 1, Y1 =
Y2 = 1, and Z1 = Z2 = 0.

Attractors of both Rössler systems are illustrated in
Figure 5. The difference between the uncoupled attractors
can be seen by a naked eye (Figures 5(a) and 5(b)). However,
the attractors become similar as the coupling increases
(Figures 5(e) and 5(f)).

Analogously, attractors of coupled Rössler systems (26)
are visualized in the embedding space (Figure 6). Note
that a short observation window (400 scalar data points)
is used to reconstruct the attractor in the planar delay-
coordinate space. One time delay is used for every embed-
ding; optimal values of time delays are depicted in
Figure 6. Note that both the geometric shape of the
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Figure 6: Coupled Rössler attractors (26) in the planar delay coordinate space: (a, b) uncoupled systems at ε = 0; (c, d) coupled systems at
ε = 0 15; (e, f) coupled systems at ε = 0 95 (a1 = 0 2, a2 = 0 3, b = 0 2, and c = 5 7).
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embedded attractors and the optimal time delays become
closer as the coupling parameter grows (Figure 6).

It is also interesting to compare the maximal Lyapunov
exponents calculated for the system (26) and the one in
the embedding space. Averaged maximal Lyapunov expo-
nents for the uncoupled Rössler systems are computed
separately: λ1 max = 0 0764 for the first system and λ2 max
= 0 1228 for the second system. However, the coupled
Rössler systems (26) are considered a single system. The
6-dimensional Jacobian matrix of the coupled system
yields (after averaging) a single maximal Lyapunov expo-
nent: λmax = 0 1094 at ε = 0 15 and λmax = 0 0524 at ε =
0 95. It can be observed that the single maximal Lyapunov
exponent of the coupled system at ε = 0 15 approaches the
average of λ1 max and λ2 max. But the maximal Lyapunov
exponent decreases (the coupled system becomes less
chaotic) at ε = 0 95.

The maximal averaged Lyapunov exponents computed
directly from time series X1 and X2 in the embedded
space are 0.0485 and 0.0541 for ε = 0, 0.0367 and 0.0461
for ε = 0 15, 0.0326 and 0.0344 for ε = 0 95. Note that the
maximal Lyapunov exponents computed directly from
time series X1 and X2 are underestimated if compared to
the maximal exponents for the coupled systems in (26).
This effect is well known for synchronized differential
equations [38]. Nevertheless, both methods demonstrate
that the coupled systems become less chaotic when the
coupling parameter is increased.

Figure 7(a) shows the evolution of X1 and X2 and the
difference between X1 and X2 when two Rössler systems
are uncoupled (the length of the observation window is
8000 points). Figure 7(b) shows X1, X2, and X1 − X2 when

ε = 0 15, and Figure 7(c) corresponds to ε = 0 95. Note that
the scales of the vertical axes in the graphs in Figure 7(c)
are different. Time series X1 and X2 become more similar
as the coupling parameter ε increases; however, the differ-
ence X1 − X2 remains chaotic even at ε = 0 95 (Figure 7).
The whole observation window is now split into 20 equal
intervals; each interval contains 400 points (both for X1
and for X2). The optimal time lag (2-dimensional delay
coordinate space) is identified for time series in each indi-
vidual interval according to (18); 0 ≤ τ ≤ 200. Optimal time
delays for X1 and X2 are represented by a solid and a
dashed line correspondingly in Figures 8(a)–8(c); the cor-
relation between two sequences of optimal time delays is
ρ = 0 19263, ρ = 0 46533, ρ = 0 99861 at ε = 0, ε = 0 15
and ε = 0 95, respectively. It appears that the proposed
algorithm based on the geometric approach to optimal
attractor embedding is able to detect the synchronization
between two chaotic series in an effective and efficient
way. Note that the difference between X1 and X2 is not
equal to zero at ε = 0 95 (Figure 7). However, it appears
that ρ (the correlation between two sequences of optimal
time delays) is a good indicator of the geometrical syn-
chronization between two sequences. It represents a geo-
metric measure of synchronization between different time
series. But instead of comparing geometric shapes of the
embedded attractors, it compares sequences of optimal
time lags in a predefined number of observation windows.

Computational experiments are continued with the
coupled Rössler systems with the additive Gaussian ran-
dom noise. Note that different realizations of the Gaussian
random noise are added to X1 and X2. Moreover, the
noise is added after the integration of (26) and thus is
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Figure 7: Coupled Rössler systems (26) at different values of the coupling parameter ε. (a) X1, X2, and X1 − X2 when two Rössler systems are
uncoupled (ε = 0). (b) X1, X2, and X1 − X2 at ε = 0 15. (c) X1, X2, and X1 − X2 at ε = 0 95.
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Figure 9: Coupled Rössler systems (26) at different values of the coupling parameter ε with the additive Gaussian noise. (a) X1, X2, and
X1 − X2 when two Rössler systems are uncoupled (ε = 0). (b) X1, X2, and X1 − X2 at ε = 0 15. (c) X1, X2, and X1 − X2 at ε = 0 95. Different
realizations of the Gaussian random noise (zero mean, standard deviation equal to 2) are added to X1 and X2 after the integration of (26).
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Figure 8: Correlation between sequences of optimal time lags serves as an indicator of the geometric synchronization between two time
sequences. (a–c) Coupled Rössler systems without the additive noise. (d–f) Coupled Rössler systems with the additive Gaussian noise (the
standard deviation equal to 2). (g–i) Coupled Rössler systems with the additive Gaussian noise (the standard deviation equal to 18).
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not smoothed by the numerical integrator. Computational
experiments are repeated for different values of the cou-
pling coefficient (ε = 0, ε = 0 15, and ε = 0 95) and with
the different parameters of the additive Gaussian random
noise. The Gaussian noise with the zero mean and the
standard deviation equal to 2 is used in Figure 9, and that
with the zero mean and the standard deviation equal to 18
is used in Figure 10.

Again, the whole observation window is split into 20
equal intervals (each interval contains 400 points both for
X1 and for X2). Optimal time lags for the coupled Rössler sys-
tems with the additive noise are represented by a solid and a
dashed line correspondingly in Figures 8(d)–8(f) (for the
standard deviation equal to 2) and in Figures 8(g)–8(i) (for
the standard deviation equal to 18).

The correlation between sequences of optimal time
delays for the coupled Rössler systems with the additive
noise (with standard deviation equal to 2) reads
−0.39219, 0.36979, 0.79285 at ε = 0, ε = 0 15, and ε = 0 95,
respectively (Figure 8). The differences between X1 and
X2 are large, random, and unpredictable (Figure 9). Never-
theless, the proposed algorithm is capable of identifying
the synchronization between two sequences even in such
a complicated computational experiment.

Analogously, the correlation between sequences of
optimal time delays for the coupled Rössler systems with
the additive noise (with standard deviation equal to 18)
reads 0.094789, 0.23079, and 0.25094 at ε = 0, ε = 0 15,
and ε = 0 95, respectively (Figure 8). Now, the proposed
algorithm for the identification of the geometrical synchro-
nization between X1 and X2 reaches the limits of applica-
bility. Simply, the signal-noise ratio is so low that it is

impossible to trace the presence of any synchronization
between two time series.

3.7. Computational Experiments: Comparisons and
Extensions. This paper presents a new technique for the
quantification of geometric synchronization between differ-
ent time series. This technique is based on the identification
of optimal time lags which maximize the state space occupied
by the embedded segments of scalar time series. A natural
question is whether other existing methods for the determi-
nation of optimal time lags could be used instead.

Computational experiments are repeated with the
coupled Rössler systems, but the autocorrelation method
for the determination of optimal time lags [5, 6] is used
instead of the proposed method. All parameters of the com-
putational setup are kept the same—including the coupling
parameter, system parameters, and the length of the observa-
tion window (Figure 11).

The first observation is that the autocorrelation method
yields incorrect correlation for the coupled Rössler systems
at ε = 0 15; it appears that the correlation between uncoupled
systems (Figures 11(a) and 11(b)) is higher than that between
coupled systems (Figures 11(d) and 11(e)). Secondly, the
autocorrelation method yields wrong results for the coupled
Rössler systems with the additive noise—the correlation
between the coupled systems with the additive Gaussian
noise is higher than that between the coupled systems with-
out the additive noise (Figures 11(b)–11(h)).

Computational experiments are now repeated with the
mutual information method for the determination of
optimal time lags [4] (Figure 12). Again, correlations
between the coupled systems with the additive noise
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Figure 10: Coupled Rössler systems (26) at different values of the coupling parameter ε with the additive Gaussian noise. (a) X1, X2, and
X1 − X2 when two Rössler systems are uncoupled (ε = 0). (b) X1, X2, and X1 − X2 at ε = 0 15. (c) X1, X2, and X1 − X2 at ε = 0 95. Different
realizations of the Gaussian random noise (zero mean, standard deviation equal to 18) are added to X1 and X2 after the integration of (26).
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Figure 11: Correlation between sequences of optimal time lags identified by means of the autocorrelation method. (a–c) Coupled Rössler
systems without the additive noise. (d–f) Coupled Rössler systems with the additive Gaussian noise (the standard deviation equal to 2).
(g–i) Coupled systems with the additive Gaussian noise (the standard deviation equal to 18).
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Figure 12: Correlation between sequences of optimal time lags identified by means of the mutual information method. (a–c) Coupled Rössler
systems without the additive noise. (d–f) Coupled Rössler systems with the additive Gaussian noise (the standard deviation equal to 2). (g–i)
Coupled systems with the additive Gaussian noise (the standard deviation equal to 18).
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(Figures 12(b)–12(e)) are higher those between the
coupled systems without noise (Figures 12(c)–12(f)). Also, cor-
relations between strongly coupled systems (Figures 12(e)
and 12(f)) are lower than correlations between weakly
coupled systems (Figures 12(h) and 12(i)).

These computational experiments demonstrate that the
identification of optimal time lags based on the maximization
of the state space occupied by the embedded segments of
scalar time series is a perfect approach for the presented
synchronization measure.

Computational experiments are continued with a
completely different system. The proposed synchronization
measure is tested using a coupled system of periodically
forced nonlinear pendulums:

d2X

dt2
+ b

dX
dt

+ sin X = f1 cos ωt + ε Y − X ,

d2Y

dt2
+ b

dY
dt

+ sin Y = f2 cos ωt + ε X − Y ,
27

where X and Y are angular coordinates of the coupled sys-
tems, b is the damping coefficient, f1 and f2 are the external
forcing amplitudes of both systems, and ω is the frequency.
A driven damped nonlinear pendulum is a paradigmatic
model in nonlinear dynamics; the model yields chaotic
behavior at ω = 2/3, b = 1, and f = 2 048 [39]. The parameters

of the coupled model are set as follows: ω = 2/3, b = 1, f1 =
2 048, and f2 = 2 049.

The proposed synchronization measure ρ for (27) is pre-
sented in Figure 13. At first, the coupled system of nonlinear
pendulums is considered without the additive noise
(Figures 13(a)–13(c)). The synchronization measure for the
uncoupled system (ε = 0) is ρ = −0 21944. The coupling
yields ρ = 0 56745 at ε = 0 04 and ρ = 0 98281 (complete syn-
chronization) at ε = 0 095.

Computational experiments are continued by adding the
additive Gaussian noise. The proposed method is still able to
detect synchronization between the systems when the stan-
dard deviation of the additive Gaussian noise is equal to 0.6
(Figures 13(d)–13(f)). Finally, the method is not able to
detect synchronization when the standard deviation of the
additive noise is set to 5.6 (Figures 13(h)–13(i)).

The ability of the proposed technique to identify the cou-
pling between two chaotic systems (even in the presence of a
moderate additive noise) could be explained by the nature of
the algorithm which is used to identify optimal time lags. We
directly assess the geometric properties of the embedded
attractor in the delay coordinate space. The proposed tech-
nique is indeed applicable to short time series; the length of
the observation window must be sufficient to reconstruct at
least one full orbit in the reconstructed delay coordinate
space (Figure 6). This is in contrast with the autocorrelation
method or the mutual information method requiring much
longer observation windows [4–6].
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Figure 13: Correlation between sequences of optimal time lags for the coupled nonlinear pendulums (27). (a–c) The coupled system without
the additive noise. (d–f) The coupled system with the additive Gaussian noise (the standard deviation equal to 0.6). (g–i) The coupled system
with the additive Gaussian noise (the standard deviation equal to 5.6).

14 Complexity



4. Concluding Remarks

This paper presents a novel approach towards geometric syn-
chronization of chaotic time series. This approach is based on
the correlation between sets of time lags used for the recon-
struction of attractors from different time series in delay
coordinate spaces. An efficient algorithm is proposed for
the identification of optimal time delays in finite observation
windows. Computational experiments with the Mackey-
Glass time series, coupled Rössler systems, and coupled
chaotic pendulums are used to demonstrate the efficacy of
the presented techniques.

It is natural to expect that every method has its strengths
and weaknesses. The No-Free-Lunch theorems [40] yield a
conclusion that it is always possible to find a problem which
will defeat any algorithm. The proposed method does not
compare the shapes of the embedded attractors; instead,
it compares optimal time delays resulting in a maximal
expansion of the embedded attractors in the delay coordi-
nate space. Therefore, it should be possible to design such
two artificial time series which are not synchronized at all,
but the presented technique would yield a positive
synchronization measure (if only optimal time lags would
coincide with appropriate observation windows). It is
completely natural that every algorithm does have its
bounds of applicability. In the present case, one should
be cautious in testing the synchronization between time
series of a completely different origin.

The proposed synchronization measure is based on a
geometric approach to attractor embedding using finite
observation windows. However, a short observation window
is not the main strength of the presented method. The pro-
posed technique uses a direct geometrical estimate of the
embedded attractor in the delay coordinate space. In other
words, the presented method compares the geometric
features of the embedded attractors (in terms of the optimal
delays). Such generalized geometric approach opens new
possibilities for the design of new geometric synchronization
measures between different time series.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This research was funded by Jiangsu Provincial Recruitment
Program of Foreign Experts (Type B, Grant no. JSB2017007).

References

[1] T. Sauer, J. A. Yorke, and M. Casdagli, “Embedology,” Journal
of Statistical Physics, vol. 65, no. 3-4, pp. 579–616, 1991.

[2] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw,
“Geometry from a time series,” Physical Review Letters, vol. 45,
no. 9, pp. 712–716, 1980.

[3] F. Takens, “Detecting strange attractors in turbulence,” in
Dynamical Systems and Turbulence, Warwick 1980, vol. 898
of Lecture Notes in Mathematics, , pp. 366–381, Springer,
1981.

[4] A. M. Fraser and H. L. Swinney, “Independent coordinates for
strange attractors from mutual information,” Physical Review
A, vol. 33, no. 2, pp. 1134–1140, 1986.

[5] S. Kodba, M. Perc, and M. Marhl, “Detecting chaos from a
time series,” European Journal of Physics, vol. 26, no. 1,
pp. 205–215, 2005.

[6] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical
method for calculating largest Lyapunov exponents from small
data sets,” Physica D: Nonlinear Phenomena, vol. 65, no. 1-2,
pp. 117–134, 1993.

[7] M. Zhang, H. Bao, L. Yan, J. Cao, and J. Du, “Research on pro-
cessing of short-term historical data of daily load based on
Kalman filter,” Power System Technology, vol. 10, p. 9, 2003.

[8] T. Buzug and G. Pfister, “Comparison of algorithms cal-
culating optimal embedding parameters for delay time
coordinates,” Physica D: Nonlinear Phenomena, vol. 58,
no. 1–4, pp. 127–137, 1992.

[9] T. Buzug and G. Pfister, “Optimal delay time and embedding
dimension for delay-time coordinates by analysis of the global
static and local dynamical behavior of strange attractors,”
Physical Review A, vol. 45, no. 10, pp. 7073–7084, 1992.

[10] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “Reconstruc-
tion expansion as a geometry-based framework for choosing
proper delay times,” Physica D: Nonlinear Phenomena,
vol. 73, no. 1-2, pp. 82–98, 1994.

[11] M. Ragulskis and K. Lukoseviciute, “Non-uniform attractor
embedding for time series forecasting by fuzzy inference
systems,” Neurocomputing, vol. 72, no. 10–12, pp. 2618–
2626, 2009.

[12] G. Kember and A. C. Fowler, “A correlation function for
choosing time delays in phase portrait reconstructions,”
Physics Letters A, vol. 179, no. 2, pp. 72–80, 1993.

[13] W. Liebert, K. Pawelzik, and H. G. Schuster, “Optimal embed-
dings of chaotic attractors from topological considerations,”
Europhysics Letters, vol. 14, no. 6, pp. 521–526, 1991.

[14] D. Kugiumtzis, “State space reconstruction parameters in the
analysis of chaotic time series — the role of the time window
length,” Physica D: Nonlinear Phenomena, vol. 95, no. 1,
pp. 13–28, 1996.

[15] H. S. Kim, R. Eykholt, and J. D. Salas, “Nonlinear dynamics,
delay times, and embedding windows,” Physica D: Nonlinear
Phenomena, vol. 127, no. 1-2, pp. 48–60, 1999.

[16] X. Song, D. Niu, and Y. Zhang, “The chaotic attractor anal-
ysis of DJIA based on manifold embedding and Laplacian
eigenmaps,” Mathematical Problems in Engineering,
vol. 2016, Article ID 8087178, 10 pages, 2016.

[17] C. Chatzinakos and C. Tsouros, “Estimation of the dimension
of chaotic dynamical systems using neural networks and
robust location estimate,” Simulation Modelling Practice and
Theory, vol. 51, pp. 149–156, 2015.

[18] D. Chelidze, “Reliable estimation of minimum embedding
dimension through statistical analysis of nearest neighbors,”
Journal of Computational and Nonlinear Dynamics, vol. 12,
no. 5, article 051024, 2017.

15Complexity



[19] L. Faes, G. Nollo, and A. Porta, “Information-based detection
of nonlinear Granger causality in multivariate processes via a
nonuniform embedding technique,” Physical Review E,
vol. 83, no. 5, article 051112, 2011.

[20] D. Kugiumtzis, “Direct-coupling information measure from
nonuniform embedding,” Physical Review E, vol. 87, no. 6,
article 062918, 2013.

[21] I. Vlachos and D. Kugiumtzis, “Nonuniform state-space
reconstruction and coupling detection,” Physical Review E,
vol. 82, no. 1, article 016207, 2010.

[22] R. Quian Quiroga, A. Kraskov, T. Kreuz, and
P. Grassberger, “Performance of different synchronization
measures in real data: a case study on electroencephalo-
graphic signals,” Physical Review E, vol. 65, no. 4, article
041903, 2002.

[23] T. M. Cover and J. A. Thomas, Elements of Information
Theory, Wiley-Interscience, 2nd edition, 2006.

[24] J. M. Gonzalez-Miranda, “Amplitude envelope synchroniza-
tion in coupled chaotic oscillators,” Physical Review E,
vol. 65, no. 3, article 036232, 2002.

[25] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I.
Abarbanel, “Generalized synchronization of chaos in direc-
tionally coupled chaotic systems,” Physical Review E, vol. 51,
no. 2, pp. 980–994, 1995.

[26] R. G. Andrzejak, A. Kraskov, H. Stögbauer, F. Mormann, and
T. Kreuz, “Bivariate surrogate techniques: necessity, strengths,
and caveats,” Physical Review E, vol. 68, no. 6, article 066202,
2003.

[27] A. Taher Azar, N. M. Adele, K. S. Tewa Alain, R. Kengne, and
F. H. Bertrand, “Multistability analysis and function projective
synchronization in relay coupled oscillators,” Complexity,
vol. 2018, Article ID 3286070, 12 pages, 2018.

[28] E. E. Mahmoud and F. S. Abood, “A new nonlinear chaotic
complex model and its complex antilag synchronization,”
Complexity, vol. 2017, Article ID 3848953, 13 pages, 2017.

[29] A. Ouannas, A. T. Azar, and R. Abu-Saris, “A new type of
hybrid synchronization between arbitrary hyperchaotic
maps,” International Journal of Machine Learning and Cyber-
netics, vol. 8, no. 6, pp. 1887–1894, 2017.

[30] K. Lukoseviciute and M. Ragulskis, “Evolutionary algorithms
for the selection of time lags for time series forecasting by fuzzy
inference systems,” Neurocomputing, vol. 73, no. 10–12,
pp. 2077–2088, 2010.

[31] L. P. Maguire, B. Roche, T. M. McGinnity, and L. J. McDaid,
“Predicting a chaotic time series using a fuzzy neural network,”
Information Sciences, vol. 112, no. 1–4, pp. 125–136, 1998.

[32] J. Nie, “Nonlinear time-series forecasting: a fuzzy-neural
approach,” Neurocomputing, vol. 16, no. 1, pp. 63–76, 1997.

[33] F. S. Wong, “Time series forecasting using backpropagation
neural networks,” Neurocomputing, vol. 2, no. 4, pp. 147–
159, 1991.

[34] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte
Carlo Methods, John Wiley & Sons, 2013.

[35] M. Mackey and L. Glass, “Oscillation and chaos in physiolog-
ical control systems,” Science, vol. 197, no. 4300, pp. 287–289,
1977.

[36] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining
embedding dimension for phase-space reconstruction using a
geometrical construction,” Physical Review A, vol. 45, no. 6,
pp. 3403–3411, 1992.

[37] R. Horst and H. Tuy, Global Optimization: Deterministic
Approaches, Springer Science & Business Media, 2013.

[38] J. Awrejcewicz, A. Krysko, N. Erofeev, V. Dobriyan,
M. Barulina, and V. Krysko, “Quantifying chaos by various
computational methods. Part 1: simple systems,” Entropy,
vol. 20, no. 3, p. 175, 2018.

[39] R. C. Hilborn, Chaos and Nonlinear Dynamics: An Introduc-
tion for Scientists and Engineers, Oxford University Press,
2000.

[40] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 1, no. 1, pp. 67–82, 1997.

16 Complexity



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

