
Information-Oriented Computation withBABY-SITErkan T�n and Varol Akman1 IntroductionWhile situation theory and situation semantics (Barwise and Perry 1983)provide an appropriate framework for a realistic model-theoretic treatmentof natural language, serious thinking on their `computational' aspects hasonly recently started (Black 1993, Nakashima et al. 1988). Existing pro-posals mainly o�er a Prolog- or Lisp-like programming environment withvarying degrees of divergence from the ontology of situation theory. In thispaper, we introduce a computational medium (called BABY-SIT) based onsituations (T�n and Akman 1994a, T�n and Akman 1994b). The primarymotivation underlying BABY-SIT is to facilitate the development and test-ing of programs in domains ranging from linguistics to arti�cial intelligencein a uni�ed framework built upon situation-theoretic constructs.2 Constructs for Situated ProcessingIntelligent agents generally make their way in the world as follows: pickup certain information from a situation, process it, and react accordingly(Devlin 1991, Dretske 1981, Israel and Perry 1990). Being in a (mental)situation, such an agent has information about the situations it sees, be-lieves in, hears about, etc. Awareness of some type of situation causes theagent to acquire more information about that situation as well as othersituation types, and to act accordingly. Assuming the possession of priorinformation and knowledge of some constraints, the acquisition of an itemof information by an agent can also provide the agent with an additionalitem of information.Reaping information from a situation is not the only way an agentprocesses information. It can also act in accordance of the obtained infor-mation to change the environment. Creating new situations to arrive atnew information and conveying information it already has to other agentsare the primary functions of its activities.In situation theory, abstraction can be captured in a primitive level byallowing parameters in infons. Parameter-free infons are the basic items ofinformation about the world (i.e., `facts') while parametric infons are theessential units that are utilized in a computational treatment of information
ow.To construct a computational model of situation theory, it is convenientto have available abstract analogs of objects. As noted above, by usingparameters we can have parametric situations, parametric individuals, etc.1

Information-Oriented Computation with BABY-SIT / 2This yields a rich set of data types. Abstract situations can be viewed asmodels of real situations. They are set-theoretic entities that capture onlysome of the features of real situations, but are amenable to computation.We de�ne abstract situations as structures consisting of a set of parametricinfons.Information can be partitioned into situations by de�ning a hierarchybetween situations. A situation can be larger, having other situations as itssubparts. For example, an utterance situation for a sentence consists of theutterance situations for each word forming the sentence. The part-of rela-tion of situation theory can be used to build hierarchies among situationsand the notion of nested information can be accommodated.Being in a situation, one can derive information about other situationsconnected to it in some way. For example, from an utterance situation it ispossible to obtain information about the situation it describes. Accessinginformation both via a hierarchy of situations and explicit relationshipsamong them requires a computational mechanism. This mechanism willput information about situation types related in some way into the com-fortable reach of the agent and can be made possible by a proper imple-mentation of the supports relation, j=, of situation theory.Constraints enable one situation to provide information about anotherand serve as links. When viewed as a backward-chaining rule, a constraintcan provide a channel for information
ow between types of situations,from the antecedent to the consequent. This means that such a constraintbehaves as a `de�nition' for its consequent part. Another way of viewing aconstraint is as a forward-chaining rule. This enables an agent to alter itsenvironment.3 Computational Situation Theory3.1 PROSITPROSIT (PROgramming in SItuation Theory) is a situation-theoretic pro-gramming language (Sch�utze 1991, Nakashima et al. 1988). PROSIT is tai-lored more for general knowledge representation than for natural languageprocessing. One can de�ne situation structures and assert knowledge inparticular situations. It is also possible to de�ne relations between situ-ations in the form of constraints. PROSIT's computational power is dueto an ability to draw inferences via rules of inference which are actuallyconstraints of some type. PROSIT can deal with self-referential expressions(Barwise and Etchemendy 1987).One can assert facts that a situation should support and queries canbe posed about one situation from another, but the results will depend onwhere the query is made.Constraints can be speci�ed as forward-chaining constraints, backward-chaining constraints, or both. Backward-chaining constraints are activated

Information-Oriented Computation with BABY-SIT / 3at query-time while forward-chaining constraints are activated at assertion-time. For a constraint to be applicable to a situation, the situation mustbe declared to `respect' the constraint. Constraints in PROSIT are aboutlocal facts within a situation rather than about situation types. Thatis, the interpretation of constraints does not allow direct speci�cation ofconstraints between situations, only between infons within situations.Situated constraints o�er an elegant solution to the treatment of condi-tional constraints which only apply in situations that obey some condition.This is actually achieved in PROSIT since information is speci�ed in theconstraint itself. Situating a constraint means that it may only apply toappropriate situations and is a good strategy to enforce background condi-tions. However, it might be required that conditions are set not only withinthe same situation, but also between various types of situations.Parameters, variables, and constants are used for representing entities inPROSIT. Variables match any expression in the language and parameterscan be equated to any constant or parameter. That is, the concept ofappropriateness conditions is not exploited in PROSIT. It is more useful tohave parameters that range over various classes rather than to work withparameters ranging over all objects.Given a parameter of some type (individual, situation, etc.), an anchoris a function which assigns an object of the same type to the parameter(Devlin 1991, pp. 52{63). Hence, parameters work by placing restrictionson anchors. However, there is no appropriate anchoring mechanism inPROSIT since parameters are not typed.3.2 ASTLBlack's ASTL (A Situation Theoretic Language) is another programminglanguage based on situation theory (Black 1993). ASTL is aimed at naturallanguage processing. The primary motivation underlying ASTL is to �gureout a framework in which semantic theories can be described and possiblycompared. One can de�ne in ASTL constraints and rules of inference overthe situations.ASTL ontology incorporates individuals, relations, situations, param-eters, and variables. These form the basic terms of the language. Situ-ations can contain facts which have those situations as arguments. Sen-tences in ASTL are constructed from terms in the language and can beconstraints, grammar rules, or word entries. Constraints are actuallybackward-chaining constraints and are global. Thus, a new situation ofthe appropriate type need not have a constraint explicitly added to it.Grammar rules are yet another sort of constraints with similar semantics.Although one can de�ne constraints between situations in ASTL, the no-tion of a background condition for constraints is not available. Similar toPROSIT, ASTL cares little about coherence within situations. This is leftto the user's control.

Information-Oriented Computation with BABY-SIT / 4Declaring situations to be of some type allows abstraction over situa-tions to some degree. But, the actual means of abstraction over objects insituation theory, viz., parameters, carry little signi�cance in ASTL.As in PROSIT, variables in ASTL have scope only within the constraintthey appear. They match any expression in the language unless they aredeclared to be of some speci�c situation type in the constraint. Hence, it isnot possible to declare variables (nor parameters) to be of other types suchas individuals, relations, etc. Moreover, ASTL does not permit a de�nitionof appropriateness conditions for arguments of relations.ASTL does not have a mechanism to relate two situations so that onewill support all the facts that the other does. This might be achieved viaconstraints, but there is no built-in structure between situations.3.3 Situation SchemataSituation schemata have been introduced (Fenstad et al. 1987) as a theoret-ical tool for extracting and displaying information relevant for semantic in-terpretation from linguistic form. A situation schema is an attribute-valuesystem which has a choice of primary attributes matching the primitivesof situation semantics. The boundaries of situation schemata are
exibleand, depending on the underlying theory of grammar, are susceptible toamendment.Situation schemata can be adopted to various kinds of semantic in-terpretation. One could give some kind of operational interpretation ina suitable programming language, exploiting logical insights. But in itspresent state, situation schemata do not go further than being a complexattribute-value structure. They allow representation of situations withinthis structure, but do not use situation theory itself as a basis. Situa-tions, locations, individuals, and relations constitute the basic domains ofthe structure. Constraints are declarative descriptions of the relationshipsholding between aspects of linguistic form and the semantic representationitself.4 BABY-SIT4.1 Computational Model and ArchitectureThe computational model underlying the current version of BABY-SIT con-sists of nine primitive domains: individuals (I), times (T), places (L), re-lations (R), polarities (O), parameters (P), infons (F), situations (S), andtypes (K). Each primitive domain carries its own internal structure:� Individuals: Unique atomic entities in the model which correspondto real objects in the world.� Times: Individuals of distinguished type, representing temporal lo-cations.

Information-Oriented Computation with BABY-SIT / 5� Places: Similar to times, places are individuals which represent spa-tial locations.� Relations: Various relations hold or fail to hold between objects. Arelation has argument roles which must be occupied by appropriateobjects.� Polarities: The `truth values' 0 and 1.� Infons: Discrete items of information of the form �rel; arg1; : : : ;argn; pol�, where rel is a relation, argi, 1 � i � n, is an object ofthe appropriate type for the ith argument role, and pol is the polarity.� Parameters: `Place holders' for objects in the model. They are usedto refer to arbitrary objects of a given type.� Situations: (Abstract) situations are set-theoretic constructs, e.g., aset of parametric infons (comprising relations, parameters, and polar-ities). A parametric infon is the basic computational unit. By de�n-ing a hierarchy between them, situations can be embedded via thespecial relation part-of. A situation can be either (spatially and/ortemporally) located or unlocated. Time and place for a situation canbe declared by time-of and place-of relations, respectively.� Types: Higher-order uniformities for individuating or discriminatinguniformities in the world.The model, M , is a tuple <I; T; L;R;O; P; F; S;K>. This is shared byall components of the system. Description of a model, DM , consists of ade�nition of M and a set of constraints, C. The computational model isthen de�ned as a tuple <DM ; A;A0; U> where A is an anchor for parame-ters, A0 is an assignment for variables, and U is an interpretation for DM .A is provided by the anchoring situations while A0 is obtained throughuni�cation. U is dynamically de�ned by the operational semantics of thecomputation. Each object in the environment must be declared to be ofsome type.The architecture of BABY-SIT is composed of seven major parts: pro-grammer/user interface, environment, background situation, anchoring sit-uations, constraint set, inference engine, and interpreter (Figure 1).The interface allows interaction of the user with the system. The envi-ronment initially consists of static situation structures and their relation-ships. These structures can be dynamically changed and new relationshipsamong situation types can be de�ned as the computation proceeds. Infor-mation conveyance among situations is made possible by de�ning a part-ofrelation among them. In this way, a situation s can have information aboutanother situation s0 which is part of s. The background situation containsinfons which are inherited by all situation structures in the environment.However, a situation can inherit an infon from the background situationonly if it does not cause a contradiction in that situation.

Information-Oriented Computation with BABY-SIT / 6
Backward-ChainingMechanism Forward-ChainingMechanism.............Inference Engine.............BackgroundSituationAnchoringSituationsSetConsratint6?.............? ?6?..........................? ?? �Programmer / User InterfaceInterpreter EnvironmentFIGURE 1 The Architecture of BABY-SIT.A situation in the environment can be realized if its parameters are an-chored to objects in the real world. This is made possible by the anchoringsituations which allow parameters to be anchored to objects of appropriatetypes|an individual, a situation, a parameter, etc. A parameter must beanchored to a unique object by an anchoring situation. On the other hand,more than one parameter may be anchored to the same object. Restric-tions on parameters assure anchoring of one parameter to an object havingthe same quali�cations as the parameter.In addition to the part-of relation among situations, constraints are po-tent means of information conveyance between situations. They link vari-ous types of situations. Constraints may be physical laws, linguistic rules,law-like correspondences, conventions, etc. In BABY-SIT, they are realizedas forward-chaining constraints or backward-chaining constraints, or both.Assertion of a new object into BABY-SIT activates the forward-chainingmechanism. Once their antecedent parts are satis�ed, consequent parts ofthe forward-chaining constraints are asserted into BABY-SIT, unless thisyields a contradiction. In case of a contradiction, the backward-chainingmechanism is activated to resolve it. The interpreter is the central author-ity in BABY-SIT. Anchoring of parameters, evaluation of constraints, etc.,are all controlled by this part of the system.4.2 Modes of ComputationA prototype of BABY-SIT is currently being developed in KEE (KnowledgeEngineering Environment) (KEETM 1993) on a SPARCstationTM . Someof the available modes of computation in this evolving system are describedbelow.

Information-Oriented Computation with BABY-SIT / 7TABLE 1 Syntax of the Assertion Mode.< proposition > ::=<situation-proposition> j <parameter-type-proposition> j<situation/object-type-proposition> j <infon-proposition><type-of-type-proposition> j <relation-proposition><situation-proposition> ::= <constant> \j=" <infonic-set><parameter-type-proposition> ::= <parameter> \="f<basic-type>, <type-name>,<restricted-parameter-type>g<situation/object-type-proposition> ::=<constant> \:" f<basic-type>, <type-name><type-abstraction>g<infon-proposition> ::= <constant> \=" <infon><type-of-type-proposition> ::=<type-name> \=" f<basic-type>, <type-abstraction>g<relation-proposition> ::= \<" <relation> [\j" <type-speci�er>(\," <type-speci�er>)�] \>"\[" (<digit>)+ "]"<type-speci�er> ::= <basic-type> j <type-name> j\f" f<basic-type>, <type-name>g(\," f<basic-type>, <type-name>g)�] \g"<type-abstraction> ::=\[" <parameter> \j" f <constant>, <parameter>g\j=" <infonic-set> \]"<restricted-parameter-type> ::= <parameter> \ ^ " <infonic-set><basic-type> ::= \�LOC" j \�TIM" j \�IND" j \�REL" j\�SIT" j \�INF" j \�TYP" j \�PAR" j \�POL"<infonic-set> ::= \f" <infon> (\," <infon>)� \g" j <infon><infon> ::=\�" <relation> (\," <argument>)� [\," <polarity>] \�"<relation> ::= <special-relation> j <constant><argument> ::= <constant> j <parameter> j<basic-type> j <type-name>

Information-Oriented Computation with BABY-SIT / 8TABLE 2 Syntax of the Assertion Mode (continued).<polarity> ::= \0" j \1"<constant> ::= f<digit>, <lower-case-letter>g(f<digit>, <lower-case-letter>g)�<parameter> ::=<upper-case-letter> (f<upper-case-letter>, <digit>g)�<type-name> ::=\�" <upper-case-letter> (f<upper-case-letter>, <digit>g)�<lower-case-letter> ::= \a" j \b" j : : : j \z" j \-"<upper-case-letter> ::= \A" j \B" j : : : j \Z"<digit> ::= \0" j \1" j : : : j \9"4.2.1 AssertionsAssertion mode provides an interactive environment in which one can de�neobjects and their types. There are nine basic types corresponding to nineprimitive domains: �IND (individuals), �TIM (times), �LOC (places),�REL (relations), �POL (polarities), �INF (infons), �PAR (parameters),�SIT (situations), and �TYP (types). For instance, if l is a place, thenl is of type �LOC, and the infon �type-of, �LOC, l, 1� is a fact in thebackground situation. Note that type of all types is �TYP. For example,the infons �type-of, �TYP, �LOC, 1� and �type-of, �TYP �TYP, 1�are default facts in the background situation. The syntax of the assertionmode is the same as in (Devlin 1991) (cf. Tables 1 and 2).Suppose fred is an individual, can-think is a relation, and s0 is a situa-tion. Then, these objects can be declared as:I> fred: �INDI> can-think: �RELI> s0: �SITThe de�nition of relations includes the appropriateness conditions fortheir argument roles. Each argument can be declared to be from one ormore of the primitive domains above. Consider can-think above. If we likeit to have only one argument of type �IND, we can write:I> <can-think j �IND> [1]In order for the parameters to be anchored to objects of the appropri-ate type, parameters must be declared to be from only one of the primitivedomains. It is also possible to put restrictions on a parameter in the en-

Information-Oriented Computation with BABY-SIT / 9vironment. Suppose we want to have a parameter E that denotes anythinking individual. This can be done by asserting:I> E = IND1 ^ �can-think, IND1, 1�IND1 is a default system parameter of type �IND. E is considered asan object of type �PAR such that if it is anchored to an object, say fred,then fred must be of type �IND and the background situation (denoted byw) must support the infon �can-think, fred, 1�.Parametric types are also allowed in BABY-SIT. They can be formedby obtaining a type from a parameter. This process is known as (object-)type-abstraction. Parametric types are of the form [P j s j= I] where P isa parameter, s is a situation (i.e., a grounding situation), and I is a set ofinfons. The type of all thinking individuals can be de�ned as follows:I> �HUMAN = [IND1 j w j= �can-think, IND1, 1�]�HUMAN is seen as an object of type �TYP and can be used as a typespeci�er for declaration of new objects in the environment. For instance:I> mary: �HUMANyields an object, mary, which is of type �IND such that the backgroundsituation supports the infon �can-think, mary, 1�.Infons can be added into situations in BABY-SIT. The following se-quence of assertions adds ��res, mary, gun, 1� into s0 (cf. Figure 3):I> �WEAPON = �INDI> gun: �WEAPONI> �res: �RELI> <�res j �HUMAN, �WEAPON>I> s0 j= ��res, mary, gun, 1�4.2.2 ConstraintsAll possible types of constraints in situation theory can be classi�ed aseither conditional or unconditional. Conditional constraints can be appliedto situations that satisfy some condition while unconditional constraintscan be applied to all situations.Variables in BABY-SIT are only used in constraints and query expres-sions, and have scope only within the constraint or the query expressionthey appear. A variable can match any object appropriate for the placeor the argument role it appears in. For example, given the declarationabove, variables ?X and ?Y in the proposition ?S j= ��res, ?X, ?Y, 1�can only match objects of type �HUMAN (i.e., of basic type �IND wherethe background situation supports the fact that this object can think) and�WEAPON (or simply �IND), respectively.A BABY-SIT constraint is of the form:antecedent1, : : :, antecedentn f(,), ,gconsequent1, : : :, consequentm.

Information-Oriented Computation with BABY-SIT / 10Each antecedenti, 1 � i � n, and each consequentj , 1 � j � m, is of theform sit fj=, 6j=g � rel; arg1; : : : ; argl; pol� such that sit, rel, and eachargk, 1 � k � l, can either be an object of appropriate type or a variable.Each constraint has an identi�er associated with it and must belong toa group of constraints. For example, the following is a forward-chainingconstraint named R6 under the constraint group GUNFIRE:GUNFIRE:R6:?S1 j= �loads, ?M, ?G, 1�) ?S1 j= �loaded, ?G, 1�where ?S1, ?M and ?G are variables. ?S1 can only be assigned an object oftype �SIT while ?M and ?G can have values of some type appropriate forthe argument roles of loads and loaded. This constraint can apply in anysituation. Hence, BABY-SIT constraints can be global. Constraints canalso be situated. For example, R6 above can be rewritten to apply only insituation sit1:GUNFIRE:R6: sit1 j= �loads, ?M, ?G, 1�) sit1 j= �loaded, ?G, 1�.In BABY-SIT, conditional constraints come with a set of backgroundconditions which must be satis�ed in order for the constraint to apply.Background conditions are accepted to be true by default, unless statedotherwise. For example, to state that one hears noise upon �ring a loadedgun, we can write:GUNFIRE:R0:?S1 j= f�loaded, ?G, 1�, ��res, ?M, ?G, 1�g)?S2 j= �hears, ?M, noise, 1�UNDER-CONDITIONS:w: �exists, air, 1�.Background conditions are, in fact, assumptions which are required tohold for constraints to be eligible for activation. R0 can become a candi-date for activation only if it is the case that w 6j= �exists, air, 0�, i.e.,if the absence of air is not known in the background situation. Hence,background conditions provide a contextual environment for constraints(Akman and T�n 1990).A candidate forward-chaining constraint is activated whenever its an-tecedent part is satis�ed. All the consequences are asserted if they do notyield a contradiction in the situation into which they are asserted. New as-sertions may in turn activate other candidate forward-chaining constraints.Candidate backward-chaining constraints are activated either when a queryis entered explicitly or is issued by the forward-chaining mechanism. In

Information-Oriented Computation with BABY-SIT / 11
FIGURE 2 BABY-SIT Constraints for the YSP.BABY-SIT, constraints between situation types as well as between infonsof a situation can be easily modeled. Grouping of constraints enables oneto view the world and make inferences from di�erent perspectives. Fig-ure 2 illustrates the axiomatization of the so-called Yale Shooting Problem(YSP)1 with BABY-SIT constraints.4.2.3 QueryingThe query mode enables one to issue queries about situations. There areseveral possible actions which can be further controlled by the user:� Replacing each parameter in the query expression by the correspond-ing individual if there is a possible anchor, either partial or full, pro-vided by the given anchoring situation for that parameter.� Returning solutions. (Their number is determined by the user.)� Displaying a solution with its parameters replaced by the individualsto which they are anchored by the given anchoring situation.� For each solution, displaying infons anchoring any parameter in thesolution to an individual in the given anchoring situation.� Displaying a trace of anchoring of parameters in each solution.The computation upon issuing a query is done either by direct queryingthrough situations or by the application of backward-chaining constraints.A situation, s, supports an infon if the infon is either explicitly asserted tohold in s, or it is supported by a situation s0 which is part of s, or it can1At some point in time, a person (Fred) is alive and a loaded gun, after waiting for awhile, is �red at Fred. What are the results of this action? (Shoham 1988)

Information-Oriented Computation with BABY-SIT / 12
FIGURE 3 Solution of the YSP in BABY-SIT.be proven to hold by application of backward-chaining constraints. Thesyntax of the query expressions is given in Table 3. Given anchor1 as theanchoring situation, a query and the system's response to it are as follows(cf. Figure 3):Q> ?U1 j= f��res, ?X, ?Y, 1�,�successor-of, ?U2, ?U1, 1�g,?U2 j= f�dead, ?Z, 1�, �time-of, ?T1, ?U2, 1�gSolution: 1r5-1 j= ��res, mary, gun, 1�r5-1 j= �successor-of, r5-2, r5-1, 1�r5-2 j= �dead, fred, 1�r5-2 j= �time-of, CONSPAR878, r5-2, 1�Anchoring on parameters (without anchor traces):anchor1 j= �anchor, CONSPAR878, t2, 1�.In addition to query operations, a special operation, oracle, is allowed inthe query mode. An oracle is de�ned over an object and a set of infons (setof issues) (Devlin 1991). The oracle of an object enables one to chronolog-ically view the information about that object from a particular perspectiveprovided by the given set of infons. One may consider oracles as `histories'

Information-Oriented Computation with BABY-SIT / 13TABLE 3 Syntax of the Query Mode.< query > ::= <situation-query> j <oracle-query><situation-query> ::=<situation> f\j=", \j=/="g <query-infonic-set>("," <situation> f\j=", \j/="g <query-infonic-set>)�<oracle-query> ::=<constant> \=" \@" \(" <constant> \)" [<issue-set>]<situation> ::= <constant> j <query-variable><issue-set> ::= \f" <issue-infon> (\," <issue-infon>)� \g"<query-infonic-set> ::=\f" <query-infon> (\," <query-infon>)� \g" j <query-infon><query-infon> ::=\�" f<relation>, <query-variable>g(\," f<argument>, <query-variable>g)� \," <polarity> \�"<issue-infon> ::=\�" <relation> (\," <argument>)� \," <polarity> \�"<query-variable> ::= \?" <parameter>of speci�c objects. Given an object and a set of issues, BABY-SIT anchorsall parameters in this set of issues and collects all infons supported by thesituations in the system under a speci�c situation, thus forming a `minimal'situation which supports all parameter-free infons in the set of issues.5 Concluding RemarksBABY-SIT accommodates the basic features of situation theory and, com-pared with existing approaches, enhances these features (cf. Table 4). Sit-uations are viewed at an abstract level. This means that situations aresets of parametric infons, but they may be non-well-founded. Parametersare place holders, hence they can be anchored to unique individuals in ananchoring situation. A situation can be realized if its parameters are an-chored, either partially or fully, by an anchoring situation. Each relationhas `appropriateness conditions' which determine the type of its arguments.Situations (and hence infons they support) may have spatio-temporal di-mensions. A hierarchy of situations can be de�ned both statically anddynamically. A built-in structure allows one situation to have informationabout another which is part of the former. Grouping of situations providesa computational context. Partial nature of the situations facilitates com-

References / 14TABLE 4 Tableau Comparison of Existing Approaches.Constraint Type PROSIT ASTL BABY-SITNomic p p pNecessary p p pConventional { { ?Conditional { { pSituated p { {Computation PROSIT ASTL BABY-SITUni�cation p p pType-theoretic { { pCoherence { { pForward-chaining p { pBackward-chaining p p pBidirectional-chaining p { pMiscellaneous Features PROSIT ASTL BABY-SITCircularity p p pPartiality p p pParameters ? ? pAbstraction ? ? pAnchoring ? ? pAppropriateness conditions { { pInformation nesting p p pSet operations p { {Oracles { { ?LEGEND:p: available, { : not available, and ? : partially/conceptually available.putation with incomplete information. Constraints can be violated. Thisaspect is built directly into the computational mechanism: a constraint canbe applied to a situation only if it does not lead to an incoherence.With these features, BABY-SIT provides a programming environmentincorporating situation-theoretic constructs for various domains of applica-tion including arti�cial intelligence and computational linguistics. A pre-liminary study towards employing BABY-SIT in the resolution of pronom-inal anaphora has been recently initiated (T�n and Akman 1994c).ReferencesAkman, V., and E. T�n. 1990. What is in a Context? In Proceedings of the 1990Bilkent International Conference on New Trends in Communication, Con-trol, and Signal Processing, ed. E. Ar�kan. 1670{1676. Amsterdam, Holland:Elsevier.

References / 15Barwise, J., and J. Etchemendy. 1987. The Liar: An Essay on Truth and Circu-larity. New York, N.Y.: Oxford University Press.Barwise, J., and J. Perry. 1983. Situations and Attitudes. Cambridge, Mas-sachusetts: MIT Press.Black, A. W. 1993. An Approach to Computational Situation Semantics. Doctoraldissertation, Department of Arti�cial Intelligence, University of Edinburgh,Edinburgh, U.K.Devlin, K. 1991. Logic and Information. Cambridge, U.K.: Cambridge UniversityPress.Dretske, F. 1981. Knowledge and the Flow of Information. Cambridge, Mas-sachusetts: MIT Press.Fenstad, J. E., P.-K. Halvorsen, T. Langholm, and J. van Benthem. 1987. Situ-ations, Language, and Logic. Dordrecht, Holland: Reidel.Israel, D., and J. Perry. 1990. What is Information? In Information, Language,and Cognition, ed. P. P. Hanson. 1{28. Vancouver, Canada: The Universityof British Columbia Press.KEETM . 1993. (Knowledge Engineering Environment) Software DevelopmentSystem, Version 4.1. IntelliCorp, Inc., Mountain View, California.Nakashima, H., H. Suzuki, P.-K. Halvorsen, and S. Peters. 1988. Towards a Com-putational Interpretation of Situation Theory. In Proceedings of the Interna-tional Conference on Fifth Generation Computer Systems, 489{498. Institutefor New Generation Computer Technology, Tokyo, Japan.Sch�utze, H. 1991. The PROSIT Language, Version 0.4. CSLI Memo, Centerfor the Study of Language and Information, Stanford University, Stanford,California.Shoham, Y. 1988. Reasoning About Change: Time and Causation from the Stand-point of Arti�cial Intelligence. Cambridge, Massachusetts: MIT Press.T�n, E., and V. Akman. 1994a. BABY-SIT: Towards a Situation-Theoretic Com-putational Environment. In Current Issues in Mathematical Linguistics, ed.C. Mart��n-Vide. North-Holland Linguistic Series, Vol. 56, 299{308. Amster-dam, Holland: North-Holland.T�n, E., and V. Akman. 1994b. Computational Situation Theory. ACM SigartBulletin 5(4):4{17.T�n, E., and V. Akman. 1994c. Situated Processing of Pronominal Anaphora. InKONVENS '94, 2. Konferenz, Verarbeitung nat�urlicher Sprache, ed. H. Trost.369{378. Informatik Xpress 6. Berlin, Germany: Springer Produktions-Gesellschaft.

