Information-Oriented Computation with
BABY-SIT

Frkan Tin and Varol Akman

1 Introduction

While situation theory and situation semantics (Barwise and Perry 1983)
provide an appropriate framework for a realistic model-theoretic treatment
of natural language, serious thinking on their ‘computational” aspects has
only recently started (Black 1993, Nakashima et al. 1988). Existing pro-
posals mainly offer a Prolog- or Lisp-like programming environment with
varying degrees of divergence from the ontology of situation theory. In this
paper, we introduce a computational medium (called BABY-SIT) based on
situations (Tin and Akman 1994a, Tin and Akman 1994b). The primary
motivation underlying BABY-SIT is to facilitate the development and test-
ing of programs in domains ranging from linguistics to artificial intelligence
in a unified framework built upon situation-theoretic constructs.

2 Constructs for Situated Processing

Intelligent agents generally make their way in the world as follows: pick
up certain information from a situation, process it, and react accordingly
(Devlin 1991, Dretske 1981, Israel and Perry 1990). Being in a (mental)
situation, such an agent has information about the situations it sees; be-
lieves in, hears about, etc. Awareness of some type of situation causes the
agent to acquire more information about that situation as well as other
situation types, and to act accordingly. Assuming the possession of prior
information and knowledge of some constraints, the acquisition of an item
of information by an agent can also provide the agent with an additional
item of information.

Reaping information from a situation is not the only way an agent
processes information. It can also act in accordance of the obtained infor-
mation to change the environment. Creating new situations to arrive at
new information and conveying information it already has to other agents
are the primary functions of its activities.

In situation theory, abstraction can be captured in a primitive level by
allowing parameters in infons. Parameter-free infons are the basic items of
information about the world (i.e., ‘facts’) while parametric infons are the
essential units that are utilized in a computational treatment of information
flow.

To construct a computational model of situation theory, it is convenient
to have available abstract analogs of objects. As noted above, by using
parameters we can have parametric situations, parametric individuals, etc.

1

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 2

This yields a rich set of data types. Abstract situations can be viewed as
models of real situations. They are set-theoretic entities that capture only
some of the features of real situations, but are amenable to computation.
We define abstract situations as structures consisting of a set of parametric
infons.

Information can be partitioned into situations by defining a hierarchy
between situations. A situation can be larger, having other situations as its
subparts. For example, an utterance situation for a sentence consists of the
utterance situations for each word forming the sentence. The part-of rela-
tion of situation theory can be used to build hierarchies among situations
and the notion of nested information can be accommodated.

Being in a situation, one can derive information about other situations
connected to it in some way. For example, from an utterance situation it is
possible to obtain information about the situation it describes. Accessing
information both via a hierarchy of situations and explicit relationships
among them requires a computational mechanism. This mechanism will
put information about situation types related in some way into the com-
fortable reach of the agent and can be made possible by a proper imple-
mentation of the supports relation, =, of situation theory.

Constraints enable one situation to provide information about another
and serve as links. When viewed as a backward-chaining rule, a constraint
can provide a channel for information flow between types of situations,
from the antecedent to the consequent. This means that such a constraint
behaves as a ‘definition’ for its consequent part. Another way of viewing a
constraint is as a forward-chaining rule. This enables an agent to alter its
environment.

3 Computational Situation Theory
3.1 PROSIT

PROSIT (PROgramming in SItuation Theory) is a situation-theoretic pro-
gramming language (Schiitze 1991, Nakashima et al. 1988). PROSIT is tai-
lored more for general knowledge representation than for natural language
processing. Omne can define situation structures and assert knowledge in
particular situations. It is also possible to define relations between situ-
ations in the form of constraints. PROSIT’s computational power is due
to an ability to draw inferences via rules of inference which are actually
constraints of some type. PROSIT can deal with self-referential expressions
(Barwise and Etchemendy 1987).

One can assert facts that a situation should support and queries can
be posed about one situation from another, but the results will depend on
where the query is made.

Constraints can be specified as forward-chaining constraints, backward-
chaining constraints, or both. Backward-chaining constraints are activated

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 3

at query-time while forward-chaining constraints are activated at assertion-
time. For a constraint to be applicable to a situation, the situation must
be declared to ‘respect’ the constraint. Constraints in PROSIT are about
local facts within a situation rather than about situation types. That
is, the interpretation of constraints does not allow direct specification of
constraints between situations, only between infons within situations.

Situated constraints offer an elegant solution to the treatment of cond:-
tional constraints which only apply in situations that obey some condition.
This is actually achieved in PROSIT since information is specified in the
constraint itself. Situating a constraint means that it may only apply to
appropriate situations and is a good strategy to enforce background condi-
tions. However, it might be required that conditions are set not only within
the same situation, but also between various types of situations.

Parameters, variables, and constants are used for representing entities in
PROSIT. Variables match any expression in the language and parameters
can be equated to any constant or parameter. That 1s, the concept of
appropriateness conditions is not exploited in PROSIT. It is more useful to
have parameters that range over various classes rather than to work with
parameters ranging over all objects.

Given a parameter of some type (individual, situation, etc.), an anchor
i1s a function which assigns an object of the same type to the parameter
(Devlin 1991, pp. 52-63). Hence, parameters work by placing restrictions
on anchors. However, there is no appropriate anchoring mechanism in
PROSIT since parameters are not typed.

3.2 ASTL

Black’s ASTL (A Situation Theoretic Language) is another programming
language based on situation theory (Black 1993). ASTL is aimed at natural
language processing. The primary motivation underlying ASTL is to figure
out a framework in which semantic theories can be described and possibly
compared. One can define in ASTL constraints and rules of inference over
the situations.

ASTL ontology incorporates individuals, relations, situations, param-
eters, and variables. These form the basic terms of the language. Situ-
ations can contain facts which have those situations as arguments. Sen-
tences in ASTL are constructed from terms in the language and can be
constraints, grammar rules, or word entries. Constraints are actually
backward-chaining constraints and are global. Thus, a new situation of
the appropriate type need not have a constraint explicitly added to it.
Grammar rules are yet another sort of constraints with similar semantics.
Although one can define constraints between situations in ASTL, the no-
tion of a background condition for constraints is not available. Similar to
PROSIT, ASTL cares little about coherence within situations. This is left
to the user’s control.

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 4

Declaring situations to be of some type allows abstraction over situa-
tions to some degree. But, the actual means of abstraction over objects in
situation theory, viz., parameters, carry little significance in ASTL.

As in PROSIT, variables in ASTL have scope only within the constraint
they appear. They match any expression in the language unless they are
declared to be of some specific situation type in the constraint. Hence, it is
not possible to declare variables (nor parameters) to be of other types such
as individuals, relations, etc. Moreover, ASTL does not permit a definition
of appropriateness conditions for arguments of relations.

ASTL does not have a mechanism to relate two situations so that one
will support all the facts that the other does. This might be achieved via
constraints, but there is no built-in structure between situations.

3.3 Situation Schemata

Situation schemata have been introduced (Fenstad et al. 1987) as a theoret-
ical tool for extracting and displaying information relevant for semantic in-
terpretation from linguistic form. A situation schema is an attribute-value
system which has a choice of primary attributes matching the primitives
of situation semantics. The boundaries of situation schemata are flexible
and, depending on the underlying theory of grammar, are susceptible to
amendment.

Situation schemata can be adopted to various kinds of semantic in-
terpretation. One could give some kind of operational interpretation in
a suitable programming language, exploiting logical insights. But in its
present state, situation schemata do not go further than being a complex
attribute-value structure. They allow representation of situations within
this structure, but do not use situation theory itself as a basis. Situa-
tions, locations, individuals, and relations constitute the basic domains of
the structure. Constraints are declarative descriptions of the relationships
holding between aspects of linguistic form and the semantic representation
itself.

4 BABY-SIT
4.1 Computational Model and Architecture

The computational model underlying the current version of BABY-SIT con-
sists of nine primitive domains: individuals (1), times (T'), places (L), re-
lations (R), polarities (O), parameters (P), infons (F'), situations (S), and
types (K). Each primitive domain carries its own internal structure:

e Individuals: Unique atomic entities in the model which correspond
to real objects in the world.

e Times: Individuals of distinguished type, representing temporal lo-
cations.

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 5

e Places: Similar to times, places are individuals which represent spa-
tial locations.

e Relations: Various relations hold or fail to hold between objects. A
relation has argument roles which must be occupied by appropriate
objects.

e Polarities: The ‘truth values’ 0 and 1.

e Infons: Discrete items of information of the form <rel, argy, ...,
argy, pol>>, where rel 1s a relation, arg;, 1 < i < n, 1s an object of
the appropriate type for the ith argument role, and pol is the polarity.

e Parameters: ‘Place holders’ for objects in the model. They are used
to refer to arbitrary objects of a given type.

e Situations: (Abstract) situations are set-theoretic constructs, e.g., a
set of parametric infons (comprising relations, parameters, and polar-
ities). A parametric infon is the basic computational unit. By defin-
ing a hierarchy between them, situations can be embedded via the
special relation part-of. A situation can be either (spatially and/or
temporally) located or unlocated. Time and place for a situation can
be declared by time-of and place-of relations, respectively.

e Types: Higher-order uniformities for individuating or discriminating
uniformities in the world.

The model, M, is a tuple <I, T, L, R,O, P, F,S, K>. This is shared by
all components of the system. Description of a model, Dy, consists of a
definition of M and a set of constraints, C'. The computational model is
then defined as a tuple <Dy, A, A’, U> where A is an anchor for parame-
ters, A’ is an assignment for variables, and U is an interpretation for Djy;.
A is provided by the anchoring situations while A’ is obtained through
unification. U is dynamically defined by the operational semantics of the
computation. Each object in the environment must be declared to be of
some type.

The architecture of BABY-SIT is composed of seven major parts: pro-
grammer/user interface, environment, background situation, anchoring sil-
uations, constraint set, inference engine, and interpreter (Figure 1).

The interface allows interaction of the user with the system. The envi-
ronment initially consists of static situation structures and their relation-
ships. These structures can be dynamically changed and new relationships
among situation types can be defined as the computation proceeds. Infor-
mation conveyance among situations is made possible by defining a part-of
relation among them. In this way, a situation s can have information about
another situation s’ which is part of s. The background situation contains
infons which are inherited by all situation structures in the environment.
However, a situation can inherit an infon from the background situation
only if it does not cause a contradiction in that situation.

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 6

Programmer / User Interface
I ¥ I 7
Interpreter C
o
i X n
s
[Background Anchoring t
Situation Situations T
a
I) i
y n
Inference Engine ¢
S
Backward-Chaining|| Forward-Chaining e
Mechanism Mechanism t
Environment

FIGURE 1 The Architecture of BABY-SIT.

A situation in the environment can be realized if its parameters are an-
chored to objects in the real world. This 1s made possible by the anchoring
situations which allow parameters to be anchored to objects of appropriate
types—an individual, a situation, a parameter, etc. A parameter must be
anchored to a unique object by an anchoring situation. On the other hand,
more than one parameter may be anchored to the same object. Restric-
tions on parameters assure anchoring of one parameter to an object having
the same qualifications as the parameter.

In addition to the pari-of relation among situations, constraints are po-
tent means of information conveyance between situations. They link vari-
ous types of situations. Constraints may be physical laws, linguistic rules,
law-like correspondences, conventions, etc. In BABY-SIT, they are realized
as forward-chaining constraints or backward-chaining constraints, or both.
Assertion of a new object into BABY-SIT activates the forward-chaining
mechanism. Once their antecedent parts are satisfied, consequent parts of
the forward-chaining constraints are asserted into BABY-SIT, unless this
yields a contradiction. In case of a contradiction, the backward-chaining
mechanism is activated to resolve it. The interpreter is the central author-
ity in BABY-SIT. Anchoring of parameters, evaluation of constraints, etc.,
are all controlled by this part of the system.

4.2 Modes of Computation

A prototype of BABY-SIT is currently being developed in KEE (Knowledge
Engineering Environment) (KEETM 1993) on a SPARCstation”® . Some
of the available modes of computation in this evolving system are described
below.

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 7

TABLE 1 Syntax of the Assertion Mode.

< proposition > :=
<sttuation-proposilion> | <parameter-lype-proposition> |
<sttuation/objeci-lype-proposition> | <infon-proposition>
<lype-of-type-proposiltion> | <relation-proposition>

<sttuation-proposition> 1= <constant> “|=" <infonic-sel>

<parameter-type-proposition> 1= <parameter> “="
{<basic-type>, <lype-name>,
<restricted-parameter-lype>}

<sttuation/objeci-lype-proposition> ::=
<constant> “” {<basic-lype>, <type-name>
<lype-abstraction>}
<anfon-proposition> = <constant> “=" <infon>

<type-of-type-proposition> ::=
<type-name> “=" {<basic-type>, <type-abstraction>}

<relation-proposition> 1= “<” <relation> [“|” <lype-specifier>
(¢ <type-specifier>)*] “>”
cc[n (<dlglt>)+ 77]77
<lype-specifier> := <basic-lype> | <lype-name> |
7 {<basic-lype>, <lype-name>}
(¢ {<basic-type>, <type-name>})*] “}”
<type-abstraction> ::=

“[” <parameter> “|” { <constant>, <parameter>}
“|=" <infonic-set> “)”

<restricted-parameter-type> := <parameter> “ "7 <infonic-set>
<basic-type> 1= “~LOC” | “~TIM” | “~IND” | “~REL” |

“ASIT” | “~INF” | “~TYP” | “~PAR” | “~POL”
<infonic-set> = “{” <infon> () <infon>)* “} | <infon>
<infon> =

“g? <relation> (¢ <argument>)* [¢” <polarity>] “>"
<relation> ::= <special-relation> | <constant>

<argument> 1= <constanl> | <parameter> |
<basic-type> | <type-name>

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 8

TABLE 2 Syntax of the Assertion Mode (continued).

<polarity> == “0” | “1”

<constant> = {<digit>, <lower-case-letter>}
({<digit>, <lower-case-letter>1})*

<parameter> ;=

<upper-case-letter> ({<upper-case-letter>, <digit>})*
<type-name> ;=

“~ <upper-case-letter> ({<upper-case-letter>, <digit>})*

<lower-case-letter> = “a” | “b” | ...| <" | -7
<upper-case-letter> = “A” | “B” | ...| “Z”
<digit> = 0" | “17 | .| “9"

4.2.1 Assertions

Assertion mode provides an interactive environment in which one can define
objects and their types. There are nine basic types corresponding to nine
primitive domains: ~IND (individuals), ~TIM (times), ~LOC (places),
~REL (relations), ~POL (polarities), ~INF (infons), ~PAR (parameters),
~SIT (situations), and ~TYP (types). For instance, if / is a place, then
[is of type ~LOC, and the infon <type-of, ~LOC, [, 1> is a fact in the
background situation. Note that type of all types is ~TYP. For example,
the infons < type-of, ~TYP, ~LOC, 1> and <type-of, ~TYP ~TYP, 1>>
are default facts in the background situation. The syntax of the assertion
mode is the same as in (Devlin 1991) (cf. Tables 1 and 2).

Suppose fred is an individual, can-think is a relation, and s0 is a situa-
tion. Then, these objects can be declared as:

I> fred: ~IND

I> can-think: ~REL

I> s0. ~SIT

The definition of relations includes the appropriateness conditions for
their argument roles. Each argument can be declared to be from one or

more of the primitive domains above. Consider can-think above. If we like
it to have only one argument of type ~IND, we can write:

I> <can-think | ~IND> [1]

In order for the parameters to be anchored to objects of the appropri-
ate type, parameters must be declared to be from only one of the primitive
domains. It is also possible to put restrictions on a parameter in the en-

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 9

vironment. Suppose we want to have a parameter E that denotes any
thinking individual. This can be done by asserting:

I> E =IND1 =~ <can-think, IND1, 1>

IND1 is a default system parameter of type ~IND. E is considered as
an object of type ~PAR such that if 1t is anchored to an object, say fred,
then fred must be of type ~IND and the background situation (denoted by
w) must support the infon < can-think, fred, 1>>.

Parametric types are also allowed in BABY-SIT. They can be formed
by obtaining a type from a parameter. This process is known as {(object-)
type-abstraction. Parametric types are of the form [P | s = I] where P is
a parameter, s is a situation (i.e., a grounding situation), and 7 is a set of
infons. The type of all thinking individuals can be defined as follows:

I> ~HUMAN = [IND1 | w | < can-think, IND1, 1°>]

~HUMAN is seen as an object of type ~TYP and can be used as a type
specifier for declaration of new objects in the environment. For instance:

I> mary: ~HUMAN

yields an object, mary, which is of type ~IND such that the background
situation supports the infon < can-think, mary, 1>>.

Infons can be added into situations in BABY-SIT. The following se-
quence of assertions adds <fires, mary, gun, 13> into s0 (cf. Figure 3):

I> ~WEAPON = ~IND

I> gun: ~WEAPON

I> fires: ~REL

I> <fires | ~HUMAN, ~WEAPON>

I> s0 = <fires, mary, gun, 1>
4.2.2 Constraints
All possible types of constraints in situation theory can be classified as
either conditional or unconditional. Conditional constraints can be applied
to situations that satisfy some condition while unconditional constraints
can be applied to all situations.

Variables in BABY-SIT are only used in constraints and query expres-
sions, and have scope only within the constraint or the query expression
they appear. A variable can match any object appropriate for the place
or the argument role it appears in. For example, given the declaration
above, variables ?X and ?Y in the proposition 7S = <fires, ?X, 7Y, I>>
can only match objects of type ~HUMAN (i.e., of basic type ~IND where
the background situation supports the fact that this object can think) and
~WEAPON (or simply ~IND), respectively.

A BABY-SIT constraint is of the form:

antecedenty, ..., antecedent, {<, =, &}

consequenty, ..., consequenty,.

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 10

Fach antecedent;, 1 <1 < n, and each consequent;, 1 < j < m, is of the
form sit {|=, £} < rel, argy, ..., argr, pol > such that sit, rel, and each
argr, 1 < k <, can either be an object of appropriate type or a variable.

Each constraint has an identifier associated with it and must belong to
a group of constraints. For example, the following is a forward-chaining
constraint named R6 under the constraint group GUNFIRE:

GUNFIRE:
R6:
751 | <loads, M, ?G, 1> = 781 | <loaded, 7G, 1>

where ?S1, ?M and ?G are variables. 7S1 can only be assigned an object of
type ~SIT while M and ?G can have values of some type appropriate for
the argument roles of loads and loaded. This constraint can apply in any
situation. Hence, BABY-SIT constraints can be global. Constraints can
also be situated. For example, R6 above can be rewritten to apply only in
situation sitl:

GUNFIRE:
R6:
sitl | <loads, M, ?G, 1> = sill |= <loaded, G, 1>>.

In BABY-SIT, conditional constraints come with a set of background
conditions which must be satisfied in order for the constraint to apply.
Background conditions are accepted to be true by default, unless stated
otherwise. For example, to state that one hears noise upon firing a loaded
gun, we can write:

GUNFIRE:
RO:
781 = {<loaded, 7G, 1>, <fires, M, ?G, 1>} =
752 | <hears, TM, noise, I>>
UNDER-CONDITIONS:
w: L exists, air, 1>>.

Background conditions are, in fact, assumptions which are required to
hold for constraints to be eligible for activation. R0 can become a candi-
date for activation only if it is the case that w [< ewists, air, 0>>, i.e.,
if the absence of air is not known in the background situation. Hence,
background conditions provide a contextual environment for constraints
(Akman and Tin 1990).

A candidate forward-chaining constraint is activated whenever its an-
tecedent part is satisfied. All the consequences are asserted if they do not
yield a contradiction in the situation into which they are asserted. New as-
sertions may in turn activate other candidate forward-chaining constraints.
Candidate backward-chaining constraints are activated either when a query
is entered explicitly or is issued by the forward-chaining mechanism. In

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 11

[#] =xterm ET
GUMFIRE RE
?511=<<loads, 7M. ?G,1>> => ?511=<<loaded.?G,1>>

GUMFIRE RS
P51 | =d<situation—p, P51 . 15>>, P51 /=<{{successar—of /P52, 751 15> =X
P53 ={<=zituation—p, P53, 15 <<time—of T, 753, 155, 51 | =<{<succes=zor—of . Y53, 751, 150

GUMFIRE R4
ol =d<<alive. PF . 15> {dsucocessor—of L, P52, 751,150 => Y52I1=<<alive.YF.1>>

wi {Lexists.air 13x.
5l <Fires.TH, gun 0>

GUMFIRE RZ
P51 ={<<loaded, PG, 15> <<successor—of P52,.751 155 =k P52 |=<<loaded PG 15>

Pl L<<Fires,. ™M, PG00 <<enptied-manual 1y, PG, 05

GUMFIRE RZ
TSl =t<<alive . YF 1x> <{loaded ¥YG, 1> <{fires,?M.?G. 15> <<{successor—of 752, 751, 15>} =
752 =<{<{dead, 7F , 1>>

P51y L<<has—firing—pin,.?G, 13> <<marshmal low—bul lets—in, 7?6 0>>F

GUMFIRE R1
51| ={<{loaded,?G. 13> <<Fires "M, ?G,.1>> <{successor—of . Y52_.7?51 1>>F =
P52 | =<{<hear=s. M. noise 15>
wr <dexists, air, 1>k,
551: {<<has—Firing—pin,?G, 15> <<marshmal low—bul lets—in,?G . 0>>F

FIGURE 2 BABY-SIT Constraints for the YSP.

BABY-SIT, constraints between situation types as well as between infons
of a situation can be easily modeled. Grouping of constraints enables one
to view the world and make inferences from different perspectives. Fig-
ure 2 illustrates the axiomatization of the so-called Yale Shooting Problem
(YSP)! with BABY-SIT constraints.

4.2.3 Querying

The query mode enables one to issue queries about situations. There are
several possible actions which can be further controlled by the user:

e Replacing each parameter in the query expression by the correspond-
ing individual if there is a possible anchor, either partial or full, pro-
vided by the given anchoring situation for that parameter.

e Returning solutions. (Their number is determined by the user.)

e Displaying a solution with its parameters replaced by the individuals
to which they are anchored by the given anchoring situation.

e For each solution, displaying infons anchoring any parameter in the
solution to an individual in the given anchoring situation.

e Displaying a trace of anchoring of parameters in each solution.

The computation upon issuing a query is done either by direct querying
through situations or by the application of backward-chaining constraints.
A situation, s, supports an infon if the infon is either explicitly asserted to
hold in s, or it is supported by a situation s’ which is part of s, or it can

1At some point in time, a person (Fred) is alive and a loaded gun, after waiting for a
while, is fired at Fred. What are the results of this action? (Shoham 1988)

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 12

1>

[#] BABY-SIT - COMPUTATIONAL SITUATION THEORY @ firat

BARY-SIT
DISKTOP

I o
Loads: ~REL

has-firing-pin: ~EEL

BABY-SIT

Computational Situation Theory

Sopyright] 1354

1> <loads|~HUMAN, ~WEAPON> [2] by Eban TOV <<anchor, CONSPARSTS, t2, 13>
1> Loaded:~REL Al Righls Reserned

> <loaded|~WEAPON[1] i

1> alive:~REL

1> <alive|~IND>[1] * Primitive infons:

I> dead:~REL {<<fires, PE, 7Y, 1¥>, <csituation-p, s0, 13>

I> <dead|~IND>[1] <esuccessor-of, 7UZ, UL, 13}, <<Lloads, mary, gun, 1>

1> fires:~REL 02| ={<<dead, P2, 153, <<loaded, qun, 1>»

1> <fires|~HUMAN, ~VEAPON>[2] <<time-of, ?T1, 7U2, 15>} <caliwve, fred, 1>»

1> hears:~REL Solukion: 1 <<successor-of, r5-1, 50, 15>
1> <hears|~IND, ~IND>[2] r5-1|=¢<<fires, mary, qun, 1»>

1> marshmallow-bullets-in:~REL 5-1|=¢<<successor-of, r5-2, ro-1, 1>

I> <marshmallov-bullets-in|~WEAPON>[1] t5-2 | =c<dead, fred, 15> Inherited infons:

c5-2 | =¢<time-of, CONSPARATE, £5-2, 15>

< ccan-think, mary, 13>
< <can-think, fred, 15>

Primitive infons:
<<anchor, CONSPARSES, t1, 12>

1> <has-firing-pin|~WEAPON:[1]

I> emptied-manually:~REL

1> <emptied-manually|~WEAPON:[1]

T exists:~REL

1> <exists|~IND>[1]

1> successor-of: ~REL

I> ¢successor-of |~SIT, ~SIT>[2]

1> fred:~HUMAN

1> mary:~HUMAN

T> qun’ ~WEAPON

1> noise:~IND

I> air:~IND

1> s0:~5IT

I> s0|={<<loads, mary, qun, 1>3,
<<alive, fred, 122}

I> r5-1|=<<fires,mary, qun, 1:>

1> anchorl:«~sIT

Anchoring on parameters

Primitive infons:
<csituation-p, r5-1, 1>
<<time-of, CONSPARBRS, r5-1, 13>
<<loaded, qun, 1>

«aliwve, fred, 1>>
<<successor-of, r5-2, r5-1, 15>
<<fires,mary, gun, 1>>

(without anchor traces):
pnchorl | =< <anchor, CONSPARBTE, £2, 15>

b |

Inherited infons:

Primitive infons:
<¢situation-p, r&-2, 13>

1> anchorl|={<<anchor, CONSPARBES, t1, 153, <<tine-of, CONSPARETE, £5-2, 13>
<<anchor, CONSPARSTE, £2, L>» <<dead, fred, 1>
o anchor. i [Aruchring sitimtion hefore insertion, - < hears, nary, noise, 1>
Irherited infons:

FIGURE 3 Solution of the YSP in BABY-SIT.

be proven to hold by application of backward-chaining constraints. The
syntax of the query expressions is given in Table 3. Given anchorl as the
anchoring situation, a query and the system’s response to it are as follows

(cf. Figure 3):
Q> UL = {<Kfires, X, 7Y, 1>, <successor-of, 7U2, 7U1, 1>},

02 | {<dead, 7Z, 1>, <lime-of, 7T1, 702, 1>}

Solution: 1

rb-1 | «fires, mary, gun, I>>

rh-1 | successor-of, r5-2, 15-1, 1>

rh-2 | K dead, fred, 1>>

r5-2 | «time-of, CONSPARS78, 15-2, 1>>

Anchoring on parameters (without anchor traces):

anchorl | <anchor, CONSPARST7S, t2, 1°>.

In addition to query operations, a special operation, oracle, is allowed in

the query mode. An oracle is defined over an object and a set of infons (set
of issues) (Devlin 1991). The oracle of an object enables one to chronolog-

ically view the information about that object from a particular perspective
provided by the given set of infons. One may consider oracles as ‘histories’

INFORMATION-ORIENTED COMPUTATION WITH BABY-SIT / 13

TABLE 3 Syntax of the Query Mode.

< query > = <silualion-query> | <oracle-query>

<situation-query> 1=
<Situati0n> {“|I”’ “|:/:”} <que7ny_inf0nic_set>
(") <situation> {“|=", “|/="} <query-infonic-set>)*

<oracle-query> ::=
<constant> “=" “@” “(” <constant> “)” [<issue-set>]
<sttuation> ::= <constant> | <query-variable>

W

<1ssue-set> = “{” <i55ue-inf0n> (, <i55ue-inf0n>)* u}n
<query-infonic-set> 1=
(L)

“7 <query-infon> (¢, <query-infon>)* “}" | <query-infon>

<query-infon> 1=

“” {<relation>, <query-variable>}

(¢ {<argument>, <query-variable>})* “7 <polarity> “>"
<issue-infon> ;=

“g? <relation> (¢ <argument>)* “” <polarity> “>"

<query-variable> ::= “?" <parameter>

of specific objects. Given an object and a set of issues, BABY-SIT anchors
all parameters in this set of issues and collects all infons supported by the
situations in the system under a specific situation, thus forming a ‘minimal’
situation which supports all parameter-free infons in the set of issues.

5 Concluding Remarks

BABY-SIT accommodates the basic features of situation theory and, com-
pared with existing approaches, enhances these features (cf. Table 4). Sit-
uations are viewed at an abstract level. This means that situations are
sets of parametric infons, but they may be non-well-founded. Parameters
are place holders, hence they can be anchored to unique individuals in an
anchoring situation. A situation can be realized if its parameters are an-
chored, either partially or fully, by an anchoring situation. Each relation
has ‘appropriateness conditions’ which determine the type of its arguments.
Situations (and hence infons they support) may have spatio-temporal di-
mensions. A hierarchy of situations can be defined both statically and
dynamically. A built-in structure allows one situation to have information
about another which is part of the former. Grouping of situations provides
a computational context. Partial nature of the situations facilitates com-

REFERENCES / 14

TABLE 4 Tableau Comparison of Existing Approaches.

Constraint Type | PROSIT | ASTL | BABY-SIT
Nomic Vv Vv Vv
Necessary V4 V4 V4
Conventional - - 7
Conditional - - V4
Situated Vv - -

Computation PROSIT | ASTL | BABY-SIT

Unification V4 V4

Type-theoretic - -

Coherence -

Forward-chaining

Backward-chaining

Bidirectional-chaining

NSO

PSS

Miscellaneous Features

PROSIT

BABY-SIT

Circularity Vv
Partiality V4
Parameters 7
Abstraction 7
Anchoring ?

Appropriateness conditions

Information nesting

L] ! www&&fﬁ

Set operations

Oracles

< <] !

RN OSSO A NN

LEGEND: +/: available, —: not available, and ? : partially/conceptually available.

putation with incomplete information. Constraints can be violated. This
aspect is built directly into the computational mechanism: a constraint can
be applied to a situation only if it does not lead to an incoherence.

With these features, BABY-SIT provides a programming environment
incorporating situation-theoretic constructs for various domains of applica-
tion including artificial intelligence and computational linguistics. A pre-
liminary study towards employing BABY-SIT in the resolution of pronom-
inal anaphora has been recently initiated (Tin and Akman 1994c).

References

Akman, V., and E. Tin. 1990. What is in a Context? In Proceedings of the 1990
Bilkent International Conference on New Trends in Communication, Con-
trol, and Signal Processing, ed. E. Arikan. 1670-1676. Amsterdam, Holland:

Elsevier.

REFERENCES / 15

Barwise, J., and J. Etchemendy. 1987. The Liar: An Fssay on Truth and Circu-
larity. New York, N.Y.: Oxford University Press.

Barwise, J., and J. Perry. 1983. Situations and Attitudes. Cambridge, Mas-
sachusetts: MIT Press.

Black, A. W. 1993. An Approach to Computational Sttuation Semantics. Doctoral
dissertation, Department of Artificial Intelligence, University of Edinburgh,
Edinburgh, U.K.

Devlin, K. 1991. Logic and Information. Cambridge, U.K.: Cambridge University
Press.

Dretske, F. 1981. Knowledge and the Flow of Information. Cambridge, Mas-
sachusetts: MIT Press.

Fenstad, J. E., P.-K. Halvorsen, T. Langholm, and J. van Benthem. 1987. Situ-
ations, Language, and Logic. Dordrecht, Holland: Reidel.

Israel, D., and J. Perry. 1990. What is Information? In Information, Language,
and Cognition, ed. P. P. Hanson. 1-28. Vancouver, Canada: The University
of British Columbia Press.

KEET™ . 1993. (Knowledge Engineering Environment) Software Development
System, Version 4.1. IntelliCorp, Inc., Mountain View, California.

Nakashima, H., H. Suzuki, P.-K. Halvorsen, and S. Peters. 1988. Towards a Com-
putational Interpretation of Situation Theory. In Proceedings of the Interna-
tional Conference on Fifth Generation Computer Systems, 489-498. Institute
for New Generation Computer Technology, Tokyo, Japan.

Schitze, H. 1991. The PROSIT Language, Version 0.4. CSLI Memo, Center
for the Study of Language and Information, Stanford University, Stanford,
California.

Shoham, Y. 1988. Reasoning About Change: Time and Causation from the Stand-
point of Artificial Intelligence. Cambridge, Massachusetts: MIT Press.

Tin, E., and V. Akman. 1994a. BABY-SIT: Towards a Situation-Theoretic Com-
putational Environment. In Current Issues in Mathematical Linguistics, ed.
C. Martin-Vide. North-Holland Linguistic Series, Vol. 56, 299-308. Amster-
dam, Holland: North-Holland.

Tin, E., and V. Akman. 1994b. Computational Situation Theory. ACM Sigart
Bulletin 5(4):4-17.

Tin, E., and V. Akman. 1994c. Situated Processing of Pronominal Anaphora. In
KONVENS °94, 2. Konferenz, Verarbeitung naturlicher Sprache, ed. H. Trost.
369-378. Informatik Xpress 6. Berlin, Germany: Springer Produktions-
Gesellschaft.

