
JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.1 (1-38)

Journal of Applied Logic ••• (••••) •••–•••
Contents lists available at SciVerse ScienceDirect

Journal of Applied Logic

www.elsevier.com/locate/jal

Cut elimination for a logic with induction and co-induction

Alwen Tiu a,∗, Alberto Momigliano b

a Research School of Computer Science, The Australian National University, Australia
b Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 April 2010
Accepted 26 July 2012
Available online xxxx

Keywords:
Logical frameworks
(Co-)induction
Higher-order abstract syntax
Cut-elimination
Parametric reducibility

Proof search has been used to specify a wide range of computation systems. In order to
build a framework for reasoning about such specifications, we make use of a sequent
calculus involving induction and co-induction. These proof principles are based on a proof-
theoretic (rather than set-theoretic) notion of definition (Hallnäs, 1991 [18], Eriksson, 1991
[11], Schroeder-Heister, 1993 [38], McDowell and Miller, 2000 [22]). Definitions are akin
to logic programs, where the left and right rules for defined atoms allow one to view
theories as “closed” or defining fixed points. The use of definitions and free equality
makes it possible to reason intensionally about syntax. We add in a consistent way
rules for pre- and post-fixed points, thus allowing the user to reason inductively and
co-inductively about properties of computational system making full use of higher-order
abstract syntax. Consistency is guaranteed via cut-elimination, where we give a direct cut-
elimination procedure in the presence of general inductive and co-inductive definitions via
the parametric reducibility technique.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A common approach to specifying computations is via deductive systems. Those are used to specify and reason about
various logics, as well as aspects of programming languages such as operational semantics, type theories, abstract machines,
etc. Such specifications can be represented as logical theories in a suitably expressive formal logic where proof-search can
then be used to model the computation. A logic used as a specification language is known as a logical framework [33], which
comes equipped with a representation methodology. The encoding of the syntax of deductive systems inside formal logic
can benefit from the use of higher-order abstract syntax (HOAS), a high-level and declarative treatment of object-level bound
variables and substitution. At the same time, we want to use such a logic to reason over the meta-theoretical properties of
object languages, e.g., type preservation in operational semantics [23], soundness and completeness of compilation [29] or
congruence of bisimulation in transition systems [24]. Typically this involves reasoning by (structural) induction and, when
dealing with infinite behavior, co-induction [20].

The need to support both inductive and co-inductive reasoning and some form of HOAS requires some careful design
decisions, since the two are prima facie notoriously incompatible. While any meta-language based on a λ-calculus can be
used to specify and animate HOAS encodings, meta-reasoning has traditionally involved (co-)inductive specifications both at
the level of the syntax and of the judgments – which are of course unified at the type-theoretic level. Syntax-level HOAS
provides crucial freeness properties for (object-level) datatype constructors, while judgment-level HOAS offers principles of
case analysis and (co-)induction. The latter is known to be problematic, since HOAS specifications may lead to non-monotone
(co-)inductive operators, which by cardinality and consistency reasons are not permitted in inductive logical frameworks.

* Corresponding author. Tel.: +61 02 6125 5992; fax: +61 02 6125 8645.
E-mail addresses: Alwen.Tiu@anu.edu.au (A. Tiu), momigliano@dsi.unimi.it (A. Momigliano).
1570-8683/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jal.2012.07.007

http://dx.doi.org/10.1016/j.jal.2012.07.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jal
mailto:Alwen.Tiu@anu.edu.au
mailto:momigliano@dsi.unimi.it
http://dx.doi.org/10.1016/j.jal.2012.07.007

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.2 (1-38)

2 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
Moreover, even when HOAS is weakened [10] so as to be made compatible with proof assistants such as HOL or Coq, weak
HOAS suffers the fate of allowing the existence of too many functions and yielding the so-called exotic terms. Those are
canonical terms in the signature of an HOAS encoding that do not correspond to any term in the deductive system under
study. This causes a loss of adequacy in specifications, which is one of the pillars of formal verification, and it undermines
the trust in formal derivations. On the other hand, logics such as LF [19] that are weak by design in order to support this
style of syntax are not directly endowed with (co-)induction principles.

In a previous paper [30] we have introduced the logic Linc− , for a logic with λ-terms, induction and co-induction,1

which carefully adds principles of induction and co-induction to a first-order intuitionistic logic based on a proof-theoretic
notion of definitions, following on work (among others) by Hallnäs [18], Eriksson [11], Schroeder-Heister [38] and McDowell
and Miller [22]. Definitions are akin to logic programs, but allow us to view theories as “closed” or defining fixed points.
This alone permits us to perform case analysis independently from induction principles. Our approach to formalizing induc-
tion and co-induction is via the least and greatest solutions of the fixed point equations specified by the definitions. The
proof rules for induction and co-induction make use of the notion of pre-fixed points and post-fixed points respectively. In
the inductive case, this corresponds to the induction invariant, while in the co-inductive one to the so-called simulation.
Judgments are encoded as definitions accordingly to their informal semantics, either inductive or co-inductive. The simply
typed language and the notion of free equality underlying Linc− , enforced via (higher-order) unification in an inference
rule, make it possible to reason intensionally about syntax. In fact, we can support HOAS encodings of object-level constants
and we can prove the freeness properties of those constants, namely injectivity, distinctness and case exhaustion. Linc− is
a conservative extension of F Oλ�N [22] and a generalization (with a term language based on simply typed λ-calculus) of
Martin-Löf first-order theory of iterated inductive definitions [21].

The contribution of this paper is to give a direct proof of cut-elimination for such a logic, based on the robust and highly
configurable reducibility-candidate technique, which dates back to Girard’s strong normalization proof for System F [17]. Be-
yond its intrinsic interest, it is our hope that the cut elimination proof presented in this paper may be used as a springboard
towards cut elimination procedures for more expressive (conservative) extensions of Linc− with the ∇-quantifier, along the
lines of [28,41,42,15].

We note that there are other indirect methods to show the admissibility of cut in a logic with (co-)inductive definitions,
viz.:

1. Encoding (co-)inductive definitions as higher-order formulae. This approach is followed by Baelde and Miller [5] where
μMALL, a linear fixed-point logic related to Linc− , is introduced. Cut elimination is proved indirectly by encoding fixed
points into second-order linear logic and conjecturing cut-elimination for an extension of LL2.

2. Model-theoretically: this is taken by Brotherston and Simpson [8], which provide a model for a classical first-order logic
with inductive definitions: here, cut admissibility follows by the semantical completeness of the cut free fragment.

In particular, one crucial, and orthogonal, extension to Linc− is the addition of the ∇-quantifier [28,41,42,15], which allows
one to reason about the intensional aspects of names and bindings in object syntax specifications (see, e.g., [14,43]). However,
both aforementioned approaches do not seem to cope effectively with ∇: while the behavior of the quantifier can be
operationally simulated in a Linc−-like logic, see the “eigenvariable” encoding of [23], a direct encoding in linear logic is
presently unknown. Similarly, it is not obvious how the model-theoretic way can be taken, while the semantics of ∇ itself
is not yet fully understood, although there have been some recent attempts, see [26,36].

The present paper is an extended and revised version of [30]. Because of the significant span of time elapsed, we feel
it is useful to place the present paper in the time-line of closely related work (more details can be found in Section 7).
In the conference paper [30], the co-inductive rule had a technical side condition requiring the given predicate to be used
“monotonically” in the simulation. This somewhat ad hoc restriction was imposed by the particular cut elimination proof
technique outlined in that paper. That restriction was firstly removed in the 2008 version of the paper [44], thanks to the
adoption of the parametric reducibility technique. Still, (co-)inductive definitions had to be stratified. This is the argument
that Gacek builds on for the cut elimination proof for G in his dissertation [13], although it is fair to say that not every detail
is fully ironed out. In particular, the definition of parametric reducibility is taken “as is” and not generalized w.r.t. nominal
abstraction. Simultaneously, and to a great extent independently, Baelde [4] gave his Girard-like proof of cut-elimination for
μMALL. To our knowledge, this is the only other work that uses the candidate-reducibility technique directly in the sequent
calculus setting. In our paper, the formulation of the rules is inspired by the second-order encoding of least and greatest
fixed points used in [5] and, remarkably, neither stratification nor monotonicity is required.

The rest of the paper is organized as follows. Section 2 introduces the sequent calculus for the logic Linc− . Every sequent
in Linc− carries a typing context for eigenvariables, called the signature of the sequent. This allows us to be technically more
precise in particular accounting for empty types in the logic. However, the presence of signatures complicates the definition
of reducibility (candidates) needed to prove cut-elimination. We therefore prove cut elimination for Linc− by a detour
through a system with no signatures (with the consequence that types are not allowed to be empty), called Linc−

i , presented
in Section 3. Section 4 presents two transformations of derivations in Linc−

i that are essential to the cut reduction rules and

1 The “minus” in the terminology refers to the lack of the ∇-quantifier w.r.t. the eponymous logic in Tiu’s thesis [41].

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.3 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 3
Σ; C −→ C
init

Σ; B, B,Γ −→ C

Σ; B,Γ −→ C
cL

Σ;Γ −→ C

Σ; B,Γ −→ C
wL

Σ;�1 −→ B1 · · · Σ;�n −→ Bn Σ; B1, . . . , Bn,Γ −→ C

Σ;�1, . . . ,�n,Γ −→ C
mc, where n � 0

Σ;⊥ −→ B
⊥L

Σ;Γ −→ � �R

Σ; Bi,Γ −→ D

Σ; B1 ∧ B2,Γ −→ D
∧L, i ∈ {1,2} Σ;Γ −→ B Σ;Γ −→ C

Σ;Γ −→ B ∧ C
∧R

Σ; B,Γ −→ D Σ; C,Γ −→ D

Σ; B ∨ C,Γ −→ D
∨L

Σ;Γ −→ Bi

Σ;Γ −→ B1 ∨ B2
∨R, i ∈ {1,2}

Σ;Γ −→ B Σ; C,Γ −→ D

Σ; B ⊃ C,Γ −→ D
⊃ L

Σ; B,Γ −→ C

Σ;Γ −→ B ⊃ C
⊃ R

Σ; B t,Γ −→ C

Σ; ∀τ x.B,Γ −→ C
∀L Σ, yτ ;Γ −→ B y

Σ;Γ −→ ∀τ x.B x
∀R, yτ /∈ Σ

Σ, yτ ; B y,Γ −→ C

Σ; ∃τ x.B x,Γ −→ C
∃L, y /∈ Σ

Σ;Γ −→ B t

Σ;Γ −→ ∃τ x.B x
∃R

. .
Equality rules

{Σ[ρ];Γ [ρ] −→ C[ρ]}ρ∈U(s,t)

Σ; s = t,Γ −→ C
eqL

Σ;Γ −→ t = t
eqR

. .
Induction rules

y; B S y −→ S y Σ;Γ, S t −→ C

Σ;Γ, pt −→ C
IL, p x μ= B p x

Σ;Γ −→ B X p t
Σ;Γ −→ pt IR, p x μ= B p x Σ;Γ −→ B X p t

Σ;Γ −→ X p t IRp, p x μ= B p x

. .
Co-induction rules

Σ; B X p t,Γ −→ C

Σ; pt,Γ −→ C
CIL, p x ν= B p x Σ; B X p t,Γ −→ C

Σ; X p t,Γ −→ C
CILp, p x ν= B p x

Σ;Γ −→ S t y; S y −→ B S y
Σ;Γ −→ pt CIR, p x ν= B p x

Fig. 1. The inference rules of Linc− .

the cut elimination proof in subsequent sections. Section 5 is the heart of the paper: we first (Section 5.1) give a (sub)set
of reduction rules that transform a Linc−

i derivation ending with a cut rule to another Linc−
i derivation. The complete set

of reduction rules can be found in Appendix A. We then introduce the crucial notions of normalizability (Section 5.2) and
of parametric reducibility after Girard (Section 5.3). Detailed proofs of the main lemma related to reducibility candidates
are in Appendix B. Cut elimination for Linc−

i is proved in detail in Section 5.4. Cut elimination of Linc− is then obtained
by showing that (Section 6) if a derivation in Linc−

i can be “decorated” with signatures to obtain a Linc− derivation, then
cut reductions preserve this decoration. Hence, the cut elimination procedure for Linc−

i , when applied to Linc− derivations,
terminates as well. Section 7 surveys related work and concludes the paper.

Finally, we remark that this paper is concerned only with the cut elimination proof of Linc− . For examples and applica-
tions of Linc− and its extensions, we refer the interested reader to [41,6,15,14,43].

2. The logic Linc−

The logic Linc− shares the core fragment of F Oλ�N , which is an intuitionistic version of Church’s Simple Theory of
Types. We shall assume that the reader is familiar with Church’s simply typed λ-calculus (with both β and η rules), so we

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.4 (1-38)

4 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
shall recall only the basic syntax of the calculus here. A simple type is either a base type or a compound type formed using
the function-type constructor →. Types are denoted by σ and τ . We assume an infinite set of typed variables, written xσ ,
yτ , etc. The syntax of λ-terms is given by the following grammar:

s, t ::= xτ | (λxτ . t) | (s t).

We consider only well-typed terms in Church’s simple type system. To simplify presentation, in the following we shall often
omit the type index in variables and λ-abstraction. The notion of free and bound variables are defined as usual. The set of
free variables in a term t is denoted by FV(t). This notation generalizes to formulae and multisets of formulae, e.g., FV(B),
FV(Γ).

We assume a given finite set of base types, which contains a distinguished element o, denoting the type of formulae.
Following Church, we shall represent formulae as well-typed λ-terms of type o. We assume a set of typed constants that
correspond to logical connectives. The constants � : o and ⊥ : o denote ‘true’ and ‘false’, respectively. Propositional binary
connectives, i.e., ∧, ∨, and ⊃, are assigned the type o → o → o. Quantifiers are represented by indexed families of constants:
∀τ and ∃τ , both are of type (τ → o) → o. We also assume a family of typed equality symbols =τ : τ → τ → o. Although
we adopt a representation of formulae as λ-terms, we shall use a more traditional notation when writing down formulae.
For example, instead of writing (∧ A B), we shall use an infix notation (A ∧ B). Similarly, we shall write ∀τ x.P instead
of ∀τ (λxτ .P). Again, we shall omit the type annotations in quantifiers and equality when they can be inferred from the
context of the discussion.

The type τ in quantifiers and the equality predicate are restricted to those simple types that do not contain occurrences
of o. Hence our logic is essentially first-order, since we do not allow quantification over predicates. As we shall often refer
to this kind of restriction to types, we give the following definition:

Definition 1. A simple type τ is essentially first-order (efo) if it is generated by the following grammar:

τ ::= k | τ → τ

where k is a base type other than o.

From now on, we shall use τ exclusively for efo-types.
For technical reasons (to present (co-)inductive proof rules, see Section 2.2), we introduce a notion of parameter into

the syntax of formulae. Intuitively, they play the role of eigenvariables ranging over the recursive call in a fixed point
expression. To each predicate symbol p, we associate a countably infinite set Pp , called the parameter set for p. Elements of
Pp are denoted by X p , Y p , Z p , etc., and have the same type as p. When we refer to formulae of Linc− , we have in mind
simply-typed λ-terms of type o in βη-long normal form. Thus formulae of Linc− can be equivalently defined via the following
grammar:

F ::= X p t | s =τ t | pt | ⊥ | � | F ∧ F | F ∨ F | F ⊃ F | ∀τ x.F | ∃τ x.F .

A substitution is a type-preserving mapping from variables to terms. We assume the usual notion of capture-avoiding
substitutions, denoted by lower-case Greek letters, e.g., θ , ρ and σ . Application of substitution is written in postfix notation,
e.g. t[θ] denotes the term resulting from an application of θ to t . This notation is generalized to applications of a substitution
to a formula, e.g., B[θ] or a multiset of formula, e.g., Γ [θ]. To simplify presentation, we write t[θ][σ] to mean (t[θ])[σ].
Composition of substitutions, denoted by ◦, is defined as t[θ ◦ ρ] = t[θ][ρ]. We use ε to denote the identity substitution,
i.e., ε(x) = x for every variable x. We denote with S the set of all substitutions. Given a pair of terms s and t , a unifier of
(s, t) is a substitution θ such that s[θ] = t[θ]. We denote with U(s, t) the set of all unifiers of s and t . Any substitution is a
unifier of two identical terms, so obviously, we have U(t, t) = S.

The sequent calculus of Linc− is given in Fig. 1. A sequent is denoted by Σ;Γ → C where C is a formula and Γ is a mul-
tiset of formulae, each in βη-long normal form, and Σ is a signature, i.e., a set of eigenvariables, such that FV(Γ ∪ {C}) ⊆ Σ .
Notice that in the presentation of the rule schemes, we make use of HOAS, e.g., in the application B x it is implicit that B
has no free occurrence of x. Similarly for the (co-)induction rules. We work modulo α-conversion without further notice.
In the ∀R and ∃L rules, y is an eigenvariable (of type τ) that is not already in Σ . In the ∃R and ∀L rules, t is a term
of type τ . The init rule can be restricted to the atomic form, i.e., where C is either (p u1 . . . un) or (X p u1 . . . un). However,
we keep the more general form as it simplifies the definition of a certain transformation of derivations (see Definition 8)
used in the cut elimination proof. The mc rule is a generalization of the cut rule that simplifies the presentation of the
cut-elimination proof for intuitionistic systems, i.e., to deal with the case involving permutation of cut over the contraction
rule; see [39,22] and the reduction rule −/cL in Appendix A.

The rules for equality and fixed points are discussed in Sections 2.1 and 2.2, respectively.

2.1. Equality

The right introduction rule for equality is reflexivity, that is, it recognizes that two terms are syntactically equal. The left
introduction rule is more interesting. The substitution ρ in eqL is a unifier of s and t . Note that we specify the premise of

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.5 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 5
eqL as a set, with the intention that every sequent in the set is a premise of the rule. This set is of course infinite; every
unifier of (s, t) can be extend to another one (e.g., by adding substitution pairs for variables not in the terms). However, in
many cases, it is sufficient to consider a particular set of unifiers, which is often called a complete set of unifiers (CSU) [2],
from which any unifier can be obtained by composing a member of the CSU set with a substitution. In the case where
the terms are first-order terms, or higher-order terms with the pattern restriction [27], the set CSU is either empty or a
singleton. In eqL, the signature Σ[ρ] in the premises is defined as follows:

Σ[ρ] =
⋃{

FV
(
x[ρ]) ∣∣ x ∈ Σ

}
.

Our rules for equality actually encompasses the notion of free equality as commonly found in logic programming, in the
form of Clark’s equality theory [9]: injectivity of function symbols, inequality between distinct function symbols, and the
“occurs-check” follow from the eqL-rule. For instance, given a base type nt (for natural numbers) and the constants z : nt
(zero) and s : nt → nt (successor), we can derive ∀x. z = (s x) ⊃ ⊥ as follows:

y; z = (s y) −→ ⊥ eqL

y; · −→ z = (s y) ⊃ ⊥ ⊃ R

· −→ ∀x. z = (s x) ⊃ ⊥ ∀R.

Since z and s y are not unifiable, the eqL rule above has empty premise, thus concluding the derivation. A similar derivation
establishes the occur-check property, e.g., ∀x. x = (s x) ⊃ ⊥. We can also prove the injectivity of the successor function, i.e.
∀x∀y.(s x) = (s y) ⊃ x = y.

This proof-theoretic notion of equality has been considered in several previous works, e.g. by Schroeder-Heister [38], and
McDowell and Miller [22].

2.2. Induction and co-induction

One way of adding induction and co-induction to a logic is to introduce fixed point expressions and their associated
introduction and elimination rules, i.e. using the μ and ν operators of the (first-order) μ-calculus. This is essentially what
we shall follow here, but with a different notation. Instead of using a “nameless” notation with μ and ν to express fixed
points, we associate a fixed point equation with an atomic formula. That is, we associate certain designated predicates with
a definition. This notation is clearer and more convenient as far as our applications are concerned. For a proof system using
nameless notations for (co-)inductive predicates, the interested reader is referred to [5,4].

Definition 2. An inductive definition clause is written ∀x. p x μ= B x, where p is a predicate constant. The atomic formula p x
is the head of the clause, and the formula B x, where B is a closed term containing no occurrences of parameters, is the

body. Similarly, a co-inductive definition clause is written ∀x. p x ν= B x. The symbols
μ= and

ν= are used simply to indicate a

definition clause: they are not a logical connective. We shall write ∀x. p x �= B x to denote a definition clause generally, i.e.,
when we are not interested in the details of whether it is an inductive or a co-inductive definition. A definition is a finite set
of definition clauses. A predicate may occur only at most once in the heads of the clauses of a definition. We shall restrict

to non-mutually recursive definitions. That is, given two clauses ∀x. p x �= B x and ∀y. q y �= C y in a definition, where p �= q,
if p occurs in C then q does not occur in B , and vice versa.

One can encode mutual recursion between definitions of the same kind (inductive or co-inductive) with a single predicate
with an extra argument. However, it is in general not possible to encode mixed mutual recursion, e.g., mutual recursion
between an inductive and a co-inductive definitions, in Linc− . In this sense, our notion of fixed points is more restricted
than what could be encoded using μ and ν as in [4].

For technical convenience we also bundle up all the definitional clauses for a given predicate in a single clause, following
the same principles of the iff-completion in logic programming [37]. Further, in order to simplify the presentation of rules
that involve predicate substitutions, we denote a definition using an abstraction over predicates, that is

∀x. px �= B p x
where B is an abstraction with no free occurrence of predicate symbol p and variables x. Substitution of p in the body
of the clause with a formula S can then be written simply as B S x. When writing definition clauses, we omit the outer-
most universal quantifiers, with the assumption that free variables in a clause are universally quantified. For example even
numbers are defined as:

ev x
μ= (x = z) ∨ (∃y. x = (

s (s y)
) ∧ ev y

)
where in this case B is of the form λpλw. (w = z) ∨ (∃y.w = (s (s y)) ∧ p y).

The left and right rules for (co-)inductively defined atoms are given at the bottom of Fig. 1. In rules IL and CIR, the
abstraction S is an invariant of the (co-)induction rule. The variables y are new eigenvariables and X p is a new parameter

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.6 (1-38)

6 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
not occurring in the lower sequent. For the rule IL, S denotes a pre-fixed point of the underlying fixed point operator.
Similarly, for the co-induction rule CIR, S can be seen as denoting a post-fixed point of the same operator. Here, we use
a characterization of induction and co-induction proof rules as, respectively, the least and the greatest solutions to a fixed
point equation.

Notice that the right-introduction rules for inductive predicates and the left-introduction rules for co-inductive predicates
are slightly different from the corresponding rules in Linc-like logics (see Remark 1 in page 6). These rules can be better
understood by the usual interpretation of (co-)inductive definitions in second-order logic [34,32] – for simplicity, we show
only the propositional case here:

p
μ= B p � ∀p.(B p ⊃ p) ⊃ p,

p
ν= B p � ∃p.p ∧ (p ⊃ B p).

Then the right-introduction rule for inductively defined predicates will involve an implicit universal quantification over pred-
icates. As standard in sequent calculus, such a universal quantified predicate will be replaced by a new eigenvariable (in this
case, a new parameter), reading the rule bottom up. Note that if we were to follow the above second-order interpretation
literally, an alternative rule for inductive predicates could be:

B X p ⊃ X p,Γ −→ X p

Γ −→ p IR, p
μ= B p.

Then there would be no need to add the IRp -rule since it would be derivable, using the clause B X p ⊃ X p in the left-hand
side of the sequent. Our presentation has the advantage that it simplifies the cut-elimination argument in the subsequent
sections. The left-introduction rule for co-inductively defined predicates can be explained dually.

Remark 1 (Fixed point unfolding). A commonly used form of introduction rules for definitions and fixed points uses an
unfolding of the definitions. This kind of rules is followed in several related logics, e.g., F Oλ�N [22], Linc [30,41] and
μMALL [5]. The right-introduction rule for inductive definitions, for instance, takes the form:

Σ;Γ −→ B pt
Σ;Γ −→ pt IR′, p x μ= B p x.

The logic Linc, like F Oλ�N , imposes a stratification on definitions, which amounts to a strict positivity condition: the head
of a definition does not appear to the left of an implication. Let us call such a definition a stratified definition. For stratified
definitions, the rule IR′ can be derived in Linc− as follows:

Σ;Γ −→ B pt

x; B X p x −→ B X p x init

x; B X p x −→ X p x IRp
Σ ′; X p u −→ X p u init

Σ ′; p u −→ X p u IL

...
Σ; B pt −→ B X p t

Σ; B pt −→ pt IR

Σ;Γ −→ pt mc

where the ‘dots’ denote a derivation composed using left and right introduction rules for logical connectives in B . Notice
that all leaves of the form Σ ′; p u −→ X p u can be proved by using the IL rule, with X p as the inductive invariant. This
suggests that when restricted to stratified definitions, any formula (not containing ∇) provable in Linc is also provable in
Linc− . Conversely, given a stratified definition, any proof in Linc− using that definition can be transformed into a proof of
Linc simply by replacing X p with p.

A dual argument applies to co-inductive definitions, of course.

Since a defined atomic formula can be unfolded via its introduction rules, the definition of the size of a formula needs
to take into account this possible unfolding. This is done by assigning a positive integer to each predicate symbol, which we
refer to as its level. A similar notion of level of a predicate was introduced for F Oλ�N [22]. However, in F Oλ�N , the level
of a predicate is only used to guarantee monotonicity of definitions.

Definition 3 (Size of formulae). To each predicate p we associate a natural number lvl(p), the level of p. Given a formula B ,
its size |B| is defined as follows:

1. |X p t| = 1, for any X p and any t .
2. |pt| = lvl(p).

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.7 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 7
3. |⊥| = |�| = |(s = t)| = 1.
4. |B ∧ C | = |B ∨ C | = |B ⊃ C | = |B| + |C | + 1.
5. |∀x. B x| = |∃x. B x| = |B x| + 1.

Note that in this definition, we do not specify precisely any particular level assignment to predicates. We show next that
there is a level assignment that has a property that will be useful later in proving cut elimination, see Definition 15 and
Lemma 14.

Lemma 1 (Level assignment). Given any definition D, there is a level assignment to every predicate p occurring in D such that if

∀x. p x �= B p x is in D, then |p x| > |B X p x| for every parameter X p ∈Pp .

Proof. Let ≺ be a binary relation on predicate symbols defined as follows: q ≺ p iff q occurs in the body of the definition
clause for p. Let ≺∗ be the reflexive-transitive closure of ≺. Since we restrict to non-mutually recursive definitions and there
are only finitely many definition clauses (Definition 2), it follows that ≺∗ is a well-founded partial order. We now compute
a level assignment to predicate symbols by induction on ≺∗ . This is simply done by letting lvl(p) = 1, if p is undefined, and

lvl(p) = |B X p x| + 1, for some parameter X p , if ∀x. p x �= B p x. Note that in the latter case, by induction hypothesis, every
predicate symbol q, other than p, in B has already been assigned a level, so |B X p x| is already defined at this stage. �

We shall assume from now on that predicates are assigned levels satisfying the condition of Lemma 1, so whenever we

have a definition clause of the form ∀x.p x �= B p x, we implicitly assume that |p x| > |B X p x| for every X p ∈Pp .

Remark 2 (Non-monotonicity). F Oλ�N uses a notion of stratification to rule out non-monotone, or in Halnäs’ terminol-

ogy [18] partial, definitions such as p
�= p ⊃ ⊥, for which cut-elimination is problematic.2 In fact, from the above definition

both p and p ⊃ ⊥ are provable, but there is no direct proof of ⊥. This can be traced back to the fact that unfolding of
definitions in Linc and F Oλ�N is allowed on both the left and the right-hand side of sequent. In Linc− , inconsistency does
not arise even allowing a non-monotone definition as the above, due to the fact that arbitrary unfolding of fixed points is
not permitted. On the other hand, in Linc− one cannot reason about some well-founded inductive definitions which are not
stratified. For example, consider the non-stratified definition:

∀x. ev x
μ= (x = z) ∨ (∃y.x = (s y) ∧ (ev y ⊃ ⊥)

)
.

If this definition were interpreted as a logic program (with negation-as-failure), then its least fixed point is the set of
even natural numbers. However, the above encoding in Linc− is incomplete with respect to this interpretation, since not
all even natural numbers can be derived using the above definition. For example, ev (s (s z)) is not derivable, as this
would require a derivation of Xev (s z) −→ ⊥, for some inductive parameter Xev , which is impossible because no unfolding
of inductive parameter is allowed on the left of a sequent. The same idea prevents the derivability of −→ p given the

definition p
�= p ⊃ ⊥. So while inconsistency in the presence of non-monotone definitions is avoided in Linc− , its reasoning

power does not extend that of Linc significantly.

3. Linc−
i : A system with implicit signatures

To simplify the cut elimination proof of Linc− , we shall define an intermediate proof system, called Linc−
i , in which the

signature is implicit. Thus sequents in Linc−
i take the form Γ −→ C . We prove cut elimination for Linc−

i in Section 5 and
then show that cut admissibility for Linc−

i implies cut admissibility of Linc− in Section 6.
The rules of Linc−

i are those given in Fig. 1, but with all the signatures removed. Additionally, there are two distinctive
features:

1. In ∃R and ∀L in Linc−
i , the premise sequents may contain new eigenvariables not appearing in the conclusion sequents.

2. We add the following rule to Linc−
i :

{Γ [θ] −→ C[θ]}θ∈S
Γ −→ C subst.

Traditionally, many-sorted sequent calculi are presented with an implicit typing context. In this case, the typing context
of a sequent in a derivation consists of the eigenvariables introduced below that sequent along the path to the root sequent.

2 This phenomenon already appears in logics with definitional reflection [38], even before (co-)induction is considered. Other ways beyond stratification
of recovering cut-elimination in those weaker logics are disallowing contraction or restricting to an init rule for undefined atoms.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.8 (1-38)

8 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
Consider Π1 and Π2 below. If the type τ is empty, then the instance of ∃R in Π1 is not allowed, whereas the instance of
∃L in Π2 is

Π1 =
q x −→ q x init

−→ q x ⊃ q x ⊃ R

−→ ∃τ y.(q y ⊃ q y)
∃R,

Π2 =
Π1−→ ∃τ y.(q y ⊃ q y)

p x −→ ∃τ y.(q y ⊃ q y)
wL

∃τ x. p x −→ ∃τ y.(q y ⊃ q y)
∃L.

Such a non-local dependency of applicability of rules complicates the definition of reducibility and reducibility candidates
(Section 5.3). We use, in fact, an inductive construction whereby reducibility of a derivation depends on reducibility of its
subderivations. With respect to the example above, to define the reducibility of Π2, we need first to define the reducibility of
Π1, which is not possible because it is not a valid derivation. So to be able to handle empty types, the notions of reducibility
and reducibility candidates need to be parameterized by signatures, which would complicate further the already involved
definitions.

To avoid doing that, we consider these slightly more flexible inference rules for ∃R and ∀R in Linc−
i . Thus, both Π1 and

Π2 are valid derivations in Linc−
i . As a consequence, we can prove, for example, ∃τ x.� in Linc−

i , for any type τ . In other
words, we assume in Linc−

i that all types are inhabited. Cut elimination for Linc− is then proved indirectly via a detour
through Linc−

i , by showing that the validity of a Linc−
i derivation is preserved by cut reductions; see Theorem 26.

In subst, every instance of the conclusion sequent, including the conclusion sequent itself, is a premise of the rule. This
rule is just a ‘macro’ for the following derivation:

−→ t = t
eqR

{Γ [θ] −→ C[θ]}θ∈U(t,t)

t = t,Γ −→ C
eqL

Γ −→ C
mc

where t is some arbitrary term. The motivation behind the rule subst is purely technical; it allows us to prove that a
derivation transformation commutes with cut reduction (see Lemma 7 and Remark 4).

Since the rule subst hides a simple form of cut, to prove cut-elimination of Linc−
i , we have to show that subst, in addition

to mc, is admissible.

Lemma 2 (subst-elimination). If the sequent Γ −→ C is (cut-free) derivable in Linc−
i with subst then it is (cut-free) derivable in Linc−

i
without subst.

Proof. Simply replace any subderivation of the form{
Πθ

�[θ] −→ B[θ]
}

θ∈S
� −→ B subst

with its premise Πε . �
4. Eigenvariables and parameters instantiations

We now discuss some properties of derivations in Linc−
i which involve instantiations of eigenvariables and parameters.

These properties will be used in the cut-elimination proof in subsequent sections.
Following [22], we define a measure which corresponds to the height of a derivation:

Definition 4. Given a derivation Π with premise derivations {Πi}i∈I , for some index set I , the measure ht(Π) is the least
upper bound lub({ht(Πi)}i∈I) + 1.

Given the possible infinite branching of the eqL rule, this measure can in general be (countable) ordinals. Therefore
proofs and definitions on this measure require transfinite induction and recursion. However, in most of the proofs to follow,
we do case analysis on the last rule of a derivation. In such a situation, the inductive cases for both successor and limit
ordinals are basically covered by the case analysis on the inference figures involved, and we shall not make explicit use of
transfinite principles.

With respect to the use of eigenvariables and parameters in a derivation, there may be occurrences of the formers
that are not free in the end sequent. We refer to these variables and parameters as the internal variables and parameters,
respectively. We view the choices of those variables and parameters as arbitrary and therefore identify derivations which
differ on the choice of internal variables and parameters. In other words, we quotient derivations modulo injective renaming
of internal eigenvariables and parameters.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.9 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 9
Notation. To ease presentation, we shall use the following notations in the following to abbreviate derivations: The derivation

Π1
�1 −→ B1 · · ·

Πn
�n −→ Bn

Π
B1, . . . , Bn,Γ −→ C

�1, . . . ,�n,Γ −→ C
mc

is abbreviated as mc(Π1, . . . ,Πn,Π). Whenever we write mc(Π1, . . . ,Πn,Π) we assume implicitly that the derivation is
well-formed, i.e., Π is a derivation ending with some sequent Γ −→ C and the right-hand side of the end sequent of each
Πi is a formula Bi ∈ Γ . We use the notation IdB to denote the derivation ending with the init rule on the sequent B −→ B .
The notation subst({Πθ }θ∈S) denotes a derivation ending with the rule subst with premise derivations {Πθ }θ∈S . Similarly,
we use eqL({Πθ }θ∈U(s,t)) to denote a derivation ending with eqL, where the equality being introduced is s = t , and with
premise derivations {Πθ }θ∈U(s,t) .

4.1. Instantiating eigenvariables

The following definition extends eigenvariable substitutions to apply to derivations. Since we identify derivations that
differ only in the choice of internal eigenvariables, we will assume that such variables are chosen to be distinct from the
variables in the domain of the substitution and from the free variables of the range of the substitution. Thus applying a
substitution to a derivation will only affect all the variables free in the end-sequent.

Definition 5. If Π is a derivation of Γ −→ C and θ is a substitution, then we define the derivation Π [θ] of Γ [θ] −→ C[θ]
as follows:

1. Suppose Π ends with the eqL rule as shown below left. Observe that if s[θ][ρ] = t[θ][ρ] then s[θ ◦ ρ] = t[θ ◦ ρ]. So
we have U(s[θ], t[θ]) ⊆ U(s, t). Thus Π [θ] is as shown below right:{

Πρ

Γ ′[ρ] −→ C[ρ]
}
ρ∈U(s,t)

s = t,Γ ′ −→ C
eqL,

{
Πθ◦ρ

Γ ′[θ][ρ] −→ C[θ][ρ]
}
ρ∈U(s[θ],t[θ])

s[θ] = t[θ],Γ ′[θ] −→ C[θ] eqL.

2. If Π ends with subst with premise derivations {Πρ}ρ∈S then Π [θ] also ends with the same rule and has premise
derivations {Πθ◦ρ}ρ∈S .

3. If Π ends with any other rule and has premise derivations Π1, . . . ,Πn , then Π [θ] ends with the same rule and has
premise derivations Π1[θ], . . . ,Πn[θ].

Notice that in the case where Π ends with eqL or subst, the substitution θ is not recursively applied to the premise
derivations of Π ; the set of premise derivations of Π [θ] is a subset of the set of premise derivations of Π .

Among the premise sequents of the inference rules of Linc−
i (with the exception of CIR), certain premises share the

same right-hand side formula with the sequent in the conclusion. We refer to such premises as major premises. This notion
of major premise will be useful in proving cut-elimination, as certain proof transformations involve only major premises.

Definition 6. Given an inference rule R with one or more premises, we define its major premise(s) as follows.

1. If R is either ⊃L,mc or IL, then its rightmost premise is the major premise.
2. If R is CIR then its left premise is the major premise.
3. Otherwise, all the premises of R are major premises.

A minor premise of a rule R is a premise of R which is not a major premise. The definition extends to derivations by
replacing premise sequents with premise derivations.

Lemma 3. For any derivation Π and substitution θ , ht(Π) � ht(Π[θ]).

Proof. By induction on ht(Π). Note that ht(Π[θ]) can be smaller than ht(Π) because substitutions may reduce the number
of premises in eqL, i.e., if Π ends with an eqL acting on, say x = y (which are unifiable), and θ maps x and y to distinct
constants then Π [θ] ends with eqL with an empty premise. �
Lemma 4. For any derivation Π and substitutions θ and ρ , the derivations Π [θ][ρ] and Π [θ ◦ ρ] are the same derivation.

4.2. Instantiating parameters

Definition 7. A parameter substitution Θ is a partial map from parameters to pairs of proofs and closed terms such that
whenever

Θ
(

X p) = (ΠS , S)

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.10 (1-38)

10 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
then S has the same type as p and either one of the following holds:

• p x μ= B p x, for some B and x, and ΠS is a derivation of B S x −→ S x, or
• p x ν= B p x, for some B and x, and ΠS is a derivation of S x −→ B S x.

The support of Θ is the set

supp(Θ) = {
X p

∣∣ Θ
(

X p)
is defined

}
.

We consider only parameter substitutions with finite support.
We say that X p is fresh for Θ , written X p#Θ , if for each Y q ∈ supp(Θ), X p �= Y q and X p does not occur in S whenever

Θ(Y q) = (ΠS , S).

We shall often enumerate a parameter substitution using a similar notation to (eigenvariables) substitution, e.g.,
[(Π1, S1)/X p1 , . . . , (Πn, Sn)/X pn] denotes a parameter substitution Θ with support {X p1 , . . . , X pn } such that Θ(X pi) =
(Πi, Si). Given the same Θ and a formula C , we write C[Θ] to denote the formula C[S1/X p1 , . . . , Sn/X pn].

Definition 8. Let Π be a derivation of Γ −→ C and let Θ be a parameter substitution. Define the derivation Π [Θ] of
Γ [Θ] −→ C[Θ] by induction on the height of Π as follows:

• Suppose C = X p t for some X p such that Θ(X p) = (ΠS , S) and Π ends with IRp , where p x μ= B p x, as shown below
left. Then Π [Θ] is as shown below right:

Π ′
Γ −→ B X pt
Γ −→ X pt IRp,

Π ′[Θ]
Γ [Θ] −→ B S t

ΠS [t/x]
B S t −→ S t

Γ [Θ] −→ S t mc.

• Similarly, suppose Π ends with CILp on X p t:

Π ′
B X pt,Γ ′ −→ C

X pt,Γ ′ −→ C
CILp

where p x ν= B p x and Θ(X p) = (ΠS , S). Then Π [Θ] is

S t −→ S t init
ΠS [t/x]

S t −→ B S t
S t −→ B S t mc Π ′[Θ]

B S t,Γ ′[Θ] −→ C[Θ]
S t,Γ ′[Θ] −→ C[Θ] mc.

• In all other cases, suppose Π ends with a rule R with premise derivations {Πi}i∈I for some index set I. Since we
identify derivations up to renaming of internal parameters, we assume without loss of generality that the internal
eigenvariables in the premises of R (if any) do not appear in Θ . Then Π [Θ] ends with the same rule, with premise
derivations {Πi[Θ]}i∈I .

Remark 3. Definition 8 is asymmetric in the treatment of inductive and co-inductive parameters, i.e., in the cases
where Π ends with IRp and CILp . In the latter case, the substituted derivation uses a seemingly unnecessary cut, i.e.,
mc(IdS t ,ΠS [t/x]). The reason behind this is rather technical; in our main cut elimination proof, we need to establish that
ΠS [t/x] is “reducible” (i.e., all the cuts in it can be eventually eliminated), given that mc(IdS t ,ΠS [t/x]) is reducible. In a
typical cut elimination procedure one would have expected that mc(IdS t ,ΠS [t/x]) reduces to ΠS [t/x], hence reducibility of
ΠS [t/x] would follow from reducibility of mc(IdS t ,ΠS [t/x]). However, according to our cut reduction rules (see Section 5.1),
mc(IdS t ,ΠS [t/x]) does not necessarily reduce to ΠS [t/x]. Still, if the instance of init appears instead on the right premise
of the cut, e.g., as in

ΠS [t/x]
B S t −→ S t S t −→ S t init

B S t −→ S t mc

the cut elimination procedure does reduce this to ΠS [t/x], so it is not necessary to introduce explicitly this cut instance
in the case involving inductive parameters. It is possible to define a symmetric notion of parameter substitution, but that
would require different cut reduction rules than the ones we proposed in this paper. Another possibility would be to push

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.11 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 11
the asymmetry to the definition of reducibility (see Section 5). We have explored these alternative options, but for the
purpose of proving cut elimination, we found that the current definition yields a simpler proof.3

Note that since parameter substitutions replace parameters with closed terms, they commute with (eigenvariable) substi-
tutions. When writing a sequence of applications of eigenvariable substitutions and parameter substitutions, we again omit
parentheses to simplify presentation. So for example, we shall write Π [Θ][δ] to mean (Π[Θ])[δ].

Lemma 5. For every derivation Π , substitution δ, parameter substitution Θ , the derivation Π [Θ][δ] is the same as the derivation
Π [δ][Θ].

In the following, we denote with [Θ,(ΠS , S)/X p], where X p#Θ , a parameter substitution obtained by extending Θ with
the map X p �→ (ΠS , S).

Lemma 6. Let Π be a derivation of Γ −→ C, Θ a parameter substitution and X p a parameter such that X p#supp(Θ). Then for every
ΠS and every S:

1. if X p does not occur in Γ −→ C, then Π [Θ,(ΠS , S)/X p] = Π [Θ]; and
2. Π [Θ][(ΠS , S)/X p] = Π [Θ,(ΠS , S)/X p].

Proof. Both are proved by induction on Π . Statement 1 is trivial. We show here a non-trivial case of the proof of state-
ment 2.

Let Θ1 = [(ΠS , S)/X p] and Θ2 = [Θ,(ΠS , S)/X p]. We first note that for any formula A, we have A[Θ][Θ1] = A[Θ2] by
the freshness assumption X p#Θ . Further, Γ [Θ][Θ1] = Γ [Θ2].

• Suppose C = X p t and Π ends with IRp , where p x μ= B p x, as shown below left. Then Π [Θ] is as shown below right:

Π ′
Γ −→ B X pt
Γ −→ X pt IRp,

Π ′[Θ]
Γ [Θ] −→ B X pt
Γ [Θ] −→ X pt IRp .

The derivation Π [Θ][Θ1] is mc(Π ′[Θ][Θ1],ΠS [t/x]). On the other hand, Π [Θ2] = mc(Π ′[Θ2],ΠS [t/x]). By the induc-
tion hypothesis, Π ′[Θ][Θ1] = Π ′[Θ2], and therefore Π [Θ2] = Π [Θ][Θ2].

• Suppose C = Y q t , where Θ(Y q) = (ΠI , I), and Π ends with IRp as shown below left. Then Π [Θ] is shown below
right:

Π ′
Γ −→ B Y qt
Γ −→ Y qt IRp,

Π ′[Θ]
Γ [Θ] −→ B I t

ΠI [t/x]
B I t −→ I t

Γ [Θ] −→ I t mc.

Note that since X p#Θ , by Definition 7 X p does not occur in I . Since B cannot contain any parameters, it follows
that X p does not occur in the sequent B I t −→ I t . Therefore by statement 1, we have ΠI [t/x][Θ1] = ΠI [t/x]. Therefore,
Π [Θ][Θ1] = mc(Π ′[Θ][Θ1],ΠI [t/x]). By the induction hypothesis, Π ′[Θ][Θ1] = Π ′[Θ2]. Therefore Π [Θ2] = Π [Θ][Θ1].

The cases where Π ends with CILp can be proved analogously. �
5. Cut elimination for Linc−

i

The central result of our work is cut-elimination, from which consistency of the logic follows. Gentzen’s classic proof of
cut-elimination for first-order logic uses an induction on the size of the cut formula. The cut-elimination procedure consists
of a set of reduction rules that reduces a cut of a compound formula to cuts on its sub-formulae of smaller size. In the
case of Linc−

i , the use of induction/co-induction complicates the reduction of cuts. Consider for example a cut involving the
induction rules:

Π1

� −→ B X p t
� −→ pt IR

ΠB
B S y −→ S y

Π
S t,Γ −→ C

pt,Γ −→ C
IL

�,Γ −→ C
mc.

3 But we conjecture that in the classical case a fully symmetric definition of parameter substitution and cut reduction would be needed.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.12 (1-38)

12 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
There are at least two problems in reducing this cut. First, any permutation upwards of the cut will necessarily involve a cut
with S that can be of larger size than p, and hence a simple induction on the size of the cut formula will not work. Second,
the invariant S does not appear in the conclusion of the left premise of mc. This means that we need to transform the left
premise so that its end sequent will agree with the right premise. Any such transformation will most likely be global, and
hence simple induction on the height of derivations will not work either.

We shall use the reducibility technique to prove cut elimination. More specifically, we shall build on the notion of re-
ducibility introduced by Martin-Löf to prove normalization of an intuitionistic logic with iterative inductive definition [21].
Martin-Löf’s proof has been adapted to sequent calculus by McDowell and Miller [22], but in a restricted setting where only
natural number induction is allowed. Since our logic involves arbitrary inductive definitions, which also includes iterative
inductive definitions, we shall need different, and more general, cut reductions. But the real difficulty in our case is in
establishing cut elimination in the presence of co-inductive definitions.

The main part of the reducibility technique is a definition of the family of reducible sets of derivations. In Martin-Löf’s
theory of iterative inductive definition, this family of sets is defined inductively by the “type” of the derivations they contain,
i.e., the formula in the right-hand side of the end sequent in a derivation. Extending this definition of reducibility to Linc−

i
is not obvious. In particular, in establishing the reducibility of a derivation of type pt ending with a CIR rule one must first
establish the reducibility of its premise derivations, which may have larger types, since S t could be any formula. Therefore
a simple inductive definition based on types of derivations would not be well-founded.

The key to properly stratifying the definition of reducibility is to consider reducibility under parameter substitutions.
This notion of reducibility, called parametric reducibility, was originally developed by Girard to prove strong normalization of
System F, i.e., in the interpretation of universal types. As with strong normalization of System F, (co-)inductive parameters
are substituted with some “reducibility candidates”, which in our case are certain sets of derivations satisfying closure
conditions similar to those for System F, but which additionally satisfy certain closure conditions related to (co-)inductive
definitions.

The remainder of this section is structured as follows. In Section 5.1 we define a set of cut reduction rules that are used
to eliminate the applications of the cut rule. For the cases involving logical operators, our cut-reduction rules are the same
as those in [22]. The crucial differences are, of course, in the rules involving induction and co-induction rules, where we
use the transformation described in Definition 7. We then proceed to define two notions essential to our cut elimination
proof: normalizability (Section 5.2) and parametric reducibility (Section 5.3). These can be seen as counterparts for Martin-
Löf’s notions of normalizability and computability [21], respectively. Normalizability of a derivation implies that all the cuts
in it can be eventually eliminated (via the cut reduction rules defined earlier). Reducibility is a stronger notion, in that it
implies normalizability. The main part of the cut elimination proof is presented in Section 5.4, where we show that every
derivation is reducible, hence it can be turned into a cut-free derivation.

5.1. Cut reduction

We now define a reduction relation on derivations ending with mc, following McDowell and Miller [22].

Definition 9 (Reduction). We define a reduction relation between derivations. The redex is always a derivation Ξ ending
with the multicut rule

Π1
�1 −→ B1 · · ·

Πn
�n −→ Bn

Π
B1, . . . , Bn,Γ −→ C

�1, . . . ,�n,Γ −→ C
mc.

We refer to the formulas B1, . . . , Bn produced by the mc as cut formulas.
If n = 0, Ξ reduces to the premise derivation Π . For n > 0 we specify the reduction relation based on the last rule of

the premise derivations. If the rightmost premise derivation Π ends with a left rule acting on a cut formula Bi , then the
last rule of Πi and the last rule of Π together determine the reduction rules that apply. We classify these rules according
to the following criteria: we call the rule an essential case when Πi ends with a right rule; if it ends with a left rule or
subst, it is a left-commutative case; if Πi ends with the init rule, then we have an axiom case; a multicut case arises when it
ends with the mc rule. When Π does not end with a left rule acting on a cut formula, then its last rule is alone sufficient
to determine the reduction rules that apply. If Π ends with subst or a rule acting on a formula other than a cut formula,
then we call this a right-commutative case. A structural case results when Π ends with a contraction or weakening on a cut
formula. If Π ends with the init rule, this is also an axiom case; similarly a multicut case arises if Π ends in the mc rule.
For simplicity of presentation, we always show i = 1.

This reduction relation is an extension of the similar cut reduction relation used in the cut elimination proof for
F Oλ�N [22]. The main differences are in the rules involving induction and co-induction. There is also slight difference
in one reduction rule involving equality, which in our case utilizes the derived rule subst. Therefore in the following defini-
tion, we shall highlight only those reductions that involve (co-)induction and equality rules. Note that the left-commutative
case where Π1 ends with CIL is subsumed by the reduction rule •L/◦L. The complete list of reduction rules can be found
in Appendix A.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.13 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 13
Essential cases:

eqL/eqR Suppose Π1 and Π are

�1 −→ s = t
eqR,

{
Πρ

B2[ρ], . . . , Bn[ρ],Γ [ρ] −→ C[ρ]
}
ρ∈U(s,t)

s = t, B2, . . . , Bn,Γ −→ C
eqL.

Note that because s =βη t , we have U(s, t) = S, i.e., any substitution is a unifier of s and t . Let Ξ1 = mc(Π2, . . . ,Πn,

subst({Πρ}ρ∈S). In this case Ξ reduces to

Ξ1
�2, . . . ,�n,Γ −→ C

�1,�2, . . . ,�n,Γ −→ C
wL

where we use the double horizontal lines to indicate that the relevant inference rule (in this case, wL) may need to be
applied zero or more times.

IR/IL Suppose Π1 and Π are, respectively,

Π ′
1

�1 −→ D X p t
�1 −→ pt IR,

ΠS
D S y −→ S y

Π ′
S t, B2, . . . , Bn,Γ −→ C

pt, B2, . . . , Bn,Γ −→ C
IL

where p x μ= D p x and X p is a new parameter. Then Ξ reduces to

mc
(
mc

(
Π ′

1

[
(ΠS , S)/X p]

,ΠS [t/y]),Π2, . . . ,Πn,Π
′).

CIR/CIL Suppose Π1 and Π are

Π ′
1

�1 −→ S t
ΠS

S y −→ D S y
�1 −→ pt CIR,

Π ′
D X p t, B2, . . . , Bn,Γ −→ C

pt, B2, . . . , Bn,Γ −→ C
CIL

where p x ν= D p x and X p is a new parameter. Then Ξ reduces to

mc
(
mc

(
Π ′

1,ΠS [t/y]),Π2, . . . ,Πn,Π
′[(ΠS , S)/X p])

.

Left-commutative cases: In the following, we suppose that Π ends with a left rule, other than {cL,wL}, acting on B1.

IL/◦L Suppose Π1 is

ΠS
D S y −→ S y

Π ′
1

S t,�′
1 −→ B1

pt,�′
1 −→ B1

IL

where p x μ= D p x. Let Ξ1 = mc(Π ′
1,Π2, . . . ,Πn,Π). Then Ξ reduces to

ΠS
D S y −→ S y

Ξ1

S t,�′
1, . . . ,�n,Γ −→ C

pt,�′
1, . . . ,�n −→ C

IL.

Right-commutative cases:

−/IL Suppose Π is

ΠS
D S y −→ S y

Π ′
B1, . . . , Bn, S t,Γ ′ −→ C

B1, . . . , Bn, pt,Γ ′ −→ C
IL

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.14 (1-38)

14 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
where p x μ= D p x. Let Ξ1 = mc(Π1, . . . ,Πn,Π ′). Then Ξ reduces to

ΠS
D S y −→ S y

Ξ1

�1, . . . ,�n, S t,Γ ′ −→ C

�1, . . . ,�n, pt,Γ ′ −→ C
IL.

−/CIR Suppose Π is

Π ′
B1, . . . , Bn,Γ −→ S t

ΠS
S y −→ D S y

B1, . . . , Bn,Γ −→ pt CIR

where p x ν= D p x. Let Ξ1 = mc(Π1, . . . ,Πn,Π ′). Then Ξ reduces to

Ξ1

�1, . . . ,�n,Γ −→ S t
ΠS

S y −→ D S y
�1, . . . ,�n,Γ −→ pt CIR.

It is clear from an inspection of the inference rules in Fig. 1 and the definition of cut reduction (see Appendix A) that
every derivation ending with a multicut has a reduct. Note that since the left-hand side of a sequent is a multiset, the same
formula may occur more than once in the multiset. In the cut reduction rules, we should view these occurrences as distinct
so that no ambiguity arises as to which occurrence of a formula is subject to the mc rule.

The following lemma shows that the reduction relation is preserved by eigenvariable substitution. The proof is given
in Appendix B.

Lemma 7. Let Π be a derivation ending with a mc and let θ be a substitution. If Π [θ] reduces to Ξ then there exists a derivation Π ′
such that Ξ = Π ′[θ] and Π reduces to Π ′ .

Remark 4. An apparently simpler reduction rule eqR/eqL in Definition 9, which does not use the subst-rule, would be to
let Ξ1 = mc(Π2, . . . ,Πn,Πε). Alas, if this reduction rule is used, then Lemma 7 would fail precisely in this case.4 To see
the problem, suppose Π is

−→ t = t
eqR

{
Πρ

Γ [ρ] −→ Cρ

}
ρ∈S

t = t,Γ −→ C
eqL

Γ −→ C
mc.

Then Π reduces to mc(Πε), but Π [θ] reduces to mc(Πθ◦ε), not mc(Πε [θ]). In general, Πθ◦ε may not be the same as
Πε [θ], so clearly Lemma 7 would be invalidated if this reduction were adopted. One fix to this problem is to use stronger
definitions of normalizability and reducibility that consider all reductions of all instances of a redex, so that Lemma 7 would
not be needed, in the first place e.g., as in the cut-elimination proof in [22]. This, however, has the drawback of a more
complicated case analysis in the main cut elimination proof (Lemma 19). Another approach, adopted by Baelde in his cut
elimination proof for μMALL [4], is to restrict the eqL-rule to use a certain set of CSU, and to modify the definition of
substitutions of eigenvariables in proofs (in Baelde’s case, the substitution is recursively applied to the premises of eqL,
unlike our case). Instead, we use a subst rule to postpone eliminating this eqR/eqL-cut until all other cuts have been
eliminated. This has the advantage that one does not need to place any restrictions on the eqL rule and it does not rely on
specific properties of CSU. This may help in extending our methods to proof systems with different notions of substitution,
such as the logic G [15].

5.2. Normalizability

Definition 10. We define the set of normalizable derivations to be the smallest set that satisfies the following conditions:

1. If a derivation Π ends with mc, then it is normalizable if every reduct of Π is normalizable.
2. If a derivation ends with any rule other than mc, then it is normalizable if the premise derivations are normalizable.

The set of all normalizable derivations is denoted by NM.

4 We are grateful to David Baelde who pointed out this problem.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.15 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 15
Each clause in the definition of normalizability asserts that a derivation is normalizable if certain (possibly infinitely
many) other derivations are normalizable. We call the latter the predecessors of the former. Thus a derivation is normalizable
if the tree of its successive predecessors is well-founded. We refer to this well-founded tree as its normalization. Since a
normalization is well-founded, it has an associated induction principle: for any property P of derivations, if for every
derivation Π in the normalization, P holds for every predecessor of Π implies that P holds for Π , then P holds for every
derivation in the normalization. We shall define explicitly a measure on a normalizable derivation based on its normalization
tree.

Definition 11 (Normalization degree). Let Π be a normalizable derivation. The normalization degree of Π , denoted by nd(Π),
is defined by induction on the normalization of Π as follows:

nd(Π) = 1 + ({
nd

(
Π ′) ∣∣ Π ′ is a predecessor of Π

})
.

The normalization degree of Π is basically the height of its normalization tree. Note that nd(Π) can be an ordinal in
general, due to the possibly infinite-branching rule eqL.

Lemma 8. If there is a normalizable derivation of a sequent, then there is a cut-free derivation of the sequent.

Proof. Similarly to [22]. �
In the proof of the main lemma for cut elimination (Lemma 19) we shall use induction on the normalization degree,

instead of using directly the normalization ordering. The reason is that in some inductive cases in the proof, we need
to compare a (normalizable) derivation with its instances, but the normalization ordering does not necessarily relate the
two, e.g., Π and Π [θ] may not be related by the normalization ordering, although their normalization degrees are (see
Lemma 10). Later, we shall define a stronger ordering called reducibility, which implies normalizability. In the cut elimination
proof for F Oλ�N [22], in one of the cases, an implicit reducibility ordering is assumed to hold between derivation Π and
its instance Π [θ]. As the reducibility ordering in their setting is a subset of the normalizability ordering, this assumption
may not hold in all cases, and as a consequence there is a gap in the proof in [22].5

The next lemma states that normalization is closed under substitutions.

Lemma 9. If Π is a normalizable derivation, then for any substitution θ Π[θ] is normalizable.

Proof. By induction on nd(Π).

1. If Π ends with mc, then Π [θ] also ends with mc. By Lemma 7 every reduct of Π [θ] corresponds to a reduct of Π ,
therefore by induction hypothesis every reduct of Π [θ] is normalizable, and hence Π [θ] is normalizable.

2. Suppose Π ends with a rule other than mc and has premise derivations {Πi}i∈I for some index set I. By Definition 5
each premise derivation of Π [θ] is either Πi (i.e., in the case where Π ends with eqL or subst, in which case the
premise derivations of Π [θ] are already in {Πi}i∈I), or Πi[θ]. Since Π is normalizable, Πi is normalizable, and so by
the induction hypothesis Πi[θ] is also normalizable. Thus Π [θ] is normalizable. �

The normalization degree is non-increasing under eigenvariable substitution.

Lemma 10. Let Π be a normalizable derivation. Then nd(Π) � nd(Π[θ]) for every substitution θ .

Proof. By induction on nd(Π) using Definition 5 and Lemma 7. �
5.3. Parametric reducibility

In the following, we shall use the term “type” in two different settings: in categorizing terms and in categorizing deriva-
tions. To avoid confusion, we shall refer to the types of terms as syntactic types, and the term “type” is reserved for types of
derivations.

Our notion of a type of a set of derivations may abstract from particular terms in a formula. This is because our definition
of reducibility (candidates) will have to be closed under eigenvariable substitutions, which is in turn imposed by the fact
that our proof rules allow instantiation of eigenvariables in the derivations (i.e., the eqL and the subst rules).

5 This gap was fixed in [41] by strengthening the main lemma for cut elimination. Andrew Gacek and Gopalan Nadathur proposed another fix by assigning
an explicit ordinal to each reducible derivation, and using the ordering on ordinals to replace the reducibility ordering in the lemma. A discussion of these
fixes can be found in the errata page of that paper [22]: http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs00.errata.html. We essentially follow
Gacek and Nadathur’s approach here, although we assign ordinals to normalizable derivations rather than to reducible derivations.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/tcs00.errata.html

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.16 (1-38)

16 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
Definition 12 (Types of derivations). We say that a derivation Π has type C if the end sequent of Π is of the form Γ −→ C
for some Γ . Let S be a term with syntactic type τ1 → ·· · → τn → o. A set of derivations S is said to be of type S if every
derivation in S has type S u1 . . . un for some terms u1, . . . , un . Given a list of terms u = u1 : τ1, . . . , un : τn and a set of
derivations S of type S : τ1 → ·· · → τn → o, we denote with S u the set

S u = {Π ∈ S | Π has type S u}.

Definition 13 (Reducibility candidate). Let S be a closed term having the syntactic type τ1 → ·· · → τn → o. A set of derivations
R of type S is said to be a reducibility candidate of type S if the following hold:

CR0 If Π ∈R then Π [θ] ∈R, for every θ .
CR1 If Π ∈R then Π is normalizable.
CR2 If Π ∈R and Π reduces to Π ′ then Π ′ ∈R.
CR3 If Π ends with mc and all its reducts are in R, then Π ∈R.
CR4 If Π ends with init , then Π ∈R.
CR5 If Π ends with a left-rule or subst, and all its minor premise derivations are normalizable, and all its major premise

derivations are in R, then Π ∈R.

We shall write R : S to denote a reducibility candidate R of type S .

The conditions CR1 and CR2 are similar to the eponymous conditions in Girard’s definition of reducibility candidates in
his strong normalization proof for System F (see [17], Chapter 14). Girard’s CR3 is expanded in our definition to CR3, CR4
and CR5. These conditions deal with what Girard refers to as “neutral” proof terms (i.e., proof terms ending with elimination
rules or the axiom rule in natural deduction). In our setting, neutrality corresponds to derivations ending in mc, init, subst,
or a left rule.

The condition CR0 is needed because our cut reduction rules involve substitutions of eigenvariables in some cases (i.e.,
those that involve permutation of eqL and subst in the left/right commutative cases), and consequently, the notion of
reducibility (candidate) needs to be preserved under eigenvariable substitution.

Let S be a set of derivations of type B and let T be a set of derivations of type C . Then S ⇒ T denotes the set of
derivations such that Π ∈ S ⇒ T if and only if Π ends with a sequent Γ −→ C whenever B ∈ Γ and for every Ξ ∈ S , we
have mc(Ξ,Π) ∈ T .

Let S be a closed term. Define NMS to be the set

NMS = {Π | Π ∈ NM and is of type S u for some u}.
Note that S here is an abstraction, and intuitively, NMS consists of the set of all normalizable derivations with types which
are instances of S .

Lemma 11. Let S be a term of syntactic type τ1 → ·· · → τn → o. Then the set NMS is a reducibility candidate of type S.

Proof. CR0 follows from Lemma 9, CR1 follows from the definition of NMS , and the rest follows from Definition 10. �
Definition 14 (Candidate substitution). A candidate substitution Ω is a partial map from parameters to triples of reducibility
candidates, derivations and closed terms such that whenever Ω(X p) = (R,Π, S) we have

• S has the same syntactic type as p,
• R is a reducibility candidate of type S , and
• either one of the following holds:

– p x μ= B p x and Π is a normalizable derivation of B S y −→ S y, or
– p x ν= B p x and Π is a normalizable derivation of S y −→ B S y.

We denote with supp(Ω) the support of Ω , i.e., the set of parameters on which Ω is defined. Each candidate substitution
Ω determines a unique parameter substitution Θ , given by:

Θ
(

X p) = (Π, S) iff Ω
(

X p) = (R,Π, S) for some R.

We denote with Sub(Ω) the parameter substitution Θ obtained this way. We say that a parameter X p is fresh for Ω , written
X p#Ω , if X p#Sub(Ω).

Notation. Since every candidate substitution has a corresponding parameter substitution, we shall often treat a candidate
substitution as a parameter substitution. In particular, we shall write C[Ω] to denote C[Sub(Ω)] and Π [Ω] to denote
Π [Sub(Ω)].

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.17 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 17
We are now ready to define the notion of parametric reducibility. We follow a similar approach for F Oλ�N [22], where
families of reducibility sets are defined by the level of derivations, i.e. the size of the types of derivations. In defining a
family (or families) of sets of derivations at level k, we assume that reducibility sets at level j < k are already defined. The
main difference with the notion of reducibility for F Oλ�N , aside from the use of parameters in the clause for (co-)induction
rules (which do not exist in F Oλ�N), is in the treatment of the induction rules.

Definition 15 (Parametric reducibility). Let Fk be the set of all formula of size k (Definition 3), i.e. {B | |B| = k}. The family
of parametric reducibility sets REDC [Ω], where C is a formula and Ω is a candidate substitution, is defined by induction on
the size of C as follows. For each k, the family of parametric reducibility sets of level k{

REDC [Ω]}C∈Fk

is the smallest family of sets satisfying, for each C ∈Fk:

P1 Suppose C = X p u for some u and some parameter X p . If X p ∈ supp(Ω) then REDC [Ω] = R u, where Ω(X p) =
(R,ΠS , S). Otherwise,

REDC [Ω] = NMX p u.

Otherwise, C �= X p u, for any u and X p . Then a derivation Π of type C[Ω] is in REDC [Ω] if it is normalizable and one
of the following holds:

P2 Π ends with mc, and all its reducts are in REDC [Ω].
P3 Π ends with ⊃R, i.e., C = B ⊃ D and Π is of the form:

Π ′
Γ, B[Ω] −→ D[Ω]

Γ −→ B[Ω] ⊃ D[Ω] ⊃ R

and for every substitution ρ , Π ′[ρ] ∈ (REDB[ρ][Ω] ⇒ REDD[ρ][Ω]).
P4 Π ends with IR, i.e.,

Π ′
Γ −→ B X p t

Γ −→ pt IR, where p x μ= B p x.
Without loss of generality, assume that X p#Ω: for every reducibility candidate (S : I), where I is a closed term
of the same syntactic type as p, for every normalizable derivation ΠI of B I y −→ I y, if for every u the following
holds:

ΠI [u/y] ∈ (
RED(B X p u)

[
Ω,(S,ΠI , I)/X p] ⇒ S u)

,

then mc(Π ′[(ΠI , I)/X p],ΠI [t/y]) ∈ S t .
P5 Π ends with CIR, i.e.,

Π ′
Γ −→ I t

ΠI
I y −→ B I y

Γ −→ pt CIR, where p x ν= B p x
and there exist a parameter X p such that X p#Ω and a reducibility candidate (S : I) such that Π ′ ∈ S and

ΠI [u/y] ∈ (
S u ⇒ REDB X p u

[
Ω,(S,ΠI , I)/X p])

for every u.

P6 Π ends with any other rule and its major premise derivations are in the parametric reducibility sets of the appro-
priate types.

We write REDC for REDC [Ω], when supp(Ω) = ∅. A derivation Π of type C is reducible if Π ∈ REDC .

Some comments and comparison with Girard’s definition of parametric reducibility for System F [17] are in order, al-
though our technical setting is somewhat different:

• Condition P3 quantifies over ρ . This is needed to show that reducibility is closed under substitution (see Lemma 13).
A similar quantification is used in the definition of reducibility for F Oλ�N [22] for the same purpose. In the same
clause, we also quantify over derivations in REDB[ρ][Ω], but since |B[ρ]| < |B ⊃ D|, this quantification is legitimate and
the definition is well-founded. Note also the similar quantification in P4 and P5, where the parametric reducibility set
REDpt [Ω] is defined in terms of RED(B X p t)[Ω]. By Lemma 1 |pt| > |B X p t| so in both cases the set RED(B X p t)[Ω] is
already defined by induction. It is clear by inspection of the clauses that the definition of parametric reducibility is
well-founded.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.18 (1-38)

18 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
• P2 and P6 are needed to show that the notion of parametric reducibility is closed under left-rules, id and mc, i.e., con-
ditions CR3–CR5. This is also a point where our definition of parametric reducibility diverges from a typical definition
of reducibility in natural deduction (e.g., [17]), where closure under reduction for “neutral” terms is a derived property.

• P4 (and dually P5) can be intuitively explained in terms of the second-order encoding of inductive definitions. To
simplify presentation, we restrict to the propositional case, so, P4 can be simplified as follows:

Suppose Π ends with IR, i.e.,

Π ′
Γ −→ B X p

Γ −→ p IR, where p
μ= B p.

Without loss of generality, assume that X p#Ω: for every reducibility candidate (S : I), where I is a closed term of
the same syntactic type as p, for every normalizable derivation ΠI of B I −→ I , if ΠI ∈ (REDB X p [Ω,(S,ΠI , I)/X p] ⇒
S), then mc(Π ′[(ΠI , I)/X p],ΠI) ∈ S .

Note that in propositional Linc−
i , the set

REDB X p
[
Ω,(S,ΠI , I)/X p] ⇒ S

is equivalent to

REDB X p⊃X p
[
Ω,(S,ΠI , I)/X p]

,

i.e., a set of reducible derivations of type B I ⊃ I . So, intuitively, Π ′ can be seen as a higher-order function that
takes any function of type B I ⊃ I (i.e., the derivation ΠI), and turns it into a derivation of type I (i.e., the deriva-
tion mc(Π ′[(ΠI , I)/X p],ΠI)), for all candidate (S : I). This intuitive reading matches the second-order interpretation
of p, i.e., ∀I.(B I ⊃ I) ⊃ I , where the universal quantification is interpreted as the universal type constructor and ⊃ is
interpreted as the function type constructor in System F.

We shall now establish a list of properties of parametric reducibility sets. The main property that we are after is one that
shows that a certain set of derivations formed using a family of parametric reducibility sets actually forms a reducibility
candidate. This will be important later in constructing a reducibility candidate which acts as a co-inductive “witness” in the
main cut elimination proof. The proofs of the following lemmas are mostly routine and rather tedious – they can be found
in Appendix B.

Lemma 12. If Π ∈ REDC [Ω] then Π is normalizable.

Since every Π ∈ REDC [Ω] is normalizable, nd(Π) is defined. This fact will be used implicitly in subsequent proofs, i.e.,
we shall do induction on nd(Π) to prove properties of REDC [Ω].

Lemma 13. If Π ∈ REDC [Ω] then for every substitution ρ , Π [ρ] ∈ REDC[ρ][Ω].

Lemma 14. Let Ω = [Ω ′, (R,ΠS , S)/X p]. Let C be a formula such that X p#C. Then for every Π , Π ∈ REDC [Ω] if and only if
Π ∈ REDC [Ω ′].

Lemma 15. Let Ω be a candidate substitution and S a closed term of syntactic type τ1 → ·· · → τn → o. Then the set

R = {
Π

∣∣ Π ∈ REDS u[Ω] for some u}
is a reducibility candidate of type S[Ω].

Lemma 16. Let Ω be a candidate substitution and let X p be a parameter such that X p#Ω . Let S be a closed term of the same syntactic
type as p and let

R = {
Π

∣∣ Π ∈ REDS u[Ω] for some u}
.

Suppose [Ω,(R,Ψ, S[Ω])/X p] is a candidate substitution, for some Ψ . Then

REDC[S/X p][Ω] = REDC
[
Ω,

(
R,Ψ, S[Ω])/X p]

.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.19 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 19
5.4. Cut elimination

We shall now show that every derivation is reducible, hence every derivation can be normalized to a cut-free derivation.
To prove this, we need a slightly more general lemma, which states that every derivation is in REDC [Ω] for a certain kind
of candidate substitution Ω . The precise definition is given below.

Definition 16 (Definitional closure). A candidate substitution Ω is definitionally closed if for every X p ∈ supp(Ω), if Ω(X p) =
(R,ΠS , S) then either one of the following holds:

• p x μ= B p x, for some B and for every u of the appropriate syntactic types:

ΠS [u/x] ∈ REDB X p u [Ω] ⇒ R u.

• p x ν= B p x, for some B and for every u of the appropriate syntactic types:

ΠS [u/x] ∈ R u ⇒ REDB X p u [Ω].

The next two lemmas show that definitionally closed substitutions can be extended in a way that preserves definitional
closure.

Lemma 17. Let Ω = [Ω ′, (R,ΠS , S)/X p] be a candidate substitution such that p x μ= B p x, Ω ′ is definitionally closed, and for every
u of the same types as x,

ΠS [u/x] ∈ REDB X p u [Ω] ⇒ R u.

Then Ω is definitionally closed.

Proof. Let Y q ∈ supp(Ω). Suppose Ω(Y q) = (S,ΠI , I). We need to show that

ΠI [t/x] ∈ REDB Y q t [Ω] ⇒ S t (1)

for every t of the same types as x. If Y q = X p , then this follows from the assumption of the lemma. Otherwise, Y q ∈
supp(Ω ′), and by the definitional closure assumption on Ω ′ , we have

ΠI [t/x] ∈ REDB Y q t
[
Ω ′] ⇒ S t (2)

for every t . Since X p#(B Y q t) (recall that definitions cannot contain occurrences of parameters), by Lemma 14 we have
REDB Y q t [Ω ′] = REDB Y q t [Ω]. The latter, together with (2), implies (1). �
Lemma 18. Let Ω = [Ω ′, (R,ΠS , S)/X p] be a candidate substitution such that p x ν= B p x, Ω ′ is definitionally closed, and for every
u of the same types as x,

ΠS [u/x] ∈ R u ⇒ REDB X p u [Ω].
Then Ω is definitionally closed.

Proof. Analogous to the proof of Lemma 17. �
We are now ready to state the main lemma for cut elimination.

Lemma 19. Let Ω be a definitionally closed candidate substitution. Let Π be a derivation of B1, . . . , Bn,Γ −→ C, and let

Π1
�1 −→ B1[Ω] . . .

Πn
�n −→ Bn[Ω]

where n � 0, be derivations in, respectively, REDB1 [Ω], . . . ,REDBn [Ω]. Then the derivation Ξ

Π1
�1 −→ B1[Ω] · · ·

Πn
�n −→ Bn[Ω]

Π [Ω]
B1[Ω], . . . , Bn[Ω],Γ [Ω] −→ C[Ω]

�1, . . . ,�n,Γ [Ω] −→ C[Ω] mc

is in REDC [Ω].

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.20 (1-38)

20 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
Proof. The proof is by induction on

M(Ξ) =
〈

ht(Π),

n∑
i=1

|Bi|,ND(Ξ)

〉

where ND(Ξ) is the multiset {nd(Π1), . . . ,nd(Πn)} of normalization degrees of Π1 to Πn . The measure M can be well-
ordered lexicographically. We shall refer to this ordering simply as <. Note that in the third component of M, we use the
measure nd(Πi) rather than simply the height of Πi . This is imposed by the cut reduction rule mc/◦L (see case II.3 below).

The measure M is insensitive to the order in which Πi is given, thus when we need to distinguish one of the Πi , we
shall refer to it as Π1 without loss of generality. The derivation Ξ is in REDC [Ω] if all its reducts are in REDC [Ω].
CASE I: n = 0. In this case, Ξ reduces to Π [Ω], thus it is enough to show that Π [Ω] ∈ REDC [Ω]. This is proved by case
analysis on C and on the last rule of Π .

I.1. Suppose C = X p t for some parameter X p ∈ supp(Ω) and some terms t . Suppose Ω(X p) = (R,ΠS , S). Then there are
several cases to consider, based on the last rule of Π . In all cases, we need to show that Π [Ω] ∈Rt . Note that since Π [Ω]
is of type S t , Π [Ω] ∈R implies that Π [Ω] ∈Rt . So in some cases we only need to show Π [Ω] ∈R.

• Π ends with init: then Π [Ω] also ends with init and by CR4, Π [Ω] ∈R.
• Π ends with mc: This follows from the induction hypothesis and Lemma 12.
• Π ends with CILp : Suppose Π ends with CILp acting on a formula Y q u. If Y q /∈ supp(Ω), then this follows immediately

from the induction hypothesis and CR5. If Y q ∈ supp(Ω), then we use the same arguments as shown in I.2 below to
show that Π [Ω] ∈ REDC [Ω].

• Π ends with substor a left-rule other than CILp : Suppose the premise derivations of the rule are {Ψi}i∈I for some index
set I, where each Ψi is of type Ci . Then Π [Ω] ends with the same left rule and has premise derivations {Ψi[Ω]}i∈I .
By the induction hypothesis Ψi[Ω] ∈ REDCi [Ω] for every i ∈ I, and by Lemma 12 each Ψi[Ω] is also normalizable. The
latter implies that Π [Ω] is normalizable. Note that if Ψi is a major premise derivation, it must be of type X p u for some
u, and we have Ψi[Ω] ∈R. Therefore, by CR5, we have that Π [Ω] ∈R.

• Suppose Π ends with IRp :

Π ′
Γ −→ D X p t
Γ −→ X pt IRp

where p x μ= D p x. Then Π [Ω] = mc(Π ′[Ω],ΠS [t/x]). From the induction hypothesis we have that Π ′[Ω] ∈
REDD X p t [Ω]. This, together with the definitional closure of Ω , implies that Π [Ω] is indeed in Rt .

I.2. Suppose C �= X p t for any X p ∈ supp(Ω) and terms t , and Π ends with a left rule, init , or mc. This follows mostly
straightforwardly from the induction hypothesis and Lemma 12. The only interesting case is when Π ends with CILp on
some Y q u such that Y q ∈ supp(Ω), i.e., Π takes the form

Π ′
D Y q u,Γ −→ C

Y q u,Γ −→ C
CILp .

Suppose Ω(Y q) = (R,ΠS , S). Then Π [Ω] = mc(mc(IdS u,ΠS [u/x]),Π ′[Ω]). By CR4 we have that IdS u ∈ R, so by the
definitional closure of Ω and CR3, we have mc(IdS u,ΠS [u/x]) ∈ REDD S u [Ω]. Since ht(Π ′) < ht(Π), and Π [Ω] =
mc(mc(IdS u,ΠS [u/x]),Π ′[Ω]), by the induction hypothesis we have Π [Ω] ∈ REDC [Ω].
I.3. Suppose C �= X p t for any parameter X p ∈ supp(Ω) and any terms t , and Π ends with a right-rule. We show here the
non-trivial subcases:

I.3.a. Suppose Π ends with ⊃R, as shown below left. Then Π [Ω] is as shown below right:

Π ′
Γ, C1 −→ C2

Γ −→ C1 ⊃ C2
⊃ R,

Π ′[Ω]
Γ [Ω], C1[Ω] −→ C2[Ω]

Γ [Ω] −→ C1[Ω] ⊃ C2[Ω] ⊃ R.

To show Π [Ω] ∈ REDC [Ω], we need to show that Π [Ω] is normalizable and that

Π ′[Ω][θ] ∈ REDC1[θ][Ω] ⇒ REDC2[θ][Ω] (3)

for every θ . Since ht(Π ′) < ht(Π), by the induction hypothesis Π ′[Ω] ∈ REDC2 [Ω]. Normalizability of Π [Ω] then follows
immediately from Lemma 12. It remains to show that Statement (3) holds. Let Ψ be a derivation in REDC1[θ][Ω]. Let Ξ1 =
mc(Ψ,Π ′[Ω][θ]). Note that since parameter substitution commutes with eigenvariable substitution Π ′[Ω][θ] = Π ′[θ][Ω].

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.21 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 21
Since ht(Π ′[θ])� ht(Π ′) < ht(Π) (Lemma 3), by induction hypothesis we have Ξ1 ∈ REDC2[θ][Ω]. Since (3) holds for an
arbitrary θ , by Definition 15 Π [Ω] ∈ REDC [Ω].
I.3.b. Suppose Π ends with IR, as shown below left, where p x μ= D p x. We can assume w.l.o.g. that X p#Ω . Then Π [Ω] is
as shown below right:

Π ′
Γ −→ D X p t

Γ −→ pt IR,

Π ′[Ω]
Γ [Ω] −→ D X p t

Γ [Ω] −→ pt IR.

To show that Π [Ω] ∈ REDC [Ω], we need to show that Π [Ω] is normalizable (this follows easily from the induction hypoth-
esis and Lemma 12) and that

mc
(
Π ′[Ω][(ΠS , S)/X p]

,ΠS [t/x]
) ∈ Rt (4)

for every candidate (R : S) and every ΠS that satisfies:

ΠS [u/x] ∈ REDD X p u
[
Ω,(R,ΠS , S)/X p] ⇒ R u for every u. (5)

Let Ω ′ = [Ω,(R,ΠS , S)/X p]. Note that since X p#Ω , we have, by Lemma 6(2), Π ′[Ω][(ΠS , S)/X p] = Π ′[Ω ′]. So statement
(4) can be rewritten to

mc
(
Π ′[Ω ′],ΠS [t/x]

) ∈ Rt. (6)

By Lemma 17, we have that Ω ′ is definitionally closed. Therefore we can apply the induction hypothesis to Π ′ and Ω ′ ,
obtaining Π ′[Ω ′] ∈ REDD X p t [Ω ′]. This, together with the definitional closure of Ω ′ and assumption (5), immediately implies
Statement (6) above; hence Π [Ω] is indeed in REDC [Ω].
I.3.c. Suppose Π ends with CIR, as shown below left, where p y ν= D p y. Let S ′ = S[Ω]. Then Π [Ω] is as shown below
right:

Π ′
Γ −→ S t

ΠS
S x −→ D S x

Γ −→ pt CIR,

Π ′[Ω]
Γ [Ω] −→ S ′ t

ΠS [Ω]
S ′x −→ D S ′ x

Γ [Ω] −→ pt CIR.

Note that Π [Ω] is normalizable by the induction hypothesis and Lemma 12. To show that Π [Ω] ∈ REDC [Ω] it remains to
show that there exists a reducibility candidate (R : S ′) such that

(a) Π ′[Ω] ∈R and
(b) ΠS [Ω][u/x] ∈R u ⇒ REDD X p u [Ω,(R,ΠS [Ω], S ′)/X p] for a new X p#Ω , and for every u.

Let R = {Ψ | Ψ ∈ REDS u [Ω]}. By Lemma 15 R is a reducibility candidate of type S ′ . By the induction hypothesis we have
Π ′[Ω] ∈ R, so R satisfies (a). Since substitution does not increase the height of derivations, we have that ht(ΠS [u/x]) �
ht(ΠS), and therefore, by applying the induction hypothesis to ΠS [x/u], we have mc(Ψ,ΠS [Ω][u/x]) ∈ REDD S u [Ω] for
every Ψ ∈ REDS u [Ω]. In other words,

ΠS [Ω][u/x] ∈ REDS u [Ω] ⇒ REDD S u [Ω].
Since REDS u [Ω] =R u, the above statement can be rewritten to

ΠS [Ω][u/x] ∈ R u ⇒ REDD S u [Ω].
By Lemma 16 REDD S u [Ω] = REDD X p u [Ω,(R,ΠS [Ω], S ′)/X p], which means that R indeed satisfies condition (b) above,
and therefore Π [Ω] ∈ REDC [Ω].
CASE II: n > 0. To show that Ξ ∈ REDC [Ω], we need to show that all its reducts are in REDC [Ω] and that Ξ is normalizable.
The latter follows from the former by Lemma 12 and Definition 10, so in the following we need only to show the former.

Note that in this case, we do not need to distinguish cases based on whether C is headed by a parameter or not. To
see why, suppose C = X p t for some parameter X p . If X p /∈ supp(Ω), then to show Ξ ∈ REDC [Ω] we need to show that it
is normalizable, which means that we need to show that all its reducts are normalizable. But since all reducts of Ξ have
the same type X p t , showing their normalizability amounts to the same thing as showing that they are in REDC [Ω]. If
X p ∈ supp(Ω), then we need to show that Ξ ∈R. Then by CR3, it is enough to show that all reducts of Ξ are in R, which
is the same as showing that all reducts of Ξ are in REDC [Ω].

Since the applicable reduction rules to Ξ are driven by the shape of Π [Ω], and since Π [Ω] is determined by Π , we
shall perform case analysis on Π in order to determine the possible reduction rules that apply to Ξ , and show in each case
that the reduct of Ξ is in the same parametric reducibility set. There are several main cases depending on whether Π ends
with a rule acting on a cut formula Bi or not. Again, when we refer to Bi , without loss of generality, we assume i = 1.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.22 (1-38)

22 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
In the following, we say that an instance of CILp is trivial if it applies to a formula Y q u for some u, but Y q /∈ supp(Ω).
Otherwise, it is non-trivial.

II.1. Suppose Π ends with a left rule other than cL, wL, and a non-trivial CILp acting on B1, and suppose Π1 ends with a
right-introduction rule. There are several subcases depending on the logical rules that are applied to B1. We show here the
non-trivial cases:

⊃R/ ⊃L Suppose Π1 and Π are

Π ′
1

�1, B ′
1[Ω] −→ B ′′

1[Ω]
�1 −→ B ′

1[Ω] ⊃ B ′′
1[Ω] ⊃ R,

Π ′
B2, . . . , BnΓ −→ B ′

1

Π ′′
B ′′

1, B2, . . . Bn,Γ −→ C

B ′
1 ⊃ B ′′

1, B2, . . . , Bn,Γ −→ C
⊃ L.

Let Ξ1 = mc(Π2, . . . ,Πn,Π ′[Ω]). Then Ξ1 ∈ REDB ′
1
[Ω] by induction hypothesis since ht(Π ′) < ht(Π) and therefore

M(Ξ1) <M(Ξ). Since Π1 ∈ REDB1 [Ω], by Definition 15 we have

Π ′
1 ∈ REDB ′

1
[Ω] ⇒ REDB ′′

1
[Ω]

and therefore the derivation Ξ2 = mc(Ξ1,Π
′
1) of �1, . . . ,�n,Γ [Ω] −→ B ′′

1[Ω] is in REDB ′′
1
[Ω]. Let Ξ3 = mc(Ξ2,Π2, . . . ,

Πn,Π ′′[Ω]). The reduct of Ξ in this case is the derivation Ξ ′:
Ξ3

�1, . . . ,�n,Γ [Ω],�2, . . . ,�n,Γ [Ω] −→ C[Ω]
�1, . . . ,�n,Γ [Ω] −→ C[Ω] cL.

By the induction hypothesis we have Ξ3 ∈ REDC [Ω], and therefore it is normalizable by Lemma 12. By Definition 10 this
means that Ξ ′ is normalizable and by Definition 15 Ξ ′ ∈ REDC [Ω].

∀L/∀R Suppose Π1 and Π are

Π ′
1

�1 −→ B ′
1[Ω][y/x]

�1 −→ ∀x.B ′
1[Ω] ∀R,

Π ′
B ′

1[t/x], B2, . . . , Bn,Γ −→ C

∀x.B ′
1, B2, . . . , Bn,Γ −→ C

∀L.

The reduct of Ξ in this case is

Ξ ′ = mc
(
Π ′

1[t/y],Π2, . . . ,Πn,Π
′[Ω]).

Since Π ′
1 ∈ REDB ′

1[y/x][Ω], by Lemma 13 we have Π ′
1[t/y] ∈ REDB ′

1[t/x][Ω]. Note that ht(Π ′) < ht(Π), so we can apply the
induction hypothesis to obtain Ξ ′ ∈ REDC [Ω].

eqR/eqL Suppose Π1 and Π are

�1 −→ s = t
eqR,

{
Πρ

B2[ρ], . . . , Bn[ρ],Γ [ρ] −→ C[ρ]
}
ρ∈U(s,t)

s = t, B2, . . . , Bn,Γ −→ C
eqL.

Note that in this case s must be the same term as t , and therefore U(s, t) = S. Let Π ′ be the derivation subst({Πρ}ρ∈S)
of the sequent B2, . . . , Bn,Γ −→ C and let Ξ1 = mc(Π2, . . . ,Πn,Π ′[Ω]). Since ht(Π ′) = ht(Π) and since the total size of
the cut formulas in Ξ1 is smaller than in Ξ , by the induction hypothesis we have Ξ1 ∈ REDC [Ω]. Then the reduct of Ξ in
this case is the derivation Ξ ′:

Ξ1
�2, . . . ,�n,Γ −→ C

�1,�2, . . . ,�n,Γ −→ C
wL

which is also in REDC [Ω] by the definition of parametric reducibility.

IR/IL Suppose Π1 and Π are the derivations

Π ′
1

�1 −→ D X p t
�1 −→ pt IR,

ΠS
D S x −→ S x

Π ′
S t, B2, . . . , Bn,Γ −→ C

pt, B2, . . . , Bn,Γ −→ C
IL

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.23 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 23
where p y μ= D p y and X p is a new parameter not occurring in the end sequent of Π1 (we can assume w.l.o.g. that X p#Ω

and that it does not occur also in the end sequent of Π). Then Π [Ω] is the derivation, where S ′ = S[Ω]:
ΠS [Ω]

D S ′ x −→ S ′ x
Π ′[Ω]

S ′ t, B2[Ω], . . . , Bn[Ω],Γ [Ω] −→ C[Ω]
pt, B2[Ω], . . . , Bn[Ω],Γ [Ω] −→ C[Ω] IL.

Let Ξ1 = mc(Π ′
1[(ΠS [Ω], S ′)/X p],ΠS [Ω][t/x]). Then the reduct of Ξ in this case is the derivation

Ξ ′ = mc
(
Ξ1,Π2, . . . ,Πn,Π ′[Ω]).

Note that ΠS [u/x][Ω] = ΠS [Ω][u/x] by Lemma 5. Since(
ΠS [u/x]) � ht(ΠS) < ht(Π),

we have that for every derivation Ψ ∈ REDD S u[Ω],
M

(
mc

(
Ψ,ΠS [u/x][Ω])) = 〈(

ΠS [u/x]), |D S u|,{nd(Ψ)
}〉

< M(Ξ).

So by the induction hypothesis we have that, for every Ψ ∈ REDD S u[Ω],
mc

(
Ψ,ΠS [Ω][u/x]) = mc

(
Ψ,ΠS [u/x][Ω]) ∈ REDS u[Ω].

In other words, we have:

ΠS [Ω][u/x] ∈ REDD S u [Ω] ⇒ REDS u [Ω]. (7)

Let R = {Ψ | Ψ ∈ REDS u [Ω] for some u}. Then by Lemma 15 R is a reducibility candidate of type S ′ . Moreover, by
Lemma 16 we have

REDD S u[Ω] = REDD X p u
[
Ω,

(
R,ΠS [Ω], S ′)/X p]

.

This, together with Statement (7) above, implies that for every u:

ΠS [Ω][u/x] ∈ REDD X p u
[
Ω,

(
R,ΠS [Ω], S ′)/X p] ⇒ R u. (8)

Since Π1 ∈ REDpt [Ω], it follows from Definition 15 that for every reducibility candidate (S : I) and ΠI such that

ΠI [u/x] ∈ REDD X p u
[
Ω,(S,ΠI , I)/X p] ⇒ S u for every u,

we have mc(Π ′
1[(ΠI , I)/X p],ΠI [t/x]) ∈ S t . Substituting R for S , ΠS [Ω] for ΠI and S ′ for I , and using Statement (8)

above we obtain:

Ξ1 = mc
(
Π ′

1

[(
ΠS [Ω], S ′)/X p]

,ΠS [Ω][t/x]) ∈ Rt = REDS t [Ω].
Since ht(Π ′) < ht(Π), we can then apply the induction hypothesis to conclude that Ξ ′ ∈ REDC [Ω].

CIR/CIL Suppose Π1 and Π are

Π ′
1

�1 −→ S t
ΠS

S x −→ D S x
�1 −→ pt CIR,

Π ′
D X p t, B2, . . . , Bn,Γ −→ C

pt, B2, . . . , Bn,Γ −→ C
CIL

where p y ν= D p y and X p is a parameter not already occurring in the end sequent of Π (and w.l.o.g. assume also X p#Ω

and X p not occurring in �i or Bi). Then Π [Ω] is

Π ′[Ω]
D X p t, B2[Ω], . . . , Bn,Γ [Ω] −→ C[Ω]

pt, B2[Ω], . . . , Bn,Γ [Ω] −→ C[Ω] CIL.

Since Π1 ∈ REDpt [Ω], by Definition 15 there exists a reducibility candidate (R : S) such that Π ′
1 ∈ R and such that for

every u,

ΠS [u/x] ∈ R u ⇒ REDD X p u
[
Ω,(R,ΠS , S)/X p]

.

Let Ω ′ = [Ω,(R,ΠS , S)/X p]. Then by Lemma 18 Ω ′ is definitionally closed. Let Ξ1 = mc(Π ′
1,ΠS [t/x]). By the definitional

closure of Ω ′ , we have that Ξ1 ∈ REDD X p t [Ω ′]. The reduct of Ξ in this case is the derivation

Ξ ′ = mc
(
Ξ1,Π2, . . . ,Πn,Π ′[Ω ′]).

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.24 (1-38)

24 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
Note that, since X p does not occur in �i or Bi , by Lemma 14 we have that

Πi ∈ REDBi [Ω] = REDBi

[
Ω ′]

for every i ∈ {2, . . . ,n}. Therefore, by induction hypothesis, we have that Ξ ′ ∈ REDC [Ω ′]. But since X p is also new for C ,
we have REDC [Ω ′] = REDC [Ω], and therefore Ξ ′ ∈ REDC [Ω].

II.2. Π ends with a left rule other than cL, wL, and a non-trivial instance of CILp , acting on B1, and Π1 ends with a
left-rule or subst.

Note that in these cases the reducts always end with a left-rule. The proof for the following cases abides to the same
pattern: we first establish that the premise derivations of the reduct are either normalizable or in certain reducibility
sets. We then proceed to show that the reduct itself is reducible by applying the closure conditions of reducibility under
applications of left-rules. For the latter, we distinguish three cases depending on C : If C = X p t for some X p ∈ supp(Ω),
then closure under left-rules is guaranteed by C5; if X p /∈ supp(Ω), then we need to show that the reduct is normalizable,
while the closure condition under left-rules is guaranteed by the definition of normalizability. Otherwise, C is not headed
by any parameter; in this case, the closure condition follows from P6. We shall explicitly do these case analysis in one of the
subcases below, but will otherwise leave them implicit. We show the non-trivial subcases only; other cases can be proved
by straightforward applications of the induction hypothesis.

⊃L/◦L Suppose Π1 is

Π ′
1

�′
1 −→ D1

Π ′′
1

D2,�
′
1 −→ B1[Ω]

D1 ⊃ D2,�
′
1 −→ B1[Ω] ⊃ L.

Since Π1 ∈ REDB1 [Ω], it follows from Definitions 15 and 10 that Π ′
1 is normalizable and Π ′′

1 ∈ REDB1 [Ω]. Let Ξ1 =
mc(Π ′′

1 ,Π2, . . . ,Πn,Π [Ω]). Since nd(Π ′′
1) < nd(Π1), and therefore M(Ξ1) < M(Ξ), by the induction hypothesis Ξ1 ∈

REDC [Ω]. The reduct of Ξ in this case is the derivation Ξ ′:

Π ′
1

�′
1 −→ D1

�′
1, . . . ,Γ [Ω] −→ D1

wL Ξ1
D2,�

′
1,�2, . . . ,Γ [Ω] −→ C[Ω]

D1 ⊃ D2,�
′
1,�2, . . . ,Γ [Ω] −→ C[Ω] ⊃ L.

Since Π ′
1 is normalizable, by Definition 10 the left premise derivation of Ξ ′ is normalizable and since reducibility implies

normalizability (Lemma 12), the right premise is also normalizable, hence Ξ ′ is normalizable. Now to show Ξ ′ ∈ REDC [Ω],
we distinguish three cases based on C :
• Suppose C = X p t for some X p ∈ supp(Ω) and Ω(X p) = (R,ΠS , S). Then we need to show that Ξ ′ ∈ Rt . This follows

from Definition 13, more specifically, from CR5 and the fact that Ξ1 ∈ REDC [Ω] =Rt .
• Suppose C = X p t but X p /∈ supp(Ω). Then we need to show that Ξ ′ is normalizable. But this follows immediately from

the normalizability of both of its premise derivations.
• Suppose C �= X p t for any parameter X p and any terms t . Since Ξ1 ∈ REDC [Ω], by Definition 15 we have Ξ ′ ∈ REDC [Ω].

eqL/ ◦L Suppose Π1 = eqL({Πρ
1 }ρ∈U(s,t)) where eqL introduces an equation s = t in �1. Let Ξρ = mc(Πρ

1 ,Π2[ρ],
. . . ,Πn[ρ],Π[ρ][Ω]). Then the reduct of Ξ is the derivation Ξ ′ = eqL({Ξρ}ρ∈U(s,t)) where eqL is applied to the same
equation s = t in �1. Since nd(Π

ρ
1) < nd(Π1) (in the case where U(s, t) is infinite, the measure nd(Π1) is a limit ordinal

of all nd(Πρ)), and the other measures are non-increasing, we have Ξρ ∈ REDC[ρ][Ω] by the induction hypothesis. Hence,
Ξ ′ ∈ REDC [Ω] by the definition of parametric reducibility.

IL/ ◦L Suppose Π1 is

ΠS
D S x −→ S x

Π ′
1

S t,�′
1 −→ B1[Ω]

pt,�′
1 −→ B1[Ω] IL.

Since Π1 ∈ REDB1 [Ω], we have that ΠS is normalizable and Π ′
1 ∈ REDB1 [Ω]. Let Ξ1 = mc(Π ′

1,Π2, . . . ,Πn,Π [Ω]). Then
Ξ1 ∈ REDB1 [Ω] by the induction hypothesis, since nd(Π ′) < nd(Π1). Therefore the reduct of Ξ
1

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.25 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 25
ΠS
D S x −→ S x

Ξ1
S u,�′

1, . . . ,�n,Γ [Ω] −→ C[Ω]
p u,�′

1, . . . ,�n,Γ [Ω] −→ C[Ω] IL

is also in REDC [Ω].

II.3. Π ends with a left rule other than cL, wL and a non-trivial instance of CILp , acting on B1, and Π1 ends
with mc or init . Since the init case is trivial, we show here the case where Π1 ends with mc; here, Ξ reduces to
Ξ ′ = mc(Π ′

1,Π2, . . . ,Πn,Π [Ω]) where Π ′
1 is a reduct of Π1, hence nd(Π ′

1) < nd(Π1) and therefore M(Ξ ′) < M(Ξ).
By the induction hypothesis Ξ ′ ∈ REDC [Ω]. Note that cut reductions may increase the height of derivations, so in general
|Π ′

1| < |Π1| may not hold. This is why we use the degree of normalizations, rather than the height of derivations, in the
third component of M.

II.4. Suppose Π ends with a non-trivial application of CILp on B1. That is, B1 = X p t , for some X p ∈ supp(Ω) and some t ,
and Π is

Π ′
D X p t, B2, . . . , Bn,Γ −→ C

X p t, B2, . . . , Bn,Γ −→ C
CILp

where p x ν= D p x. Suppose Ω(X p) = (R,ΠS , S). Then Π [Ω] is

mc
(
mc

(
IdS t,ΠS [t/x]

)
,Π ′[Ω]).

Let Ξ1 = mc(Π1,mc(IdS t ,ΠS [t/x])). Ξ1 has exactly one reduct, that is,

Ξ2 = mc
(
mc(Π1, IdS t),ΠS [t/x]

)
.

Note that mc(Π1, IdS t) also has exactly one reduct, namely, Π1. Since Π1 ∈ REDX p t [Ω] =Rt , CR3 entails that mc(Π1, IdS t)
is in Rt . Since Ω is definitionally closed, we have that Ξ2 ∈ REDD X p t [Ω]. And since Ξ2 is the only reduct of Ξ1, this also
means that Ξ1 ∈ REDD X p t [Ω] by Definition 15. The reduct of Ξ , i.e. the derivation mc(Ξ1,Π2, . . . ,Πn,Π ′[Ω]) is therefore
in REDC [Ω] by the induction hypothesis.

II.5. Suppose Π ends with wL or cL acting on B1, or init . Then Π [Ω] also ends with the same rule. The cut reduction
rule that applies in this case is either −/wL, −/cL or −/init . In these cases, parametric reducibility of the reducts follows
straightforwardly from the assumption (in case of init), the induction hypothesis and Definition 15.

II.6. Suppose Π ends with mc. Then Π [Ω] also ends with mc. The reduction rule that applies in this case is the reduc-
tion −/mc. Parametric reducibility of the reduct in this case follows straightforwardly from the induction hypothesis and
Definition 15.

II.7. Suppose Π ends with subst or a rule acting on a formula other than a cut formula. Most cases follow straightforwardly
from the induction hypothesis, Lemmas 12 and 13, which is needed in the reduction case −/eqL and −/subst. We show
the interesting subcases here:

−/IRp Suppose Π ends with a non-trivial IRp , i.e., Π is

Π ′
B1, . . . , Bn,Γ −→ D X p t
B1, . . . , Bn,Γ −→ X p t IRp

where p x μ= D p x and X p ∈ supp(Ω). Suppose Ω(X p) = (R,ΠS , S). Then Π [Ω] is the derivation mc(Π ′[Ω],ΠS [t/x]). The
reduct of Ξ in this case is the derivation

Ξ ′ = mc
(
mc

(
Π1, . . . ,Πn,Π

′[Ω]),ΠS [t/x]
)
.

By the induction hypothesis we have mc(Π1, . . . ,Πn,Π ′[Ω]) ∈ REDD X p t [Ω]. This and the definitional closure of Ω imply
that Ξ ′ ∈Rt = REDX p t [Ω].

−/IR Suppose Π is

Π ′
B1, . . . , Bn,Γ −→ D X p t

B1, . . . , Bn,Γ −→ pt IR

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.26 (1-38)

26 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
where p y μ= D p y. Without loss of generality we can assume that X p is chosen to be sufficiently fresh (e.g., not occurring
in Ω , �1, B1, etc.). Let Ξ1 = mc(Π1, . . . ,Πn,Π ′[Ω]). Then the reduct of Ξ is the derivation Ξ ′

Ξ1

�1, . . . ,�n,Γ [Ω] −→ D X p t
�1, . . . ,�n,Γ [Ω] −→ pt IR.

To show that Ξ ′ ∈ REDC [Ω], we first need to show that it is normalizable. This follows straightforwardly from the induc-
tion hypothesis (which shows that Ξ1 ∈ REDD X p t [Ω]) and Lemma 12. It then remains to show that

Ξ2 = mc
(
Ξ1

[
(ΠS , S)/X p]

,ΠS [t/x]
) ∈ Rt

for every reducibility candidate (R : S) and every ΠS such that

ΠS [u/x] ∈ REDD X p u
[
Ω,(R,ΠS , S)/X p] ⇒ R u, for every u. (9)

So suppose (R,ΠS , S) satisfies (9) above. Let Ω ′ = [Ω,(R,ΠS , S)/X p]. By Lemma 17 Ω ′ is definitionally closed. Since we
assume that X p is fresh for Bi , we have REDBi [Ω] = REDBi [Ω ′] by Lemma 14, and Πi[(ΠS , S)/X p] = Πi ∈ REDBi [Ω ′] by
Lemma 6(1) for every i ∈ {1, . . . ,n}. Therefore, by the induction hypothesis we have:

Ξ1
[
(ΠS , S)/X p] = mc

(
Π1, . . . ,Πn,Π ′[Ω ′]) ∈ REDD X p t

[
Ω ′].

This, together with the definitional closure of Ω ′ , implies that Ξ2 ∈Rt .

−/CILp Suppose Π ends with a non-trivial CILp , i.e., Π is

Π ′
B1, . . . , Bn, D X p t,Γ ′ −→ C

B1, . . . , Bn, X p t,Γ ′ −→ C
CILp

where p x ν= D p x and X p ∈ supp(Ω). Suppose Ω(X p) = (R,ΠS , S). Then

Π [Ω] = mc
(
mc

(
IdS t,ΠS [t/x]

)
,Π ′[Ω]).

Let Ξ1 = mc(IdS t,ΠS [t/x]). By CR4 IdS t ∈Rt , and therefore, by the definitional closure of Ω , we have Ξ1 ∈ REDD X p t [Ω].
The reduct of Ξ in this case is

mc
(
Ξ1,Π1, . . . ,Πn,Π

′[Ω])
which is in REDC [Ω] by the induction hypothesis.

−/CIR Suppose Π is

Π ′
B1, . . . , Bn,Γ −→ S t

ΠS
S x −→ D S x

B1, . . . , Bn,Γ −→ pt CIR

where p y ν= D p y. Let S ′ = S[Ω]. The derivation Π [Ω] in this case is

Π ′[Ω]
B1[Ω], . . . , Bn[Ω],Γ [Ω] −→ S ′ t

ΠS [Ω]
S ′ x −→ D S ′ x

B1[Ω], . . . , Bn[Ω],Γ [Ω] −→ pt CIR.

Let Ξ1 be the derivation mc(Π1, . . . ,Πn,Π ′[Ω]). By the induction hypothesis Ξ1 ∈ REDS t [Ω] and ΠS [Ω] ∈ REDD S x [Ω],
hence both Ξ1 and ΠS [Ω] are also normalizable by Lemma 12. The reduct of Ξ is the derivation Ξ ′

Ξ1

�1, . . . ,�n,Γ [Ω] −→ S ′ t
ΠS [Ω]

S ′ x −→ D S ′ x
�1, . . . ,�n,Γ [Ω] −→ pt CIR.

Let X p be a parameter fresh for Ω , Γ , �i and Bi . To show that Ξ ′ ∈ REDC [Ω] we must first show that it is normalizable.
This follows immediately from normalizability of Ξ1 and ΠS [Ω]. Then we need to find a reducibility candidate (R : S ′)
such that
(a) Ξ1 ∈R, and
(b) ΠS [Ω][u/x] ∈R u ⇒ REDD X p u [Ω,(R,ΠS , S)/X p], for every u.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.27 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 27
Let R= {Ψ | Ψ ∈ REDS u [Ω]}. As in case I.3.c, we show, using Lemma 15, that R is a reducibility candidate of type S ′ . By
the induction hypothesis we have Ξ1 ∈ R, so R satisfies (a). Using the same argument as in case I.3.c we can show that
R also satisfies (b), i.e. by appealing to the induction hypothesis applied to ΠS . �

Corollary 20. Every derivation in Linc−
i is reducible.

Proof. The proof follows from Lemma 19, by setting n = 0 and Ω to the empty candidate substitution. �
Since reducibility implies cut-elimination and since every cut-free derivation can be turned into a subst-free derivation

(Lemma 2), it follows that every proof can be transformed into a cut-free and subst-free derivation.

Corollary 21. Given a fixed definition, a sequent has a derivation in Linc−
i if and only if it has a cut-free and subst-free derivation.

6. Cut elimination for Linc−

We now show how one can use the cut elimination result for Linc−
i to prove cut elimination for Linc− . But first we

extend Linc− with a version of the subst rule with signatures:

{Σ[θ];Γ [θ] −→ C[θ]}θ∈S
Σ;Γ −→ C

subst.

We refer to this extension as Linc−
s .

A derivation in Linc−
s can be turned into a derivation in Linc−

i by simply removing the signatures from all sequent
occurrences in the derivation. The converse, i.e., turning a derivation in Linc−

i into a derivation in Linc−
s , is obviously not

always possible due to the possibility of introducing new eigenvariables in the premises of ∃R and ∀L in Linc−
i . We define

below a class of derivations of Linc−
i that can be turned into derivations in Linc−

s by attaching signatures.
Recall that we identify derivations differing only in the choice of names for the internal variables. In the definition of

D(Π,Σ) below, we shall assume without loss of generality that the variables in the signature Σ are distinct from the
internal variables in Π .

Definition 17. The signature decoration D is a function that takes a Linc−
i derivation Π of Γ −→ C and a signature Σ and

outputs either a derivation of Σ;Γ −→ C in Linc−
s , or � (denoting an ill-formed derivation). D is defined by induction on

Π as follows: If Γ −→ C contains a free occurrence of a variable not in Σ , then D(Π,Σ) = �. Otherwise:

• Suppose Π ends with eqL or subst, with premise derivations {Πρ}ρ∈I for some set of substitutions I. If D(Πρ,Σ[ρ]) �=
� for every ρ ∈ I, then D(Π,Σ) ends with the same rule with premise derivations {D(Πρ,Σ[ρ])}ρ∈I . Otherwise,
D(Π,Σ) = �.

• Suppose Π ends with ∃L as shown below left. Then D(Π,Σ) is as shown below right:

Π ′
B y,Γ ′ −→ C

∃x.B x,Γ ′ −→ C
∃L,

D
(
Π ′,Σ ∪ {y})

Σ, y; B y,Γ ′ −→ C

Σ; ∃x.B x,Γ ′ −→ C
∃L

if D(Π ′,Σ ∪ {y}) �= �; otherwise D(Π,Σ) = �.
The case where Π ends with ∀R is defined similarly.

• Suppose Π ends with IL, as shown below left. If D(ΠS , {y}) �= � and D(Π ′,Σ) �= �, then D(Π,Σ) is as shown below
right; otherwise D(Π,Σ) = �. The case where Π ends with CIR is defined similarly:

ΠS
B S y −→ S y

Π ′
Γ ′, S t −→ C

Γ ′, pt −→ C
IL,

D
(
ΠS , {y})

y; B S y −→ S y
D

(
Π ′,Σ

)
Γ ′, S t −→ C

Σ;Γ ′, pt −→ C
IL.

• Suppose Π ends with a rule, other than eqL, subst, ∃L, ∀R, IL and CIR, with premise derivations Π1, . . . ,Πn .
If D(Πi,Σ) �= � for every i ∈ {1, . . . ,n}, then D(Π,Σ) ends with the same rule and with premise derivations
D(Π1,Σ), . . . ,D(Πn,Σ). Otherwise, D(Π,Σ) = �.

Obviously, if D(Π,Σ) �= �, it must be a derivation in Linc−
s .

Lemma 22. Let Π be a derivation in Linc−
i . Suppose D(Π,Σ) �= �. Then for any substitution θ , D(Π[θ],Σ[θ]) �= �.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.28 (1-38)

28 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
Lemma 23. Let Π be a derivation in Linc−
i . Suppose D(Π,Σ) �= �. Let xτ be an eigenvariable such that xτ /∈ Σ . Then

D(Π,Σ ∪ {xτ }) �= �.

Decorability of a derivation is in general not preserved by parameter substitutions, as the latter can introduce new
subderivations that may not be decorable.

Definition 18. A parameter substitution Θ is said to respect D if for every X p Θ(X p) = (ΠS , S) entails D(ΠS , {x}) �= �,
where {x} is the set of free variables occurring in the end sequent of ΠS .

Lemma 24. Let Π be a derivation in Linc−
i . Suppose D(Π,Σ) �= �. Let Θ be a parameter substitution that respects D. Then

D(Π[Θ],Σ) �= �.

Proof. By induction on Π . We show here a case involving IRp . Suppose Π ends with IRp , as shown below left, and

suppose Θ(X p) = (ΠS , S), where p x μ= B S x and ΠS is a derivation of B S x −→ S x. Then Π [Θ] is as shown below right:

Π ′
Γ −→ B X pt
Γ −→ X pt IRp,

Π ′[Θ]
Γ [Θ] −→ B S t

ΠS [t/x]
B S t −→ S t

Γ [Θ] −→ S t mc.

Since D(Π,Σ) �= �, by Definition 17 we have that FV(t) ⊆ Σ , and also D(Π ′,Σ) �= �. By the induction hypothesis, we have

D
(
Π ′[Θ],Σ) �= �. (10)

Since Θ respects D, it follows from Definition 18 that D(ΠS , {x}) �= �. This, together with Lemma 22, implies that
D(ΠS [t/x], FV(t)) �= �. Since FV(t) ⊆ Σ , by Lemma 23 we have D(ΠS [t/x],Σ) �= �. This, together with (10), implies that

D
(
Π [Θ],Σ) = mc

(
D

(
Π ′[Θ],Σ)

, D
(
ΠS [t/x],Σ

)) �= �.

The case where Π ends with CIL on a parameter X p can be proved similarly. All the other cases follow straightforwardly
from the induction hypothesis. �
Lemma 25. Let Ξ be a derivation in Linc−

i ending with mc. If Ξ ′ is a reduct of Ξ and D(Ξ,Σ) �= �, then D(Ξ ′,Σ) �= �.

Proof. This is easily proved by inspection of the reduction rules (see Appendix A) and by using Lemmas 22, 23 and 24. We
show some representative cases here where those lemmas are used. Suppose that Ξ = mc(Π1, . . . ,Πn,Π) and let Ξ ′ be its
reduct. We look at the cases where the reduction is determined by the last rule in Π1 and/or Π .

• ∀L/∀R Suppose Π1 and Π are:

Π ′
1

�1 −→ B ′
1 y

�1,−→ ∀x.B ′
1

∀R,

Π ′
B ′

1 t, B2, . . . , Bn,Γ −→ C

∀x.B ′
1, B2, . . . , Bn,Γ −→ C

∀L.

Then Ξ reduces to mc(Π ′
1[t/y],Π2, . . . ,Πn,Π ′). Since D(Ξ,Σ) �= �, it follows that D(Π j,Σ) �= �, for j ∈ {1, . . . ,n},

D(Π ′,Σ) �= �, and (by Lemma 23) D(Π ′
1,Σ ∪ {y}) �= �. By Lemma 22 the latter implies that D(Π ′

1[t/y],Σ) �= �. These
together imply that

D(Ξ ′,Σ) = D
(
mc

(
Π ′

1[t/y],Π2, . . . ,Πn,Π
′),Σ)

= mc
(
D

(
Π ′

1[t/y],Σ)
,D(Π2,Σ), . . . ,D(Πn,Σ),D(Π ′,Σ)

) �= �.

• IR/IL Suppose Π1 and Π are, respectively,

Π ′
1

�1 −→ D X p t
�1 −→ pt IR,

ΠS
D S y −→ S y

Π ′
S t, B2, . . . , Bn,Γ −→ C

pt, B2, . . . , Bn,Γ −→ C
IL

where p x μ= D p x and X p is a new parameter. Then Ξ reduces to

Ξ ′ = mc
(
mc

(
Π ′

1

[
(ΠS , S)/X p]

,ΠS [t/y]),Π2, . . . ,Πn,Π
′).

Since D(Ξ,Σ) �= �, we have:

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.29 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 29
1. D(Πi,Σ) �= �, for i ∈ {2, . . . ,n}, and D(Π ′,Σ) �= �.
2. D(ΠS , {x}) �= �, and therefore [(ΠS , S)/X p] respects D.
3. FV(t) ⊆ Σ . Therefore, by item 2 and Lemma 22 (and possibly Lemma 23 if Σ is strictly larger than FV(t)),

D(ΠS [t/x],Σ) �= �.
4. D(Π ′

1,Σ) �= �. This, together with item 2 above and Lemma 24, implies that D(Π ′
1[(ΠS , S)/X p],Σ) �= �.

From these, it follows that D(Ξ ′,Σ) �= �.

• eqR/eqL Suppose Π1 and Π are

�1 −→ s = t
eqR,

{
Πρ

B2[ρ], . . . , Bn[ρ],Γ [ρ] −→ C[ρ]
}
ρ∈U(s,t)

s = t, B2, . . . , Bn,Γ −→ C
eqL.

In this case U(s, t) = S. Let Ξ1 = mc(Π2, . . . ,Πn, subst({Πρ}ρ∈S)). Then Ξ ′ is

Ξ1
�2, . . . ,�n,Γ −→ C

�1,�2, . . . ,�n,Γ −→ C
wL.

To show that D(Ξ ′,Σ) �= �, it is enough to show that D(Ξ1,Σ) �= �. This follows from the fact that D(Πi,Σ) �= � and
that D(Πρ,Σ[ρ]) �= �.

• •L/◦L We show here the instance where •L is ∃L, i.e., Π1 is as shown below left. Then Ξ ′ is the derivation below

right:

Π ′
1

D y,�1 −→ B1

∃x.D x,�1 −→ B1
∃L,

Ξ1
D y,�1,�2, . . . ,�n,Γ −→ C

∃x.D x,�1,�2, . . . ,�n,Γ −→ C
∃L

where Ξ1 = mc(Π ′
1,Π2, . . . ,Πn,Π). Let Σ ′ = Σ ∪ {y}. By Lemma 23 and the assumption that D(Ξ,Σ) �= �, we have

that D(Π ′
1,Σ

′) �= �, D(Πi,Σ
′) �= �, for i ∈ {2, . . . ,n}, and D(Π,Σ ′) �= �. It follows that D(Ξ1,Σ

′) �= � and therefore,
D(Ξ ′,Σ) �= �. �

Theorem 26. A sequent has a derivation in Linc− if and only if it has a cut-free derivation.

Proof. Let Π be a derivation of Σ;Γ −→ C in Linc− . Let Π ′ be a Linc−
i derivation obtained from Π by removing all signa-

tures. Obviously, we have D(Π ′,Σ) = Π . By Corollary 20 Π ′ can be transformed into a cut-free derivation Ξ . By Lemma 25
we know that cut reduction preserves decorability of derivations, so we have that D(Ξ,Σ) �= �. Moreover, as decorations do
not introduce extra rules, the derivation D(Ξ,Σ) is a cut-free derivation in Linc−

s . We then use a transformation (analogous
to the one in the proof of Lemma 2) to remove the subst instances in D(Ξ,Σ) and get a cut-free and subst-free derivation
in Linc− . �

The consistency of Linc− is an immediate consequence of cut-elimination. By consistency we mean the following: given
a fixed definition and an arbitrary formula C , it is not the case that both C and C ⊃ ⊥ are provable.

Corollary 27. The logic Linc− is consistent.

7. Related work and conclusions

There is a long association between inductive definition and mathematical logics [1], in particular with proof-theory,
starting with the Takeuti’s conjecture, the earliest relevant entry for our purposes being Martin-Löf’s theory of iterated
inductive definitions [21]. From the representation of algebraic types and the introduction of (co-)inductive types in System F
[25], (co-)induction/recursion became mainstream in the theorem proving community and made it into type-theoretic proof
assistants such as Coq, eventually in the let-rec style of functional programming languages, as in Giménez’s Calculus of Infinite
Constructions [16].6 Unlike these type-theoretic settings, we put less emphasis on proof terms and strong normalization; in
fact, our cut elimination procedure is actually a form of weak normalization, in the sense that it only guarantees termination

6 In higher order logic (co-)inductive definitions are usually obtained via the Tarski set-theoretic fixed point construction, as realized for example in
Isabelle/HOL [32]. As we mentioned before, those approaches are at odd with HOAS even at the level of the syntax. This issue has originated a research
field in its own and we refer to [12] for an extensive comparison of approaches and systems.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.30 (1-38)

30 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
with respect to a particular strategy, i.e., by reducing the lowest cuts in a derivation tree. Our notion of equality, which
internalizes unification in the left rule, departs from the more traditional view. As a consequence of these differences, it is
not obvious that strong normalization proofs for term calculi with (co-)inductive types can be adapted straightforwardly to
our setting.

Baelde and Miller have recently introduced μMALL, an extension of multiplicative additive linear logic with least and
greatest fixed points [5]. There is an ongoing discussion whether definitions or fixed points offer a better proof-theoretic
understanding of (co-)induction in a logical framework. Suffice to say here that fixed points allow one to arbitrarily inter-
leave and nest occurrences of μ and ν , although all fixed point bodies are required to be monotonic. In the cited work, cut
elimination is indirectly argued via the standard encoding of the least and the greatest fixed point operators into second-
order linear logic (LL2): once formulae and proofs are translated into LL2, they are then normalized, focused and translated
back into cut-free μMALL derivations. This approach is not completely satisfactory, since it relies on some missing com-
ponents, namely cut-elimination and completeness of focusing for LL2 extended with first-order quantification and Clark’s
equality theory, the former being the harder – we are not aware of any such proof as far as standard sequent calculi go [31].
Further, indirect proofs tend not to be easily generalizable, as we argued before. In fact, Baelde has more recently given a
direct Girard-style cut-elimination proof for μMALL [3,4]. The proof uses a notion of orthogonality in the definition of re-
ducibility, defined via involutive negation; hence it does not look like it can be adapted straightforwardly to an intuitionistic
setting like ours.

Baelde has also identified in [4] an intuitionistic logic with least and greatest fixed points by analyzing its encoding into
a focused system for μMALL. The obtained fragment is strictly weaker than Linc− , and it basically coincides with the logic
implemented in the Bedwyr [6] model checker. In his dissertation [3] Baelde also introduces the unrestricted intuitionistic
fixed point logic μLJ. He gives cut-reductions rules, but no complete proof. μMALL and μLJ plus ∇ are under implementation
in the system Tac [7], a proof assistant with an emphasis on automating the proof of (simple) (co-)inductive theorems via
focusing.

Circular proofs are also connected with the proof-theory of fixed point logics and process calculi [35,40], as well as in
traditional sequent calculi such as in [8]. This approach seemed particularly promising from the viewpoint of proof search,
both inductively and co-inductively. The issue is the equivalence between systems with local vs. global induction, that is,
between fixed point rules vs. well-founded and guarded induction. In the traditional sequent calculus, it is unknown whether
every global inductive proof can be translated into a local one. Cut-elimination proofs have not been explored, as far as we
know.

We have presented a proof-theoretic treatment of both induction and co-induction in a sequent calculus compatible with
HOAS encodings. The proof principle underlying the explicit proof rules is basically fixed point (co-)induction. However, the
formulation of the rules is inspired by a second-order encoding of least and greatest fixed points. We have developed a new
cut elimination proof, radically different from previous proofs [22,41], using a reducibility-candidate technique à la Girard.
Consistency of the logic is an easy consequence of cut-elimination. We conjecture that our cut elimination proof can be
extended to prove cut elimination for extensions of Linc− with the ∇-quantifier. It seems that this is easier to do with a
weaker form of ∇ as seen in the logic LGω [42] and the logic G [15], rather than the version of ∇ in [41], as there is no
issue in maintaining another layer of variable contexts like in F Oλ�∇ [28]. In particular, the use of “nominal abstraction”
in the equality rules in G allows one to abstract from the underlying notions of substitutions in those rules: hence we
conjecture that the cut reduction rules for Linc− can be carried over to G with some minor adjustments, such as closing
the definitions of reducibility candidates under name permutation.

Acknowledgements

The Linc− logic was developed in collaboration with Dale Miller. We thank David Baelde for his comments to a draft of
this paper and the reviewers for many useful suggestions. The first author is supported by the Australian Research Council
Discovery Project DP110103173.

Appendix A. The complete set of cut reduction rules

Essential cases:

∧R/ ∧L If Π1 and Π are

Π ′
1

�1 −→ B ′
1

Π ′′
1

�1 −→ B ′′
1

�1 −→ B ′
1 ∧ B ′′

1

∧R,

Π ′
B ′

1, B2, . . . , Bn,Γ −→ C

B ′
1 ∧ B ′′

1, B2, . . . , Bn,Γ −→ C
∧L

then Ξ reduces to mc(Π ′ ,Π2, . . . ,Πn,Π ′). The case for the other ∧L rule is symmetric.
1

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.31 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 31
∨R/ ∨L Suppose Π1 and Π are

Π ′
1

�1 −→ B ′
1

�1 −→ B ′
1 ∨ B ′′

1

∨R,

Π ′
B ′

1, B2, . . . , Bn,Γ −→ C
Π ′′

B ′′
1, B2, . . . , Bn,Γ −→ C

B ′
1 ∨ B ′′

1, B2, . . . , Bn,Γ −→ C
∨L.

Then Ξ reduces to mc(Π ′
1,Π2, . . . ,Π

′). The case for the other ∨R rule is symmetric.

⊃R/ ⊃L Suppose Π1 and Π are

Π ′
1

B ′
1,�1 −→ B ′′

1

�1 −→ B ′
1 ⊃ B ′′

1

⊃ R,

Π ′
B2, . . . , Bn,Γ −→ B ′

1

Π ′′
B ′′

1, B2, . . . , Bn,Γ −→ C

B ′
1 ⊃ B ′′

1, B2, . . . , Bn,Γ −→ C
⊃ L.

Let Ξ1 = mc(mc(Π2, . . . ,Πn,Π ′),Π ′
1). Then Ξ reduces to �1, . . . ,�n,Γ,�2, . . . ,�n,Γ −→ C

Ξ1
. . . −→ B ′′

1

{
Πi

�i −→ Bi

}
i∈{2..n}

Π ′′
B ′′

1, {Bi}i∈{2..n},Γ −→ C

�1, . . . ,�n,Γ,�2, . . . ,�n,Γ −→ C
mc.

�1, . . . ,�n,Γ −→ C
cL

∀R/∀L If Π1 and Π are

Π ′
1

�1 −→ B ′
1 y

�1 −→ ∀x.B ′
1

∀R,

Π ′
B ′

1 t, B2, . . . , Bn,Γ −→ C

∀x.B ′
1, B2, . . . , Bn,Γ −→ C

∀L

then Ξ reduces to mc(Π ′
1[t/y],Π2, . . . ,Πn,Π ′).

∃R/∃L If Π1 and Π are

Π ′
1

�1 −→ B ′
1 t

�1 −→ ∃x.B ′
1

∃R,

Π ′
B ′

1 y, B2, . . . , Bn,Γ −→ C

∃x.B ′
1, B2, . . . , Bn,Γ −→ C

∃L

then Ξ reduces to mc(Π ′
1,Π2, . . . ,Πn,Π ′[t/y]).

IR/IL Suppose Π1 and Π are, respectively,

Π ′
1

�1 −→ D X p t
�1 −→ pt IR,

ΠS
D S y −→ S y

Π ′
S t, B2, . . . , Bn,Γ −→ C

pt, B2, . . . , Bn,Γ −→ C
IL

where p x μ= D p x and X p is a new parameter. Then Ξ reduces to

mc
(
mc

(
Π ′

1

[
(ΠS , S)/X p]

,ΠS [t/y]),Π2, . . . ,Πn,Π
′).

CIR/CIL Suppose Π1 and Π are

Π ′
1

�1 −→ S t
ΠS

S y −→ D S y
�1 −→ pt CIR,

Π ′
D X p t, B2, . . . , Bn,Γ −→ C

pt, B2, . . . , Bn,Γ −→ C
CIL

where p y ν= D p y and X p is a new parameter. Then Ξ reduces to

mc
(
mc

(
Π ′

1,ΠS [t/y]),Π2, . . . ,Πn,Π
′[(ΠS , S)/X p])

.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.32 (1-38)

32 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
eqR/eqL Suppose Π1 is

�1 −→ s = t
eqR

and Π = eqL({Πρ}ρ∈U(s,t)) where the eqL rule is applied to the cut formula s = t . Note that in this case U(s, t) = S. Let

Ξ1 = mc
(
Π2, . . . ,Πn, subst

({
Πρ

}
ρ∈S

))
.

Then Ξ reduces to

Ξ1
�2, . . . ,�n,Γ −→ C

�1,�2, . . . ,�n,Γ −→ C
wL.

Left-commutative cases: In the following cases, we suppose that Π ends with a left rule, other than {cL,wL}, acting on B1.

•L/◦L Suppose Π1 is as below left, where I is an index set and •L is any left rule except ⊃ L, eqL, or IL. Let

Ξ i = mc(Π i
1,Π2, . . . ,Πn,Π). Then Ξ reduces to the derivation given below right:

{ Π i
1

�i
1 −→ B1

}
i∈I

�1 −→ B1
•L,

{
Ξ i

�i
1,�2, . . . ,�n,Γ −→ C

}
i∈I

�1,�2, . . . ,�n,Γ −→ C
•L.

⊃L/◦L Suppose Π1 is

Π ′
1

�′
1 −→ D ′

1

Π ′′
1

D ′′
1,�′

1 −→ B1

D ′
1 ⊃ D ′′

1,�′
1 −→ B1

⊃ L.

Let Ξ1 = mc(Π ′′
1 ,Π2, . . . ,Πn,Π). Then Ξ reduces to

Π ′
1

�′
1 −→ D ′

1

�′
1,�2, . . . ,�n,Γ −→ D ′

1
wL Ξ1

D ′′
1,�′

1,�2, . . . ,�n,Γ −→ C

D ′
1 ⊃ D ′′

1,�′
1,�2, . . . ,�n,Γ −→ C

⊃ L.

IL/◦L Suppose Π1 is

ΠS
D S y −→ S y

Π ′
1

S t,�′
1 −→ B1

pt,�′
1 −→ B1

IL

where p y μ= D p y. Let Ξ1 = mc(Π ′
1,Π2, . . . ,Πn,Π). Then Ξ reduces to

ΠS
D S y −→ S y

Ξ1

S t,�′
1, . . . ,�n,Γ −→ C

pt,�′
1, . . . ,�n −→ C

IL.

eqL/◦L Suppose Π1 = eqL({Πρ
1 }ρ∈U(s,t)) where the eqL is applied to an equation s = t in �1. Let Ξρ =

mc(Πρ
1 ,Π2[ρ], . . . ,Πn[ρ],Π[ρ]). Then Ξ reduces to eqL({Ξρ}ρ∈U(s,t)) where the eqL rule is applied to the same s = t

in �1.

subst/◦L Suppose Π1 is subst({Πρ
1 }ρ∈S). Then Ξ reduces to

subst
({

mc
(
Π

ρ
1 ,Π2[ρ], . . . ,Πn[ρ],Π[ρ])}

ρ∈S
)
.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.33 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 33
Right-commutative cases:

−/◦L Suppose Π is as given below left, where I is an index set and ◦L is any left rule other than ⊃ L, eqL, or IL

acting on a formula other than B1, . . . , Bn . Let Ξ i = mc(Π1, . . . ,Πn,Π i). Then Ξ reduces to the derivation given below
right: {

Π i

B1, . . . , Bn,Γ
i −→ C

}
i∈I

B1, . . . , Bn,Γ −→ C
◦L,

{
Ξ i

�1, . . . ,�n,Γ
i −→ C

}
i∈I

�1, . . . ,�n,Γ −→ C
◦L.

−/⊃L Suppose Π is

Π ′
B1, . . . , Bn,Γ

′ −→ D ′ Π ′′
B1, . . . , Bn, D ′′,Γ ′ −→ C

B1, . . . , Bn, D ′ ⊃ D ′′,Γ ′ −→ C
⊃ L.

Let Ξ1 = mc(Π1, . . . ,Πn,Π ′) and let Ξ2 = mc(Π1, . . . ,Πn,Π ′′). Then Ξ reduces to

Ξ1
�1, . . . ,�n,Γ

′ −→ D ′
Ξ2

�1, . . . ,�n, D ′′,Γ ′ −→ C

�1, . . . ,�n, D ′ ⊃ D ′′,Γ ′ −→ C
⊃ L.

−/IL Suppose Π is

ΠS
D S y −→ S y

Π ′
B1, . . . , Bn, S t,Γ ′ −→ C

B1, . . . , Bn, pt,Γ ′ −→ C
IL

where p y μ= D p y. Let Ξ1 = mc(Π1, . . . ,Πn,Π ′). Then Ξ reduces to

ΠS
D S y −→ S y

Ξ1

�1, . . . ,�n, S t,Γ ′ −→ C

�1, . . . ,�n, pt,Γ ′ −→ C
IL.

−/eqL Suppose Π = eqL({Πρ}ρ∈U(s,t)) where the eqL rule is applied to an equation s = t in Γ . Let Ξρ =
mc(Π1[ρ], . . . ,Πn[ρ],Πρ). Then Ξ reduces to eqL({Ξρ}ρ∈U(s,t)) where the eqL is applied to the same s = t in Γ .

−/subst If Π = subst({Πρ}ρ∈S), then Ξ reduces to

subst
({

mc
(
Π1[ρ], . . . ,Πn[ρ],Πρ

)}
ρ∈S

)
.

−/◦R If Π is as below left, where I is an index set and ◦R is any right rule except CIR, then Ξ reduces to the

derivation below right, where Ξ i = mc(Π1, . . . ,Πn,Π i):{
Π i

B1, . . . , Bn,Γ
i −→ C i

}
i∈I

B1, . . . , Bn,Γ −→ C
◦R,

{
Ξ i

�1, . . . ,�n,Γ
i −→ C i

}
i∈I

�1, . . . ,�n,Γ −→ C
◦R.

−/CIR Suppose Π is

Π ′
B1, . . . , Bn,Γ −→ S t

ΠS
S y −→ D S y

B1, . . . , Bn,Γ −→ pt CIR

where p y ν= D p y. Let Ξ1 = mc(Π1, . . . ,Πn,Π ′). Then Ξ reduces to

Ξ1

�1, . . . ,�n,Γ −→ S t
ΠS

S y −→ D S y
�1, . . . ,�n,Γ −→ pt CIR.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.34 (1-38)

34 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
Multicut cases:

mc/◦L If Π ends with a left rule other than cL and wL, acting on B1 and Π1 ends with a multicut and reduces to

Π ′
1, then Ξ reduces to mc(Π ′

1,Π2, . . . ,Πn,Π).

−/mc Suppose Π is

{
Π j

{Bi}i∈I j ,Γ j −→ D j

}
j∈{1..m}

Π ′{
D j

}
j∈{1..m}, {Bi}i∈I′ ,Γ ′ −→ C

B1, . . . , Bn,Γ
1, . . . ,Γ m,Γ ′ −→ C

mc,

where I
1, . . . , Im, I′ partition the set {1, . . . ,n}. For 1 � j � m let Ξ j be{

Πi
�i −→ Bi

}
i∈I j

Π j

{Bi}i∈I j ,Γ j −→ D j

{�i}i∈I j ,Γ j −→ D j
mc.

Then Ξ reduces to{
Ξ j

· · · −→ D j

}
j∈{1..m}

{
Πi

�i −→ Bi

}
i∈I′ Π ′

· · · −→ C
�1, . . . ,�n,Γ

1, . . . ,Γ m,Γ ′ −→ C
mc.

Structural cases:

−/cL If Π is as shown below left, then Ξ reduces to the derivation shown below right, where Ξ1 = mc(Π1,Π1,Π2, . . . ,

Πn,Π ′):

Π ′
B1, B1, B2, . . . , Bn,Γ −→ C

B1, B2, . . . , Bn,Γ −→ C
cL,

Ξ1
�1,�1,�2, . . . ,�n,�n,Γ −→ C

�1,�2, . . . ,�n,Γ −→ C
cL.

−/wL If Π is as shown below left, then Ξ reduces to the derivation shown below right, where Ξ1 = mc(Π2, . . . ,

Πn,Π ′).

Π ′
B2, . . . , Bn,Γ −→ C

B1, B2, . . . , Bn,Γ −→ C
wL,

Ξ1
�2, . . . ,�n,Γ −→ C

�1,�2, . . . ,�n,Γ −→ C
wL.

Axiom cases:

init/ ◦L Suppose Π ends with a left-rule acting on B1 and Π1 ends with the init rule. Then it must be the case that

�1 = {B1} and Ξ reduces to mc(Π2, . . . ,Πn,Π).

−/init If Π ends with the init rule, then n = 1, Γ is the empty multiset, and C must be a cut formula, i.e., C = B1.

Therefore Ξ reduces to Π1.

Appendix B. Proofs for Sections 5.1 and 5.3

Lemma 7. Let Π be a derivation ending with a mc and let θ be a substitution. If Π [θ] reduces to Ξ , then there exists a derivation Π ′
such that Ξ = Π ′[θ] and Π reduces to Π ′ .

Proof. Observe that the redexes of a derivation are not affected by eigenvariable substitution, since the cut reduction rules
are determined by the last rule of the premise derivations, which are not changed by substitution. Therefore, any cut
reduction rule that is applied to Π [θ] to get Ξ can also be applied to Π . Suppose that Π ′ is the reduct of Π obtained this
way. In all cases, except for the cases where the reduction rule applied is either IR/IL, CIL/CIR, or those involving eqL,

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.35 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 35
it is a matter of routine to check that Π ′[θ] = Ξ . For the reduction rules IR/IL and CIL/CIR, we need Lemma 5, which
shows that eigenvariable substitution commutes with parameter substitution. We show here the case involving eqL. The
only interesting case is the reduction eqL/eqR. So suppose Π is the derivation:

�1 −→ t = t
eqR

{
Πi

�i −→ Bi

}
i∈{2,...,n}

Π ′
t = t, B2, . . . , Bn,Γ −→ C

�1,�2,Γ −→ C
mc

where Π ′ = eqL({Πρ}ρ∈S) is a derivation ending with eqL acting on the cut formula t = t . Let Π1 be the leftmost among
the premises of the mc rule above. According to Definition 5 the derivation Π [θ] is

mc
(
Π1[θ],Π2[θ], . . . ,Πn[θ],eqL

({
Πθ◦ρ ′}

ρ ′∈S
))

.

Let Ψ = mc(Π2[θ], . . . ,Πn[θ], subst({Π(θ◦ρ)}ρ∈S)). The reduct of Π [θ] in this case (modulo the different order in which the
weakening steps are applied) is:

Ψ
�2[θ], . . . ,�n[θ],Γ [θ] −→ C[θ]

�1[θ],�2[θ], . . . ,�n[θ],Γ [θ] −→ C[θ] wL.

Let us call this derivation Ξ . Let Ψ ′ = mc(Π2, . . . ,Πn, subst({Πρ}ρ∈S)). The above reduct can be matched by the following
reduct of Π (using the same order of applications of wL):

Ψ ′
�2, . . . ,�n,Γ −→ C

�1,�2, . . . ,�n,Γ −→ C
wL.

Let us call this derivation Π ′ . By Definition 5 we have Ψ ′ = Ψ [θ] and obviously also Ξ = Π ′[θ]. �
Lemma 12. If Π ∈ REDC [Ω], then Π is normalizable.

Proof. If C = X p u for some u and X p ∈ supp(Ω), then Π ∈ R, where Ω(X p) = (R,ΠS , S), hence it is normalizable by
Definition 13 (specifically, condition CR1). Otherwise, Π is normalizable by Definition 15. �
Lemma 13. If Π ∈ REDC [Ω], then, for every substitution ρ , Π [ρ] ∈ REDC[ρ][Ω].

Proof. By induction on |C | with sub-induction on nd(Π).
Suppose C = Xq u, for some u and some Xq ∈ supp(Ω), and suppose Ω(Xq) = (R,ΠS , S). Then Π ∈R by Definition 15.

By Definition 13 (CR0) we also have Π [ρ] ∈ R. Otherwise, suppose Xq /∈ supp(Ω). Then Π ∈ NMXq by Definition 15. By
Lemma 9 we have Π [ρ] ∈ NMXq , therefore Π [ρ] ∈ REDC[ρ][Ω].

Otherwise, C �= Xq u for any u and any parameter Xq . In this case, to apply the inner induction hypothesis, we need to
show that Π [ρ] is normalizable, which follows immediately from Lemmas 12 and 9. We distinguish several cases based on
the last rule of Π :

• Suppose Π ends with mc, i.e., Π = mc(Π1, . . . ,Πn,Π ′) for some Π1, . . . ,Πn and Π ′ . By Lemma 7 every reduct of Π [ρ],
say Ξ , is the result of applying ρ to a reduct of Π . By the inner induction hypothesis (on the normalization degree),
every reduct of Π [ρ] is in REDC[ρ][Ω], and therefore Π [ρ] is also in REDC[ρ][Ω] by Definition 15 (P2).

• Suppose Π ends with ⊃ R, with the premise derivation Π ′ . In this case, C = B ⊃ D for some B and D . Since Π ∈
REDC [Ω], byP3

Π ′[θ] ∈ (
REDB[θ][Ω] ⇒ REDD[θ][Ω]) (11)

for every θ . We need to show that

Π ′[ρ][δ] ∈ (
REDB[ρ][δ][Ω] ⇒ REDD[ρ][δ][Ω])

for every δ. Note that by Lemma 4 Π ′[ρ][δ] = Π ′[ρ ◦ δ], so this is just an instance of Statement (11) above.
• Π ends with IR or CIR: This follows from Definition 15 and the fact that reducibility candidates are closed under

substitution (condition CR0 in Definition 13). In the case where Π ends with IR, we also need the fact that eigenvari-
able substitution commutes with parameter substitution (Lemma 5). In the case where Π ends with CIR, to establish
Π [ρ] ∈ REDC[ρ][Ω], we can use the same reducibility candidate that is used to establish Π ∈ REDC [Ω].

• Π ends with a rule other than mc, ⊃ R, IR or CIR: This case follows straightforwardly from the induction hypothe-
sis. �

Lemma 14. Let Ω = [Ω ′, (R,ΠS , S)/X p] and C a formula such that X p#C. Then, for every Π , Π ∈ REDC [Ω] if and only if Π ∈
REDC [Ω ′].

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.36 (1-38)

36 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
Proof. By induction on |C | with sub-induction on nd(Π).
(⇒) Suppose C = Y q u for some Y q ∈ supp(Ω) and Ω(Y q) = (R′,ΠI , I). Since X p#C , this means that Y q ∈ supp(Ω ′) and

Ω ′(Y q) = Ω(Y q). Then, obviously, Π ∈ REDC [Ω] iff Π ∈ REDC [Ω ′]. If Y q /∈ supp(Ω), then REDC [Ω] = NMY q u = REDC [Ω ′].
Otherwise, suppose C �= Y q u, and Π ∈ REDC [Ω]. The latter implies that Π is normalizable. We show by induction

on nd(Π) that Π ∈ REDC [Ω ′]. In most cases, this follows straightforwardly from the induction hypothesis. We show the
interesting cases here:

• Suppose Π ends with ⊃R, i.e., C = B ⊃ D for some B and D and Π is

Π ′
Γ, B[Ω] −→ D[Ω]

Γ −→ B[Ω] ⊃ D[Ω] ⊃ R.

Note that since X p#C , we have that B[Ω] = B[Ω ′] and D[Ω] = D[Ω ′]. Since Π ∈ REDC [Ω], we have

Π ′[ρ] ∈ (
REDB[ρ][Ω] ⇒ REDD[ρ][Ω])

for every ρ . Since |B| < |C | and |D| < |C |, by the (outer) induction hypothesis, we have REDB[ρ][Ω] = REDB[ρ][Ω ′] and
REDD[ρ][Ω] = REDD[ρ][Ω ′]. Therefore, we also have that

Π ′[ρ] ∈ (
REDB[ρ]

[
Ω ′] ⇒ REDD[ρ]

[
Ω ′])

for every ρ . This means, by Definition 15, that Π ∈ REDC [Ω ′].
• Suppose Π ends with IR:

Π ′
Γ −→ D Y q t

Γ −→ qt IR

where q x μ= D q x and Y q is a new parameter. We assume w.l.o.g. that Y q#Ω . Note that since the body of a definition
cannot contain occurrences of parameters, we also have X p#D Y q t . Suppose S is a reducibility candidate of type I , for
some closed term I of the same syntactic type as q, and suppose ΠI is a normalizable derivation of D I y −→ I y such
that

ΠI [u/y] ∈ (
RED(D Y q u)

[
Ω ′, (S,ΠI , I)/Y q] ⇒ S u)

(12)

for every u of the appropriate type. To show that Π ∈ REDC [Ω ′] we need to show that

mc
(
Π ′[(ΠI , I)/Y q],ΠI [t/y]) ∈ S t.

Since |(D Y q u)| < |pt| by Lemma 1 we have, by the outer induction hypothesis,

RED(D Y q u)

[
Ω ′, (S,ΠI , I)/Y q] = RED(D Y q u)

[
Ω,(S,ΠI , I)/Y q].

Hence, by (12), we also have

ΠI [u/y] ∈ (
RED(D Y q u)

[
Ω,(S,ΠI , I)/Y q] ⇒ S u)

.

Since Π ∈ REDC [Ω] (from the assumption), this means that

mc
(
Π ′[(ΠI , I)/Y q],ΠI [t/y]) ∈ S t,

and therefore Π ∈ REDC [Ω ′].
• Suppose Π ends with CIR:

Π ′
Γ −→ I t

ΠI
I y −→ B I y

Γ −→ qt CIR

where q x ν= B q x. Since Π ∈ REDC [Ω], by Definition 15 (P4) there exist a parameter Y q such that Y q#Ω and a re-
ducibility candidate (S : I) such that Π ′ ∈ S and

Π ′[u/y] ∈ (
S u ⇒ REDB Y q u

[
Ω,(S,ΠI , I)/Y q]) (13)

for every u. To show Π ∈ REDC [Ω ′] we need to find a reducibility candidate satisfying P4. We choose S as that
candidate. It remains to show that Π ′[u/y] ∈ (S u ⇒ REDB Y q u[Ω ′, (S,ΠI , I)/Y q]). This follows from (13) and the outer
induction hypothesis, since

REDB Y q u
[
Ω,(S,ΠI , I)/Y q] = REDB Y q u

[
Ω ′, (S,ΠI , I)/Y q].

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.37 (1-38)

A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–••• 37
The converse, i.e., Π ∈ REDC [Ω ′] implies Π ∈ REDC [Ω], can be proved analogously. In particular, in the case where Π

ends with CIR, we rely on the fact that the choice of the new parameter Y q is immaterial, as long as it is new, so we can
assume without loss of generality that Y q �= X p . �
Lemma 15. Let Ω be a candidate substitution and S a closed term of type τ1 → ·· · → τn → o. Then the set R = {Π | Π ∈
REDS u[Ω] for some u} is a reducibility candidate of type S[Ω].

Proof. Suppose S = X p for some X p ∈ supp(Ω) and Ω(X p) = (S,Π, S). Then we have R = S , so R is a reducibility
candidate of type S by assumption. If S = X p , but X p /∈ supp(Ω), then R= NMX p , and by Lemma 11 R is also a reducibil-
ity candidate. Otherwise, S �= X p for any parameter X p . We need to show that R satisfies CR0–CR5. CR0 follows from
Lemma 13. CR1 follows from Lemma 12, and the rest follows from Definition 15. �
Lemma 16. Let Ω be a candidate substitution and X p a parameter such that X p#Ω . Let S be a closed term of the same syntactic type
as p and let

R = {
Π

∣∣ Π ∈ REDS u[Ω] for some u}
.

Suppose [Ω,(R,Ψ, S[Ω])/X p] is a candidate substitution for some Ψ . Then

REDC[S/X p][Ω] = REDC
[
Ω,

(
R,Ψ, S[Ω])/X p]

.

Proof. By induction on |C |. If C = X p u, then

REDC
[
Ω,

(
R,Ψ, S[Ω])/X p] = R u = REDS u[Ω]

by assumption. The other cases where C is Y q u for some parameter Y q �= X p are straightforward. So suppose C �= Y q u for
any u and any parameter Y q . We show that for every Π , Π ∈ REDC[S/X p][Ω] iff Π ∈ REDC [Ω,(R,Ψ, S[Ω])/X p]. If X p does
not occur in C , then C[S/X p] = C and by Lemma 14 we have

REDC[S/X p][Ω] = REDC [Ω] = REDC
[
Ω,

(
R,Ψ, S[Ω])/X p]

.

So assume that X p is not vacuous in C . Let Ω ′ = [Ω,(R,Ψ, S[Ω])/X p].

• Suppose Π ∈ REDC[S/X p][Ω]. Then Π is normalizable. We show, by induction on nd(Π), that Π ∈ REDC [Ω ′]. Most
cases follow immediately from the induction hypothesis. The only interesting case is when Π ends with ⊃ R, where
C = B ⊃ D , for some B and D , and Π takes the form:

Π ′
Γ, B[S/X p][Ω] −→ D[S/X p][Ω]

Γ −→ B[S/X p][Ω] ⊃ D[S/X p][Ω] ⊃ R.

Since Π ∈ REDC[S/X p][Ω], we have that

Π ′[ρ] ∈ (
REDB[S/X p][ρ][Ω] ⇒ REDD[S/X p][ρ][Ω])

for every ρ . By the outer induction hypothesis (on the size of C), we have

Π ′[ρ] ∈ (
REDB[ρ]

[
Ω ′] ⇒ REDD[ρ]

[
Ω ′])

hence Π ∈ REDC [Ω ′].
• The converse, i.e., Π ∈ REDC [Ω ′] implies Π ∈ REDC[S/X p][Ω], can be proved analogously. �

References

[1] P. Aczel, An introduction to inductive definitions, in: J. Barwise (Ed.), Handbook of Mathematical Logic, in: Studies in Logic and the Foundations of
Mathematics, vol. 90, North-Holland, Amsterdam, 1977, pp. 739–782, Chapter C.7.

[2] F. Baader, W. Snyder, Unification theory, in: J.A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning, Elsevier and MIT Press, 2001,
pp. 445–532.

[3] D. Baelde, A linear approach to the proof-theory of least and greatest fixed points, PhD thesis, École Polytechnique, 2009.
[4] D. Baelde, Least and greatest fixed points in linear logic, ACM Trans. Comput. Log. 13 (1) (2012) 2.
[5] D. Baelde, D. Miller, Least and greatest fixed points in linear logic, in: LPAR, in: LNCS, Springer, 2007, pp. 92–106.
[6] D. Baelde, A. Gacek, D. Miller, G. Nadathur, A. Tiu, The Bedwyr system for model checking over syntactic expressions, in: F. Pfenning (Ed.), CADE, in:

LNCS, vol. 4603, Springer, 2007, pp. 391–397.
[7] D. Baelde, D. Miller, Z. Snow, Focused inductive theorem proving, in: J. Giesl, R. Hähnle (Eds.), IJCAR, in: LNCS, vol. 6173, Springer, 2010, pp. 278–292.
[8] J. Brotherston, A. Simpson, Complete sequent calculi for induction and infinite descent, in: LICS, IEEE Computer Society, 2007, pp. 51–62.
[9] K.L. Clark, Negation as failure, in: J. Gallaire, J. Minker (Eds.), Logic and Data Bases, Plenum Press, New York, 1978, pp. 293–322.

[10] J. Despeyroux, A. Hirschowitz, Higher-order abstract syntax with induction in Coq, in: Fifth International Conference on Logic Programming and Auto-
mated Reasoning, June 1994, pp. 159–173.

JID:JAL AID:273 /FLA [m3G; v 1.77; Prn:2/08/2012; 16:35] P.38 (1-38)

38 A. Tiu, A. Momigliano / Journal of Applied Logic ••• (••••) •••–•••
[11] L.-H. Eriksson, A finitary version of the calculus of partial inductive definitions, in: L.-H. Eriksson, L. Hallnäs, P. Schroeder-Heister (Eds.), Proceedings of
the Second International Workshop on Extensions to Logic Programming, in: LNAI, vol. 596, Springer-Verlag, 1991, pp. 89–134.

[12] A.P. Felty, A. Momigliano, Hybrid – a definitional two-level approach to reasoning with higher-order abstract syntax, J. Autom. Reasoning 48 (1) (2012)
43–105.

[13] A. Gacek, A framework for specifying, prototyping, and reasoning about computational systems, PhD thesis, University of Minnesota, September 2009.
[14] A. Gacek, D. Miller, G. Nadathur, A two-level logic approach to reasoning about computations, J. Autom. Reasoning 49 (2) (2012) 241–273.
[15] A. Gacek, D. Miller, G. Nadathur, Nominal abstraction, Inf. Comput. 209 (1) (2011) 48–73.
[16] E. Giménez, Un calcul de constructions infinies et son application a la verification des systemes communicants, PhD thesis, PhD 96-11, Laboratoire de

l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, Dec. 1996.
[17] J.-Y. Girard, P. Taylor, Y. Lafont, Proofs and Types, Cambridge University Press, 1989.
[18] L. Hallnäs, Partial inductive definitions, Theor. Comput. Sci. 87 (1) (1991) 115–142.
[19] R. Harper, F. Honsell, G. Plotkin, A framework for defining logics, Journal of the ACM 40 (1) (1993) 143–184.
[20] B. Jacobs, J. Rutten, A tutorial on (co)algebras and (co)induction, Bulletin of the European Association for Theoretical Computer Science (Surveys and

Tutorials) 62 (1997) 222–259.
[21] P. Martin-Löf, Hauptsatz for the intuitionistic theory of iterated inductive definitions, in: J.E. Fenstad (Ed.), Proceedings of the Second Scandinavian

Logic Symposium, in: Studies in Logic and the Foundations of Mathematics, vol. 63, North-Holland, 1971, pp. 179–216.
[22] R. McDowell, D. Miller, Cut-elimination for a logic with definitions and induction, Theor. Comput. Sci. 232 (2000) 91–119.
[23] R. McDowell, D. Miller, Reasoning with higher-order abstract syntax in a logical framework, ACM Transactions on Computational Logic 3 (1) (2002)

80–136.
[24] R. McDowell, D. Miller, C. Palamidessi, Encoding transition systems in sequent calculus, Theor. Comput. Sci. 294 (3) (2003) 411–437.
[25] N.P. Mendler, Recursive types and type constraints in second-order lambda calculus, in: LICS, IEEE Computer Society, 1987, pp. 30–36.
[26] M. Miculan, K. Yemane, A unifying model of variables and names, in: V. Sassone (Ed.), FoSSaCS, in: LNCS, vol. 3441, Springer, 2005, pp. 170–186.
[27] D. Miller, A logic programming language with lambda-abstraction, function variables, and simple unification, in: P. Schroeder-Heister (Ed.), Extensions

of Logic Programming, in: LNAI, vol. 475, Springer-Verlag, 1991, pp. 253–281.
[28] D. Miller, A. Tiu, A proof theory for generic judgments, ACM Trans. Comput. Logic 6 (4) (2005) 749–783.
[29] A. Momigliano, S. Ambler, Multi-level meta-reasoning with higher order abstract syntax, in: A. Gordon (Ed.), FOSSACS’03, in: LNCS, vol. 2620, Springer-

Verlag, 2003, pp. 375–392.
[30] A. Momigliano, A. Tiu, Induction and co-induction in sequent calculus, in: S. Berardi, M. Coppo, F. Damiani (Eds.), Types, in: LNCS, vol. 3085, Springer,

2003, pp. 293–308.
[31] M. Pagani, L.T. de Falco, Strong normalization property for second order linear logic, Theor. Comput. Sci. 411 (2) (2010) 410–444.
[32] L.C. Paulson, Mechanizing coinduction and corecursion in higher-order logic, J. Logic Comput. 7 (2) (1997) 175–204.
[33] F. Pfenning, Logical frameworks, in: A. Robinson, A. Voronkov (Eds.), Handbook of Automated Reasoning, Elsevier Science Publisher and MIT Press,

2001, pp. 1063–1147, Chapter 17.
[34] F. Pfenning, C. Paulin-Mohring, Inductively defined types in the calculus of constructions, in: M. Main, A. Melton, M. Mislove, D. Schmidt (Eds.),

Proceedings of the Fifth Conference on the Mathematical Foundations of Programming Semantics, in: LNCS, vol. 442, Springer-Verlag, 1989, pp. 209–
228.

[35] L. Santocanale, A calculus of circular proofs and its categorical semantics, in: M. Nielsen, U. Engberg (Eds.), FoSSaCS, in: LNCS, vol. 2303, Springer, 2002,
pp. 357–371.

[36] U. Schöpp, Modelling generic judgments, Electr. Notes Theor. Comput. Sci. 174 (5) (2007) 19–35.
[37] P. Schroeder-Heister, Definitional reflection and the completion, in: R. Dyckhoff (Ed.), Proceedings of the 4th International Workshop on Extensions of

Logic Programming, in: LNAI, vol. 798, Springer-Verlag, 1993, pp. 333–347.
[38] P. Schroeder-Heister, Rules of definitional reflection, in: M. Vardi (Ed.), Eighth Annual Symposium on Logic in Computer Science, IEEE Computer Society

Press, IEEE, June 1993, pp. 222–232.
[39] J. Slaney, Solution to a problem of Ono and Komori, J. Philos. Logic 18 (1989) 103–111.
[40] C. Spenger, M. Dams, On the structure of inductive reasoning: Circular and tree-shaped proofs in the μ-calculus, in: A. Gordon (Ed.), FOSSACS’03, in:

LNCS, vol. 2620, Springer-Verlag, 2003, pp. 425–440.
[41] A. Tiu, A logical framework for reasoning about logical specifications, PhD thesis, Pennsylvania State University, May 2004.
[42] A. Tiu, A logic for reasoning about generic judgments, Electr. Notes Theor. Comput. Sci. 174 (5) (2007) 3–18.
[43] A. Tiu, D. Miller, Proof search specifications of bisimulation and modal logics for the π -calculus, ACM Trans. Comput. Logic 11 (2) (2010) 1–35.
[44] A. Tiu, A. Momigliano, Induction and co-induction in sequent calculus, arXiv:0812.4727, 2008.

	Cut elimination for a logic with induction and co-induction
	1 Introduction
	2 The logic Linc-
	2.1 Equality
	2.2 Induction and co-induction

	3 Linc-i: A system with implicit signatures
	4 Eigenvariables and parameters instantiations
	4.1 Instantiating eigenvariables
	4.2 Instantiating parameters

	5 Cut elimination for Linc-i
	5.1 Cut reduction
	5.2 Normalizability
	5.3 Parametric reducibility
	5.4 Cut elimination

	6 Cut elimination for Linc-
	7 Related work and conclusions
	Acknowledgements
	Appendix A The complete set of cut reduction rules
	Appendix B Proofs for Sections 5.1 and 5.3
	References

