
Structural Realism and the Problem
of Inequivalent Representations in

Quantum Field Theory

Iulian D. Toader

University of Notre Dame

Introduction. Structural realism (SR) is an important contemporary view
about science. It is important mainly for its claim that it can accommo-
date both realist and anti-realist intuitions about scientific theories and put
thereby an end to the debate around scientific realism. But it is important
also because it proposes, in one of its versions, challenging metaphysical the-
ses, that one ought, for example, to give up an object-oriented ontology and
take structure as bearing the most fundamental ontological significance.

My objective in this paper is to develop a criticism of SR. In short, I
aim to show that the algebraic turn taken by some proponents of this view
leads to a backbreaking difficulty raised by the existence of inequivalent
representations of abstract algebraic structures in quantum field theory.

The outline of the paper is as follows. In the first section, I present SR.
We will see that John Worrall, among others, defended a view according
to which the structure of the world has epistemic priority over the nature
of physical objects, nature that will remain forever inaccessible to our eyes
(Worall 1989). I refer to this approach as non-eliminative structural realism
(NESR). Then, I explain Bertrand Russell’s related views on structure (Rus-
sell 1927) and their revival via a Ramsified conception of scientific theories
by Grover Maxwell (1970a). Further, I present Max Newman’s criticism of
Russell (Newman 1928) and its revival by William Demopoulos and Michael
Friedman (1985). Briefly, the criticism says that the structure defined over
a domain of objects underdetermines the structure-giving relation (or sys-
tem of relations) between those objects. Therefore, cognitive access to the
mere structure does not guarantee cognitive access to the individual objects
in the domain. In blatant contradiction to what Russell claimed, our struc-
tural knowledge of the world is either trivial or false. This criticism is usually
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understood as raising a fatal problem to NESR. Indeed, on the one hand,
NESR is shown to hardly differ from instrumentalism (Ketland 2004). In-
strumentalists themselves argue that the NESR attempt to steer away from
an empiricist position takes ‘an air of schizophrenia’ (van Fraassen 2006).
On the other hand, scientific realists claim that NESR does not add basi-
cally anything new to a traditional realist view, which already conceives of
unobservable entities via the theoretical structure expressed by our scientific
laws (Psillos 1995).

In the second section, I review the proposal (inspired by quantum me-
chanics) to switch from a notion of logical structure to an algebraic one. This
move underlies a view, advocated today by Steven French and James Lady-
man, which I refer to as eliminative structural realism (ESR). The main idea
is that there are no objects in the world, except insofar as they are defined
via an abstract, group-theoretical structure, which is all there is out there.
Group theory was introduced in quantum mechanics by Eugene Wigner and
Hermann Weyl. I analyze its role in the debate over structuralism between
Arthur Eddington and Richard Braithwaite, in order to provide historical
background for the subsequent discussion of ESR. Then, I look at French
and Ladyman’s motivation for ESR. As they assert, this comes mainly from
non-classical indistinguishability phenomena in quantum mechanics that are
taken to suggest the thesis that physics underdetermines metaphysical iden-
tity. Further support for this thesis is allegedly given by philosophical im-
plications of quantum field theory. Here, too, elementary particles do not
respect, we are told, classical criteria for individuality. However, this thesis
has been questioned, and the debate over its significance for ESR is, as of
yet, inconclusive.

In the last section, I raise a new challenge to ESR. I contend that the
view according to which the physical content of a theory is fully captured by
the mathematical structure is bound to fail. I support my contention with
an analysis of the problem of inequivalent Hilbert space representations of a
C∗-algebra in quantum field theory. I show that no mathematically available
types of equivalence can be taken as a criterion for the physical equivalence of
Hilbert space representations without loss for the ESR position. I close with
an example from quantum statistical mechanics, regarding the explanation
of thermodynamic phase transitions, which makes quite intuitive the kind
of conundrum the ESR account of scientific theories has to meet.

1. Structural Realism and its Challengers. In his case for scientific
realism, Ernan McMullin charts and attempts to dispel some sources of sci-
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entific antirealism: the classical concept of force, quantum indeterminism,
the pessimistic meta-induction over the history of past theories, and so on
(McMullin 1984). The development of science seems to suggest, or so the
meta-induction goes, that since in the past every theory was replaced by
a new theory, those presently accepted will in their turn be replaced by
other theories. The latter normally accommodate the empirical success of
the former, but introduce different (revolutionary) theoretical commitments.
Therefore, there is no good ground for the claim that our present theo-
ries give a true or even an approximately true description of the physical
world. However, McMullin argues, rather than looking at global explanatory
theories, like mechanics, it would be more effective for the rebuttal of the
pessimistic meta-induction to look at some other sciences, like geology and
cell biology. Here, one realizes that scientists aim at progressively discovering
the structure of the world, and that their theories are approximations of this
structure that are (at least partially) preserved across theoretical change.

McMullin’s argument for SR assumes a full-blooded endorsement of retro-
duction (or inference to the best explanation). In science, this leads to belief
in the existence of the tectonic structure of the earth and of species in De-
vonian from the success of particular geological hypotheses. But, despite its
widespread use in science, it is arguable whether philosophers can legiti-
mately avail themselves of retroduction in arguing for scientific realism. For,
to say the least, one must admit that this might never change the mind of
someone already inclined towards anti-realism.

Other philosophers considered, therefore, that it was necessary for the
goal of defending SR to take a look at those ‘global explanatory theories’.
Worrall’s main motivation for defending SR as a halfway position between
scientific realism and instrumentalism, one that could retain ‘the best of both
worlds’, as it were, is to provide a historically accurate account of theoretical
change, as a defense against the pessimistic meta-induction. He argues like-
wise that scientific knowledge is cumulative over theoretical change: succes-
sive theories display continuity of mathematical structure. This is the case,
for example, in the development from Fresnel’s theory of light (in terms of
periodic disturbances in an elastic solid ether) to Maxwell’s electromagnetic
explanation of light (in terms of fields). Worrall takes the general appli-
cability of Bohr’s correspondence principle (which says, roughly, that the
mathematical equations of an old theory correspond to a limiting case of
the mathematical equations of the new theory) as evidence for SR (Worall
1989, 161). Thus, he talks about an ‘approximate’ continuity of structure
from classical to relativistic mechanics. At the same time, he endorses the
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‘no miracle’ argument for realism, which explains the success of science by
maintaining that this pervading mathematical structure gives the true or
approximately true picture of the world.

One distinction to which SR seems to be committed is that between
the structure of the phenomena described by a theory and the nature of
the entities underlying those phenomena. To repeat, NESR is the view that
maintains that our epistemic abilities cannot access the nature, but only
the structure; whereas ESR denies that there is nature above or beyond
structure. Another distinction to keep in mind is that between logical SR
and algebraic SR. The former makes use of a notion of structure informed
by formal logic (second-order logic and set theory eventually included). The
latter employs a group-theoretical notion of structure. Also, I will draw
attention to the distinction between concrete and abstract structure (Haag
and Kastler 1964, Redhead 2001), where the former is given by first-order
relations of whatever relata make up the domain of the structure, whereas
the latter by their higher-order properties and relations. More on this below.

Now, here is one important episode in the history of SR.1 In The Analysis
of Matter, Russell grants phenomenalism (i.e., the view that only percepts,
objects of direct acquaintance, exist) ‘as a method of separating perceptual
from non-perceptual elements of physics, and of showing how much can
be achieved by the former alone’ (Russell 1927, 215). He rejects, however,
the phenomenalist tenet that non-perceptual elements are ‘unreal’. Russell
develops (without being able to give a ‘demonstration,’ as he frankly admits
on page 198) a view called ‘the causal theory of perception’, which claims
that our percepts have real non-perceptual causes. This was a major move in
Russell’s thinking, away from the project of Our Knowledge of the External
World (1914), where he had recommended that logical constructions from
percepts be substituted for inferred entities.

In 1927, Russell is inclined to assume that there are unperceived events in
the physical world, causally connected with our percepts. He believes that
such events are essential to the affirmation of causal laws and that their
being only logically constructed from percepts could not account for this
role they play (op. cit., 214). But he also emphasizes that our knowledge of
the unperceived events is rather limited: ‘we can only infer the logical (or
mathematical) properties of physical space, and must not suppose that it is
strictly identical with the space of our perceptions’ (op. cit., 252 sq.). In line
with his causal theory of perception, he also assumes that ‘any difference

1For a detailed historical account of SR, see Gower 2000 and van Fraassen 2006.
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between two simultaneous percepts implies a correlative difference in their
stimuli’ (op. cit., 252), thereby aiming to establish a similarity relation2

between the structure of percepts and the structure of their stimuli. So, he
concludes: ‘Thus it would seem that, wherever we infer from perceptions,
it is only structure that we can validly infer; and structure is what can be
expressed by mathematical logic, which includes mathematics’ (op. cit., 254).
Unlike structure, the nature of unperceived events in the physical world is,
to us, inaccessible.

The Principia Matematica definition of the notion of structure is re-
hearsed in section XXIV of The Analysis of Matter. ‘Two relations P , Q
are said to be “similar” if there is a one-one relation between the terms of
their fields, which is such that, whenever two terms have the relation P ,
their correlates have the relation Q, and vice versa.’ (Russell 1927, 249)
More explicitly, taking U and V as two domains, the structure (U, P ) is said
to be ‘similar’ to (V, Q) if but only if there is a bijective (i.e., one-to-one
and onto) mapping f : U → V , such that for every two terms ui, uj in U,
Puiuj ↔ Qf(ui)f(uj). Of course, this definition can be generalized. Let us
call (U, P1, P2, ..., Pn) a concrete structure. Also, let us call the class of all
concrete structures similar to (U, P1, P2, ..., Pn) an abstract structure (Rus-
sell’s isomorphism type, or relation number). For Russell, knowledge of the
latter is all we can hope for in our theoretical exploration of the world.

In the 1970’s, Grover Maxwell took up Russell’s position and wedded it to
Ramsey’s conception of theories. Let me explain why. Maxwell was driven by
the need to give an account of the meaning of theoretical terms concocted in
our physical theories, and he found Russell’s principle of acquaintance ready
to serve (albeit in a slightly modified form, which takes observation as co-
extensive with acquaintance): ‘All the descriptive (non-logical) terms in any
meaningful sentence refer to items with which we are acquainted.’ (Maxwell
1970a, 181) Thus, all descriptive terms are observation terms. Now, what
about theoretical terms? They are usually taken as referring to unobservable
entities, but given the above constraint principle it seems this can’t be the
case. Nevertheless, Maxwell contends that there are unobservable entities,
but you don’t need theoretical terms to refer to them. What you need is the
Ramsey sentence for a theory.

2That is, a one-to-one correspondence. Russell also considers a semi-similar relation,
i.e., a many-to-one correspondence. He is aware of theoretical underdetermination as a
source of ‘uncertainty, which remains even when we assume all the canons of scientific
inference’ (op. cit., 256), but believes that even then one may still obtain something
‘useful’.

5



The Ramsey sentence R(T ) of a scientific theory T is standardly thought
of as a reformulation of that theory that eliminates theoretical terms by re-
placing them with existentially quantified, bound predicate variables. So,
if what T says is represented as T (o1, o2, ..., on, t1, t2, ..., tm), where o’s and
t’s are observation terms and theoretical terms, respectively, its Ramsey
sentence R(T ) says ∃x1∃x2...∃xmT (o1, o2, ..., on, x1, x2, ..., xm). Most impor-
tantly, as Maxwell notes,R(T ) has the same observable consequences as does
T and captures the physical content of T , that is, it provides epistemic access
(via description) to the structural characteristics of the unobservable enti-
ties. More exactly, what we can have knowledge of by means of a Ramsified
theory are not the intrinsic (or first-order) properties of unobservables, but
their extrinsic ones (second or higher-order) described by R(T ) (op. cit.,
188). Thus, like Russell, Maxwell asserts the knowability of the abstract
structure of the world. However, as we’ll see presently, this rather Arcadian
picture of our cognitive abilities collapsed under Newman’s criticism.

In his review of The Analysis of Matter, read before the Cambridge Moral
Science Club in December 1927, Newman notes Russell’s anti-Kantian drive
in the latter’s remark that the unperceived cause of a percept is not a mere
Ding an sich, at least not so if one accepts ‘the usual canons of scientific
inference’ (Newman 1928). Chief among these canons is the postulate of
structural similarity between cause and effect (when both are complex). As
we have just seen, this postulate helped Russell claim that the abstract
logical structure of the world is cognitively accessible to us. It is exactly this
claim that Newman finds defective. He argues that knowledge of only this
structure of the physical world is either trivial or false. Russell’s position is
summarized and criticized as follows:

The world consists of objects, forming an aggregate whose structure
with regard to a certain relation R is known, say W; but of the relation
R nothing is known (or nothing need be assumed to be known) but its
existence; that is, all we can say is, “There is a relation R such that
the structure of the external world with reference to R is W”. Now I
have already pointed out that such a statement expresses only a trivial
property of the world. Any collection of things can be organised so
as to have the structure W, provided there are the right number of
them. Hence the doctrine that only structure is known involves the
doctrine that nothing can be known that is not logically deducible
from the mere fact of existence, except (“theoretically”) the number
of constituting objects. (op. cit., 144)

What does Newman mean here? As above, let U be the domain of the
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objects in the world and let R refer to a system of (first-order) relations
(R1, R2, ..., Rn). Thus, Newman considers correctly that, for Russell, the
concrete structure (U, R1, R2, ..., Rn) of the world is unknowable. What can
be inferentially known is the abstract structure W. However, provided the
cardinality of U is determined, the knowledge of W is a priori, and so it
cannot be the sort of knowledge given by our physical sciences. It is a priori
because it is a logical consequence of (what has come to be known as) New-
man’s theorem: ‘For given any aggregate A, a system of relations between
its members can be found having any assigned structure compatible with
the cardinal number of A.’ (op. cit., 140)3 This is the reason why Newman
considers Russell’s structural realist claim trivial, meaning that the mere
knowledge of W is not sufficient to specify the intended concrete structure
(U, R1, R2, ..., Rn). Any additional criterion to the effect that the concrete
structure of the world gets specified goes beyond Russell’s view, and conse-
quently, renders it false.4

I want to pursue next more closely the question about the consequences of
the Newman problem for SR, a question first asked by William Demopou-
los and Michael Friedman. They contend that due to the Newman prob-
lem Russell’s structuralism collapses into phenomenalism (Demopoulos and
Friedman 1985, 631).5

Since, as Newman showed, knowledge of the abstract structure W is,
contrary to Russell’s claim, merely a matter of logic (plus the empirical de-
termination of the cardinality of the domain U), then it follows, Demopoulos

3For a proof of this theorem, see Ketland 2004, 294sq.
4Russell’s reaction to Newman’s criticism is to completely abandon the structuralist

position, without even trying to provide the slightest amendment. In his letter to Newman,
he admits that ‘you make it entirely obvious that my statements to the effect that nothing
is known about the physical world except its structure are either false or trivial, and I am
somewhat ashamed at not having noticed the point for myself.’ (quoted in Demopoulos
and Friedman 1985, 631) Indeed, Russell was well aware of the point, since he himself
had raised it (in a quite similar guise) against Dedekind’s construction of the number
system. In his Principles of Mathematics, Russell writes: ‘It is impossible that the ordinals
should be, as Dedekind suggests, nothing but the terms of such relations as constitute
progressions. If they are to be anything at all, they must be intrinsically something; they
must differ from other entities as points from instants, or colors from sounds . . . Dedekind
does not show us what it is that all progressions have in common, nor give any reason
for supposing it to be the ordinal numbers, except that all progressions obey the same
laws as ordinals do, which would prove equally that any assigned progression is what all
progressions have in common.’ (Russell 1903, 242)

5On the same line, Jeffrey Ketland argues that a Ramsey-sentence version of SR col-
lapses into instrumentalism (Ketland 2004, 298).
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and Friedman note, that a structural statement about the world is implied by
any other statement, statements of perception included. But this is exactly
what phenomenalism maintains, that is, that our science can be logically
reconstructed on the basis of our perceptions only. One other thing that fol-
lows is that physical science is trivialized, i.e., it is reduced to determining
the cardinality of the domain U. The combination, à la Maxwell, between
Russell’s structuralism and the Ramsification procedure accentuates this
undesirable consequence:

The problem is that this procedure trivializes physics: it threatens to
turn the empirical claims of science into mere mathematical truths.
More precisely, if our theory is consistent, and if all its purely observa-
tional consequences are true, then the truth of the Ramsey-sentence
follows as a theorem of set theory or second-order logic, provided our
initial domain has the right cardinality - if it doesn’t, then the consis-
tency of our theory again implies the existence of a domain that does.
Hence, the truth of physical theory reduces to the truth of its obser-
vational consequences; [...] Russell’s realism collapses into a version
of phenomenalism or strict empiricism after all: all theories with the
same observational consequences will be equally true. (Demopoulos
and Friedman 1985, 635) 6,7

Needless to say, empiricists rejoice over this conclusion. Bas van Fraassen
points to Worrall’s endorsement of the ‘no miracle’ argument as the only
move that attempts to keep SR away from sheer empiricism (van Fraassen
2006). But he believes that this move ‘is, frankly, schizophrenic’. He agrees,
of course, that scientific knowledge is cumulative and that accumulation is
at the level of structure. But he finds no argument from science that this
structure represents some reality behind the phenomena. For van Fraassen,
the ‘no miracle’ argument does not raise a metaphysical question, but an
epistemological one: ‘The success of science is not a miracle, because in
any theoretical change both the past empirical success retained and new
empirical successes were needed as credentials for acceptance.’ (op. cit., )

6For a formal proof of Demopoulos and Friedman’s claim that the truth of the Ramsey-
sentence R(T ) follows logically from its empirical adequacy, see Ketland 2004.

7There are various ways open to the structural realist to resist this conclusion. See,
e.g., Zahar and Worall 2001. Ioannis Votsis argues, too, that a structural realist can very
well (indeed has no choice but) bite Newman’s bullet and live with that (Votsis 2003).
Also, Psillos argues that Ramsification, at least as it was understood by Ramsey himself,
has no close affinity to structuralism, and further, that Ramsey’s approach to theories
could avoid the Newman problem (Psillos 2004).
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However, the realist still has the option of asking the metaphysical ques-
tion behind the ‘no miracle’ argument and remaining sane. Thus, to avoid
the trivialization problem and the collapse into some version of anti-realism,
she could give up the SR claim about our restricted cognitive access to
the mere abstract structure of phenomena and, in order to find a rejoinder
to the pessimistic meta-induction, focus instead on their concrete structure
(Chakravartty 2004). Relatedly, she could advocate epistemic access to the
nature of the unobservable entities in the world, but give up the distinction
between concrete structure and nature, and define the latter in terms of the
former (Psillos 1995). This option takes a somewhat more traditional route
to realism, and I will not discuss it here. Another possibility, the one I will
focus on, is to reconceptualize nature in terms of abstract structure, i.e., to
think of unobservable entities as mere instantiations of places in the struc-
ture. As we will see in the next section, this move trades the notion of a
logical structure for that of an algebraic one.

It is remarkable that both these alternatives seem to be suggested by
Newman, in his paper. After explaining why Russell’s structuralism does
not work, Newman attempts to come to its rescue. One of his proposals is
to consider a further criterion in order to distinguish between isomorphic
instantiations of W, i.e., to specify the concrete structure of the real world.
For example, the intended system of relations could be identified as the ‘im-
portant’ one. But, as Newman notes, there is no justification for considering
one system of relations as the important one, since nothing more is known
about such systems ‘save their incidence (the same for all of them) in a cer-
tain aggregate’ (of determined cardinality). To take ‘importance’ as ‘among
the prime unanalysable qualities of the constituents of the world’ is, New-
man thinks, ‘absurd’.8 He concludes, therefore, that ‘it seems necessary to
give up the “structure - quality” division of knowledge in its strict form.’
(Newman 1928, 147)

Another attempt to rescue SR, albeit merely hinted at by Newman, pro-
poses that one deny the truth of Newman’s theorem, which as we have seen
above is the heart of the problem for structuralism. But, says he, ‘this in-
volves abandoning or restricting Mr. Russell’s own definition of a relation,
namely, the class of all sets (x1, x2, ..., xn) satisfying a given propositional
function φ(x1, x2, ..., xn).’ (op. cit., 145) Newman does not give any further
detail and I don’t want to claim that he envisaged here something drasti-

8Facing a similar problem, Carnap introduced the notion of ‘foundedness’ as an un-
definable, fundamental concept of logic, without considering, though, the problem solved
(Carnap 1928, §154). For an analysis, see Demopoulos and Friedman 1985.
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cally different from Russell’s notion of logical structure, since he wrote in
the logicist tradition of Whitehead and Russell and probably believed that
all mathematics is logic. But it is worth noticing that a group-theoretical
notion of structure was being introduced at the time in quantum mechanics,
through the work of Wigner and Weyl, in the late 1920’s. As we’ll see below,
Eddington makes use of this notion in upholding his version of structuralism
against Braithwaite.

2. Algebraic Eliminative Structural Realism. In 1963, Thomas Kuhn
asked Wigner about his introduction to group theory, early in the 1920’s, and
received the following answer: ‘I knew about groups because of Weissenberg
and possibly a little because of John von Neumann. Weissenberg told me:
“Here is Weber’s Algebra: read that and then you will prove to me that
stable positions in crystals are symmetry points”.’ (quoted in Chayut 2001,
57) Wigner worked in chemistry and crystallography, being fascinated by
crystal symmetries. He found that group theory immensely facilitated his
calculations and helped him construct the proof suggested by Weissenberg.
Later on, he increasingly realized its significance for quantum mechanics and
applied group-theoretical symmetry principles to the study of elementary
particles.

Prior to 1925, quantum mechanics was, in von Neumann’s words, ‘a
conglomeration of essentially different, independent, heterogeneous and par-
tially contradictory fragments’ (von Neumann 1932, 4). This motivated him
‘to present the new quantum mechanics in a unified representation which,
so far as it is possible and useful, is mathematically rigorous’ (op. cit., viii).
He considered other such attempts (Schrödinger’s proof of the mathematical
equivalence of the two theories, Dirac and Jordan’s transformation theory)
as insufficiently rigorous, and proposed other mathematical instruments for
achieving the desired unity (i.e., Hilbert spaces, later replaced by his W ∗-
algebras; see next section).

Sensitive to the importance of algebra for quantum mechanics, Weyl,
too, emphasized that a common algebraic structure underlies both the wave
and the matrix mechanics:

This newer mathematics, including the modern theory of groups and
‘abstract algebra’, is clearly motivated by a spirit different from that
of ‘classical mathematics’, which found its highest expression in the
theory of functions of a complex variable. The continuum of real num-
bers has retained its ancient prerogative in physics for the expression
of physical measurements, but it can justly be maintained that the
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essence of the new Heisenberg-Schrödinger-Dirac quantum mechanics
is to be found in the fact that there is associated with each physical
system a set of quantities, constituting a non-commutative algebra
in the technical mathematical sense, the elements of which are the
physical quantities themselves (Weyl 1931, viii).

As one proponent of ESR put it, ‘Weyl recognised that the mathematical
status of the two rival theories of quantum mechanics as alternative [con-
crete] representations of the same [abstract] mathematical structure makes
preference for either eliminable once a unified framework is available’ (Lady-
man 1998, 421). This structuralist position receives its clearest expression in
the work of Eddington. This is cited by another advocate of ESR: ‘The inves-
tigation of the external world in physics is a quest for structure rather than
substance.’ (quoted in French 2003, 231) And further, ‘We cannot describe
substance; we can only give a name to it. Any attempt to do more than give
a name leads at once to an attribution of structure. But structure can be
described to some extent; and when reduced to ultimate terms it appears
to resolve itself into a complex of relations.’ (op. cit., 232) For Eddington,
the most appropriate formal means to capture this complex of relations is
group theory. It is interesting to follow his debate with Braithwaite over
the epistemological claims of structuralism, because it is here that the role
played by group theory is more clearly explained.

Braithwaite wrote a review of Eddington’s The Philosophy of Physical
Science (1939), where he criticized the latter’s ‘epistemological derivation
of the hypercomplex algebra of physics’ and launched an argument that
recalled Newman’s comments on Russell’s structuralism (Braithwaite 1940).
He pointed out that one essential characteristic of a group is that a certain
rule of composition for its elements has to be given. If no such rule is specified
and if one treats it, as it were, as a variable, then one has in fact no criterion
for choosing the ‘substantial’ relation, i.e., the one that gives the structure
of substance.

Eddington’s reply is his most elaborate analysis of the role of group the-
ory in physics. He suggests that Braithwaite missed the point of an abstract
algebraic structure:

In this abstraction the group is specified solely by the pattern [of
an interweaving of elements]; and it is essential that the combining
relation C should not be ‘given’, since the group would then cease
to be abstract. This is the feature which makes the group concept
useful in the philosophy of physics; for our structural knowledge of the
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external world gives no hint of the nature of C. What is more, it does
not recognize the distinction (implied by Braithwaite) between the
nature of an element and the nature of the combining relation which
makes it an element of a group. The element is what it is because
of its relation to the group structure. [...] I think the experts would
dismiss the whole matter by saying that Eddington is talking about an
abstract group and Braithwaite about realizations of a group. Be that
as it may, I must insist that I am rescuing out of the mathematical
formalism what is for physical purposes the most essential feature of
the group conception of structure, namely, that primarily the elements
of a group (or ring or algebra) are defined solely by their role in that
group (or ring or algebra). (Eddington 1941, 268sq)

Eddington clearly endorses here a structuralist conception of the theoretical
entities as elements defined exclusively in terms of a purely abstract alge-
braic structure. On this conception, he thinks that Newman’s predicament
is avoided. Indeed, he says so explicitly:

Russell, in his pioneer development of structuralism, did not get so
far as the concept of group-structure. He had glimpsed the idea of a
purely abstract structure; but, since he did not concern himself with
the technical problem of describing it, he had no defence against New-
man’s criticisms. Russell’s vague conception of structure was a pattern
of entities, or at most a pattern of relations; but the elements of group
theory make it clear that pure structure is only reached by consid-
ering a pattern of interweaving, i.e., a pattern of interrelatedness of
relations. [...] Newman rightly pointed out that the earlier descrip-
tions of structure provided only trivial information, unless they were
supplemented by knowledge which was not structural; but I can see
no foundation for Braithwaite’s contention that this objection applies
to structure described by a group-multiplication table. (op. cit., 278)

Now, this is obviously not entirely correct. Russell did more than merely
glimpsed the idea of abstract structure. As we have seen above, he con-
ceived of it as a similarity class of concrete structures (an isomorphism type
of relational systems). What Russell did not do is specifically define the ob-
jects in the domain of a relational system by their role in the corresponding
similarity class, that is, he did not surrender the distinction between nature
and abstract structure, as did Eddington. And this is why, unlike Eddington,
he was a target to Newman’s criticism.

Eddington concedes, though, that Braithwaite’s understanding of a group
structure, as a concrete realization of an abstract structure, can be indeed
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relevant if one is aware that it does not describe the external world, but a
particular conception of the external world, or as he put it, ‘not the abstract
group-structure which is all we can know of the external world, but a par-
ticular conceptual representation of the group-structure’ (op. cit., 271). A
particular representation is chosen in virtue of a ‘necessity of thought’ - the
mind’s own contribution to the scaffolding of theoretical physics. ‘Thus, in
construing philosophically the assertions of physics, we have to allow for the
fact that its language refers to a particular representation of the structure,
and is more particularized than our empirical knowledge of the external
world warrants.’ (op. cit., 271)

It is also worth stressing that Eddington does not turn ‘necessity of
thought’ into a criterion for specifying the concrete structure of the world,
a criterion that would replace ad hoc criteria like Newman’s ‘importance’
or Carnap’s ‘foundedness’ (see footnote 7 above). We have seen that, for
Eddington and Russell, our knowledge of the external world is limited to its
abstract structure. In Russell’s case, this knowledge follows logically from
Newman’s theorem and is therefore not the kind of knowledge one expects
from physics. In contrast, Eddington seems to reject at the outset the idea
that the real (abstract) structure of the external world can be completely
revealed by our physical theories. Like Weyl, he believes that a theory gives
merely a particular representation of the structure of the world.

On this background, let’s discuss now French and Ladyman’s ESR. In
addition to the need, shared with NESR, to overcome the ‘pessimistic meta-
induction’ and accommodate the ‘no miracle’ argument, their position is
strongly motivated by the desire to come to terms with the metaphysical
implications of modern physics. Inspired by Weyl and Eddington, ESR pro-
poses a radical reconceptualization of the notion of a physical object in terms
of abstract group-theoretical structure. Talk of physical objects in science is
considered metaphysically ambiguous, since, it is argued, quantum mechan-
ics has shown that elementary particles resist classical criteria of individu-
ality (Leibniz’s principle of the identity of indiscernibles), and so they can
be interpreted either as non-classical individuals (i.e., individuals that are
different but indistinguishable) or as non-individuals (French and Redhead
1988). More exactly, the difference between classical and quantum notions
of objecthood is reflected by the fact that classical statistical mechanics
counts different permutations of objects as distinct physical arrangements,
while in quantum statistical mechanics permutation of objects does not im-
ply physical changes. This supports the idea that physics underdetermines
metaphysics, and motivates the replacement of objects by structure as the
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fundamental ontological constituent of the world:

Given the above metaphysical underdetermination, a form of real-
ism adequate to the physics needs to be constructed on the ba-
sis of an alternative ontology which replaces the notion of object-
as-individual/non-individual with that of structure in some form.
(French and Ladyman 2003, 37)

However, the usual object-oriented discourse in contemporary physics has
heuristic value. ‘The elements themselves, regarded as individuals, have only
a heuristic role in allowing for the introduction of the structures which then
carry the ontological weight.’ (French 1999, 204) So, if one still talks of
quantum particles as individuals, this is due to a sort of ‘metaphysical trans-
ference’ that attaches to particles ‘a legend of individuality’ (French 2003,
228).9

The ontological dissolution of elementary particles as particular objects,
suggested by the metaphysical underdetermination thesis, finds support, ac-
cording to French and Ladyman (op. cit., 46), also in our most fundamental
theory about the physical world, quantum field theory. This is seen as re-
jecting elementary particles in favor of fields. What is a field? ‘[T]he field is
the structure, the whole structure and nothing but the structure.’ (op. cit.,
48)10

However, the underdetermination thesis has been recently questioned.
Simon Saunders argues that, in a sense, the individuality/non-individuality
underdetermination of elementary particles is not idiosyncratic to quantum
mechanics, but can be similarly found in classical mechanics (Saunders 2003,
131). Still, nobody rejected the object-oriented ontology on classical statisti-
cal grounds. Also, Anjan Chakravartty argues that it would be inconsistent

9This way of talking about individuals is traced back to Poincaré’s approach to ge-
ometry, which stressed that in order to construct a group structure one has to start with
the ‘gross matter’ of our sensations and use that as a ‘crutch’ (op. cit., 254).

10This challenging view is shared by Redhead: ‘Realism has been often attacked on the
grounds that there is a significant lack of convergence in the history of theoretical physics
which, so the argument runs, is characterized by discontinuity rather than any continuous
cumulative progression. But I believe that detailed historical analysis often reveals more
continuity than one suspects, at any rate at the level of structure rather than ontology.
To see the distinction in a general sort of way, compare asking the question What is a
field? with the question What are the mathematical equations governing its behaviour?’
(Redhead 1995, 18). Likewise, by Saunders: ‘I believe that objects are structures; I see
no reason to suppose that there are ultimate constituents of the world, which are not
themselves to be understood in structural terms. So far as I am concerned, it is turtles
all the way down.’ (Saunders 2003, 129).
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to consider the individuality/non-individuality underdetermination as de-
pending on whether an entity is observable or unobservable (Chakravartty
2004, 159). Still, not everybody rejected the object-oriented ontological views
about macroscopic everyday objects. Both these attacks are themselves ques-
tionable, but I don’t want to pursue this here. Instead, I want to offer my
own criticism of ESR.

3. A New Challenge to Eliminative Structural Realism. Let’s start
by noting that the structuralist view defended by French and Ladyman has
at least one undesirable consequence: it blurs the distinction between math-
ematical and physical structures, pulling one toward a quite dubious physi-
calism about abstract mathematical constructs. But this leads, I believe, to
an even more serious problem. For ESR considers that the physical content
of a quantum theory is fully captured by its abstract algebraic structure.
No non-structural ontological residue is part of that content. It follows that
representations of the abstract algebra can add no new physical content. In
other words, these representations must be all physically equivalent.

However, in quantum field theory, as we will see presently, an abstract
C∗-algebra has an infinity of unitarily inequivalent Hilbert space representa-
tions. If unitary equivalence is taken as a criterion for physical equivalence,
then the abstract algebra will obviously be unable to exhaust the physical
content of the theory. This fact renders it difficult for ESR to claim that a
physical theory provides an adequate representation of the world. More on
this in section 3.2. below. If some mathematically less stringent notion of
equivalence is chosen as a criterion for physical equivalence, then a propo-
nent of ESR would have to either give up the abstract algebraic point of
view or switch to an operationalist conception of science.

In order to reach a good understanding of the problem raised by in-
equivalent Hilbert space representations for ESR, I will review in section
3.1. some mathematical notions essential for the narrative of the historical
development of quantum theory from the Hilbert space formalism proposed
by von Neumann (1932) up to the W ∗-algebras and the C∗-algebras.11

3.1. Quantum Field Theory and the Operator Algebras. Consider
a classical system with a finite number of degrees of freedom. Properties

11C∗-algebras entered the scene of the quantum first in 1947 with Segal and then, fol-
lowing their characterization in 1943 by Gelfand and Naimark, with Haag and Kastler
(1964). The W ∗-algebras had been introduced already in 1934 by Murray and von Neu-
mann. For further technical details the reader is referred to the excellent introduction to
operator algebras by Bratteli and Robinson (1987).
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of the system, like momentum and position coordinates, are associated (in
Heisenberg’s formalism) matrix operators pm and qn. To quantize the sys-
tem means to have these operators obey canonical commutation relations
(CCRs):

pmpn – pnpm = 0 = qmqn – qnqm, pmqn – qnpm = −i~δmn.

The dynamics of the system relative to a canonical operator A is then given
by

∂A

∂t
=
i(HAt − AtH)

~
(1)

where H is the Hamiltonian operator, and ~ is Planck’s constant.
In Schrödinger’s formalism, the dynamics is represented by Schrödinger’s
equation:

i~
∂ψt

∂t
(x1, x2, ..., xn) = Hψt(x1, x2, ..., xn). (2)

where ψ is a wavefunction in the space L2(Rn) associated to the system’s
state space.

With von Neumann (1932), the state space is associated a Hilbert space
H, thereby resulting a unifying mathematical framework: H = L2(Rn). H is
a metrically complete, normed, vector space over the complex numbers, with
a Hermitian inner product. Physical quantities (observables) in the system
are associated self-adjoint, linear operators on H, which obey corresponding
CCRs (in Poisson bracket notation):

[p̂m, p̂n] = 0 = [q̂m, q̂n], [p̂m, q̂n] = −i~δmnÎ .

The expectation value of an observable O, described by the self-adjoint op-
erator Ô in a given state |φ〉 of the system, is 〈φ|Ô|φ〉. And the equivalence
between (1) and (2) above is given by (Bratteli and Robinson, op. cit., 5):

〈φt0 |Ât|φt0〉 = 〈φt|Ât0|φt〉.

SinceH is an infinite dimensional space, one normally associates to canonical
operators p̂m and q̂n bounded unitary operators on H, Ûm(t) = eip̂mt, V̂n(t) =
eiq̂nt, the so-called Weyl operators, which obey the Weyl form of the CCRs:

Ûm(t)Ûn(s) – Ûn(s)Ûm(t) = 0 = V̂m(t)V̂n(s) – V̂n(s)V̂m(t)
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Ûm(t)V̂n(s) = eistδmnV̂n(s)Ûm(t).

The algebraic structure of these relations is captured by a Weyl algebra,
i.e. a C∗-algebra generated by the Weyl operators on any representation of
the Weyl CCRs. A C∗-algebra is a metrically complete, normed ∗-algebra,
satisfying the following six conditions:

‖A‖ ≥ 0 and ‖A‖ = 0 just in case A = 0, ‖αA‖ = |α|‖A‖,

‖A + B‖ ≤ ‖A‖ + ‖B‖ , ‖AB‖ ≤ ‖A‖‖B‖, ‖A‖ = ‖A∗‖, ‖A∗A‖ = ‖A‖2

for all A ∈ A, where ‖A‖ is the norm of A.
If H is a Hilbert space and L(H) is the set of bounded linear operators

on H, given π : A → L(H) a ∗-morphism on a C∗-algebra, then the pair
(H, π) is a representation of A. This is an irreducible representation if no
(nontrivial) subspace of H is invariant under the operators in π(A.) If π is a
∗-isomorphism, then, and only then, (H, π) is a faithful representation. The
relevant result here is the Stone-von Neumann theorem: Any irreducible,
faithful representation (H, π) of A is univocally determined up to a unitary
transformation (bis auf eine unitäre Transformation eindeutig festgelegt).
(See von Neumann 1931, 577.)

The theorem holds only for a physical system with finitely many degrees
of freedom, and guarantees that this has an unique quantization (up to
unitary equivalence). The dynamics of such a system is represented as in (1)
or (2) above. But for a system with continuously many degrees of freedom,
in quantum field theory, the theorem fails and the dynamics is represented
by (a group of) ∗-automorphisms of the associated Weyl algebra, τ : A → A.

Another essential result is the Gelfand-Naimark-Segal theorem: Let
A be a C∗-algebra and let ω be a state (i.e., a positive normalized linear
functional) over A, ω : A → C. Then, for every A ∈ A, there exists a repre-
sentation (Hω, πω) such that ω(A) = 〈Ωω|πω(A)|Ωω〉, where |Ωω〉 is a cyclic
vector in the Hilbert space Hω.12 The cyclic representation (Hω, πω, |Ωω〉) is
univocally determined up to a unitary transformation.

Now, we are in a position to define three types of equivalence. Let (H1, π1)
and (H2, π2) be representations of a C∗-algebra A. They are said to be

1. unitarily equivalent, if there is a unitary operator Û : H1 → H2 such
that π1(A) = Ûπ2(A)Û∗ for all A ∈ A,

12A vector |Ω〉 is cyclic for π, in H, if the subset {π(A)|Ω〉 : A ∈ A} ⊂ H is dense in
H, that is, if H is a closure for that subset.

17



2. quasi-equivalent, if the von Neumann algebras13 π1(A)′′ and π2(A)′′

are ∗-isomorphic, i.e., there is a ∗-isomorphism α such that α(π1(A))
= π2(A) for all A ∈ A.

3. weakly equivalent, if Ker(π1) = Ker(π2), where Ker(π) = {A∈ A :
π(A) = 0}.

Each of these three types of equivalence may be taken as the criterion for
physical equivalence of Hilbert space representations. If we choose 1, we have
to deal with the failure of the Stone-von Neumann theorem for systems with
an infinite number of degrees of freedom. There are various ways to do this,
none of them completely satisfactory. One can reject, for example, those rep-
resentations in which the vacuum state is not a positive normalized linear
functional on the algebra, and so obtain a natural class of equivalence; or, one
can invoke the principle of locality and consider as physical only those repre-
sentations whose algebraic structures coincide locally (Haag and Kastler, op.
cit.). But one can also retreat to mathematically less stringent notions like 2
or 3 above. Here, however, one encounters again not insignificant problems.
2 makes use of von Neumann algebras and therefore represents a step back
from the abstract algebraic point of view endorsed by ESR.14 3 leads straight
to adopting an operationalist view, which is of course hell for a proponent
of ESR (since it equates the truth conditions for the theory with conditions
under which physicists fail to falsify the theory. See Arageorgis et al., op.
cit., 158).

3.2. Unitary equivalence as the criterion for physical equivalence.
I want to discuss a bit more the choice of unitary equivalence as our criterion
for physical equivalence. In this case, we have to check and see if there are
any unitarily equivalent but physically different representations. To get an
idea about the kind of physical differences between the unitarily inequiva-
lent representations of an abstract algebra, let’s take a look at an example.
Let’s consider the quantum statistical explanation of thermodynamic phase
transitions, i.e., the explanation of the existence, at certain temperatures
and pressures, of multiple thermodynamic phases at equilibrium.15 For a

13A von Neumann algebra on H is a ∗-subalgebra N of L(H) such that N = N′′, where
N′ = {B∈ L(H) : [B,A] = 0, for all A ∈ N} is the commutant of N.

14A von Neumann or W ∗-algebra is a concrete algebra, that is, its elements are defined
in terms of bounded linear operators on H.

15So, for example, at a temperature of −38.83◦C and a pressure of 0.2 mPa, mercury
exists at equilibrium in three phases, solid, liquid, and gas. Water, ice and steam coexist
at 0.01◦C and 611Pa.
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finite dimensional quantum system, at a certain temperature and pressure,
the equilibrium state is uniquely described by a Hilbert space representa-
tion, up to unitary equivalence. But for an explanation of the coexistence
of multiple thermodynamic phases, we need correspondingly multiple dis-
tinct equilibrium states, and so, a more general notion of equilibrium. This
is provided in the thermodynamic limit of quantum statistical mechanics
(Ruetsche 2003, 1335).

In the thermodynamic limit, we consider an infinite dimensional quan-
tum system. For such a system, there are different temperatures and pres-
sures at which the system is in multiple thermodynamic phases at equi-
librium. Therefore, there is no unique equivalence class of Hilbert space
representations to describe its equilibrium states, at different temperatures
and pressures, but many unitarily inequivalent representations. Now, to re-
ject the physical significance of those representations that do not belong to
a selected equivalence class means to deny the possible existence of some
equilibrium states, i.e. to state that there is only one temperature and one
pressure at which the system is in equilibrium. But this rejection has no
justification and, as Ruetsche put it, it ‘offends’ our modal intuitions (op.
cit., 1337). Physical differences between the unitarily inequivalent represen-
tations are manifest as differences of temperatures and pressures. Moreover,
in this framework, phase transitions are explained by describing the multiple
equilibrium states, at a certain temperature and pressure, via a plurality of
unitarily inequivalent representations. So, physical differences between these
representations are manifest also as differences of phase.

This example shows clearly, I believe, that if one espouses algebraic ESR,
if one maintains that the physical content of a theory is entirely captured
by an abstract algebra and that the latter’s concrete representations add no
physical content, then one rejects differences of temperatures, pressures, or
phases. But surely no one would want to deny that water is different from ice,
and ice from steam! Therefore, it is reasonable to ask the structural realist to
consider the inequivalence of Hilbert space representations as a problem for
her account. As far as I can see, she has two options. First, she could frankly
admit that the notion of abstract algebraic structure is unable to entirely
capture the physical content of a theory and should be further refined in
order to accommodate the difficulty raised by unitary inequivalence. Or else,
non-structural ontological aspects of scientific theories have to be consented
to. Secondly, she could invoke a notion of ‘partial structure’ and claim, more
modestly, that science is not able to account for more than merely a rough
and incomplete picture of the world. And that would be just fine, if it did
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not actually mean, as we have just seen in the case of quantum statistical
mechanics, to erroneously deny physical differences between certain states
of a quantum system. For the realist, this denial comes at a high price, since
one has to admit then that our theories are unable to provide adequate
representations of physical systems. And if that is the case, then the success
of science cannot be explained any more by the (approximate) truth of our
scientific theories.

Conclusion. I have presented above SR about science, a view advocated
today by philosophers like McMullin, Worrall, and Maxwell, among others,
and earlier in the 20th Century by Russell, Weyl, and Eddington. I have also
explained the challenge raised by Newman, and those charged by Demopou-
los and Friedman against a Ramsified version of SR. I have then argued that
algebraic ESR, as is today defended by French and Ladyman, meets with an
insuperable difficulty raised by the existence of inequivalent representations
of abstract C∗-algebra.
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