Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T07:28:23.878Z Has data issue: false hasContentIssue false

What BANE can offer GANE: Individual differences in function of hotspot mechanisms

Published online by Cambridge University Press:  05 January 2017

Rebecca M. Todd
Affiliation:
Department of Psychology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4becket.todd@psych.ubc.camanaehlers@psych.ubc.cahttp://mclab.psych.ubc.ca/
Mana R. Ehlers
Affiliation:
Department of Psychology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4becket.todd@psych.ubc.camanaehlers@psych.ubc.cahttp://mclab.psych.ubc.ca/
Adam K. Anderson
Affiliation:
College of Human Ecology Department of Human Development, Cornell University, Ithaca, NY 14853aka47@cornell.eduhttp://www.human.cornell.edu/bio.cfm?netid=aka47

Abstract

In this commentary we focus on individual differences in proposed mechanisms underlying arousal-based enhancement of prioritized stimuli. We discuss the potential of genotyping studies for examining effects of noradrenergic processes on stimulus prioritization in humans and stress the importance of potential individual differences in the activity of specific receptor subtypes in hotspot processes proposed by the GANE model.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnsten, A. F., Steere, J. C. & Hunt, R. D. (1996) The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortical cognitive function: Potential significance for attention-deficit hyperactivity disorder. Archives of General Psychiatry 53:448–55.CrossRefGoogle ScholarPubMed
De Martino, B., Strange, B. A. & Dolan, R. J. (2008) Noradrenergic neuromodulation of human attention for emotional and neutral stimuli. Psychopharmacology (Berlin) 197:127–36.Google Scholar
de Quervain, D. J., Kolassa, I.-T., Ertl, V., Onyut, P. L., Neuner, F., Elbert, T. & Papassotiropoulos, A. (2007) A deletion variant of the α2b-adrenoceptor is related to emotional memory in Europeans and Africans. Nature Neuroscience 10(9):1137–39.Google Scholar
Ehlers, M. E., Palombo, D. J., Mueller, D., Levine, B., Anderson, A. K. & Todd, R. M. (2015) Grey matter differences are predicted by variation in the ADRA2b gene. Poster presented at the Annual Meeting of the Society for Neuroscience, Chicago, IL, USA.Google Scholar
Havranek, M. M., Hulka, L. M., Tasiudi, E., Eisenegger, C., Vonmoos, M., Preller, K. H., Mossner, R., Baumgartner, M. R., Seifritz, E., Grunblattt, E. & Quednow, B. B. (2015) α2A-adrenergic receptor polymorphisms and mRNA expression levels are associated with delay discounting in cocaine users. Addiction Biology. doi: 10.1111/adb.12324.Google Scholar
Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., van de Lagemaat, L. N., Smith, K. A., Ebbert, A., Riley, Z. L., Abajian, C., Beckmann, C. F., Bernard, A., Bertagnolli, D., Boe, A. F., Cartagena, P. M., Chakravarty, M. M., Chapin, M., Chong, J., Dalley, R. A., Daly, B. D., Dang, C., Datta, S., Dee, N., Dolbeare, T. A., Faber, V., Feng, D., Fowler, D. R., Goldy, J., Gregor, B. W., Haradon, Z., Haynor, D. R., Hohmann, J. G., Horvath, S., Howard, R. E., Jeromin, A., Jochim, J. M., Kinnunen, M., Lau, C., Lazarz, E. T., Lee, C., Lemon, T. A., Li, L., Li, Y., Morris, J. A., Overly, C. C., Parker, P. D., Parry, S. E., Reding, M., Royall, J. J., Schulkin, J., Sequeira, P. A., Slaughterbeck, C. R., Smith, S. C., Sodt, A. J., Sunkin, S. M., Swanson, B. E., Vawter, M. P., Williams, D., Wohnoutka, P., Zielke, H. R., Geschwind, D. H., Hof, P. R., Smith, S. M., Koch, C., Grant, S. G. & Jones, A. R. (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489:391–99.Google Scholar
Jasper, J. R., Lesnick, J. D., Chang, L. K., Yamanishi, S. S., Chang, T. K., Hsu, S. A., Daunt, D. A., Bonhaus, D. W. & Eglen, R. M. (1998) Ligand efficacy and potency at recombinant alpha2 adrenergic receptors: Agonist-mediated [35S]GTPgammaS binding. Biochemistry and Pharmacology 55:1035–43.Google Scholar
Markovic, J., Anderson, A. K. & Todd, R. M. (2014) Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behavioural Brain Research 259:229–41.Google Scholar
Moriceau, S. & Sullivan, R. M. (2004) Unique neural circuitry for neonatal olfactory learning. The Journal of Neuroscience 24(5):1182–89. doi: 10.1523/jneurosci.4578-03.2004.Google Scholar
Ramos, B. P., Stark, D., Verduzco, L., van Dyck, C. H. & Arnsten, A. F. (2006) α2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learning and Memory 13(6):770–76.Google Scholar
Rasch, B., Spalek, K., Buholzer, S., Luechinger, R., Boesiger, P., Papassotiropoulos, A. & Quervain, D. J. F. d. (2009) A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories. Proceedings of the National Academy of Sciences of the United States of America 106(45):19191–96. doi: 10.2307/25593165.Google Scholar
Small, K. M., Brown, K. M., Forbes, S. L. & Liggett, S. B. (2001) Polymorphic deletion of three intracellular acidic residues of the alpha 2B-adrenergic receptor decreases G protein-coupled receptor kinase-mediated phosphorylation and desensitization. The Journal of Biological Chemistry 276:4917–22.Google Scholar
Strange, B. A., Hurlemann, R. & Dolan, R. J. (2003) An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent. Proceedings of the National Academy of Sciences of the United States of America 100(23):13626–31. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14595032.Google Scholar
Todd, R. M., Cunningham, W. A., Anderson, A. K. & Thompson, E. (2012) Affect-biased attention as emotion regulation. Trends in Cognitive Sciences 16:365–72.Google Scholar
Todd, R. M., Ehlers, M. R., Muller, D. J., Robertson, A., Palombo, D. J., Freeman, N., Levine, B. & Anderson, A. K. (2015) Neurogenetic variations in norepinephrine availability enhance perceptual vividness. The Journal of Neuroscience 35:6506–16.Google Scholar
Todd, R. M., Müller, D. J., Lee, D. H., Robertson, A., Eaton, T., Freeman, N., Palombo, D. J., Levine, B. & Anderson, A. K. (2013) Genes for emotion-enhanced remembering are linked to enhanced perceiving. Psychological Science 24(11):2244–53. doi: 10.1177/0956797613492423.Google Scholar
Todd, R. M., Muller, D. J., Palombo, D. J., Robertson, A., Eaton, T., Freeman, N., Levine, B. & Anderson, A. K. (2014) Deletion variant in the ADRA2B gene increases coupling between emotional responses at encoding and later retrieval of emotional memories. Neurobiological Learning and Memory 112:222–29.Google Scholar
U'Prichard, D. C., Bechtel, W. D., Rouot, B. M. & Snyder, S. H. (1979) Multiple apparent alpha-noradrenergic receptor binding sites in rat brain: Effect of 6-hydroxydopamine. Molecular Pharmacology 16:4760.Google ScholarPubMed