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The development of new methods to identify influential spreaders in complex networks has been a significant challenge in
network science over the last decade. Practical significance spans from graph theory to interdisciplinary fields like biology,
sociology, economics, and marketing. Despite rich literature in this direction, we find small notable effort to consistently
compare and rank existing centralities considering both the topology and the opinion diffusion model, as well as considering
the context of simultaneous spreading. To this end, our study introduces a new benchmarking framework targeting the
scenario of competitive opinion diffusion; our method differs from classic SIR epidemic diffusion, by employing competition-
based spreading supported by the realistic tolerance-based diffusion model. We review a wide range of state-of-the-art node
ranking methods and apply our novel method on large synthetic and real-world datasets. Simulations show that our
methodology offers much higher quantitative differentiation between ranking methods on the same dataset and notably high
granularity for a ranking method over different datasets. We are able to pinpoint—with consistency—which influence the
ranking method performs better against the other one, on a given complex network topology. We consider that our
framework can offer a forward leap when analysing diffusion characterized by real-time competition between agents. These
results can greatly benefit the tackling of social unrest, rumour spreading, political manipulation, and other vital and
challenging applications in social network analysis.

1. Introduction

Estimating node influence can lead to an improved under-
standing of the natural interaction patterns within real-
world populations, biological entities, or technological struc-
tures. The applicability of metrics for quantifying the influ-
ence potential of nodes has wide-ranging interdisciplinary
applications including disease modelling [1–7], information
transmission [8–11], behavioural intelligence [3, 12–15],
business management [16, 17], finances [18, 19], and phar-
macology and drug repurposing [20, 21]. Being able to cor-
rectly determine and rank influential nodes in empirical
networks can have direct applicability in problems like
impeding epidemic outbreaks [22], accelerating innovation
diffusion, evaluating marketing and financial trends [18], dis-
covering new drug targets in pathway networks [20], and

predicting essential proteins in protein interaction networks
and gene regulatory networks [23]. Regardless of the context,
the most common way to capture information on intricate
real-world interactions is a complex network [24–27]. Specif-
ically, social network analysis (SNA), as a subdomain of net-
work science, models social structures characterized by
emergent interaction.

There is considerable effort devoted to assessing the
importance of nodes in many types of complex networks
over the last decade. Novel approaches, combined with clas-
sic graph centrality measures, have led to the emergence of
the three main categories of influence ranking methods.
The first category of scientists argues that the location of a
node is more important than its immediate ego network
and thus proposed k-core decomposition [28, 29], along with
improved variants, such as [30–33]. The second category of
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scientists quantifies the influence of a node based solely on its
local surroundings [34–36]. Finally, the third category of sci-
entists evaluates node influences according to various states of
equilibrium for dynamical processes, such as random
walks [37, 38] or step-wise refinements [39].

Each ranking method, regardless of its nature and cat-
egory, is validated through a state-of-the-art benchmark-
ing methodology, which—in almost all cases of network
science—involves the usage of the SIR epidemic model
[40–42]. This process may be suitable for validating metrics
in an individual context in order to produce a verdict
whether the ranking method is good enough, but often not
more. For SNA, however, collective interplay is inherent
[43] and the aforementioned real-world application contexts
imply competition between multiple opinions, so a one-sided
perspective will often not be reliable. The recent study shows
that the traditional SIR model provides a poor description of
the data for modelling disease dynamics, as it lacks infectious
recovery dynamics, which is a better description of social net-
work dynamics [44]. Consequently, we consider that the SIR
model would be inadequate to apply in our benchmarking
context, as it fails to model competition and opinion

fluctuations. As such, we propose a more robust benchmark-
ing principle that implies simultaneous competition between
two or more information (opinion, rumour) sources, that
is, in the same network and at the same time. To this end,
we make use of the existing tolerance-based diffusion model
[45], which represents, to the best of our knowledge, a novel
benchmarking methodology in SNA.

To better underline the limitations incurred by using a SIR
simulation versus our proposed competition-based bench-
mark, we illustrate a comparative example in Figure 1. In (a)
and (b), we apply two distinct ranking methods (orange
and blue), one at a time, and show that the diffusion pro-
cess is unrestrained, also we suggest that orange manages
to cover the network in time T1, faster than blue with T2,
due to the higher dispersion of three initial orange opinion
sources. In the SIR context, the two simulations may lead to
the conclusion that the orange ranking method is better than
the blue one. In reality, we consider the scenario in (c) as the
more probable one. Opinions will diffuse simultaneously
and face constraints due to competition over each node
(i.e., orange and blue exclude one another). In this case,
we intuitively suggest that blue might win in terms of
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Figure 1: Example of the incurred limitations when benchmarking a diffusion process only from a single opinion’s point of view, when the
real-world context implies simultaneous diffusion and competition between multiple opinions. It is suggested that the orange diffusion time
T1 is shorter (better) than the blue T2 time, due to the higher, more uniform dispersion of orange opinion sources. However, in reality (c),
none of the two opinions may fully cover the network in optimal times T1 or T2, nor will they achieve such high coverages as C1 or C2,
that is, T1 ≈ T2 < T3 and C1 ≈ C2 > C3o, C3b.
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network coverage, as it has a tighter initial cluster forming
around its three opinion sources. Consequently, the main
observations are the following:

(i) None of the two opinions will achieve coverages as
high as in the one-sided scenarios, that is, C3o and
C3b < C1 ≈ C2 .

(ii) Simulation time T3 may be longer than T1 ≈ T2, due
to the need for attaining a state of balance in the
emergent network.

(iii) The final ratio of opinion C3o/C3b is impossible to
determine by one-sided simulations and is only
determinable by the emergence of the two compet-
ing opinions (e.g., initial spreader position, connec-
tivity of the spreaders, and community structure).

In light of these remarks, we propose a novel bench-
marking framework which offers more reliable insights into
comparing ranking methods aimed at real-world applica-
tions of social networks. The paper starts by presenting the
benchmarking methodology in detail, followed by simulation
results. We highlight the overlapping of several popular
ranking methods, in terms of selecting the same initial
seeds, then proceed to compare the ranking methods using
SIR as a reference and then in pairs (one versus one) using
our proposed methodology. Finally, we discuss the results,
the difference in what our testing methodology can offer,
and what are the implications of considering competing
opinion. The Methods section details the used validation
datasets and a brief review of current state-of-the-art ranking
measures used in complex networks.

2. A Novel Competition-Based Influence
Ranking Benchmark

State-of-the-art benchmarking methodologies for spreading
processes on complex networks often rely on the SIR (SIS)
model [40–42]. With this approach, an initial subset of nodes
is infected according to a centrality measure, then the simu-
lation measures how fast surrounding susceptible nodes
become recovered (i.e., including dead). Indeed, if we take
the example of an epidemic, it spreads independently from
other epidemics and has its own temporal evolution. On
the other hand, if we consider opinion between social agents,
it is often exclusive (in regard to other contradicting opin-
ions) and is also dependent on the timing with the spread
of other ideas.

We argue that a SIR model cannot accurately model fluc-
tuations and direct competition between social agents. Also,
as long as the infected nodes survive, they will eventually
tamper with the whole network. Finally, the SIRmodel is sen-
sitive to initial parameters, like infectious probability λ and
recovery duration δ, needing step-wise refinements to obtain
desired results, which may vary easily in other experimental
settings. Alternatively, we find several variants of the SIR
model designed for competitive diffusion processes, such as
the SI1I2S [5], SI1∣2S [6], and SI1SI2S [7] models, but they
are targeting competitive epidemic diffusion.

As a novel, more robust, and more realistic alternative,
we propose the usage of the tolerance-based model [45]
which implies competition between two or more opinion
sources in the same network, at the same time. To the best
of our knowledge, this kind of benchmarking methodology
is novel to literature. Other graph-based predictive diffusion
models [46] include the classic linear threshold LT [47], inde-
pendent cascade IC [48], voter model [49], Axelrod model
[50], and Sznajd model [51]. These models use either fixed
thresholds or thresholds evolving according to simple proba-
bilistic processes that are not driven by the internal state of
the social agents [46]. However, the tolerancemodel is the first
opinion diffusionmodel to propose a truly dynamic threshold
(i.e., a node’s state evolves according to the dynamic interac-
tion patterns). Therefore, based on its novelty and realism
potential, we are encouraged to use the tolerance model in
our paper.

2.1. The Tolerance-Based Opinion DiffusionModel. The toler-
ance model [45] is based on the classic voter model [49],
being a refinement of the stubborn agent model [11, 52], with
the unique addition of a dynamic decision-making threshold,
called tolerance θi, for each node.

We further introduce the specific network science nota-
tions to mathematically define our model. Given a social
network G = V , E , the neighbourhood of node vi ∈ V is
defined as Ni = vj ∣ eij ∈ E . Exemplifying for a context
with two competing opinions, we introduce two disjoint
sets of stubborn agents V0, V1 ∈ V which act as opinion
sources. Stubborn agents never change their opinion, while
all other (regular) agents V \ V0 ∪ V 1 update their opin-
ion based on the opinion of one or more of their direct
neighbours. We represent with xi t the opinion of agent
vi at time t. Normal (regular) agents start with a random
opinion value xi 0 ∈ 0, 1 . We represent with si t the state
of an agent vi at moment t having continuous opinion xi t .
In case of a discrete opinion, representation xi t = si t , and
in case of a continuous opinion, representation si t is given
in the following equation.

si t =

0 if 0 ≤ xi t < 0 5,

none if xi t = 0 5,

1 if 0 5 < xi t ≤ 1

1

In the assumed social network, agents vi and vj are neigh-
bouring nodes if there is an edge eij that connects them. Some
agents may not have an opinion or may not participate in the
diffusion process (i.e., si t = none), so interacting with these
agents will generate no opinion update. A regular node will
periodically poll one random neighbour (simple diffusion)
or all its neighbours (complex diffusion), average the sur-
rounding opinion xNi

t (i.e., vicinity Ni of an arbitrary node
vi, at time point t), and update its opinion xi t using a
weighted combination of the past opinion and that of its
neighbour(s), as

xi t = θi ⋅ xNi
t + 1 − θi ⋅ xi t − 1 2
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The tolerance θi parameter is the amount of accepted
external opinion and changes after each interaction based
on whether a node has faced competing opinion or support-
ing opinion (in a binary context with opinions A and B).
Once a node is in contact with the same opinion for a long
enough time, it becomes intolerant (θi t = 0), so that the
network converges towards a state of balance [53]. Opinion
fluctuates and is transacted by all nodes, but stubborn agents
are the only nodes which do not become influenced in turn,
acting as perpetual sources for the same opinion [11].

The evolution towards both tolerance and intolerance
varies in a nonlinear fashion, as an agent under constant
influence becomes indoctrinated at an increased rate over
time. If that agent faces anopposingopinion, hewill eventually
start to progressively build confidence in the other opinion. As
such, the tolerance model employs a nonlinear fluctuation
function, unlike most models in literature [54, 55]. Based on
realistic sociopsychological considerations in the dynamical
opinion interaction model, we model tolerance evolution as

θi t =
max θi t − 1 − α0ε0, 0 if si t − 1 = sj t ,

min θi t − 1 + α1ε1, 1 , otherwise
3

Tolerance is decreased by −α0ε0 if the state of the agent
before interaction, si t − 1 , is the same as the state of the ran-
domly interacting neighbour sj t . If the states are not iden-
tical (i.e., opposite opinion), then the tolerance will be
increased with the dynamic product of +α1ε1. The two scal-
ing factors, α0 and α1, both initialized with 1, act as weights
(i.e., counters) which are increased to account for every event
in which the initiating agent keeps its old opinion (i.e., toler-
ance decreasing) or changes its old opinion (i.e., tolerance
increasing). Therefore, scaling factor α0 is increased by +1
as long as an agent interacts with another agents having the
same state (i.e., si t − 1 = sj t ) and is reset to 1 otherwise.

Scaling factor α1 is increased as long as the interacting state
is always different from that of the agent and is reset if the
states are identical. We introduced the scaling factors to
model bias and used to increase the magnitude of the two tol-
erance modification ratios ε0 (intolerance modifier weight)
and ε1 (tolerance modifier weight). The two ratios are chosen
with the fixed values of ε0 = 0 002 and ε1 = 0 01. We have
determined these values as explained in [45].

In accordance with this presented mechanism, we des-
ignate two sets of stubborn agents, Va and Vb, to act as
initial spreaders simultaneously. In other words, we let all
chosen centrality metrics compete against each other in a
one-to-one diffusion scenario, where sets Va and Vb con-
sist of the top p% spreaders selected by each two pairs of
centralities. We ensure that Va ∩Vb = 0 and Va = Vb ,
with p = 0 05. We find this approach to offer a good qual-
itative comparison basis for estimating the effectiveness of
node ranking methods.

2.2. Alternate Opinion Assigning Approach. We further find
that most state-of-the-art ranking methods have various
degrees of overlapping in terms of the top spreader nodes
they assign. As such, we introduce an alternate opinion
assigning (AOA) approach in order to distribute nodes in
the two sets of spreaders Va and Vb evenly and equitable
for both ranking methods, say A and B. Figure 2 exemplifies
the AOA approach, where ranking methodA is depicted with
orange and method B is depicted with blue.

AOA means that each one-to-one influence ranking
benchmark consists of two (or multiple of two) independent
simulations. Considering that ranking methods A and B pro-
duce two partially overlapping sets of top p% spreaders, we
alternate the simulations as follows:

(i) In the first simulation, method A (orange) has prior-
ity: one starts by assigning the first (top 1) spreader
from Va as an orange stubborn agent. This implies

Alternate opinion assigning approach to balance propagation odds for both ranking methods ( orangeorange & blue)
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Figure 2: Example of the alternate opinion assigning approach in order to offer both competing ranking methods even chances of
propagation. The coloured nodes marked with indices 1–5 represent the top 5 orange, respectively, blue spreaders, as determined by the
two ranking methods. Moreover, some of these spreaders overlap ((a) e.g., 3/5 means 3rd best orange spreader and 5th best blue
spreader), so we assign each spreader node one of two opinions (orange/blue) alternatively, starting with orange first (b) then blue first (c).
As such, a simulation of orange versus blue ranking methods translates into two independent simulations, slightly favouring each method
in turn. The assigning of opinion is always evenly distributed in terms of number of nodes, for example, 3 spreaders in this example.
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that the spreader remains inVa and is removed from
Vb, if present.

(ii) Then, the first spreader from Vb is assigned as a blue
stubborn agent, removing it from Va, if present.

(iii) Alternatively, we assign nodes alternative opinion
and filter them out from the other list of spreaders.

(iv) The AOA stops when min Va , Vb = p ×N/2
and discards any extra node so that Va = Vb ,
ensuring that both sets Va and Vb have an equal
number of stubborn agents, namely, half of the
desired p ×N spreader population.

(v) In the second simulation, method B (blue) has prior-
ity: one starts by assigning the first (top 1) spreader
from Vb as a blue stubborn agent. This implies that
the spreader remains in Vb and is removed from
Va, if present.

(vi) The exact same AOA process is repeated, with B
having priority over A.

The impact of AOA is highlighted in Figure 2, as we end
up assigning two significantly different spreader sets for
methods A and B. Methodologically speaking, one bench-
mark must consist of at least two simulations, but for better
experimental results, one may run 2k simulations, ensuring
that AOA is applied (i.e., k simulations favouring method A
and k simulations favouring method B).

3. Results

We set out to discover fundamental drivers in the underlying
graph structure which shape and influence opinion spreading
in complex networks. To this end, our experimental setup is
focused on a comparative benchmark analysis involving the
reviewed node centrality metrics defined in Section 5.2. For
an objective comparison, we make use of two types of data-
sets: synthetic data (10,000 node random, mesh, small-world,
and scale-free networks [56]) and real-world data (consisting
of large, representative complex networks sized between 1900
and 29,000 nodes).

In this section, two sets of results are detailed. First,
we explore the correlations between ranking methods for

assigning top spreaders. Naturally, within the top p% of
nodes ranked by different centralities, we will eventually find
common nodes. As such, we detect the amount of node over-
lapping Oab =Va ∩Vb and express the correlation of the two
measures as corrab = Oab / Va and corrab ∈ 0, 1 . For the
second experimental phase of benchmarking influence rank-
ing methods, we ensure that Va ∩ Vb = 0 by alternatively
assigning a node to each set, while removing it from the list
of candidates of the other centrality, as explained by the
AOA approach (Figure 2).

3.1. Correlations between Influence Ranking Methods. Real-
world datasets can be viewed as topological compositions of
the basic graph properties found in synthetic Erdos-Renyi
random (Rand), Forest-fire mesh (Mesh), Watts-Strogatz
small-world (SW), and Barabasi-Albert scale-free (SF) net-
works [56–58], so we solely rely on measurements on the
synthetic datasets from Table 1. As such, the correlation pro-
cess is applied on the four synthetic network types in order to
better highlight distinguishable characteristic topological
features, like uniform node degree distribution (random
networks), high local clustering and community formation
(mesh networks), and high clustering and long-range links
(small-world), respectively, low average path length, and
hub formation (scale-free).

Figure 3 presents the correlations corrab between 10 × 10
selected pairs of centralities; correlations are measured by
considering the following spreader set sizes: Va = Vb =
p ×N , where p ∈ 0 01, 0 05, 0 1 and N is the size of the
graph, and find that corrab will drop slightly as p increases.
The average changes δ in spreader correlations from p = 0 01
up to p = 0 1 are δRand =−0.289, δMesh =−0.193, δSW =−0.189,
and δSF =−0.088. This overall drop in correlation can be
explained as follows: more of the same nodes are determined
as top spreaders by ranking methods when the spreader sets
are small. As p increases, each ranking method adds more
nodes to the set of spreaders and the chances of overlapping
drop. However, when we look at each individual centrality
measure in turn, we notice that some increase the correlation
amount, while others drop that amount. Section 1 and
Figure 1 in the Supplementary Materials detail and discuss
these measurements for 10 selected ranking methods, over
the four synthetic topologies, as p increases.

Table 1: Graph statistics of the eight datasets detailing the number of nodes, edges, average degree ( k ), maximum degree (kmax), average
path length (APL), average clustering coefficient (ACC), and network diameter (Dmt).

Dataset Nodes Edges k kmax APL ACC Dmt
Random (Rand) 10,000 50,122 5.012 26 3.944 0.002 7

Mesh 10,000 53,896 5.39 44 11.51 0.148 30

Small-world (SW) 10,000 39,998 3.99 13 6.738 0.298 12

Scale-free (SF) 10,000 52,260 5.226 102 5.316 0.679 14

OSN 1899 20,296 10.68 339 3.055 0.138 8

Facebook (FB) 3172 94,458 29.78 470 3.714 0.501 10

LGU-emails (Emails) 12,625 20,362 3.226 576 3.811 0.577 9

POK 28,876 115,324 7.98 4305 4.05 0.076 13
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As a representative overview, we present in Figure 3
only the results for p = 0 1. For each centrality combination,
we provide the numerical correlation and a symmetric
graphical correlation. For example, the correlation degree-
Hirsch index in the random network is corrDeg‐HI = 0 576,
which translates into a mid-blue gradient in the table sym-
metric cell HI‐Deg. The last column in the table expresses
the average correlation on each line. Summing up and
averaging the values on the last column, we obtain the

cumulated correlations for each topology as corrRand = 0 552,
corrMesh = 0 497, corrSW = 0 606, and corrSF = 0 741.

Quantitatively and also intuitively, the highest spreader
correlation is obtained on the scale-free network, as it natu-
rally consists of a very small core of hub nodes. These hubs
act like an invariant to p in the topology and are likely to be
selected as top spreaders by all centrality measures. Even if
p is changed, the correlation remains high (see Supplemen-
tary Materials, Section 1). On the opposite spectrum lie the

Rand Avg

0.665
Cls 0.536
Btw 0.639
HITS 0.669
PR 0.666
HI 0.524
LR 0.669
KS 0.101
CLC 0.587
EC 0.587

Mesh Avg

0.609
Cls 0.190
Btw 0.347
HITS 0.629
PR 0.540
HI 0.591
LR 0.616
KS 0.304
CLC 0.584
EC 0.555

SW Avg

0.437
Cls 0.578
Btw 0.693
HITS 0.726
PR 0.721
HI 0.701
LR 0.723
KS 0.122
CLC 0.688
EC 0.665

0.820
Cls 0.734
Btw 0.729
HITS 0.825
PR 0.811
HI 0.804
LR 0.825
KS 0.315
CLC 0.773
EC

Deg Cls Btw HITS PR HI LR KS CLC EC
Deg − 0.480 0.803 0.976 0.968 0.576 0.976 0.128 0.536 0.552

− 0.608 0.488 0.464 0.552 0.472 0.036 0.872 0.856
− 0.824 0.808 0.600 0.808 0.052 0.632 0.624

− 0.976 0.622 0.976 0.092 0.544 0.552
− 0.616 0.976 0.132 0.520 0.536

− 0.618 0.060 0.560 0.536
− 0.132 0.528 0.544

− 0.144 0.136
− 0.952

−

Deg Cls Btw HITS PR HI LR KS CLC EC

Deg Cls Btw HITS PR HI LR KS CLC EC

SF AvgDeg Cls Btw HITS PR HI LR KS CLC EC

Deg − 0.158 0.382 0.882 0.796 0.740 0.890 0.304 0.686 0.648
− 0.328 0.178 0.120 0.178 0.156 0.208 0.200 0.190

− 0.418 0.336 0.366 0.386 0.234 0.362 0.318
− 0.814 0.780 0.928 0.308 0.704 0.652

− 0.628 0.874 0.222 0.558 0.516
− 0.752 0.350 0.784 0.746

− 0.278 0.664 0.620
− 0.412 0.424

− 0.886
−

Deg − 0.356 0.450 0.530 0.528 0.506 0.534 0.190 0.422 0.424
− 0.730 0.612 0.602 0.602 0.604 0.122 0.796 0.778

− 0.836 0.826 0.798 0.828 0.118 0.862 0.794
− 0.990 0.934 0.992 0.110 0.786 0.750

− 0.928 0.994 0.110 0.776 0.740
− 0.930 0.112 0.766 0.740

− 0.110 0.778 0.742
− 0.112 0.116

− 0.902
−

Deg − 0.746 0.783 0.937 0.921 0.878 0.937 0.349 0.825 0.847
− 0.730 0.762 0.746 0.788 0.762 0.349 0.873 0.852

− 0.810 0.836 0.751 0.810 0.349 0.746 0.751
− 0.958 0.894 1.0 0.349 0.847 0.873

− 0.868 0.958 0.349 0.820 0.847
− 0.894 0.360 0.878 0.926

− 0.349 0.847 0.873
− 0.185 0.196

−

− 0.942
− 0.789

Figure 3: Ratio of nodes overlapping in the top 10% (N = 10K nodes) of spreader assignment by 10 centrality metrics (degree, closeness,
betweenness, HITS, PageRank, Hirsch index, LeaderRank, k-shell, local centrality, and eigenvector centrality) in an Erdos-Renyi (Rand)
random network, mesh network, small-world (SW), and scale-free (SF) network. The blue colour intensity of a cell corresponds to
the strength of correlation found in the symmetric cell, that is, cellcolour i, j ~cellvalue j, i . A stronger blue intensity denotes a
stronger correlation.
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random and mesh topologies. Both are characterized by uni-
formity in node properties, so that various centralities will
have a higher heterogeneity in their top spreader selection,
leading to the smaller measured correlations. Lastly, the
small-world network borrows the uniformity of meshes and
the long-range links of a random network. Here, we measure
a relatively high average correlation of 0.606, denoting that
this network has a stable core of influential nodes, like the
scale-free network.

Analysing each centrality in turn, we notice that there are
higher correlations between ranking methods of the same
category, for example, diffusion-based HITS, PageRank, and
LeaderRank. Furthermore, some centralities are more suit-
able for some topologies and less efficient for others. For
example, we confirm that degree is considerably more rele-
vant for scale-free networks (correlation of 0.802 with other
centralities), but only marginally relevant for the small-
world network (correlation of 0.437). The same observation
is consistent with closeness and betweenness. To better high-
light the spatial overlapping of spreader nodes, we provide a
visual example in the Supplementary Materials, Section 2.

Arching over the presented results, we motivate the usage
of alternate opinion assigning (AOA), because we find high
node overlapping, ranging between 30% and70%, between
all state-of-the-art centralities.

3.2. Independent SIR Simulations. For a comparative basis,
we first estimate the efficiency of an influence ranking
method by employing classic SIR simulation [41, 42]. In this
sense, we measure both the time needed to infect the majority
of nodes (expressed in simulation iterations τ) and the final
coverage of the infection (expressed as a percentage ρ of the
total network size). We use the following SIR-specific param-
eter values [40, 41]: p = 0 05 (i.e., top 5% nodes selected as
spreaders), k = 0 95 (i.e., at least 95% population to be
infected as a stop condition), λ = 0 05 (i.e., 5% probability
to become infected during an interaction), and δ = 10
(i.e., 10 iteration duration of infectious state for a node).

The simulation results in Table 2 represent averaged
values for τ and ρ by running 10 repeated simulations on
each dataset, for each individual ranking method (i.e., amas-
sing to a total of 10 ⋅ 8 ⋅ 10 = 800 simulations). Through these
results, we want to highlight that running a diffusion process
for each ranking method in an individualmanner (i.e., one by
one), the provided feedback regarding ranking efficiency, is
often limited.

The results for most topologies are very close in terms of
measured τ and ρ, suggesting that differentiation between
ranking methods is unreliable. For instance, analysing the
coverages ρ in Table 2, the average coverage for Rand is
ρRand = 95 47% with a standard deviation of only σRand =
0 082. The measured difference Δ between the most efficient
ranking method (Hirsch index) and least efficient ranking
method (degree) is only ΔRand = 0 3% on the Rand network.
Similarly, the standard deviations σ for real-world networks
are σOSN = 0 214, σFB = 0 042, σEmails = 0 230, and σPOK =
0 273. The differences Δ between the most and least efficient
ranking methods are roughly ΔOSN = 1 4%, ΔFB = 0 4%,
ΔEmails = 2%, and ΔPOK = 5 5%. For a visual representation

of the coverage ρ benchmark results refer to Supplementary
Materials, Section 4.

We consider these simulation results to highlight an
overall lack of perspective regarding which ranking method
is better on a given topology. Likewise, the best ranking
methods are not consistent across datasets. For instance,
HITS turns out to be the most efficient ranking method on
a SW, but the least efficient on a SF network; Deg is least effi-
cient on Rand, 2nd on Mesh, 7th on SW, and 6th on SF, yet it
comes 8th if we average all results; Btw is the 5th on OSN, 4th
on FB, 5th on Emails, and 3rd on POK, and comes 3rd over-
all. This kind of inconsistency further supports our claims for
an improved type of benchmarking methodology.

3.3. Competition-Based Simulations.We let each of the n = 10
selected centrality measures compete in a one-to-one sce-
nario over the 4 synthetic and 4 real-world datasets. Every
dataset comprises a total of n × n − 1 /2 = 45 pairs of simu-
lations, translating into 2 × 45 = 90 individual simulations
due to AOA. For statistical rigour, each experiment is
repeated 10 times, consisting of a simulation batch of 20 sim-
ulations, leading to 45 × 20 = 900 simulations per dataset,
amassing to an overall 8 × 900 = 7200 unique experiments.
The large quantity of numerical results is available in the
Supplementary Materials, Section 3 and Tables 1 and 2.

Table 2: Performance of ranking methods expressed as the time τ
needed to infest a network (lower is better) and the final coverage
ρ, expressed as a percentage of the network size (higher is better),
using SIR benchmarking.

Rand Mesh SW SF OSN FB Emails POK

Time τ

Deg 30.1 40.7 115.3 69.2 31.4 24.7 36.1 64.6

Cls 30.4 54.7 116.2 78.2 32.5 25.1 43.7 66.8

Btw 30.3 51.1 116.4 65.2 32.8 23.9 35.2 62.2

HITS 30.4 43.0 118.2 68.0 32.8 24.5 35.8 61.5

PR 30.2 39.7 117.0 71.9 33.2 26.7 35.3 68.5

HI 30.8 47.1 115.0 69.0 31.8 25.1 34.2 66.8

LR 30.1 41.7 119.1 73.4 33.0 24.6 37.0 62.5

KS 30.1 52.3 117.6 71.0 33.6 26.6 36.9 64.5

CLC 30.4 47.9 121.2 71.2 31.2 26.5 37.0 63.2

EC 30.1 49.2 123.1 73.0 32.6 24.9 36.6 64.9

Cov ρ

Deg 95.31 95.11 80.83 48.77 79.59 95.31 46.92 57.49

Cls 95.42 95.06 80.72 49.58 79.96 95.17 47.42 57.33

Btw 95.51 95.07 80.92 48.91 79.58 95.29 46.91 57.91

HITS 95.54 95.08 81.90 47.95 79.55 95.31 46.86 57.31

PR 95.48 95.09 81.60 48.77 79.35 95.28 47.04 57.67

HI 95.61 95.09 81.75 48.47 79.17 95.28 46.68 57.98

LR 95.50 95.05 80.59 48.78 79.37 95.28 47.01 57.31

KS 95.53 95.05 81.12 48.41 79.58 95.23 46.67 57.68

CLC 95.43 95.11 80.64 49.05 79.60 95.29 46.69 57.79

EC 95.44 95.11 81.03 48.10 79.70 95.25 46.73 57.99
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Condensing the simulation results, we present in Table 3
the average performance of the 10 ranking methods on the 8
datasets. This performance is quantified as an average per-
centage of opinion coverage obtained from the one-to-one
competition benchmarks (e.g., HITS obtains a coverage of
65.23% on the OSN dataset).

Similar to the state-of-the-art SIR epidemic bench-
marking, our obtained results are easy to understand and
offer the possibility of direct comparison between ranking
methods on the same dataset. On the other hand, we
notice two improvements by applying our methodology:

(1) There is much higher variation between measures on
the same dataset. For example, on the FB dataset, we
obtain Deg = 59 31% and Cls = 4 28%, which suggest
an obvious performance difference. On the other
hand, using SIR as benchmark, the coverages are
ρDeg = 95 31% and ρCls = 95 17%.

(2) There is greater emergent granularity between mea-
sures on different datasets. For example, Cls turns
out to be much less efficient on a SF topology
(1.99%) than on a SW topology (18.37%).

Assessing the results in Table 3, we find an objective com-
parison of state-of-the-art ranking methods used in current
social networks research. Figure 4 presents these cumulated
performance indicators; the top three ranking methods,
according to our original proposed methodology, are Leader-
Rank (LR), HITS, and node degree (Deg).

The cumulated results in Figure 4 are based solely on the
8 datasets used throughout the paper. With more datasets
used, the averaged performances will slightly differ. However,
valuable insight is further offered by the visualization of per-
formances on each dataset in turn; these results are detailed
in the Supplementary Materials, Section 5.

Additionally, we provide a suggestive visual example of
the opinion coverages at the end of a simulation, after balan-
cing is attained [53] with our used tolerance diffusion model
[45]. The Mesh topology is exemplified here because it offers

the most intuitive 2D spatial feedback after applying a force-
directed layout. To this end, Figure 5 shows the coverage of
competing centrality measures in three different scenarios:

(i) Two ranking methods with high overlapping and
balanced outcome: Deg (orange) 56.70% and LR
(blue) 43.30% (Figure 5(a)).

(ii) Two ranking methods with moderate overlapping
and inefficient seed selection for one method
(Btw): LR (orange) 74.26% and Btw (blue) 25.74%
(Figure 5(b)).

(iii) Two ranking methods with low overlapping and
extreme outcome: Cls (orange) 5.24% and HI (blue)
94.76% (Figure 5(c)).

The validation of our novel benchmarking methodology
employs a standard strategy for the selection of multiple
spreaders. After a review of the most recent advances in com-
plex network analysis, we find that the method of simply
selecting the top spreaders from the entire network is con-
sistently found throughout literature [35, 37, 38, 59–62].
Nevertheless, there are several alternatives for selecting
multiple spreaders which we detail in the Supplementary
Materials, Section 6.

3.4. Comparison between Benchmarking Methods. To high-
light the superior quantitative power of our competition-
based benchmark, we aggregate the results in Table 4. Here,
we measure the difference Δmin−max between the most and
least efficient ranking methods and the difference Δ1−2
between the top two ranking methods, for each dataset in
turn. Seeking higher overall differences, we find that our
proposed benchmarking methodology is more insightful,
in general, than the classic SIR benchmark. As such, when
measuring Δmin−max, individual SIR benchmarking only
manages to produce differences of ≈0 06 − 1 59% (1.14%
on average) between ranking methods, while our proposed
solution offers differences of ≈80 − 98% (91% on average).
When trying to discern between the top 2 ranking methods
on a particular dataset, SIR manages to place them apart by
only ≈0 − 1 07% (0.31% on average), while our method man-
ages to produce higher differences within ≈0 28 − 8 75%
(3.56% on average).

Another advantage of our proposed method is the over-
all uniformity obtained for the performances of each central-
ity across the 8 selected datasets. For instance, if LR and
HITS result as the most efficient spreading methods on
one topology, their performance is replicated with high con-
fidence on the other topologies as well. When employing SIR
benchmarking, the performances are not consistent across
datasets. This aspect is suggested visually in Figure 6, where
we highlight the most (LR) and least (Cls) efficient centrali-
ties, as they are ranked over the 8 datasets. It is easy to notice
how LR is positioned in the top 3 and Cls in the last 2-3
methods overall. In the individual SIR benchmarking, there
is no such uniformity.

In conclusion, our benchmarking methodology—which
is specifically designed for the competitive social network

Table 3: Average performance of the 10 ranking methods on the 8
datasets. Performance is expressed as opinion coverage (%)
obtained in the one-to-one opinion diffusion competitions with
every other ranking method.

Rand Mesh SW SF OSN FB Emails POK

Deg 66.18 71.26 68.94 61.71 52.76 56.18 63.52 63.28

Cls 23.02 5.47 11.39 1.83 2.55 11.49 2.40 45.78

Btw 66.15 42.93 56.96 62.78 40.37 57.51 58.33 58.27

HITS 66.28 69.32 76.92 61.63 64.42 62.10 63.56 63.09

PR 77.16 65.35 71.93 55.74 41.08 55.99 63.55 63.94

HI 12.13 52.82 33.25 54.72 24.23 41.36 39.60 36.30

LR 76.95 67.57 66.72 61.53 64.39 68.06 63.97 66.87

KS 0.99 39.65 37.87 45.89 28.77 28.87 42.07 13.33

CLC 33.93 52.36 60.24 26.99 44.74 55.91 48.43 48.01

EC 23.12 32.96 39.43 43.09 62.83 44.54 51.49 32.27
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context—provides significantquantitative separationbetween
influence ranking methods on synthetic and real social
network topologies. This numerical separation is over one
order of magnitude greater than the one provided by classic
SIR simulation—a standard methodology used in epidemic
spreading, where the diffusion context is less competitive and
more ego-centred. Therefore, we encourage the use of our pro-
posed method in specific real-world applications of dynamic
social networks.

4. Discussion

One of the significant research challenges in network science
is to rank a node’s ability to spread information in a network
[43]. As spreading is used to model real-world processes such
as epidemic contagion and information propagation [2, 3, 20,
22, 63], our paper aims to improve current methodology in
validating and comparing state-of-the-art ranking methods
in the social network context. Numerous alternative ranking
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Figure 4: Coverage performance (0–100%) of each ranking method cumulated over all synthetic, respectively, all real-world datasets.

Degree-LeaderRank
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LeaderRank-Betweenness

(b)

Closeness-Hirsch index

(c)

Figure 5: Three opinion diffusion benchmarks highlighting the final opinion coverage over the Mesh dataset (N = 10,000). Orange nodes are
influenced more by the first ranking method, and blue nodes are influenced more by the second ranking method; whiter nodes are closer to
indecision (50%); larger nodes represent seeders (1% of N).

Table 4: Comparison between individual SIR and our simultaneous competition-based benchmark in terms of how well ranking methods are
differentiated. Δmin−max is the difference (%) between the most and least efficient ranking methods; Δ1−2 is the difference (%) between the top 2
ranking methods on each dataset. Higher differences are better.

(%) Rand Mesh SW SF OSN FB Emails POK

SIR Δmin−max 0.31 0.06 1.59 3.28 0.99 0.15 1.58 1.17

Competition Δmin−max 98.72 92.32 85.19 97.09 96.05 83.12 96.25 80.07

SIR Δ1−2 0.07 0.00 0.18 1.07 0.33 0.00 0.80 0.02

Competition Δ1−2 0.28 2.73 6.5 1.72 2.46 8.76 0.71 5.37
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methods have been developed, relying on classic graph cen-
tralities, localized targets [63], optimal percolation [43], and
so on.While the challenge at hand remains partially unsolved,
it is argued that insights are uncovered only through the opti-
mal collective interplay of all the influencers in a network [43].
This emergent behaviour is also the key to our study, namely,
the introduction of a benchmarking technique employing
simultaneous competition-based spreading.

The main motivation of this paper is the need for
increased realism in the social network context, where real-
world applications imply simultaneous diffusion by their
nature. Nevertheless, our methodology may be tailored to
other interdisciplinary fields of science. One area of research
that can benefit directly from our methodology is network
biology. Specifically, determining node centrality is a hot
topic in biological networks. For instance, a study shows that
the phenotypic consequence of a single gene deletion is
determined by the topological position in the molecular
interaction network [64]; also, the relationship between the
network roles of disease genes and their tolerance to germs
shows that cancer driver genes occupy the most central posi-
tions [65]. Many biological studies rely on the theoretical
results from network science, and they often only employ
degree and betweenness centrality in their analysis. With
our study, we aim to broaden the methodological perspective
for interdisciplinary fields.

We find advantages over existing benchmarking method-
ology relying on the SIR epidemic model. Notably, our
competition-based method offers much greater quantitative
separation between ranking methods on the same dataset
(e.g., degree is roughly 14 times more performant than close-
ness on the Facebook dataset); also, we obtain higher granu-
larity for a ranking method on different datasets (e.g.,
closeness is roughly 9 times less efficient on a scale-free topol-
ogy than on a small-world topology).

Further development ideas of our method are possible.
For instance, one can increase the number of spreaders acting
simultaneously in a network from 2 to k > 2. Accordingly,
alternate opinion assigning (AOA) must be modified to fit
the k opinion sources. The recent study discusses the impor-
tance of targeting specific localized targets, rather than
obtaining a high coverage of the network [63]. Our method
can be easily implemented to measure the target coverage
during or at the end of a spreading simulation. Another study

finds that each complex network may have a small “control
set” of nodes, which, when triggered, will influence the whole
network [66]. These control sets are believed to be surpris-
ingly small (5–10% of nodes) and may also be paired with
our benchmarking methodology.

Finally, we consider that the topology-aggregated
competition-based results we obtained (e.g., in Figure 4 of
the Supplementary Materials) can be used to define a func-
tional fingerprint of real-world networks based on how influ-
ence ranking methods perform on them. Namely, we notice
that the 10 used centrality measures perform in a unique, dis-
tinguishable manner on the four fundamental synthetic
topologymodels. This uniqueness can be quantified as a char-
acteristic vector for random, mesh, small-world, and scale-
free networks. Any real-world dataset can then be compared
to other datasets through these four fingerprint vectors. Over-
all, we believe that our work improves a significant challenge
in the study of opinion spreading phenomena and also serves
as a good starting point for many of the still unsolved prob-
lems and new ideas found in literature.

5. Methods

5.1. Validation Datasets. We motivate the inclusion of syn-
thetic datasets into the study to clearly distinguish between
characteristic topological features of the network that influ-
ences spreading. These features include a normal versus
power-law degree distribution, lower versus higher clustering,
lower versus normal path lengths, existence of long-range
links, or hub formation, respectively. The four chosen net-
work models represent the four fundamental topology types
out of which empirical networks are further built [26, 56, 57].

With a higher interest on influence spreading pertaining
to the field of social network analysis, we choose four undi-
rected (weighted and unweighted) networks consisting of
various types of social relationships. As such, we rely on a
weighted online social network (OSN) with 1899 users [67],
an unweighted Facebook friendship network (FB) consisting
of the 3172 students from a Computer Science faculty in
Romania [68], an unweighted email exchange network
(Emails) from London’s Global University with 12,625 con-
tacts [69], and a weighted friendship network (POK) with
28,876 users from the Slovakian POK platform [70]. On the
other hand, all synthetic networks consist of 10,000 nodes
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Figure 6: Visual representation of the uniformity in benchmarking influence ranking methods across different networks. We highlight the
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after benchmarking. For example, LR is the 5th best on random and 10th best on Mesh.
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and are algorithmically generated using default parameters
found in the state of the art. Table 1 provides the basic statis-
tics for each such network.

5.2. Influence Ranking Methods. In order to define each cen-
trality metric, we make use of the following graph theory-
specific notations. A social network is a graph G = V , E
formed out of V number of nodes and E number of edges.
The edges may also be directed (i.e., eij ≠ eji) or weighted
(i.e., they have weights wij). The connectivity of the graph is
characterized by an adjacency matrix A = aij , where aij = 1
(or wij in weighted context) if nodes vi and vj are connected
and 0 otherwise. Furthermore, the degree of a node vi is
denoted as ki, the neighbourhood of a node is the set of nodes
vj ∈Ni, and the average degree ofG is k = 2E/V .

The reviewed measures considered for benchmarking in
this paper are classified in one of three categories: struc-
ture-based, location-based, and diffusion-based rankings.

5.2.1. Structure-Based Measures. Structure-based measures
require the topological information of the graph—either local
(e.g., ego network, vicinity) or global (e.g., path-based).
Under local measures, we first mention degree centrality
(Deg) ki of a node vi; it is easy to use and efficient but less rel-
evant in some real-world scenarios [34, 38], as some studies
show that Deg fails to identify influential nodes because it is
limited to the ego network of each node [34, 71].

The local centrality (LC) measure was introduced as a
trade-off between the low-relevant degree centrality and
other time-consuming measures [34]. LC of node vi con-
siders both the nearest and the next nearest neighbours and
is defined as

LC vi = 〠
v j∈Ni

Q vj ,

Q vj = 〠
vk∈N j

N vk ,
4

where Ni is the vicinity (set of neighbours) of node vi, N vk
is the number of the nearest and the next nearest neighbours
of node vk, and Q vj is sum of N vk over each node in Ni.
LC can be considered as more effective than degree centrality
because it uses more information from the vicinity of dis-
tance 2 but has much lower computational complexity than
betweenness and closeness centralities.

Another method considered a local ranking measure is
ClusterRank (CR), proposed by Chen et al. [35]. CR quan-
tifies the influence of a node vi by taking into account not
only its direct influence (out-degree kouti ) and influences of
its neighbours (like in the case of PageRank) but also its clus-
tering coefficient ci [56]. Formally, the ClusterRank score C
R vi of a node vi is defined as

CR vi = f ci 〠
vj∈Ni

kouti + 1 , 5

where the term f ci represents the effect of vi’s local cluster-
ing, the term +1 results from the contribution of vj itself, and

Ni is the vicinity of node vi. Based on empirical analysis [35],
the authors propose the exponential function f ci = 10−ci .

The local centrality with a coefficient, denoted as CLC
by Zhao et al. [71], is a combination of the previous CR
and LC methods. The number of neighbouring nodes is
measured to identify cluster centres and is combined with
a decreasing function f for the local clustering coefficient
of nodes, called the coefficient of local centrality c vi ,
namely, f c vi = e−c vi . Mathematically, the influence of
node vi is measured as

CLC vi = f c vi ⋅ LC vi 6

Considering the global information of the graph can
give better insights, so we adopt the widely used between-
ness (Btw) and closeness (Cls) centralities [56]. Between-
ness of a node vi is expressed as the fraction of shortest
paths between node pairs that pass through the node vi
and is defined as [26]

Btw vi = 〠
i≠j≠k∈G

σjk vi
σjk

, 7

where σjk is the number of shortest paths between nodes vj
and vk and σjk vi denotes the number of shortest paths
between vj and vk which pass through node vi.

Closeness centrality of a node vi is defined as the inverse
of the sum of distances to all other nodes in G; it can be con-
sidered as a measure of how long it will take to spread infor-
mation from a given node to other reachable nodes in the
network [56]:

Cls vi = 〠
vj∈G\vi

d vi, vj

−1

8

5.2.2. Location-Based Measures. Location-based measures
also require the structural information of the graph but focus
around the belief that the location of a node in a network is a
more relevant. Driven by the limitations of simple graph
metrics, such as degree centrality, Kitsak et al. propose k-core
decomposition to quantify a node’s influence based on the
assumption that nodes in the same shell have similar influ-
ence, and nodes in higher-level shells are likely to infect
more nodes [28]. To this end, the k-core decomposition
method was validated by several studies [28, 29]. While this
method is often found in literature under both the names of
k-core or k-shell decomposition, the two concepts differ. The
k-core of a graph is the maximal subgraph such that every
vertex has degree at least k. A k-shell (KS), on the other
hand, is the set of vertices that are part of the k-core but
not part of the k + 1 th-core.

Experiments show that by running a diffusion process on
the network (e.g., SIR), the nodes with the same ks values
always have different number of infected nodes, namely,
spreading influence [32]. This phenomenon suggests that
the k-core decomposition method is not appropriate for
ranking the global spreading influence of a network. Liu
et al. [32] propose to solve this observed drawback by taking
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into account the shortest distance between a target node and
the node set with the highest k-core value. In terms of the dis-
tance from a target node vi to the network core Gc, the
spreading influences of the nodes with the same k-core values
can be distinguished using the following equation:

θ vi ks = kmax
s − ks + 1 〠

v j∈Gc

dij, i ∈Gks 9

In (9), kmax
s is the largest k-core value ofG,dij is the shortest

distance from node vi to node vj ∈ Gc, Gc is the network core,
andGks

is the node set whose k-core values equal ks.
In this paper, we also make use of the Hirsch index.

The h-index (HI) [72] is a hybrid location-local-based cen-
trality in which every node needs only a few pieces of
information: the degrees of its neighbours. It was origi-
nally developed as a means to measure the scientific
impact of scholars, but it now finds uses in quantifying
the influence of users in social networks or drugs in phar-
macological interaction maps. The h-index of a node vi is
defined as the largest value h so that vi has at least h
neighbours with a degree ≥h.

The algorithm is intuitive to apply, namely, for a
node vi with vicinity Ni, we order all its neighbours vj ∈Ni

in descending order of their degree kvj . The h-index HI vi
is the position h − 1 in the ordered list of nodes at which
the degree of a neighbour becomes smaller than the posi-
tion in the list. For example, given the list of degrees L
vi = 10, 8, 7, 6, 3, 1, 1 , we deduce HI vi = 4, because L
vi 4 > 4, but L vi 5 < 5.

5.2.3. Diffusion-Based Measures. Diffusion-based measures
are based on obtaining a state of balance in the network after
applying a nondeterministic spreading processes, like a
random walk. We make use of the fundamental eigenvec-
tor centrality (EC), which supposes that the influence of a
node is not only determined by the number of its neigh-
bours (i.e., degree centrality) but also by the influence of
each neighbour [73]. Inspired by EC, there are three addi-
tional algorithms we discuss in this paper.

PageRank (PR) was first implemented as a random walk
on the network of hyperlinks between web pages [74]. A
damping factor d is introduced as the probability for a user
to jump to a random website, and 1 − d is the probability
for the user to continue browsing through hyperlinks. The
influence st vi of a node vi at time t is given by

PR vi =
1 − d
V

+ d 〠
vj∈G

PR vj
koutj

, 10

where V is the number of nodes in G, koutj is the out-degree
of node vj, and d = 0 85, but d requires step-wise optimiza-
tion based on the network.

HITS is similar to PR, based on the concept that good
hub nodes will point to good authority nodes, and good
authorities will point by good hubs [75]. The hub score of

all nodes at time t = 0 is initialized with 1; the authority score
Autt vi , at any moment in time t, is expressed as

Autt vi = 〠
v j∈G

aji ⋅Hubt−1 vj ,

Hubt vi = 〠
v j∈G

aji ⋅Autt vj
11

Finally, the LeaderRank (LR) algorithm represents an
improvement over PR, since the probability parameter is
adaptive, leading to a parameter-free algorithm directly
applicable on any type of the complex network [37]. The
method is applied by adding an additional ground node vg
that is connected to all other nodes, ensuring the graph is
connected. A random walk then adds a score of +1 to each
visited node vi. The ground node starts with sg 0 = 0, and
all other nodes in G have si 0 = 1. Using the notation st vi
at time t for a node vi, the evolving score can be expressed as

st+1 vi = 〠
vj∈G

pijst vj = 〠
vj∈G

aij
kouti

st vj 12

The score st vi is proven to converge towards a steady
state at time tc [37]; the score of the ground node is then
evenly distributed to all other nodes V ∈G to conserve the
scores on the nodes of interest. The final, stable LR score is
expressed as

LR vi = stc vi +
stc vg
V

13
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Figure 1: changes in correlation of node overlapping, for the
10 analysed ranking methods, as the spreader size p is
increased from 1% to 10% of the total network size N . Each
synthetic network has N = 10,000 nodes. Figure 2: spatial dis-
tribution of selected spreader nodes on the mesh network
with N = 10,000 nodes. The top p = 1% nodes are highlighted
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as spreaders, as determined by the degree, closeness,
betweenness, and PageRank centralities, respectively. Table
1: synthetic dataset (i.e., random, mesh, small-world, and
scale-free) benchmark results for pair-wise competition
between centrality measures. Each cell (x, y) contains the
final opinion coverage (0–100%) for centrality x; the sym-
metric cell (y, x) represents the same number on a colour
gradient blue (0%), white (50%), and orange (100%). Table
2: real-world dataset benchmark results for pair-wise com-
petition between centrality measures. Each cell (x, y) contains
the final opinion coverage (0–100%) for centrality x; the sym-
metric cell (y, x) represents the same number on a col-
our gradient blue (0%), white (50%), and orange (100%).
Figure 3: performance of each ranking method (i.e., cov-
erage 0–100%) on the 8 datasets using individual SIR
benchmarking. Figure 4: performance of each ranking
method (i.e., coverage 0–100%) on the 8 datasets using
simultaneous competition-based benchmarking. Figure 5:
comparison between the naïve (a–c) and graph colouring
(d–f) methods using three competitive diffusion examples
on the mesh network (N = 10,000 nodes). Larger nodes rep-
resent spreader nodes. The first centrality in the figure cap-
tions corresponds to orange opinion and the second
centrality to blue opinion. Figure 6: difference in spreader
spacing for closeness (orange) when switching from the naïve
method (a) to the graph colouring method (b). Table 3: com-
parison between the naïve and graph colouring methods in
terms of selecting spreader nodes. Performance is expressed
as percentage (%) for each node centrality in three competi-
tive simulation scenarios. (Supplementary Materials)
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