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Abstract

This chapter argues that quantum indeterminacy can be construed
as a merely derivative phenomenon. The possibility of merely deriva-
tive quantum indeterminacy undermines both a recent argument against
quantum indeterminacy due to David Glick, and an argument against
the possibility of merely derivative indeterminacy due to Elizabeth
Barnes.
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1 Introduction

It is a near platitude that a sizable part of our utterances are indeterminate
in truth value.! Because the shirt I am wearing is a shade lying somewhere
between green and blue, my utterance of ‘this shirt is green’ is not quite
true, but not false either. And when asked where I live in my hometown, I
say ‘near the historical center’ mainly because everyone knows where it is,
and not because I live particularly close to the historical center, although I
do not live far from it, either.

In the last century, the philosophical consensus used to be that inde-
terminacy can only originate in the way we represent the world, never in
the nonrepresentational world. Russell [33, p. 85] wrote that “apart from
representation, whether cognitive or mechanical, there can be such thing as
vagueness or precision: things are what they are.” Dummett [19, p. 314]
would go as far as to claim that “the notion that things might actually

*Preprint.
!That near platitude has been nevertheless denied by those who recommend an epis-
temicist understanding of vagueness (Williamson [43]).



be vague, as well as being vaguely described, is not properly intelligible.”
Likewise, according to Lewis [26, p. 212] “the only intelligible account of
vagueness locates it in our thought and language. The reason it’s vague
where the outback begins is not that there’s this thing, the outback, with
imprecise borders; rather there are many things, with different borders, and
nobody has been fool enough to try to enforce a choice of one of them as
the official referent of the word ‘outback’.”

Rhetoric aside, however, little has been provided in the way of argu-
ments against the notion of indeterminacy in the world, aka metaphysical
indeterminacy (MI). Sure, Evans [21] and Salmon [34, p. 338] have offered
a clever and terse disproofs of the possibility of vague objects. But the
Evans-Salmon line of argument only shows that an object cannot have in-
determinate de re identity—it does not rule out objects that are vague in
other respects,? nor does it rule out ways for reality to display indetermi-
nacy that do not involve any vague objects. And although Williamson [44]
has provided a general argument against de re indeterminacy, his conclusion
rests on the specific limitations of his model theory of choice, rather than
on any substantive metaphysical considerations.

My diagnosis is that what kept philosophers from buying into MI was the
lack of suitable concepts that would allow them to theorize about it, rather
than any specific argument.? The general attitude has indeed changed to
some degree now that a number of characterizations of MI have been put
forward, as in Akiba [2], Barnes & Williams [7], Darby & Pickup [17], Smith
& Rosen [37], Torza [40], and Wilson [45].

Potential manifestations of MI include (i) the ‘fuzzy’ objects of the
macroscopic world, such as clouds, mountains and persons; (ii) future con-
tingents and the open future; and (iii) quantum indeterminacy. Putative
instances of iii include (iii.a) the failure of value definiteness of quantum
observables; (iii.b) the vague identity of quantum objects; and (iii.c) the
count indeterminacy arising in quantum field theory. Although a good part
of what I will be saying is the result of general features of my favorite way
of understanding MI, the focus of this chapter will be on iii.a.

The failure of value definiteness is a typically quantum-mechanical phe-
nomenon whereby a system fails to have any determinate value of an ob-
servable at a time. Given the eigenstate-eigenvalue link, the failure of value
definiteness follows from the fact that a quantum state which is a superpo-

2For example, it has been argued that objects can have indeterminate coincidence
(Akiba [1]), and indeterminate distinctness (Akiba [3]).
3Barnes [4] has drawn a similar moral.



sition of eigenstates of an observable is in general not an eigenstate of that
same observable.* For example, a particle in a superposition of position
states has no determinate value of position. Although the interpretative
details may differ depending on the philosophical methodology being em-
ployed, there appears to be a growing consensus that the failure of value
definiteness constitutes evidence of MI (see Bokulich [9], Calosi & Mariani
[10] [11], Calosi & Wilson [12] [13], Darby [16], Darby & Pickup [17], Fletcher
& Taylor [23], Mariani [28], Skow [36], Torza [39] [40]).

A dissenting voice is Glick [25], who has argued that no evidence of MI
is to be found in quantum theory. His overarching argument is as follows:

1. Orthodox quantum theory provides no evidence of fundamental MI.

2. The main realist interpretations of quantum theory provide no evi-
dence of fundamental MI.

3. Therefore, the main interpretations of quantum theory provide no ev-
idence of fundamental MI (from 1, 2).

4. MI cannot be derivative.

5. Therefore, the main interpretations of quantum theory provide no ev-
idence of MI (from 3, 4).

A comprehensive assessment of Glick’s argument lies outside the scope of
this work (see Calosi & Mariani [10], Calosi & Wilson [13] for criticism). I
am going to focus my attention on the thesis of line 4.

Glick’s belief that there is no derivative MI can be evinced from the fol-
lowing passage, in which he argues that the failure of value definiteness does
not bring about MI, if observables are derivative entities: “If, by contrast,
one took the properties to be ontologically derivative and quantum states
to be fundamental, there would be little room for metaphysical indetermi-
nacy. [...] Any indeterminacy would occur at the non-fundamental level
and hence may be viewed as eliminable” (p. 206, my emphasis).

But as already noted elsewhere, derivative does not amount to elim-
inable. We can all agree that tables are derivative entities (whatever ‘deriva-
tive’ means), while retaining our belief in the existence of tables. Indeed,

4The eigenstate-eigenvalue link, a postulate of so-called ‘orthodox’ quantum mechanics
(Gilton [24]), states that a system has property O with value X iff the quantum state of
the system is in an eigenstate of the associated operator O with eigenvalue \. It is worth
mentioning that the orthodoxy of the eigenstate-eigenvalue link has been challenged by
Wallace [42]. For discussion of the eigenstate-eigenvalue link vis-d-vis quantum indeter-
minacy, see Calosi & Wilson [12], Fletcher & Taylor [23].



the unpopularity of revisionist ontological doctrines, such as mereological
nihilism, is partly explained by the fact that they demand us to give up
on the existence of the medium-sized dry goods of naive physics. Perhaps
Glick thinks that although not everything which is derivative is eliminable,
some things are, and MI is one such thing. If that is the underlying thought,
however, we have not been given any arguments.

Here is a different line of reasoning that could be pursued on Glick’s
behalf. In lieu of 4, one could think that there is derivative MI only if there
is fundamental MI—in other words:

4*. MI cannot be merely derivative.

By substituting 4* for 4 in the argument, Glick can still draw his con-
clusion. For if we have reason to reject fundamental MI, and if lack of
fundamental MI entails lack of derivative MI, we have reason to reject MI,
period. Interestingly, Barnes [5] has offered a defense of 4*. If her disproof
of merely derivative MI turns out to be conclusive, Glick could piggyback
on that.

I make two claims: Barnes’ argument for 4* is invalid; and, given my
preferred characterization of MI, 4* is false. In this paper I will defend both
claims, and conclude that for all we know merely derivative MI arises in
quantum physics.

2 Metaphysical indeterminacy

As observed in the previous section, run-of-the-mill indeterminacy originates
in the way we represent reality. According to the standard account, represen-
tational indeterminacy is semantic in character: it is rooted in the meaning
of particular subsentential expressions, such as predicates and names. The
go-to semantic theory of indeterminacy is the supervaluationism of Fine
[22], which characterizes a term as indeterminate just in case its meaning
is compatible with different precisifications, that is to say, with different as-
signments of extensions in actuality.® A sentence is said to be indeterminate
in truth vaelue just in case it is true on some precisifications, and false on
others.

The supervaluationist picture can be generalized in a most natural way
by taking precisifications to be assignments of intensions, rather than ex-
tensions. Accordingly, a term is indeterminate just in case its meaning is

5A precisification must be defined for all terms at once, in order to preserve penumbral
connections, cf. Fine [22, p. 271].



compatible with different functions from worlds to extensions. A sentence is
said to be indeterminate in content if its meaning is compatible with mul-
tiple functions from worlds to truth values—or, equivalently, with multiple
sets of worlds.

Now, let us identify coarse-grained facts (or states of affairs) with sets
of worlds. Say that a fact F' obtains at world w if w € F; and that F
obtains simpliciter if it obtains at the actual world @. If sentence p is not
indeterminate in content, let [p] be the fact that p; and if it is indetermi-
nate in content, let [p]i, [p]2,... be the facts associated with the different
precisifications of the language. The following holds:

FACT 1. On the supervaluationist picture, sentence p is indeterminate in
truth value just in case (i) it is indeterminate in content, and (ii)
@ € [p]; and @ ¢ [p];, for some 1, j.

The left-to-right direction of FACT 1 highlights that, on the most popular
semantic account, all truth-value indeterminacy is indeterminacy in content.

Nevertheless, there appear to be sentences having indeterminate truth
value but determinate content, as exemplified by Aristotle’s problem of the
open future.® If there is no fact of the matter now as to whether there will be
a sea battle tomorrow, the sentence ‘there will be a sea battle’ is neither true
nor false. Yet each term occurring in it is semantically precise, and so the
sentence cannot pick out different intensions on different precisifications.
This class of cases suggests that the supervaluationist characterization of
truth-value indeterminacy is too restrictive, as it prejudges the possibility
of indeterminacy originating in the language-independent world. From now
on I will therefore be assuming a definition of truth-value indeterminacy
which is neutral as to the source of the indeterminacy, to the effect that
p is indeterminate in truth value just in case p is neither true nor false.
Truth-value indeterminacy in this sense is entailed by, but does not entail
supervaluationist truth-value indeterminacy.

5] am saying that there ‘appear’ to be such cases because, on two prominent char-
acterizations of MI—namely, the metaphysical supervaluationism of Barnes & Williams
[7], and the determinable-based account of Wilson [45]—MI does not involve truth-value
gaps. However, there are independent reasons for being skeptical of such approaches, since
metaphysical supervaluationism is unable to subsume quantum indeterminacy (Darby [16],
Skow [36]), whereas the determinable-based theory has a hard time making sense of a
number of phenomena such as the open future, indeterminate identity, and indeterminate
existence (Barnes & Cameron [6]). Moreover, it has been argued that the determinable-
based account is inadequate in the way it deals with quantum indeterminacy as well
(Fletcher & Taylor [23], Torza [40]). For a comparison between the present approach and
the determinable-based account see Lewis [27] in this volume.



The above considerations suggest a negative characterization of MI as
indeterminacy that cannot be eliminated by precisifying the content of our
assertions (Torza [39], cf. Barnes [4, p. 604]):

IND~. MI arises if there is a sentence p which is indeterminate in truth
value but not in content.

According to IND™, MI occurs just when there is a sentence which is neither
true nor false, and yet picks out exactly one fact. However, MI can also be
characterized directly, as the phenomenon arising when there is no fact of
the matter about something. Fleshing out this alternative characterization
will require that we say more about the structure of logical space.

A logical space is a space of possibilities. In order for a class of facts
to constitute a logical space, they need to be closed under a number of
logical operations such as negation, conjunction etc (cf. Rayo [32]).7 A
caveat: logical operations, as objects in logical space mapping facts to facts,
should not be confused with logical operators, which are linguistic items
mapping formulas to formulas. For example, the negation operator ‘not’ is
a logical constant having a negation operator as its semantic value. Likewise
for conjunction, disjunction etc. Accordingly, if F' is the fact that grass is
green, the negation of F' is the fact that grass is not green.

A logical space can be represented as a structure S = (5,@, Tg, —g,Mg .. .),
such that:

1. S is a set of states (worlds). Among them is a distinguished item @,
the actual state.®

2. Facts are sets of states. The universal set S is the necessary fact; the
empty set is the impossible fact.

3. A fact F is said to obtain at state w (in symbols, Tg(F,w)) if w € P;
it is said to obtain simpliciter if Tg(F, Q).

4. Logical operations are operations on facts: —gF' is the negation of F;
F Mg G is the conjunction of F' and G etc.

"However, Turner [41] has defended the idea that the relations holding between facts
are quite different from the familiar logical ones, and are akin to geometrical relations.
Although Turner’s view is both fascinating and compelling, discussing it would take me far
afield. Suffice to say that everything I say here could be restated within Turner’s theory.

81If the logical space is the space of a dynamical system, @ should be a function of time,
rather than a constant. For present purpose, this complication can be set aside.



One caveat: the above characterization is largely independent of ques-
tions in modal metaphysics, such as whether worlds are concrete or abstract,
or about the nature of facts. All I am assuming is that logical space, what-
ever it is, instantiates the structure defined above. Likewise, when I speak
of states (worlds) as points or vectors in a structure, it is being assumed
that states (worlds) play the relevant structural role, and not that they are
literally points or vectors.

Armed with those tools we can now state the idea that, relative to a
logical space &, MI amounts to there being no fact of the matter about
something (Torza [40]):

INDT. MI arises if there is a fact F' such that neither F' nor —gF obtains.

Prima facie, IND™ and INDT provide quite different characterizations of
MI, in that the former is semantic in character, whereas the latter defines a
property of logical space without making any detour through language. As
it turns out, however, given some background assumptions the two charac-
terizations are provably equivalent:

FACT 2. Given a logical space S and a language L interpreted on S, there
is a sentence p of L which is indeterminate in truth value but not in
content iff there is a fact F' in S such that neither F' nor —gF obtains.”

Because of the equivalence between IND™ and INDT, we can speak of MI
with no ambiguity.

% Proof. 1f p of L is determinate in content, it picks out a unique fact [p] in S. And if
it is indeterminate in truth value, neither Ts([p], @) nor Ts(—s[p], @) is the case. So, [p]
is a fact such that neither it nor its negation obtains. Conversely, if F' is a fact in S such
that neither it nor its negation obtains, let p be a sentence of L such that [p] = F. Hence,
p is not indeterminate in content. Moreover, p is neither true nor false. QED.

This proof hinges on two background assumptions. One is that the object language
L contains no irreferential terms, such as ‘Vulcan’ or ‘God’. For otherwise there could
be a sentence p* such as ‘Vulcan is a gas planet’ which, by not picking out any fact, is
indeterminate in truth value (on some semantic accounts, at least) but not in content
(since indeterminacy in content requires that it pick out multiple facts); and yet there
would be no fact [p*] such that neither it nor its negations obtains (Torza [39]). The other
background assumption is that every fact F' must be expressible in L.

Insofar as one may reject either assumption, and so the equivalence, I take IND™ to be my
official characterization of MI. (Also notice that IND™, unlike IND™, does not involve any
representational machinery, and so can provide a reductive analysis of MI.) Nevertheless,
it is both interesting and illuminating that IND™ can be cast in semantic terms as IND ™,
given suitable qualifications.



3 Fundamentality and derivativeness

Logical spaces of different kinds correspond to different logics. For example,
classical logical spaces differ from intuitionistic logical spaces in that classical
negation is involutive, unlike its intuitionistic counterpart. One fact that will
play a crucial role in the ensuing discussion is that the class of states of a
physical system can live in logical spaces of different kinds that agree about
the assignment of values to physical quantities.

Consider a Hilbert space H associated to a given quantum system. The
class of all states (unitary vectors) in H can be embedded in a classical logi-
cal space C, where facts are arbitrary sets of vectors, negation is set-theoretic
complementation, and disjunction is set-theoretic union. The same class of
states can also be embedded in a quantum logical space Q, where facts are
sets of vectors closed under linear combination, negation is orthocomple-
mentation, and disjunction is span'? (Birkhoff & von Neumann [8]). Note
that the rays in H are maximally specific facts, i.e., facts about the system’s
having a value of a particular observable. Since C and Q on H contain the
same rays, the two spaces will agree with respect to the obtaining of facts
about the assignment of values to physical quantities (e.g., about wether
the system is spin up along a particular direction). In other words, the clas-
sical and the quantum logician will only disagree about the truth value of
logically complex sentences—in particular, sentences that contain either a
negation or a disjunction.

Although a realist attitude towards orthodox quantum theory arguably
favors @ over C as representing the space of possibilities associated with
a quantum system (Torza [40, sec. 3.2], Fletcher & Taylor [23]), there is
no conclusive strategy for picking one option over the other on the basis
of empirical evidence alone. So, if we think that there is such a thing as
the One True logical space of a given quantum system, the choice appears
to be underdetermined by the physics.!! This is relevant to the present
discussion because, if it is underdetermined whether the states of a quantum

0The orthocomplement of a fact F is the set of vectors that are orthogonal to each
vector in F'; the span of facts F, G is the closure of the union of ' and G under linear
combination.

" Quantum logic was famously defended as the One True logic in Putnam [31] on the
grounds that it provides a solution to the measurement problem. Maudlin [29] has argued
against Putnam, and concluded that there is no reason to replace classical with quantum
logic. Although I agree with Maudlin that quantum logic is of no help in addressing the
measurement problem, I reject his conclusion. Indeed, quantum logic is a consequence
of accepting either the eigenstate-eigenvalue link (Fletcher & Taylor [23]) or the EPR
criterion of reality (Torza [40, sec. 3.2]).



system live in classical or quantum logical space, the question of quantum
MI will also be underdetermined. For if the states of an arbitrary quantum
system define a classical logical space, MI cannot arise. Indeed, it is trivially
the case that every fact F' of a classical logical space C is such that either
it obtains or it does not obtain (i.e., either T¢(F, @) or not T (F,@)).
But because the classical negation —¢ is complementation, it follows that
F is such that either it or its negation obtains (i.e., either T (F,@) or
Teo(—cF,@)). On the other hand, if the states of a quantum system define
a quantum logical space, MI can and will arise. For example, when a system
composed by a single electron is in a superposition of z-spin states described
by the equation [¢) = %ﬂ T2)e + | 12)e), neither the fact [e is z-spin up]
nor the fact [e is z-spin down] obtains. Since the quantum negation —g is
orthocomplementation, [e is z-spin down]=—g[e is z-spin up]. Hence, the
fact [e is z-spin up] is such that neither it nor its negation obtains (i.e.,
neither Tg([e is z-spin up], @) nor Tg(—g[e is z-spin up|, @)).

Since the empirical evidence does not let us select a unique way of carving
the logical space associated with a quantum system, we seem to be faced with
underdetermination about logic. This raises a challenge to logical realism,
the view that there is One True logic, and that this is so in virtue of the
way the mind and language-independent world is like. The logical realist
could rejoin as follows: we can countenance multiple logical spaces, without
thereby surrendering to conventionalism, as long as they are ordered with
respect to their relative fundamentality. In that way, a physical system will
be associated with One True logical space, namely the fundamental one, as
well as a number of nonfundamental logical spaces.!?

In the quantum case, talk of fundamental vs derivative logical spaces can
be cashed out in (at least) two ways. The first strategy involves the realism
about structure articulated and defended in Sider [35]—very roughly, the
idea that there is a metaphysically primitive and privileged way of carving
reality into natural properties, facts, etc. A realist about structure who re-
gards classical logic as fundamental will take there to be a metaphysically
privileged way of carving out the class of states of a quantum system, namely
the classical one. This brand of realist can countenance the existence of al-
ternative ways of carving the same class of states into a logical space, as long
as those ways are nonfundamental. The alternative carvings, despite being
metaphysically second-rate, can be helpful relative to specific theoretical or
practical goals.

Of course, fundamentality talk is no solution to logical underdetermi-

2For a discussion of logical realism see McSweeney [30], Tahko [38].



nation if we have no criteria to identify which logical space is fundamental.
Fortunately, there are sensible constraints on fundamentality that the realist
can appeal to in order to make progress. One such constraint is that, given
a physical system, every nonfundamental logical space must be reducible to
the fundamental one in the following sense (Torza [40, sec. 6], cf. Sider [35,
ch. 7]):

COMPLETENESS. Let W be a class of states. If S is the fundamental logical
space on W, and &’ is any logical space on W, every fact in S’ is
equivalent to some fact in S.

The rationale for COMPLETENESS is that the facts of a nonfundamental
space should be nothing over and above the facts in the fundamental space.'?
In order to avoid irrelevant complications, I am taking fact equivalence to
be cointensionality (although more fine-grained notions of fact equivalence
could be employed, as in Correia & Skiles [15], Dorr [18]). Thus, facts are
equivalent just in case they obtain at the exact same states. Since we are
modeling facts as sets of states, and since sets are extensional entities, fact
equivalence reduces to strict identity.

Now, given a set W of states of a quantum system, it is compatible with
COMPLETENESS that a classical logical space C on W be fundamental and
a quantum logical space @ on W be nonfundamental, but not the other
way around. For recall that in Q only sets of vectors closed under linear
combination count as facts, whereas in C any arbitrary set of vectors is a
fact. So, the facts in Q are a proper subset of the facts in C, which entails
that every fact in Q is equivalent to a fact in C, but not vice versa. This
guarantees that a realist about fundamental structure can regard a system’s
classical space as fundamental and its quantum space as nonfundamental,
but not vice versa.

I now turn to a strategy for justifying fundamentality talk in the quantum
case without relying on a metaphysical notion of structure. The reason why
in quantum logic facts are sets closed under linear combination is that the
quantum logician identifies facts with experimental facts, which is to say,
facts whose (non)obtaining can be established by experimental means.'
But experiments are procedures for determining the value of some quantum

13But see Torza [40, sec. 6] for an argument to the effect that COMPLETENESS is too
stringent, and should be replaced with a weaker condition of ‘collective completeness’.
Although that weakening has important consequences in the discussion on quantum MI,
I must set it aside for reasons of space.

14This is due to the constraints that the Born rule sets on the possible outcomes of
quantum experiments (Birkhoff & von Neumann [8], Torza [40, sec. 3.2])
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observable (position, momentum, spin, etc). Therefore, the facts that live
in a quantum logical space Q are facts about the possible values of physical
observables. For the classical logician, on the other hand, any set of vectors
in a Hilbert space is a fact about the relevant system. So, the facts of a
classical space C need not be associated with a possible experiment, nor are
they defined by reference to physical observables.

With that being said, here is the sketch of how classical and quantum
logic may coexist as two pictures of one and the same reality. According
to quantum logic, logical space is the space of experimental facts—the facts
involving physical observables. This is the familiar picture suggested by
orthodox quantum theory. At the fundamental level, however, reality does
not involve either experiments or observables. Fundamentally, the world is
isomorphic to a vector in Hilbert space, and facts are regions of that space,
i.e., sets of possible positions for the state vector. This picture is exemplified
by the Hilbert Space Fundamentalism which Sean Carroll defends in this
volume:

Here I want to argue for the plausibility of an extreme position among
these alternatives, that the fundamental ontology of the world is com-
pletely and exactly represented by a vector in an abstract Hilbert space,
evolving in time according to unitary Schrédinger dynamics. Every-
thing else, from particles and fields to space itself, is rightly thought
of as emergent from that austere set of ingredients. (Carroll [14])

If something like Hilbert Space Fundamentalism is true, the structure of
observables encoded in @ is nonfundamental, and grounded in C. On this
theory, logical space is fundamentally classical and derivatively quantum.

I have outlined two ways of motivating the view that C is fundamental
and @ is derivative: one from first principles, and one inspired by founda-
tional work in physics. As I am about to argue, such a view bears on our
central question. Let us first define what it is for MI to arise fundamentally,
derivatively, and merely derivatively:

FMI. Given a class W of states, fundamental MI arises if MI arises relative
to a fundamental logical space on W; derivative MI arises if MI arises
relative to a nonfundamental logical space on W; merely derivative MI
arises if MI arises derivatively but not fundamentally.

Since MI arises in quantum logical spaces, but not in classical logical spaces,
we can draw the following corollary:

11



FACT 3. Let W be the class of possible states of a given quantum system.
If C on W is fundamental, and @ on W is nonfundamental, MI will
arise merely derivatively.

My first main claim is now established: the assumption that
4*. There is no merely derivative MI

which I have put forward on behalf of Glick, is unjustified. Consequently,
the revised argument against quantum MI from section 1 is unsound. For
all we know, MI arises in quantum mechanics.

4 Against Barnes

I showed in the previous section that MI can be merely derivative, and I did
so constructively by providing an example from quantum physics. However,
Barnes [5] has offered an argument purporting to show that merely deriva-
tive MI cannot possibly arise. The goal of this section is to show that her
argument is inconclusive. Although replies to Barnes have already been of-
fered (Eva [20], Mariani [28]), I will put forward a different line of resistance
based on the observation that in general there are multiple ways of carving
logical space compatibly with the evidence.

Barnes’ argument purports to show that derivative MI does not arise un-
less fundamental MI also arises. Let us start with some definitions, relative
to a logical space S:

1. A set F of facts entails a fact F' if F' obtains whenever each fact in F
obtains.

2. A set F of facts is said to be complete if it entails every fact or its
negation.

Here is a sketch of Barnes’ proof strategy, reformulated for consistency with
the present conventions. First, she supposes that there are a fundamen-
tal description of reality, and a derivative description of reality. She also
assumes crucially (and implicitly) that both the facts picked out by state-
ments of the fundamental description and the facts picked out by statements
of the derivative description—call them fundamental and derivative facts,
respectively—coexist in the same logical space. Finally, she assumes that
the set of obtaining fundamental facts is complete.'® Suppose now that the

15This assumption is Barnes’ version of the COMPLETENESS condition I discussed in
section 3.
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fundamental is determinate, i.e., that each fundamental fact is such that ei-
ther it or its negation obtains. Since the fundamental facts form a complete
set, they entail each derivative fact or its negation. The fundamental being
determinate, it follows that each derivative fact is such that either it or its
negation obtains. Therefore, the derivative is also determinate. It can be
concluded that merely derivative indeterminacy cannot arise.

The point where I distance myself from Barnes is the one I have flagged,
which is her implicit assumption that both fundamental and derivative facts
coexist in one logical space. As the quantum case suggests, such an as-
sumption is unjustified, since different logical spaces can be defined on the
same set of states, and different spaces correspond to descriptions of reality
differing by their relative fundamentality. For example, we can describe a
quantum system as fundamentally isomorphic to a vector in Hilbert space,
which defines a classical logical space; and derivatively as made up of observ-
able properties such as position and momentum, which defines a quantum
logical space.

But once we account for the existence of multiple logical spaces ordered
by relative fundamentality, Barnes’ line of reasoning becomes invalid, as can
be evinced from the following reformulation of her argument (tailored to the
quantum case):

Consider a quantum system associated with a fundamental clas-
sical logical space C and a nonfundamental quantum logical space
Q. Because MI does not arise in C, the set C of facts that obtain
in C is complete. Now pick a fact F' in Q. Because the facts in
Q are a subset of the facts in C, F' is also a fact in C. Therefore,
C entails either F' or its negation. It follows that either F or its
negation obtains. Hence, every fact in Q is such that either it or
its negation obtains. Therefore, merely derivative MI does not
arise in Q.

The above argument is invalid because “either F' or its negation obtains”
is ambiguous between the following two readings:

«. Either F' or —¢F obtains.
B. Either F' or —gF obtains.

Notice that “C entails either F' or its negation” should be read as “C entails
either F' or —¢ F”, since the entailment takes place in C. From that « follows.
But it does not follow from « that every fact in O is such that either it or its

13



negation obtains, because in Q the negation of F'is —gF', and the obtaining
takes place in Q. On the other hand, whereas it follows from (§ that every
fact in @ is such that either it or its negation obtains, 8 does not follow
from the fact that C entails either F' or its negation —¢F'.

The moral should be straightforward. It did not occur to Barnes that log-
ical operations are relative to a logical space, and that one and the same set
of states can be embedded in different logical spaces endowed with different
sets of operations. In the present case, although classical negation prevents
MI from arising in C, quantum negation allows for gaps in Q and, therefore,
for merely derivative MI. Thus, Barnes’ argument fails because it rests on
the unwarranted assumption that the fundamental and the derivative obey
the same logic.

One might object that Barnes and I are talking past each other, since
we assume different characterizations of MI. Now, it is true that her own
characterization of MI—the metaphysical supervaluationism developed for
example in Barnes & Williams [7]—mneither requires nor postulates gaps in
logical space, unlike the view I articulated in section 2. But our disagreement
concerning the nature of MI is irrelevant to the question as to whether
her argument against merely derivative MI is valid. For although on her
theory the failure of bivalence is not a necessary condition for MI, it still
is a sufficient condition. Indeed, metaphysical supervaluationism says that
MI arises just when there is a fact F' such that it neither determinately
obtains nor determinately fails to obtain. But if a fact does not obtain, it
does not determinately obtain; and if it does not fail to obtain, it does not
determinately fail to obtain. So, there is MI in my sense only if there is MI
in Barnes’ sense (although not vice versa). If MI in my sense arises in Q, it
will also arise according to Barnes.'¢

5 Conclusions

I have sketched two ways of motivating the view that every quantum system
is associated with a fundamental classical logical space, as well as a nonfun-
damental quantum logical space—one based on realism about fundamental
structure, and one based on foundational work in physics. Since MI arises in
quantum logical spaces but not in classical logical spaces, I have concluded
that quantum physics can be interpreted as giving rise to merely deriva-

16Tt is also worth mentioning that Darby [16], Skow [36] and Fletcher & Taylor [23] have
independently argued that metaphysical supervaluationism is unable to model quantum
MI.
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tive MI, which is to say, MI arising only at the nonfundamental level. This
result has a twofold corollary: it undermines an argument against quan-
tum MI which improves on the one offered in Glick [25]; and it provides a
counterexample to an argument against merely derivative MI due to Barnes

[5].
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