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The philosophical literature abounds with works on the semantics and
logic of modality, and the same can be said of the semantics and logic of
vagueness. It comes as a surprise, therefore, that virtually no study is avail-
able concerning the interaction of modality and vagueness—especially since
the interaction of multiple kinds of modality have been studied quite exten-
sively.1

The goal of the present paper is to start filling that gap. Section 1 is a
discussion of vague modal statements, with a specific focus on the different
sources of indeterminacy. By far the most interesting and least dealt with
case, as it turns out, is whether a modal statement could be vague as a result
of modality’s being itself vague. It will be argued that it can, and that an
implicit and unexpected defense of such a thesis is to be found in David
Lewis’ modal realism. Section 2 puts forward a model theory for a first-
order language featuring both operators expressing metaphysical modality
and operators for semantic vagueness. The interpretation of metaphysical
modalities is based on counterpart theory, whereas semantic vagueness is
understood in terms of precisifications. The definition of the model theory
is followed by a discussion of the resulting logic. In section 3, the framework
will permit us to settle an open question. Barnes and Williams [1] have
claimed that a language combining expressions for both vagueness (modeled
via precisifications) and modality (modeled via possible worlds) would obey
an overly revisionary logic, namely by making inconsistencies satisfiable. I
will argue that the claim is unwarranted.

1 Modal vagueness

This section is a critical examination of the ways in which modal notions
could be vague. By ‘modality’ I here mean metaphysical modality, unless

1For instance, Segerberg [15], Thomason [18], Gabbay [4].
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otherwise stated. In particular, I assume that metaphysical modalities are
absolute, in the sense that, if it is possible that p, in any sense of ‘possible’,
then it is metaphysically possible that p. For instance, since quantum tele-
portation is physically possible, then it is also metaphysically possible. Like-
wise, since it is not a historical necessity that the Archduke Franz Ferdinand
of Austria had to be killed in Sarajevo, then it wasn’t metaphysically neces-
sary, either. On the other hand, the physical impossibility of superluminal
causation need not be understood as a metaphysical impossibility. When
possibility is construed in terms of existential quantification over worlds, ab-
solute possibility is unrestricted existential quantification over worlds. Rel-
ative possibility is restricted existential quantification over worlds.2

First of all, a modal statement can be vague by containing a vague
predicate, simple or complex. Given a modal language, I take the semantic
value of a predicate to be a set of possibilia, and the semantic value of a
predicate at world w to be the restriction to w of its semantic value. Now,
consider a community of sloppy chemists whose use of the term ‘hydrogen’
is indeterminate between two precise meanings: the element with atomic
number 1 vs. an isotope of the element with atomic number 1 which has
actually been observed. Since no isotope of hydrogen has ever been observed
(in nature or in a lab) with more than six neutrons (viz., hydrogen-7), the
following statement is semantically vague in sloppy-chemistese:

1. No hydrogen atom could possibly have seven neutrons

For, there is one sense of ‘hydrogen’ in sloppy-chemistese—the one agreeing
with our own use of the term—which allows hydrogen atoms to have more
neutrons than have ever been observed, and another sense which excludes
such a possibility.

It is noteworthy that the occurrence of a vague predicate, simple or
complex, in a modal statement will not automatically make that statement
vague—just like, in general, the occurrence of a vague expression in a state-
ment need not make the latter vague. To wit, it can be vague whether

2. Zach is bald

and yet definitely true that

3. it is contingent whether Zach is bald

2On absolute modalities, see Hale [6].
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In order to see that, suppose there is a range of precisifications ‘bald1’, ...
‘baldm’, ‘baldm+1’, ... ‘baldn’, such that Zach is ‘baldm’ but not ‘baldm+1’.
In this scenario, (2) will indeed be vague. But, as long as logical space is
sufficiently plentiful, for every i 6 n,

4. it is contingent whether Zach is baldi

Hence, (3) is definitely true.

A further scenario is one in which modal statements are vague due to
the nature of intensional identity. I will draw on Lewis [9] in construing
intensional identity in terms of a counterpart relation, in such a way that ‘x
is possibly P ’ is paraphrased as ‘for some world w, the counterpart of x at w
is P ’. (I make no mention of accessibility here, since modality is taken to be
absolute.) The counterpart of x at w is the individual which best represents
x at w in terms of content and context.3

Here is an example of vague intensional identity. Consider a world of one-
way eternal recurrence w such that each epoch is a duplicate of the history
of the actual world. Insofar as w contains duplicates of actual Socrates (in
fact, one for each epoch), the possibility of such a world makes it intuitively
true that

5. Socrates could have lived in a world of one-way eternal recurrence
so-and-so

where ‘so-and-so’ is short for the above description of w. But if the actual
world had been w, in which epoch would have Socrates lived? It seems
sensible to say that in some sense he could have lived in the first epoch, in
some sense he could have lived in the second, etc. One way to accommodate
this intuition within counterpart theory is to admit the existence of infinitely
many duplicate worlds w1, w2,... of w, such that in w1 the counterpart
of actual Socrates is the Socrates-duplicate in the first epoch, in w2 the
counterpart of actual Socrates is the Socrates-duplicate in the second epoch,
etc. Each of the following will then have to be true:

6.1. Socrates could have lived in the first epoch of a world of one-way
eternal recurrence so-and-so

6.2. Socrates could have lived in the second epoch of a world of one-way
eternal recurrence so-and-so

3We can safely assume that the counterpart relation is reflexive. Unlike Lewis, I assume
throughout that nothing has multiple counterparts at a world. I expect my choice to make
sense in light of the following remarks.
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etc.

Needless to say, each wi will make (5) true as well. Nevertheless, this solution
to the above desideratum entails haecceitism, since there will be worlds (in-
finitely many, in fact) that differ in a merely non-qualitative way, viz., with
respect to which of the Socrates duplicates happens to be Socrates. Since
not everybody is a friend of haecceitism, it would be desirable to accommo-
date the above intuition in a way that does not entail such a metaphysical
position. Here is how. When we say that in some sense Socrates could have
lived in the nth epoch of a world like w, for every n, in counterparts theory
we do not have to express such scenarios by means of possibilities. We could
instead mean something different, namely that for every Socrates-duplicate
sn in w, there is a way of making the counterpart relation precise that picks
sn out. Hence, with respect to the one and only w, one precisification of the
counterpart relation associates actual Socrates to the Socrates-duplicate s1

in the first epoch, another precisification of the counterpart relation asso-
ciates actual Socrates to the Socrates-duplicate s2 in the second epoch, etc.
Each of the following will then be vague:

6.1. Socrates could have lived in the first epoch of a world of one-way
eternal recurrence so-and-so

6.2. Socrates could have lived in the second epoch of a world of one-way
eternal recurrence so-and-so

...

On the other hand, (5) will be true as per the original intuition, since it
remains true under every precisification of the counterpart relation.4

A third potential source of modal vagueness are quantifier-like expres-
sions. Garden-variety modal languages feature two kinds of quantifier-like
expressions: modal operators, ranging over worlds, and first-order variable-
binding quantifiers, ranging over world-bound individuals. I will now argue
that there are indeed cases in which the vagueness of modal statements
stems from indeterminacy about what worlds or individuals there are.

4The problem of vague intensional identity is reminiscent of the well-known problem
of relative intensional identity discussed in Lewis [10] [11, p. 248], Gibbard [5], Stalnaker
[17]. The crucial difference between the two cases is that in the latter, but not in the
former, fixing the context of utterance suffices to specify a counterpart relation. Many
thanks to Maite Ezcurdia for helping me see this distinction.
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Before proceeding, it is important to clarify one issue. First of all, quan-
tification over worlds or world-bound individuals in the background language
of counterpart theory can be restricted or absolute. In the case of world-
bound individuals, a restricted quantifier is defined by an unrestricted quan-
tifier and a sortal predicate. We will deal with vague unrestricted quanti-
fiers in due course, whereas sortal predicates can be broken down to simpler
constituents. Therefore, the case of vague restricted quantifiers does not
need to be treated separately. As to restricted quantification over worlds,
that expresses relative modality. Since we are only concerned with absolute
(metaphysical) modality, this case is irrelevant for present purpose.

On the present counterpart-theoretic approach, what there is falls into
two categories: worlds and world-bound individuals. Let’s first consider the
case in which a modal statement is vague because the domain of world-
bound individuals is vague. Call dyadism the thesis that there are exactly
two objects.5 It should not be too controversial that dyadism is false. But is
it at least possible? In other words, I am considering whether the following
modal statement is true:

7. there could have been exactly two objects6

The answer will depend, among other things, on the underlying mereology.
On the one hand, the mereological universalist believes in unrestricted com-
position. The range of her quantifier will therefore be closed under arbitrary
fusions. In this sense of ‘there is’, it is impossible for there to be exactly
two objects, provided that worlds are closed under fusions. At the other
end of the mereological spectrum is the nihilist, denying the existence of
proper parts and for whom a quantifier can only range over mereological
atoms.7 On the latter sense of ‘there is’, dyadism is possible in virtue of the
existence of a world containing exactly two mereological atoms. So, as long
as it can be indeterminate which mereology constrains our quantifiers, (7)
will be vague. Notice that in the present case it is not vague what worlds
there are, and yet it is vague what individuals there are at each world.8 The
moral is that modal vagueness can ensue if quantification over world-bound

5Dyadism is modeled after monism, the thesis that there is exactly one object. Monism,
which has famously been defended by Parmenides, should not be conflated with priority
monism, the view that the world is prior to its parts, as advocated recently in Schaffer
[14].

6This sentence can be regimented in purely-logical first-order vocabulary: ♦∃x∃y(¬x =
y ∧ ∀z(z = x ∨ z = y)).

7For the sake of simplification, I am ignoring here the possibility of gunk.
8The whole discussion should be rephrased in terms of concrete individuals, if worlds

are assumed to be closed under set-theoretic constructions or, more generally, if an in-
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individuals is unsharp.

I now turn to the case in which operators expressing absolute modal-
ity are vague, which is the result of its being indeterminate what worlds
there are. Consider the following example.9 Let k be a universal constant
occurring in some physical equation E(k) and satisfying the following two
conditions:

i) the value of k is contingent, so that there is a range of possible worlds
which are obtainable by varying k in E

ii) the range of k is bounded, which is to say, there is an interval of possible
values of k

Now, if i is a value of k outside the interval, there exists a series from the
actual value to the impossible value i. Consider a scenario in which scientists
are unable to identify a sharp cutoff in the series. As a result, there ought
to be be some j between i and the actual value which is neither definitely
possible nor definitely impossible. Consequently, it will be indeterminate
whether there are worlds in which k takes on value j. Since this scenario
makes it indeterminate what worlds there are, the range of modal operators
will be vague. The statement

8. it is possible that both E(k) and k = j

will then have to be vague, in virtue of its being true on some but not all
senses of ‘possible’.

One might object that (8) can be interpreted as vague, but not in the
intended way. For our goal was to show how modal vagueness can be traced
to metaphysical modality itself. However, goes the objection, metaphysical
modality is absolute, whereas the above example could equally be interpreted
as providing an instance of vague relative modality. In order to see that,
we could rephrase the story as follows. Let’s assume that absolutely every
value of k is metaphysically possible, and yet there is an interval of k-values
which defines the physically possible worlds (i.e., possible relative to the
physical equation E(k)). Statement (8) would then be definitely true, when
‘possible’ is unrestricted. But if we regard ‘possible’ as expressing physical

finite number of abstracta exists by necessity. Otherwise, both the universalist and the
mereological nihilist will regard (7) as trivially true.

9Something in the vicinity of this was suggested to me by Daniel Berntson in private
conversation.
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modality, then (8) will be vague.10 The moral of the objection is that the
story is underspecified. Unless we have independent reasons to rule out
certain k-values as absolutely, rather than merely physically impossible, the
above story is compatible with the weaker claim that physical modality is
vague.

Whether the story could be further specified so as to avoid the above
charges depends on our criteria for discriminating physical from metaphys-
ical possibility, and in particular for identifying metaphysically possible
worlds. Instead of replying directly to the objection, I will consider a new
story which also aims to show that modality is vague, but which does not
underdetermine whether the modality at issue is absolute or relative.

In order to guarantee that logical space be sufficiently plentiful, it is
routine to assume the so-called principle of plenitude:

PL: Absolutely every way the world could be is a way a world is

However, the modal realist cannot appeal to such a principle, and for a
simple reason. Since in modal realism ways a world is or could be are iden-
tified with worlds, PL would be tantamount to the logical truth: absolutely
every world is a world.11 Lewis responded by trying to capture plenitude
with a principle of unrestricted recombination, which roughly says that ev-
ery distribution of natural properties in space-time constitutes a world. The
principle, on its intended application, entails

UR: For any objects in any worlds, there exists a world that contains any
number of duplicates of all those objects12

The idea behind UR is that logical space should be closed under the op-
eration of patching together copies of arbitrary collections of possibilia in a
single world.

As it turns out, however, UR leads to paradox and therefore the modal
realist cannot rely on it as a replacement for PL. The first reductio of UR
was offered in Forrest and Armstrong [3], where it is argued that the principle
is inconsistent with the assumption that the possibilia form a set. Nolan [12]
has shown that, although the Forrest-Armostrong argument is invalid, a new
and simpler proof is available, which goes as follows. Let k be the cardinality

10If relative modalities are expressed model-theoretically by means of accessibility rela-
tions, as is customary, vague physical modality would then be modeled by an appropriately
vague accessibility relation defined over a sharp domain of metaphysically possible worlds.

11Lewis [11, p. 86].
12Lewis [11, p. 88], Nolan [12, p. 239].
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of the set of all possibilia. If a is an object, by UR there exists some world
w containing 2k duplicates of a. But k < 2k and yet the objects existing at
w are a subset of all the possibilia. So, some possibilia are more than the
whole. Hence, the reductio.

There are two main strategies available for blocking Nolan’s argument
against UR. First, we could simply assume that the collection of all possibilia
forms a proper class. In that case, there would be no cardinal k measuring
its size, and the reductio would not go through. This is the road taken and
defended by Nolan himself.13 There is nevertheless a number of reasons for
resisting the prospects of a class-sized universe. Probably the most obvious
reason is that, since the modal realist identifies properties and relations with
sets, and since proper classes are not members of any set, then proper class-
sized properties will not have any second-order properties or relations. For
instance, if the property of having mass is proper class-sized, then we won’t
be able to say of that property that it is natural. In fact, there would be
no (adequate) set-theoretic representative of naturalness and, therefore, no
property of naturalness at all! This is of course a very unsavory outcome
for the Lewisian. Nolan’s solution is to identify properties with universals,
and second order properties with sets of universals. Although this approach
reinstates the existence of all second-order properties, as desired, it comes
at the cost of depriving modal realism of one of its main theoretical virtues,
viz., its capacity to provide a nominalistic theory of properties.14

I now turn to the second strategy for resisting Nolan’s reductio, which is
to weaken UR. As it turns out, this option will provide us with the instance
of modal vagueness that we are seeking. A way of restricting recombination,
which was put forward in Lewis [11, p. 89] and developed in Divers [2, p.
102], is to impose an upper bound to the number of objects which can coexist
in any single world. The Lewis-Divers principle of restricted recombination
states that every distribution of natural properties in space-time constitutes
a world, shape and size permitting. The restricted principle, on its intended
application, entails:15

13Nolan [12, p. 248].
14For the sake of completeness, I should mention that Nolan in fact proposes a second

solution which does not involve commitment to universals. However, this alternative
approach requires that “all and only the natural properties possess singletons”. It is
questionable whether the extent of set theory should be sensitive to such metaphysical
distinctions, especially since it is unclear whether there is a sharp cutoff for the (perfectly)
natural properties.

15It is noteworthy that the statement of restricted recombination in Divers [2, p. 102] is
unduly restricted to duplicates of two objects x and y. It is here generalized to duplicates
of pluralities, as it should be.
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RR: There is a cardinality k which is the size of all the possibilia, and for
any objects in any worlds, there is a world that contains any number
of duplicates of all those objects, as long as the total number of such
duplicates does not exceed k

Clearly, RR does not entail the existence of a world containing more things
than there are absolutely.

One issue which must be considered now is whether the quantifier ex-
pression ‘there exists a cardinality k’ in RR can be instantiated. Suppose it
cannot. Since the background logic is precisificational, that would mean that
the value of k must be vague. In other words, the statement ‘there exists a
cardinality k which is the size of all the possibilia’ is true—and yet, for every
instance kn, the statement ‘kn is the size of all the possibilia’ is untrue. This
scenario is analogous to that of the proverbial heap of sand. In that case,
the statement ‘there is some number n which is the least number such that
n grains of sand constitute a heap’ is true, since each precisification of ‘heap’
determines a cutoff. On the other hand, the value of the cutoff varies across
precisifications and, therefore, no instance of that existential statement is
going to be true. Back to RR, if no kn is such that it is definitely the size
of the set of all possibilia, there will have to be multiple candidate values
kn1 ...knj . Pick one of them, say kn1 . Then it is vague whether there are
worlds containing kn1 copies of a given object. Therefore, it will be vague
what worlds there are, absolutely. As a consequence, the statement

9. there could possibly exist kn1 duplicates of the Tower of Pisa

will be vague in virtue of the vagueness of ‘possibly’.
Suppose, instead, that existential instantiation can be performed on RR.

It is reasonable to assume, without loss of generality, that the value of kn is
some uncountable cardinal. In particular, let’s suppose that kn is the small-
est uncountable cardinal ℵ1. If the background set theory is defined by the
standard Zermelo-Fraenkel axiom system, then the Continuum Hypothesis
cannot be either proved or disproved, which is to say, it is indeterminate
whether ℵ1 < 2ℵ0 .16 Consequently, it must be vague whether there are
worlds containing 2ℵ0 copies of a given object—and, so, what worlds there
are, absolutely. The modal statement

10. there could possibly exist 2ℵ0 duplicates of the Tower of Pisa

16Strictly speaking, the Platonist about sets will believe that the Continuum Hypothesis
has a determinate truth value despite its independence of Zermelo-Fraenkel set theory. I
will leave this further problem aside.
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will be vague in virtue of the vagueness of ‘possibly’.
Suppose instead that kn = ℵα+1, for some ordinal α > 1. Insofar as

the Generalized Continuum Hypothesis is also indeterminate in Zermelo-
Fraenkel set theory, it will be indeterminate whether ℵα+1 < 2ℵα . Hence, it
is vague whether at some world there are 2ℵα copies of a given object—for
instance, whether

11. there could possibly exist 2ℵα duplicates of the Tower of Pisa

We can conclude that, whether the main existential quantifier in RR can
be instantiated or not, it will be indeterminate what worlds there are, abso-
lutely. It is worth noting the difference between the present case, in which
it is vague what worlds there are, and the previous case of vague variable-
binding quantifiers, in which it was determinate what worlds there are, but
vague what individuals there are at each world.

A related issue must be raised at this juncture. I just argued that quan-
tifier expressions in the modal language, namely quantifiers proper and
modals, can be vague. I have done so by exhibiting cases in which (i)
quantification over worlds and world-bound individuals in the language of
counterpart theory is vague and (ii) such quantifiers are absolute, as they
range unrestrictedly over all worlds and possibilia. Moreover, I have been
assuming throughout that (iii) vagueness is analyzed via precisifications.

My case, however, runs counter to an argument put forward in Sider
[16], which aims to show that

(V) if vagueness is given a precisificational account and existence is ex-
pressed by the unrestricted existential quantifier, then existence can-
not be vague

If the argument for (V) is sound, the above conditions (i)-(iii) are bound
to be jointly inconsistent. Nevertheless, Torza [19] has argued that Sider’s
argument is compatible with a weak form of vague existence. Let us take a
closer look at the dialectics.

Sider’s alleged proof has the form of a reductio ad absurdum. Suppose
that

P. p∃xφq is vague

(where φ is precise). As long as ∃ is absolute and vagueness is construed
via precisifications, it can be shown that (P) entails an inconsistency. At
this point Sider applies reductio and infers that (P) is false. As remarked in
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Williamson [20, p. 152], however, reductio ad absurdum is valid for bivalent
languages. In this particular case, therefore, we may infer the falsity of (P)
if the metalanguage of p∃xφq is precise. But notice that (P) is equivalent to

P’. In some precisification p∃xφq is true and in some precisification p∃xφq
is false

which involves quantification over precisifications of the language of p∃xφq.
If the set of precisifications is not itself precise, reductio may not be applied.
All we could infer, then, is that (P) is untrue, i.e., either false or vague—an
instance of weak reductio (cf. Keefe [8, p. 180]). In order to complete the
original reductio, Sider would now have to show that (P) is not vague, i.e.,
that p∃xφq is not second-order vague. Torza [19] shows how to set up a
reductio of second-order vague existence, Sider style. But if a reductio of
vague existence presupposes that the metalanguage of the quantifier ∃ be
precise, likewise a reductio of second-order vague existence presupposes that
the meta-metalanguage of ∃ be precise. And so forth and so on. The upshot
is that neither side has the upper hand. In particular, we have no reasons
to rule out the possibility that existence be vague at all orders—i.e., vague,
and second-order vague, and third order vague, etc. Following Torza [19], I
call super-vague any instance of quantification which is vague at all orders
in this sense. Accordingly, whenever I speak here of vague existence and
modality, I actually mean super-vague existence and modality.

Now that the issue of the coherence of vague quantification (albeit in
a weak form) has been cleared up, we can conclude that modal languages
have at least four possible sources of vagueness: predication, intensional
identity, quantifiers and modals. In the next Section I turn to the second
goal of this paper, namely to work out a model theory for languages con-
taining both modal operators and vagueness operators that accommodates
the observation from this Section.

2 Modal vagueness, regimented

2.1 Supervaluationary counterpart semantics

Modal languages, when sharp, can be interpreted by means of counterpart
models.17 If the object language is vague, however, vanilla counterpart mod-
els are inadequate. What we need are structures with multiple precisifica-
tions, each of which will itself be a counterpart model. While in standard

17The loci classici of semantics based on counterparts are Lewis [9], Hazen [7].
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counterpart semantics sentences are evaluated at a world w, in the super-
valuationary case we want to evaluate sentences at a pair 〈s, w〉, where s
is a precisification and w a world index. The elements of a model that are
allowed to vary across precisifications will define which parts of the modal
language are unsharp. Given what has been said in Section 1, we want
non-logical constants to vary across precisifications, so as to allow for vague
predication. We want the counterpart relation to vary, too, in order to
represent the vagueness of intensional identity. We want the domain of a
world to be able to vary across precisifications, if existence is to be vague.
Finally, we want the whole set of worlds itself to vary across precisifications,
to account for vague modality.

In order to meet the above desiderata, I start by defining a supervalua-
tionary counterpart frame (SC-frame), which is a structure F = 〈Q,@, R, U,Dom, c〉,
where

• Q ⊆ S ×W , for S, W disjoint sets

• 〈s,@〉 ∈ Q, for every s ∈ S

• R ⊆ Q2 s.t. 〈s, w〉R〈s′, w′〉 → s = s′

• U is a set disjoint from S and W

• Dom : Q −→ P(U) s.t.

– if w 6= w′, then Dom(〈s, w〉) ∩Dom(〈s′, w′〉) = ∅
– U =

⋃
〈s,w〉∈QDom(〈s, w〉)

• c : U ×Q −→ U s.t.

– c(a, 〈s, w〉) ∈ Dom(〈s, w〉)
– if a ∈ Dom(〈s, w〉) and b = c(a, 〈s′, w′〉), then s = s′

– if a ∈ Dom(〈s, w〉), then c(a, 〈s, w〉) = a

– if a, b ∈ Dom(〈s, w〉) and a 6= b, then c(a, 〈s, w′〉) 6= c(b, 〈s, w′〉)

A few comments are in order. S and W are sets of indices for precisifica-
tions and worlds, respectively, in such a way that each coordinate 〈s, w〉 is
identified with a world-in-a-precisification (or, simply, a world). The reason
why F is defined on Q, rather than the whole product-set S ×W , is that a
world-coordinate w may pick out a world at some precisification s but not
at some other s′. This fact captures the idea that the set of worlds, over
which unrestricted modal operators range, can be vague.
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Each precisification s will feature an actual world 〈s,@〉.
R is the accessibility relation, which relates worlds to worlds within the

same precisification. Since we are interested here in absolute modalities,
from now on I will simply assume that R is universal (viz., 〈s, w〉R〈s, w′〉,
for every s, w, w′) and omit any reference to it altogether.

U are the individuals.
Dom maps each world 〈s,@〉 to a set of world-bound individuals, and

every individual exists at some world.
The function c assigns to each individual a counterpart at every world

within the same precisification, so that distinct world-mates have distinct
counterparts at any given world. Notice that the assumption that every-
thing has a counterpart at every world (within the same precisification) is
arguably too strong. For instance, it is reasonable to assume that some
worlds are so radically different from ours that nothing over there could
ever represent, say, actual Socrates. Nevertheless, for the sake of simplicity
I will stick to the present choice, with the proviso that, in a fully adequate
semantics, an individual may fail to have counterparts at some world.

Now, let L be a first-order language endowed with identity and an infinite
set of n-ary predicate constants, for each n > 0. The expansion of L with
the sentential necessity operator � (definiteness operator ∆) is referred to as
L� (L∆). The union of L� and L∆ is L�∆. In L� the possibility operator is
defined by the condition ♦φ := ¬�¬φ. In L∆, the ‘in some sense’ operator
∇ is defined by ∇φ := ¬∆¬φ. The vagueness operator I is defined by
Iφ := ∇φ ∧∇¬φ.

A supervaluationary counterpart model (SC-model) is a structure M =
〈F , σ〉 where

• F is a SC-frame

• For every 〈s, w〉 ∈ Q,

– σ(=, 〈s, w〉) is the identity relation over Dom(〈s, w〉)
– σ(P, 〈s, w〉) ⊆ Dom(〈s, w〉)n, for every n-ary predicate constant
P

Given the set V AR of variables in a language, a value assignment for
VAR over M is a set of partial functions {ξs}s∈S s.t.

• ξs : V AR→ Dom(〈s,@〉)

•
⋃
s∈S ξs is a total function f : V AR −→

⋃
s∈S Dom(〈s,@〉)
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• if ξs(x) and ξt(x) are both defined, then ξs(x) = ξt(x)

The choice of breaking down an assignment for the variables into a set of
partial functions aims to capture the idea that, since existence is vague, a
variable may or may not successfully refer, depending on a particular pre-
cisification.18

Local truth, i.e. truth at a world-in-a-precisification 〈s, w〉 ∈ Q in M
under {ξs}s∈S is defined thus:

1. if φ = P (x1...xn), then (M, 〈s, w〉, {ξs}s∈S) |= φ iff c(ξs(xi), 〈s, w〉) is
defined for all i ∈ {1, ..., n} and 〈c(ξs(x1), 〈s, w〉)...c(ξs(xn), 〈s, w〉)〉 ∈
σ(P, 〈s, w〉)

2. if φ = ¬ψ, then (M, 〈s, w〉, {ξs}s∈S) |= φ iff (M, 〈s, w〉, {ξs}s∈S) 2 ψ

3. if φ = ψ∧χ, then (M, 〈s, w〉, {ξs}s∈S) |= φ iff (M, 〈s, w〉, {ξs}s∈S) |= ψ
and (M, 〈s, w〉, {ξs}s∈S) |= χ

4. if φ = ∀xψ, then (M, 〈s, w〉, {ξs}s∈S) |= φ iff, for every {ξ′s}s∈S such
that ξ′s is defined on x and differs from ξs at most on x, (M, 〈s, w〉, {ξ′s}s∈S) |=
ψ

5. if φ = �ψ, then (M, 〈s, w〉, {ξs}s∈S) |= φ iff, for every 〈s, w′〉 ∈ Q,
(M, 〈s, w′〉, {ξs}s∈S) |= ψ

6. if φ = ∆ψ, then (M, 〈s, w〉, {ξs}s∈S) |= φ iff, for every 〈s′, w〉 ∈ Q,
(M, 〈s′, w〉, {ξs}s∈S) |= ψ

One issue we were faced with in definition of local semantics is how
to evaluate an atomic formula P (x) at a precisification where x is non-
referring. The present framework always assigns ‘false’ to such formulas. As
a consequence, local truth defines a negative free semantics.19

We can finally define the notions of truth-in-a-model, logical consequence
and validity as follows.

φ is true in M under {ξs}s∈S ((M, {ξs}s∈S) |= φ) iff, for every s ∈ S,
(M, 〈s,@〉, {ξs}s∈S) |= φ.

φ is true in M (M |= φ) iff, for every {ξs}s∈S , (M, {ξs}s∈S) |= φ.
φ is a consequence of Γ (Γ |= φ) iff, for everyM, ifM |= Γ thenM |= φ

18This definition of an assignment for the variables is developed in Torza [19].
19For a motivation and discussion, see Torza [19]. For an elucidation of free logics, see

Nolt [13].
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φ is valid (|= φ) iff, for every M, M |= φ

It is noteworthy that SC-frames could be enriched by adding an admis-
sibility relation A, where A ⊆ Q2 and 〈s, w〉A〈s′, w′〉 → w = w′. The truth
condition (6) for formulas governed by ∆ in a SC-model would then have
to be revised accordingly:

6′. if φ = ∆ψ, then (M, 〈s, w〉, {ξs}s∈S) |= φ iff, for every 〈s′, w′〉 ∈ Q s.t.
〈s, w〉A〈s′, w′〉, (M, 〈s′, w′〉, {ξs}s∈S) |= ψ

In fact, such a revision in the definition of SC-models is not only possible
but even necessary in the light of what has been said in Section 1 concerning
vague quantification. Indeed, recall that absolute quantifiers can be vague
as long as the vagueness extends to all orders, which is to say, as long as
the quantifiers are super-vague. Clearly, this idea can be captured only in
models that allow for higher-order vagueness. On the other hand, superval-
uationary models without an admissibility relation, or in which admissibil-
ity is an equivalence relation, do not admit of high-order vagueness, since
they validate the schema Iφ → ∆Iφ. We must conclude that SC-models
in which object-language quantifiers and modals are super-vague require an
admissibility relation A which is not reflexive, symmetric and transitive.
(Williamson [21] and Torza [19] argue that the most natural approach is to
drop transitivity.) Nevertheless, I will refrain from adding the admissibility
relation A as suggested, in attempt to simplify the model theory.

2.2 Logic

What is the logic of a language L�∆ whose behavior is defined by SC-
semantics? I am going to break down the question into four subproblems.
I will first consider a set of L-theses, i.e., schemata and rules of inference
which can be formulated in the extensional sub-language L, and check which
of them are validated in L�∆. I will then repeat the test with respect to a
set of L�-theses, which are the purely modal theses. I will next consider a
set of L∆-theses, schemas and inference rules that usually hold on a super-
valuationary interpretation of L∆. Finally, I consider the L�∆-theses, which
can only be formulated in a language with both modal and definiteness op-
erators.

15



2.2.1 L-logic

Let us establish which schemas and inference rules, which can be formulated
in an extensional first-order language L, hold in the expanded language L�∆.

Let φ be a L�∆-formula. Note that every atomic L�∆-formula is either
locally true or locally false (under an assignment), and that sentential con-
nectives are defined classically. Therefore, if φ is a classical tautology and
M a SC-model, (M, 〈s,@〉, {ξs}s∈S) |= φ, for every s ∈ S. Hence,

TAUT. |= φ, if φ is a classical tautology

Moreover, Modus Ponens holds:

MP. φ, φ→ ψ |= ψ

Other classical inference forms, however, are invalid in supervaluationary
counterpart semantics. As discussed in Keefe [8], reductio ad absurdum,
contraposition, conditional proof and argument by cases typically fail in
supervaluationism. Nevertheless, weakened versions of those forms of infer-
ence hold in general in supervaluationism and specifically in SC-semantics,
namely:

RA. if Γ, φ |= ⊥, then Γ |= ¬∆φ

CON. φ |= ψ, then ¬ψ |= ¬∆φ

CP. if Γ, φ |= ψ, then Γ |= ∆φ→ ψ

AC. if φ |= χ and ψ |= χ, then ∆φ ∨∆ψ |= χ

A discussion and defense of these quasi-classical inference forms from a su-
pervaluationary point of view is put forward in Keefe [8, p. 179].

Let us now turn to quantified logic. As I had remarked in Section 1
already, classical existential instantiation fails in supervaluationary frame-
works. For ∃xφ can be true at all precisifications, and yet there may be
no value of x which makes φ true at all of them. This fact remains true in
supervaluationary counterpart semantics.

Existential generalization, which is instead a typically valid form of in-
ference in supervaluationary semantics, fails in the present framework, too.
For example, for P a non-logical constant, it could be that ¬P (x) is true in
a model (under an assignment), whereas ∃x¬P (x) is untrue. In order to see
that, just consider a model in which the variable x is undefined at 〈s,@〉, for
some s, and has a value in the anti-extension of P at 〈s′,@〉, for every other
s′. The failure of classical existential generalization is clearly due to the fact
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that local truth is defined in terms of negative free semantics. As it turns
out, it can be proven by induction on the complexity of φ that a weaker form
of existential generalization, typical of free logics, holds in supervaluationary
counterpart semantics:

∃G. φ(x),∃y(x = y) |= ∃xφ(x)

It is easy to show the equivalence of self identity and existence:

EX. x = x↔ ∃y(x = y)

Note that the first-order axiom x = x, expressing the reflexivity of identity,
fails. However, the weaker, quantified version is valid:

SI. ∀x(x = x)

Leibniz’ Law is valid in the quantifier-free form:

LL. x = y → (φ(x)→ φ(y))

In fact, a stronger principle holds:

LL+. ♦∇x = y → (φ(x)→ φ(y))

The two laws LL and LL+ can be proved concurrently by induction on the
complexity of φ.

Proof of LL and LL+. I will show only the most interesting cases of the
induction. Reference to a fixed model M is left implicit throughout.

1. Let φ(x) = P (x). Assume ({ξs}s∈S , 〈s, w〉) |= P (x).

1.1 If ({ξs}s∈S , 〈s, w〉) |= x = y, then 〈c(ξs(x), 〈s, w〉), c(ξs(y), 〈s, w〉)〉 ∈
σ(=, 〈s, w〉), i.e., c(ξs(x), 〈s, w〉) = c(ξs(y), 〈s, w〉). Since c(ξs(x), 〈s, w〉 ∈
σ(P, 〈s, w〉), then c(ξs(y), 〈s, w〉 ∈ σ(P, 〈s, w〉), and so, ({ξs}s∈S , 〈s, w〉) |=
P (y).

1.2 If instead ({ξs}s∈S , 〈s, w〉) |= ♦∇x = y, then ({ξs}s∈S , 〈s′, w′〉) |=
x = y, for some 〈s′, w′〉 ∈ Q, and so c(ξs′(x), 〈s′, w′〉) = c(ξs′(y), 〈s′, w′〉).
Since c is 1-1, then ξs′(x) = ξs′(y). Because P (x) is atomic, ξs(x)
is defined. It follows that ξs(y) is also defined and ξs(x) = ξs(y).
Thus, ({ξs}s∈S , 〈s, w〉) |= x = y. By (1.1), ({ξs}s∈S , 〈s, w〉) |=
P (y).

2. Let φ(x) = �ψ(x). Assuming ({ξs}s∈S , 〈s, w〉) |= �ψ(x), take any
〈s, w′〉 ∈ Q.
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2.1 If ({ξs}s∈S , 〈s, w〉) |= x = y, then ξs(x) = ξs(y) and, so, ({ξs}s∈S , 〈s, w′〉) |=
x = y. Since ({ξs}s∈S , 〈s, w′〉) |= ψ(x), by inductive hypothesis
({ξs}s∈S , 〈s, w′〉) |= ψ(y), thus ({ξs}s∈S , 〈s, w〉) |= �ψ(y).

2.2 If instead ({ξs}s∈S , 〈s, w〉) |= ♦∇x = y, then ({ξs}s∈S , 〈s′, w′′〉) |=
x = y for some 〈s′, w′′〉 ∈ Q. Thus, ({ξs}s∈S , 〈s, w′〉) |= ♦∇x = y.
By inductive hypothesis, ({ξs}s∈S , 〈s, w′〉) |= ψ(y), and therefore
({ξs}s∈S , 〈s, w〉) |= �ψ(y).

3. Let φ(x) = ∆ψ(x). Assuming ({ξs}s∈S , 〈s, w〉) |= ∆ψ(x), take any
〈s′, w〉 ∈ Q.

3.1 If ({ξs}s∈S , 〈s, w〉) |= x = y, then ({ξs}s∈S , 〈s′, w〉) |= ∇x = y and
so, trivially, ({ξs}s∈S , 〈s′, w〉) |= ♦∇x = y. Since ({ξs}s∈S , 〈s′, w〉) |=
ψ(x), by inductive hypothesis ({ξs}s∈S , 〈s′, w〉) |= ψ(y). Thus,
({ξs}s∈S , 〈s, w〉) |= ∆ψ(y)

3.2 If instead ({ξs}s∈S , 〈s, w〉) |= ♦∇x = y, then ({ξs}s∈S , 〈s′′, w′〉) |=
x = y, for some 〈s′′, w′〉 ∈ Q. Hence, ξs′′(x) = ξs′′(y) and, so,
({ξs}s∈S , 〈s′′,@〉) |= x = y. Consequently, ({ξs}s∈S , 〈s′,@〉) |=
∇x = y and, so, ({ξs}s∈S , 〈s′, w〉) |= ♦∇x = y. By inductive hy-
pothesis, ({ξs}s∈S , 〈s′, w〉) |= ψ(y), and therefore ({ξs}s∈S , 〈s, w〉) |=
∆ψ(y).

Q.E.D.

Finally, it is worth remarking that SC-validity is not preserved under
uniform substitution. For instance, P (x) → x = x is SC-valid, whereas
¬P (x)→ x = x is not.

2.2.2 L�-logic

The next problem is determining which typical laws and inference rules of L�
carry over to L�∆. First of all, it is noteworthy that the rule of necessitation
fails in L�∆, since ∇x = x is valid, whereas �∇x = x is not. The same rule
however is SC-valid in the sub-language L�:

N−. if |= φ, then |= �φ, for φ ∈ L�

Proof. Choose a model M and an assignment {ξs}s∈S . Given any pre-
cisification s0, pick out a world 〈s0, w0〉 ∈ QM. Now, consider the one-
precisification model M′ which is obtained by restricting M to s0, and let
@M′ = w0. Define in M′ the assignment ξ′s0(x) = c(ξs0(x), 〈s0, w0〉). Since
|= φ, then (M′, ξ′s0 , 〈s0, w0〉}) |= φ. Since φ ∈ L�, the truth of φ at a world is
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independent of what is the case at any other world from a different precisifi-
cation. So, (M, {ξs}s∈S , 〈s0, w0〉}) |= φ. Hence, (M, {ξs}s∈S , 〈s0,@M〉}) |=
φ. Q.E.D.

On the other hand, it is easy to show that the Kripke axiom

K. �(φ→ ψ)→ (�φ→ �ψ)

is SC-valid in L�∆, unlike in some counterpart-theoretic frameworks (most
notably, the one in Lewis [9]).

The following major modal theses are all SC-valid:

T. �φ→ φ

B. φ→ �♦φ

4. �φ→ ��φ

5. ♦φ→ �♦φ

This is another respect in which the present semantics differs from Lewis’
counterpart theory. For in the latter (and restrictedly to L�), these four
theses hold only if the counterpart relation is reflexive, symmetric, transitive
and euclidean, respectively. In SC semantics, on the other hand, we need
not make such assumptions concerning counterparthood.

It is also easy to show that the Barcan schema and its converse hold in
L�∆:

BF. ♦∃xφ→ ∃x♦φ

CBF. ∃x♦φ→ ♦∃xφ

Let us take a look now to the modal properties of identity. The necessity
of identity and non-identity are both SC-valid:

NI. x = y → �x = y

NN. ¬x = y → �¬x = y

The necessity of self-identity �x = x, on the other hand, fails (which follows
immediately from T and the invalidity of x = x). It follows that NI can’t
be proved in the usual way from the conjunction of LL and the necessity of
self-identity. Nevertheless, the following weakened versions hold:

NSI−1 . ∀x�x = x
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NSI−2 . x = x→ �x = x

The following are also SC-valid theses:

NSD. ¬x = x→ �¬x = x

NE. ∃y(x = y)→ �∃y(x = y)

NNE. ¬∃y(x = y)→ �¬∃y(x = y)

The following four valid SC-schemas show how blocks of modal operators
can be simplified to a single modal operator:

�♦. �♦φ↔ ♦φ

♦♦. ♦♦φ↔ ♦φ

♦�. ♦�φ↔ �φ

��. ��φ↔ �φ

Proof. (�♦) by (T), (5). (♦♦) by (T), (4). (♦�) by (�♦). (��) by (♦♦).

2.2.3 L∆-logic

The topic of this subsection are the laws and rules of L∆ which are SC-valid
in L�∆.

The rule of ∆-introduction, typical of supervaluationism, holds:

∆I. φ |= ∆φ

From ∆I it follows that

∆N. if |= φ, then |= ∆φ

the analog of necessitation, which guarantees that valid formulas are closed
under definiteness. The analog of the Kripke axiom is SC-valid, too:

∆K. ∆(φ→ ψ)→ (∆φ→ ∆ψ)

Insofar as we are presupposing that admissibility is absolute, the following
are all SC-valid:

∆T. ∆φ→ φ

∆B. φ→ ∆∇φ
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∆4. ∆φ→ ∆∆φ

∆5. ∇φ→ ∆∇φ

Since world domains can vary across precisifications, the analog of the
Barcan Schema, ∇∃xφ→ ∃x∇φ fails. So does its converse ∃x∇φ→ ∇∃xφ,
for instance when φ is ¬x = x.

Operators for semantic (in)determinacy can be simplified as follows:

∆∇. ∆∇φ↔ ∇φ

∇∇. ∇∇φ↔ ∇φ

∇∆. ∇∆φ↔ ∆φ

∆∆. ∆∆φ↔ ∆φ

Analogously to the modal case, the proof employs a combination of (∆T),
(∆4) and (∆5). Moreover, (∆∇) and (∇∇) entail, respectively,

∆∇∗. ∆Iφ↔ Iφ

∇∇∗. ∇Iφ↔ Iφ

In particular, (∆∇∗) rules out the possibility of higher-order vagueness.
As mentioned in Section 1, however, unrestricted quantification cannot be
definite at any order, i.e., it can be vague only if it is super-vague. Therefore,
as long as we want to capture vague quantification over worlds or world-
bound individuals, the SC-semantics will need to be relaxed by introducing a
suitable admissibility relation, thus obtaining a weaker logic of definiteness—
arguably one in which (∆4) and (∆5) fail. I leave such refinements for
another time.

2.2.4 L�∆-logic

This subsection is devoted to a number of conditions on the interaction of
modal and determinacy operators. We will then proceed to determine which
ones are SC-valid.

Although the literature does not offer any specific work on the combina-
tion of modal and supervaluationary logic, there is a good deal of work on
product logics for multi-modal languages. A product logic is defined seman-
tically with respect to a class of models that are the cartesian products of
Kripke models.20 Product logics validate three key principles whose analogs
in L�∆ are:

20See, for instance, Gabbay et al. [4], ch. 5.
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Commutativity1. ♦∇φ→ ∇♦φ

Commutativity2. ∇♦φ→ ♦∇φ

Church-Rosser. ♦∆φ→ ∆♦φ

Are these schemas SC-valid? Consider the following conditions on a SC-
frame F , for s, s′ ∈ S, w ∈W :

C1. if 〈s,@〉, 〈s′,@〉, 〈s′, w〉 ∈ Q, then 〈s, w〉 ∈ Q

C2. if 〈s,@〉, 〈s, w〉, 〈s′, w〉 ∈ Q, then 〈s′,@〉 ∈ Q

CR. if 〈s,@〉, 〈s′,@〉, 〈s, w〉 ∈ Q, then 〈s′, w〉 ∈ Q

It it is not hard to check that Commutativity1 (Commutativity2, Church-
Rosser) is true in every model based on a frame F iff C1 (C2, CR) holds
in F . Now, the consequent of C2 is trivially satisfied in every SC-frame,
since 〈t,@〉 ∈ Q, for every t ∈ S. It follows that Commutativity2 is
SC-valid. Notice, however, that the necessitation of Commutativity2,
�(∇♦φ→ ♦∇φ), is invalid.21 This is one of those cases in which the rule of
necessitation fails in L�∆. On the other hand, neither C1 nor CR are true
of every SC-frame, hence both Commutativity1 and Church-Rosser are
invalid.

Now, call a SC-frame complete when Q = S ×W , i.e., when the set of
all worlds contains no gaps across precisifications. It should be clear that
Commutativity1 and Church-Rosser (and, trivially, Commutativity2)
are all valid with respect to the class of complete SC-frames. The moral is
that those three conditions hold when the set of worlds is determinate. In
fact, the following schemas are also valid with respect to the complete SC-
frames:

�-Commutativity1. �(♦∇φ→ ∇♦φ)

�-Commutativity2. �(∇♦φ→ ♦∇φ)

�-Church-Rosser. �(♦∆φ→ ∆♦φ)

I now turn to one of the most interesting conditions concerning the logic
of L�∆, which is

Locality. I♦φ→ ♦Iφ
21Because C2 is no longer trivially true, but in fact can be false, when @ is replaced

with an arbitrary u ∈ W .
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This schema captures the idea that any instance of indeterminacy about
what is the case over the whole logical space reduces to an instance of in-
determinacy at some particular world. If the schema is invalid, we say that
modal vagueness can be global.

As it turns out, Locality is SC-valid with respect to the class of complete
frames. On the other hand, it is easy to construct countermodels over SC-
frames which are incomplete. As a matter of fact, we have already run into
an example which can provide us with a false instance of Locality. Recall
that the Lewis-Divers principle of restricted recombination RR entails, if
the world size is bounded by ℵ1, that

12. it is vague whether there could possibly exist 2ℵ0 duplicates of the
Tower of Pisa

since it is indeterminate whether logical space contains worlds large enough
to fit 2ℵ0 objects. On the other hand, it is not the case that

13. it could possibly be vague whether there exist 2ℵ0 duplicates of the
Tower of Pisa

since there is no single world such that it is indeterminate whether that
world does or does not contain 2ℵ0 objects.

3 Revisionism?

I have put forward a language L�∆ with modal and determinacy operators,
whose logic is defined by a combination of counterpart-theoretic and su-
pervaluationary semantics. In Barnes and Williams [1] it has been argued,
however, that a language as rich as L�∆ will have to make some modal
inconsistency satisfiable, if vagueness is interpreted via supervaluations.

Let us look at the objection in more detail. The argument in Barnes and
Williams [1] is preceded by the observation that supervaluationary logic
is perfectly classical with respect to an extensional language L. Indeed,
this fact is typically exhibited as a virtue of supervaluationism vis á vis
alternative semantics for vagueness, especially those of the degree-theoretic
variety. Some of that classicality gets ‘lost’, as it were, once the language
is enriched with a determinacy operator, hence expanded to L∆. Indeed, in
such languages, reductio ad absurdum and other classical forms of inference
fail. The main charge of Barnes and Williams [1] is that, once we add modal
operators as well and define a supervaluationary logic for L�∆, the departure
from classical logic would be unacceptable insofar as some inconsistencies
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become satisfiable. The argument goes as follows. Given a language L�∆,
take some φ such that

a) ∇¬φ ∧∇φ

Since φ ∨ ¬φ is supervaluationarily valid, we can infer

b) (φ ∧∇¬φ) ∨ (¬φ ∧∇φ)

But modalities are factive, hence

c) ♦((φ ∧∇¬φ) ∨ (¬φ ∧∇φ))

Now, assume the validity of the following inferential schema—let’s call it
modal reductio ad absurdum:

MR. if Γ, φ |= ⊥, then Γ |= ¬♦φ

Since each disjunct in (b) is supervaluationarily inconsistent, by (MR) we
can derive

d) ¬♦(φ ∧∇¬φ)

e) ¬♦(¬φ ∧∇φ)

But the following modal inference is clearly valid:

MD. ♦(φ ∨ ψ) |= ♦φ ∨ ♦ψ

By (MD), (c) is inconsistent with the conjunction of (d) and (e). The
moral is that any language with modal and determinacy operators whose
logic is supervaluationary makes inconsistent statements satisfiable, if some
statements are vague.

However, the supervaluationist does not have to accept that conclusion.
The argument appeals to two modal inference forms, MR and MD. The
Barnes-Williams objection tacitly assumes that, if such inference forms hold
in the language L�, their validity should carry over to L�∆. Is that so?
On the one hand, MD not only looks very natural, but is also SC-valid in
L�∆. Therefore, we have prima facie reasons for accepting it. On the other
hand, note that MR entails classical reductio ad absurdum, provided that
modality is factive (i.e., that it satisfies T). But we saw that classical reductio
fails already in L∆, therefore we should have only expected it to fail in the
richer language L�∆. If in L�∆ we accept the failure of classical reductio,
afortiori we should accept the failure of the stronger modal version MR.
It can be concluded that a supervaluationary logic for L�∆ does not have
to make inconsistencies satisfiable, pace Barnes and Williams.

24



References

[1] Barnes, Elizabeth, and J.R.G. Williams (2011). ‘A theory of metaphys-
ical indeterminacy’, in Karen Bennett and Dean Zimmerman (eds.).
Oxford Studies in Metaphysics, vol. 6, OUP.

[2] Divers, John (2002). Possible Worlds, Routledge.

[3] Forrest, Peter, and David Armstrong (1984). ‘An argument against
David Lewis’ theory of possible worlds’, Australasian Journal of Phi-
losophy 62: 164–68.

[4] Gabbay, Dov et al., eds. (2003). Many-Dimensional Modal Logics: The-
ory and Applications, Elsevier.

[5] Gibbard, Alan (1975). ‘Contingent identity’, Journal of Philosophical
Logic, 4(2): 187–221.

[6] Hale, Bob (1996). ‘Absolute Necessities’, Noûs, 30, Supplement: Philo-
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