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Making every component of an electrical system work in unison is being made more challenging by the increasing number of
renewable energies used, the electrical output of which is difficult to determine beforehand. In Spain, the daily electricity market
opens with a 12-hour lead time, where the supply and demand expected for the following 24 hours are presented. When estimating
the generation, energy sources like nuclear are highly stable, while peaking power plants can be run as necessary. Renewable
energies, however, which should eventually replace peakers insofar as possible, are reliant on meteorological conditions. In this
paper we propose using different deep-learning techniques and architectures to solve the problem of predicting wind generation
in order to participate in the daily market, by making predictions 12 and 36 hours in advance. We develop and compare various
estimators based on feedforward, convolutional, and recurrent neural networks. These estimators were trained and validated with
data from a wind farm located on the island of Tenerife. We show that the best candidates for each type are more precise than
the reference estimator and the polynomial regression currently used at the wind farm. We also conduct a sensitivity analysis to
determinewhich estimator type ismost robust to perturbations. An analysis of our findings shows that themost accurate and robust
estimators are those based on feedforward neural networks with a SELU activation function and convolutional neural networks.

1. Introduction

A region’s electricity grid consists of a series of components
that have to work together to achieve a balance between
generation and demand, while at the same time ensuring the
security of the electricity supply and providing a certain level
of quality and service. The structure of the power system
may be divided into four key activities: generation, transport,
distribution, andmarketing.The start of the electricity supply
process takes place at power plants, where the electricity is
generated. Depending on the type of facility, different types
of primary energy sources are used to drive a turbine or
motor, thus converting the primary energy into mechanical
energy. The turbine is connected to a generator, which turns
the mechanical energy into electrical energy. The process
of supplying electricity continues via the transport network,
which links the various production plants to consumption
centres. This process takes place at high voltages to lower the
currents and thus the losses. The distribution process comes
next, inwhich the electricity is relayed from substations to the

transport network for the various consumption points.These
substations reduce the voltage from that of the transport
network to values that are suitable for use by consumers.
The electricity supply process concludes with the marketing
activity, in which the electricity is sold to consumers based on
their contracted power.

In Spain, Law 54/1997 went into effect in 1998. This law
is notable because, as in the rest of Europe, it deregulated
the generation and marketing activities, while continuing to
regulate the transport and distribution aspects. Ever since,
two primary operators have been charged with managing the
technical and economic aspects of Spain’s electricity market.
One is Red Eléctrica de España (REE) and the other is
Operador delMercado Ibérico de Energı́a (OMIE), which are
required to coordinate their efforts.The latter is charged with
handling the bids for selling and buying energy. With this
power system model, the price of energy became defined by
the matching processes that started to be used in the various
market sessions: daily, intraday, and ancillary services.
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Table 1: Hours of operation for intraday market sessions.

1st session 2nd session 3rd session 4th session 5th session 6th session
Session opens 17:00 21:00 01:00 04:00 08:00 12:00
Session closes 18:45 21:45 01:45 04:45 08:45 12:45
Matching 19:30 22:30 02:30 05:30 09:30 13:30
Reception of scheduling disaggregations 19:50 22:50 02:50 05:50 09:50 13:50
Release PHF 20:45 23:45 03:45 06:45 10:45 14:45
Scheduling horizon 27 h 24 h 20 h 17 h 13 h 9 h
Time periods 22–24 1–24 5–24 8–24 12–24 16–24

The daily session, or daily market, takes place at 12:00,
during which the bids for the 24 hours following the session
close are placed. This is the main market and therefore the
session in which much of the energy is negotiated.

The intraday markets are convened over the course of
the previous day and the delivery day. Once the new offers
are matched, they are added to the daily schedule to yield
what is known as the final hourly schedule (PHF in Spanish).
Obviously, less energy is traded in these markets since their
time horizons are gradually reduced. They are designed to
accommodate potential changes to trading forecasts. Table 1
shows the different time spans for the six intraday sessions,
which are only open to those buyers or sellers that have taken
part in the daily sessions.

Finally, the ancillary services are used when needed
to resolve the imbalance between demand and generation,
regulate the frequency/power, and control the voltage in
the transport network. Their purpose, then, is to guarantee
the balance, security, quality, and reliability of the electrical
system.

For each hour, the producers and consumers that want
to produce or consume electricity must place a bid in the
various markets depending on their needs. Hourly in each
session, the bids received are arranged from the highest to
the lowest sale price and the highest to the lowest purchase
price, with the lowest price being 0 and the highest being
180.3 €/MWh. Graphically, the result would be two aggregate
curves, where the 𝑥-axis is the energy and the 𝑦-axis is
the price. The matching method is “marginalist,” meaning
that the matching price for that hour and session is set
at the intersection of the two aggregate curves. Any units
remaining below and above that value will be sold and
bought, respectively, at that price. In other words, all of the
power contracted will be sold at that price.

To illustrate the matching process, Figure 1 shows an
example for a case with five power plants and six large
consumers placing a bid in the market for hour H.

Since most of the demand is not manageable, it offers to
buy at the maximum of 180.3 €/MWh. But it is worth asking
what criteria producers use to craft their sale offers to cover
this demand. Nuclear and renewable plants tend to sell at
0 €/MWh to ensure that all of the energy they produce is
consumed. This is due to their technical limitations, such as
the inability to halt production in the case of nuclear and the
inability to store primary energy in the case of renewables.
The difference between the total system demand and the
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Figure 1: Aggregated bid-offer curves and market splitting.

energy produced by the above technologies and hydropower
(in which the water flow can be regulated by using reservoirs)
is known as the thermal gap. This difference is the energy
demand that must be met using thermal technologies (such
as gas and coal), the variable costs of which are higher than
for renewables and nuclear. Therefore, the competition in
the electricity market lies between the thermal generating
plants, as it is on these plants that the intersection between
the demand and supply curves during the market matching
process, and therefore the final sale price, depends.

As Figure 1 shows, a lower demand entails lower prices
by requiring fewer plants to be in operation and excluding
the most expensive plants from the matching process. An
increase in renewable production can result in a sharp drop
in the matching price, leading to cases in which all of the
demand is covered by the production priced at 0 €/MWh,
as has already happened on numerous occasions. As the
proportion of renewables in the energy mix grows, the
average price in the electricity market drops. Specifically,
the average energy price in Spain’s electricity market in 2016
(48.4 €/MWh) fell by 23% with respect to 2015 to the lowest
price since 2010.This was due primarily to the large response
by hydro and wind power to cover the demand in the first few
months of the year.

Reducing the use of thermal technologies requires incor-
porating more wind power into the energy mix. To do so,
producers have to knowhowmany units to supply to the daily
market. A wind farm’s generation must be forecast one day in
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Table 2: Features in data examples.

Description Units Used as
Timestamp IS0 8601 Input
Wind speed m/s Input
Wind direction (∘) Input
Relative humidity (1) Input
Temperature ∘C Input
Atmospheric pressure Pa. Input
Issues - Input
Power generated KWh. Output
Power forecast KWh. -

advance, and, if necessary, these supply units can be corrected
in the six intraday market sessions with time horizons of 27,
24, 20, 17, 13, and 9 hours. Unfortunately, the main drawback
of wind energy is how difficult it is to make accurate forecasts
due to this energy source’s heavy reliance on atmospheric
conditions, and how difficult, in turn, these are to predict.

In this paper we present a series of regression estimators
that rely on deep-learning techniques to predict the gener-
ation of a wind farm based on an estimate of atmospheric
conditions. These predictions are intended for the daily
market, meaning they must offer sufficiently accurate results
12 to 36 hours in advance.

2. Materials and Methods

Belowwedescribe the estimators implemented, the data used,
and the procedures employed to train, evaluate, and compare
the estimators.

2.1. Data Sets. The Institute of Technology and Renewable
Energies (ITER) is the agency that runs the largest wind farm
on the island of Tenerife. It also provided us with the data
for this study. The ITER runs the MADE farm, which has
a rated power of 4800 kW, supplied by eight MADE AE-46
generators. A weather forecast for the following 48 hours in
one-hour periods is generated twice a day. Once a day the
wind speed for the following 12 to 36 hours is forecast and
a polynomial regression is carried out that is used to estimate
the generation for each hour of said interval. This estimate is
sent to the OMIE to be used in the daily market.

The ITER gave us a data set with an hourly sample with
the results of the Numerical Weather Prediction (NWP) for
different meteorological variables, the generation forecast
made by the ITER using a polynomial regression, and the
actual wind generation measured and a free-text field con-
taining problems involving the operation of the generators.
Table 2 summarises the features in each sample of the data set
provided by the ITER and shows which were used as inputs
and outputs for the estimators.

To prepare the data, we used certain feature engineering
techniques.The timestamp was broken down into day of year
and time of day, each of which was represented using the pair
of values for their sine and cosine in an effort to capture their
periodic nature and their effects on the local dailywind cycles.

The wind direction was also encoded using this method for
the same reason. The following shows an example of this
using the wind direction:

ℎ 󳨀→ (sin ℎ360 , cos ℎ360) . (1)

The text for the issues was manually converted into
the fraction of generators not in service at a given time,
since some of the samples for the total farm output, which
were used to adjust the predictor’s output, were obtained
when some of the generators were out of service. When the
validation and test sets were configured, however, only those
samples taken when all of the generators were in service
during the period measured were used.

All of the inputs were normalised by min-max scaling
between 0 and 1, the goal being to achieve maximum effi-
ciency during training. For the training, we had data sampled
each hour from January 2014 to April 2016, which were
randomly divided into three sets: 60% comprised the data
training set, 20% the validation set, and the remaining 20%
the test data. The data were stored in TensorFlow TFRecords
files for efficiency purposes for use with the TensorFlow
framework [1], which was the tool used to develop, train, and
evaluate the various predictors.

2.2. FeedforwardNeural Networks. Thefirst architecture eval-
uated was the FeedforwardNeural Network (FNN). In a FNN
[2] every neuron in one layer receives as its input all of the
outputs from the neurons in the previous layer.The output 𝑎𝑙𝑗
of the 𝑗th neuron in the 𝑙th layer can be expressed as indicated
in the following:

𝑎𝑙𝑗 = 𝜎𝑙(∑
𝑘

𝑤𝑙𝑗𝑘𝑎𝑙−1𝑘 + 𝑏𝑙𝑗) , (2)

where 𝑤𝑙𝑗𝑘 is used to denote the weight for the output of the𝑘th neuron in the (𝑙−1)th layer as the input to the 𝑗th neuron
in the 𝑙th layer, 𝑏𝑙𝑗 is the bias of the 𝑗th neuron in the 𝑙th layer,
and 𝜎𝑙 is the activation function of the neurons in the 𝑙th
layer. The most common activation function is the sigmoid
function, which is expressed as shown in the following:

𝜎𝑙 (𝑥) = 𝑒𝑥𝑒𝑥 + 1 . (3)
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In a regression problem like the one at hand, the sigmoid
activation function is used in every layer except the last one,
the output layer, which uses the identity function 𝜎𝑙(𝑥) = 𝑥
as the activation function.

The learning was done using standard deep learning tech-
niques, like minibatch gradient descent [3] and Adagrad (for
adaptive gradient algorithm) optimiser [4]. The latter allows
different step sizes for different features, so it does not require
a learning rate to be specified for it. The adjusted model was
validated every 5000 trained batches. The stopping criterion
employed was for the evaluation’s Mean Square Error (MSE)
not to decrease during three consecutive iterations. But in
order to compare the accuracy of different predictors, we use
the Mean Absolute Error (MAE) [5] and the Mean Absolute
Scaled Error (MASE) [6]. The MAE and MASE are common
measures of forecast error in time series analysis.

To avoid overadjusting the models when training them,
the cost function includes a component to 𝐿2-norm to
regularise all the weight 𝑤𝑙𝑗𝑘 and the bias 𝑏𝑙𝑗 of the entire
model. In some specific cases we used dropout [7] to check
its effects when attempting to further generalise the trained
models, but it did not help to improve the results. When
dropout is used during training, only a selection of neurons
chosen with probability 𝑃keep can be activated. The following
shows the generalisation of the output expression for neuron𝑎𝑙𝑗 when dropout is used:

𝑎𝑙𝑗 = {{{{{
𝜎𝑙 (∑𝑘 𝑤𝑙𝑗𝑘𝑎𝑙−1𝑘 + 𝑏𝑙𝑗)𝑃keep , if 𝑝 ≤ 𝑃keep
0, otherwise

where 𝑝 ∼ 𝑈 (0, 1) .
(4)

2.2.1. ReLU Activation Function. When training using mini-
batch gradient descent, the backward propagation under-
goes a phenomenon called vanishing gradient [8], which
considerably hampers the training of networks with a large
number of layers. In these cases the ReLU activation function
is very practical because it does not suffer from the vanishing
gradient problem. Moreover, in regression problems it has
the advantage of not being limited to outputs between 0
and 1, thus favouring the dispersity of the solution in the
hidden neurons. The following shows the expression for the
activation function for the 𝑙th layer of a neural network with𝑁 layers.

𝜎𝑙relu (𝑥) = {{{
max (0, 𝑥) , if 𝑙 ̸= 𝑁
𝑥, if 𝑙 = 𝑁, (5)

where 𝑥 is used to indicate the input to the activation
function, that is, the weighted sum of the inputs to the
neuron, as shown in (2). The FNNs with the ReLU activation
function that we trained use this function for the neurons in
every layer except the output layer.

2.2.2. SELU Activation Function. Even using the ReLU acti-
vation functions, truly deep FNNs are difficult to train,

which hampers their ability to handle high-level abstract
relationships in the input samples. The Scaled Exponen-
tial Linear Unit (SELU) activation function induces self-
normalising properties that make the neuron activations
automatically converge toward an average of 0 and a variance
of 1 [9]. This property propagates throughout the network
even in the presence of noise and perturbations. This allows
training networks with more layers and the use of strong
regularisation and it makes the training more robust.

The following shows the expression for this type of
activation function:

𝜎𝑙selu (𝑥) = 𝜆{{{
𝑥, if 𝑥 > 0
𝛼𝜖𝑥 − 𝛼, if 𝑥 ≤ 0, (6)

where 𝑥 is used to indicate the input to the activation
function. Klambauer et al. [9] justify why 𝛼 and 𝜆must have
the values shown in

𝛼 = 1.6732632423543772848170429916717
𝜆 = 1.0507009873554804934193349852946 (7)

in order to ensure that the neuron activations converge
automatically toward an average of 0 and a variance of 1.

2.3. Convolutional Neural Networks. It is possible for the
atmospheric conditions in previous hours to contain infor-
mation that can be used to improve the forecast at any given
time. This information was introduced into predictors based
on FNNs to prepare samples that contained the weather
forecast features for every hour 𝑡 and for the𝑁 − 1 previous
hours, with the input layer for said models being suitably
expanded.

In order to check the results when the neural network
is forced to exploit the time-local correlation between the
features by forcing a connection pattern between adjacent
neurons in each layer, we implemented some predictors
using models based on Convolutional Neural Networks
(CNNs). CNNs are biologically inspired variants of FNNs
used primarily in computer vision problems [10], although
their ability to exploit spatially local correlation in images can
also be used in time-series forecasting.

In these models, the output of each neuron 𝑎𝑙𝑗 is not
generated based on the output of every neuron in the previous
stage, as shown in (2); rather, it is generated from a subset
of spatially adjacent neurons. So to improve the learning
efficiency, every neuron in the same layer shares the same
weight and bias, meaning the layer can be expressed in terms
of a filter that is convoluted with the output of the previous
layer. The following shows the output 𝑎𝑙𝑘𝑗 of the 𝑗th neuron of
the 𝑙th convolutional layer:

𝑎𝑙𝑘𝑗 = 𝜎𝑙𝑘 ((𝑊𝑙𝑘 ∗ 𝑎𝑙−1)𝑗 + 𝑏𝑙𝑘) , (8)

where (𝑊𝑙𝑘 ∗ 𝑎𝑙−1)𝑗 is the 𝑗th element resulting from the
convolution of the filter defined by 𝑊𝑙𝑘 with the output of
the previous layer 𝑎𝑙−1, 𝜎𝑙𝑘 is the activation function for the
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Figure 2: General diagram of the CNNs used.

convolutional layer, and 𝑘 ∈ [0 ⋅ ⋅ ⋅ 𝐾] indicates that it is the
output of the 𝑘th channel of the layer. In each convolutional
layer, different outputs can be applied to the output of
the previous layer to generate different representations or
channels, thus yielding a fuller representation of the data.
In order to apply a CNN to the problem of time-series
forecasting, we arranged the samples in such a way that the
time series of each characteristic is an input channel to the
network and thus to the first convolution later.

Figure 2 shows a general diagram of the CNN developed
in this paper to forecast time series. Behind each convolu-
tional layer with a ReLU activation function is a max-pooling
layer, which partitions the input into a set of nonoverlapping
ranges and, for each range, outputs the maximum value.
Behind several convolutional exchange layers and max-
pooling layers there is a feedforward layer (as described in
(2)) to yield the output of the entire network.

2.4. Recurrent Neural Networks. As we have shown, FNNs
and CNNs can use historical data series but they lack the
memory to store information over the long term. They also
cannot use the information contained in the output of the
network at previous instants. Recurrent Neural Networks
(RNNs) [11] solve this problem by making the output 𝑦𝑡 at
timestamp 𝑡 depend on previous computations through a
hidden state 𝑠𝑡 that acts as a memory for the network, as
shown in the following:

𝑠𝑡 = 𝜎 (𝑊𝑥𝑡 + 𝑈𝑠𝑡−1)
𝑦𝑡 = 𝑓 (𝑠𝑡) , (9)

where 𝑥𝑡 is the input to the network, 𝜎(𝑥) is the state
activation function, 𝑊 and 𝑈 are the weights by which the
inputs and the state for the previous instant are multiplied,
respectively, to generate the new state 𝑠𝑡, and 𝑓(𝑥) is the
function that generates the network’s output based on the
state. On occasion this function 𝑓(𝑥) will be the identity
function 𝑓(𝑥) = 𝑥, but it can also be a feedforward layer like
the one described in (2).

Figure 3 shows the RNN we used, unfolded into a full
network. By unfolded we simply mean that we write out the
network for the complete sequence of inputs and take the
output at 𝑡 as the network’s prediction for fitting. Instead of
the basic RNN cell explained previously, we used two, more
advanced cells: long short-term memory (LSTM) [11] and
Gated Recurrent Unit (GRU) [12] cells.

RNN cell RNN cell RNN cell

xt−5 xt−4

· · ·

yt

xt

Figure 3: RNN unfolded into a full network.

LSTM recurrent neural networks are capable of learning
and remembering over long input sequences and tend towork
very well for time-series forecasting problems [13]. As (10)
well shows, the output 𝑦𝑡 depends on the state 𝑠𝑡 of the LSTM
cell through the activation function 𝜎𝑦(𝑥) (which is generally
tanh(𝑥)). The output gate 𝑜𝑡 controls the extent to which the
state 𝑠𝑡 is used to compute the output 𝑦𝑡 by means of the
Hadamard product (∘):

𝑓𝑡 = 𝜎𝑔 (𝑊𝑓𝑥𝑡 + 𝑈𝑓𝑦𝑡−1 + 𝑏𝑓) ,
𝑖𝑡 = 𝜎𝑔 (𝑊𝑖𝑥𝑡 + 𝑈𝑖𝑦𝑡−1 + 𝑏𝑖) ,
𝑜𝑡 = 𝜎𝑔 (𝑊𝑜𝑥𝑡 + 𝑈𝑜𝑦𝑡−1 + 𝑏𝑜) ,
𝑠𝑡 = 𝜎𝑠 (𝑊𝑠𝑥𝑡 + 𝑈𝑠𝑦𝑡−1 + 𝑏𝑠) ,
𝑠𝑡 = 𝑓𝑡 ∘ 𝑠𝑡−1 + 𝑖𝑡 ∘ 𝑠𝑡,
𝑦𝑡 = 𝑜𝑡 ∘ 𝜎𝑦 (𝑠𝑡) .

(10)

The state 𝑠𝑡 depends on the state of the previous instant𝑠𝑡−1 and on the candidate for the new value of the state 𝑠𝑡.
The input gate 𝑖𝑡 controls the extent to which 𝑠𝑡 flows into
the memory and the forget gate 𝑓𝑡 controls the extent to
which 𝑠𝑡−1 remains in memory.The 𝑜𝑡, 𝑓𝑡, and 𝑖𝑡 gates and the
candidate for the new value of the state of the cell 𝑠𝑡 can be
interpreted as the outputs of conventional artificial neurons
whose inputs are the input to cell 𝑥𝑡 at 𝑡 and the output of cell𝑦𝑡−1 at 𝑡 − 1. The activation function for the gates 𝜎𝑔 is the
sigmoid function, while for 𝜎𝑠 it is tanh(𝑥).

GRU recurrent neural networks use a simpler cell without
a forget gate and with fewer parameters, meaning they can
generally be trained with fewer samples. Chung et al. [14]
shows experimentally its superiority over LSTM for simple
networks, but cannot conclude that GRU is better in different
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cases. The following shows the equations that govern the
behaviour of these cells:

𝑧𝑡 = 𝜎𝑔 (𝑊𝑧𝑥𝑡 + 𝑈𝑧𝑦𝑡−1 + 𝑏𝑧) ,
𝑟𝑡 = 𝜎𝑔 (𝑊𝑟𝑥𝑡 + 𝑈𝑟𝑦𝑡−1 + 𝑏𝑟) ,
𝑦𝑡 = 𝜎𝑦 (𝑊𝑦𝑥𝑡 + 𝑈𝑦 (𝑟𝑡 ∘ 𝑦𝑡−1) + 𝑏𝑦) ,
𝑦𝑡 = 𝑧𝑡 ∘ 𝑦𝑡−1 + (1 − 𝑧𝑡) ∘ 𝑦𝑡,

(11)

where 𝑦𝑡 is the cell’s output candidate, 𝑧𝑡 is the update gate,
which controls the extent to which 𝑦𝑡−1 or 𝑦𝑡 is used to
compute the output, and 𝑟𝑡 is the reset gate, which controls
the extent to which 𝑦𝑡−1 flows into the cell’s output candidate𝑦𝑡. In GRU the activation functions 𝜎𝑔(𝑥) and 𝜎𝑦(𝑥) are the
sigmoid function and tanh(𝑥), respectively.
2.5. Sensitivity to Disturbances. An important aspect in this
paper is to analyse the behaviour of our models in the
presence of input disturbances. In the following equation
we show the expression for the input 𝑥𝑗 assuming that it
undergoes a small incremental change Δ𝑥𝑗:

𝑥𝑗 = 𝑥∗𝑗 + Δ𝑥𝑗, (12)

where 𝑥∗𝑗 is the 𝑗th value of the input sample without
disturbance. It is important to note that the input 𝑥𝑗 to the
model is the 𝑗th input to the first layer. Similarly, 𝑦 is the
output of the last layer.

A perturbation Δ𝑥𝑗 in the input 𝑥𝑗 induces a disturbance
in the output 𝑦 of the neural network. When there is no
perturbation in any of the model’s inputs, the output of the
neural network is 𝑦∗. In order to determine if the model is
robust against perturbations in the 𝑗th input, the sensitivity𝑠𝑗 has to be calculated [15]. We show its expression in the
following:

𝑠𝑗 = Δ𝑦/𝑦∗Δ𝑥𝑗/𝑥∗𝑗 =
Δ𝑦/𝑦∗𝛿𝑗 , (13)

where Δ𝑦 is the corresponding change in the value of the
output variable 𝑦 and 𝛿𝑗 = Δ𝑥𝑗/𝑥∗𝑗 is the input perturbation
ratio.

If the sensitivity 𝑠𝑗 is lower than 1.0, it means that the
network attenuates the input disturbances, whereas if it is
equal to 1.0, it means that the network neither attenuates nor
amplifies disturbances.

3. Results and Discussion

As noted earlier, the wind farm currently uses a polynomial
regression to predict the farm’s generation, as required to
participate in the daily market. To give an idea of its accuracy,
Table 3 shows the MAE and MASE for some estimators
using the historical data available. The MASE indicates the
absolute error relative to the error in the one-hour naive
forecast reference estimator. Therefore, a MASE greater than1.0 indicates the predictor works worse than the reference

Table 3: Accuracy of current estimators.

Estimator MAE (kWh) MASE
Naive 1 h 261 1.00
Naive 24 h–48 h 780 2.99
Polynomial 552 2.11
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Figure 4: Trend in MASE for different FNNs with ReLU.

estimator, while aMASE lower than 1.0 indicates that it works
better.

As Table 3 shows, the polynomial estimator is a little over
two times worse than the one-hour naive forecast reference
estimator; however, this naive estimator would never be able
to be used because the prediction has to be made and sent to
the grid operator 24 hours in advance.

To obtain a more realistic comparison, it was compared
with another naive estimator that uses the actual generation
measured 24 or 48 hours earlier for its prediction at a given
time. This naive estimator could be used at the farm, though
Table 3 shows that the polynomial regression is considerably
better than this second naive estimator.

3.1. Feedforward Neural Networks. Figures 4, 5, and 6 show
how the MASE evolved for the validation data set over the
course of the iterations for networks with different numbers
of hidden layers, neurons and ReLU, sigmoid, and SELU
activation functions, respectively.

In every case the final result is similar and slightly better
than for the polynomial regression, whose MASE is 2.11.
Figure 4 shows that a ReLU activation function yields good
results with around 20 neurons between all the hidden layers.
If this size is increased, the number of overfitting cases rises
gradually and theMASE is not reduced by either addingmore
layers or making the layers larger.

Figure 5 shows the results for FNNs with a sigmoid
activation function. In this case we clearly see that two hidden
layers yield better results than one, but after that no further
improvements are obtained by expanding the network. The
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Figure 5: Trend in MASE for different FNNs with a sigmoid
activation function.
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Figure 6: Trend in MASE for different FNNs with SELU activation
function.

FNNs with a sigmoid activation function need three or four
times more steps than a ReLU network to converge. In fact,
of all the network types studied, they required the highest
number of steps to converge. This problem grows with the
number of layers due to the vanishing gradient problem.

Figure 6 shows the same curves but for FNNs with a
SELU activation function. The improvement resulting from
increasing the size of the first layer has a bound that can
be overcome by increasing the number of layers. In general,
it does not yield better results than the ReLU activation
function for our problem, but this is to be expected since the
benefits of this function are evident when used in problems
that require a large number of layers Klambauer et al. [9].
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Figure 7: Trend in MASE for different FNNs with ReLU activation
function and 6 h historical input data.
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Figure 8: Trend in MASE for different FNNs with sigmoid activa-
tion function and 6 h historical input data.

We then trained estimators similar to the above, but with
samples that contained the weather forecast features for every
hour 𝑡 and for the previous 5 hours. As before, Figures 7, 8,
and 9 show how the MASE evolved for this new data set. The
final result is similar in every case, but better than for the
polynomial regression and for the previous FNNs.This shows
that these estimators are capable of making good use of time
information.

Figures 8 and 9 also exhibit behaviour similar to Figures
5 and 6 respectively, converging to solutions with a smaller
MASE. It is interesting to note that although the networks
with a SELU activation function behave similarly to those
with the ReLU function, the former exhibit fewer overfitting
problems as the size of the network grows. In other words,
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Figure 9: Trend in MASE for different FNNs with SELU activation
function and 6 h historical input data.

with the SELU activation function, increasing the number
of layers does not improve the results but the estimators are
trained equally well.

3.2. Convolutional Neural Networks. We trained an CNN-
based estimator using the architecture shown in Figure 2
in order to compare its performance with that of previous
FNNs and to try to improve the results obtained by the latter.
The size of the convolution filters was set at five, the ReLU
activation function was selected for the convolutional layers,
as is usual for these networks, and the size of themax-pooling
window was set at three. Figure 10 shows how the MASE
evolved for the validation data set over the course of the
iterations for networks with different numbers of channels
at the output of each convolution: between 32 and 8. The
MASE for networks with at least 32 to 16 channels is very
similar to that obtained for FNNs, but the CNNs converge
much faster, in approximately half the time. The advantage
is that the training for this type of network can be speeded
up considerably by using graphics processing units (GPU),
although this possibility was not explored for this paper.

Figure 11 uses an image with 256 grey levels to show a
representation of the coefficients of the filters trained for the
first convolutional layer of theCNNwith eight channels. Each
filter has one row per input characteristic and shows how
the filter uses said characteristic to contribute to the layer’s
output.

3.3. Recurrent Neural Networks. A similar procedure was
used to train the RNNs with LSTM and GRU cells of various
sizes for the output 𝑦𝑡. Figures 12 and 13 show the trend in the
MASE when training the RNN LSTM and GRU, respectively.
Both RNN types exhibit an error that is very slightly larger
than that of the FNNs andCNNs.Thenumber of steps needed
to complete the training is also very similar, though in reality
each step consumes much more time. Although not shown
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Figure 10: Trend in MASE for different CNNs.

in the graph, the amount of time needed by the RNNs was
approximately five times that needed by the equivalent FNNs.

It should be noted that no large differences are evident
between the RNN LSTM and the RNN GRU. It is also
surprising howwell both types of RNNswork, evenwith size 1
cells, which store considerably less information in their status
than larger cells.

In light of these results, the problem of predicting wind
generation for the dailymarket is better resolved by providing
as input a time series with the forecast for previous hours
and using estimators based on FNNs with a ReLU or SELU
activation function, or CNNs. Specifically, the latter can be
trained with a lower number of iterations and, presumably,
in less time with the use of GPUs. As concerns ReLU FNNs
and SELU FNNs, it is easier to avoid overfitting in the latter,
though, if trained correctly, both are equally accurate.

3.4. Sensitivity to Disturbances. Finally, we selected the best
models of each type in order to analyse their behaviour
in response to disturbances in the input. In every case, we
used models trained with 6 h time series. As we discussed in
Section 2.5, we ran the models with and without perturba-
tions in the inputs in order to calculate their sensitivity. The
perturbations were applied into the matching inputs for the
forecasts of wind velocity and direction for the time when
the generation is to be predicted, because these are the inputs
with the greatest influence on the model’s output.

In this paper the input perturbation ratio and the sensi-
tivity values obtained are shown in percentages. Sensitivities
below 100% indicate that the estimators are capable of
attenuating the perturbations, while sensitivities in excess of
100% indicate that they are amplified.

Figure 14 compares the average sensitivity of the best
estimators for various network classes and sizes for different
perturbation levels in wind speed. The figure shows that all
of the estimators attenuate the input perturbations, reduc-
ing their influence on the output. In every case, the best
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Figure 11: Coefficients of the filters in the first convolutional layer with 8 channels.
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Figure 12: Trend in MASE for different LSTM RNNs.
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Figure 13: Trend in MASE for different GRU RNNs.

performance is exhibited by the estimators based on RNNs,
followed by SELU FNNs, sigmoid FNNs, and CNNs.

Figure 15 shows the average sensitivity of the same
models for different perturbation ratio values in the wind
direction input. In this case the results are much more
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Figure 14: Trend in sensitivity for different disturbances in the wind
speed.

dissimilar, undoubtedly because the relationship between
wind direction and power output is highly nonlinear and
muchmore complicated tomodel adequately during training.
As Figure 15 shows, only the estimators based on SELUFNNs,
CNNs, and RNNs cells of size 1 are capable of attenuating this
type of perturbations.

In light of these results and considering those obtained
previously involving the accuracy of the different estimator
types evaluated, the problem of predicting wind power
generation for the daily market is better resolved by using
estimators based on SELU FNNs or CNNs.

4. Conclusions

In this paper we considered the problem of predicting wind
power generation in order to take part in the dailymarket that
regulates the supply and demand in the Spanish electric sys-
tem. We used deep-learning techniques to develop different
predictors based on neural networks that were trained using
data provided by theMADEwind farm, operated by the ITER
on the island of Tenerife.

The predictors evaluated are based on feedforward neural
networks of varying sizes and with different activation func-
tions, convolutional neural networks, and recurrent neural
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networks. The conditions were the same as those employed
for the farm with the polynomial model now in use, namely,
relying on the weather forecast at least 24 hours in advance to
output a predicted generation for the farm.Themethodology
was checked by training and validating the model with
samples taken every hour during the past three years.

The results were adequate, yielding better results than the
1-hour reference naive forecast estimator and the polynomial
model used at the wind farm. Specifically, the use of time
series for the input samples proved to be the best way to
minimise the error. Moreover, of the different types of neural
networks evaluated, the CNNs and FNNs with the ReLU or
SELUactivation functionwere shown to be themost accurate,
although the differences between the best candidates from the
various network types were not significant. The traditional
sigmoid FNNs are on a par with the other types trained,
though they converge much more slowly during training.

Finally, we conducted a sensitivity analysis of the models,
which revealed that trained neural networks are able to
attenuate some input disturbances. For disturbances in the
wind speed input, the best candidates from every network
type were able to attenuate the disturbances, though this is
muchmore difficult to achievewith perturbations in thewind
direction input, which even caused some network types to
amplify the perturbations. In this case, theCNN, SELUFNNs,
and the various RNN types exhibit the best performance.
Taking all the results into consideration, the best neural net-
work estimators, from the standpoint of offering the lowest
absolute error and being the least sensitive to perturbations,
are those based on SELU FNNs and CNNs.
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