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A novel fixed-time controller is proposed to perform fixed-time complex modified function projective lag synchronization of
chaotic (hyperchaotic) complex systems. The synchronization is obtained after a finite time that could be preestablished without
the knowledge of the initial states of both synchronized chaotic (hyperchaotic) complex systems. The global fixed-time stability of
the closed-loop systems is rigorously proven based on Lyapunov analysis. Some simulation examples are provided to demonstrate
the effectiveness and feasibility of the proposed method and verify the theoretical results.

1. Introduction

In the past two decades, much work has been devoted
to investigate dynamic behavior and synchronization of
chaotic (hyperchaotic) complex systems because of their
potential applications. For instance, Gibbon andMcGuinness
[1] presented a complex set of Lorenz equations derived in
laser optics and baroclinic instability, Zhang and Liu [2]
applied synchronization to communication problem under
considering time delay, and Wu et al. [3] proposed a method
to improve the secure communications via passive synchro-
nization of hyperchaotic complex systems. In the literature,
researchers have introduced several types of synchronization
of chaotic (hyperchaotic) complex systems such as com-
plete synchronization (CoS) [4], antisynchronization (AS)
[5], compound synchronization [6], projective synchroniza-
tion (PS) [7], modified projective and modified function
projective synchronization (MPS-MFPS) [8], combination-
combination synchronization [9], complete lag synchro-
nization (CoLS) [10], general hybrid projective complete
dislocated synchronization [11], modified projective lag syn-
chronization (MPLS) [12], and modified function projective
lag synchronization (MFPLS) [13]. Recently, some new types
of synchronization that utilized complex scaling factors have
been introduced to achieve the synchronization of both
module and phase, the concept first proposed by Nian et

al. [14]. Complex complete synchronization (CCoS) [15, 16],
complex projective synchronization (CPS) [17], combination
complex synchronization [18], complex modified projective
synchronization (CMPS) [19], and complex function pro-
jective synchronization (CFPS) [20, 21] are some examples.
In these synchronizations, the scaling factors are complex
numbers (or functions) that increase the unpredictability and
complexity; they have thus significantmeaning for enhancing
the security of communication [20]. Observation from [8,
20, 21] shows that mentioned kinds of synchronizations only
are special cases of complex modified function projective
synchronization (CMFPS). Furthermore, there might be
time delay between drive system and response system from
practical point of view [13, 20, 21]; complexmodified function
projective lag synchronization (CMFPLS), which is a more
general case, is rarely studied or not mentioned up to date.

In order to obtain such complex synchronization of
chaotic (hyperchaotic) complex systems, some control meth-
ods such as Lyapunov-based control, feedback control and/or
adaptive control [2, 5, 6, 8, 11–15, 17–20], passive control [3],
finite-time stability theory-based control [4, 9, 16], nonlinear
observer-based control [7], backstepping-based control [10],
and adaptive fuzzy logic control [21] have been proposed. In
the mentioned methods, while the ones in [4, 9, 16] ensure
obtaining finite-time synchronization in which the conver-
gence time still depends on both control design parameters
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and initial conditions, these remainders guarantee that the
synchronization errors might converge to origin asymptoti-
cally in the best case. It is certain that synchronization errors
could reach to zero in an amount of time which is more
desirable object. Finite-time stability theory-based control
methods have been known as useful and efficient techniques
with some advanced properties such as fast and finite-
time convergence, robustness, and high tracking precision
[22]. In some last years, some researchers have introduced
fixed-time stability concept, which is a further extension
of finite-time stability one, in the literature [23–26]. The
fixed-time stabilization problem of linear systems has solved
in [23] based on nonlinear feedback control. Inspired by
well-known super-twisting (STW) algorithm and high-order
differentiator [27, 28], Basin et al. have proposed an adaptive
STW-like controller with uniform finite/fixed convergence
time in [24] and a continuous finite-time and fixed-time
control method for an 𝑛-dimensional chain of integrators
[25]. In [26], Polyakov et al. have introduced finite-time and
fixed-time controlmethods for stabilizing linearmulti-input-
multioutput systems. The fixed-time control methods ensure
that the origin of the system is stabilized in some finite time
that is not dependent on the initial conditions; in otherwords,
the convergent time is completely predefined via designed
controller parameters.

Motivated by the above discussion, the main goal of
this article is to propose a novel fixed-time control law to,
for the first time, obtain fixed-time complex modified func-
tion projective lag synchronization of chaotic (hyperchaotic)
complex systems; that is, the modified function projective
lag synchronization (CMFPLS) error states converge to zero
in a predefined amount of time despite initial conditions.
The global stability and fixed-time convergence are rigorously
proven, and an upper bound of the convergence time is
estimated.

The rest of this paper is organized into four sections.
Section 2 gives some preliminaries and problem formulation.
In Section 3, a fixed-time controller is introduced to solve the
CMFPLS problem. Two illustrative examples are provided to
demonstrate the effectiveness and the feasibility of the sug-
gested controlmethod in Section 4. Finally, some conclusions
are drawn in Section 5.

Notations. R and C denote, respectively, the space of real
number and complex number, and diag(⋅) represents a block-
diagonal matrix. If 𝑥 ∈ R, the following notation is
introduced for simplicity of expression [29]:

𝑥[𝜙] = |𝑥|𝜙 sign (𝑥) , (1)

where 𝜙 > 0, and it can be verified that as 𝜙 ≥ 1,𝑑𝑑𝑡𝑥[𝜙] = 𝜙 |𝑥|𝜙−1 𝑥̇. (2)

If 𝑥 ∈ C, that is, 𝑥 = 𝑥𝑟 + 𝑗𝑥𝑖 (superscripts 𝑟 and 𝑖 stand for
the real and imaginary parts of the complex number 𝑥, and𝑗 = √−1), we then adopt the notation that 𝑥 = 𝑥𝑟−𝑗𝑥𝑖, 𝑥[𝜙] =(𝑥𝑟)[𝜙]+𝑗(𝑥𝑖)[𝜙], x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)T ∈ Rn, x = (𝑥1, 𝑥2, . . . ,𝑥𝑛)T ∈ Cn.

2. Preliminaries and Problem Formulation

First at all, some concepts related to finite-time stability and
fixed-time stability given in [23] and a lemma thatwill be used
in the analysis later are introduced as follows.

Consider the system

ẋ = 𝜓 (𝑡, x) , x (0) = x0, (3)

where x ∈ R𝑛 and 𝜓 : R+ × R𝑛 → R𝑛 is a nonlinear
function which can be discontinuous. Assume the origin is
an equilibrium point of (3).

Definition 1. The origin of (3) is said to be globally finite-
time stable if it is globally asymptotically stable and any
solution x(𝑡, x0) of (3) reaches the equilibria at some finite-
time moment; that is, x(𝑡, x0) = 0, ∀𝑡 ≥ 𝑇(x0), where 𝑇 :
R𝑛 → R+ ∪ {0} is the settling-time function.

Definition 2. Theorigin of (3) is said to be globally fixed-time
stable if it is globally finite-time stable and the settling-time
function 𝑇(x0) is bounded; that is, ∃𝑇max > 0 : 𝑇(x0) ≤𝑇max, ∀x0 ∈ R𝑛.

Lemma 3 (see [30], Jensen’s inequality). One has

( 𝑚∑
𝑖=1

𝑧𝜃2𝑖 )1/𝜃2 ≤ ( 𝑚∑
𝑖=1

𝑧𝜃1𝑖 )1/𝜃1 , 0 < 𝜃1 < 𝜃2 (4)

with 𝑧𝑖 ≥ 0 and 0 ≤ 𝑖 ≤ 𝑚.
Two different 𝑛-dimensional complex chaotic (hyper-

chaotic) systems under this study are described as follows.
The drive system is

ẋ (𝑡) = ẋ𝑟 + 𝑗ẋ𝑖 = f (x (𝑡) , x (𝑡) , 𝑡) , (5)

where x(𝑡) and f(x(𝑡), x(𝑡), 𝑡) are the state complex vector and
the vector of nonlinear complex functions of the drive system,
respectively.

And response system is

ẏ (𝑡) = ẏ𝑟 + 𝑗ẏ𝑖 = g (y (𝑡) , y (𝑡) , 𝑡) + u (𝑡) , (6)

where y(𝑡), g(y(𝑡), y(𝑡), 𝑡), and u(𝑡) are the state complex
vector, the vector of nonlinear complex functions, and the
control inputs of the controlled response system, respectively.

Define complex modified function projective lag syn-
chronization (CMFPLS) error between the drive system and
the controlled response system as

e (𝑡) = e𝑟 + 𝑗e𝑖 = y (𝑡) −Ω (𝑡) x (𝑡 − 𝜏) , (7)

where Ω(𝑡) = Ω𝑟(𝑡) + 𝑗Ω𝑖(𝑡) = diag(𝜔1(𝑡), 𝜔2(𝑡), . . . , 𝜔𝑛(𝑡))
is a function scaling matrix, 𝜔𝑘(𝑡) = 𝜔𝑟𝑘(𝑡) + 𝑗𝜔𝑖𝑘(𝑡) ∈ C are
different and continuously differentiable bounded functions,𝜔𝑘(𝑡) ̸= 0 for all 𝑡 ≥ 0, 𝜏 is positive time lag, and e(𝑡) =(𝑒1(𝑡), 𝑒2(𝑡), . . . , 𝑒𝑛(𝑡))𝑇; here 𝑒𝑘(𝑡) = 𝑒𝑟𝑘(𝑡) + 𝑗𝑒𝑖𝑘(𝑡), (𝑘 =1, 2, . . . , 𝑛). For convenience of notation, we utilize 𝑒𝑘, 𝑒𝑟𝑘, and𝑒𝑖𝑘 instead of 𝑒𝑘, 𝑒𝑟𝑘(𝑡), and 𝑒𝑖𝑘(𝑡), respectively.
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Table 1: Some types of synchronization.

Function scaling matrix
Ω(𝑡) = Ω𝑟(𝑡) + 𝑗Ω𝑖(𝑡) = diag (𝜔1(𝑡), 𝜔2(𝑡), . . . , 𝜔𝑛(𝑡)) Type of synchronization

𝜔𝑘 (𝑡) = 𝜔𝑟𝑘(𝑡) + 𝑗𝜔𝑖𝑘(𝑡), (𝑘 = 1, 2, . . . , 𝑛) 𝜏 ̸= 0 𝜏 = 0𝜔𝑘(𝑡), (𝑘 = 1, 2, . . . , 𝑛) are identical complex functions CFPLS CFPS𝜔𝑘(𝑡), (𝑘 = 1, 2, . . . , 𝑛) are different complex constants CMPLS CMPS𝜔𝑘(𝑡), (𝑘 = 1, 2, . . . , 𝑛) are identical complex constants CPLS CPS𝜔𝑘 (𝑡) = 1 + 𝑗, (𝑘 = 1, 2, . . . , 𝑛) CCoLS CCoS𝜔𝑘 (𝑡) = −1 − 𝑗, (𝑘 = 1, 2, . . . , 𝑛) CLAS CAS𝜔𝑟𝑘(𝑡), (𝑘 = 1, 2, . . . , 𝑛) are different real functions andΩ𝑖(𝑡) = 0 MFPLS MFPS𝜔𝑟𝑘(𝑡), (𝑘 = 1, 2, . . . , 𝑛) are identical real functions andΩ𝑖(𝑡) = 0 FPLS FPS𝜔𝑟𝑘(𝑡), (𝑘 = 1, 2, . . . , 𝑛) are different real constants andΩ𝑖(𝑡) = 0 MPLS MPS𝜔𝑟𝑘(𝑡), (𝑘 = 1, 2, . . . , 𝑛) are identical real constants andΩ𝑖(𝑡) = 0 PLS PS𝜔𝑘 (𝑡) = 1, (𝑘 = 1, 2, . . . , 𝑛) CoLS CoS𝜔𝑘 (𝑡) = −1, (𝑘 = 1, 2, . . . , 𝑛) LAS AS

Then, the CMFPLS error dynamics is determined by the
following equation:̇𝑒𝑘 = ̇𝑒𝑟𝑘 + 𝑗 ̇𝑒𝑖𝑘= −𝜔𝑘 (𝑡) 𝑓𝑘 (x (𝑡 − 𝜏) , x (𝑡 − 𝜏) , 𝑡 − 𝜏)− 𝜔̇𝑘 (𝑡) 𝑥𝑘 (𝑡 − 𝜏) + 𝑔𝑘 (y (𝑡) , y (𝑡) , 𝑡) + 𝑢𝑘 (𝑡) . (8)

Definition 4. The fixed-time complex modified function
projective lag synchronization between the drive system (3)
and the response system (4) is achieved if there exists a time
moment 𝑇 > 0, which is independent of initial error states,
e(𝑡0), such that ‖e(𝑡)‖ = 0, ∀𝑡 ≥ 𝑡0 + 𝑇.

The main goal of this article is to design control laws𝑢𝑘(𝑡), (𝑘 = 1, 2, . . . , 𝑛) such that the resulting closed-loop
system is global fixed-time stability; that is, the fixed-time
CMFPLS of the error system (5) is obtained in the sense of
Definition 4.

Remark 5. The differential equation of form (3) is the
expression of most of the well-known chaotic (hyperchaotic)
complex systems such as chaotic (hyperchaotic) complex
Chen, Lorenz, and Lü systems.

Remark 6. Besides several kinds of synchronization men-
tioned in the Introduction, CMFPLS considered in this study
also consists of some other special cases such as complex
function projective lag synchronization (CFPLS), complex
modified projective lag synchronization (CMPLS), complex
projective lag synchronization (CPLS), complex complete
lag synchronization (CCoLS), complex lag antisynchroniza-
tion (CLAS), complex antisynchronization (CAS), function
projective lag synchronization (FPLS), function projective
synchronization (PLS), projective lag synchronization (PLS),
and lag antisynchronization (LAS) summarized in Table 1.

3. Main Results

In this section, a novel control method is proposed to achieve
the fixed-time CMFPLS between the drive system (3) and the

controlled response system (4). The main result of the article
is summarized in the following theorem.

Theorem 7. Consider the CMFPLS error dynamics (8). If a
feedback control law is designed as𝑢𝑘 (𝑡) = 𝑢𝑟𝑘 + 𝑗𝑢𝑖𝑘= 𝜔𝑘 (𝑡) 𝑓𝑘 (x (𝑡 − 𝜏) , x (𝑡 − 𝜏) , 𝑡 − 𝜏)

+ 𝜔̇𝑘 (𝑡) 𝑥𝑘 (𝑡 − 𝜏) − 𝑔𝑘 (y (𝑡) , y (𝑡) , 𝑡)
− ℎ1𝑘𝑒[2−𝛽𝑘]𝑘

− ℎ2𝑘 ([e]𝜆𝑘|𝑒𝑟𝑘| 𝑒𝑟𝑘 + 𝑗 [e]𝜆𝑘|𝑒𝑖𝑘| 𝑒𝑖𝑘)
− ℎ3𝑘𝑒[𝛽𝑘]𝑘 ,

(9)

where ℎ1𝑘, ℎ2𝑘, and ℎ3𝑘 are positive constants and satisfy4ℎ1𝑘ℎ3𝑘 > ℎ22𝑘, 0 < 𝛽𝑘 < 1, 𝜆𝑘 > 0, (𝑘 = 1, 2, . . . , 𝑛), and[e] is Euler’s number, then the origin of the resulting closed-
loop system is globally fixed-time stable; that is, the fixed-
time CMFPLS between the drive system (3) and the controlled
response system (4) is obtained in the sense of Definition 4. In
addition, the CMFPLS error states of (8) reach to zero at most
after the fixed time

𝑇 = 2(1 − 𝛽𝑘)√4ℎ1𝑘ℎ3𝑘 − ℎ2
2𝑘

(𝜋2
− tan−1

ℎ2𝑘√4ℎ1𝑘ℎ3𝑘 − ℎ2
2𝑘

).
(10)

Proof. TheCMFPLS error dynamics (8) under the control law
(9) results in the closed-loop system represented in the forṁ𝑒𝑘 = ̇𝑒𝑟𝑘 + 𝑗 ̇𝑒𝑖𝑘

= −ℎ1𝑘𝑒[2−𝛽𝑘]𝑘
− ℎ2𝑘 ([e]𝜆𝑘|𝑒𝑟𝑘| 𝑒𝑟𝑘 + 𝑗 [e]𝜆𝑘|𝑒𝑖𝑘| 𝑒𝑖𝑘)

− ℎ3𝑘𝑒[𝛽𝑘]𝑘 .
(11)
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The resulting closed-loop system can be rewritten as

̇𝑒𝑟𝑘 = −ℎ1𝑘 (𝑒𝑟𝑘)[2−𝛽𝑘] − ℎ2𝑘 [e]𝜆𝑘|𝑒𝑟𝑘| 𝑒𝑟𝑘 − ℎ3𝑘 (𝑒𝑟𝑘)[𝛽𝑘] ,
̇𝑒𝑖𝑘 = −ℎ1𝑘 (𝑒𝑖𝑘)[2−𝛽𝑘] − ℎ2𝑘 [e]𝜆𝑘|𝑒𝑖𝑘| 𝑒𝑖𝑘 − ℎ3𝑘 (𝑒𝑖𝑘)[𝛽𝑘] . (12)

Consider the following Lyapunov function candidate

𝑉 = 𝑛∑
𝑘=1

[(𝑒𝑟𝑘)2 + (𝑒𝑖𝑘)2] . (13)

Its time derivatives along the trajectories of (12) lead to

𝑉̇ = 2 𝑛∑
𝑘=1

𝑒𝑟𝑘 [−ℎ1𝑘 (𝑒𝑟𝑘)[2−𝛽𝑘] − ℎ2𝑘 [e]𝜆𝑘|𝑒𝑟𝑘| 𝑒𝑟𝑘
− ℎ3𝑘 (𝑒𝑟𝑘)[𝛽𝑘]] + 2 𝑛∑

𝑘=1

𝑒𝑖𝑘 [−ℎ1𝑘 (𝑒𝑖𝑘)[2−𝛽𝑘]
− ℎ2𝑘 [e]𝜆𝑘|𝑒𝑖𝑘| 𝑒𝑖𝑘 − ℎ3𝑘 (𝑒𝑖𝑘)[𝛽𝑘]]
= 2 𝑛∑
𝑘=1

(−ℎ1𝑘 󵄨󵄨󵄨󵄨𝑒𝑟𝑘󵄨󵄨󵄨󵄨3−𝛽𝑘 − ℎ2𝑘 [e]𝜆𝑘|𝑒𝑟𝑘| (𝑒𝑟𝑘)2
− ℎ3𝑘 󵄨󵄨󵄨󵄨𝑒𝑟𝑘󵄨󵄨󵄨󵄨1+𝛽𝑘) + 2 𝑛∑

𝑘=1

(−ℎ1𝑘 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑘󵄨󵄨󵄨󵄨󵄨3−𝛽𝑘
− ℎ2𝑘 [e]𝜆𝑘|𝑒𝑖𝑘| (𝑒𝑖𝑘)2 − ℎ3𝑘 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑘󵄨󵄨󵄨󵄨󵄨1+𝛽𝑘) .

(14)

Applying Lemma 3, we can have

𝑉̇ ≤ 2 𝑛∑
𝑘=1

{−ℎ1𝑘 [(𝑒𝑟𝑘)2 + (𝑒𝑖𝑘)2](3−𝛽𝑘)/2
− ℎ2𝑘 [(𝑒𝑟𝑘)2 + (𝑒𝑖𝑘)2]
− ℎ3𝑘 [(𝑒𝑟𝑘)2 + (𝑒𝑖𝑘)2](1+𝛽𝑘)/2} ≤ −2ℎ1𝑘𝑉(3−𝛽𝑘)/2
− 2ℎ2𝑘𝑉 − 2ℎ3𝑘𝑉(1+𝛽𝑘)/2.

(15)

Hence, the Lyapunov theorem [31] indicates that origin of (12)
is globally asymptotically stable. Further, we will show that
the convergence takes place in finite time.

We consider the differential equation

𝜑̇ = −2ℎ1𝑘𝜑(3−𝛽𝑘)/2 − 2ℎ2𝑘𝜑 − 2ℎ3𝑘𝜑(1+𝛽𝑘)/2,𝜑 (0) = 𝜑0 ≥ 0. (16)

It follows that

𝑑𝑡 = − 𝑑𝜑2 (ℎ1𝑘𝜑1−𝛽 + ℎ2𝑘𝜑(1−𝛽𝑘)/2 + ℎ3𝑘) 𝜑(𝛽𝑘+1)/2
= − 11 − 𝛽𝑘 𝑑𝜑(1−𝛽𝑘)/2(ℎ1𝑘𝜑1−𝛽𝑘 + ℎ2𝑘𝜑(1−𝛽𝑘)/2 + ℎ3𝑘) .

(17)

The solution of (17) found under the condition, ℎ22𝑘 ≤ 4ℎ1𝑘ℎ3𝑘,
satisfies the following equation:

𝑡 = 2(1 − 𝛽𝑘)√4ℎ1𝑘ℎ3𝑘 − ℎ2
2𝑘

(tan−1
2ℎ1𝑘𝜑 (0) + ℎ2𝑘√4ℎ1𝑘ℎ3𝑘 − ℎ2

2𝑘

− tan−1
2ℎ1𝑘𝜑 (𝑡) + ℎ2𝑘√4ℎ1𝑘ℎ3𝑘 − ℎ2

2𝑘

).
(18)

Since expression (16) implies that 𝜑(𝑡) is decreasing, (18)
indicates that 𝜑(𝑡) will become zero in finite time.

𝑇𝜑
= 2(1 − 𝛽𝑘)√4ℎ1𝑘ℎ3𝑘 − ℎ2

2𝑘

(tan−1
2ℎ1𝑘𝜑 (0) + ℎ2𝑘√4ℎ1𝑘ℎ3𝑘 − ℎ2

2𝑘

− tan−1
ℎ2𝑘√4ℎ1𝑘ℎ3𝑘 − ℎ2

2𝑘

).
(19)

In addition, on the basis of the comparison principle [32], we
can obtain that𝑉(𝑡) ≤ 𝜑(𝑡)when𝑉(𝑡 = 0) ≤ 𝜑0, and it follows
that𝑉(𝑡), and therefore the origin of (12), converge to zero in
finite time 𝑇𝑉 ≤ 𝑇𝜑, with

𝑇𝑉
= 2(1 − 𝛽𝑘)√4ℎ1𝑘ℎ3𝑘 − ℎ2

2𝑘

(tan−1
2ℎ1𝑘𝑉 (𝑡 = 0) + ℎ2𝑘√4ℎ1𝑘ℎ3𝑘 − ℎ2

2𝑘

− tan−1
ℎ2𝑘√4ℎ1𝑘ℎ3𝑘 − ℎ2

2𝑘

).
(20)

Thus, the origin of (12) is globally finite-time stable on the
basic of Definition 1.

It can be easy to show that 𝑇𝜑 is bounded by

𝑇𝑉 ≤ 𝑇 = 2(1 − 𝛽𝑘)√4ℎ1𝑘ℎ3𝑘 − ℎ2
2𝑘

(𝜋2
− tan−1

ℎ2𝑘√4ℎ1𝑘ℎ3𝑘 − ℎ2
2𝑘

).
(21)

Since the above expression of 𝑇 is only dependent on the
controller parameters, it follows from Definition 2 that the
origin of (12) is globally fixed-time stable. Consequently, the
fixed-time CMFPLS between the drive system (3) and the
controlled response system (4) is achieved in the sense of
Definition 4. Theorem 7 is proven.
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Figure 1: The time histories of the CMPS error states.

Remark 8. Regarding differential equation (11), |−ℎ1𝑘𝑒[2−𝛽𝑘]𝑘
−ℎ2𝑘([e]𝜆𝑘|𝑒𝑟𝑘|𝑒𝑟𝑘 + 𝑗[e]𝜆𝑘|𝑒𝑖𝑘|𝑒𝑖𝑘)| holds a dominant function that

ensures fast convergence speed while |𝑒𝑘| is much larger than
1, and ℎ3𝑘𝑒[𝛽𝑘]𝑘 takes the dominant one that determines finite-
time convergencewhile |𝑒𝑘| ismuch smaller than 1.Moreover,
the “soft gain” ℎ2𝜅[e]𝜆𝑘|𝑒𝑟𝑘| (or ℎ2𝜅[e]𝜆𝑘|𝑒𝑖𝑘|) is small if |𝑒𝑟𝑘| (or|𝑒𝑖𝑘|) is close to zero. It implies that the influence of ℎ3𝑘𝑒[𝛽𝑘]𝑘 is
strong in the finite-time convergence period.

4. Numerical Simulations

Two illustrative examples are provided to demonstrate
the effectiveness and applicability of the proposed control
method in this section. In the numerical simulations, the
fourth-order Runge-Kuttamethod is used to solve differential
equations with a time step size of 0.001.
4.1. Example 1. This example demonstrates the efficacy of the
proposed approach by comparing to the existing method [19]
through the CMPS between two chaotic systems. It should

be noted that chaotic complex systems and the controller
parameters of the existing method were directly taken from
[19] to make a fair comparison.

The chaotic complex Lorenz system is assumed as the
drive system given by

𝑥̇1 = 14 (𝑥2 − 𝑥1) ,𝑥̇2 = 35𝑥1 − 𝑥2 − 𝑥1𝑥3,
𝑥̇3 = 12 (𝑥1𝑥2 + 𝑥1𝑥2) − 3.7𝑥3

(22)

and the chaotic complex Lu system is used as the controlled
response system as

̇𝑦1 = 40 (𝑦2 − 𝑦1) ,̇𝑦2 = 22𝑦2 − 𝑦1𝑦3,
̇𝑦3 = 12 (𝑦1𝑦2 + 𝑦1𝑦2) − 5𝑦3.

(23)
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Figure 2: The time histories of the state variables of the drive system (22) and the controlled response system (23).

The initial states of systems (22) and (23) are chosen as x(0) =[−1+𝑗2, −3+𝑗4, 5]𝑇 and y(0) = [3+𝑗4, −3+𝑗, 3]𝑇, respectively.
Based on Remark 6 and Table 1, the CMPS is obtained by
choosing the time delay as 𝜏 = 0 and the factor scaling
functions as Ω = diag(1, −1, 0).

The proposed control law is designed as (9) where the
parameter values are set as ℎ1𝑘 = 2, ℎ2𝑘 = 1, ℎ3𝑘 = 2, 𝜆𝑘 =0.1, 𝛽𝑘 = 0.8, (𝑘 = 1, 2, 3), and then the upper bound of the
convergence time is 𝑇1 ≈ 3.4 s based on (10), which is not
dependent on the initial conditions of the chaotic systems.

The numerical simulation results are depicted in Figures
1 and 2. It is observed that all the CMPS errors reach origin
in a finite amount of time that is less than 𝑇1 = 3.4 s, which
implies that the fixed-time CMPS between the drive system
(22) and controlled response system (23) is achieved as in
Figure 2. In contrast, we can see that the CMPS errors under
the method in [19] is to converge to zero asymptotically;
that is, lim𝑡→+∞|𝑒𝑖| = 0. Furthermore, we could conclude
from Figure 1 that the proposed method exhibits much better
performance than the method in [19] does.

4.2. Example 2. The CMFPLS between two hyperchaotic
complex systems is investigated in this example to completely
verify the theoretical result introduced. The hyperchaotic
complex Lu system [12] and hyperchaotic complex Lorenz
system [12] are adopted as the drive system and the controlled
response system, respectively.

The drive system is described as follows:𝑥1 = 42 (𝑥2 − 𝑥1) + 𝑥4,𝑥2 = 25𝑥2 − 𝑥1𝑥3 + 𝑥4,
𝑥3 = 12 (𝑥1𝑥2 + 𝑥1𝑥2) − 6𝑥3,
𝑥4 = 12 (𝑥1𝑥2 + 𝑥1𝑥2) − 5𝑥4

(24)

and the controlled response system is expressed as𝑦1 = 14 (𝑦2 − 𝑦1) + 𝑗𝑦4,𝑦2 = 40𝑦1 − 𝑦2 − 𝑦1𝑦3 + 𝑗𝑦4,
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Figure 3: The time histories of the CMFPLS error states.

𝑦3 = 12 (𝑦1𝑦2 + 𝑦1𝑦2) − 5𝑦3,
𝑦4 = 12 (𝑦1𝑦2 + 𝑦1𝑦2) − 13𝑦4.

(25)

To show that the upper bound of the convergence time,𝑇2, is independent of the initial conditions of synchronized
systems, wewill consider five cases in this example.The initial
condition of the drive system (24) is set as x(0) = [−1 +𝑗2, −2+ 𝑗3, 4, −3]𝑇, and the initial condition of the controlled
response system (25) is selected in the form of y(0) = 𝜎∗ [2+𝑗6, 7 − 𝑗5, 5, −1]𝑇, and here 𝜎 = {−2, −1, 0.5, 1, 3}. The time
delay is chosen as 𝜏 = 0.2, and the scaling factor functions are
chosen as 𝜔1(𝑡) = 1 + 𝑗 sin(𝑡), 𝜔2(𝑡) = 2 − 𝑗 cos(𝑡), 𝜔3(𝑡) =1.5, 𝜔4(𝑡) = cos(2𝑡).

For this example, the controller parameters are ℎ1𝑘 =2, ℎ2𝑘 = 1, ℎ3𝑘 = 2, 𝜆𝑘 = 0.1, and 𝛽𝑘 = 0.65, (𝑘 = 1, 2, 3, 4);
then this yields 𝑇2 = 1.94 s from (10). It is assumed that the
controller is activated at 𝑡0 = 3 s, and the upper bound of the
whole convergence time, thus, is 𝑡0 + 𝑇2 = 5.94 s.

The time responses of the CMFPLS error states are
displayed in Figure 3. All the synchronization errors reach
zero within the period 𝑡0 + 𝑇2 = 5.94 s despite the different
initial conditions; evidently, the CMFPLS could be obtained
in fixed time.

5. Conclusions

In this work, a novel fixed-time control method has been
proposed to achieve fixed-time complex modified function
projective lag synchronization of chaotic (hyperchaotic)
complex systems. The numerical simulations have been
given to verify the theoretical results and demonstrate
the effectiveness and feasibility of the suggested scheme. It
should be noted that the proposedmethod could be extended
to either chaos control problems or synchronization types
of chaotic (hyperchaotic) systems with different orders and
non-square scaling factor matrices.
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