
Hypothesizing about Signaling Networks

Nam Tran a& Chitta Baral b

aDepartment of Pathology, Yale School of Medicine, Yale University, New Haven,
CT 06510, USA

bComputer Science and Engineering, School of Computing & Informatics, Arizona
State University, Tempe, AZ 85281, USA

Abstract

The current knowledge about signaling networks is largely incomplete. Thus biolo-
gists constantly need to revise or extend existing knowledge. The revision and/or ex-
tension are first formulated as theoretical hypotheses, then verified experimentally.
Many computer-aided systems have been developed to assist biologists in undertak-
ing this challenge. The majority of the systems help in finding “pattern” in data
and leave the reasoning to biologists. A few systems have tried to automate the rea-
soning process of hypothesis formation. These systems generate hypotheses from a
knowledge base and given observations. A main drawback of these knowledge-based
systems is the knowledge representation formalism they use. These formalisms are
mostly monotonic and are now known to be not quite suitable for knowledge rep-
resentation, especially in dealing with the inherently incomplete knowledge about
signaling networks. We proposed an action language based framework for hypoth-
esis formation for signaling networks. We showed that the hypothesis formation
problem can be translated into abduction problem. This translation facilitated the
complexity analysis and an efficient implementation of our system. We illustrated
the applicability of our system with an example of hypothesis formation in the
signaling network of the p53 protein.

Key words: signaling networks, action languages, hypothesis formation, abduction
PACS:

Email addresses: nam.tran@yale.edu (Nam Tran), chitta@asu.edu (Chitta
Baral).

Preprint submitted to Elsevier 26 November 2007

1 Introduction

The living cell constantly receives and responds to signals from its environ-
ment. A signal is initiated when some extracellular molecules are sensed by
their respective cell-surface receptor. Signaling molecules inside the cell then
interact with one another to transduce the signal into cellular responses that
regulate the introduction of different proteins, thus controlling various func-
tions of the cell. Specific collections of interactions with a common theme in
a network are often referred to as signaling pathways or signaling networks.
Almost any disease can be described in terms of aberrations in signaling net-
works; for example cancer is caused by a breakdown in networks regulating
cell growth. Modeling signaling networks is thus essential for understanding
the cell function and can lead to effective therapeutic strategies that correct
or alter abnormal cell behaviors.

Signal transduction and signaling networks have become a major research
focus. The knowledge about signaling mechanisms is growing exponentially.
It is impossible for a single biologist (or even a small group of biologists) to
handle the large body of interactions in and the resulting complexity of signal
transduction networks. This calls for knowledge representation and automated
reasoning capability.

In recent years there have been intensive efforts in the modeling and recon-
struction of signaling networks of the cell. Most of the modeling approaches
are concerned with prediction of the cell behavior, using simulation of quan-
titative Voit (2000); Regev et al. (2001); Peleg et al. (2002); Davidson et
al. (2002b); de Jong (2002); Hoffmann et al. (2002); Schoeberl et al. (2002);
Priami (2003) or semi-quantitative models Meyers & Friedland (1984); Karp
(1993b); Shimada et al. (1995); Heidtke & Schulze-Kremer (1998); Matsuno
et al. (2000); Alur et al. (2001); Kam et al. (2001); Batt et al. (2003); de Jong
et al. (2003). The major limitation of these approaches is that parameters
and data for these quantitative models are hard to obtain. A minority of the
approaches is geared toward qualitative modeling, i.e., representing and rea-
soning with knowledge of signaling networks Karp et al. (2000); Ogata et al.
(1999); Karp et al. (2002a); Krieger et al. (2004); Eker et al. (2002); Talcott
et al. (2004); Maimon & Browning (2000); Chiaverini & Danos (2003); Danos
& Laneve (2003); Fukuda & Takagi (2001); Fukuda et al. (2003); Demir et
al. (2004); Cook et al. (2001); Kohn (1999); Sambrano (2003); Kitano (2003);
Funahashi et al. (2003). A main drawback of these qualitative approaches is
the knowledge representation formalism they use. These formalisms are mostly
monotonic and are now known to be not quite suitable for knowledge repre-
sentation.

2

1.1 Knowledge Base of Signaling Networks

We propose a knowledge-based approach to modeling signaling networks. We
represent cellular signaling networks in a knowledge base. We then reason and
hypothesize about the networks by asking different kinds of queries formulated
in a formal language. The knowledge base is augmented with various reasoning
mechanisms that allow the answering of the queries. An important dimension
of our approach is that it allows for reasoning mechanisms that gracefully han-
dle incomplete or partial information. This is extremely important as existing
regulatory networks often contain missing or suspected interaction links, or
proven interactions whose outputs are uncertain (e.g., the yeast 2-hybrid in-
teractions mentioned by Sambrano (2003)). Besides being able to handle such
incomplete information, our approach also allows for easy updating of the
knowledge base when new knowledge becomes available. This avoids signifi-
cant overhauling of the old model or scrapping of the old model and making a
new model from the scratch. This is important because we constantly need to
revise or update our knowledge about signaling networks due to its inherent
incompleteness.

A typical example of the kind of behavior we would like to model is the happen-
ing that follows when a particular ligand binds to a receptor in the membrane
of a cell. The immediate effect is that the ligand binds with the receptor. More-
over, such a binding in the presence of certain other molecules inside the cell
may trigger an action (or another binding) which in turn may trigger other
actions. Sometimes the presence of particular molecules can inhibit certain
actions that would have been otherwise triggered.

While modeling behaviors of the cell, we are interested in formalization and
implementation of several reasoning abilities that include (i) predicting the
impact of a particular action, (ii) explaining observations, (iii) planning to
make certain components of the cell behave in a particular way. These kinds
of reasoning have ultimate significance to cell biology and medical science.
For example, a drug can have side effects such as preventing a particular
hormone from being produced thus disrupting certain cellular and regulatory
mechanisms. Reasoning about side effects of a drug corresponds to prediction.
Another example is that one may observe abnormal cellular behaviors such
as persistent proliferation in place of programmed cell death. Then one would
want to find out the cause of such an abnormality. Such reasoning corresponds
to explanation or medical diagnosis. Finally, one may want to figure out a way
to correct abnormal behaviors of the cell. For example, one can introduce par-
ticular drug elements to the cell or cell membrane at particular time instances.
Planing for these kinds of intervention corresponds to drug design and drug
therapy.

3

1.2 Hypothesizing about Signaling Networks

Because of the complexity of living systems and the limitation of scientific
methods available for the study of those systems, biological knowledge is in-
herently incomplete. The incompleteness of knowledge constantly manifests
itself in unexplainable observations. To account for these novel observations,
biologists need to revise or extend the existing knowledge. The revision and
extension are first formulated as hypotheses. After being verified experimen-
tally, a hypothesis is added to the existing knowledge and becomes part of the
accepted biological theory.

Knowledge-based hypothesis formation has been a focus of Artificial Intelli-
gence (AI) research in the past (Shrager & Langley, 1990; Darden, 1997). In
regard to molecular biology and in particular signaling networks, the related
works in hypothesis formation include HYPGENE (Karp, 1991, 1993a), Hin-
Cyc (Karp et al., 1996), TRANSGENE (Darden, 1998, 1997), GENEPATH
(Zupan et al., 2003), and PathoLogic (Karp et al., 2002b). These works are
built upon knowledge representation languages that are limited to monotonic
reasoning. Furthermore, a large-scale knowledge base of signaling networks
should allow for easy updates (referred to as elaboration tolerance) of the
knowledge base when new knowledge becomes available, thus avoiding a sig-
nificant overhaul of the old knowledge model. This issue of elaboration tol-
erance in knowledge representation has been addressed successfully by recent
advances in AI research (Baral, 2003). Elaboration tolerance is essential for
representation of signaling networks, since the knowledge about these networks
is largely incomplete and constantly needs to be updated.

In this paper, we present a knowledge-based framework for hypothesis forma-
tion for signaling networks that is based on non-monotonic reasoning and elab-
oration tolerant representation. The organization of the paper is as follows. In
the next section, we briefly introduce the action language A0

T for representing
signaling networks. In Section 3, we formally define the hypothesis formation
problem in the language A0

T . In Section 4, we study the translation of the hy-
pothesis formation problem into abduction, and the complexity of hypothesis
formation as well as its implementation. In Section 5, we present an appli-
cation of our system to the p53 signaling network. The proofs of theoretical
results and additional technical background will be found in the Appendix.

2 Action Language for Signaling Networks

Representing and reasoning with knowledge about dynamic domains has been
a major focus of research in Knowledge Representation and Reasoning - a

4

subfield of Artificial Intelligence. The most difficult and important research
topics include: (1) compact representation of action descriptions; and (2) rea-
soning about effects of actions. In the last one and half decade there has been
tremendous progress in representing and reasoning about actions and in ap-
plications of action languages to real world problems. If we consider the cell
as a dynamic world, then issues in reasoning about actions are highly relevant
to the reasoning about the cell discussed above (i.e., representing molecule
interactions and doing prediction, planing and diagnosis). At the same time,
the complexity of the cellular environments and mechanisms poses new and
substantial challenges to established theories of reasoning about actions. We
have decided to adopt the action language framework to build a knowledge
base of signaling networks, since the expected benefits are twofold. On one
hand, we would be able make use of recent advances in reasoning about ac-
tions. On the other hand, challenges in applying action theories to modeling
the cell would stimulate significant new theoretical developments.

We extended the high-level action language A Gelfond & Lifschitz (1993) to an
action language A0

T for representing and reasoning about triggers in signaling
networks. The language A0

T has been applied to the representation of signaling
pathways of the pRb, NFκB, ERK, and p53 protein.

2.1 Action language A

An action theory in A Gelfond & Lifschitz (1993) is defined over two disjoint
sets, a set of actions A and a set of fluents F.

A fluent literal is a fluent (eg. f) or the negation of a fluent (eg. ¬f). A set of
fluent literals is said to be consistent if it does not contain both f and ¬f for
some fluent f . An interpretation I of the fluents in D is a maximal consistent
set of fluent literals of D. A fluent f is said to be true (resp. false) in I if f ∈ I
(resp. ¬f ∈ I). The truth value of a fluent formula in I is defined recursively
over the propositional connectives in the usual way. For example, f ∧ g is true
in I if f is true in I and g is true in I. We say that a formula ϕ holds in I (or
I satisfies ϕ), denoted by I |= ϕ, if ϕ is true in I. A state is an interpretation
of fluents.

A domain description is a set of statements of the form:

a causes f if f1, . . . , fn (1)

When n = 0, the above statement is simply written as a causes f .

Observations are statements about the initial state, which are of the form:

initially f

5

A set of observations O is said to be complete if for any fluent f , either
initially f ∈ O or initially ¬f ∈ O.

Queries in A are statements of the form:

Q = f after a1, . . . , an (2)

where f is a fluent literal, and a1, . . . , an are actions. Intuitively, this statement
queries whether f is true after the sequence of actions a1, . . . , an.

A state transition is a change of one state to another state due to effects of
some actions. The effect of an action a in a state s is the set

E(a, s) = { f | a causes f if f1, . . . fn ∈ D and {f1, . . . , fn} ⊆ s }. (3)

Let ¬¬g = g and ¬E(a, s) = {¬g|g ∈ E(a, s)}. State transitions are computed
by the transition function defined as follows.

Definition 2.1 A transition function of a domain D is a function Φ from
pairs of actions and states into states such that:

• if E(a, s) is consistent, then

Φ(a, s) = (s \ ¬E(a, s)) ∪ E(a, s) ;

• otherwise Φ(a, s) is undefined.

An action theory is a pair (D, O), where D is a domain description and O is
a set of observations. A state s0 is an initial state corresponding to an action
theory (D, O) if for every fluent literal g, g ∈ s0 iff initially g ∈ O. We then
say that 〈s0, Φ〉 is a model of (D, O).

An action theory (D,O) entails a query Q of the form (2), if for all mod-
els 〈s0, Φ〉 of (D, O), f holds in the state Φ(an, Φ(an−1, . . . Φ(a1, s0) . . .). The
entailment is denoted (D, O) |= Q.

2.2 Language A0
T for triggered actions

The action language A0
T extends A with statements representing triggered

actions. A domain description D in A0
T is a set of statements of the form (1)

and of the following forms:

g1, . . . , gm triggers b (4)

h1, . . . , hl inhibits c (5)

6

where gj, hk are fluent literals and b, c are individual actions. (4) is called a
trigger rule (or simply trigger), which says that action b is to occur if it is not
inhibited and if all the literals g1, . . . , gm hold. (5) is an inhibition rule, which
says that action c can not happen if all the literals h1, . . . , hl hold.

An action a is said to be triggered by a state s, if there exists a trigger rule
(4) such that all the literals g1, . . . , gm are true in s. An action a is said to
be inhibited by a state s, if there exists a inhibition rule (5) such that all the
literals h1, . . . , hl are true in s.

Since a state can trigger multiple actions, state transitions in A0
T are extended

to pairs of sets of actions and states. The direct effect of a set A of actions in
a state s is the set

E(A, s) =
⋃

a∈A

E(a, s).

where E(a, s) is defined by (3). Let us denote ¬E(A, s) = {¬f | f ∈ E(A, s)}.
The state Φ(A, s) resulting from the occurrence of A in s is defined as follows.

• Φ(∅, s) = s;
• if A 6= ∅ and E(A, s) is consistent, then

Φ(A, s) = (s \ ¬E(A, s)) ∪ E(A, s) ;

• otherwise Φ(A, s) is undefined.

A transition sequence τ is a sequence of the form τ = 〈s0, A0, s1, A1, . . .〉; where
si’s are states and Aj’s are sets of actions in D, such that si+1 = Φ(Ai, si) for
all i, and Aj = ∅ for all j > k if Ak = ∅.

A trajectory is a transition sequence τ = 〈s0, A0, s1, A1, . . .〉 where Ai is a
the set of all actions that are triggered but not inhibited by the state si

(for all i ≥ 0). Observations are statements of the form “ f at i ” or of
the form “ a occurs at j ”, where i and j are non-negative integers. The
former statement means that the fluent literal f is observed to be true at
time i. The latter means that the action a is observed to occur at time j. A
trajectory τ = 〈s0, A0, s1, A1, . . .〉 satisfies “ f at i ” iff f ∈ si. Also, τ satisfies
“ a occurs at j ” iff a ∈ Aj.

Definition 2.2 (Trigger bounded domain) A domain description D is called
trigger bounded, if all trajectories in D with only triggered actions are finite.

The upper bound on the lengths of the trajectories of a triggered bounded
domain D is denoted tbound(D).

A query in A0
T has the form

Q = f after A1 at t1, . . . , An at tn (6)

7

where f is a fluent, A1, . . . , An are sets of actions and t1 < . . . < tn are time
points. When n = 0, we simply write Q = f .

A action theory is a pair (D,O) where D is a domain description and O is a
set of observations. A model of an action theory (D,O) is a trajectory of D
that satisfies all the observations of O.

Let T = (D,O) be an action theory and Q be the query (6). Let O′ be the
set of observations O′ = O∪{A1 occurs at t1, . . . , An occurs at tn}. Then
T entails Q, written as T |= Q, iff

(i) (D,O′) has at least one model; and
(ii) for all trajectory models τ = 〈s0, A

′
1, s1, A

′
2 . . . A′

m, sm . . .〉 of the theory
(D,O′), there exists N such that f is true in all the states sk, k > N .

3 Knowledge-based Hypothesis Formation

Let L be a knowledge representation language. Assume that L is composed
of 3 sub-languages: (1) a domain description language LD; (2) an observation
language LO; and (3) a query language LQ. A domain description, an obser-
vation and a query are respectively sets of statements in LD, in LO and in
LQ. A theory is a pair (D,O) where D is a domain description and O is an
observation. Assume that the semantics of L defines the entailment of a query
Q from a theory (D,O), which is written as (D, O) |= Q.

Definition 3.1 Let (D,O) be a theory in a knowledge representation language
L. Let Q be a query such that (D,O) 6|= Q. Let S be a set of sentences in LD,
which is called hypothesis space. Let ¹ be a partial order on the set of all L
theories, which is called a preference relation. A candidate hypothesis is subset
H of S such that (D ∪H, O) |= Q. A hypothesis H is a maximally preferred
candidate hypothesis; that is, there exists no other candidate H ′ ¹ H. 2

We consider the hypothesis formation where the knowledge representation
language is L ≡ A0

T and the preference ¹ is based on the subset relation ⊆.

Definition 3.2 (Hypothesis formation in A0
T) A hypothesis formation prob-

lem (HFP) in A0
T is given by a tuple 〈D, O,Q,S〉 such that:

• (D, O) is a A0
T theory where O is initial state complete; and

• Q is a query that cannot be entailed from the theory: (D,O) 6|= Q; and
• S is a set of rules whose fluent and action symbols are from the alphabet of

D.

Given an HFP P = 〈D, O, Q,S〉, a candidate hypothesis is a subset H of

8

S such that (D ∪ H, O) |= Q. A hypothesis (or solution) for P is a can-
didate hypothesis H such that there exists no candidate hypothesis H ′ ⊂ H.
The set of the solutions for an HFP P = 〈D,O,Q,S〉 is denoted Sol(P) or
Sol(D,O, Q,S). 2

Note that we have an additional restriction that O is initial state complete.
Without the restriction, we would have to deal with two reasoning problems
at the same time: hypothesis formation and explanation.

Example 3.1 Let D be the domain description consisting of the rules:

a causes g

b causes g

Let O = {f at 0} and Q = {g at 1}. Then Q is not entailed by (D,O).
Now let {f triggers a; f triggers b} be the hypothesis search space. There
are 3 candidate hypotheses: H1 = {f triggers a}; H2 = {f triggers b}; and
H3 = {f triggers a; f triggers b}. Among the candidates, H1 and H2 are
hypotheses, and H3 is not. 2

4 Hypothesis Formation as Abduction

Besides deduction, abduction is another important kind of reasoning, which
has been first studied in depth by Peirce Peirce (1958, 1992). Given the ob-
servation of some facts, abduction aims at concluding the presence of other
facts, from which, together with an underlying theory, the observed facts can
be explained.

Hypothesis formation is a typical abductive reasoning process: From the ob-
servations and the biological knowledge, a hypothesis about a possible theory
is abduced. Notice that this form of reasoning is not sound, and that in general
several abductive hypotheses for observations may be possible. Various forms
of abductions have been defined in logics or logic programming, such as Kakas
et al. (1998); Poole (1988, 1989); Lin & You (2002) and many others. The
various definitions use the notion of abducibles. Due to logical translations,
abducibles can be assumed to be ground predicates or literals. Abduction has
been used and studied in various AI applications Poole (1989); Poole et al.
(1998), abductive logic programming Kakas et al. (1998, 2001); Lin & You
(2002); Denecker & Kakas (2002); Doherty et al. (2004), probabilistic rea-
soning Poole (1993), diagnosis Reggia (1983); Reiter (1980), planning Eshghi
(1998); Allen et al. (1991); Missiaen et al. (1995), default reasoning Poole et
al. (1987); Poole (1988); Eshghi & Kowalski (1989); Kakas et al. (1998), and
belief revision and update Boutilier & Becher (1995); Boutilier (1996).

9

4.1 Abduction in Logic Programming

We shall relate our work to and make use of the study of logic programming
framework of abduction presented in Eiter et al. (1997), which is recapped in
the following.

Given an AnsProlog program Π (see Appendix B.1), the set of the atoms of
Π is denoted atom(Π). An atom f or its negation ¬f is called a literal. The
set of the literals of the atoms of Π is denoted lit(Π).

Definition 4.1 (Entailment in AnsProlog) Let Π be an AnsProlog pro-
gram. Let M be an answer set of Π. For any f ∈ atom(Π), f is entailed by M
iff f ∈M and ¬f is entailed by M iff f 6∈M . The entailment of a literal l by
M is denoted that M |= l. There are two kinds of entailments by AnsProlog
programs:

Brave Reasoning: A literal l is entailed by the AnsProlog program Π, denote
Π |=b l, iff l is entailed by at least one answer set of Π. 2

Cautious Reasoning: A literal l is entailed by the AnsProlog Π, denote Π |=c l,
iff Π has at least one answer set and l is entailed by all the answer sets of Π.2

Definition 4.2 (Abduction in logic programming) A logic programming
abduction problem LPAP is a tuple 〈S, F, Π, |=〉, where S ⊆ atom(Π) is a finite
set of abducibles called hypothesis space; O ⊆ lit(Π) is a finite set of literals
called observations; Π is an AnsProlog program and |= is an entailment oper-
ator in {|=b, |=c}. A set H ⊆ S is a solution for 〈S, F, Π, |=〉 iff Π ∪ S |= O.
The set of the solutions for an LPAP P = 〈S, F, Π, |=〉 is denoted Sol(P). 2

In computing solutions for an LPAP P = 〈S, F, Π, |=〉, the following decision
problems are important:

• consistency : does there exist a solution for P?
• relevance: does a given abducible h belong to some solution of P?
• necessity : does a given abducible h belong to all the solutions of P?

Definition 4.3 Let P = 〈S, F, Π, |=〉 and h ∈ S. Then h is relevant to P iff
h ∈ H for some solution H of P, and h is necessary for P iff h ∈ H for all
solution H of P. 2

Let P = 〈D, O, Q,S〉 be a hypothesis formation problem. Let us assume that
the domain D is trigger bounded (see Definition 2.2). Besides, let Q be the
query

Q = f after A1 at t1, . . . , An at tn (7)

We shall show that P can be transformed to an abduction problem of the

10

form trans(P) = 〈ab(S), πf (Q), π(D) ∪ π(O) ∪ πa(Q) ∪ π(S), |=b〉. The π(D)
and π(O) is the following translation of D and O into AnsProlog programs.

4.1.1 The translation π(D)

The upper bound of time steps in π(D) is tmax = tn + tbound(D). Here, tn
is the maximal time point of action occurrences in Q and tbound(D) is the
upper bound of the lengths of the trajectories of D.

Given a fluent literal g and some fluent f , let us denote π(g, t) ≡ holds(f, t)
if g ≡ f ; and let π(g, t) ≡ holds(neg(f), t) if g ≡ ¬f . Given an action a,
let π(a, t) ≡ holds(occurs(a), t). The program π(D) includes inertial rules,
interpretation constraints and the translations of all the propositions of D.

The set of inertial rules include the following rules, for each fluent f and for
all time points t in [0, tmax):

π(f, t + 1)← π(f, t), not π(¬f, t + 1)

π(¬f, t + 1)← π(¬f, t), not π(f, t + 1)

For each fluent f , there are interpretation constraints of the following form,
for all time point t in [0, tmax]:

⊥ ← holds(f, t), holds(neg(f), t)

Intuitively, the interpretation constraints guarantee that both fluent literal f
and ¬f cannot hold at the same time.

The propositions of D are translated as follows.

• A causal rule “ a causes f if f1, . . . , fi ” is translated into the set consisting
of the following rules, ∀t ∈ [0, tmax):

π(f, t + 1) ← π(a, t), π(f1, t), . . . , π(fi, t)

• A trigger rule “ g1, . . . , gj triggers b ” is translated into the set consisting
of the following rules, ∀t ∈ [0, tmax):

π(b, t) ← π(g1, t), . . . , π(gj, t), not holds(ab(occurs(b)), t)

• An inhibitor rule “ h1, . . . , hk inhibits c ” is translated to the set consisting
of the following rules, ∀t ∈ [0, tmax):

holds(ab(occurs(c)), t) ← π(h1, t), . . . , π(hk, t).

11

4.1.2 The translation π(O)

The program π(O) consists of the translations of all the observations of O.
The observations in O are translated as follows.

• An observation of the form “ initially f ” is translated into the fact
holds(f, 0)← .
• If t > 0, an observation of the form “ f at t ” is translated into⊥ ← not holds(f, t) .
• If a is a triggered action and t is a time point, then the observation

“ a occurs at t ” is translated into the constraint⊥ ← not holds(occurs(a), t) .
• If a is a non-triggered action, and t is a time point then the observation

“ a occurs at t ” is translated into the fact holds(occurs(a), t)← .

4.1.3 Transforming the query Q

The transformation of query Q includes πf (Q) and πa(Q). Given that Q is of
the form in (7), πf (Q) = {holds(f, tmax)} and πa(Q) is the set consisting of
all the translations of the observations “ Ai occurs at ti ”, i = 1, . . . n.

4.1.4 Transforming the hypothesis space S

The transformation of S is two-fold, which includes the set ab(S) of special
atoms and the AnsProlog program π(S). Let label be a 1-1 function from the
element of S to a set of string labels. First, the set ab(S) simply consists of
all the atoms picked(label(r)) where r ∈ S:

ab(S) = {picked(label(r)) | r ∈ S}

The AnsProlog program π(S) consists of the translations of the rules of S.
The translation of a rule r of S is as follows.

• If r is a causal rule of the form “ a causes f if f1, . . . , fi ” , then the
translation of r includes the following rules, ∀t ∈ [0, tmax):

π(f, t + 1) ← π(a, t), π(f1, t), . . . , π(fi, t), picked(label(r))

• If r is a trigger rule of the form “ g1, . . . , gj triggers b ”, then the translation
of r includes the following rules, ∀t ∈ [0, tmax):

π(b, t)← π(g1, t), . . . , π(gj, t), not holds(ab(occurs(b)), t), picked(label(r))

• If r is an inhibitor rule “ h1, . . . , hk inhibits c ”, then the translation of r
includes the following rules, ∀t ∈ [0, tmax):

holds(ab(occurs(c)), t) ← π(h1, t), . . . , π(hk, t), picked(label(r))

12

Proposition 4.1 Let P = 〈D, O,Q,S〉 be a hypothesis formation problem.
Let trans(P) = 〈ab(S), πf (Q), π(D) ∪ π(O) ∪ πa(Q) ∪ π(S), |=b〉 be the trans-
formation of P into abduction. Then H ⊆ S is a solution of P if and only if
the set {picked(label(r)) | r ∈ H} is a solution of the LPAP trans(P).

4.2 Complexity Analysis

We have showed in the previous section that a hypothesis formation problem
P = 〈D, O, Q,S〉 can be transformed in to the abduction problem trans(P) =
〈π(S), πf (Q), π(D)∪π(O)∪πa(Q), |=b〉. In light of Proposition 4.1, computing
hypothesis formation is not harder than computing abduction. Thus upper
bounds for the complexity of hypothesis formations are easily obtained from
the complexity for abduction. Particularly, we shall make use of the following
result by (Eiter et al., 1997).

Theorem 4.1 (Eiter et al., 1997) Let P = 〈S, O, Π, |=b〉 be an LPAP problem.
Let H ⊆ S and h ∈ S.

• Deciding if Sol(P) 6= ∅ is NP-complete.
• Deciding if h is relevant to P is ΣP

2 -complete.
• Deciding if h is necessary for P is coNP-complete.

Similar to the case of abduction, the notion of relevance and necessity are
defined for hypothesis formation.

Definition 4.4 Let P = 〈D, O, Q,S〉 be a hypothesis formation problem. A
rule r ∈ S is relevant to P if r ∈ S for some solution H of P. A rule r ∈ S
is necessary for P if r belongs to all the solutions of P.

It can be showed that an A0
T action theory (D,O) where O is initial state

complete has at most one model. Consequently, augmented with a hypothesis,
the AnsProlog program in the transformation trans(P) of a hypothesis forma-
tion problem P has at most one answer set. Then it would be expected that
the complexity of hypothesis formation would be lower than that of abduction
with a general AnsPrlog program. However, it is not the case. We have the
following result for the complexity of hypothesis formation.

Proposition 4.2 Let P = 〈D,O,Q,S〉 is a hypothesis formation problem.
Let H ⊆ S and r ∈ S.

• Deciding if Sol(P) 6= ∅ is NP-complete.
• Deciding if r ∈ S is relevant to P is ΣP

2 -complete.
• Deciding if r ∈ S is necessary to P is coNP-complete.

13

4.3 Implementation in CR-Prolog

Based on the complexity analysis, a straightforward implementation of hy-
pothesis formation is to translate to abduction in AnsProlog. Given a problem
P = 〈D, O, Q,S〉, the translations of the components of P into AnsProlog are
readily available. What needed is to augment the AnsProlog engine with the
ability to compute the minimality of hypotheses (i.e., abductive solutions). As
it has turned out, this can be done in CR-Prolog - an extension of AnsProlog
(see Appendix B.2).

Let P = 〈D,O,Q,S〉. Recall that P can be transformed to the LPAP trans(P) =
〈ab(S), πf (Q), π(D) ∪ π(O) ∪ πa(Q) ∪ π(S), |=b〉. Let ΠCR(P) denote the en-
coding of P in CR-Prolog. Then:

ΠCR(P) = {← not f | f ∈ πf (Q)} ∪ π(D) ∪ π(O) ∪ πa(Q) ∪ πCR(S)

where πCR(S) is the translation of S into CR-Prolog.

The translation πCR(S) of S includes the translation πCR(r) of all the rules
r of S. Let label be a 1-1 function from the element of S to a set of string
labels. Let r be any rule of S. The translation πCR(r) of r into CR-Prolog is
as follows.

• If r is a causal rule of the form “ a causes f if f1, . . . , fi ” , then πCR(r)
includes the following rules, ∀t ∈ [0, tmax):

label(r) : π(f, t + 1)
+← π(a, t), π(f1, t), . . . , π(fi, t)

• If r is a trigger rule of the form “ g1, . . . , gj triggers b ”, then πCR(r)
includes the following rules, ∀t ∈ [0, tmax):

label(r) : π(b, t)
+← π(g1, t), . . . , π(gj, t), not holds(ab(occurs(b)), t)

• If r is an inhibitor rule “ h1, . . . , hk inhibits c ”, then the translation πCR(r)
includes the following rules, ∀t ∈ [0, tmax):

label(r) : holds(ab(occurs(c)), t)
+← π(h1, t), . . . , π(hk, t)

5 Biological Application

From the user perspective, the process of hypothesis formation is declarative.
The process involves three steps: (i) construct the knowledge base K; ii) for-
mulate the novel experiment to be explained; i.e., the initial condition I and

14

novel observation O; (iii) construct the hypothesis space S. Usually, step (i) is
not necessary since the knowledge base K already exists. Step (ii) amounts to
the translation of experimental observations into causal, trigger and inhibition
rules. Step (iii) amounts to the formulation of domain background knowledge
that is relevant to hypothesis formation. In this work, (iii) has been done
manually based on biological research literature, but it will be automated in
the future development.

We now present the p53 signal network as a case study to illustrate the process
of hypothesis formation. First, we describe the biology of the p53 network
during cancer in human cells. We present the biological description in parallel
with its knowledge-based representation.

5.1 p53 signal network

The p53 protein plays a central role as a tumor suppressor and is subjected
to tight control through a complex mechanism involving several proteins. The
key aspects of the p53 network are as follows.

5.1.1 Tumor suppression by p53

The p53 protein has three main functional domains; the N terminal transac-
tivator domain, the central DNA-binding domain and a C terminal domain
that recognizes DNA damage. The binding of the transactivator domain to
the promoters of target genes activates pathways to lead to a reversible arrest
of the cell cycle, prevention of genomic instability or apoptosis and thus pro-
tects the cell from cancer (Michael & Oren, 2002). The level and activity of
p53 in the cell is influenced by its interactions with other proteins. The ability
to suppress tumors is retained when the interacting partners of p53 do not
inhibit the functionality of the transactivator domain.

high(p53) inhibits grow(tumor)

high([p53 : mdm2]), not bound(dom(p53, N)) inhibits grow(tumor)

Here, [A : B] denotes the complex of protein A and B.

5.1.2 Interaction between Mdm2 and p53

Mdm2 binds to the transactivator domain of p53, thus inhibiting the p53
induced tumor suppression. The binding of Mdm2 to p53 also causes changes

15

in the protein concentration levels.

bind(p53, mdm2) causes bound(dom(p53, N))

high(p53), high(mdm2) triggers bind(p53,mdm2)

bind(p53, mdm2) causes high([p53 : mdm2]),

bind(p53, mdm2) causes ¬high(p53),¬high(mdm2)

5.1.3 Upregulation of p53

The elevated levels of p53 may be a result of upregulation of p53 gene expres-
sion, increased transcript stability, enhanced translation of p53 mRNA (Hamid
& Kakar, 2004), or post-translational modifications of the p53 protein which
favor a prolonged half life and increased activity (Bode & Dong, 2004). The
upregulation of p53 expression can be represented as follows.

upregulate(mRNA(p53)) causes high(mRNA(p53))

high(mRNA(p53)) triggers translate(p53)

translate(p53) causes high(p53)

5.1.4 Stress

UV, ionizing radiation, and chemical carcinogens cause stress. Stress can in-
duce the upregulation of p53.

high(UV) triggers upregulate(mRNA(p53))

Apart from tumor suppressor genes like p53, stress can also influence the
expression of oncogenes (e.g., cmyc). The regulation of expression of tumor
related genes involves stress sensing mechanisms and multiple signal transduc-
tion events, and appears to be a complex phenomenon. An abstract represen-
tation of the process is:

high(UV) triggers sense(UV signal)

is sensed(UV) triggers transduce(UV signal)

is transduced(UV signal) triggers alter(expr(cmyc))

is altered(expr(cmyc)) triggers grow(tumor)

Given the above knowledge base of the p53 network, a hypothesis formation
problem arises as follows.

16

p53

cancer X

UV

mdm2

Fig. 1. A hypothesis in p53 interaction network. The → represents trigger. The a
represents inhibition. The solid and dash lines represent known and hypothetical
interactions, respectively.

5.2 Biological hypothesis formation

The original biological problem is as follows. X is a tumor suppressor gene: mu-
tants of X are highly susceptible to cancer and behave similarly to the mutants
of p53. Our objective is to hypothesize about the various possible influences of
X on the p53 pathway.

Let us assume that in certain experiments, exposure of the cell to high level
UV does not lead to cancer, given that the initial concentrations of p53 and
Mdm2 are high. Besides, a high level of gene expression of the X protein is
also observed in these cases. Thus we have a hypothesis formation problem
P = 〈D, O, Q,S〉 such that:

• the original domain description is D ≡ Dp53, where Dp53 is the domain
description of the p53 network;
• the initial observation O is about the high concentrations of the proteins:

O = {high(UV) at 0, high(mdm2) at 0, high(X) at 0} ;

• the query is whether cancer will occur:

Q = tumorous

It is straightforward to verify that (D, O) 6|= Q. Our next step is to construct
the hypothesis space S. Based on the literature (Michael & Oren, 2002; Hamid
& Kakar, 2004; Bode & Dong, 2004), we formulate the rules to be included in
S as follows.

17

5.3 Hypothesis Space S

5.3.1 Functional similarities between X and p53

According to the literature, X is a tumor suppressor, so it may play the same
role as p53 in stressed cells. The following rules are included in the S, which
describes that X may have interactions similar to those of p53:

high(X), high(mdm2) triggers bind(X, mdm2)

high(X), high(mdm2) inhibits bind(X,mdm2)

5.3.2 Stress-induced high level of X

Data from the literature show that the level of protein X is found to be higher
in cells subjected to stress. Consequently, it is possible that stress induces the
upregulation of X gene expression, resulting in an elevated level of X. Thus S
includes this background knowledge in the form of the rule:

high(UV) triggers upregulate(mRNA(X))

5.3.3 Correlation between X- and p53-induced upregulations

There are observations from the literature that high levels of X are concomi-
tant with elevated levels of p53. Thus, it is possible that a high level of X
induces the upregulation of p53, or vice versus. This background knowledge
are captured by the following rules in the search space:

high(X) triggers upregulate(mRNA(p53))

high(p53) triggers upregulate(mRNA(X))

5.3.4 Interactions of X with the known proteins

There are possible interactions bind(p53, X) and bind(mdm2, X). The possible
related properties are about the protein levels and the domains of p53. Hence,
S includes rules that associate the possible actions with the possible effects,
such as:

bind(p53, X) causes bound(dom(p53, N))

high(p53), high(X) triggers bind(p53,mdm2)

high(p53), high(X) inhibits bind(p53,mdm2)

18

5.4 Result

We have constructed a set S consisting of 12 elements. The logic program
output 5 hypotheses (which are subsets of S). Among these, the most intuitive
hypotheses are:

• X is a negative regulator of Mdm2: Stress induces high expression of X. Then
X binds to Mdm2, which competes against thus inhibiting the Mdm2-p53
interaction. Hence, the p53 induced tumor suppression is preserved (Figure
1). The rules representing the hypothesis include:

high(UV) triggers upregulate(mRNA(X))

high(X), high(mdm2) triggers bind(X, mdm2)

• X directly influences p53 protein stability: X binds to p53 protein (possibly
at a domain different from the transactivator domain), so p53 is stabilized
(i.e., formation of Mdm2-p53 complex is prevented) and still functional as
tumor suppressor. The rules representing the hypothesis include:

high(UV) triggers upregulate(mRNA(X))

high(X), high(p53) inhibits bind(p53,mdm2)

high(X), high(p53) triggers bind(p53, X)

The other hypotheses have not been discussed here, since we were unable
to provide meaningful biological interpretations. For example, a hypothesis
suggests that X inhibits the formation of Mdm2-p53 complex by interacting
with both the proteins:

high(UV) triggers upregulate(mRNA(X))

high(X), high(mdm2) inhibits bind(p53,mdm2)

high(X), high(p53) triggers bind(p53, X)

We expect that such hypotheses can be eliminated by incorporating more
background knowledge.

The non-monotonicity of the framework manifests itself in the results. The
knowledge base in Section 5.1 predicts that cancer will finally occur due to
high level of UV (stress). After being extended with the hypothesis described
in Figure 1., the new knowledge base predicts that cancer may not occur,
given the presence of UV.

19

6 Related Works

6.1 HYPGENE

HYPGENE (Karp, 1991, 1993a) treated the general problem of hypothesis
formation as a planning problem. The actions are operators that modify an ex-
isting knowledge base and/or assumed initial conditions of an experiment. The
goal of the planning problem is to resolve the mismatch between theoretical
predictions computed by the knowledge base and experimental observations,
with respect to the same initial conditions. The knowledge base was imple-
mented using a frame-based knowledge representation language. HYPGENE
was proposed to be domain-independent and has been tested on a problem of
E. coli gene regulation.

HYPGENE and our approach tackle the same hypothesis formation problem
that arises when an existing theory does not predict an experimental obser-
vation. Their major differences include:

• The frame-based representation language is limited to monotonic reasoning.
Thus HYPGENE would have difficulty in dealing with incompleteness of
biological knowledge.
• A hypothesis involves the modification of an existing knowledge base and/or

assumed initial conditions of an experiment. HYPGENE was restricted to
the modification of the initial conditions. This restricted problem amounts
to a form of reasoning called explanation and has been studied in (Baral et
al., 2004).

6.2 TRANSGENE

TRANSGENE (Darden, 1998, 1997) considered hypothesis formation as diag-
nosis and redesign of theories. According to this model, when a theory cannot
predict an experimental observation, the theory must contain some faulty
components that can be found and fixed. TRANSGENE used a “functional
representation” language for knowledge representation (Sembugamoorthy &
Chandrasekaran, 1986). This representation language was chosen to overcome
the limitations of rule based and frame based system. Nevertheless, the lan-
guage could not allow for non-monotonic reasoning. To sum up, TRANSGENE
showed that limitations of knowledge representation language can seriously
hinder hypothesis formation. On the other hand, it illustrates that hypothesis
formation is intuitive and straightforward in knowledge based framework.

20

6.3 GenePath

GenePath (Zupan et al., 2003) automated the inference of genetic networks
from experimental data. A knowledge base is a genetic network that represents
positive and negative influences of a gene on another. Experiments are per-
turbations to the network, performed by means of gene mutations. A fixed set
of inference rules was formalized and implemented in GenePath using Prolog.
These rules encode heuristic reasoning that is routinely applied by geneticists,
namely epistasis analysis. Prior background knowledge is encoded in an ini-
tial network. Starting with the initial network, GenePath applies the rules
to construct a plausible network as a hypothesis that explains experimental
data. GenePath can also propose new experiments for further verification and
refinement of hypotheses. Although the knowledge representation and reason-
ing are simple in GenePath, it has illustrated the value of domain background
knowledge in hypothesis formation, and that logic programming provides a
straightforward and intuitive representation of human reasoning.

6.4 Robot Scientist

Robot Scientist (King & et. al., 2004) used machine learning techniques (active
learning, decision tree, inductive logic programming) to predict gene function
in metabolic networks. The knowledge representation language is a monotonic
logical formalism implemented in Prolog. The system demonstrated state-of-
the-art AI methods, especially machine learning and robotics. However, it is
unclear how the system can incorporate elaboration representation and non-
monotonic reasoning into hypothesis formation.

6.5 Approximate Database

Doherty et.al. (Doherty et al., 2004) presented a first-order logic represen-
tation of biochemical reactions in metabolic pathways. The logical represen-
tation is implemented in approximate database, which supported reasoning
about pathways in form of asking database queries. Hypotheses about miss-
ing components of pathways are generated by abductive reasoning based on
weakest sufficient and strongest necessary conditions (Lin & You, 2002). The
system has been illustrated with an aromatic amino acid pathway in yeast.
Like the other related works, the major drawback of this work is the way it
represents and reasons with pathway knowledge.

21

6.6 BIOCHAM

Calzone et.al. (Laurence Calzone et al., 2005) presented a system for learning
biochemical interactions in the formal system BIOCHAM (Fages et al., 2004).
A knowledge base in the BIOCHAM is a set of rules representing biochemical
reactions. Experimental observations are expressed by temporal logic formulas.
When a knowledge base does not satisfy observed temporal logic formulas, the
learning system can be invoked interactively to refine the knowledge base. The
search for refinement is an exhaustive enumeration and verification of rules
whose patterns are given a priori. The system is implemented with symbolic
model checking and has been evaluated with different small examples of cell
cycles. Although the languages for knowledge representation and reasoning are
monotonic in BIOCHAM, the model checking approach can lead to effective
modeling and construction of large scale biochemical interaction networks.

7 Conclusion

We have presented a knowledge based formulation of the hypothesis formation
problem. We then studied the hypothesis formation for signaling networks
in the context of reasoning about actions. The advantages of our approach
include:

• Hypothesis formation is defined as a form of reasoning and is implemented
using AnsProlog, which is an elaboration tolerant and non-monotonic rep-
resentation and reasoning language;
• Hypothesis formation in our framework is highly declarative.
• The user-level building of knowledge, the design of knowledge model (e.g.,

the language A0
T), and the computational implementation (i.e., AnsPro-

log engine) are highly independent from one another. This modularity will
facilitate research and development of large-scale knowledge bases.

The case study of the p53 network is a proof of concept of our approach.
Substantial work remains for hypothesis formation for larger networks such as
(Kohn, 1999; Davidson et al., 2002a; Oda et al., 2004).

References

Allen, J., Kautz, H., Pelavin, R., & Tenenberg, J. (1991). Reasoning about plans.
Morgan Kaufmann, San Mateo,CA.

22

Alur, R., Belta, C., Ivanicic, F., Kumar, V., Mintz, M., Pappas, G. J., Rubin, H.,
& Schug, J. (2001). Hybrid modeling and simulation of biomolecular networks.
Hybrid Systems: Computation and Control. LNCS, 2034, 19–32.

Balduccini, M. (2005). Answer Set Based Design of Highly Autonomous, Rational
Agents. PhD thesis. Texas Tech University.

Balduccini, M. & Gelfond, M. (2003). Logic programs with consistency-restoring
rules.

Baral, C. (2003). Knowledge representation, reasoning and declarative problem solv-
ing. Cambridge University Press.

Baral, C., Chancellor, K., Tran, N., Tran, N., & Berens, M. (2004). A knowledge
based approach for representing and reasoning about signaling networks. Bioin-
formatics 20 (Suppl 1), pages i15–i22.

Batt, G., de Jong, H., Geiselmann, J., & Page, M. (2003). Analysis of genetic
regulatory networks: A model-checking approach. In International Workshop on
Qualitative Reasoning (QR’03).

Bode, A. M. & Dong, Z. (2004). Post-translational modification of p53 in tumori-
genesis. Nat. Rev. Cancer., 4(10), 793–805.

Boutilier, C. (1996). Abduction to plausible causes: An even based model of belief
update. Artif. Intell., 83, 143–166.

Boutilier, C. & Becher, V. (1995). Abduction as belief revision. Artif. Intell., 77,
43–94.

Chiaverini, M. & Danos, V. (2003). A core modeling language for the working
molecular biologist. In Computational Methods in Systems Biology (CMSB 2003),
page 166.

Cook, D., Farley, J., & Tapscott, S. (2001). A basis for a visual language for de-
scribing, archiving and analyzing functional models of complex biological systems.
Genome Biology, 2(4).

Danos, V. & Laneve, C. (2003). Graphs for core molecular biology. In Computational
Methods in Systems Biology (CMSB 2003), pages 34–46.

Darden, L. (1997). Recent work in computational scientific discovery. In Proceedings
of the Nineteenth Annual Conference of the Cognitive Science Society, pages 161–
166.

Darden, L. (1998). Anomaly-driven theory redesign: computational philosophy of
science experiments. Digital Phoenix: how computers are changing philosophy,
pages 62–78.

Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C.-H.,
Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., Otim, O., Brown, C. T.,
Livi, C. B., Lee, P. Y., Revilla, R., Rust, A. G., Pan, Z. j., Schilstra, M. J., Clarke,
P. J. C., Arnone, M. I., Rowen, L., Cameron, R. A., McClay, D. R., Hood, L.,
& Bolouri, H. (2002a). A genomic regulatory network for development. Science,
295(5560), 1669–1678.

Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C.-H.,
Minokawa, T., Amore, G., Hinman, V., Arenas-Mena, C., Otim, O., Brown, C. T.,
Livi, C. B., Lee, P. Y., Revilla, R., Rust, A. G., jun Pan, Z., Schilstra, M. J.,
Clarke, P. J. C., Arnone, M. I., Rowen, L., Cameron, R. A., McClay, D. R.,
Hood, L., & Bolouri, H. (2002b). A genomic regulatory network for development.
Science, 295, 1669–1678.

23

de Jong, H. (2002). Modeling and simulation of genetic regulatory systems: A
literature review. Journal of Computational Biology, 9(1), 67–103.

de Jong, H., Geiselmann, J., Hernandez, C., & Page, M. (2003). Genetic Network
Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics,
19, 336–344.

Demir, E., Babur, O., Dogrusoz, U., Gursoy, A., Ayaz, A., Gulesir, G., Nisanci,
G., & Cetin-Atalay, R. (2004). An ontology for collaborative construction and
analysis of cellular pathways. Bioinformatics, 20(3), 349–356.

Denecker, M. & Kakas, A. C. (2002). Abduction in logic programming. In Com-
putational Logic: Logic Programming and Beyond, pages 402–436.

Doherty, P., Kertes, S., Magnusson, M., & Szalas, A. (2004). Towards a logical
analysis of biochemical pathways. In Proc. JELIA.

Eiter, T., Gottlob, G., & Leone, N. (1997). Abduction from logic programs: seman-
tics and complexity. Theoretical Computer Science, 189(1–2), 129–177.

Eker, S., Knapp, M., Laderoute, K., Lincoln, P., JosMeseguer, & Sonmez, K. (2002).
Pathway logic: symbolic analysis of biological signaling. In Pacific Symposium
on Biocomputing 2002 (PSB 2002), page 400412.

Eshghi, K. (1998). Abductive planning with event calculus. In Proc. ICLP, pages
562–579.

Eshghi, K. & Kowalski, R. (1989). Abduction compated with negation as failure.
In Proc. ICLP, pages 234–255.

Fages, F., Soliman, S., & Chabrier-Rivier, N. (2004). Modelling and querying in-
teraction networks in the biochemical abstract machine BIOCHAM. Jour. Biol.
Phys. Chem., 4(2), 64–73.

Fukuda, K. & Takagi, T. (2001). Knowledge representation of signal transduction
pathways. Bioinformatics, 17(9), 829–37.

Fukuda, K., Yamagata, Y., & Takagi, T. (2003). Frex: a query interface for biological
processes with a hierarchical and recursive structures. In Silico Biology, 4, 0007.

Funahashi, A., Tanimura, N., Morohashi, M., & Kitano, H. (2003). Celldesigner: a
process diagram editor for gene-regulatory and biochemical networks. BIOSIL-
ICO, 1(5), 159–162.

Gelfond, M. & Lifschitz, V. (1988). The stable model semantics for logic program-
ming. In Proc. ICLP, pages 1070–1080.

Gelfond, M. & Lifschitz, V. (1993). Representing action and change by logic pro-
grams. Journal of Logic Programming, 17(2/3&4), 301–321.

Hamid, T. & Kakar, S. (2004). PTTG/securin activates expression of p53 and
modulates its function. Mol. Cancer., 3(1), 18.

Heidtke, K. & Schulze-Kremer, S. (1998). Design and implementation of a qualita-
tive simulation model of lambda phage infection. Bioinformatics, 14, 81–91.

Hoffmann, A., Levchenko, A., Scott, M. L., & Baltimore, D. (2002). The ikappab-
nfkappab signaling module: Temporal control and selective gene activation. Sci-
ence, 298, 1241–1245.

Kakas, A., Kowalski, R., & Toni, F. (1998). The role of abduction in logic program-
ming. Handbook of logic in Artificial Intelligence and Logic Programming, pages
235–324.

Kakas, Antonis, C., Van Nuffelen, B., & Denecker, M. (2001). A-system : Problem
solving through abduction. In Proc. IJCAI, volume 1, pages 591–596.

24

Kam, N., Cohen, I., & Harel, D. (2001). The immune system as a reactive system:
modeling T-cell activation with statecharts.

Karp, P. (1991). Artificial intelligence methods for theory representation and hy-
pothesis formation. Comput. Appl. Biosci., 7(3), 301–308.

Karp, P. D. (1993a). Design methods for scientific hypothesis formation and their
application to molecular biology. Machine Learning, 12, 89–116.

Karp, P. D. (1993b). A qualitative biochemistry and its application to the regulation
of the tryptophan operon. Artificial Intelligence and Molecular Biology, pages
289–324.

Karp, P. D., Ouzounis, C., & Paley, S. (1996). HinCyc: A Knowledge Base of the
Complete Genome and Metabolic Pathways of H. influenzae. In Proc. ISMB.

Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Paley, S. M., & Pellegrini-Toole,
A. (2000). The ecocyc and metacyc databases. Nucleic Acids Research, 28(1),
56–59.

Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Collado-Vides, J., Paley, S. M.,
Pellegrini-Toole, A., Bonavides, C., & Gama-Castro, S. (2002a). The ecocyc
database. Nucleic Acids Research, 30(1), 56–58.

Karp, P. D., Paley, S., & Romero, P. (2002b). The pathway tools software. Bioin-
formatics, 18(Suppl. 1), S225–S232.

King, R. & et. al. (2004). Functional genomic hypothesis generation and experi-
mentation by a robot scientist. Nature, 427(6971), 247–52.

Kitano, H. (2003). A graphical notation for biological networks. BioSilico, 1(5),
169–176.

Kohn, K. W. (1999). Molecular interaction map of the mammalian cell cycle control
and DNA repair systems. Molecular Biology of the Cell, 10, 2703–2734.

Krieger, C. J., Zhang, P., Mueller, L. A., Wang, A., Paley, S., Arnaud, M., Pick,
J., Rhee, S. Y., & Karp, P. D. (2004). Metacyc: A multiorganism database of
metabolic pathways and enzymes. Nucleic Acids Research, 32, D438–42.

Laurence Calzone, Nathalie Chabrier-Rivier, Francois Fages, & Sylvain Soliman
(2005). A machine learning approach to biochemical reaction rules discovery. In
Proc. FOSBE.

Lifschitz, V. & Turner, H. (1994). Splitting a logic program. In P. V. Hentenryck,
editor, Proceedings of the Eleventh International Conference on Logic Program-
ming, pages 23–38.

Lifschitz, V. & Turner, H. (1999). Representing transition systems by logic pro-
grams. In Proceedings of the 5th International Conference on Logic Programming
and Nonmonotonic Reasoning, pages 92–106.

Lin, F. & You, J.-H. (2002). Abduction in logic programming: a new definition and
an abductive procedure based on rewriting. Artif. Intell., 140(1-2), 175–205.

Maimon, R. & Browning, S. (2000). Diagrammatic notation and computational
structure of gene networks. In Proceedings of the Second International Conference
on Systems Biology.

Marek, V. & Truszczynski, M. (1999). Stable models and an alternative logic pro-
gramming paradigm. The Logic Programming Paradigm: a 25-year Perspective,
pages 375–398.

Matsuno, H., Doi, A., Nagasaki, M., & Miyano, S. (2000). Hybrid petri net rep-
resentation of gene regulatory network. In Pacific Symposium on Biocomputing

25

2000 (PSB 2000), pages 341–52.
Meyers, S. & Friedland, P. (1984). Knowledge-based simulation of genetic regulation

in bacteriophage lambda. Nucleic Acids Research, 12(1), 1–9.
Michael, D. & Oren, M. (2002). The p53 and Mdm2 families in cancer. Curr. Opin.

Genet. Dev., 12(1), 53–59.
Missiaen, M., Bruynooghe, L., & Denecker, M. (1995). CHICA: A planning system

based on event calculus. J. Logic Comput., 5(5), 579–602.
Niemela, I. (1999). Logic programming with stable model semantics as a con-

straint programming paradigm. Annals of Mathematics and Artificial Intelli-
gence, 25(3,4), 241–273.

Oda, K., Kimura, T., Matsuoka, Y., Funahashi, A., Muramatsu, M., & Kitano, H.
(2004). Molecular Interaction Map of a Macrophage. AfCS Research Report.

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (1999).
Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27(1),
29–34.

Peirce, C. (1931-1958). Collected papers of Charles Sanders Peirce, Vol. 1-8. Havard
University Press, Cambridge, MA.

Peirce, C. (1992). Reasoning and the Logic of Things. Havard University Press,
Cambridge, MA.

Peleg, M., Yeh, I., & Altman, R. B. (2002). Modelling biological processes using
workflow and petri net models. Bioinformatics, 18(6), 825–837.

Poole, D. (1988). A logical framework for default reasoning. Artif. Intell., 36(1),
27–48.

Poole, D. (1989). Explanation and prediction: an architecture for default and ab-
ductive reasoning. Computational Intelligence, 5(1), 97–110.

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artif. Intell.,
64(1), 81–129.

Poole, D., Goebel, R., & Aleliunas, R. (1987). Theorist: A logical reasoning system
for default and diagnosis. The Knowledge Frontier: Essays in the Representation
of Knowledge, pages 331–352.

Poole, D., Mackworth, A., & Goebel, R. (1998). Computational Intelligence. Oxford
University Press, Oxford.

Priami, C., editor (2003). Computational Methods in Systems Biology. LNCS, vol-
ume 2602. Springer Verlag.

Regev, A., Silverman, W., & Shapiro, E. (2001). Representation and simulation
of biochemical processes using π-calculus process algebra. In Proc. PSB, pages
459–470.

Reggia, R. (1983). Diagnostic expert system based on a set covering model. Internat.
J. Man Machine Studies, 19(5), 437–460.

Reiter, R. (1980). A theory of diagnosis from first principles. Artif. Intell., 13(1–2),
81–132.

Sambrano, G. R. (2003). Developing a navigation and visualization
system for signaling pathways. AfCS Reports. http://www.signaling-
gateway.org/reports/v1/DA0009.pdf.

Schoeberl, B., Eichler-Jonsson, C., Gilles, E., & Muller, G. (2002). Computational
modeling of the dynamics of the map kinase cascade activated by surface and
internalized egf receptors. Nature Bitechnology, 20(4), 370–375.

26

Sembugamoorthy, V. & Chandrasekaran, B. (1986). Functional Representation of
Devices and Compilation of Diagnostic Problem-Solving Systems. Experience,
Memory and Reasoning, pages 47–73.

Shimada, T., Hagiya, M., Arita, M., Nishizaki, S., & Tan, C. (1995). Knowledge-
based simulation of regulatory action in lambda phage. Int. J. Artif. Intell. Tools,
4(4), 511 V524.

Shrager, J. & Langley, P. (1990). Computational Models of Scientific Discovery and
Theory Formation. Morgan Kaufmann.

Talcott, C., Eker, S., Knapp, M., Lincoln, P., & Laderoute, K. (2004). Pathway
logic modeling of protein functional domains in signal transduction. In Proc.
PSB, pages 568–580.

Voit, E. O. (2000). Computational Analysis of Biochemical Systems. Cambridge
University Press.

Zupan, B., Bratko, I., Demsar, J., Juvan, P., Curk, T., Borstnik, U., Beck, J. R.,
Halter, J., Kuspa, A., & Shaulsky, G. (2003). GenePath: a system for inference of
genetic networks and proposal of genetic experiments. Artif. Intell. Med., 29(1-2),
107–30.

A Proofs

Lemma A.1 Let D be a domain description and O be an initial state com-
plete set of observations in D. Then there exists a unique initial state that is
consistent with O.

Proof. We prove the proposition by contradiction. Let s and s′ be different
initial states that is consistent with O. Then either s \ s′ 6= ∅ or s \ s′ 6= ∅.
Assume that s \ s′ 6= ∅. Let f be a fluent literal in s \ s′. Since f ∈ s and s is
consistent with O, the observation “ initially f ” is in O. Since f ∈ s′ and
s′ is consistent with O, the observation “ initially ¬f ” is in O. But both
“ initially f ” and “ initially ¬f ” cannot belong to O. 2

Lemma A.2 Let (D,O) be an action theory where O is initial state complete.
If σ = 〈s0, A0, . . . sn, An〉 is a trajectory model of (D,O) then

At = (trig(st) \ inhi(st)) ∪ {a | (a occurs at t) ∈ O} (A.1)

for all t ≥ 0 .

Proof. Let a1 belong to the set on the right-hand side of (A.1). If a1 ∈ trig(st)\
inhi(st), then a1 ∈ trig(st) and a1 6∈ inhi(st). By the definition of trajectories,
a1 ∈ At. If a1 ∈ {a | (a occurs at t) ∈ O}, then (a1 occurs at t) ∈ O.
Since σ is an interpretation of (D,O), a1 ∈ At. Thus we have shown that:

(trig(st) \ inhi(st)) ∪ {a | (a occurs at t) ∈ O} ⊆ At .

27

Now let a2 ∈ At. If a2 is a triggered action, then a2 ∈ trig(st) and a2 6∈ inhi(st),
by the definition of trajectories. If a2 is an exogenous action, then by the
definition of trajectory models, O contains the observation “ a2 occurs at t ”.
Thus we have shown that

At ⊆ (trig(st) \ inhi(st)) ∪ {a | (a occurs at t) ∈ O} .

Note that (A.1) also tells us how to construct the unique trajectory model of
(D,O) if such trajectory model exists. 2

We define a splitting of the translation π(D,O) of an action theory (D,O).
The splitting shall be used in proving properties of the AnsProlog program
π(D,O).

Definition 1 Let (D,O) be an action theory. We define the partition of π(D,O)
into sub-programs πS

i , πA
j , 0 ≤ i ≤ tmax, 0 ≤ j < tmax as follows.

• The sub-program πS
0 consists of the following rules:

· For all observation “ initially f ” in O:

π(f, 0)← (A.2)

· For all fluent f :
⊥ ← π(f, 0), π(¬f, 0) .

• The sub-program πA
t , 0 ≤ t < tmax, consists of the following rules:

· For all trigger rules “ g1, . . . , gm triggers b ” of D:

π(b, t) ← π(g1, t), . . . , π(gm, t), not holds(ab(occurs(b)), t) . (A.3)

· For all inhibition rules “ h1, . . . , hl inhibits c ” of D:

holds(ab(occurs(c)), t) ← π(h1, t), . . . , π(hl, t) . (A.4)

· For all observations “ a occurs at t ” in O where a is a triggered action:

⊥ ← not π(a, t) . (A.5)

· For all observations “ a occurs at t ” in O where a is a non-triggered
action :

π(a, t)← . (A.6)

• The sub-program πS
t+1, 0 ≤ t < tmax, consists of the following rules:

· For all fluents f in D:

π(f, t + 1)← π(f, t), not π(¬f, t + 1) . (A.7)

π(¬f, t + 1)← π(¬f, t), not π(f, t + 1) . (A.8)

⊥ ← π(f, t + 1), π(¬f, t + 1) . (A.9)

28

· For all causal rules “ a causes f if f1, . . . , fn ” of D:

π(f, t + 1) ← π(a, t), π(f1, t), . . . , π(fn, t) . (A.10)

· For all observations of the form “ f at (t + 1) ” in O:

⊥ ← not π(f, t + 1) . (A.11)

Lemma A.3 Let (D,O) be an action theory. Let the sets πS
i ’s and πA

j ’s form
the partition of the translation π(D,O) given by Definition 1. Then π(D,O)
is splitted by the sequences of sets L0, L1, . . . , L2∗tmax defined as:

L0 = lit(πS
0)

L1 = L0 ∪ lit(πA
0)

.

L2t = L2t−1 ∪ lit(πS
t)

L2t+1 = L2t ∪ lit(πA
t)

.

L2∗tmax = L2∗tmax−1 ∪ lit(πS
tmax

)

Moreover, the corresponding “bottom” bLk
layers are bL0 = πS

0 and for all
0 ≤ t < tmax:

bL2t+1 = bL2t ∪ πA
t

bL2t+2 = bL2t+1 ∪ πS
t+1

Proof. It is true according to the definition of splitting set sequence. 2

Lemma A.4 Let (D,O) be an action theory where O is initial state complete.
If M is an answer set of π(D,O), then the inverse translation π−1(M) is a
trajectory model of (D,O).

Proof. Let us consider the splitting set sequence of (D,O) in Lemma A.3. By
the splitting set theorem, there exist sets M2i’s and M2j+1 such that:

M = MS
0 ∪

tmax∪
t=1

[MA
t ∪MS

t]

and such that MS
0 is an answer set of πS

0 and for all 0 < t ≤ tmax:

• MA
t−1 is an answer set of the partial evaluation

E2t−1 = eL2t−2(bL2t−1 \ bL2t−2 ,M2t−2) = eL2t−2(π
A
t−1,M2t−2)

• MS
t is an answer set of the partial evaluation

E2t = eL2t−1(bL2t \ bL2t−1 ,M2t−1) = eL2t−1(π
S
t ,M2t−1)

29

where M0 = MS
0 and for all 0 < t ≤ tmax:

M2t−1 = MA
t−1 ∪M2t−2

M2t = MS
t ∪M2t−1

Let σ = π−1(M) = s0 A1 s1 A2 . . . An sn It is straightforward to verify that
st = π−1(MS

t) and At = π−1(MA
t) for all t.

We now show that σ is a trajectory model, using Lemma A.2.

• Since MS
0 is an answer set of πS

0 :

MS
0 = {f | {π(f, t)←} ⊆ πS

0 } = {f | (initially f) ∈ O}

Because O is initial state complete, it follows that s0 = π−1(M0) is an initial
state.
• Let At = π−1(MA

t), we shall prove (A.1). We have that MA
t is an answer

set of the partial evaluation:

E2t+1 = eL2t(π
A
t ,M2t)

By definition, E2t+1 consists of the following rules:
· For all trigger rules “ g1, . . . , gm triggers b ” ofD such that {π(g1, t), . . . , π(gm, t)} ⊆

M2t, or equivalently, such that {g1, . . . , gm} ⊆ st:

π(b, t) ← not holds(ab(occurs(b)), t) .

· For all inhibition rules “ h1, . . . , hl inhibits c ” ofD such that {π(h1, t), . . . , π(hl, t)} ⊆
M2t, or equivalently, such that {h1, . . . , hl} ⊆ st}:

holds(ab(occurs(c)), t) ← .

· For all observations “ a occurs at t ” in O where a is a triggered action:

⊥ ← not π(a, t) .

· For all observations “ a occurs at t ” in O where a is a non-triggered
action :

π(a, t)← .

By computing the reduct of E2t+1 with respect to MA
t , it follows that MA

t

is the set of the following atoms:
? all the atoms π(a, t) such that a is a triggered action, a is triggered by st

and a is not inhibited by st; and
? all the atoms π(a, t) such that a is a non-triggered action, “ a occurs at t ”

is in O; and
? all the atoms holds(ab(occurs(a)), t) where a is a triggered action and a

is inhibited by st.

30

Consequently, (A.1) holds. Also, we have that a ∈ π−1(MA
t) for all ‘ a occurs at t ”

in O.
• Let assume that st = π−1(MS

t) is a state. We shall prove that st+1 =
ΦD(At, st). By definition, we have that st+1 = π−1(MS

t+1). Recall that the
set MS

t+1 is an answer set of the partial evaluation:

E2t+2 = eL2t+1(π
S
t+1,M2t)

Based on the definition of partial evaluation, it is straightforward to verified
that E2t+2 consists of the following rules:
· For all fluents literal g such that π(g, t) ∈M2t:

π(g, t + 1)← not π(¬g, t + 1) (A.12)

· For all fluents f of D:

⊥ ← π(f, t + 1), π(¬f, t + 1) . (A.13)

· For all causal rules “ a causes f if f1, . . . , fn ” ofD such that {π(a, t), π(f1, t), . . . , π(fn, t)} ⊆
M2t, or equivalently, such that a ∈ At and {f1, . . . , fn} ⊆ st:

π(f, t + 1) ← . (A.14)

· For all observations of the form “ f at t + 1 ” in O:

⊥ ← not π(f, t + 1) . (A.15)

Let E ′
2t+2 be the sub-program of E2t+2 that contains the rules (A.12) and

(A.14). It can be verified that the reduct of E ′
2t+2 with respect to MS

t+1 are
the set of rules “ α← ”, where α is an atom such that:
? α = π(f, t) where f ∈ ED(At, st); or
? α = π(g, t + 1), where π(g, t) ∈MS

t and π(¬g, t + 1) 6∈ ED(At, st); that is,
where g ∈ st \ ¬ED(At, st).

It follows that st+1 = π−1(MS
t+1) = ΦD(At, st). Moreover, due to the in-

tegrity constraints of E2t+2, st+1 = π−1(MS
t+1) is a state and f ∈ st+1 for all

observation “ f at (t + 1) ” in O.

2

Lemma A.5 Let (D,O) be an action theory where O is initial state complete.
If σ is a model of (D,O), then π(σ) is an answer set of π(D,O).

Proof. (sketch) We consider the same splitting structure of the program π(D,O)
as in the proof of Lemma A.4. Let σ = s0 A1 s1 A2 . . . An sn We define:

π(st) = {π(f, i) | f ∈ st}
π(At) = {π(a), t) | a ∈ At} ∪ {holds(ab(occurs(a)), t) | a ∈ Atrig \ At}

31

Given that σ is trajectory model, using Lemma A.2, we can show that π(st)
is an answer set of the partial evaluation E2t and π(At) is an answer set of the
partial evaluation E2t+1. It then follows from the splitting set theorem that
π(σ) is an answer set of π(D,O). 2

Lemma A.6 Let (D,O) be an action theory where O is initial state complete.
If (D,O) is consistent then it has a unique trajectory model.

Proof. Let σ = 〈s0, A0, . . . sn, An〉 be a trajectory model of (D,O). Since
At+1 = ΦD(At, st), the set At+1 is uniquely determined by st and At. Because
of Lemma A.2, it follows that σ is uniquely determined by s0. By Proposition
A.1, such a state s0 is unique, so σ is the unique model of (D.O). 2

Lemma A.7 Let (D,O) be a consistent action theory, where O is initial state
complete. Then the program π(D,O) has a unique answer set.

Proof. Since (D,O) is consistent, it has a model σ. Then by Lemma A.5,
π(σ) is an answer set of π(D,O). If there exists another answer set M of
π(D,O), then π−1(M) is a model of (D,O), by Lemma A.4. Since M 6=
π(σ), π−1(M) 6= σ. It follows that (D,O) has more than one model, which
contradicts to Proposition A.6. 2

The following Lemma A.8 and Lemma A.9 are corollaries of Lemma A.6 and
A.7, and Lemma A.4 and A.5.

Lemma A.8 Let (D,O) be a consistent action theory where O is a initial
state complete. If σ = s0 A1 s1 A2 . . . An sn is the trajectory model of (D,O)
and M is the answer set of π(D,O), then M = π(σ).

Lemma A.9 Let (D,O) be a consistent action theory where O is a initial
state complete. Then

(D,O) |= f at t ⇐⇒ π(f, t) ∈M

(D,O) |= a occurs at t ⇐⇒ π(a, t) ∈M

where M is the unique answer set of π(D,O).

Lemma A.10 Let pred(D,O, Q) be a prediction problem, where the domain
D is trigger bounded and Q is the query f after A1 at t1, . . . An at tn , where
t1 < t2 . . . < tn. Let tmax = tn + tbound(D); and let πpred be the AnsProlog
translation

π(D,O) ∪ π({ A1 occurs at t1, . . . An occurs at tn }).

Then the theory (D,O) predicts Q if and only if the program πpred has at least
one answer set; and for all the answer set S of the program πpred, there exists
N ≥ tn such that holds(f, k) ∈ S for every time point k ∈ (N, tmax].

32

Proof. Let O′ = O ∪ {A1 occurs at t1, . . . An occurs at tn }. Then
πpred = π(D,O′). Note that O′ is initial state complete, since O ⊇ O′ and O
is initial state complete.

(⇒) Let us assume that (D,O) |= Q. We shall show that πpred has a unique
answer set which contains π(f, tmax).
Since (D,O) |= Q, the theory (D,O′) is consistent. We have noted that O′
is also initial state complete, thus the theory (D,O′) has a unique trajectory
model σ = s0 B1 s1 . . . si Bi Besides, tmax = tn + tbound(D). It follows
from the definition of tbound(D) that Bk = ∅ and sk = stmax , for all k ≥ tmax.
It is also followed from (D,O) |= Q that there exists N ≥ tn such that f is
true in all the states sk with k ≥ N . Particularly, for some j greater than
both N and tmax, we have that sj = stmax and f ∈ sj. Then f ∈ stmax and
(D,O′) |= f at tmax.
By Lemma A.7, the program π(D,O′) has a unique answer set M . By Lemma
A.8, M = π(σ). We have shown that (D,O′) |= f at tmax. Taking into account
Lemma A.9, we have that π(f, tmax) ∈M .

(⇐) Let us assume that π(D,O′) |=A π(f, tmax). We shall prove that (D,O) |=
Q.
Because π(D,O′) |=A π(f, tmax), the program π(D,O′) has at least an answer
set M . By the lemmas , the theory (D,O′) is consistent, (D,O′) has a unique
trajectory model σ, M is the unique answer set of π(D,O′) and M = π(σ).
Assume that σ = s0 B1 s1 . . . si Bi Since tmax = tn + tbound(D), it follows
from the definition of tbound(D) that Bk = ∅ and sk = stmax , for all k ≥ tmax.
Besides, it follows from π(D,O′) |=A π(f, tmax) that f ∈ stmax . Then f ∈ sk,
for all k ≥ tmax, so (D,O) |= f by he definition of entailment. 2

Proposition 4.1 Let P = 〈D, O,Q,S〉 be a hypothesis formation problem.
Let trans(P) = 〈ab(S), πf (Q), π(D) ∪ π(O) ∪ πa(Q) ∪ π(S), |=b〉 be the trans-
formation of P into abduction. Then H ⊆ S is a solution of P if and only if
the set {picked(label(r)) | r ∈ H} is a solution of the LPAP trans(P).

Proof. Let H ⊆ S. Let picked(H) be the program:

prog(H) = {picked(label(r))←| r ∈ H}
and let picked(H) be the set of atoms:

picked(H) = {picked(label(r)) | r ∈ H}
Let ΠH = prog(H) ∪ π(D) ∪ π(O) ∪ πa(Q) ∪ π(S). Consider the splitting of
ΠH by the set ab(S) (see Appendix C). The bottom of ΠH relative to ab(S) is
prog(H), whose unique answer set is picked(H). It is straightforward to verify
that the partial evaluation

eab(S)(ΠH \ prog(H), picked(H))

33

is the translation π(D ∪H, O) ∪ πa(Q). Note that O is initial state complete,
so the brave and cautious entailment by π(D ∪H, O) ∪ πa(Q) coincide, thus
Lemma A.10 is applicable. By Lemma A.10, (D ∪ H, O) |= Q if and only if
π(D ∪ H,O) ∪ πa(Q) |=b πf (Q). Consequently, (D ∪ H,O) |= Q if and only
if ΠH |=b πf (Q); that is, if and only if picked(H) is a solution of the LPAP
trans(P). 2

Proposition 4.2 Let P = 〈D,O,Q,S〉 is a hypothesis formation problem.
Let H ⊆ S and r ∈ S.

• Deciding if Sol(P) 6= ∅ is NP-complete.
• Deciding if r ∈ S is relevant to P is ΣP

2 -complete.
• Deciding if r ∈ S is necessary to P is coNP-complete.

Proof. The upper bounds of the complexities follow easily from Proposition
4.1. We shall now prove the lower bounds of the complexities.

Deciding if Sol(P) 6= ∅ is NP-hard
Let Φ be a 3CNF formula of the variables x1, . . . , xm. We present a transfor-
mation of Φ into an HFP PΦ = 〈DΦ, OΦ, QΦ,SΦ〉 such that Φ is satisfiable if
and only if Sol(PΦ) 6= ∅.

Intuitively, the possible truth assignments of the variables x1, . . . , xm will cor-
respond to candidate hypotheses for PΦ. Thus we have an action assign, then
define the hypothesis space S to be the set:

S = {assign causes xi | 1 ≤ i ≤ m}
The domain description DΦ is used for the evaluation of Φ given a set of truth
assignment. It consists of the following rules:

• For each clause C = yc
1 ∨ yc

2 ∨ yc
3 of Φ:

evaldisj causes holds(C) if yc
1

evaldisj causes holds(C) if yc
2

evaldisj causes holds(C) if yc
3

eval3CNF causes ¬holds(Φ) if ¬holds(C)

• Rules to trigger the actions assign, evaldisj and eval3CNF :

f0 triggers assign

assign causes ¬f0, f1

f1 triggers evaldisj

evaldisj causes ¬f1, f2

f2 triggers eval3CNF

eval3CNF causes ¬f2

34

The set OΦ defines the initial state

OΦ = {¬xi | 1 ≤ i ≤ m} ∪ {¬holds(C) | C ∈ Φ} ∪ {holds(Φ)} ∪ {f0,¬f1,¬f2}

Note that the variables are set to be false initially. A candidate hypothesis
determines what variables will be set to true.

The query QΦ encodes that we want to find an assignment making Φ true:

QΦ = holds(Φ)

Note that for all subset H ⊆ S, the action theory (D ∪ H, O) is consistent.
The trajectory model of (D ∪H,O) is of the form

σ = 〈s0, assign, s1, evaldisj, s2, eval3CNF , s3〉

where s0 is the unique initial state corresponding to O. Furthermore, σ has
the following properties:

• s1 gives us a unique truth assignment for xi, where xi = true if and only if
“ assign causes xi ” is in H;
• For any clause C ∈ Φ, C holds with respect to the truth assignment given

by s1 if and only if holds(C) ∈ s2;
• The formula Φ is true with respect to the truth assignment given by s1 if

and only if holds(Φ) ∈ s3.

Thus Φ is satisfiable if and only if there exists H ⊂ S such that (D∪H, O) |=
Q.

Deciding if r is relevant to P is ΣP
2 -hard

Let Φ be a QBF formula:

Φ = ∃x1, . . . , xm ∀y1, . . . , yn : ϕ(x1, . . . , xm, y1, . . . , yn)

where ϕ(x1, . . . , xm, y1, . . . , yn) is a 3DNF formula of the variables x1, . . . , xm, y1, . . . , yn.
We present a transformation of Φ into an HFP PΦ = 〈DΦ, OΦ, QΦ,SΦ〉 such
that Φ is valid if and only if a certain rule in S is relevant to PΦ.

The transformation is built upon an intuition similar to that of the above case.
There is an action assign to set the truth values of variables. We introduce
an additional “dummy” variable ω. The hypothesis space SΦ is the set:

S ={assign causes xi | i = 1, . . . , m}∪
{assign causes x̂i | i = 1, . . . , m}∪
{assign causes yj | j = 1, . . . , n}∪
{assign causes ω}

35

Let r(z) denote the rule of the form “ assign causes z ” of S. Let I(z)
denote a truth assignment of the variables x1, . . . , xm, y1, . . . yn. Given a truth
assignment I, let H(I) be the subset of S such that:

H(I) ={assign causes xi | I(xi) = true}∪
{assign causes x̂i | I(xi) = false}∪
{assign causes yj | I(yj) = true}

We shall be interested in candidate hypotheses of the form H(I) or H(I) ∪
{r(ω)}.

The domain description DΦ contains actions assign, evalconj, evalDNF , evalΦ.
Intuitively, evalconj evaluates the conjunctions of ϕ, evalDNF evaluates ϕ and
evalΦ evaluates Φ. The domain description consists of the following rules:

• For all conjunction C = zc
1 ∧ zc

2 ∧ zc
3 of ϕ:

evalconj causes holds(C) if zc
1, z

c
2, z

c
3

evalDNF causes holds(ϕ) if holds(C)

• Rules to determine if Φ is valid:

evalΦ causes ¬valid if ¬holds(ϕ),¬ω

evalΦ causes ¬valid if y1, . . . , yn, ω

• Rules to enforce the consistency of a candidate hypothesis, for all 1 ≤ i ≤ m:

evalΦ causes ¬consistent if xi, x̂i

• Rules to trigger the actions assign, evalconj, evalDNF , and evalΦ:

f0 triggers assign

assign causes ¬f0, f1

f1 triggers evalconj

evalconj causes ¬f1, f2

f2 triggers evalDNF

evalDNF causes ¬f2, f3

f3 triggers evalΦ
evalΦ causes ¬f3

The set OΦ defines the initial state

OΦ ={initially ¬xi, x̂i | 1 ≤ i ≤ m} ∪ {initially ¬yj | j = 1, . . . , n}
∪ {initially ¬holds(C) | C ∈ Φ}
∪ {initially ¬holds(ϕ),¬ω, consistent, valid, f0,¬f1,¬f2,¬f3}

36

The query Q is that Q = {consistent,¬valid}. We shall show that Φ is valid
if and only if r(ω) is relevant to PΦ.

Let us define a relation
x∼ between the assignments such that I1

x∼ I2 iff
I1(xi) = I2(xi), for all 1 ≤ i ≤ m. Moreover, we call an assignment I y-all-
true iff I(yj) = true, for all 1 ≤ j ≤ n. We can prove the following properties
about PΦ:

(1) The sets H(I) ∪ {r(ω)}, where I’s are a y-all-true assignments, are can-
didate hypotheses.

(2) The sets H(I), where I’s are truth assignments that make ϕ false, are
candidate hypotheses.

(3) All hypotheses of PΦ are of the form H(I) ∪ {r(ω)} or of the form H(I)
described in 1. and 2. above.

Let I be a y-all-true assignment. If I ′ is an assignment such that I ′ x∼ I
then H(I ′) ⊆ H(I). It follows that H(I)∪{r(ω)} is a hypothesis if and only if
H(I ′) is not a candidate hypothesis for all I ′ x∼ I. Consequently, H(I)∪ r(ω)
is a hypothesis if and only if I ′ makes ϕ true for all I ′ x∼ I.

Let us assume that r(ω) is relevant to PΦ. Then r(ω) belongs to some hypothe-
sis. This hypothesis must be of the form H(I)∪{r(ω)} with I being a y-all-true
assignment. It follows that I ′ make ϕ true for all I ′ x∼ I. Consequently, let
ΦI(x) be the formula

ΦI(x) = ∀y1, . . . , yn : ϕ(I(x1), . . . , I(xm), y1, . . . , yn)

then ΦI(x) is valid. Thus Φ is valid.

Now let us assume that Φ is valid. There exists an assignment xi := εi, 1 ≤
i ≤ m, such that the formula

Φepsilon = ∀y1, . . . , yn : ϕ(ε1, . . . , εm, y1, . . . , yn)

is valid. Let I be a y-all-true assignment such that I(xi) = εi, ≤ i ≤ m. Let I ′

be any assignment such that I ′ x∼ I. Since Φepsilon is valid, I ′ makes ϕ true.
Then H(I) ∪ {r(ω)} is a hypothesis, so r(ω) is relevant to PΦ.

Deciding if r is necessary to P is coNP-complete
Let r be a rule in S. Define Pr = 〈D,O, Q,S\{r}〉. Consequently, r is necessary
to P if and only if:

r ∈ H, for all H ∈ Sol(P)

⇐⇒ r ∈ H, for all H candidate hypothesis for P
⇐⇒ Sol(Pr) = ∅

37

Since to decide the consistency of an HFP is NP-complete, to decide the
relevancy of r to an HFP P is coNP-complete. 2

B Logic Programming with Answer Sets (AnsProlog)

In declarative programming the intent of a program (‘what’) is described in a
particular declarative programming language and the interpreter figures out
the ‘how’ part. For example, a declarative program for sorting a set of numbers
just describes what sorting is (and does not say how to sort a set of numbers),
and the interpreter when given a set of numbers, figures out the ‘how’ part and
does the sorting. Although this approach could be inefficient (in terms of run-
time) for certain kind of programs, it has acceptable performance for query
answering and reasoning programs. Its strong point is that it is much quicker
and easier (and is often more robust) to write a declarative program than
a procedural one. Declarative programming is a natural choice in database
querying and for these reasons we will use it for the reasoning associated with
our system. For example, SQL is a declarative language as in SQL we specify
what we want, and not how the system should look and search the files to find
the answer to our queries.

Among the various declarative and/or knowledge representation languages
(most of which are declarative) that have been proposed one language that
has probably the largest body of support structure (both theoretical results,
efficient interpreters and developed applications) is the language of logic pro-
gramming with the answer set (or stable model) semantics Gelfond & Lifschitz
(1988) – simply referred to as AnsProlog in Baral (2003).

B.1 AnsProlog

The answer set semantics of logic programs – initially referred to as the stable
model semantics – was proposed by Gelfond and Lifschitz in 1988 Gelfond &
Lifschitz (1988). Unlike earlier characterizations of logic programs where the
goal was to find a unique appropriate ‘model’ of a logic program, the answer
set semantics allows the possibility that a logic program may have multiple
appropriate models, or no appropriate models at all. Initially, some considered
the existence of multiple or no stable models to be a drawback of stable model
semantics, while others considered it to be a reflection of the poor quality
of the program in question. Nevertheless, it is this feature of the answer set
semantics Marek & Truszczynski (1999); Niemela (1999); Lifschitz & Turner
(1999) that is key to the use of AnsProlog for problem solving. We now present
the syntax and semantics of AnsProlog, which we will simply refer to as a logic

38

program.

A logic program Π is a set of rules of the form

a0 ← a1, . . . , am, not am+1, . . . , not an (B.1)

or

⊥ ← a1, . . . , am, not am+1, . . . , not an (B.2)

where 0 ≤ m ≤ n, each ai is an atom of a first-order language LP , ⊥ is a
special symbol denoting the truth value false, and not is a connective called
negation-as-failure. A negation as failure literal (or naf-literal) is of the form
not a where a is an atom. For a rule of the form (B.1)-(B.2), the left and right
hand side of the rule are called the head and the body, respectively. A rule of
the form (B.2) is also called a constraint.

Given a logic program Π, we will assume that each rule in Π is replaced by the
set of its ground instances so that all atoms in Π are ground. Consider a set of
ground atoms X. The body of a rule of the form (B.1) or (B.2) is satisfied by
X if {am+1, . . . , an} ∩X = ∅ and {a1, . . . , am} ⊆ X. A rule of the form (B.1)
is satisfied by X if either its body is not satisfied by X or a0 ∈ X. A rule of
the form (B.2) is satisfied by X if its body is not satisfied by X. An atom a
is supported by X if a is the head of some rule of the form (B.1) whose body
is satisfied by X.

For a set of ground atoms S and a program Π, the reduct of Π with respect to
S, denoted by ΠS, is the program obtained from the set of all ground instances
of Π by deleting

(1) each rule that has a naf-literal not a in its body with a ∈ S, and
(2) all naf-literals in the bodies of the remaining clauses.

S is an answer set (or a stable model) of Π if it satisfies the following condi-
tions.

(1) If Π does not contain any naf-literal (i.e., m = n in every rule of Π) then
S is the smallest set of atoms that satisfies all the rules in Π.

(2) If the program Π does contain some naf-literal (m < n in some rule of Π),
then S is an answer set of Π if S is the answer set of ΠS. (Note that ΠS

does not contain naf-literals, its answer set is defined in the first item.)

A program Π is said to be consistent if it has an answer set. Otherwise, it is
inconsistent.

39

B.2 CR-Prolog

CR-Prolog Balduccini & Gelfond (2003); Balduccini (2005) is an extension of
AnsProlog resulting from the introduction of consistency-restoring rules and
preferences over them. CR-Prolog is an extension of AnsProlog with a new
kind of rules called consistency-restoring rules (or cr-rules) and a preference
relation ¿ defined over the set of cr-rules.

A cr-rule has the form:

r : l0
+←− l1, . . . , ln, not lm+1, . . . , not lm+n .

Here, r is a label representing the name of such a rule. The regular form of
the rule r, denoted reg(r) is the standard AnsProlog rule:

l0 ← l1, . . . , ln, not lm+1, . . . , not lm+n .

The regular forms of the cr-rules of a set X is also denoted reg(X); that is:

reg(X) = {reg(r) | r ∈ X} .

Given a CR-Prolog program Π, a cr-rule r1 is preferred to a cr-rule r2, if π
contains the expression r1 ¿ r2. For any CR-Prolog program Π, let ap(Π)
denote the set of the standard AnsProlog rules of Π, cr(Π) denote the set of
the cr-rules of Π and pref(Π) denote the set of the preferences of Π.

Definition B.1 Let Π be a CR-Prolog program. Let M be a set of literals in
Π and R be a subset of cr(Π). The pair (M, R) is called a view of Π iff:

• M is an answer set of the AnsProlog program ap(Π) ∪ reg(R);
• there exists no rules r1 6= r2, {r1, r2} ⊆ R such that r1 ¿ r2; and
• there exists no R′ ⊂ R such that M is an answer set of ap(Π)∪ reg(R′). 2

Example B.1 Let Π be the CR-Prolog program:

Π =

r1 : p
+←− not r

r1 : q
+←− not r

← not p, not q

r1 ¿ r2

Then ({p}, {r1}) are ({q}, {r2}) are views of Π. The pair ({p, q}, {r1, r2}) is
not a view of Π because of the preference r1 ¿ r2.

Definition B.2 Let (M1, R1) and (M2, R2) be view of a CR-Prolog program
Π. The view (M1, R1) dominates the view (M2, R2) iff there exists r1 ∈ R1 and
r2 ∈ R2 such that r1 ¿ r2. 2

40

Definition B.3 A view (M,R) is a candidate answer set of a CR-Prolog
program Π if there exists no other view that dominates (M, R). 2

Definition B.4 A set M of literal is an answer set of CR-Prolog program Π
iff:

• there exists R ⊂ cr(Π) such that (M, R) is a candidate answer set of Π; and
• there exists no candidate answer set (M ′, R′) of Π such that R′ ⊂ R. 2

Example B.2 Let us continue with Example B.1. The view v1 = ({p}, {r1})
is a candidate answer sets of Π. The view v2 = ({q}, {r2}) is not a candidate
answer set of Π, since v1 dominates v2.

C Splitting Set Theorems

In this appendix, we review the basics of the Splitting Theorem Lifschitz &
Turner (1994).

Let r be a rule

a0 ← a1, . . . , am, not am+1, . . . , an.

By head(r), body(r), and lit(r) we denote a0, {a1, . . . , an}, and {a0, a1, . . . , an},
respectively. pos(r) and neg(r) denote the set {a1, . . . , am} and {am+1, . . . , an},
respectively.

For a program Π over the language LP , a set of atoms of LP , A, is a splitting
set of Π if for every rule r ∈ Π, if head(r) ∈ A then lit(r) ⊆ A.

Let A be a splitting set of Π. The bottom of Π relative to A, denoted by bA(Π),
is the program consisting of all rules r ∈ Π such that lit(r) ⊆ A.

Given a splitting set A for Π, and a set X of atoms from lit(bA(Π)), the partial
evaluation of Π by X with respect to A, denoted by eA(Π \ bA(Π), X), is the
program obtained from Π as follows. For each rule r ∈ Π \ bA(Π) such that

(1) pos(r) ∩ A ⊆ X;
(2) neg(r) ∩ A is disjoint from X;

we create a rule r′ in eA(Π, X) such that

(1) head(r′) = head(r), and
(2) pos(r′) = pos(r) \ A,
(3) neg(r′) = neg(r) \ A.

Let A be a splitting set of Π. A solution to Π with respect to A is a pair 〈X,Y 〉

41

of sets of atoms satisfying the following two properties:

(1) X is an answer set of bA(Π); and
(2) Y is an answer set of eA(Π \ bA(Π), X);

The splitting set theorem is as follows.

Theorem C.1 (Splitting Set Theorem, Lifschitz & Turner (1994)) Let
A be a splitting set for a program Π. A set S of atoms is a consistent answer
set of Π iff S = X ∪ Y for some solution 〈X, Y 〉 to Π with respect to A. 2

A sequence is a family whose index set is an initial segment of ordinals {α | α <
µ}. A sequence 〈Aα〉α<µ of sets is monotone if Aα ⊆ Aβ whenever α < β, and
continuous if, for each limit ordinal α < µ, Aα =

⋃
γ<α Aγ.

A splitting sequence for a program Π is a nonempty, monotone, and continuous
sequence 〈Aα〉α<µ of splitting sets of Π such that lit(Π) =

⋃
α<µ Aα.

Let 〈Aα〉α<µ be a splitting sequence of the program Π. A solution to Π with
respect to A is a sequence 〈Eα〉α<µ of set of atoms satisfying the following
conditions.

(1) E0 is an answer set of the program bA0(Π);
(2) for any α such that α + 1 < µ, Eα+1 is an answer set for eAα(bAα+1(Π) \

bAα(Π),
⋃

γ≤α Eγ); and
(3) For any limit ordinal α < µ, Eα = ∅.

The splitting set theorem is generalized for splitting sequence next.

Theorem C.2 (Splitting Sequence Theorem, Lifschitz & Turner (1994))
Let A = 〈Aα〉α<µ be a splitting sequence of the program Π. A set of atoms E
is an answer set of Π iff E =

⋃
α<µ Eα for some solution 〈Eα〉α<µ to Π with

respect to A. 2

To apply Theorems C.1-C.2 to programs with constraints of the form (B.2),
we need to modify the notation of the bottom of a program relative to a set
of atoms as follows.

Let Π = Π1∪Π2 be a program with constrains where Π1 is a set of rules of the
form (B.1) and Π2 is a set of rules of the form (B.2). For a splitting set A of Π,
we define bA(Π) = bA(Π1) ∪ cA(Π2) where cA(Π2) = {r | r ∈ Π2, lit(r) ⊆ A}.

We can prove that Theorems C.1-C.2 hold for programs with constraints. For
example, if A is a splitting of the program Π, then S is an answer set of
Π iff A = X ∪ Y where X is an answer set of bA(Π) and Y is an answer
set of eA(Π \ bA(Π), X). The proof of the modified theorems is based on two
observations: (i) a set A of atoms from lit(Π) is a splitting set of Π iff it is a

42

splitting set of Π1 (because ⊥ 6∈ lit(Π)); and (ii) a set of atoms S is an answer
set of Π iff S is answer set of Π1 and S satisfies the rules of Π2.

43

