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The lynch-pin of the structuralist account of logic endorsed by Koslow is the 
definition of logical and modal operators with respect to implication relations, i.e. 
relative to implication structures. Logical operators are depicted independently of 
any possible semantic or syntactic limitations. It turns out that it is possible to 
define conjunction as well as other logical operators much more generally than it 
has usually been, and items on which the logical operators may be applied need 
not be syntactic objects and need not have truth values. 
In this paper I analyse Koslow’s structuralist theory and point out certain 
objectionable aspects to as well as reasons why such a theory does not fulfil the 
(possibly unjustified) expectation of getting defined a universal logical structure. 
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Introduction 

What does a structuralist account of logic amount to? And what does structuralism 

mean in the domain of logic? One of the most appealing contemporary formulations 

of the answer to the questions just asked is Koslow’s structuralist account of logic1. 

In this paper I firstly present the basic tenets of his theory; secondly, I discuss it and 

give reasons for rejecting some aspects of it and thirdly, I defend the view that such a 

structuralist account of logic, even though most appealing, does not satisfactorily 

answer the questions posed above. 

Let us begin with a brief look at how structuralism applies to the paradigmatic cases 

of astronomy and mathematics and see how, if at all, logic has something in common 

with these two fields. 

In the history of astronomy apparently opposing theories have been endorsed about 

the structure of the Solar System, e.g. the heliocentric and geocentric system and their 

respective theses on having either the Sun or the Earth as the centre of the Solar 

                                                 
1 Koslow (1992), (2007). 
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System. That these theories were mutually exclusive, so could not possibly both be 

right, seemed to be more than plain common sense. But, surprisingly and counter-

intuitively, these theories turned out to share not just the same mathematical apparatus 

but also to be translatable into equivalent mathematical theories. Analogously with the 

analyses of the points in a plane in which the coordinates of a point change depending 

on what point we choose as the origin of the coordinate system, the mathematical 

translation of astronomical theories depends on what we choose as the “origin” of the 

system: the Earth or the Sun. Mathematically we can decide to do either - and in this 

sense there is no “right answer”.2 The theories share the same (mathematical) 

structure.  

Do we encounter theories sharing the same structure in other domains of interest as 

well? To a certain extent, yes. In mathematics, the science of structures par 

excellence, there are many interesting philosophical consequences (both ontological 

and epistemological) of the fact that mathematics is basically about structures: the 

natural number structure, the group structure, the vector space structure, etc.; and the 

ontological reduction of mathematical objects to structures aims to solve same basic 

ontological (as well as epistemological) problems concerning different versions of 

realism in the philosophy of mathematics.3 

Nevertheless, the problems and approach in mathematics are slightly different and 

much more complex than the case in astronomy. Structuralism in mathematics is 

twofold: in one sense different branches and theories are about different structures, in 

another the possibility of the reduction of different theories to set theory makes us 

think of one common set-theoretic structure.  

What about logic? Is it possible that logics share a universal structure? Is there any 

analogy with the case of astronomy or mathematics, and would it be possible to 

reduce different logical theories to a common structure? As is very well known, in 

logic there are different theories that hold opposing views even on some very basic 

topics. Examples are legion. We might mention the case of intuitionist logic rejecting 

some basic rules of classical logic such as the tertium non datur or double negation; 

or that of relevance logic introducing certain constraints absolutely absent in classical 

logic. 

                                                 
2 In the same way in which we choose in mathematics the origin of a coordinate system depending on 
what result we aim to get and what objects we aim to depict or analyse. 
3 See, e.g. Shapiro (1997), Resnik (1997), Hellman (2001). 
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Does it mean that the proposal of a common logical structure and, consequently, of a 

universal logic, is destined to fail?  In this paper I will try to answer this question 

through the analysis of one of the most prominent structuralist theories of logic: 

Koslow’s structuralist account of logic.  

 

Koslow’s structuralist theory of logic 

The basic idea in Koslow’s structuralist theory of logic amounts to the introduction of 

the notion of implication structure, and the development of a theory of the operators 

by depicting how such operators act on implication structures.  

What is an implication structure? It is any order pair: ((S, ⇒); where S is a non-empty 

set, and  “⇒” is an implication relation. 

An implication relation is any relation that satisfies the following conditions: 

(1) Reflexivity:          A ⇒ A, for every A in S 

(2) Projection:         A1, A2, …, An ⇒ Ak,  for every k=1, …, n, and for all Ai in S  

                                 (i = 1, …,n) 

(3) Simplification:    If  A1, A1, A2, …, An ⇒ B, then  A1, A2, …, An ⇒ B, for each Ai 
                                 (i = 1, …,n) and B in S 

(4) Permutation:      If   A1, A2, …, An ⇒ B, then  Af(1), Af(2), …, Af(n) ⇒ B, for any 
                                 permutation f of  {1, …,n} 

(5) Dilution (or Thinning):   If   A1, A2, …, An ⇒ B, then  A1, A2, …, An, C  ⇒ B, for  
                                              every Ai  (i = 1, …,n), B and C in S 

(6) Cut:                     If   A1, A2, …, An ⇒ B, and B, B1, B2, …, Bm ⇒ C, then   
                                  A1, A2, …, An, B1, B2, …, Bm ⇒ C, for every Ai, Bj, B and C  
                                  (i, j = 1, …,n) 

It can easily be noted that certain conditions follow from others4; Koslow nevertheless 

keeps such a formulation for the sake of greater articulateness.   

Apart from standard examples of implication relations such as the notion of 

(semantic) consequence and the (syntactic) notion of deducibility for a set of 

sentences of first-order logic, there are other examples as well, e.g. set inclusion, 

given a non-empty set of sets. 

Implication structures are, in fact, with respect to their generality, comparable to 

equivalence relations and, analogously to the latter, such structures can be more or 

less mathematically, logically, scientifically or philosophically interesting and fruitful. 

                                                 
4 Reflexivity follows from Projection; Dilution follows from Projection and Cut. 
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One of the tenets of Koslow’s theory is also the characterization of logical operators 

relative to an implication structure. How do the logical operators interact with respect 

to implication? Any explanation of the logical operators, as well as modal operators, 

is based exclusively on the notion of an implication structure or, more precisely, such 

operators are functions defined on implication structures. 

As Koslow (1994, 4) points out: 

The answer we shall give to the question of what it is like for an item to 
belong to a certain logical category appeals solely to the role that the element 
plays with respect to the implication relation of the structure under 
consideration. Because the elements of an implication structure need not be 
syntactical objects having a special sign design, and they need not have some 
special semantic value, an explanation of what can count as hypothetical, 
disjunctions, negations, and quantifies items (existential or universal) can 
proceed in a way that is free of such restrictions.  

 

So the basic idea of Koslow’s theory amounts to having logical operators depicted 

independently of any possible semantic or syntactic limitations. Logical operators 

(conjunction, disjunction, negation, quantifications, etc.) are determinate functions 

defined upon implication structures. 

Let us take the example of the conjunction operator. Given an implication structure 

(S, ⇒), the conjunction operator is a function C that assigns to any elements A and B 

of S, a subset C⇒(A, B) of S containing all those members (if any)5 that satisfy the 

following conditions:  

(C1)  C⇒(A, B)  ⇒ A and C⇒(A, B)  ⇒ B6 

(C2)  C⇒(A, B) is the weakest member of the implication structure that satisfies (C1);  

         i.e. if T is any member of the implication structure such that T ⇒ A, T ⇒ B, 

           then T  ⇒ C⇒(A, B). 

Such a concept of conjunction is based on – even though it is much more general  

than – the one determined by the standard Gentzen-style Introduction and Elimination 

rules7 that concern the conjunction operator (‘∧’). The results are analogous for other 

logical operators (in first-order logic) in the sense that standard Introduction and 

Elimination rules are replaced by more general conditions.  

                                                 
5 There are structures in which conjunctions exist, and others in which they do not exist. See Koslow 
(1992, 108-109). 
6 The notation C⇒(A, B) is used to denote both a subset of S and its elements (that are all equivalent 
with respect to the implication relation). 
7 Introduction rule: A, B ⇒ A ∧ B; Elimination rules: A ∧ B ⇒ A, and A ∧ B ⇒ B. 
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So, even though Koslow uses the same rules (1)-(6) for an implication relation that 

Gentzen does, he poses different, more general conditions for the logical operators. 

And he does so because the Introduction and Elimination rules do not allow the 

generality that Koslow’s definitions of conjunction and other logical operators do. As 

Koslow indicates, pointing to the parity between the account of the implication 

structures and logical operators:  

On our theory, parity is restored, and the account of the operators is as abstract 
as the theory of implication upon which it rests.8  
 

Apart from the missing generality, Gentzen’s rules imply a certain ontological 

commitment to the existence of the logical operators while Koslow refrains from 

giving the operators an existential character. Since any logical operator is defined in 

dependence on the role it plays with respect to an implication structure, it can appear 

differently given a different implication relation of a structure. 

The richness of Koslow’s theory reveals itself especially in the finding that logical 

operators can be identified in non-standard implication structures too. Non-standard 

examples include logical operators defined on structures of sets, names and 

interrogatives.9 

Let us take the example of set theory, the implication structure being (S, ⇒) where S 

is a non-empty set of sets and the implication relation is set inclusion ‘⊆’. In this case 

the conjunction of two sets A and B, is some set C⇒(A, B)10 such that: 

(C1)  C⇒(A, B)  ⊆ A and C⇒(A, B)  ⊆ B 

(C2)  C⇒(A, B) is the weakest member of the implication structure that satisfies (C1);  

         i.e. if T is any element of S such that T ⊆ A, T ⊆ B, then T  ⊆ C⇒(A, B). 

Given the definition, C⇒(A, B) corresponds to A∩B. Hence, it turns out that the 

intersection of two sets is not just analogous to conjunction – it is the conjunction11.  

And it also turns out that it is possible to define conjunction much more generally 

than it has usually been, by doing it on objects that are not truth bearers.  So, items on 

                                                 
8 See Koslow (1992, 14-17). 
9 See Koslow (1992, 209-222).  
10  C⇒(A, B) does not necessarily exist. 
11 The disjunction of two sets turns out to be the their union, the negation of any set A its complement 
S-A, etc. For more details see Koslow (1992, 77-127). 
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which the conjunction operator may be applied need not be syntactic objects and need 

not have truth values12.  

Given that operators are defined as special functions relative to implication relations, 

such relativization to implication structures make the problems of stability and 

distinctness naturally arise. The first problem concerns the following issue: if C⇒(A, 

B) is a conjunction in one implication structure, will it be a conjunction in a different 

implication structure in which the same elements are included? And the answer is 

positive: given an implication structure, any conjunction of two elements will still be 

the conjunction of those elements in every conservative extension of the structure13. 

The problem of distinctness is due to the general character of any implication 

structure and it amounts to distinguishing the operators from each other. Koslow 

defines two operators as distinct (given an implication structure) if and only if for 

some items in the structure the two yield at least two nonequivalent members of the 

structure. 

 

The structuralist account: Why not? 

Even though the structuralist account of logic that Koslow develops appears to be 

logically and philosophically most appealing, there are certain objectionable aspects. 

It has already been mentioned that set inclusion (given an non-empty set of sets) is an 

example of implication relation. Let us have a closer look at this example. Set 

inclusion should and do satisfy the conditions (1)-(6) for any implication relation. 

And the conjunction of two sets turns out to be their intersection. So, given e.g. 

Projection14, the question arises as to what the left-hand side of the condition - A1, A2, 

…, An - amounts to. The answer is that such left-hand side is precisely the intersection 

of sets: A1 ∩ A2 ∩ …∩ An. It turns out then, that we ought to know what the 

intersection of sets is prior to having defined the implication relation on sets even 

though formally the definition of conjunction, i.e. intersection should follow the one 

of implication structure. Hence, such definition of implication relation turns out to be 

circular. 

                                                 
12 Koslow’s way of defining the logical operators has also the interesting advantage of getting possible 
the conjunction of different theories (either in logic or physical sciences), since the standard 
requirement of the conjunction being defined only to sentences does not longer exist. 
13 For more details see Koslow (1992, 389). 
14 Projection: A1, …, An ⇒ Ak, for each k=1,…n  
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One of the most interesting parts of the structuralist programme concerns some 

aspects of erotetic logic, the logic of questions and answers. Koslow (1992, 223-225) 

defines an implication relation for interrogatives in the following way: 

Let Q be a collection of interrogatives (every question is denoted by a capital letter 

followed by a question mark), and S a set of sentences inclusive of the sentential 

direct answers to the questions in Q. We denote their union with S*:  S*= S ∪ Q; while 

‘⇒’ is an implication relation on sentences of S.  

What needs to be defined is an implication relation ‘⇒q’ on the set S*, that involves 

just the questions of Q, or any combination of questions in Q and statements in S.  

Let M1?, M2?, …, Mn? and R? be questions in Q, and let F1, F2, …, Fm and G be 

statements of S (the set of M’s or the set of F’s may be empty but not both), and let Ai 

be a direct answer to the question Mi? (i=1,…,n); then 

(1.)  F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q R?  if and only if there is some direct   

answer B to the question R? such that  

       F1, F2, …, Fm, A1, A2, …, An ⇒ B 

(2.)  F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q G  if and only if     

       F1, F2, …, Fm, A1, A2, …, An ⇒ G 

 

There are certain unclarities in such a definition. Let us take the example in which the 

set S is a collection of sentences in classical propositional logic where the implication 

relation is the standard semantic notion of logical consequence. Let Q be the 

collection of interrogatives that, among others, includes e.g. M1?: “How many 

satellites does the planet Earth have?” and R?: “Does the number ‘3’ solve the 

equation ‘x-4=0’?” and let us say, for the sake of simplicity, that the set of F’s is 

empty15. The set S is infinite, there are infinitely many possible direct answers to the 

question M1?, given that the direct answer need not be the correct one; as Koslow 

(1992, 220) points out: 

We shall use the term “interrogative” to include any question that has a direct 
answer. The most important feature of the direct answers to a question is that 
they are statements that, whether they are true or false, tell the questioner 
exactly what he wants to know16 – neither more nor less.  

                                                 
15 Since the set of M’s is non-empty, the set of F’s may be empty (see the definition above). 
16 The specified feature of direct answers is interesting since it controversially includes false answers in 
what the questioner exactly wants to know - unlike Belnap and Steel, according to whom ‘the direct 
answer…is what counts as completely, but just completely, answering the question’ (Belnap and Steel, 
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According to the definition of an implication relation ‘⇒q’, it follows that: 

M1? ⇒q R?  if and only if there is some direct answer B to the question R? such that  

A1 ⇒ B.  

Whether A1 is a logical consequence of B or not, depends on what answer A1  (to the 

question M1?) we decide to choose17. Given the possibility of choosing a wrong 

answer (i.e., ‘The planet Earth has n satellites’, where n is any natural number 

different from 1), and given the possibility to do the same for any question Mi? it 

turns out that for any questions Mi?, R? with a direct answer, we get:  M1? ⇒q R?. 

What the application of such a definition is, and what its fruitfulness amounts to, 
remains unclear.   
The case in which a question implies a statement (the second condition in the 

definition) is slightly different. Let us take the question to be the same as before - 

M1?: “How many satellites does the planet Earth have?”  and the statement G to be 

any false statement, e.g. the false answer to the previous question R?: “Yes, the 

number ‘3’ solves the equation ‘x-4=0’”. In this case, whether M1? ⇒q G or not 

depends on whether A1 ⇒ G, and the latter depends on what answer A1 (to the 

question M1?) we choose. If the answer we choose is a false one, then M1? ⇒q G, 

otherwise M1? ≠>q G. More generally, the same problem appears whenever the 

statement G is a false one. In this case, given a collection of interrogatives Mi? 

(i=1,…n), their respective direct answers Ai, and a set of true statements Fi (i=1,…n),  

there is nothing in Koslow’s definition that allows us to uniquely determine whether 

F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q G or not, or to rule out the possibility of 

discussing it in the first place. As soon as we choose at least one false answer, it 

follows that  

Ai, F1, F2, …, Fm, M1?, M2?, …, Mn? ⇒q G;  

while by choosing all the correct answers we get:  

F1, F2, …, Fm, M1?, M2?, …, Mn? ≠>q G. 

                                                                                                                                            
1976, 13). It is not clear in what contexts, if any, the questioner would exactly want to know a wrong 
answer to a question posed. 
17 A1 is, according to the definition, any answer to the question M1?. 
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Apart from the details that have just been referred to concerning Koslow’s 

structuralist account of logic, there are certain more general concerns that should be 

brought to the surface.   

Does Koslow’s theory prove that there is a unique logical structure? Well, the fact 

that Koslow shows how certain logical notions are universally present in many extra-

logical theories does not prove per se that there is a universal logical structure and 

that different logics exemplify such a structure in the same way. 

Koslow’s programme might seem to be analogous to what the standard mathematical 

practice is, in the sense of defining a determinate structure that can be exemplified by 

completely different systems. Let us take the example of vector space. Utterly 

different objects – e.g. either geometric vectors or real numbers18 - count as vectors19, 

in the same way in which e.g. either the standard conjunction in classical 

propositional logic (that have the sign ‘∧’) or the intersection of sets, both count as 

conjunctions C⇒(A, B). How far does the analogy go?  

The theory of vector spaces determines not just what a vector space (over a field) is, 
but it also allows the projection of many other properties from the structure to single 

templates (or systems), e.g. a base for every finitely dimensional vector space. 

It is not the case with Koslow’s theory of implication structure. Let us observe one 

example. According to the definition,20 the conjunction operator C on an implication 

structure (S, ⇒), is a function which assigns to any two elements A and B of S, a 

conjunction of them, i.e. a subset C⇒(A, B) of S: 

C:   (S, ⇒)   →   (S, ⇒) 

C:    A,  B     C⇒(A, B)    

C⇒(A, B) is the subset of all those elements of S (if they exist) that satisfy the 

conditions (C1) and (C2) we have already mentioned (see above). Let us have a look 

at the example in which we take C⇒(A, B) to be, e.g., the standard logical conjunction 

operator in classical propositional logic in which the implication structure is the set of 

formulas of the language together with the ‘standard’ implication. In this case the 

conjunction is not defined, as it is usually the case, through its truth tables nor through 

the Elimination and Introduction rules. Given Koslow’s definition, we ought to be 

                                                 
18 Real numbers are interpreted formally as members of the real number vector space over the field of 
real numbers. 
19 Here ‘vector’ is used in the sense of an arbitrary element of a vector space. 
20 Koslow (2007, 170) and Koslow (1992, 6).  
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able to get such results for the conjunction operator out of Koslow’s definition, 

because there is simply no other way in which we could do it. But, the conjunction is 

defined independently of any syntactic or semantic features, and it is unclear how this 

definition is to be combined with the syntactic rules for formula formation and 

(semantic) truth tables.  Once the implication structure is defined and it turns out that 

the semantic concept of logical consequence in classical propositional logic 

exemplifies the structure as well as the conjunction ‘∧’ fulfils the conjunction C⇒(A, 

B) requirements, none of the semantic properties of the conjunction ‘∧’ follow from 

the structure. How can we define the truth table for it? How are such truth tables 

related to the characterisation of the operator within the theory?  

Koslow very clearly endorses the view that ‘the tasks of a logical theory of statements 

can be carried out without appeal to either syntax or semantics’21; nevertheless, in 

order to develop the logical theories we are interested in both syntax and semantics 

are necessary. Otherwise our classical logical theories are exemplified by Koslow’s 

structures just fragmentally. And different logics turn out to have just partial 

fragments reducible to or exemplified by the same structure. 

Certainly, while the result of reducing logical operators belonging to different 

domains to the same structure is remarkable, it nevertheless leaves us in dismay in 

respect of the expectation of getting a universal logical structure defined.  
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