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Abstract: The general problem of visual search can be shown to be computationally intractable in a formal, complexity-theoretic
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1. Introduction

The research described in this target article conforms to
the computational paradigm for modeling biological vi-
sion. This paradigm has been interpreted in rather lim-
ited ways in the past decade, however. Computation
seems to be associated with mathematical models that are
(perhaps) simulated on a computer. Although this associa-
tion is certainly within the computational paradigm, the
set of available computational tools is much larger than
the class of continuous mathematics. One such tool is
complexity theory, which is concerned with the amount
of computation required to solve a given problem and the
number of elements (processors, connections, memory,
and so forth) needed for its computation. The formal
theory is concerned with the inherent difficulty of com-
putation; complexity level analysis tries to match a pro-
posed solution to a prespecified set of resources.

It is a natural consequence of the computational para-
digm that all tools of computation should be considered
and that their power should be brought to bear on the
problem of vision. Complexity theory should reveal basic
insights into the structure and performance of human
vision,; if successful, its effect on theories of visual percep-
tion would be great. It could delimit the space of per-
missible solutions in a formal and theoretical fashion. All
theories and models would then have to fit within these
theoretical limits or be clearly subject to the criticism that
they were unrealizable.

1.1. Motivation and goalis

The general task of visual search! will be shown to be
inherently intractable in the formal sense. Given the
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ubiquity of visual search tasks in everyday perception, it
may be true that visual perception in general is likewise
intractable. Yet human vision is effortless and exquisitely
precise. How can this be? Ancient philosophers were
aware that humans could attend to the relevant and
ignore the irrelevant. [See Niitinen: “The Role of Atten-
tion in Auditory Information Processing as Revealed by
Event-related Potentials and Other Brain Measures of
Cognitive Function” BBS 13(2) 1990.] More recently,
psychologists have studied attention and proposed that
some kind of processing limit in the brain must give rise to
such a phenomenon. Neisser, for example, claimed that
any model of vision that was based on spatial parallelism
alone was doomed to failure because the brain was not
large enough (Neisser 1967). This led him to his two-stage
process of perception: a preattentive phase followed by an
attentive phase. It is difficult to formulate such a model in
computational terms, however; there are so many miss-
ing details. Moreover, the explanation of the need for
attention is less than satisfactory. The idea that the brain
is not large enough does not yield any useful constraints
on the architecture of the visual system. Arguments to the
effect that a given fixed resource is not large enough to
accommodate a specified problem lead naturally to con-
siderations of computational complexity. Neisser hinted
at the need to address the difficult issues of computational
complexity, even though in 1967 complexity theory was
barely in its infancy.

Complexity considerations are commonplace in the
computational vision literature. Many researchers (for
example, Grimson 1986; Mackworth & Freuder 1985;
Poggio 1982; and others) routinely provide an analysis of
the complexity of their proposed algorithms — this is
simply good computer science. It is important to demon-
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strate that specific algorithms have tractable require-
ments in terms of computer size and execution time, but
this is not the same as addressing the complexity issues for
vision in general. In the realm of interdisciplinary theo-
ries, Feldman and Ballard (1982) concluded that com-
plexity considerations about timing suggest that mas-
sively parallel models are the only biologically plausible
ones, because only they satisfy the “100 step rule.” That
is, because most neurons compute at a maximum rate of
about 1000 Hz, and because simple perceptual phe-
nomena occur in about 100 milliseconds, biologically
plausible algorithms can require no more than 100 steps.
Feldman and Ballard did not explain exactly how “mas-
sive” these networks must be, however (also, see Zucker
1985). They also stressed the importance of conserving
connections. Although their emphasis was correct, their
application of this constraint leaves many questions un-
answered and, in particular, Feldman and Ballard did not
demonstrate that their set of conserving techniques was
sufficient given the resources of the brain. Rumelhart and
McClelland (1986a) claim that the time and space re-
quirements of a theory of cognitive function are important
determinants of the theory’s biological plausibility. How-
ever, they do not provide a detailed analysis of how such
constraints may be satisfied. A number of other papers
(Pylyshyn 1984; Uhr 1980; and others) touch on the

- complexity issue and do not attack it head on; they do
provide support for the utility of complexity considera-
tions, however. Uhr, for example, gives the 100-step
argument of Feldman and Ballard almost exactly, except
that he uses 400 steps.

Serious consideration must be given to computational
complexity in the computational modeling of perception
and, indeed, in the computational modeling of any aspect
of intelligence. One of the key problems with artificial
intelligence is that the solutions proposed are fragile with
respect to the question of “scaling up” with problem size:
Theoretical solutions are usually derived without regard
to the amount of computation required and then if an
implementation is produced, it is tried out only on a few
small examples. The standard claim is that if faster or
parallel hardware were available, a real-time solution
would be obtained. There is something very unsatisfying
about this type of claim. In particular, parallel solutions,
such as those proposed by the connectionist community,
although motivated by complexity considerations, typ-
ically fail to demonstrate the computational sufficiency of
their approaches (see the collections of papers on the
subject in Rumelhart & McClelland 1986b and Feldman
1985). For example, few if any deal with the time and
space requirements of the relaxation procedures they
use, particularly in the context of time-varying input (but
see Tsotsos 1987a for empirical results on this). Complex-
ity analysis was not applied to determining the limits of
the information processing capacity of the visual system
in van Doorn, van de Grind, and Koenderink’s (1984)
comprehensive overview of techniques and approaches
for studying the limits of perception. If one is committed
to realizing systems and proving that they behave in the
required manner, the first prerequisite would seem to be
that the candidate system be computationally tractable.

The problem vision researchers from the many rele-
vant disciplines face is that experiment results and ex-
planatory theories from these disparate fields are not
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immediately compatible, and often appear contradictory.
There has been very little work on “the big picture”
which the individual results may fit.2 Current theories
are hence open to a kind of criticism that is, in one
important sense, unfair at this stage of our knowledge.
There is no test that can be applied to a theory to
determine whether or not basic considerations are satis-
fied. Satisfying complexity constraints is one test that new
theories of visual perception must pass.

The key principle underlying the research described
here is that considerations about the computational com-
plexity of the perceptual task are critical and lead directly
to “hard” constraints on the architecture of visual sys-
tems, both biological and computational. It is surprising
that Marr did not even mention the problem of computa-
tional complexity as part of the computational level of his
theory (Marr 1982). According to Marr, the computa-
tional level of his theory addresses the questions: What is
the goal of the computation? Why is it appropriate? What
is the logic of the strategy by which it can be carried out?
Marr called solutions at this level “in principle” solutions.
At the representational and algorithmic level one asks:
How can this computational theory be implemented?
What is the representation for the input and output?
What is the algorithm for the transformation? And, final-
ly, at the implementational level one asks: How can the
representation and algorithm be realized physically? [See
Anderson: “Methodologies for Studying Human Knowl-
edge” BBS 10(3) 1987.] Complexity spans these three
levels. Yet considerations of efficiency or complexity are
not just implementational details as Marr implies. If the
task to be performed or the algorithm to be implemented
is tractable, then perhaps efficiency is only an implemen-
tationdl detail. However, if the task is an intractable one,
as vision in its most general form seems to be, complexity
satisfaction is not simply a detail to contend with during
implementation, just as discretization and sampling ef-
fects or numerical stability are not simply implementa-
tional details. Complexity satisfaction is a major con-
straint on the possible solutions of the problem. It can
distinguish between solutions that are realizable and
those that are not.

It is important to specify exactly what is meant by
complexity level analysis: Given a task, a set of perfor-

- mance specifications, a fixed amount of input, and a fixed

set of resources with which to accomplish the task, two
related questions can be asked. The first is, “How much
computation is required to accomplish the task?”; the
second is, “Are the given resources sufficient to accom-
plish the task?” In general, the resources specified in a
problem description do not necessarily match the re-
quired computation; there could be a mismatch between
problem complexity (the answer to the first question) and
the resources. This does not mean that no realization is
possible ~ it means that further analysis is required to
reshape the task or to optimize the resources so as to
attain a satisfactory match. Note that reshaping the prob-
lem often means making approximations or being content
with suboptimal solutions — aspects of the full generality
of the problem must be sacrificed to obtain a realizable
solution. This process of optimization toward matching
the computational requirements of a problem with a
given resource I call “analysis at the complexity level.”
The result of the analysis will show how much computa-



tion will actually be performed, what the nature of the
actual problem solved is, and what the first-order perfor-
mance characteristics of the realization are. This analysis
will not provide answers to “how” questions — how the
computation is actually carried out. Nevertheless, ascer-
taining how much computation can be performed will
strongly constrain which computations are chosen to
actually solve the problem.

As with many aspects of science, this analysis points to
an iterative methodology. This target article will deal only
with first-order complexity, analogous to building a house
starting with the internal wood frame. Once the frame
defines the skeleton of the house, one can begin to add
detail. So too with this analysis; fine-scale considerations
are not dealt with. When a problem is inherently intracta-
ble, one must reduce the intractability at the large scale
before worrying about detailed considerations at finer
scales. The process of design does not depend on only one
type of building material but on many. We will consider
only two types of material: complexity satisfaction and
minimization of cost. The constraints we derive will be
termed “sufficient” in one sense only: They are sufficient
to satisfy the first-order complexity level analysis (dis-
cussed later). It must also be noted that the constraints
are not formal necessary conditions.

An engineer is provided with a set of design specifica-
tions a new apparatus must meet. We are faced with an
inverse problem and much more difficult one: discover-
ing the specifications and design principles of an existing
system whose performance and composition is still far
from being understood. This lack of understanding would
appear to make such an inverse analysis impossible.
There are some elements of biological visual systems,
however, that are better understood than others. For
example, it seems well accepted that the average connec-
tivities among neurons is about 1000 for both fan-out and
fan-in, that there are 30 or so visual areas (van Essen &
Anderson 1989), that there is a hierarchical organization
connecting these areas (van Essen & Maunsell 1983), that
responses of individual neurons may be affected by a
spectrum of stimuli rather than a single one (Zeki 1978;
Maunsell & Newsome 1987), and that the performance of
a given neuron may be profoundly affected by attentional
influences related to the task at hand (Moran & Desimone
1985; see also the papers by Allman et al. 1985; Crick &
Asunama 1986; Desimone et al. 1985; van Essen et al.
1984 for more detail about the neuroanatomy and neu-
rophysiology of the visual cortex in primates).

1.2. Visual search

Our analysis will concentrate on one important aspect of
vision. Consider the experimental paradigm for visual
search: Given a set of memory items or targets and a test
display that contains several nontarget items and may or
may not contain targets, measure the length of time a
subject needs to detect a given number of the targets in
the display. There are special cases of visual search. One
can vary the number of elements in the test display up to
the limit where there are only image textures rather than
discrete items; one can vary the number of items in the
memory set or the number of items that must be found in
the test display. In each variant, however, matching one
memory item to a test display seems to be a basic
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subproblem. This may be a basic subproblem of all visual
tasks.

Visual search experiments measure the response times
of subjects in recognition or detection tasks. These are
assumed to reflect the amounts and kinds of visual infor-
mation processing leading to the response. The connec-
tion of computational complexity analysis seems rather
direct. One theory of visual search performance has
arisen from the substantial body of work assembled by
Treisman over the past decade. Treisman and colleagues
have defined a framework they term “feature integration
theory” (Treisman & Gelade 1980; Treisman & Schmidt
1982; Treisman 1985; Treisman & Souther 1985; Treis-
man & Gormican 1988; Treisman 1988; Treisman & Sato
1990). Two main categories of stimuli are used: dis-
junctive and conjunctive displays. In a disjunctive dis-
play, the target is identified by only one feature, such as
color, whereas in a conjunctive display, the target is
defined by more than one feature, such as color and
orientation. A typical disjunctive display could be a field
of blue vertical lines, with an embedded target consisting
of a blue horizontal line. In these displays the target is
found immediately and effortlessly; it “pops out.” Re-
sponse time is constant and independent of the number of
display items. A conjunctive display would be a field of
randomly selected colored letters where the target was,
say, ared letter “A.” Treisman claims that attention must
be directed serially to each stimulus in the display when-
ever conjunctions of more than one feature are needed to
correctly characterize or distinguish the possible objects
presented. Response time is observed to be linear in the
number of display items. If the target is not provided to
subjects in advance and they are required to determine
which stimulus item is the target, a third behavior results.
The odd-man-out in the display is the target sought. This
type of response seems to involve a longer and more
difficult search because subjects search through possible
combinations of features shared by subsets of display
items.

If visual search is considered from a computational
viewpoint, the following questions arise:

1. What is the inherent computational complexity of
visual search?

2. How can algorithms for visual search be realized so
that they fit into human brains?

3. What are the characteristics of those algorithms?

4. Could the differences in computational complexity
among the three types of experiments described account
for the resulting three distinct behaviors?

5. Can the infinite space of possible architectures for
vision be bounded on the basis of complexity considera-
tions and the size of the brain, and still solve the problem?

6. Could complexity satisfaction be one of the reasons
visual processing structures evolved into their current
form?

On the assumption that BBS readers and commen-
tators will be familiar with the biological aspects of per-
ception rather than the computational ones, the review of
background material will focus on computational com-
plexity theory.

1.3. Overview of complexity theory

Computational complexity is studied to determine the
intrinsic difficulty of mathematically posed problems that
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arise in many disciplines.3 Many of these problems in-
volve combinatorial search, i.e., search through a finite
but extremely large, structured set of possible solutions.
Examples include the placement and interconnection of
components on an integrated circuit chip, the scheduling
of major league sports events, or bus routing. Any prob-
lem that involves combinatorial search may require huge
search spaces to be examined; this is the well-known
combinatorial explosion phenomenon. Complexity theo-
ry tries to discover the limitations and possibilities inher-
ent in a problem rather than what usually occurs in
practice. After all, the worst case does occur in practice as
well. This approach to the problem of search diverges
from that of the psychologist, physicist, or engineer. In
the same way that the laws of thermodynamics provide
theoretical limits on the utility and function of nuclear
power plants, complexity theory provides theoretical
limits on information processing systems. If biological
vision can indeed be computationally modeled, then
complexity theory is a natural tool for investigating the
information processing characteristics of both computa-
tional and biological vision systems.

For a given computational problem C, how well, or at
what cost, can it be solved?

1. Are there efficient algorithms for C?

2. Can lower bounds be found for the inherent com-
plexity of C?

3. Are there exact solutions for C?

4. What algorithms yield approximate solutions for C?

5. What is the worst-case complexity of C?

6. What is the average complexity of C?

Before studying complexity one must define an appropri-
ate complexity measure. Several measures are possible,
but the common ones are related to the space require-
ments (numbers of memory or processor elements) and
time requirements (how long it takes to execute) for
solving a problem. Complexity measures in general deal
with the cost of achieving solutions.

The study of complexity has led to more efficient
algorithms than those previously known or suspected.
Perhaps the most important use of complexity theory is
illustrated by the following (adapted from Garey & John-
son 1979): Suppose you were assigned the task of design-
ing and implementing a new piece of software. Your job is
to construct a design that meets the specifications of this
program. After months of work, you are unable to come
up with any design that does substantially better than
searching through all the possible options, but this would
involve years of computation time, and is thus totally
impractical. Under these circumstances it may be pos-
sible to prove that no efficient algorithm is possible — the
problem is inherently intractable — and hence the specifi-
cations of the problem should be changed.

Complexity theory begins with a 1937 paper in which
the British mathematician Alan Turing introduced his
well-known Turing machine, providing a formalization of
the notion of an algorithmically computable function. He
postulated that any algorithm could be executed by a
machine with an infinitely long paper tape, divided into
squares, a printer that writes and erases marks on the
tape, and a scanner that senses whether or not a given
square is marked. This imaginary device can be pro-
grammed to find the solution to a problem by executing a
finite number of scanning and printing operations. What
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is remarkable about the Turing machine is that in spite of
its simplicity, it is not exceeded in problem-solving ability
by any other known computing device. If the Turing
machine is given enough time, it can in principle solve
any problem that the most sophisticated computer can
solve, regardless of serial/parallel distinctions or any
other type of ingenious design. As a result, the fact that a
problem can be solved by a Turing machine has been
accepted as a necessary and sufficient condition for the
solvability of the problem by algorithm. This thesis*
states that any problem for which we can find an al-
gorithm that can be programmed in any programming
language running on any computer, even if unbounded
time and space are required, can be solved by a Turing
machine.

The Church/Turing thesis also led to impossibility
proofs for computers. Turing proved that the problem of
logical satisfiability — for a given arbitrary formula in
predicate calculus, is there an assignment of truth values-
of its variables such that the formula is true? — cannot be
decided by any algorithm in a finite number of steps. This
provided the basis for other similar proofs of intrac-
tability. Once one could prove problems were inherently
intractable, it was natural to ask about the difficulty of an
arbitrary problem and to rank problems in terms of
difficulty.

Certain intrinsic properties of the universe will always
limit the size and speed of computers. Consider the
following argument from Stockmeyer and Chandra
(1979): The most powerful computer that could conceiv-
ably be built could not be larger than the known universe
(less than 100 billion light-years in diameter), could not
consist of hardware smaller than the proton (10~ 13 cm in
diameter), and could not transmit information faster than
the speed of light (3 X 108 per second). Given these
limitations, such a computer could consist of at most 10126
pieces of hardware. It can be proved that, regardless of
the ingenuity of its design and the sophistication of its
program, this ideal computer would take at least 20
billion years to solve certain mathematical problems that
are known to be solvable in principle. Because the uni-
verse is probably less than 20 billion years old, it seems
safe to say that such problems defy computer analysis.

A more specific example is a well-studied problem in
integer mathematics, the Knapsack Problem. In one
form, the question is: Given a list of numbers and a
“knapsack size,” is there a subset of the listed numbers
that adds up to the knapsack size? So, for the list of
numbers: 4, 7, 13, 18, 25, 32, 42, 49, and a knapsack size
of 89, the answer is yes because 4 + 18 + 25 + 42 = 89. If
the knapsack size were 90, the answer would be no. It has
been shown that the only possible solution is to search
through all possible subsets of numbers in the list and
check whether or not they add up to the knapsack size.
Given N numbers there are 2N subsets, so in the worst
case, that is, the case in which the subset that gives the
right answer is the last one checked, 2N operations are

N
required. Even the average case would require 2? op-

erations, and is still exponential. Using a universe-sized
computer as in the illustration earlier, 488 numbers in a
knapsack would need more than 20 billion years of com-
puting with 10126 computing elements operating in paral-
lel, each requiring 1 millisecond to check one of the



subsets. Four hundred and eighty-eight numbers in a
knapsack lead to 6.3 X 1045 subsets. Even if the pro-
cessor were speeded up by, say, 6 orders of magnitude, it
would not help substantially. With processors that re-
quire 10~ 9 seconds to check each subset, there could
only be 508 numbers in the list. Yet, the knapsack
problem is clearly solvable in principle. This points to an
important emendation of Marr’s (1982) view of computa-
tional vision namely, that “in principle” solutions are not
necessarily realizable and thus are not necessarily accept-
able. A necessary condition on their validity is that they
must also satisfy the complexity constraints of the prob-
lem and the resources allocated to its solution.

1.4. Some basic definitions

The following are some basic definitions in complexity
theory (Garey & Johnson 1979). A problem is a general
question to be answered, usually with several parameters
whose values are left unspecified. A problem is described
by giving a general description of all of its parameters and
a statement of what properties the answer, or solution is
required to satisfy. An instance of the problem is obtained
by specifying particular values for the problem para-
meters. An algorithm is a general step-by-step procedure
for finding solutions to problems. To solve a problem
means that an algorithm can be applied to any problem
instance and is guaranteed to produce a solution to that
instance. The time requirements of an algorithm are
conveniently expressed in terms of a single variable, N,
reflecting the amount of input data needed to describe an
instance. A time complexity function for an algorithm
expresses its time requirements by giving, for each pos-
sible input length, an upper bound on the time needed to
achieve a solution. If the number of operations required
to solve a problem is an exponential function of N, the
problem has exponential time complexity. If the number
of required operations can be represented by a poly-
nomial function in N, the problem has polynomial time
complexity. Similarly, space complexity is defined as a
function for an algorithm that expresses its space or
memory requirements. Algorithm complexity is the cost
of a particular algorithm. This should be contrasted with
problem complexity, which is the minimal cost over all
possible algorithms. These two forms of complexity are
often confused. The dominant kind of analysis is worst-
case: at least one instance out of all possible instances has
this complexity. Although average case analysis may
better represent the problems encountered in practice, it
tells us little about performance for a particular problem
instance. Moreover, the characterization of the average
case has proven to be a difficult theoretical task. Worst-
case analysis, on the other hand, places bounds on all
instances.

The notion of a good algorithm and an intractable
problem was developed in the mid-to-late 1960s. A good
algorithm is one whose time requirements can be ex-
pressed as a polynomial function of input length. An
intractable problem is one whose time requirements are
exponential functions of problem length, or in other
words, a problem that cannot be solved by any poly-
nomial time algorithm for all instances. Note that the
boundary between good and bad problems is not precise.
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A time complexity of N19%0 js surely not very practical
whereas one of 20-901 is perfectly realizable. Yet empirical
evidence seems to point to the fact that natural problems
simply do not have such running times, and that the
distinction is a useful one.

A critical idea in complexity theory is complexity class
and related to it, reducibility. If a problem S is known to
be efficiently transformed (or reduced) to a problem Q
then the complexity of S cannot be much more than the
complexity of Q. Efficiently reduced means that the
algorithm that performs the transformation has poly-
nomial complexity. The class P consists of all those prob-
lems that can be solved in polynomial time. If we accept
the premise that a computational problem is not tractable
unless there is a polynomial-time algorithm to solve it,
then all tractable problems belong in P.

In addition to the class P of tractable problems, there is
also a major class of presumably intractable problems. Ifa
problem is in the class NP, then there exists a polynomial
p(n) such that the problem can be solved by an algorithm
having time complexity O(2P™).5 A problem is NP-Com-
plete if it is in the class NP, and it polynomially reduces to
an already proven NP-Complete problem. These prob-
lems form an equivalence class. Clearly, there must have
been a “first” NP-Complete problem. The first such
problem was that of “satisfiability” (Cook’s 1971 Theo-
rem).6

There are hundreds of NP-Complete problems —
Knapsack is one of them. If any NP-Complete problem
can be solved in polynomial time, then they can all be.
Most computer scientists are pessimistic about the pos-
sibility that nonexponential algorithms for these prob-
lems will ever be found, so proving a problem to be NP-
Complete is now regarded as strong evidence that the
problem is intrinsically intractable. If an efficient al-
gorithm can be found for any one (and hence all) NP-
Complete problems, however, this would be a major
intellectual breakthrough with immense practical impli-
cations. .

What does a computer scientist do when confronted
with an NP-Complete problem? A variety of approaches
have been taken.

1. Develop an algorithm that is fast enough for small
problems but would take too long with larger problems.
This approach is often used when the anticipated prob-
lems are all small.

2. Develop a fast algorithm that solves a special case of
the problem, but does not solve the general problem.
This approach is often used when the special case is of
practical importance.

3. Develop an algorithm that quickly solves a large
proportion of the cases that come up in practice, but in
the worst case may run for a long time. This approach is
often used when the problems occurring in practice tend
to have special features that can be exploited to speed up
the computation.

4. For an optimization problem, develop an algorithm
that always runs quickly but produces an answer that is
not necessarily optimal. Sometimes a worst-case bound
can be obtained on how much the answer produced may
differ from the optimum, so that a reasonably close
answer is assured. This is an area of active research, with
suboptimal algorithms for a variety of important problems
being developed and analyzed.
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5. Use natural parameters to guide the search for
approximate algorithms. There are a number of ways a
problem can be exponential. Consider the natural param-
eters of a problem rather than a constructed problem
length and first attempt to reduce the exponential effect
of the largest valued parameters.

NP-completeness effectively eliminates the possibility
of developing a completely satisfactory algorithm. Once a
problem is seen to be NP-complete, it is appropriate to
direct efforts toward a more achievable goal. In most
cases, a direct understanding of the size of the problems
of interest and the size of the processing machinery is of
tremendous help in determining which are the appropri-
ate approximations.

2. The computational nature of the
visual search task

2.1. Complexity and visual search

It seems that the following question has never been
asked: What are the computational requirements for
experimental paradigms in biological studies of visual
perception? In other words, how computationally diffi-
cult are the tasks presented to subjects? How many
performance differences can be explained simply by con-
sidering the relative complexity of the tasks? How can a
computational model be defined using experimental re-
sults from biology if one does not first understand fully the
computational nature of the experiment itself? The ex-
perimental measurement of response time for visual
search tasks (or other tasks in which the measurement of
response time is a primary goal) is clearly connected to
the speed of processing as well as the algorithm in the
system, which in turn reflects the amount of processing
machinery allocated to the task. All of this in turn has a
very clear connection with computational complexity.
Once one makes the connection between computational
and biological studies of vision, these are very natural
theoretical questions to ask.

The visual search task has not been defined in computa-
tional terms by the psychology community. According to
the definition provided by Rabbitt (1978), which is con-
sistent with other versions found in more recent papers
(see the collection of papers on attention in Parasuraman
& Davies 1984, for example), visual search is a categoriza-
tion task in which a subject must distinguish between at
least two classes of signal: goal signals which must be
located and reported and background signals which must
be ignored. This definition does not specify how signals
are located, or represented, nor how goal and background
are distinguished.

2.2. A computational definition of visual search

The general question of visual search is: Given a test
image and a target image, is there an instance of the target
in the test image? The general version of visual search
seeks the subset of the test image that best matches the
target; in its full generality it includes the possibility of
noisy or partial matches. The problem is viewed as a pure
information-processing task, with no assumptions about
how the data may be presented or organized. The prob-
lem can also be of arbitrary size and may use arbitrary
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stimulus qualities. This captures some of the aspects of
“all possible algorithms” that are required to determine
problem complexity.

The question posed by visual search has two variants,
one in which the target is explicitly provided in advance
(say, as a picture), and another where the target is
expressed only implicitly, perhaps by specifying rela-
tionships it must have with other stimulus items (say, as a
command to find the odd-man-out). In the former case,
the explicit knowledge of the target gives bounds in space
and in stimulus quality to the search task, whereas in the
latter case, no similar bounds are possible. Two key
definitions are thus required to specify a computational
formalism for visual search: unbounded visual search, in
which either the target is explicitly unknown in advance
or it is somehow not used in the execution of the search:
and bounded visual search, in which the target is ex-
plicitly known in advance in some form that enables
explicit bounds to be determined that can be used to limit
the search process. These bounds may be in the form of
the spatial extent of the target, feature dimensions that
are involved, or specific feature values. They may be
expressed either visually or verbally. The bounds affect
the search process through an attentional mechanism;
this is only one specific aspect of the broad notion of
attention.

A test image containing an instance of the target is
created by translating, rotating, and/or scaling the target
and then placing it in the test image. The test image may
also contain confounding information such as other
items, noise, and occluding objects, or other processes
may distort or corrupt the target. The variations in the
problem are depicted in the following figures. Figure la
gives the target and Figure 1b gives a test display that
contains six variations of the target. Black forms the
“figure,” and white is the “ground.” In Figure 1b, the
items show: :
the target with noise
a partial match made up of two separate shapes
a partial match
. the target with additive occlusion
the target with subtractive occlusion
. a perfect match

The solution to a visual search problem involves solving
a subproblem, which we call visual matching. Visual
matching and visual search are the same if no items
require image rotation or scaling in order to match the
target. Visual matching hence considers only the location
of the target and its identity; it operates on normalized
items in the images. This is a useful abstraction because
all rotations and scalings that lead to unique images can be
enumerated and searched linearly in the worst case.
Although choosing which spatial transform to consider is a
difficult problem in its own right, we assume that it is
abstracted away. It does not have exponential time or
space complexity and thus does not affect the main result.
Also, much experimental work exists that does not re-
quire item rotations and scalings. An instance of the visual
matching problem is specified as follows:

METOw

A test image [

A target image T, modified using a 2D spatial transformation

A difference function diff(p) for p € I, diff(p) € RYis the set of
non-negative real numbers of fixed precision p)
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Figure 1. A sample target image (a) and a test image (b) that

shows several variations of the target, illustrating the breadth of
the matching problem encompassed by visual search. The only
perfect match of target to test item is with item F; each of the
other matches are partial. In the computational definition of
visual search, the computation of the diff and corr functions
would yield different values for each of the possible matches of
target to test item.

A correlation function corr(p) for p € I, corr(p) € R9

Two thresholds 6, ¢, both positive integers
Here is how this particular collection of data can represent the
visual match problem:

1. A test image Lis the set of pixel/measurement quadruples
(x,v,j ,mj). x,y specify a location in a Euclidean coordinate sys-
tem, with a given origin. M, is the set of measurement types in
the image, such as color, motion, depth, etc., each type coded as
a distinct positive integer. m; is a measurement token of type j,
represents scene parameters, and is a nonnegative real number
of fixed precision, that is, with positive error due to possible
truncation of at most p. (Only a finite number of bits may be
stored.) I’ C Iis a sub-image of I, i.e., a subset of quadruples. It
is not necessary that all pixel locations contain measurements of
all types. It is also unnecessary that the set of pixels be spatially
contiguous. I' defines an arbitrary subset of pixels. For ease of
notation, i, . ; has value m;. Ifj is not an element of M; or if the
x,y values are outside the image array then i, ; = 0.

2. Atargetimage T is a set of pixel/measurement quadruples
defined in the same way as I. M, is the set of measurement types
in the target image. The types correspond betweenIand T, i.e.,
type 3 in one image is the same type in the other. The two sets of
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measurement types, however, are not necessarily the same.
The coordinate system of the target image is the same as for the
test image and the origin of the target image coincides with the
origin of the test image. t, _ ; has value m;. If j is not an element
of M, or if the x,y values are outside the image array t, ;. = 0.

3. The diff function will be the sum of the absolute values of
the point-wise differences of the measurements of a subset of the
test image with the corresponding subset of the goal image. It is

expressed as follows for an arbitrary subset I’ of the test image:

S odtp = S [ D Iyl ] =0

pEI’ pEl' ieMm,

This sum of differences must be less than a given threshold 6 for
a match to be potentially acceptable. Note that other functions
that minimize some other property may be as suitable. This
threshold is a positive integer.

4. Because a null I’ satisfies any threshold in the above
constraint, as does a small subset of background pixels alone, we
must enforce the constraint that as many figure matches must be
included in I as possible. 2D spatial transforms that do not align
the target properly with the test items must also be eliminated
because they would lead to many background-to-background
matches. One way to do this is to maximize the point-wise
product of the target and image. As it turns out, this is also the
cross-correlation commonly used in computer vision to measure
similarity between a given signal and a template. Therefore,

> corrlp) = X [ 2 tx,y,jxix,y.i]zd)

pEL’ 1= jEB{i

In the simple figures shown above, using the subsets of
the test image that correspond directly to each item, the
figure having a value of 1, and the background a value of 0,
and the target item translated so that it fits perfectly over
each test item, the diff and corr values are:

Test item  diff

corr
A 10 17
B 3 18
C 10 10
D 4 20
E 2 18
F 0 20

Because both constraints must be satisfied, depending on
the choice of threshold, the best match is easily found. If
the correlation constraint is set to 18 and the difference
threshold to 3, items B, E, and F are the only pos-
sibilities. Tighter thresholds lead to different pos-
sibilities. Note that there is no claim here that the
algorithm necessarily corresponds to human perfor-
mance. The definition is given primarily for purposes of
formal proof and is claimed to be a reasonable one. It is
possible to provide other functions for difference and
correlation and to reconstruct similar proofs using them.

2.3. The complexity of visual matching

The task posed by unbounded visual matching is:
Given a test image, a difference function, and a correla-
tion function, is there a subset of pixels of the test image
such that the value of the difference function for that
subset is less than a given threshold and such that the
value of the correlation exceeds some other threshold? In
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other words, is there a set I' C I such that it simul-
taneously satisfies

E difflp) = 9 and 2, corr(p) = ¢ P

pEI’ pEI’

One point about this specification of visual matching must
be emphasized: It forces a bottom-up approach to the
solution of visual matching. The constraints given must
be satisfied with subsets of the input image. The target
image is neither given nor permitted to provide direction
to any aspect of the computation.

This unbounded visual matching problem has exactly
the same structure as a known NP-Complete problem,
namely the Knapsack Problem. The relationship is clear if
one examines their respective syntactic forms; the visual
matching problem is formulated above, the Knapsack
problem below. The relationship arises from the fact that
both problems require solutions to simultaneously satisfy
two constraints and a solution may be an arbitrary subset
of the input data. The reader may recall a different
version of the Knapsack Problem that was presented in an
earlier section. A direct reduction (by local replacement)
of Knapsack to visual matching is the appropriate proof
procedure. The formal Knapsack Problem follows:

Knapsack
instance: Finite set U
for each u €U there is a function s(u) € Z* (the set of
positive integers)
and a function v(u) € Z+
positive integers B and C
question: Is there a subset U’ C U such that

> s(u) < Band >

ugvu’ uey’

viul=C?

The following then is the main theorem:

Theorem 1: Unbounded visual matching is NP-
Complete.

The proof is given by Tsotsos (1989). The task is
inherently exponential in the number of pixels, or image
size, O(2Y). The proof can also be trivially extended to any
number of sensory dimensions; it is thus claimed that any
perceptual search task is NP-Complete in its unbounded
form. Because this result is independent of the imple-
mentation, biological vision cannot be “general purpose”
as seems to be widely believed. It only appears to be
general purpose, perhaps because it is coupled to action
and manipulation (see also Ballard 1989).

If we consider attentional optimizations, using the
target item, it is easy to show that the problem has linear
time complexity. The key is to base the computation of
the difference and correlation functions on the target
rather than the test image. If the task is restated as
follows: Is there a subset I' C I such that

2 diff(p) < 6 and 2 corr(p) = ¢ ?

pPET pET

where
2 diffp) = 3 [ 2 [ty —im-l]
pPET PET JEM,
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and

S et = 2 [ 3 hxi]

pET pET jGM!

a simple algorithm is apparent. The computation of the
diff and corr functions is driven by the target image and
measurements of its parameters rather than those of test
image. First, center the target item over each pixel of the
test image; compute the diff and corr measures between
test and target image at that position; among all the
positions possible, choose the solution that satisfies the
constraints. The resulting worst-case number of multi-
plications and additions would be given by:

O [l x [T x [M] ¥

In other words, the worst-case number of computations of
the diff and corr functions is determined by the product of
the size of the test image in pixels, the size of the target in
pixels and the number of measurements at each pixel of
the targets. Because at least one linear algorithm exists,
this leads to the second theorem:

Theorem 2: Bounded visual search has linear time
complexity.

The task has linear time complexity in the size of the
image. This provides a strong hypothesis: Because actual
psychological experiments on visual search with known
targets report search performance as having linear time
complexity and not exponential (Treisman 1985), the
inherent computational nature of the problem strongly
suggests that attentional influences play an important
role.

2.4 The natural parameters of computation

As discussed earlier, there are only a limited number of
options available when one is faced with a problem that is
NP-Complete. One must first ensure that the actual
values of the exponentials are large enough to merit
special mechanisms, however. The unbounded visual
search problem is exponential in the number of image
pixels. This is certainly a large number; one accordingly
moves on to the consideration of special strategies. One is
to look for optimizations and approximations guided by
the natural parameters of the task: The complexity of a
problem may be more affected by some parameters than
others. The parameters that naturally have large values
should be considered for optimization before those with
naturally small values. The natural parameters of the
visual search problem correspond to the elements of the
computational model used in the remainder of this paper.
They are:

i. A stimulus array with P elements. This is a reti-
notopic representation, that is, one whose physically
adjacent elements represent spatially adjacent regions in
the visual scene.

ii. At each array element, one or more tokens repre-
senting physical parameters of the scene that may be
computed. These tokens are of a given type, and for each
type there are many potential token instances, yet only
one instance can be associated with a type at any one
time. Types are not necessarily independent. A map is
defined as a retinotopic representation of only one type of
visual parameter. All maps are assumed to be the same



size and represent parameters that are computed with
equal difficulty. Maps are logical abstractions, not neces-
sarily physically separable entities. There are M maps in
the system; the types will be left unspecified and abstract.
The point is simply to count how many are possible at the
output of early vision. The question of how many in-
stances are possible for each type will not be addressed; it
is not important for first-order complexity. It would be
affected by the method of selecting tokens from among
competitors. For example, a competitive scheme such as
relaxation (Hummel & Zucker 1983) or winner-take-all
(Feldman & Ballard 1982) could be assumed, and the
complexity would be polynomial (on the assumption that
the schemes converge). For this discussion it is assumed
that although there may be many instances at the same
‘location and time competing to represent a single type,
some polynomial complexity mechanism chooses from
among the competitors.

iii. A knowledge base of visual prototypes, each repre-
senting a particular visual object, event, scene, or epi-
sode. Let VP represent the number of prototypes. Each
prototype may be considered an invariant description of a
visual entity (invariant for size, location, rotation, and
other parameters as appropriate).

iv. A large pool of identical processors, each able to
choose a subset of the stimulus array locations, fetching a
subset of the tokens representing physical characteristics
at each location, accessing one visual prototype, and then
matching the token set to the prototype. Collections of
location/token elements are termed receptive fields;
thus, a receptive field is defined as the area of the visual
scene in which a change in the visual stimulus causes a
change in the output of the processor to which it is
connected. The matching process is the basic operation.
Matching here means that the processor determines
whether or not the collection of tokens over the selection
of locations optimally represents an image-specific pro-
jection of the prototype. The output of a processor is
matching success or failure with perhaps an indication of
response strength. Each processor completes this opera-
tion in S seconds. The final output of the system is also
available in S seconds; thus the actual time required for
this process does not matter. The effective speed-up due
to parallelism will be denoted by the variable II. No
difficulty is posed for determining first-order complexity
by not specifying exactly what each processor does. As
long as the complexity of each is polynomial rather than
exponential, there is no change in complexity class. It is
easy to see that the computation of the diff and corr
functions presented earlier has polynomial time
complexity.

2.5. Complexity level analysis and realizable visual
search procedures

How can the fact that the visual search problem in its
completely. general form is inherently exponential be
reconciled with the fact that biological visual systems
perform so well? Recall from the discussion in section 1.2
that the inherent computational complexity of a problem
is independent of the implementation of its solution.
Hence biology must face the same theoretical problem.
But although it is very tempting to claim that the op-
timizations and approximations that will be presented
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here are indeed those that biology uses, a little caution is
required. Strong arguments for this claim will be present-
ed in the remainder of this paper. The model must be
taken as only one of many possible ones, however. It is a
challenge to determine which others satisfy the complex-
ity level as described here and yet are more plausible
biologically.

Neisser (1967), among others, claimed that a spatially
parallel” model of perception is quantitatively inade-
quate: The exponential nature of unbounded visual
search in its most general form was proved formally
earlier, but it is also easy to demonstrate Neisser’s claim
quantitatively.

Because the unbounded case is being considered, we
add into the determination of complexity the potential
size of the target set, that is, the number of possible visual
elements that may be present in an arbitrary image — the
full visual prototype knowledge base. Given VP visual
prototypes, P elements of a retinotopic array, and M
types representing visual parameters at each array
element,

VP x 2PxM @)

matching operations are required in the worst case. If I is
the degree of effective speed-up due to parallelism, the
amount of time taken to perform the worst-case number
of operations as presented in equation (2) is given by:

_2PXM x VP X S
S="—F — ®)

where each processor requires S seconds to complete one
operation and the output of the system is also available in
S seconds. From now on, the equation will be simplified
by canceling the S terms:

Il = VP x 2PxM @)

The number of possible subsets of location/type pairs is
the power set of all locations times parameter types. The
power set of a set includes all possible subsets of elements
as well as the null set. The null set has no effect at this
stage of the discussion and will be deleted later when it
will make a difference. Each processor has a receptive
field which is defined by a subset of pixel locations. Each
prototype must be matched against each possible sub-
image. Another possible complexity function would in-
clude M as a multiplier of the power set of locations rather
than in the exponent of the power set. However, this
presupposes that only one type of parameter is needed to
define a visual entity, and this is true only in very special
circumstances. Equation (2) allows an arbitrary subset of
parameters to be required for any visual entity. It does
not provide an enumeration of the number of images;
rather, it enumerates the number of data items that must
be considered and the number of comparisons that must
be performed with those data items in the worst case.
This is clearly combinatorially explosive.

We can demonstrate the implications of this complexity
measure by usingafew relevant estimates for human vision
of the amount of input data and the number of visual
prototypes in memory. Inthe “Visual Dictionary” (Corbeil
1986), 25,000 items are included pictorially. The world
categorized is one of black and white outline diagrams with
little shading, no color, no motion, and no specializations
or category names for common objects. Biederman (1988)

BEHAVIORAL AND BRAIN SCIENCES (1990) 13:3 431



Tsotsos: Vision and complexity

claims that there are 30,000 readily identifiable objects in
the world. These are individual objects; he does not
include whole scenes or collections of objects. If these
were included a very large number of possibilities would
presumably result. Thus, aconservative lower estimate for
the number of prototypes is VP = 100,000. A large but
arbitrary upper estimate would be VP = 10,000,000.8 M is
surely 1 at the photoreceptors. An upper bound is rather
difficult to estimate; one must answer the question: How
many independent parameters are required to describe
each point in visual space? Intuitively, there seem to be
many: location in three dimensions; wavelength; energy;
surface orientation; surface roughness; local gradients; and
temporal derivatives on at least some of these quantities.
At the photoreceptors, all of these variables are rolled up
into a single continuous signal. Marr (1982) uses six
different quantities in his primal sketch, from which all
other required visual information can be derived?; relative
depth; local changes in depth; discontinuities in depth;
local surface orientation; local changes in surface orienta-
tion; and discontinuities in surface orientation. An upper
estimate of M as 12 will be used. P is the number of
locations in the retinotopic representation; an upper,
middle, and lower value will be used. The number of
receptors in the retina (130,000,000) is the upper value,
the number of retinal ganglion cells (approximately
1,000,000 and roughly the same as the number of pixelsin a
1K X 1K image) is the middle value, and the size ofa 256 x
256 image is the lower values (65,536 pixels). It will
become apparent that the choices for these parameters
have no effect on our general conclusions; the numerical
choices are for demonstration purposes only.

Table 1 gives values for IT for the estimates on P, M,
and VP described above using equation (4). The inescapa-
ble conclusion is that with this simplified architecture,
the task is intractable: Parallelism alone is not the answer,
as Neisser correctly pointed out. But remember that
complexity measures reflect worst-case situations. Sup-
pose the brain is large enough to handle the sizes of
problems that normally occur in the real world and is
designed such that performance degrades gracefully for
the more complex ones. Then one may ask “How large a
problem can the brain handle?” In part, it is this question
that has motivated this research. Biologically plausible
values for I, P, and M must also be determined if we are
to use guidance from the natural parameters of the prob-
lem in the complexity level analysis. The speed-up due to
parallelism is clearly significant, but it surely cannot be as
large as the number of neurons in the brain, 101°. Realiza-

ble parallel processing systems require considerations of
local memory, synchronization, communication, and so
on, and a collection of neurons is presumably required to
accomplish this for each degree of speed-up. This collec-
tion is the unit of parallelism in which we are interested.
Because about 20% of the cerebral cortex is devoted to
visual processing, the value of II that is biologically
plausible is significantly less than 10°.

Hubel and Wiesel (1977) discovered that primary visu-
al cortex (also called area 17 or V1 in mammals) exhibited
a distinct columnar architecture with some apparent
functional significance: the hypercolumn. They proposed
that the hypercolumn is the basic processing unit and that
each contain a complete collection of neurons sensitive to
and selective for all the basic visual properties (color,
motion, orientation, binocular disparity, luminance). The'
receptive fields within a hypercolumn were all overlap-
ping and specific for a given region of visual space.
Crossing into a neighboring hypercolumn reveals the
same collection of neural sensitivities, but for an adjacent
region of visual space. Thus, the representation is reti-
notopic. A layer of such hypercolumns may be thought of
as representing visual space with a resolution equivalent
to that of an image in which each hypercolumn is repre-
sented by a pixel. We will think of a “unit of output” as
being the set of outputs that leaves a hypercolumn. It is
known that the area of each hemisphere of the primary
visual cortex in humans is 1500-3700 mm?2, with the
average approximately 2100 mm? (Stensaas et al. 1974),
and that each hypercolumn is approximately 1 mm? in
area. There are therefore 1500-3700 hypercolumns in
primary visual cortex or 2100 on average. Therefore, the
output of the most abstract, retinotopic extrastriate areas
must have on the order of a small number of thousands of
units.

There are several maps in the visual cortex. Each map
represents at least a portion of visual space and each has
its own distinct characteristics. There may be 30 visual
areas or so in primates, but not all are organized reti-
notopically, and, even then, with varying degrees of
retinotopy (Maunsell & Newsome 1987). Because many
areas have more than one population of neurons, there
are more logical maps than physical ones. The logical
map is the unit of the parameter M that this discussion
will address. The areas commonly accepted as being
retinotopic include V1, V2, V3, MT, and V4, whereas
the nonretinotopic ones include IT, posterior parietal
cortex, and the frontal eye fields. According to van Essen
and Maunsell (1983), the division between retinotopic

Table 1. Values of IT for varying values of P, M, and VP for the basic

architecture.
I VP = 105 VP = 107
3 M=1 M=12 M=1 M =12
130,000,000  1039.133.905 —  1029.133,907 _
1,000,000 10801.035 103.612.365  ]()301,037 103.612,367
65,536 1018.733 10236,744 1019735 10236.746
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and nonretinotopic areas, although fuzzy in general, may
be placed after areas MT and V4 and before IT, area 7,
and the frontal eye fields. Maps seem to be organized
hierarchically, as a partial ordering, so that the greater
the distance from the retina, the smaller the maps are,
and the larger the receptive fields of their neurons.
There is also more than one pathway from the retina to
higher levels of processing (see, for example, Stone et al.
1979; Ungerleider & Mishkin 1982; van Essen & Ander-
son 1989). Because at any level of the map hierarchy
there are no more than a handful or so of maps, the
number of maps at the output of early vision is on the
order of a handful.

The important point to keep in mind is that we are only
concerned with how many of each of the units each
-parameter represents are possible. Now, beginning with
equation (4), the problem will be reshaped and the
allocated resources will be optimized so that a biologically
plausible, computationally tractable realization can be
achieved.

3. Demonstrating complexity sufficiency

3.1. Aspects of an Idealized structure

To provide a structure that satisfies the basic complexity
constraints of time and space we will begin with an
idealized one that is consistent with Theorem 1 presented
earlier. One of the important aspects of the definition of
problem complexity (section 1.3) is that it is the minimum
over all possible algorithms. By beginning this analysis
with an ideal structure, one that contains only data and
processors, with no commitment to any processing meth-
od or data organization, we start at the same point where
the proof left off, namely, with an NP-complete problem.
No target item is specified in an unbounded task; instead,
we add in the entire knowledge base of visual prototypes
in order to study its effect. Figure 2 illustrates this ideal
structure. There are three major components: input data
from an image; input data from world knowledge; and
processors (each defined in section 2.4).

For quantitative purposes, hexagonal images of order
N packed with hexagonal pixels (i.e., N pixels per side)
and hexagonal tiling of a hexagonal image are assumed,
much of the discussion is independent of the choice of
image mosaic. Whenever the choice does have an effect
on the results, it will be pointed out. Many researchers
have advocated the use of hexagonal tilings for images
(e.g., Watson & Ahumada 1987). The number of pixels in
such a hexagonal image is Py = 3N2 — 3N + 1, each
uniformly distributed across the image. All input data and
prototypes are hard-wired to the processors. All maps are
assumed to be the same size and can be computed with
equal difficulty.

Note that these assumptions bear little resemblance to
the actual implementation of biological visual systems.
The retinal mosaic is not uniform, map sizes are not the
same, retinotopy is variable, map contents may differ in
computation time as well as in other parameters, and so
forth, but such differences do not affect the first-order
constraints derived in this paper.
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Figure2. Theidealized architecture of vision that corresponds
to the NP-Complete problem of unbounded visual search. Each
processor within the processor layer matches one subset of
retinal locations and measurements with one visual prototype
from memory.

3.2. A sufficient set of optimizations

Efficiency can be gained by attacking the search throughall
possible visual prototypes with a process of successive
refinement. “Divide and conquer” is a standard tactic for
designing complex systems. 10 Assume that we can build a
binary tree whose leaves are the prototypes of the knowl-
edge base and whose nodes are superclasses of prototypes.
This is not unlike the specialization or decomposition
hierarchies found in the knowledge representation liter-
ature. This transforms the linear search through the
prototypes into a logarithmic search. Note that althougha
binary tree search is serial, the key here is the number of
operations; the search will be “parallelized” later. We
replace the linear term VP with the base 2 logarithm:

II = 2PxM X log, VP ()

This is a very minor improvement. On its own this is at
best a small contributor in defeating the complexity
problem of vision.

Note that not all 2P possible combinations of locations
need to be considered in the model. Objects are not
spread arbitrarily in 3-space, and events are not spread
arbitrarily in the time dimension. Their physical charac-
teristics are similarly localized. Simple optical arguments
show that coherent objects in physical space remain
coherent on an image. Localized operations are almost
universal in computational vision since Rosenfeld (1962)
used local texture measures for terrain identification.

The receptive field of a processor has so far been
defined as an arbitrary collection of location/ measure-
ment pairs. We now change this definition to a set of
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contiguous location/measurement pairs. Assuming a hex-
agonal image of order N, we only consider hexagonal
contiguous regions of whole array elements as processor
receptive fields.!! Simple geometry yields N3 receptive
fields of the type described above over the whole image,
or in pixels, approximately,

p1.5 P  5VP/3

3vatat s

6)

This gives the total number of hexagonal, contiguous
receptive fields of all sizes and centered at all locations in
the image array, and these now take the place of the
arbitrary power set of location/measurement tokens.
These are accordingly the receptive fields that must be
examined by the processors. Figure 3 illustrates the
receptive field structure. Receptive fields clearly overlap
and are of all possible sizes wholly within the retina. The
degree of speed-up function for this third architecture is
dramatically different:

I1 = N3 x (2 — 1) x log, VP (7)

The powerset of maps still remains in the expression
because it is not known a priori which subset of maps is
the correct one for the best image to prototype match;
hence in the worst case all subsets must be examined. The
null set has been removed, however, because it may have
anumerical effect. Table 2 gives the values for I resulting
from this expression. Although there has been a signifi-
cant change in the estimated degree of speed-up, the
values are still not close to biologically plausible ones. A
side effect of this particular receptive field structure is
that it does not allow as fine a selection of tokens across
the receptive field as equation (4). There, some of the
subsets could indeed represent contiguous space, but the

Figure 3. The hexagonal retinotopic stimulus representation.
The hexagon is of order N, that is, N elements per side. The
diameter of the hexagon is 2N-1 elements. For three of the
elements, the corresponding complete set of receptive fields
that can be centered on those elements is shown. In this way
each element in the hexagon can be the center of a number of
hexagonal receptive fields. There are N3 receptive fields in all.
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Table 2. Values of IT for varying values of P, M, and VP for
the basic structure.

i} VP = 10 VP = 107

P M= M=12 M=1 M=12
130,000,000 101268 — 1028 —
1,000,000 1095 101312 jgoes Qa2
65’536 107473 1011.35 10788 1011.49

powerset of elements implied that over a contiguous
space each element could be a different type of param-
eter. The new definition of receptive field requires thatr
tokens for each selected type of parameter be used for
each location across the receptive field. This is reason-
able, because visual parameters display the same localiza-
tion as the objects that exhibit them.

For the third optimization, we note that not all visual
stimuli involve all types of tokens. Let M represent the
number of types of visual parameters relevant for a given
input. Thus, the number of possible subsets of types is 24
= L. This could be implemented via a computation of
“pooled response,” that is, an output associated with each
map that signals whether or not the map has been
activated. The idea is borrowed from Treisman (1985); in
this use, it is assumed that it acts as a gating signal
selecting which receptive fields are relevant for match-
ing. A direct result is the logical segregation of types, an
idea that arose in Barrow and Tenenbaum’s (1978) theory
as well as Treisman’s “feature integration” theory. The
new expression for speed-up is:

II = N3 X (24 — 1) x log, VP @)

The values for M = 1, the simplest input, are found in
Table 2 in the M = 1 column. Even for the smallest
image, the values of IT are barely plausible biologically.
Because pooled response and map segregation do not
lead to savings for all possible images, their role may be to
speed up the computation for the simpler inputs (the
simplest and therefore fastest condition being for M = 1).
It is interesting to note that no search through subsets of
maps is required at all if the target is permitted to
influence the computation. The exponential term 28 — |
is replaced by 1. If the maps that would represent the
target are known in advance, then only that complete set
need be considered in the input. This point will be
elaborated in a later section.

Separation of types into physically distinct maps fol-
lows if connectivity lengths are considered. According to
Cowey (1979) physically separate visual maps evolved
because units that compute similar quantities need to
communicate with one other for consistency and thus
need to be interconnected. The connectivity lengths
would be prohibitive if the units were separated. Barlow
(1986) gives another reason: The “new images” formed by
reprojecting visual space are needed to allow similarities
in distant parts of the image to be detected. Kaas (1989)
proposes that the modular design is needed for ease in
adding on more representations in an evolutionary path-
way. We present a fourth possible reason, namely, that
the logical organization of maps, if used appropriately,



can lower the complexity of the task. It may be a mecha-
nism for the system’s graceful degradation with increas-
ing complexity of the input. Algorithms whose perfor-
mance degrades gracefully are preferable to fixed worst-
case algorithms.

Further efficiency is gained by trading off precision.
This can be achieved by reducing the resolution of the
visual image and simultaneously abstracting the input to
maintain its semantic content. Several proposals have
appeared in the literature for such input abstraction.
Among these are: the processing cone representation of
Uhr (1972); the Gaussian pyramid of Burt & Adelson
(1983); the hexagonal image pyramid of Watson &
Ahumada (1987) which is perhaps closest to the basic
hexagonal hierarchy representation of our work; and the
hierarchical filter cascades of Fleet & Jepson (1989).
Let N be the size of the new abstracted array (illustrated
in Figure 4) and change the expression for degree of
speed-up to:

Il = N3 x 2™ — 1) X log, VP o)

We seek a value of P of about a few thousand. For Py, of say
3000, the value of N would be 32, and for VP = 100,000
and M = 1, the required parallelism is 10574, This is wel'

within the desired range. It is easy to see that variations in
I, M, and VP lead to changes in Py, and that there are a
great many possible configurations that lead to values of
Py that are in the low thousands.

O

Prototype
selection

Prototype
hierarchy

Selection of map
subset and Processor layer

eeonoe ([T

Pooled

Logically
seqregated
maps

Input abstraction
hierarchy

Retina

Figure 4. The architecture that satisfies complexity-level anal-
ysis. It includes an input abstraction hierarchy, logically segre-
gated visual maps, a layer of parallel processors, a hierarchically
organized set of visual prototypes, and a spatially contiguous
definition of receptive field.
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Figure5. The family of curves generated using equation (9) for
varying values of I, VP, M, and Pj;. Py, ranging from 0 to
60000, is plotted against log10 I, ranging from 1 to 9. Each thick
solid curve represents a value of M, with M = 1 the leftmost, and
M = 10 the rightmost. The thickness of each curve represents
the fact that within it is the entire range of VP, from 100,000 to
10,000,000.

3.3. The effects of parameter variations

More insights can be obtained from equation (9). Figure 5
shows a family of curves of this relationship for the values
of Py, versus log, oI1 for values of M ranging from 1 through
10, and for VP = 100,000 through 10,000,000. Thus, the
thick solid curves, one for each value of M, represent the
family of curves for the same value of M for all values of VP
between 100,000 and 10,000,000. Several qualitative
conclusions can be drawn and verified analytically. If
these are the basic performance relationships, the design-
er of the visual system is faced with a few choices and
tradeoffs. First, there seems to be a ‘hard complexity wall’
on the number of processors. It is very cheap in terms of
processors to incorporate a very large knowledge base of
prototypes, as is clear from Figure 5. Changes in VP have
a very small effect on I, as can be seen easily from the
partial derivative,

oIl » log,e
avP VP X log,VP'
It is more expensive to use higher resolution because

VP, 1, 5

oIl 2V3 2 16V3P

—_— =I'I X .

Py PLs P 5VP/3
3V3 2 8

The largest expense is incurred for adding maps,
because

If, for example, VP = 10,000,000, IT = 1056, M =1, and

A

N = 26, then the derivative of II for changes in M is
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60,114 times steeper than for changes in N and
223,000,000 times steeper than for changes in VP. Thus,
it is most critical that the number of subsets to be
searched be as small as possible (but this does not neces-
sarily mean that M or M must be as small as possible).

4. Applying the minimum cost principle

4.1. The speed-up because of parallelism

Several arguments have been presented so far that affect
the determination of the degree of parallelism. We have
shown that bounded visual search has linear complexity,
that is, if the target is used to direct the computation, the
exponential nature of the unbounded approach can be
avoided. Only one subset of maps need be considered. We
have also shown that for the unbounded case, of all the
variables the incremental cost incurred by additional maps
on the required parallelism is greatest, because subset
search is exponential. This implies that the number of
subsets of maps considered at any one time must be small.
This is conveniently solved by applying attentional infor-
mation. If we apply the minimum cost principle to pro-
cessors, the number of processors should be that dictated
by the attentional version of the problem. The degree of
parallelism in the system is therefore fixed to:

IT = N3 x log, VP (10)

Only one subset of maps may be considered at any one
time. Using the above expression, the minimum time for
computation is C,;,, given by:

N3 x log,VP X §
Coptn = —=2-""°" _3g 11
min I (11)
In the unbounded case, where the target is not known a
priori, the exponential term is still neededA and the time
to compute increases exponentially with M,

_ M x @™ - 1) xlog,VP xS
- =

C

Coin X @Y - 1) (12)

up to a maximum given by T, ., when all maps (M) are
active. This predicts that if the target is unknown, each of
the possible subsets of the active maps is used in turn in
matching,

4.2. Columnar processor organization

How are the processors connected to the retinotopic
maps? At each array element of the most abstract maps we
can define a processor assembly: A processor assembly
contains, on average, I1/Py processors. Using equation
(10), and the expression for Py in terms of N, the number
of processors in an assembly is:

N3
We—am 1 X log, VP (13)

-

3
But @T%‘vﬁ is the average number of processor
receptive fields at each location. Thus, there are log, VP
processors for each receptive field at each location. Call
this basic set of processors a receptive field assembly:
Each must be connected to its relevant retinotopic ele-
ments. The design principle of minimum cost is involved
here because stacking the assemblies over the centers of
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their receptive fields minimizes connection length. The
proof is straightforward. Assume a one-dimensional re-
ceptive field whose center is at position Y and whose rims
are at positions Y + (K — 1)/2and Y — (K — 1)/2. The
diameter of the receptive field is K, an odd integer; this is
the number of units to which each processor must be
connected. The total length of all connections for a single
processor to this receptive field can be expressed by:

K+1
2

2 Vit(oc—xp¢ (14)
_k+1
2

Y+

x=Y

It is assumed that processors are a unit distance above the
stimulus array, but this does not affect the result. The
location of the processor is given by the variable loc and
can take values between 1 and K. This function is mini-
mized when loc = Y. Thus, in the one-dimensional case
described above, placing the processor over the center of
its receptive field minimizes total length for those con-
nections. The same is true of the two-dimensional case,
because the situation is circularly symmetric. It follows
that for one layer of processors the configuration with
minimal total connectivity is one where each processor is
placed directly over the center of its receptive field. If
there is more than one layer of processors, the same
conclusion is reached. More than one processor cannot
occupy the same physical space. If a layer is configured so
that the processors are over the centers of their receptive
fields, the remaining processors must be placed above or
below this layer. The same argument then applies: The
minimum connection length for this next layer of pro-
cessors is achieved if the processors are centered over
their receptive fields. This procedure is applied until all
processors have been allocated.

There is a column of processor assemblies for each
retinotopic element (or pixel) and within the column
there is a receptive field assembly for each of the recep-
tive fields centered on that pixel. This means that the full
set of prototypes can be recognized at each position in the
visual field.!? Figure 6 illustrates the organization of
processor assemblies. This structure is like an abstract
version of Hubel & Wiesel’s hypercolumns. In principle
if the decision criteria for branching in the knowledge
base search are known and one branch decision does not
depend on the previous decision then the processors can
categorize each receptive field - in parallel and in one
time step — because there is one processor for each of the
log, VP branches for each receptive field. The result of
each receptive field match would be available at the
outputs of the corresponding receptive field assembly
and the pattern of responses within a receptive field
assembly points to the most appropriate prototype, be-
cause all are checked, at least in a coarse sense. This is one
way the serial nature of binary search is "parallelized.:’
The center pixel requires Nlog, VP processors (or N
receptive field assemblies), whereas the pixels on the rim
require log, VP processors (or 1 receptive field assembly).

4.3. Processor layer inverse magnification

The fact that the cortex is flat but the columnar processor
organization described using the principle of minimum
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Figure 6. The columnar organization of processes that mini-
mizes total length of receptive field to processor connections.
The three-dimensional structure of the processors forms a cone.
Within this cone are columns of processors and each column is
centered on a specific pixel of the retinal image. Within each
column is a complete set of processors for all of the receptive
fields centered at that location in the image.

cost of connection length is conical is a good example of the
conflict between design dimensions described in the
introduction. Nature provided the flat package of
the cortex; the processor structure must fit within it. The
compromise is to sacrifice some (but not all) of the benefits
of minimizing connection length. To implement such a
structure on “flat” hardware and maintain at least some of
the connectivity benefits of stacking the processors over
their corresponding receptive field centers the set of
processors must be flattened by pressing down on the
cone’s peak and redistributing the elements locally, as if
the cone were made of putty. This leads to an inverse
magnification, that is, more area of the processor layer per
unit is devoted to central visual fields than to peripheral
ones. A magnification function may be obtained by divid-
ing the number of processors at a given radius R in the
conical model by the average number of processors at each
location over the whole cone. The value of Rat the center is
1, while its value at the rim of the stimulus array is N. Thus,
the area magnification function is:

2(N — R + l)log,VP 2R
. =2 - —— (15)
(N + 1)log,VP

N+1

This assumes uniform pixel distribution and uniform
distribution of receptive fields, whereas the retina does
not have uniform photoreceptor distribution, nor is the
distribution of receptive fields uniform.

Daniel and Whitteridge (1961) measured cortical mag-
nification factors for the monkey and discovered an in-
verse relationship between the location of a receptive
field in the cortex and the corresponding location on the
retina. This relationship was measured in terms of the
amount of distance across the cortex that must be tra-

Tsotsos: Vision and complexity

versed in order to achieve a one degree traversal in visual
space on the retina. A fit to the data was done by Schwartz
(1977), who found that the relationship between cortical
magnification and visual eccentricity was exponential. It
is nevertheless interesting that receptive field localiza-
tion and conservation of connection lengths alone lead to
the negative slope across a flat processor layer. It should
be emphasized that the layer of processors described here
does not necessarily correspond to any area of the brain.
This exercise was undertaken to show that complexity
considerations will constrain an idealized structure so as
to make resemblances with observed neuroanatomy diffi-
cult to ignore.

4.4. Size and number of maps

We are now ready to consider the question of the total
size and number of maps. This will be answered using the
structure derived so far, plus the observation that average
connectivity in the cortex is about 1,000 for both fan-in
and for fan-out. The analysis of this section will simply
count how many receptive field assemblies in how many
maps can be wired up given the observed average con-
nectivity. Note that the numerical predictions of this
section (and this section alone) depend on the hexagonal
image assumption.

Each of the receptive fields must be hard-wired di-
rectly to the receptive field assemblies; there is no other
way that parallel processing can occur. Consider connec-
tivity in the direction from the retinotopic representa-
tions to the processor layer. The first quantity to deter-
mine is the total number of wires required to connect
each receptive field to its receptive field assembly. This
will be computed by simply summing for each of the N3
receptive fields the number of pixels it contains. Each
point in the image is a member of a ring of points and each
point of each ring is the center for the same number of
receptive fields, all the same size. The number of ele-
ments of each ring at radius i is given by P, — P,_,. The
receptive fields centered at each member of the ring are
of sizes 1 through N — i + 1. The sum of the elements in
each receptive field in each element of each possible ring
then gives the total number of wires required to hard-
wire all the receptive fields, independently of one an-
other. This is given by:

A

& N—i+1

2 {(P.- Py 2 P‘} x —(@BN2 + I)(N2 + 1) (17)
i=1 =1 ’ 10

Call this the area (A) of each map. The total number of
wires is A X M, and the average fan-out from the retino-
topic representations is (A X M)/(Px, X M), or A/Py,. At
the receptive field assemblies, the average fan-in from
the retinotopic representations is the total number of
wires divided by the number of receptive field assem-
blies, or, A X M/N3. Each neuron can receive input from
about 1000 other neurons and can provide output for
about 1000 other neurons, on average. The number of
fan-out synapses ranges from a few to several thousand,
whereas for fan-in, the range is from a few hundred to a
few tens of thousands. Now if this biological constraint on
fan-out and fan-in of approximately 1000 is used, the two
expressions given above are equated to 1000, and then
the equations are solved yielding:
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The number of outputs per map is Pg = 1284 (N = 21.185)
The number of output maps that can be accommodated is
M=174
The required parallelism is: if VP = 10,000,000, 10534

if VP = 100,000, 1052
The range of connectivity: 7.4 to 9501.

Obviously, integer values of maps and connections are
the only realizable values. Each of these values is com-
pletely consistent with the biologically plausible ranges
described earlier. Note that the values for M and Py, are
lower bounds only. Similarly, the value for IT is an upper
bound. There may in fact be other optimizations at work
that would permit a larger number of elements to be
connected.

The number of outputs predicted poses a serious prob-
lem. It seems implausible that the visual system has such
coarse spatial resolution. There are two choices: (a) each
of the units of output as defined for this work really
corresponds to a “bundle” of outputs that perhaps repre-
sent fine scale space; or (b) some other compensatory
mechanism exists. If option (a) were the case then this
would lead to a reexamination of the connectivity argu-
ment above. There would still be only a fixed number of
connections — and the number of single outputs that
could be wired up would be even smaller. This does not
seem to be the right way to go. A proposal for a compen-
satory mechanism will be presented in Section 4.5.

The prediction of seven maps also seems small, given
that it was earlier stated that many more parameters may
be needed to completely characterize each point in visual
space. There is much evidence indicating the insep-
arability of some early visual operations (but not all);13
thus, although a single neuron provides a single value as a
firing rate, that response may depend on more than one
stimulus quality. If each of the M types of parameters is
affected by more than one stimulus quality then it is
possible to have many more actual values, implying a
coarse-coded representation. A coarse-coded representa-
tion at this level would allow many more actual values to
be extracted, thus leading to a visual system that is
capable of much richer interpretations of the visual world
and encodes visual information more efficiently (see Hin-
ton 1981, and Ballard et al. 1983, for discussions of coarse-
coded representations for vision). It should be clear that
coarse-coding is not a necessary mechanism for all types
of units; rather, it is an additional tool that can increase
the total number of stimulus dimensions that can be
coded by the ensemble of seven maps.

4.5. Task-directed influences

The effect of task-directed influences for expected map
selection has already been described. This can reduce the
remaining exponential component of the complexity
function so that a linear function is achieved. In the
previous section, lower bounds on the number of outputs
per map were derived. The spatial resolution implied by
those results was very coarse, seemingly too coarse to
account for any aspect of perception. This section will
present another connectivity argument that leads to yet
another important use of task-directed information.

If the spatial resolution at the output of early vision is
too coarse, the simple solution would be to allow access
by the processors to each of the higher resolution layers of
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the input abstraction hierarchy. We could in fact, do this,
easily in a computer with software; each element of the
input hierarchy could be simply addressed and accessed.
Computer memory is random access. There is no evi-
dence for random access in the visual cortex, however.
The other obvious solution is simply to connect each
processor directly to each of the intermediate representa-
tions of the input hierarchy. In that way, each processor
would have immediate access to information at all spatial
resolutions. There can be no connections from the pro-
cessors to any of the larger maps in.the input abstraction
hierarchy, however. The number of such connections
would be prohibitive.

Suppose that the processors are to be connected to M
maps or high resolution, say 1,000 by 1,000 pixels in
extent. We can use the formulae developed earlier for
receptive field fan-in to the processor layer, but this time,
P = 1,000,000. The resulting additional number of con-
nections per map would be approximately 103, The
additional average fan-in at each receptive field assembly,
if IT is on the order of 105, is on the order of 107. This
calculation could be repeated for each of the layers of
resolution as well. Given that the cortex contains 1010
neurons, with an estimated total number of connections
of 1013, this is clearly not how nature implemented access
to high resolution maps. There are no known connections
between areas IT and V1 and V2 (Maunsell & Newsome
1987), for example, and this analysis predicts that there
should be none. If information is to be transmitted to the
processors from the larger maps, it must be done through
the input abstraction hierarchy, “attentively,” by tuning
the operators that compute the representation of the top-
level maps. In this way, spatial resolution at the output of
the hierarchy can be effectively increased because top-
down tuning can select individual units at the input of the
hierarchy, which have higher spatial resolution, for trans-
mission through the hierarchy to the top. This conclusion
supports the rapidly growing set of findings that describe
attentional influences in extrastriate visual areas by
providing additional justification for an attentional tuning
mechanism (Fuster 1988; Haenny & Schiller 1988; Haen-
ny et al. 1988; Maunsell et al. 1988; Moran & Desimone
1985; Motter 1988; Mountcastle et al. 1987; Spitzer et al.
1988).

Several important questions about attentional influ-
ence arise, however. Is the influence implemented as
selective inhibition or as selective enhancement? How is
the communication of the influence accomplished? Are
all the variables that define a stimulus treated equally by
the attentional mechanism? Is there a resolution limit
either in space or along a stimulus quality dimension?
These are not all new questions. For example, Downing
and Pinker (1985) conclude that attention is sensitive to at
least depth, visual angle, and retinal and cortical resolu-
tion. It is unfortunately impossible to provide answers to
all of these questions at this time. Two suggestions will be
made, however: An argument will be presented as to why
selective inhibition may be more appropriate than selec-
tive enhancement; and a proposal for communication of
the attentional influence will be sketched.

An attentional scheme has as its main goal the selection
of certain aspects of the input stimulus while causing the
effects of other aspects of the stimulus to be minimized.
Let us assume that the output at any spatial location is



determined by a winner-take-all competitive process that
can be modeled by a weighted sum computation (e.g.,
Feldman & Ballard’s 1982). Let us denote the weighted
sum by 3, wu,. The signal of interest will be identified as
u,; w is a weight factor; with no loss of generality we can
assume that all weights are equal. Let us express the
iterative computation of winner-take-all as follows. The
(n + 1)th iteration for unit i is given by:

un+li = uni —_ 2 WU] (18)
jF=i
In a selective inhibition scheme, anything that is not part
of the desired signal is attenuated by a factor of A. The
resulting weighted sum is therefore

u.
2 w— + wu (19)
irk A g

In an enhancement scheme, the signal of interest is en-

hanced by A, so that the resultant weighted sum is

> wu, + wAu, (20)
ik
The stopping criteria for such an iterative scheme are
important: One simple stopping test is to terminate
when all but one of the signals falls below a threshold. If
attentional inhibition is applied the first iteration would

look like:

0 0.
fori# k:ul;, = i wgi - wu®, 21)
ik
and
0.
for k:u!l, = u® — w% (22)
ik,

Let us compare the non-attentional with the atten-
tional cases. Equation (22) causes the response at unit k to
decay more slowly than its non-attentional equivalent
(equation 18) because the contributions are attenuated.
Equation (21) has a faster rate of decay than u,_in equation
(22) because of the additional negative contribution from
u;.. Also, each response begins the iteration attenuated by
afactor of A. Thus, it should not take as many iterations to
reach the threshold as in the nonattentional case, and
because the rate of decay of u is smaller than in the non-
attentional case, its final value will be larger. A short
example may be useful:

Within the framework just described, set up 10 com-
peting units. The signal of interest has value 1.0, the
others 0.95. This is among the more difficult of discrimi-
nations because there is a great deal of similarity among
unit values. Set the attenuation factor to 2, the weights to
0.01 and the stopping threshold to 0.1. The uninfluenced
version requires 24 iterations to stop, and the kth unit has
a final response of 0.1565. In the inhibited case, the
process stops after only 13 iterations; the kth unit has
value 0.6925. If an enhancement model is tried, with the
same parameter values, 17 iterations are required, and
the final value of the kth unit is 1.33. Inhibition is the
fastest method. The final value is not important because
the winner is still the winner regardless of magnitude;
speed is the critical parameter for this optimization.

It is easy to see that the required number of iterations
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of winner-take-all increases with increasing similarity
among competitors or with an increasing number of
competitors; it depends on the distribution of competing
signals. The greater the inhibition, the greater the speed-
up of winner-take-all. The concept can be generalized,
and it would still lead to similar characteristics. We
extend the concept of attention as inhibition from spatial
selection to the selection of maps and of feature ranges of
interest. Based on the same argument as above, not only
would inhibitory selection lead to faster responses but
also to larger ones for the selected items. The parameter
to which the argument is applied does not matter. Thus,
inhibiting more maps, more spatial units, and more of the
space covered by a given stimulus quality all have the
effect of speeding up the winner-take-all process. Spitzer,
Desimone, and Moran (1988) found with stimulus dimen-
sions such as orientation, color, and size, that as discrimi-
nation difficulty increases, attention leads to larger re-
sponses than in unattended cases. It would be interesting
to test whether these larger responses are also achieved in
a shorter time.

How is this inhibition applied? Given an input abstrac-
tion hierarchy, which looks like a complex of intercon-
nected truncated cones, (recall Figure 4), spatial atten-
tional influence, is applied in spotlight fashion at the top;
this appears in many other models (such as Treisman’s
1985). This spotlight, however, must make its influence
felt throughout the processing hierarchy to at least some
appropriate depth. There is no other way the message of
spatial selection could reach the items that are actually
selected. The spotlight analogy is therefore insufficient,
and we propose (keeping our metaphors optical) a “beam”
that passes through the hierarchy. The input abstraction
hierarchy has its root at the top, where the selection of
space is made; that is also where the beam is rooted. The
output of a given unit at the top of the hierarchy is directly
affected by the subhierarchy for which it is the root. Thus,
the beam must affect the branches and leaves of the
selected subtree. The beam expands as it traverses the
hierarchy, covering all portions of the processing mecha-
nism that directly contribute to the output at its point of
entry at the top. In other words, the effective receptive
field of the output unit selected for attention is that entire
subhierarchy, and the attentional beam must control that
receptive field. The central portion of the beam allows the
stimulus of interest to pass through unaffected, whereas
the remainder of the beam selectively inhibits portions of
the processing hierarchy that may give rise to interfering
signals. The spatial selection aspect of the beam is illus-
trated in Figure 7. If the output at the top of the hierarchy
is affected by multiple maps, the unit may be the root fora
number of subhierarchies (or pathways; see Figure 8).
Multiple beams then control these pathways. As men-
tioned earlier, attention in the form of inhibition was
generalized beyond spatial attention to other dimensions
of the stimulus such as the selection of features and
feature ranges, and so forth. This generalization would
require that the spatial beam have substructure that can
be manipulated depending on attended information.

The cross-section of the beam will be modeled with a
two-dimensional Gaussian profile whose central portion
represents the pass zone and whose tails represent the
inhibit zone. This will permit easy control of the location,
size, and shape of the pass zone. The Gaussian weighting
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Figure 7. Inhibitory attentional beam operating on an ideal-
ized input abstraction hierarchy. In this purely spatial example,
the input is abstracted with a single pyramidlike structure.
Attention is applied to the hierarchy at the top as a spatial
spotlight. As described in the text, the selected unit at the top is
affected by a subhierarchy (shown in gray) and the attentional
beam must control this subhierarchy. The beam affects the
hierarchy by allowing a selected element at the base of the
hierarchy to pass through while inhibiting all other elements
that influence the receptive field of the selected item at the top
of the hierarchy.

Attention control
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Figure 8. Inhibitory attentional beam applied to a biologically
plausible input abstraction hierarchy. As in Figure 7, the atten-
tional beam must affect all of the elements of the input abstrac-
tion hierarchy that affect the output of the selected unit at the
top. In this case, attention is applied to two pathways in this
hierarchy, say, one for shape and another for color. The beams
eventually must merge and their influences must combine.

440 BEHAVIORAL AND BRAIN SCIENCES (1990) 13:3

is applied multiplicatively; the pass zone has values near
1.0 whereas the inhibit zone has values that approach
zero. This multiplication leads to inhibition of the nonat-
tended signals.

There is experimental evidence supporting the pro-
posal described in this section. First, the idea of selective
inhibition as an expression of neural attention has been
observed in the experiments of Moran and Desimone
(1985) and Motter (1988), both recording from V4 in
monkeys. Moran and Desimone discovered that single
neurons in trained monkeys as early as V4 (but not in V1)
can be turned so that separate stimuli within the same
receptive field can be individually attended. They claim
that unwanted information is filtered from the receptive
fields of neurons in extrastriate cortex as a result of
selective attention on either stimulus location and/or
stimulus quality “almost as if the receptive field has
contracted around the attended stimulus.” This shrinking
is the selection of the area of spatial interest in our
proposal. The attenuation was quite pronounced in V4,
somewhat smaller in IT, and not found in V1. In the
words of Moran and Desimone, “the very structure of the
receptive field, recently considered to be a fixed property
of the neuron, can change from moment to moment in the
behaving monkey depending on the immediate task and
state of attention.” Motter found that about 50% of
neurons in V2 and V4 and 20% of neurons in V1 were
affected by attention. He found both enhancement and
inhibition in V1 and V2, and primarily inhibition in V4. In
all three areas, the effect of attention increased with the
number of stimuli in the display that had to be inhibited.
Those neurons that were enhanced due to attention
became more so, whereas those that were inhibited
became more inhibited. This is nicely explained by the
control over the distribution of winner-take-all units that
the inhibitory beam exhibits. In the case of the observed
enhancement, the winner-take-all example given earlier
shows how the unit of interest has a larger response when
compared to the unattended case. If inhibition is applied
to a larger number of competitors, the inhibited ones
represent a larger proportion of the competition and thus
the effect is more pronounced. In V1 and V2 the effect of
attended stimuli outside the receptive field was noticed,
whereas no such effect was found in V4.

Fuster (1988) noticed the same effects for color-selec-
tive neurons in IT. In addition, the cells he studied
seemed to store salient aspects of the target stimuli. Even
more striking is the discovery that the target may be
presented by touch as well as by vision, with similar
attentional results (Haenny et al. 1988). The representa-
tion of the target may be independent of the actual
stimulus. Wolfe, Cave, and Yu (1988) and Treisman and
Gormican (1988) both describe marked performance dec-
rements with increasing difficulty of discrimination
whether from an increase in the number of stimulus
features represented or a decrease in the distance be-
tween features along a given stimulus dimension. This
can be explained by the speed-up in winner-take-all
schemes because of increasing inhibition as described
earlier. Note that the above results indicate both behav-
ioral and neural effects of attention have been discovered.

Anderson and van Essen (1987) have recently proposed
the idea of “shifter networks” to explain attentional ef-



fects in vision; there is some similarity with the inhibitory
beam idea of this section. Although Anderson and van
Essen maintain that the shifter circuit can be used to
account for directed visual attention, scaling and blur-
ring, motion compensation, and the registration problem
in stereo vision, this comparison will focus only on atten-
tion. I suggest that my beam idea can accomplish the
other tasks as well. The Anderson and van Essen proposal
requires a two-phase process: First, a series of microshifts
map the attentional focus onto the nearest cortical mod-
ule; then a series of macroshifts switch dynamically be-
tween pairs of modules at the next stage, continuing in
this fashion until an attentional center is reached. As
stated earlier, the receptive field of the output unit
selected for attention is the entire subhierarchy that
affects that unit’s response; any attentional mechanism
must therefore necessarily control the subhierarchy.
Shifter circuits seem to allow only for attentional focus
shifts; there is no apparent method for control of the size
and shape of the attentional focus. This is easy to accom-
plish in the beam proposal because the beam has internal
structure that can be manipulated. Also, Anderson & van
Essen do not describe how the observed inhibition and
enhancement of attended neurons can be accomplished
using the shifter circuit. How are the effects of nonat-
tended regions of a receptive field eliminated? It would
seem that not only is shifting required to move the
attended region into some attentional unit, but it is also
required to move the nonattended areas out of considera-
tion. Anderson and van Essen do not describe how this
could be accomplished. Both spatial shifts and selective
inhibitions are needed, as in the beam proposal, to
explain the experimental results described earlier.

Attentional influence on the computation of visual
information has the following profound effects:

1. Inhibitory selection of aspects of the input that are
not of interest lead to faster winner-take-all decisions
among competing units and a final larger single-unit
response than in nonattended cases.

2. Selection of maps of interest reduces the exponen-
tial nature of the time complexity function to a linear
function. Note that if no task information is available then
the complexity function is forced to its exponential ver-
sion of equation (12) and the execution of visual tasks
depends on the number of active maps.

3. Selection of the spatial region of interest has two
advantages. First, it allows access to high-resolution in-
put information as described above. Second, it selects
which spatial regions can contain potential matches with a
target. In the complexity function for bounded visual
search given in equation (1), |I] represented the number
of possible locations (pixels) of the test image that the
target must be hypothesized to be centered on in the
worst case. If a scheme that selects spatial regions of
interest is available then there is an effect on both of these
parameters. First, only the regions of interest need be
considered as centering points for the target, rather than
all pixels. The term |1} is replaced by the number of those
regions R. Second, if the regions are known, then a large
class of translation transformations need not be tried;
however, in each region, all the rotations and scalings
must be tried. This will be represented by |R—S|. The
resulting complexity function becomes:
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O[R x |T| X M| X |R — §[] (23)

If the task specifies that targets will appear at the same
scale and without rotation in the test display, then the
transformation term disappears altogether:

O[R x |T| x [M] 24

Note that this function is linear in the number of regions
of interest (test display items) and the slope is determined
by the size of the target and the number of stimulus
dimensions that must be considered. Of course, this does
not explain how the spatial selection comes about; thatisa
topic of current research. A more detailed description of
how the inhibitory attentional beam functions and its
effects on the input abstraction hierarchy can be found in
Tsotsos (in preparation). The implications of this for visual
search performance will be discussed in the next section.

5. A new explanation for visual search
performance

5.1. Preview

So far, this research has demonstrated the following
points about the task of visual search:

1. Unbounded visual search is inherently NP-
Complete.

2. Bounded visual search is inherently linear.

3. Even after approximations and optimizations, un-
bounded visual search still remains exponential in the
number of active maps (although it is a rather small
exponential).

4. Computing the number of output elements and
connectivity constraints leads to the need for an atten-
tional selection of spatial areas of interest.

5. The selection of maps of interest, spatial areas of
interest, and ranges of interest for stimulus qualities leads
to even greater computational savings.

6. Attentional selectivity is inhibitory and can be de-
scribed as an attentional beam passing through the input
abstraction hierarchy inhibiting the irrelevant and allow-
ing the relevant to pass through.

7. Speed functions have been derived for cases where

the target is unknown and known (Equations 12 and 23,
respectively). If rotation and scale transforms are consid-
ered, an additional multiplicative term must be included
in each of these equations (it is explicit in Equation 22
only).
The natural question to ask now is whether these conclu-
sions can provide new insights about visual search perfor-
mance in humans, or at the very least, whether any of
their implications can be confirmed experimentally. Mo-
tivated by the lack of consensus on the nature of visual
search performance, a new algorithm that ties together
the above conclusions will be presented.

5.2. An algorithm for visual search

Recently, Treisman has “hedged her bets” (her words) by
producing a different version of her theory alongside the
one previously described (Treisman 1988; Treisman &
Sato 1990). In this new version, top-down inhibition plays
a role in providing a different explanation of conjunction
search. She speculates that inhibitory attentional influ-
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ences assist in eliminating distractors from consideration.
In the disjunctive task case, only one item would remain,
and in the conjunctive case only those items that share
features with the target item remain. Several experi-
ments are described that explore specific aspects of this
new model. This explanation also appeared in Tsotsos
(1987c; 1988) in an attempt to reconcile the experimental
evidence of Treisman’s older model with complexity
arguments. There is a large body of experimental evi-
dence that supports Treisman’s old model, however,
including Treisman’s own data. Is there some way to tip
the scale in favor of one of these? The algorithm given
below appeared in a slightly different form in Tsotsos
(1987c); the version here is an elaboration.

An algorithm for visual search performance in humans
based on the seven points made in the preview to this
section is presented in a step-by-step fashion (with a new
section for each step). The bounded version of the prob-
lem is assumed, and changes required for the unbounded
version are noted.

5.2.1. Specify targets and task. A set of targets or target
images must be defined, a task must be described, and
these must be stored in memory. There is growing
evidence that there is a representation of the target in the
cortex. Haenny et al. (1988) and Maunsell et al. (1988)
have found individual neurons of V4 that seem to repre-
sent the orientation of a cue in an orientation selection
task. Storing orientations is not the same as storing tasks,
but this finding is very significant. The tasks that may be
specified include detection (is one or more of the targets
present in the display?), discrimination (are all the targets
in the display the same?), counting (how many targets are
there in the display?) [See also Davis & Perusse: “Numer-
ical Competence in Animals: Definitional Issues, Current
Evidence, and a New Research Agenda” BBS 11(4) 1988.]

5.2.2 Apply attentional map and feature range inhibition.
The signals that provide the attentional effect of the task
on the processing hierarchy must be generated using the
inhibitory beam concept described earlier. This implies
that nondistractor elements in a conjunctive display have
no effect. For example, if the targets are either a brown
‘T or aletter, for a given display, subjects could attenuate
responses to non-brown, non-T, and non-letter stimuli.
In a disjunctive positive display, there would always be
only one candidate remaining for matching against tar-
gets. In a disjunctive negative display, all responses are
attenuated, and because there is no differentiation among
candidates, all are considered candidates. This leads to
the observed linear slope of response with the number of
elements in the display. In the conjunctive positive case,
say, with a target of a red letter “A,” the subject could
attenuate non-red and non-A responses, and thus the
number of candidates would be exactly the number of
distractors plus the target. The conjunctive negative case
is similar to the disjunctive negative one; all elements are
candidates and none of the candidates match any of the
targets. In the unbounded case, there is no benefit from
this step, because no a priori expectations are available.

Treisman, among others, has observed a “search asym-
metry” in her experiments and claims that this may be
used as a diagnostic for determining which features can be
processed preattentively (Treisman & Souther 1985;
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Treisman & Gormican 1988). The basic reason for the
asymmetry seems to be the difference between searching
for the presence versus the absence of a feature. If a
feature is present, then the search is preattentive and
immediate, whereas if it is absent, the search is linear.
The difference is attributed to the fact that single features
can be detected by the mere presence of activity in the
relevant feature map, whereas absence requires ex-
haustive search. Using this diagnostic, Treisman and
colleagues have addressed the issue of visual primitives.
They claim that color, brightness, terminators, blobs,
closure, tilt, and curvature are good candidates, whereas
intersection, juncture, number, and connectedness are
improbable ones.

If attentional selectivity is applied and affects an early
abstraction hierarchy in the manner described in the
previous section, the features Treisman claims are primi-
tive represent only what the system can be “tuned” to
recognize. None of the units representing the target of
the visual search task are left in their “default” state —
hence they do not represent that default or primitive
feature during the course of the experiment. The set of
tunable features is much larger than the set of default
features or primitives the system computes because each
default feature can presumably be tuned into several
slightly differing forms. For example, a unit whose de-
fault is to recognize a horizontal line segment of a particu-
lar length could be tuned to recognize line segments
slightly off the horizontal or slightly longer than the
default. In addition, the ability to select attentively the
spatial subset of an individual unit means that it may be
tuned to respond to a spatial subset of its default tuning.
This may have no obvious correlation with that default. A
face-recognition unit may also respond well to curved
lines if tuned appropriately. In the terminology of this
paper, Treisman discovers tokens but not types. How-
ever, if Treisman’s visual search paradigm rejects a fea-
ture, then processing units can indeed not be tuned to
recognize it. The conclusion is that visual search can be
used only to reject candidate stimuli as features, not to
discover their existence. Using visual search in this way
only would be a very time-intensive task as well as
offering only indirect evidence for particular features.

Therefore it seems search asymmetry is not the good
diagnostic that Treisman claims it is. If a subject is told to
search for the absence of a feature, the only possible
tuning that could be applied is the logical “negation” of
the feature. That is, all possible stimulus patterns except
the feature would be attenuated. This would lead to no
attenuation at all for any of the stimulus elements, be-
cause the spatial intersection of the feature with all other
stimuli is so large. All elements of the stimulus remain as
candidates and this leads to a serial search.

5.2.3. Compute map representations. The computation of
map representations takes constant time and is accom-
plished by the input abstraction hierarchy.

5.2.4. Do steps 5 — 11 for each map subset considered.
This step begins a loop that must be executed 2™ — 1
times in the unbounded case. This is where the “fishing
expedition” strategy of Treisman and Sato (1990) fits. If
the target is known in advance and is present in the test
image, this loop need be executed only once.



5.2.5. Compute receptive field-prototype associations.
Associating a prototype with each receptive field takes
constant time because there is one processor assembly of
log, VP processors allocated for each receptive field. This
step computes a necessarily coarse analysis of input re-
ceptive field contents and not a detailed one; the detailed
resolution data are not available at first. Gleitman and
Jonides (1976) and Jonides and Gleitman (1976) show that
categorization requires less processing than identifica-
tion, and thus an initial coarse analysis can be used to
locate items for which detailed analysis should be per-
formed. Reaction times are longer for the identification of
within-category items than for between-category items.
The receptive field-prototype associations, computed in
parallel, may be one explanation for this observation.

5.2.6 Do steps 7 — 11 for each candidate. How is a
candidate for matching to targets determined? One pos-
sibility is that all elements of a stimulus are candidates. In
this case pop-out would never be observed, however.
The definition of a candidate could be task-dependent.
The attentional attenuation followed by coarse analysis
described above plays an important role here. Stimulus
items that have none of the characteristics of any of the
targets are attenuated and those that remain have an
associated category because of coarse analysis. The selec-
tion of a candidate can be based on a number of criteria: It
could be simply a random selection from among the
possibilities or the candidate with the largest response. In
any case, once it is selected, the attentional spatial beam
can be applied in order to access detailed information for a
final comparison with the target. Hoffman et al. (1983)
claim that automatic detection requires the allocation of
spatial attention to the area of the target, in effect,
selecting a candidate, even in the pop-out case. In the
unbounded situation a similar subsequent attentional
action takes place. A first processing pass coarsely locates
items and analyses features; the attentional beam can
then allow access to detailed information. Wolfe et al.
(1989) propose a similar model they call guided search
and provide supporting experimental data.

§.2.7. Transform candidate representation to target
representation. There is no a priori reason to believe that
the representation at the candidate level is the same as at
the target level. Thus, there must be time allocated to the
transformation process between representations. There is
also a connectivity argument as to why an intermediate
representation may be required. The number of connec-
tions between all of the targets and all of the candidates
would be prohibitive, and certainly much greater than the
observed average of 1,000. In particular, the worst-case
number of connections from the processor layer to each
target would be N3 X log, VP. An intermediate represen-
tation would solve the problem of connectivity, because
not all receptive fields must be hard-wired to all targets. A
switching network plus appropriate control would be
required to select a candidate and to route candidate
information into the intermediate buffer. Thus, a linear
search of candidates is necessitated because each must be
stored in this buffer before being matched to a target.
Experimental evidence points to a similar conclusion.
Duncan (1980) discovered that simultaneous targets inter-
fere with one another, suggesting that there is alimit to the
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storage or processing of multiple targets. Broadbent and
Broadbent (1987) claim that there is only one representa-
tional space for targets because they have found that the
identification of one target impedes the next.

5.2.8. Do steps 9 — 12 for each target. Targets are dynamic
and usually too few to organize; nor do they necessarily
share properties on which organization can be done. Thus
the optimizations used earlier cannot be applied here. It
accordingly seems that the best this architecture can
accomplish is a serial, self-terminating search. This is
what is observed.

Serial search is required to identify and count more
than one target in a pop-out display. This would be true
because each of the qualifying targets would pass through
attentional tuning and would be present as matching
candidates. If, on the other hand a subject is required
simply to determine whether a target is present, and
there is more than one target, there should be no effect,
and pop-out should proceed as if there were only one
target. Sagi and Julesz (1986) demonstrated this indi-
rectly by asking subjects to determine whether all targets
in the stimulus were the same, given multiple possible
targets. This revealed a serial search of targets. They
called this a discrimination task, distinguishing it from a
detection task, in which it was simply determined
whether a target was present. They point out that their
results disagree with Treisman’s feature integration theo-
ry; the results do support the argument in this paper,
however.

As the number of targets increases, so does the re-
sponse time. The loop beginning with step 8 in the
algorithm is performed for each target; and, in the worst
case, that matching is performed for each candidate
against each target. Without any a priori ordering of
target preference, and with each candidate being equally
strong and likely, the average time to pass through step 8
is proportional to half that number of matches in the
positive case, and the full number of inatches if there is no
target in the stimulus. Thus, there are three contributors
to the serial, self-terminating process observed in visual
search: the loop beginning with step 4, which is executed
more than once only in the unbounded case; the loop of
the algorithm beginning with step 6, and the loop begin-
ning with step 8.

5.2.9. Match candidate to target. The time requirements
for matching in the bounded case are given in Equation
23 and point to a linear contribution due to the number of
maps activated. This conclusion depends on the assump-
tion made earlier that all maps are computed with equal
ease. Treisman and Sato (1990) have quantified the con-
tribution to the slope of conjunctive tasks made by differ-
ent stimulus features: The effect is additive, with the
smallest contributor being size, followed by color, mo-
tion, and then orientation. This implies that my assump-
tion is not valid: The use of the variable M (and M) should
be replaced everywhere by a function ¢ of the maps.
When this is done, the speed function derived earlier
(Equation 23) for the single target bounded case becomes:

O[R x [T} x ¢ (M)] 25)

remembering that R represents the number of candidates
defined by step 6 of the algorithm. Because [T] is a
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constant for a given experiment, this leads to a response
curve that is linear in the number of candidates and whose
slope is determined by the size of the target image and the
contribution of the active maps. If there is one candidate,
regardless of the number of defining stimulus features,
the curve is flat when plotted against distractors. This is
precisely what is observed. One prediction arising from
this is that the larger the target image, the steeper the
slope. In addition, the response time for pop-out displays
will increase as the number of stimulus qualities
increases.

5.2.10. If match fails then try next candidate.
5.2.11. if match succeeds then continue to next target.

5.2.12. I targets exhausted exit. An exit with matching
success means that the task is successfully completed, in
cases of discrimination, detection, or counting. An exit
with matching failure signals a failure to complete the task
positively and that either the task is complete and a reply
is negative or that further processing may be needed.
This may include retuning the input abstraction hier-
archy and the receptive field- prototype association pro-
cess in order to try the task again. Such issues are beyond
the scope of this paper.

It seems that given this algorithm, plus the results of
the previous sections of the paper, the case for attention if
targets are known a priori is very strong. Treisman’s
reluctance to accept one or the other version perhaps
issues from her commitment to describing both un-
bounded and bounded search results with a common
processing strategy. As is clearly shown above, the pro-
cessing strategies vary dramatically.

6. Conclusions

Theories of visual perception lack basic principles to
guide their development and to test their validity. Two
such principles are proposed in this paper, the “complex-
ity level” of analysis and the minimum cost principle. We
have demonstrated that significant conclusions about the
architecture and performance of biologically plausible
visual systems can be derived from the faithful application
of these principles.

The implications for computer vision are clear and
quite important. The reason that many of the computer
vision proposals that use attention have not been entirely
satisfactory (see Tsotsos 1987b, for a comprehensive over-
view) is that a strong argument for the computational
need for attentive processing has never been presented.
That need must be based on the basic computational
inadequacies of spatially parallel, nonattentive visual ar-
chitectures. The capabilities of such architectures have
been derived in this paper for biologically motivated
designs (and still largely, but not entirely, apply to non-
biologically motivated designs). The argument for atten-
tive vision, and indeed for the computational modeling of
human vision, is now on a solid foundation.

It has been shown that unbounded visual search is
inherently NP-Complete in the size of the image. This
result is independent of the implementation, that is,
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whether one is considering the brain, a machine, or some
yet to be discovered method of implementation, the
inherent complexity of the general problem remains the
same and an implementation must deal with it. Even after
a reshaping of the problem and optimization of the re-
sources, the problem remains exponential in the number
of maps. Our analysis has, however, revealed a set of
architectural constraints that permit the unbounded visu-
al search problem to be solved within the resource limits
of the brain and at observed performance rates. These
optimizations are:

1. parallelism of sufficiently high degree;

2. hierarchical organization through the abstraction of
prototypical visual knowledge in order to cut search time
at least logarithmically;

3. localization of receptive fields, noting that the phys-
ical world is spatio-temporally localized and that objects
and events, and their physical characteristics, are not
arbitrarily spread over time and space;

4. the fact that maps are summarized via a pooled
response, using the observation that not all visual stimuli
require all possible parameter types for interpretation,
and thus leading to separable, logical maps;

5. hierarchical abstraction of the input token arrays so
as to maintain semantic content yet reduce the number of
retinotopic elements.

Note that some of these optimizations do not represent
new concepts and have been common in the literature for
some time (see Ballard 1986, for an example of another
recent model), but their interpretation in terms of com-
plexity and the resulting quantitative analysis is novel.

It has also been shown that bounded visual search has
linear time complexity; several optimizations of this com-
plexity function has also been presented, along with
experimental support for its final form.

Applying the minimum cost principle, many further
characteristics of the visual system are predicted:

1. Processor columnar organization;

2. Inverse magnification within the processor layer
with respect to the retinotopic array;

3. Tokens of visual parameters at high resolution can-
not be directly accessed, but must be obtained by the
tuning of computing units and through the input abstrac-
tion hierarchy;

4. Token coarse coding;

5. Predictions for the overall configuration of the visu-
al system in terms of lower bounds on the size and
number of maps and upper bounds on the required
degree of parallelism;

6. An inhibitory attentional beam.

Finally, an algorithm at an abstract level of description
was presented for the sequence of processing steps per-
formed for visual search tasks that integrates many of the
above conclusions.

Although this article dealt almost exclusively with
visual search, its conclusions are not confined to visual
search. More complex kinds of visual tasks are subject to
the same kinds of complexity arguments and their analy-
sis will yield very similar results. This is not surprising,
because it is probably true that if any visual task is
decomposed into subtasks, some form of visual search will
be present in that decomposition. Hence, other more
complex visual tasks will have complexity consistent with
the complexity of their worst subtask.
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NOTES

1. The definition of the term “visual search” commonly used
by psychologists is given in section 1.2; a computational defini-
tion is presented in section 2.2.

2. See Dobson & Rose 1985 and Maxwell 1985 for excellent
treatments of the methodological problems in both neuro-
science and artificial intelligence.

3. See Garey & Johnson 1979; Pippenger 1978; and Stock-
meyer & Chandra 1979.

4. The condition-for-solvability thesis was also put forward
by another mathematician, Alonzo Church (1936) and is hence
usually stated as the Church/Turing Thesis.

5. The notation O( ) stands for “order.”

6. There are many more problem classes; they are not of
immediate concern here.

7. Neisser was motivated by the following question: If there
is more than one item of the same kind in the visual field, how
are they distinguished? One way is to duplicate processing
resources everywhere across the image. If a model of perception
were to deal with the entire visual field at once as well as with all
the possible interpretations only by using parallel processors for
each spatial possibility, it would require a much larger brain and
too much experience.

8. The number of discriminable objects is much larger. For
example, a banana s still a banana even though it changes color
as it ripens; during color changes, it can still be identified as a
banana as opposed to an apple, but it can also be discriminated
from other bananas at different stages of maturation.

9. Surprisingly, Marr omits color and explicit temporal
information.

10. Perhaps the most eloquent argument for the use of
hierarchies in defeating the complexity of large systems is
Simon’s (1982). The use of hierarchies has been pervasive in
artificial intelligence for more than twenty years, and also in the
neurosciences, at least since Hebb’s model (1949).

11. Hartline’s (1940) concept of a receptive field has been
extended to the retina by Kuffler (1953) and generalized for
sensory processing by Mountcastle (1957), whose general view
is adopted here.

12. Not all scales are represented at each position, however;
the instances recognized are smaller with higher positional
eccentricity.

13. Evidence for the inseparability of retinal measurement is
summarized by Fleet et al. 1985. A summary of examples of
inseparability in other areas is provided by Cowey 1979.
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Tsotsos argues that complexity level analysis is a powerful but
neglected theoretical tool, and he applies it to the problem of
preattentive vision. He first concludes that bottom-up process-
ing alone cannot cope with the complexity and then goes on to
present a model of visual processing.

The Inadequacy of purely bottom-up processing. Although
Tsotsos is almost certainly right in concluding that some sort of
selection is important in visual processing, I do have a question
about how he reached this conclusion. In the architecture
presented in Figure 2, the comparison between a single recep-
tive field and a single visual prototype involves a number of
operations, one for each possible combination of maps. The
series of optimizations that Tsotsos applies leaves this situation
essentially unchanged: Without knowledge about what type of
target is being sought, a separate operation is necessary in each
receptive field for every possible combination of maps. Is there
not room here for an additional important optimization? For a
given visual prototype, only a single subset of maps will be
relevant. Why not include a list of the relevant maps with each
prototype? For each combination of receptive field and pro-
totype, the list would be consulted and a single comparison
would be done, involving only the specified maps. This op-
timization could sharply reduce the number of comparisons
when nothing is known in advance about the stimulus, and thus
it brings into question Tsotsos’s conclusion that selection is
necessary.

Tsotsos goes on to elaborate his architecture in order to
account for human performance in visual search tasks. Because
he is claiming that complexity-level analysis has allowed him to
formulate a new architecture that can account for many aspects
of visual processing, it is appropriate to evaluate this architec-
ture as we would any other, including considerations unrelated
to complexity.

Similarity to other models. One of the most striking aspects of
this architecture is its resemblance to existing models of visual
search performance. Tsotsos mentions Neisser's (1967) and
Treisman’s (Treisman & Gelade 1980; Treisman 1986) distinc-
tion between early processes that operate over the entire visual
field in parallel and later processes that are limited to a single
region at any one time. He adopts the same principle for his
system. Also, his parallel stage serves to identify potential
targets whereas the serial stage confirms those that have been
nominated, just as in guided search (Wolfe et al. 1989; Cave &
Wolfe, in press), Duncan & Humphreys's (1989) similarity
model and Hoffman’s (1979) two-stage model. The resemblance
goes further: The feature-range inhibition that eliminates ele-
ments with nontarget features is very similar to the top-down
inhibition in guided search. (The main difference appears to be
that Tsotsos’s feature-range inhibition applies only to those
elements that have none of the relevant features, whereas the
top-down activation in guided search allows for a wide range of
possible activations for each element, depending on how many
of the relevant features it has.) As Tsotsos notes, Treisman (1988)
has proposed adding such inhibition to feature integration
theory as well. If Tsotsos’s analysis stands up, its main contribu-
tion to visual attention may not be to produce a new explanation
for visual search, as he might have hoped, but to provide new
support for these ideas that have been proposed earlier.

Using bottom-up processing to direct attention. Even if the
bottom-up, preattentive system is as limited by complexity as
Tsotsos claims, it must be designed to produce the most useful
information possible when nothing is known in advance about
the stimulus. One possible strategy is to identify those locations
of the visual field that exhibit large changes in feature values.

BEHAVIORAL AND BRAIN SCIENCES (1990) 13:3 445



Commentary/Tsotsos: Vision and complexity

Adding mechanisms to detect these feature differences would
allow attention to be quickly directed to those parts of the input
that are most likely to be important. A demonstration of how
these mechanisms can work can be found in the bottom-up
component of guided search. The complexity of these mecha-
nisms can be controlled by only allowing comparisons within
maps, and also by limiting the distance between locations over
which features are compared.

Where is the ilne between parallel and serial processing? If
Tsotsos’s architecture is to be a useful account of visual process-
ing, it must give a clearer description of the limitations on
parallel processing. For instance, in section 5.2.7. he introduces
a separate representation that is used to match a single candi-
date element with the target. What visual operations are the
processors in the original architecture capable of executing, and
what operations require this new representation? Just what
aspects of visual processing are handled by Tsotsos’s array of
parallel processors, and what processing tasks are passed off to
the target-matching representation? This is just another way of
asking the old question of which visual processing operations
can be performed in parallel and which must be performed
serially. Also, what computational advantages come from sepa-
rating parallel operations into feature maps that operate inde-
pendently, and does Tsotsos expect to find such independent
maps in the visual system? (In section 3.2 he states that using
physically distinct maps can lower complexity, whereas at the
end of section 4.4 he suggests coarse coding across parameter
types. Isn’t there a conflict here?)

In summary, if this architecture is presented as a serious
model of visual processing, then Tsotsos should specify its
operation in more detail. In doing so, he will have to tackle more
specific questions about which computational operations are
necessary and how they are accomplished. Perhaps it is in
constraining solutions to these specific questions that complex-
ity analysis is likely to make its most important contributions to
the study of visual attention.

Complexity at the neuronal level

Robert Desimone

Laboratory of Neuropsychology, National Institute of Mental Health,
Bethesda, MD 20892

Electronic mail: jcg@nihcudec and jcg@nihcu.bitnet

Although I cannot comment on the formal aspects of Tsotsos’s
complexity analysis, I think few would disagree with his thesis
that computational approaches to visual search immediately run
up against a combinatorial problem. Tsotsos’s work quantifies
just how serious the combinatorial problem is, and he outlines a
plan for how this problem can be solved. It is the latter aspect of
his work that I will comment on, from a neurobiologist’s point of
view.

Tsotsos’s general approach to the combinatorial problems of
vision is to compress and abstract the data that arise from the
retina. This is accomplished, in part, by first segregating visual
features in separate feature maps that can subsequently be
attended to individually. Next, the maps are arranged in a series
of hierarchical levels, with an increase in receptive field size at
each level. The latter idea — that the visual pathways are
organized hierarchically, with increasing receptive field size as
you move towards the “top” — is consistent with most neu-
robiological views on the organization of visual cortex. How-
ever, there is much less support for the notion that features are
segregated in different maps, especially if the maps are sup-
posed to correspond to different visual areas. Recent physiologi-
cal and anatomical work suggests that, beyond the segregation
that takes place between the “dorsal” spatial system and the
“ventral” object recognition system (Ungerleider & Mishkin
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1982), most of the segregation of features in the ventral system
probably occur at the level of columns or modules within an area
rather than across areas (for a review, see Desimone & Un-
gerleider 1989). Even given some degree of anatomical segrega-
tion within a cortical area, it is still not clear whether features
such as color or shape are actually represented by different
populations of cells within an area, or rather are represented in a
“multiplex” fashion by cells sensitive to many different features.
If the latter is true, it is even less clear how the visual system
could select just one feature for processing at the expense of
others, as Tsotsos’s model requires. The representation of fea-
tures is probably the murkiest area in the neurobiology of vision.

Large receptive fields are a second problem that any model of
vision must handle, as Tsotsos points out. Although large recep-
tive fields allow for generalization of coding across large retinal
areas (and thus tremendously reduce the combinatorial prob-
lems of visual search), they incur a cost in resolution, particu-
larly when there is more than one stimulus or feature located in a
field. This general issue of how the visual system copes with
multiple stimuli in receptive fields is sometimes referred to as
the “binding problem” (see Wise & Desimone 1988, for a
discussion of the relationship between the binding problem and
attention). What is needed is an attentional mechanism that can
select specific locations in a receptive field for processing.

In my own work (Moran & Desimone (1985), I have seen
evidence for attentional selection of stimuli in receptive fields of
neurons in areas V4 and the inferior temporal cortex (IT). If an
animal attends to one stimulus and ignores another in the
receptive field of a neuron in these areas, the neuron will
respond primarily to the attended stimulus. That is, responses
to unattended stimuli in the field are suppressed. The result is
both a reduction of distracting information and an increase in
spatial resolution. We have seen analogous effects outside the
spatial domain. If an animal must discriminate a stimulus of one
orientation or color from another very similar stimulus (present-
ed at a different point in time rather than at a different point in
space), the orientation or color tuning of cells in area V4 is
sharpened, resulting in a behaviorally measurable increase in
orientation or color “resolution” (Spitzer et al. 1988). As Tsotsos
points out, his model of complexity reduction through attention
is consistent with our results on both spatial and feature atten-
tion. In fact, I presume that his model is based in part on our
results.

Although there are many areas of agreement between Tsot-
sos'’s model and our neurobiological data, I am somewhat
bothered by his notion that a beam of attention is directed from
the highest level of cortical abstraction (presumably IT) back to
the lowest. At least in the case of spatially directed attention,
recent work suggests that the neuronal mechanism is closely
related to the oculomotor system. In our studies, we have found
that local deactivation of small zones in the superior colliculus, a
“classic” oculomotor structure, impairs an animal’s ability to
attend to a target in the presence of a distractor (Desimone et al.
1989). The effect is spatially specific to the receptive field location
of the deactivated zone, that is, the animal is impaired only when
the target appears inside the deactivated zone. I should add that
we only see pronounced effects when there is a distractor in the
visual field, and that the effects do not depend on eye move-
ments. Others have also found evidence for a role of the superior
colliculus in spatial attention in the absence of eye movements
(Albano et al. 1982; Posner et al. 1985; Kertzman & Robinson
1988). Although it may seem surprising at first that the
oculomotor system would be involved in covert shifts of atten-
tion, both systems require the targeting of stimuli and so might
usefully share some common “hardware.” In fact, the effects ofa
shift of gaze and a shift of covert attention are nearly the same on
the visual system; both cause visual processing to be dominated
by new input. A computational model that incorporated some of
these neurobiological findings would be very useful.



Computation, complexity, and systems
in nature
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The view that dynamic phenomena arising in nature result from
computational processes of various kinds has led researchers to
formulate and study a wide variety of fascinating problems. For
systems whose behavior is described by physical theories, as
confirmed by reproducible experiments, the corresponding
physical laws of computation may be studied. In this way,
ultimate limits on computational devices may be examined,
particularly in the sense of various performance bounds. Crucial
differences in perspective — for example, the important distinc-
tion between the nondeterministic models for ideal computing
machines and the probabilistic models used in physical theories
for microscopic systems (quantum mechanics) and complex
macroscopic systems (statistical mechanics) — are the source of
important practical and philosophical problems.

Turning this approach around, interesting questions about
the behavioral constraints on physical systems that perform
particular computations may be investigated. For example, it
might be argued that the Church-Turing thesis should be
included in any list of fundamental physical principles, along
with such things as the first and second laws of thermodynamics,
because it can be viewed as providing a basic limitation on the
behavior of (some suitable class of) physical systems. Such
considerations can lead to rather subtle conclusions about the
form of mathematical models suitable for describing the dynam-
ic behavior of physical systems (Pour-El & Richards 1981; 1982).

Add complexity considerations to those already mentioned
and a much richer, and probably more relevant, class of prob-
lems arises. The space and time complexity properties of com-
putational problems provide insights about the practical ca-
pability of providing solutions in the sense that important
resource requirements (usually taking the worst case over all
problems of a fixed size) are characterized. For certain intract-
able problems (i.e., for NP-Complete problems according to the
widely held hypothesis that P # NP), the time requirements for
solving problems grow faster than any polynomial function of
the problem size, whereas exponentially growing computation
time suffices. According to a strengthened version of the
Church-Turing thesis, with an appropriate notion of the re-
sources required by a physical computing system, NP-Com-
plete problems remain intractable for such systems (Vergis et al.
1986). For physical systems whose behavior is governed by
mathematical models that can be efficiently simulated by a
digital computer, the strengthened thesis can be proved. For
other systems, such as those modeled using probability or
chaotic behavior, verification of the strengthened thesis remains
as an open problem.

To determine the general laws of biological computation may
be viewed as the ultimate challenge of biocybernetics. For most
physiological systems of interest to neuroscientists — including
the human visual system, and in particular the visual search
system dealt with in Tsotsos’s target article — observed behav-
ior, often described in broad categorical terms, is described in
terms of empirical, external (i.e., input/output) models; struc-
tural information about the nature of the underlying internal
models (perhaps corresponding to a partial description of the
neural “wiring diagram” and a description of behavior at the
single neuron level) should be expected to provide only a crude
guide to computational limitations. More significantly, the va-
lidity of some general system design principle (Tsotsos’s mini-
mum cost principle falls in this category) is usually not clear, but
rather remains an assumption invoked for analytical conve-
nience. Finally, the requirement to pose biological computa-
tions in a form compatible with the precise mathematical for-
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mulation used in computational complexity analysis can easily
lead to results that depend in essential ways on immaterial,
unrecognized combinatorial intricacies.

From my perspective, the calculations and reasoning that
lead Tsotsos to his conclusions about visual search are not
particularly persuasive, although I am not equipped to evaluate
the conclusions in relation to the body of physiological and
psychological evidence. I suspect that the complex processes of
adaptation appearing at even the lowest level of visual informa-
tion processing lead to a much broader range of possibilities than
is suggested by Tsotsos’s emphasis on an attentive versus nonat-
tentive dichotomy of search processes. Knowledge representa-
tion, viewed from a symbolic “AI” perspective or from a connec-
tionist “PDP” perspective, must certainly be important in
guiding search processes. I am not convinced that computa-
tional complexity considerations are crucial to an understanding
of human visual search capabilities, or that they provide a good
motivation for the kind of conceptual algorithm for the visual
search process that is developed in Tsotsos’s article.

In conclusion, I wish to emphasize that my comments are
intended to counter the general impression I got from Tsotsos’s
article that computational complexity considerations are the key
to the development of an understanding of visual search. Tying
together a broad range of physiological and behavior evidence
with models of various kinds is a desirable goal of all efforts to
“reverse engineer” this process. The conceptual models devel-
oped in Tsotsos’s article can be expected to benefit those who
might attack the problem from other perspectives — computa-
tional learning theory is one that comes to mind — as well as
researchers in computer vision.

Task-dependent constraints on perceptual
architectures

Roy Eagleson

Centre for Cognitive Science, University of Western Ontario, London,
Ontario, Canada, N6A 5C2

Electronic mail: efroy@uwo.ca, elroy@uwovax.bitnet

There is little to criticise in Tsotsos’s target article taken as an
argument for certain ‘top-down’ influences in perception, and in
visual search tasks in particular. The historical support for
attentional mechanisms is well known in the psychology and
psychophysics of perception. In computational vision, Tsotsos’s
complexity-level analysis suggests new arguments against cer-
tain strictly bottom-up models.

Search tasks provide an exemplary arena for investigating the
complexity of vision, partly because of the amount of empirical
research that has been done on this perceptual task. Applying
complexity-level analysis to this task also raises the question of
the tractability of whole classes of perceptual problems, because
any general model of perception has a search-space component
that immediately raises the problem of intractability. Thus,
Tsotsos has highlighted an issue that is often swept under the
rug. This commentary will focus on how he has generalized this
treatment of visual search to encompass perception in general.

In vision, the dimensionality of the input “feature space” is
high. To make the problem of visual perception tractable, this
space must be systematically pruned in a way that effectively
limits access primarily to relevant information. However, when
dealing with the complete manifold of sensory inputs, it is in
general not possible to state a priori that any particular part of
the available information will not be relevant to the problem.
This, in microcosm, is the ubiquitous “frame problem” that
always haunts general AI (Pylyshyn 1987). Clearly, the search
space must be restricted. Tsotsos describes an architecture that
restricts the search space in a way that is effective in certain
tasks. However, as a general solution it is open to criticism.
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Citing a “minimum cost principle,” Tsotsos proposes that
computational efficiency in vision is increased by the use of a
parallel matching process, and by a restriction on the resolution
and spatial extent of feature maps. This is accomplished through
the use of a hierarchical organization of both the input maps and
the matching prototypes. Attention, on the other hand is viewed
as a selective tuning to relevant feature maps “through the input
abstraction hierarchy” in order to increase their resolution. This
additional constraint takes the form of an inhibitory beam that
restricts access to information that lies in a local region of the
feature space. These constraints are shown to be sufficient to
reduce the complexity of the visual search tasks selected by
Tsotsos. A question remains, however; do they apply to more
general visual search tasks, or to problems like computing the
spatial relationships of features?

The low-level transduction of features can be formalized using
the compact set-theoretic notation adopted by Bennett et al.
(1989). On the abstract space X (spanning the arbitrary percep-
tual dimensions relevant to the task), p, is a measure class for
some observation that is applied to the input signal by the
mapping f — [ fdw, defined over the receptive field of this
abstract “feature detector.” The specification of these measures
is the primary goal of vision research on the transducer level,
namely, how to specify the primitive features. In addition to
asking what measures exist, a bottom-up tradition would specify
the transformations or operations that would map these mea-
sures to more abstract representations. Using this terminology,
top-down influences would amount to a control structure, or
operations, on these mappings.

There is an additional use for attention that Tsotsos does not
consider, namely, its role as a spatial index. An indexing mecha-
nism is required to encode the conjunction of different feature
types in visual search tasks, or to encode the spatial relations
among a number of features. This requirement arises in tasks as
basic as contour parsing. For example, in the perception of
topological spaces (i.e., contours, surfaces, and so forth), a
spatial index provides the role of a parametric variable; it is
required in order to bind together entities that correspond to a
continuous connection over the response manifold of feature
detectors at each point. (For example, a contour can be de-
scribed by a systematic connection over the response of appro-
priate discontinuity detectors.)

This type of formulation characterizes a class of perceptual
problems that are not solved by cascaded transformations on the
input space. They require an algorithm for describing how to
encode the scene (. g., what primitive features are connected in
order to form a pattern). They are required for perception
in general, as well as for visual search. They are needed, in
particular, for executing what Ullman (1984) calls visual routines,
for encoding the spatial relations among places in an image
containing arbitrary features as well as for tracking moving
patterns (Pylyshyn 1989; Pylyshyn & Storm 1988). Extending
this argument in more general pattern recognition, Pylyshyn and
Biederman (1988) informally refer to the techniques used by
expert classifiers as “knowing where to look” in the input feature
space. This can be specified by the current data available in the
scene, and through acquired procedural knowledge. This type of
task-dependent search constraint is fundamentally different
from reducing the search space to local regions by an inhibitory
mechanism.

In the case of visual search, Tsotsos’s constraints are appropri-
ate for feature matching, when the problem can be solved by a
hierarchy of transformations. In problems where this is not the
case, there must be a provision for task-dependent constraints in
the perceptual architecture. Thus, this commentary pertains to
the general applicability of Tsotsos’s “minimal cost principle,”
which is not the major thrust of his paper. Tsotsos’s general
argument is not weakened by questions about the form of the
imposed constraints. Theoretical and empirical research should

448 BEHAVIORAL AND BRAIN SCIENCES (1990) 13:3

be combined in his framework to evaluate perceptual models
intractability.
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What are the insights gained from the
complexity analysis?
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There is no doubt in my mind that the task of visual processing in
general should and could be studied from the viewpoint of
complexity. Nevertheless, such an analysis has not really been
performed in the literature on computational vision, except for
earlier attempts by Tsotsos himself. There seems to have been
an implicit assumption that a high degree of spatial parallelism
would overcome all the complexity issues, even though it was
pointed out early (e.g., by Neisser 1967 and later by Ullman
1984) that such a view could not explain the performance of all
visual tasks. The analysis in the target article is accordingly
welcome. What can be discussed is the insight we gain from it. Is
the analysis providing us with important constraints and an
architectural design, as the author claims? Let us consider this
question of what the analysis really buys us by going through the
target article step by step.

The very first substantial reduction of complexity obtained, in
section 3.2, stems from the constraint that the receptive fields
are contiguous. This observation certainly can not be contested,
but it is not startling. Tsotsos starts out with a formulation of the
search problem that is based on arbitrary collections of loca-
tion/measurement pairs, a formulation that fails to capture any
structural properties of a world of coherent physical matter. The
insight gained here is perhaps that there exist architectures that
will create complexity problems, but this is not much to spend
words on.

The next factor to be considered in formula (4) reflects the
exponential dependence on the number of visual maps. We are
now coming to a problem for which the complexity argument
bears substantially more weight. First, there is no obvious
structure in the problem or in the environment that allows us to
avoid the exponential structure trivially. Second, the discussion
leading te the suggestion about pooled responses and abstraction
hierarchies is indeed plausible. It is perhaps not entirely moti-
vated to say that optimizations due to complexity predict these
features, but the complexity analysis certainly supplies us with
good arguments.

Similar remarks can be made about the conclusions based on
the minimum cost principle in section 4. The predictions made
are supported by the complexity argument, even though they
hardly follow in a strict logical sense, because other architec-
tures are in principle possible (as is also pointed out early in the
target article). For example, consider the suggestion about an
inhibitory attentional beam. From a computational viewpoint,
this idea is very interesting and satisfies the stated criteria.
However, in its present form it hardly captures the dynamics of
a computational visual system responding to continuously vary-
ing input, which is the real-life situation. So the proposed model
is not as much a prediction as a model that satisfies the condi-
tions given.



To conclude, I think that it is both useful and necessary to
apply complexity arguments in modeling a visual system in
computational terms. Much insight can thereby be gained.
However, it is not equally clear in which directions the implica-
tions go. Can we make precise predictions about the possible
architectures or can we just check which models (obtained by
other means) satisfy the complexity bounds? Be that as it may,
the approach should be pursued.

Is unbounded visual search intractable?

Andrew Heathcote and D. J. K. Mewhort
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Tsotsos defines two types of visual search: bounded, in which a
representation of the target is used in the search, and un-
bounded, in which such a representation is not used, as in an
odd-man-out or unique-item problem. Tsotsos equates un-
bounded visual search with unbounded matching when using an
invariant prototype. Because unbounded matching is NP-Com-
plete, he claims that unbounded search is also NP-Complete.
His claim permits him to apply an analysis of matching to search.

We cannot prove that, in general, unbounded matching is not
equivalent to unbounded visual search. However, we can show
that Tsotsos’s only example of unbounded search can be solved
by a tractable algorithm. Specifically, for each pixel in the
image, calculate the absolute difference between that pixel’s
measure and each of the other pixels’ measure. Sum the result-
ing absolute differences. Repeat the operation for each relevant
dimension, and sum the sums across dimensions. Pixels from
the unique item will have the largest total (see Cave & Wolfe, in
press, for a similar algorithm).

The complexity of our algorithm is O(M X N X (N-1)), where
M is the number of types of measure and N is the number of
pixels. Hence, Tsotsos’s only example of unbounded search can
be computed in polynomial time: It is not NP-Complete like
unbounded matching. Tsotsos has not given us an example of
intractable search; hence, the optimizations he developed may
be useful to promote efficiency, but are not necessary to ensure
tractability.

What does eomplexity analysis tells us about bounded visual
search? Tsotsos suggests that bounded search can be solved by
matching target templates to the image, where each template is
centered over each pixel. He claims that “the inherent com-
putational nature of the problem strongly suggests that atten-
tional influences play an important part.” Treisman’s (1988)
model could execute this algorithm with a serial attentional
operator and Tsotsos appears to equate his algorithm with such a
serial instantiation. However, the complexity analysis does not
imply serial processing. A plausible alternative is spatially paral-
lel detection by limited capacity filters. Tsotsos acknowledges a
role for adaptive filters in his proposed image-abstraction hier-
archy; he thereby provides a mechanism by which a parallel
detection algorithm could be instantiated. If we stipulate that
the filters are tuned by practice, we can avoid the combinatorial
explosion implicit in proposing parallel filters at each point in
the image for all target types. Thus, the “inherent computa-
tional nature of the problem” suggests little about the role of
attention in bounded search.

The algorithm for bounded visual search has “linear time
complexity in the size of the image.” Tsotsos cites the experi-
mental results reviewed by Treisman (1985) in support. Treis-
man’s results, however, were linear in the number of objects (or
groups of objects, see Treisman 1982) rather than in the number
of pixels. Tsotsos uses number of pixels and size of image
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interchangeably (see sect. 2.3, para. 4). Hence, he cannot use
Treisman’s data for support. In addition, search times do not
appear to be strictly linear under fine-grained analysis (Pashler
1987).

Complexity analysis reveals that most of the computational
cost of visual search results from the large number of possible
pixel sets. Tsotsos reduces the number of pixel sets to be
searched in two ways. First, only sets containing contiguous
pixels are considered. Second, an image-abstraction hierarchy
produces a compact representation of the input image “by
reducing the resolution of the visual image and simultaneously
abstracting the input to maintain its semantic content.” The
compact image contains fewer pixels than the original; hence,
searching it is cheaper.

Preprocessing of the image to produce a compact representa-
tion will result in the loss of some information and hence should
increase the likelihood of errors in the search process. To
increase accuracy, Tsotsos suggests that potential matches
found by searching the compact image are checked by analyzing
the corresponding area in the original image. Access to the
original image is gained by changing the processing carried out
by the image-abstraction hierarchy to produce an inhibitory
winner-takes-all “spotlight.” Note that this scheme is similar to
Wolfe et al.’s (1989) guided search model: Both use a coarse
parallel analysis of the image to direct a fine-grained serial

analysis.
A final word of caution. Tsotsos claims that considerations of
“computational complexity . . . lead directly to ‘hard’ con-

straints on the architecture of visual systems.” We agree that
tractability is a real constraint. When comparing tractable al-
gorithms, however, Tsotsos clearly prefers simplicity and as-
sumes that simplicity has the logical status of tractability. For
example, he chooses an inhibitory rather than excitatory win-
ner-takes-all scheme for attentive selection (both being tracta-
ble) because of a savings in computation. When comparing
tractable algorithms, however, the less complex algorithm is not
necessarily the one that will be used by biological vision.
“Because a simple task could, theoretically, be handled by a
simple mechanism does not mean in fact that the brain handles it
that way . . . in the complex brain of a higher animal other
mechanisms may insist on getting into the act” (Hebb 1958, p.
453). What is economical for one problem may lead to costs for
another.

Analyzing vision at the complexity level:
Misplaced complexity?

Lester E. Krueger and Chiou-Yueh Tsav
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According to Tsotsos, the computational constraints on visual
search “argue for an attentional mechanism that exploits knowl-
edge of the specific problem being solved” (Tsotsos’s abstract).
In this commentary, we argue that Tsotsos’s analysis is question-
able in three respects. First, it is conceivable that noncomputa-
tional processes (“smart” perceptual mechanisms: Runeson
1977) enable the perceiver to escape some of the constraints
Tsotsos cites. Second, the decision processes involved in in-
terpreting the matching or mismatching features obtained by
the perceptual processes are more complicated than Tsotsos
allows. Thus, Tsotsos has misplaced the complexity; the truly
complex processes in visual search may be at the decisional level
(Eriksen et al. 1982), rather than at the perceptual level. Third,
attention may rarely produce a top-down tuning of feature
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extraction or comparison, as depicted by Tsotsos, and when it
does the effect may involve perceptual enhancement more often
than inhibition (Proctor 1981). Each of these three points will be
addressed in tum.

1. Noncomputational perceptual processes. Tsotsos states that
the general problem of visual search is computationally intracta-
ble, and that visual search is only made tractable and biologically
plausible through approximations and by optimizing the re-
sources devoted to visual processing. Tsotsos implicitly rules
out the possibility that noncomputational processes may pro-
vide viable alternatives to computational ones. Runeson (1977)
has described tools, such as the polar planimeter (used to
measure the area of irregular shapes), that perform no explicit
computation, yet extract complex variables from the environ-
ment. Similar smart mechanisms within the perceiver may
“directly register complex variables” (Runeson, p. 172). Thus,
in visual search, brain mechanisms may “resonate to” the
matching items in the display (Gibson 1966, 1979). Although
smart perceptual mechanisms are more likely to operate in an
analog than a digital manner, they are not required to do so
(Runeson 1977); their key property is that they “capitalize on the
peculiarities of the situation and the task, i.e., use shortcuts,
etc.” (Runeson, p. 174); for example, “there are many systems in
which global minima can be found using only local interactions”
(Marr 1982, pp. 186-87). Highly efficient, hardwired, spe-
cialized modules (Fodor 1985; Marr 1982) or smart mechanisms
(Runeson) may thus obviate the need for the softwired, general-
purpose attentional mechanisms proposed by Tsotsos.

An important constraint cited by Tsotsos is that “each neuron
can receive input from about 1,000 other neurons and can
provide output for about 1,000 other neurons, on average” (sect.
4.4, para. 2). However, if brain fields or other large entities are
active and effective, then such a constraint need not apply.
Evoked neuromagnetic fields, for example, have been mapped
in the visual, auditory, and somatosensory cortices (Kaufman et
al. 1984; Okada et al. 1984); it is conceivable that these patches
of neuromagnetically active brain tissue provide smart mecha-
nisms for perceiving, attending, and related activities.

Tsotsos writes that “the speed-up due to parallelism is clearly
significant, but it surely cannot be as large as the number of
neurons in the brain, 1019”7 (sect. 2.5, para 6). However, an
alternative view would take as the basic unit not the neuron, but
the far more numerous molecule, atom, or subatomic particle.
Smart mechanisms may make use of the mechanical, chemical,
neuromagnetic, and/or electrical properties of portions of the
brain in undreamed-of ways, so as to perform, in effect, certain
computations, and to do so virtually instantaneously (Runeson
1977). The cochlea provides a good example of such a possibility.
As depicted in the place theory of pitch perception (Bekesy
1956), mechanical properties (stifiness, width at various inter-
vals) determine where on the cochlea a particular auditory
frequency will produce its maximum displacement.

Tsotsos depicts perceptual processes that might well be sim-
plified and streamlined by smart mechanisms. He postulates
(section 2.2) that both the sum of differences, diff(p), between
the test item and target item, and the cross-correlation of
matching features, corr(p), are considered by the perceiver.
These two measures vary in an apparently independent manner
(see table at end of section 2.2) for the Test Items A to F shown in
Figure 1 of the target article, as would be expected if the two
measures were sensitive to truly independent factors. How-
ever, for a fixed size of stimulus, the number of matching
features (sameness count) is necessarily inversely related to the
number of mismatching features (difference count). The reason
that Tsotsos’s two measures are not more closely related is that
in computing the cross correlation, he assigns a value of 1 to
darker (figural) elements, and a value of 0 to lighter (back-
ground) elements. Thus, only the cross product for matching
darker (figural) elements can lead to an increment in the cross-
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correlation measure; the cross product is zero for positions in
which the lighter (background) elements match. However, in
visual search, figural or target items may be either lighter or
darker than the background elements; either type of figure can
be detected about equally well. Thus, Tsotsos’s cross-correla-
tion measure is rather dubious. A highly efficient (i.e., smart)
mechanism would probably rely on only a single measure —
either the sameness count (Eriksen et al. 1982) or the difference
count (Krueger 1978) — in deciding whether a match was
present.

2. Decision processes. Would that visual search were (as
Tsotsos depicts it) so simple that it ended as soon as a sufficiently
high sameness count and/or a sufficiently low difference count
was obtained. In actuality, the perceiver faces a far more
difficult situation. In odd-man-out comparisons, for example,
the true difference count between two adjacent mismatching
items may be underestimated early in processing, owing to
delayed features (Eriksen et al. 1982; Krueger & Chignell 1985),
and then overestimated somewhat later in processing, owing to
the effect of internal noise (Krueger 1978). Tsotsos’s model
“includes the possibility of noisy or partial matches” (sect. 2.2,
para. 1), but it is primarily deterministic in tone and orientation.
Tsotsos takes no account of stochastic processes that produce
variability in the arrival rate or time of features early in process-
ing and perturbations in feature extraction and comparison
processes somewhat later. He concedes (section 5.2.12) that
failure to detect a match in the display may lead to rechecking
(see Krueger 1978), but he states that “such issues are beyond
the scope of this paper.” Such issues may be quite important for
his model, however, because they may determine the extent to
which visual search is computationally tractable. In particular,
variability may hobble the attentional mechanisms that Tsotsos
uses to make visual search biologically plausible.

3. Cognitive impenetrability of perception. Whether an inhib-
itory attentional beam operates in a top-down manner so as to
select stimulus qualities (patterns or feature maps; spatial areas)
of interest, as Tsotsos claims, is doubtful. Top-down, cognitive
processes may affect where a perceiver is attending in space, but
they typically have little effect on what features are extracted or
compared (Fodor 1985; Krueger 1989; Marr 1982). A seeming
exception to the latter rule is Proctor’s (1981) priming principle,
which posits sensory tuning at feature extracting or comparison
owing to the prior presentation of a (priming) character (for
supporting evidence see, e.g., Chignell & Krueger 1984; Proc-
tor & Rao 1983). However, this tuning may be due to a lower-
level sensory or perceptual persistence rather than to attention
per se. Furthermore, the tuning involves not an inhibition of
nonfavored patterns, as Tsotsos favors in his model, but a
facilitation or enhancement in the encoding of the expected
(primed) pattern (see, e.g., Chignell & Krueger 1984; Proctor &
Rao 1983).

Complexity is complicated

Paul R. Kube

Department of Computer Science and Engineering, University of California,
San Diego, La Jolla, CA 92093.

Electronic malil: kube%cs@ucsd.edu

In sections 1 and 2 of his paper, Tsotsos defines “unbounded
visual search” (UVS) and presents arguments that it is intracta-
ble; in sections 3 through 5, he uses this result as part of an
analysis of trade-offs among resources in a biologically plausible
architecture for vision. I think that the arguments in the first
sections are somewhat unsatisfactory for reasons I will discuss
below. However, I think much of the complexity-satisfaction
analysis in the later sections is useful and important, and so I will



also suggest a way it can proceed independently of the prole-
gomena,

I will argue that

L. Under a reasonable assumption about realizable pho-
toreceptors, UVS is not NP-Complete for a visual system;

2. Even if UVS were NP-Complete, it can’t be claimed to be
exponential;

3. Inany case, UVS is not a satisfactory model of a hard visual
search problem.

I will consider each of these points in turn and close with some
constructive comments about how Tsotsos’s project can proceed
in spite of them.

1. Tsotsos is considering the question: “How computa-
tionally difficult are the tasks presented to subjects?” (sect. 2.1,
para. 1). Because his goal is to deduce constraints on the
architecture of the visual system from the requirement that it
solve hard problems as best it can, it is reasonable to consider its
behavior in the face of a problem that will challenge its computa-
tional resources. It should not seem germane to the analysis of a
visual system’s architecture that a task might be hard merely
because it requires making brightness discriminations that are
beyond the dynamic range of its photosensors, for example,
whereas it is germane that the task require discriminating
spatially complex brightness patterns. To this end, Tsotsos
defines the “unbounded visual search” problem (UVS) and
states (sect. 2.3) that it is NP-Complete, by reduction from the
Knapsack problem.

However, it is important to note that Knapsack is not NP-
Complete “in the strong sense” (Garey & Johnson 1979, p- 95);
it has a known polynomial-time algorithm if the magnitude of
the integers in the set isn’t allowed to grow as an exponential
function of the size of the set (Bellman 1954). Similarly, UVS is
NP-Complete only if the fixed-precision numbers m; represent-
ing image parameters are unbounded by any polynomial of the
size of the test image I. Now retinal photoreceptors have a
limited dynamic range, and the best video cameras deliver only
10 or 12 bits per pixel independent of total sensor area; the
requirement that the dynamic range of the individual photosen-
sors grow exponentially (or even polynomially!) with retinal area
seems truly unrealizable. But if it can’t be met, then the system
behind the sensors can’t even be given NP-Complete UVS
problems to solve, so there is no reasons for its architecture to be
optimized to attempt to solve them. It would seem preferable,
in this context, to consider a visual problem that is NP-Com..
plete in the size of the retina alone; but see below.

2. Tsotsos appears to need an exponential visual search prob-
lem to start his complexity-satisfaction analysis in section 2.5
(see Equation (2)); and he claims (sect. 2.3, para. 4; sect. 2.5,
para. 1; sect. 2.5, para. 2; and elsewhere) to have shown that
UVS is inherently exponential. However, even if UVS were NP-
Complete in the relevant sense, to show that it has an exponen-
tial lower time bound on a deterministic machine would be to
answer the most important unsolved question in complexity
theory — viz. whether P = NP — and Tsotsos hasn’t done that. Of
course, Tsotsos is aware of this (e.g., sect. 1.4, para. 5); but
remarks such as “it has been shown that the only possible
solution {to the NP-Complete Knapsack problem] is to search
through all possible subsets of numbers in the list” (sect. 1.3,
para. 7), though simply false, suggests that he does want a
provably exponential problem for his analysis. If so, given the
present state of the art in the theory of complexity, he needs one
that is harder than NP-Complete. One could describe a more or
less plausible, provably exponential search problem on a binary
retina (eliminating the photoreceptor dynamic-range problem);
but below I will argue instead that such a problem is not needed
for the most interesting parts of his complexity-satisfaction
analysis.

3. Besides not being plausibly NP-Complete and not pres-
ently provably exponential, UVS appears to be an unnatural
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visual search problem. In section 2.2, paragraph 2, Tsotsos says
that unbounded visual search is search “in which either the
target is explicitly unknown in advance or it is somehow not used
in the execution of the search,” and this seems reasonable.
However, his formal description of UVS has neither of these
properties, because it requires for its solution that the target T
be both known and used — in particular, the spatial structure of T
must be known in order to compute the functions diff and corr.
Given this, the requirement that the spatial structure of the
target not be used in the obvious way to prune the search seems
an unsatisfyingly artificial restriction on the solution to the
problem. And it’s hard to see what the result has to do with the
intuitive idea of “odd-man-out” search, where the problem
appears to lie in computing what the target should be, not
finding which subset of the image best fits a single, already given
target.

Two classes of more appropriate hard visual search problems
suggest themselves: Those in which the system is really re-
quired to search every subset of the image, thus guaranteeing
exponential (not just NP-Complete) time complexity; and those
in which the problem turns on finding the best match between
the image and members of a large set of stored visual prototypes.
Intuitively, these are mutually exclusive problem classes, be-
cause the structure of each visual prototype should permit
computing a match while restricting image accesses to a poly-
nomial in image size (that UVS tries to have it both ways is what
makes it unsatisfactory). But if the use of prototypes for search
precludes the need to search all image subsets, then Equation
(2), which relates them,is inappropriate as a starting point.

I suggest that the second class of problem — unrestr‘icted,
prototype-directed visual search — is the right choice, and that
Equation (7), not Equation (2), should be taken as the starting
point of complexity-satisfaction analysis. If prototypes represent
shape only, then before being matched with an image each one
must be transformed by scaling, translation, and perhaps rota-
tion, and it must have specified for each which subset of the set
of possible image features defines the contrasts that determine
its structure. (An edge can, in general, be determined by
contrasts in any combination of brightness, motion, stereo
disparity, color, texture, and so forth (see, e.g., Cavanagh 1987).
Ignoring rotation, this immediately gives as a complexity func-
tion for unrestricted search O(N3 X 2m X VP), which is identical
to Equation (7) on a hexagonal retina of order N. The analysis of
complexity satisfaction can be resumed from this point. Note
that in this framework, all the differences in complexity between
“odd-man-out” and target-directed search are due to the dif-
ference between potentially having to search the entire trans-
formed visual prototype knowledge base or not; and this will
typically be a substantial difference.

The result is a problem that isn’t exponential, or even NP-
Complete, in image size. But that’s all right. It is still a hard
enough problem to put interesting constraints on the architec-
ture of a system that wants to solve it, as the rest of Tsotsos’s
analysis shows.

Probability theory as an alternative to
complexity

David G. Lowe
Computer Science Department, University of British Columbia, Vancouver,

B.C., Canada V6T 1W5.
Electronic mail: lowe@vision.cs.ubc.ca or lowe%ubc@relay.cs.net

To create a scientific theory of vision — as opposed to a theory ofa
particular biological or computer visual system — one must
understand the computational constraints faced by any system
performing particular visual tasks. Tsotsos’s target article is one

BEHAVIORAL AND BRAIN SCIENCES (1990) 13:3 451



Commentary/Tsotsos: Vision and complexity

of the few to take such a general approach, and it has deservedly
attracted considerably attention and interest.

Unfortunately, complexity theory can give us only rather
weak constraints on the design of a practical system. It is only
used to rule out the exact solution of the most difficult possible
(worst-case) instance of a problem. There is no requirement that
biological systems have perfect performance in all possible
cases, so they are not generally constrained by complexity
theory. As Tsotsos points out, complexity theory is still useful for
ruling out certain problem definitions as intractable, and this is
the useful role that it plays in his paper. However, he overstates
his case by saying that “after all, the worst case does occur in
practice as well.” In fact, the worst case addressed by complex-
ity theory typically has a vanishingly small chance of occurring
during a system’s lifetime and is therefore unlikely to influence
practical design.

In the second half of the article, Tsotsos moves away from
complexity theory to the stronger constraints embodied in
algorithmic analysis. He uses this more specific analysis to make
many valid points about the computational importance of atten-
tion. The one missing ingredient here is a justification for the
importance of visual search. It is simple to set up a computa-
tionally challenging laboratory task, but its constraints on the
design of visual systems depend on whether the task is necessary
for achieving useful goals in the interpretation of natural images.
Some forms of visual search are clearly of great value for higher-
level tasks (e.g., recognition), but it may not be necessary to
perform them in the full generality specified by Tsotsos.

There is an alternative theoretical tool for studying the gener-
al computational constraints on vision that I have chosen to use
in my own work. This is to analyze visual performance in terms
of probability theory, which allows for explicit trade-offs be-
tween visual goals and computational constraints. The proba-
bilistic approach is based on the assumption that perfect visual
performance is impossible (due to inherent ambiguities in the
data) and that therefore the goal of a system is to maximize the
probability of making correct interpretations (Lowe 1990). If
successes and failures are weighted according to their survival
value to the animal, then it can be argued that this is the design
criterion imposed on biological visual systems by evolution. To
the extent that all visual systems face the same ambiguities in
their input, they will all need to incorporate the same proba-
bilistic inferences to optimize performance.

It might seem that the probabilistic approach requires too
much knowledge about every possible input to a visual system.
However, there are many cases in which the properties of vision
itself (e.g., the projection function from 3-D to 2-D) constrain
the probabilistic distribution of inputs. For example, grouping
elements in a local neighborhood rather than an entire image
can be justified because the probability that two features arise
from the same object varies as the inverse square of their
separation (see Lowe 1985; 1987, for a full analysis). This
provides a justification for the local “spotlight of attention” that
shows it can enhance performance as well as merely limit

computation. Similar methods can show the value of grouping
image features according to connectivity, collinearity, paral-
lelism, and symmetries. Full system optimization requires trad-
ing off the probabilistic value of each grouping with the com-
putational cost of its derivation. It is notable that connectionist
learning procedures can also be seen as optimizing a very similar
probabilistic function over a space of inputs (Hinton 1989) and
that they thereby function as an empirical approach to deriving
the same set of probabilistic inferences.

Tsotsos has taken an important step in the difficult task of
deriving general constraints on the computational structure of
any visual system. The logical extension of this work is to
consider not only worst-case performance, but also the average
case that is addressed by probabilistic analysis.
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Support for an intermediate pictorial
representation

Michael Mohnhaupt and Bernd Neumann
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neumann@rz.informatik.uni-hamburg.dbp.de

First, we will make a general comment about the importance of
complexity-level analysis for vision; second, we will draw some
important conclusions from the visual search scheme proposed
in Tsotsos’s target article.

Complexity-level analysis is a logically necessary conse-
quence of adopting the information-processing paradigm for
vision and cognition. One cannot think in information-process-
ing terms without recognizing the relevance of complexity
barriers. Complexity-level analysis can contribute to our under-
standing: (1) because it is a powerful instrument for choosing
among alternative architectures as impressively shown by the
target article, and (2) because its implications offer a strong basis
for falsification. The potentially dramatic implications have
become evident recently when Chen (1982; 1989) hypothesized
that topological features can be extracted by the visual system
faster than simple geometric features. If this were true, the
information-processing explanation would be doomed as the
computation of topological properties is known to be more
complex and the computation of local geometric features (see
Minsky & Papert 1969). Fortunately, in Rubin & Kanwisher
(1985) and Liu et al. (1989) counter explanations for Chen’s
experiments are provided.

In the following we focus on one important point of the
proposed algorithm for visual search in Tsotsos’s section 5.2. A
crucial step is the transformation of candidate representations to
target representations (section 5.2.7). This is particularly diffi-
cult if the algorithm is applied to a more general situation in
which the target is not given explicitly in the stimulus, but
through other information sources. For example, it might be
given through spatiotemporal context, general expectations
about the scene, or language cues. This includes situations
where only prototype information is available and the detailed
shape of the target is unspecified.

The target article points out the need for intermediate repre-
sentations to match items against targets as a consequence of
complexity-level analysis. This ties in with interesting results
concerning the type of information that might be contained in
such an intermediate representation. From the work of Rosch et
al. (1976) and Rosch (1978), it is well known that information
about basic-level categories can facilitate perception, but prim-
ing with a superordinate category does not lead to a significant
speed up. Basic-level categories are the highest level of abstrac-
tion for which there is a clearly definable visual shape. Rosch
and coauthors conclude that top-down control is performed by
forming mental images, which cannot be generated from super-
ordinate categories. Hence, the intermediate representation for
matching targets against items, which is a necessary conse-
quence of the complexity level analysis, should not be consid-
ered above the mental-image abstraction level.

We view this as additional support for a spatial or spatiotem-
poral pictorial buffer and associated local and parallel processes
whose main task is to combine bottom-up and top-down infor-
mation. There is growing evidence for a shared imagelike
representation from psychological (see, e.g., Finke 1985) and
psychophysical experiments (see, e.g., Farah 1985). In addi-
tion, there is recent work in artificial intelligence investigating
the computational properties of pictorial representations and
local and parallel processes working on such representations
(see Larkin & Simon 1987; Steels 1988; Gardin & Meltzer 1989;
Mohnhaupt & Neumann 1990). In this research a pictorial
buffer is used for top-down motion recognition, for learning
from observation, path-planning and several aspects of spa-
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tiotemporal reasoning. Ullman (1989) presents an approach to
object recognition by aligning pictorial descriptions. It is com-
monly argued in all the approaches that a pictorial representa-
tion and its local processes are computationally advantageous for
tasks related to concrete visual objects. (Tsotsos would probably
call this a “second order complexity consideration.”) The work
provides an operational definition of “pictorial thinking”: (1) fill
the buffer with the necessary information, typically with object
views, (2) apply local spreading-activation processes to perform
certain operations, and (3) read off the answer.

From this perspective we view Tsotsos’s work as strong
support for investigating mental images and associated functions
in biological systems, as well as pictorial representations and
their computational properties in artificial systems. In artificial
intelligence these questions have been underrated, despite
some promising early work (see, e.g., Sloman 1975; Kosslyn
1980; Funt 1980).

Is it really that complex? After all, there are
no green elephants

Raiph M. Siegel

Thomas J. Watson Research Laboratory, International Business Machines,
Yorktown Heights, NY 10598.

Electronic mall: axon@ibm.com

The brain solves very complex problems. There is no question
that even the simplest cognitive problems handled by the brain
can have combinatorial possible solutions. If the derivations of
the target article are correct, the exact solution of such visual
problems is NP-Complete. Yet, in spite of the difficulties en-
countered by the brain, it is able to find a workable solution to
cognitive problems quickly, either by elegant Marr-like solu-
tions (1982) or by Ramachandran-like (1985) shortcuts.

Evolution has provided us with functioning neural systems.
Many researchers, as is well documented in the target article,
have analyzed the real biological constraints embedded in the
neural wetware. The target article admirably tries to mix biolog-
ical knowledge with theoretical complexity analysis, bringing
into focus cortical mappings and attentional mechanisms.

But Tsotsos perhaps ignores the most essential facets of real
brain organization. Real neural networks consist of millions of
neurons. Each neuron is highly nonlinear in its temporal and
spatial properties (e.g., Llinas & Yarom 1986). The power of an
individual neuron in integrating incoming action-potential traf-
fic is slowly becoming clear (Miller et al. 1985; Llinas & Yarom
1986; Gamble & Koch 1847; Shepard & Brayton 1987). And each
neuron is heavily interconnected to many others. The beauty of
the brain is that because of all this implementation complexity,
it can solve the really tough, perhaps even NP-Complete prob-
lems of the real world. This view of vision contrasts with
Tsotsos’s “analysis at the complexity level” (sect. 1.1, para. 6).

The target article suggests, following on Neisser's (1967)
results, that sheer neuronal parallelism is not enough to solve
visual matching problems based on some back-of-the-envelope
computations (Equations 2 through 4, and Table 1). The number
of “matching operations” (sect 2.5, para. 3) to perform visual
search is extremely large. The number, however, is based on (1)
the introspective argument that there is something like a “visual
dictionary” in the brain’s memory (parameter VP), (2) the idea
that something equivalent to pixels exists in the brain (param-
eter P), and (3) the idea that there is an actual number of
independent parameters of the visual image (parameter M).
What happens to the meaning of these numbers if the brain does
not use something like “visual prototype” or “dictionary” and is
not making comparisons between internal templates and the
external environment? What if the visual system computes in
analog without individual elements like pixels? Finally, what if
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certain combinations of visual parameters just do not occur in
the real world? There are no green elephants. How does one
alter the equations to implement these bottom-up constraints?
The visual system has evolved; it develops and functions in a
domain of parameters given by the real environment. The
numbers derived for the requisite “matching operations,” and
corresponding amounts of parallelism () do not make sense in
light of the real stuff of the brain.

How much processing can be performed by the dynamic
properties of the real neurons? A number of workers (Zucker
1983; Skarda & Freeman 1987; Hopfield & Tank 1986; Sporns et
al. 1989) talk of solving problems of pattern recognition by
relaxing the dynamics of neural systems to either a steady state
or strange attractors. Experimental evidence for such dynamics
is now being sought (Skarda & Freeman 1987; Eckhorn et al.
1988; Gray & Singer 1989; Siegel 1990). Where is the interface
between these bottom-up approaches to the visual system and
the top-down approach of complexity theory?

Clearly a proper exposition of the problems of vision is
important and, in this regard, the target article is quite valuable.
However, it remains to be seen whether it is possible to derive
solutions to real-world problems from such principles. The
construction of models for vision and, by extension, brain
function, is more likely to draw on the vast range of experimen-
tal findings concerning how the brain actually works. More may
be understood from a study of the modes of behavior of real and
richly complex biological systems as they solve the difficult
problems of visual perception, cognition, and motor activity.

Algorithmic complexity analysis does not
apply to behaving organisms

Gary W. Strong

College of Information Studies, Drexel University, Philadelphia, PA 19104.
Electronic mall: strong@duvm.bitnet or strong@duvm.ocs.drexel.edu

Tsotsos describes his methodology for analyzing vision by mak-
ing an analogy with building a house (sect. 1.1): First you must
start with “the internal wood frame”; then you “can begin to add
detail.” It is unfortunate if the house plar is predetermined by a
particular architectural approach, however, because then the
frame and the details are constrained by the approach rather
than by the needs of the occupants. In an analogous fashion, I
believe that Tsotsos’s analysis of vision is constrained more by
computational theory than by human vision; as a result, it does
not meet the needs of those wishing to understand vision.
Although there are a few other problems with the target article,
such as the unclear relationship between the two Knapsack
problems (sects. 1.3 & 2.3) and Tsotsos’s unwarranted use of the
neuroscience term “columnar organization” for a purpose other
than it is generally used, my comments will be restricted to a
criticism of the particular architecture by which Tsotsos con-
structs his house.

In brief, I am not convinced that computational complexity
theory, as currently conceived, is adequate for modeling the
information processes of biological organisms. There are prob-
lems with analyzing a behavior into its time and space require-
ments as Tsotsos does. The most inappropriate assumption is
that all of the complexity is within the organism. Consider the
case where a behaving organism uses the complexity of the
(external) stimulus array to defray the cost of internal processing
complexity (the “don’t carry anything you can readily find later”
principle). The impression I have of my own vision is that off-
fovea information is extremely degraded, but that it is there if I
wish to process it and that, until I process it, it exists in my head
in only a very simple form, rather than displaying all its com-
plexity. Tsotsos’s goal of making “no assumptions about how the
data may be presented or organized” (sect. 2.2) is therefore
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inappropriate. It is equivalent to putting the entire problem in
the head, which would seem to be absurd for a perception
problem. Tsotsos asks “How can a computational model be
defined using experimental results from biology if one does not
first understand fully the computational nature of the experi-
ment itself?” (section 2.1) I second this question.

Besides the fact that the problem itself has been inap-
propriately framed, I believe that there are additional problems
with basing a complexity analysis of perception on a proposi-
tional account of images. [“A test image I is the set of pix-
el/measurement quadruples (x,y,j,m,)” (section 2.2).] Not only
does this analysis assume that the entire image is in the head at
the same time, it also assumes that measurements used in
perception are all local. They are not. Such an account leads to
difference and correlation functions that do not relate well to
human behavior.

For example, Figure 1 would produce a large difference and a
zero correlation using Tsotsos’s formulae. A human, however,
would consider it a very good match to the target image of
Figure 1(a) of the target article. It is unfortunate that Tsotsos’s
whole argument requires one to accept the computational char-
acterization; otherwise, the reader is still free to infer that
human visual search has linear time complexity in the un-
bounded case. Tsotsos is aware of this criticism, because he
states (sect. 2.2) that “there is no claim here that the algorithm
necessarily corresponds to human performance.” This is an
unfair claim, because most of the target article seems to indicate
otherwise: Terms such as perception and attention are used with
reference to human performance — unless the reader is to infer
that Tsotsos means only machine perception and attention
(which would be misuse of the terms).

If we suspend disbelief on the issue of whether or not such a
complexity analysis can be applied to vision, we can see how
Tsotsos might claim it has value anyway. In section 2.5, it is
claimed that the number of matching operations (which is the
basis for complexity evaluations) is related to the “power set of
all locations times parameter types.” This results in a very large
value for the number of operations. Instead, consider a “brain”
that factors measurements into types, as does the Tsotsos’s
model, but where the types are not independent. For example,
color discrimination and location discrimination may be com-
pensatory, in that fine-grained analysis of color may come at the
expense of a loss of discrimination in location. Intuitively, this
seems true in humans. (Try to match colors with the tiny color
chips supplied by some paint stores.) In order to reduce the

Figure 1. (Strong). An illusion of a rectangular frame over four
black circles.
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complexity of the independence assumption, Tsotsos defines a
receptive field in section 3.2 that “requires that tokens for each
selected type of parameter be used for each location across the
receptive field.” Thus, the complexity analysis has led Tsotsos
into a consideration of what seems to be a human limitation of
visual perception. (See Strong & Whitehead 1989, for a neural
network model that uses global feature detectors to construct
representations. )

Such an approach is fraught with difficulty, however, because
of the seemingly ad hoc consideration of ways to limit complex-
ity. For example, I suggest that hierarchy is not the best way to
defeat complexity, in opposition to Simon (1962), who is cited by
Tsotsos in section 3.2, note 10. A better way might be Holland’s
(1975) “intrinsic parallelism,” which is based on overlapping
subsets, not hierarchies (see also Goldberg 1989). With Hol-
land’s approach a hierarchical binary tree of explicit prototypes
is not necessary because optimization can be achieved without
explicit search by using Holland’s genetic algorithm expressed
in terms of cell assemblies. (See Davis 1989 for a mapping of
Holland’s formalism onto neural networks.) An additional ad-
vantage of such an approach is that the connectivity explosion
referred to by Tsotsos (Section 4.4) can be addressed. Neurons
don’t have to be connected one-on-one within cell assembly
populations; there only need be enough connections for feed-
back to maintain activity within cell assembly over a period of
time. His concern for numbers of connections causes Tsotsos to
come to a conclusion that is at variance with the neuroscience
literature: that “there can be no connections from the [receptive
field] processors to any of the larger maps in the input abstrac-
tion hierarchy” because “the number of such connections would
be prohibitive” (section 4.5). Contrary to this view, there appear
to be feedback connections throughout the cortex, including
back down the “abstraction hierarchy” (Goldman-Rakic 1988).
There must therefore be some yet unexplained mechanism that
combines constraints in the reverse direction. Tsotsos needs
this himself when he considers the recombination of multiple
pathways by the intersection of attentional “beams” from above
in his bounded-vision case.

Search and the detection and integration of
features

Anne Treisman
Department of Psychology, University of California, Berkeley, CA 94720
Electronic mail: treisman@violet.berkeley.edu

Tsotsos raises some important issues concerning computational
complexity in visual coding, from which he derives a model of
visual attention and search. He relates his conclusions to behav-
ioral data, some of which I reported, and compares and contrasts
his theoretical suggestions with mine, among others. My com-
mentary has a narrow focus relative to this ambitious scheme. I
will restrict my remarks to clarifying two issues related to my
account of visual attention and feature integration. The first
concerns the general architecture we proposed for the visual
system and for the role of attention; the second concerns the use
of search to throw light on visual features.

Tsotsos suggests that I have put forward two different models
for feature integration and am reluctant to choose between
them. I believe there is a confusion here, both about the
alternative hypotheses and about the selection I made. I wrote
(not too seriously) “I have hedged my bets on where to put the
master-map of locations by publishing two versions of the figure!
In one of them, the location map receives the output of the
feature modules (Treisman 1986) and in the other it is placed at
an earlier stage of analysis” (Treisman 1988, p. 203—4). This
ordering of levels has nothing to do with the idea that attention
may be modulated by inhibition from feature maps. It concerns



whether visual stimuli are initially represented as conjunctions
in a location-addressable but not content-addressable form, and
subsequently analyzed into separate feature maps, or whether
the initial representations are already separated along dimen-
sional lines. In the more recent account I selected the version
with the location map first, although I emphasized that there are
reciprocal connections between the feature maps and the loca-
tion map. This makes the initial order in most respects inconse-
quential.

Independent of the choice of sequential order, I recently
suggested a separate modification to the theory, introducing the
possibility of inhibitory control when the feature maps coding
the target are sufficiently distinct from those coding the distrac-
tors (Treisman 1988; Treisman & Sato 1990; see also Wolfe et al.
1989 for a similar model). For example, if the target is a red
vertical bar and the distractors are green vertical and red
horizontal bars, inhibition from the feature map representing
green and from the feature map representing horizontal could
reduce or eliminate activity both in locations containing green
and in locations containing horizontal elements. The only loca-
tion remaining unaffected would be that containing the red
vertical target. Tsotsos’s claim that inhibition leaves all the
elements in conjunction search as equal candidates is therefore
incorrect. Feature inhibition could eliminate all the distractors
in the conjunctive as well as in the disjunctive search condition,
thus explaining the recently reported cases of parallel search for
conjunction targets. We contrast this feature-based inhibition
with a spatial “window of attention” that directly selects loca-
tions independent of what they contain. There is no need to “tip
the scale in favor of one” of these modes of selection (Tsotsos,
sect. 5.2, para. 1); they are intended to be complementary and
to act together whenever both are applicable to the task at
hand.

Ifind it difficult to determine whether our modified account is
equivalent to that proposed by Tsotsos. His attentional beam
inhibits all but one or more selected features in all but one
location. The problem is to understand how this can be achieved
through units at the highest level, which are those with the
largest receptive fields and which therefore no longer retain
information about specific locations. This seems a strange place
to put a “spatial spotlight.” To select on the basis of both
locations, the attentional “beam” must be focused at the level(s)
at which the neural codes retain the relevant specificity.

The top-down beam in Tsotsos’s model combines spatial
selection with the selection of properties within a location.
There is behavioral evidence that may conflict with this view:
When attention is directed to an object in a particular location, it
is in fact difficult to attend selectively to one of its features and
ignore others (see, for example, the interference in various
forms of the Stroop test; Kahneman & Treisman [1984] also
review other relevant evidence). This is one reason why in my
model I separated the spatial spotlight from other attentional
control mechanisms and made feature inhibition operate via the
location map.

One other important difference between our models for
conjunction search concerns Tsotsos’s initial assumption that
identification depends on a dedicated processor for each pos-
sible prototype at each possible location, and that all input data
and prototypes are hard-wired to the processors. He later
modifies this to suggest a switching network that routes candi-
date inputs serially to the processors that compare them to
target prototypes. This does not solve the problem of the
arbitrarily large number of particular targets for which search is
possible, however. We can search not just for a monkey but for a
yellow monkey with purple spots, one eye closed, and so forth.
We need the possibility of creating temporary ad hoc represen-
tations (such as the “object files” described by Kahneman &
Treisman 1984) which are not hard-wired elements in a pre-
learned visual dictionary. Allowing candidates to queue for
processors, as Tsotsas proposes, reduces the number of loca-
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tion-specific processors needed, but seems not to solve the
problem of search for arbitrary conjunctions.

The second topic for clarification concerns our use of the
search paradigm to help define visual primitives coding stimuli
at early preattentive levels (Treisman 1985; Treisman & Gor-
mican 1988). Our subjects were never instructed “to search for
the absence of a feature”; they were always shown the two
stimuli that would function as the target and as the distractors in
each task, so they were never required to search for a “logical
negation.” We inferred from their performance which of the
pair (if either) had a feature for which the visual system had (or
could generate) appropriately tuned detectors. Note that sepa-
rable features, in our terms, are not discrete stimuli: Sepa-
rability is a relation between two dimensions of variation or
between values on a dimension. Like Tsotsos, we emphasized
that “no search task allows direct inference to the complete code
for a particular stimulus in any absolute sense” (Treisman &
Gormican 1988, p. 40).

However, search performance can both “reject candidate
stimuli” (as Tsotsos says) and also “discover their existence”
when search is parallel, although it does not exactly specify their
identity. For example, if a line tilted 18 degrees from vertical
“pops out” of a display of otherwise identical vertical lines, we
infer that some feature that correlates with the orientation
difference must be detected in parallel. When we find that a
vertical line is more difficult to detect against 18-degree tilted
distractors, we infer that it does not possess a unique dis-
tinguishing feature. Search asymmetries of this kind may sug-
gest which end of an asymmetric dimension functions as the
standard or reference value and which is signalled as the pres-
ence of an additional feature (e.g., tilt, curvature, convergence).

Further experiments can help to specify more exactly the
nature of the features that mediate parallel detection. For
example, by using a tilted frame, we found that the relevant
description is probably “frame-aligned versus misaligned”
rather than (or as well as) “vertical versus tilted.” Pairs of
oriented dots appear to share the same orientation codes as
connected lines when they share the same direction of contrast
(Treisman 1985), but probably not when one dot is darker and
one lighter than the background (O’Connell & Treisman, in
preparation).

Tsotsos suggests as an alternative explanation of search asym-
metries that the features that are found more easily are those
that can be “tuned” away from their default state. Why would
this predict faster detection for deviating values? Could the
standard stimuli not be found simply by leaving the detectors in
their untuned state, so that only the target is effective? There is
certainly physiological evidence for some flexibility of response
from individual units, but it is not obvious how this explains the
search asymmetries.

Some important constraints on complexity

Leonard Uhr

University of Wisconsin-Madison, 1210 West Dayton Street, Madison, W!
53706.

This kind of confrontation of computer vision with complexity
theory is potentially of great importance, for it can suggest how a
scalable system that successfully recognizes a few relatively
simple objects in a small image might be enlarged using bigger
computers to recognize more and more. The following are a few
elaborations and extensions I think are worth making.

A. It is important to consider and minimize both time and
space complexity. Indeed, time is crucial — not only because
brains are incredibly fast but also because objects move fast —
which is what has driven brains to be so fast. It has been known
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experimentally for many years that we humans need roughly
300 to 800 msec to push a button that indicates we have searched
for, recognized, and successfully found some complex object.
Because neurons need roughly 1.5 msec to fire, and the time
needed to do such things as transduce (break down rhodopsin),
carry signals from eye to cortex and from cortex to muscle, and
activate muscle is at least 100 msec, this suggests a serial depth
of processing on the order of 100 to 500. Amazing recent
experiments with monkeys have found individual neurons that
respond selectively to (among other things) a particular person’s
face in from 70 to 200 msec. Thus, serial depth appears to be
reduced even further, to only 25 to 75 or so. That is, images of
objects that are resolved on reinas with 106 to 108 rod and cone
sensor nodes are recognized by brains with 1010 to 1011 neurons
in fewer that 102 steps (time).

This is mind-boggling speed - orders of magnitude faster than
any of today’s computer vision systems even when they have
been parallelized (ignoring the fact that their performance today
is far poorer than the brain’s). But it jibes very suggestively with
two other important facts: (1) The major pathways from retina
through areas of the cortex involved with vision have a serial
depth of roughly 15 to 40. (2) The kinds of logarithmically
converging structure that Tsotsos’s target article espouses
would have similar serial depths (e.g., log,106 is 10). Only
massively parallel systems could so much in so little time.

B. Complexity is actually O(V1), where V is the number of
possible values that might be input at each pixel spot in the
image. That's certainly a quibble, because 2! is impossible
enough, and high-quality images can be gotten with V only 224,
using only 24 bits (e.g., 8 for each of 3 primary colors). But it
helps hammer home the point that we must focus on small,
finite, realizable real-world sizes; we cannot hope to handle the
“general” recognition problem moving into ever-larger sizes.

C. Multilayer logarithmic convergence is probably the key to
reducing the combinatorial explosion. Rather than have the
impossibly large but necessary worst-case number of VI nodes in
a single inner layer, successive combinings, abstractings, and
reducings of information can lower this to feasible size, although
we probably won't know for sure that this is true until we have
actually achieved it by building successful perceivers. (The fact
that brains are successful proves that feasible implementations
are possible.)

D. Complexity results are even more appropriately applied
to neural (connectionist) networks (NN). Because NN are Tur-
ing-equivalent universal computers if they have at least one
layer of interior (hidden) units between input and output units,
many people appear to feel that they only need to be made
bigger and they will become as general and as powerful as
desired. Most of today’s NN input images to an 8-by-8 array
(obviously such images are oversimple), and use only 1 to 4
interior layers and a total of a few hundred nodes. Each node
links into all the nodes in the next layer, and learning consists of
changing weights associated with links in the direction of reduc-
ing the backpropagated error signal (the difference between the
output vector and the correct output). If there exists a successful
state, this kind of learning will (under certain circumstances)
achieve it. But the complexity for NN is just the same as for any
other kind of artificial intelligence system, except that one
cannot take advantage of the kinds of heuristically promising
structures that Tsotsos develops in his paper.

E. Worst-case complexity is much too stringent a measure.
They expected case — what the real world actually demands that
the recognizer do — poses the real problem. Unfortunately,
nobody has clearly specified the expected case for perceptual
recognition, and it seems unlikely that anybody ever will.
Possibly the best that can be said is to point to the number of
different objects that humans can recognize (probably in the
hundreds of thousands; possibly in the millions or more) and the
number of different variant instances of each (a rough indication
is the minimal resolution — probably on the order of 100-by-100
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—needed to recognize a complex object). This still given an over-
bound, but one that is far less exaggerated than V1,

F. Although it is clearly true that brains are not 100% general
purpose when confronted by worst-case complexities, they are
surely far more general purpose than any other known system.
Consider the following recognition problem: Generate random
images and assign these at random as the instances of different
object-classes. Most of these instances will be highly discon-
nected, with slight and subtle differences that are crucial to
recognition. The different instances of the same object will be
completely unrelated. Humans would do very poorly — we
ignore slight differences, strongly favor features that reveal
well-connected shapes, and use similarity measures to gener-
alize. We are almost certainly pretty poor at recognizing this
kind of “general” set of objects, although we are fabulously good
at recognizing the very general sets of object-classes that guided
natural evolution.

On brains and models

William R. Uttal

Department of Psychology, Arizona State University, Tempe, AZ 85287.
Electronic mail: aowru@asuacad.bitnet

Congratulations are in order for Tsotsos’s astute analysis of the
complexity issue and for his reminder about some of the prac-
tical difficulties arising from computational economics. Unfortu-
nately, I don’t think he has gone far enough in dealing with the
problem of the meaning of our formal models of visual and other
cognitive processes. Tsotsos shows that, for practical reasons, a
bottom-up approach is unlikely to provide satisfactory explana-
tions of such phenomena. There are many related reasons why it
is not just practical matters of complexity and computational
costs that prevent neuroreductionist models from meeting the
tests of necessity and sufficiency required for their rigorous
validation or rejection.

The first of these supplementary reasons comes from auto-
mata theory. In alittle remembered, but very important paper,
Moore (1956) showed that the internal mechanisms solely of a
closed system could never be uniquely analyzed on the basis of
the relationship between its inputs and outputs. There would
always be more possible mechanisms than possible discriminat-
ing experiments. There should be nothing surprising in this
proof. Moore’s theorem is consistent with many other scientific
principles, and complies with a long tradition in psychology.
Indeed, Tsotsos explicitly acknowledges this point by emphasiz-
ing only the sufficiency of his particular multilayer, “attentional-
beam” model rather than its uniqueness or necessity. Hence his
model, admittedly a first approximation, is, but one of many
(possibly infinitely many) that might meet the conditions of his
analysis.

The distinction I make here is between models that provide
analogies with the system being modelled and those that pro-
vide homologies. These terms are borrowed from biology. Anal-
ogous systems behave the same but use completely different
mechanisms. A bird’s and an airplane’s wings are classic exam-
ples of such a “process analogy.” The second order differential
equation’s ability to model a wide variety of oscillatory systems,
all of which produce identical behavior by means of what may be
completely different mechanisms, is another example of analo-
gy. By contrast, a model that uniquely described the specific
internal mechanisms of a process would be, in this context, a
homologous explanation rather than an analogous description. 1
believe that Tsotsos’s model and all other artificial intelligence
programs can only be descriptive analogies, not the reductive
explanations they are often portrayed as.

Modern developments in chaos theory further suggest that



even given a miraculously efficient electrophysiological re-
search tool and sufficiently powerful computers to overcome the
complexity or combinatorial problem, we would not be able to
derive cognitive processes from neural processes (or, for that
matter, neural processes from cognitive processes). The im-
plications of this profound development in mathematics have
not I think, percolated deeply enough into the thoughts of those
of us who are interested in the possibility of neuroreductionist
explanations of cognitive processes. According to chaos theory,
small uncertainties in even a deterministic universe can quickly
pyramid to produce behavior that is both unpredictable and
unanalyzable. The reason it is not possible to analyze or reduce
molar behavior to its initial state or underlying mechanism is
that information about the history of the system is no longer
available in a chaotic system - the interactions among its
microscopic components are apparently random even though
the overall behavior of the system is not random. Our inability to
predict the behavior of a chaotic system given the initial state of
the components emerges from the fact that the pyramiding of
small uncertainties quickly produces apparently random in-
teractions. Thus, according to chaos theory, one cannot re-
produce the specific sequence of events that led to a molar state
by studying its microscopic elements or vice versa.

The laws of thermodynamic irreversibility also suggest that
complex systems cannot be run backward in the way many think
would be required to develop a necessary and sufficient neural
model of a cognitive process. Cognitive phenomenology pres-
ents a case (as does Tsotsos) for an inferential (or top-down) kind
of processing in the brain that is not well modelled by any of the
mechanisms so far proposed. The very nature of mathematics is
itself an argument for explanatory irreducibility. Mathematics,
it is often overlooked, is neutral about how it is instantiated;
hence it is more a descriptive than an explanatory or reductive
tool. These supplementary arguments are all subjects to in-
terpretation and open to challenge; they do not, in my opinion,
have the rigor of the combinatorial (complexity), automaton, or
chaos theoretical arguments.

What this all seems to suggest is that no mathematical, neural,
or computational model can ever be validated or even tested as a
truly explanatory, reductionist theory of a cognitive process (in
the sense of specifying its exact instantiation). Rather, such
models are, at best, process descriptions of the time course of
the systems they represent. Such descriptions can still be very
useful. A more realistic view of what we are doing when we
model is that we are describing processes using the terminology
of one or another analogous system. We are not reductively
explaining unique internal mechanisms. The most important
general conclusion is that in principle constraints are probably
operating on theory production that may forever prevent us
from crossing the barrier between the neural microcosm and the
cognitive macrocosm in either direction. These in principle
constraints may be much more serious than the in practice one
that Tsotsos has so capably considered.

Complexity, guided search, and the data
Jeremy M. Wolfe

Department of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139.
Electronic mail: wdfe@psyche.mit.edu

The most useful aspect of Tsotsos’s target article is that it gives
rigor to the claim that parallel processing by itself will not be
able to solve the visual search problem. This demonstration of
the necessity of attention is welcome. I have more difficulty with
the specifics of Tsotsos’s account of visual search. In its broad
form, it resembles our guided search model (Wolfe et al. 1989;
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Wolfe & Cave, in press; Cave & Wolfe, in press). However, in a
number of places it seems to be at variance with the data or with
reasonable inferences made from those data. I will briefly
discuss three such areas.

Bottom-up processing. Tsotsos wishes to make a clear distinc-
tion between the searches for a known target and searches for an
unknown target. In our model, we make a similar distinction
between “top-down” and bottom-up” processing. Tsotsos does
not have much hope for bottom-up searches. However,
searches for an odd-man-out on a homogeneous field of distrac-
tors are easy. In section 4.1, Tsotsos argues that search time
increases exponentially with the number of relevant maps. Let
me suggest an experiment that I do not think has been done.
Imagine a distractor set of small, red, Xs moving to the left in the
frontal plane. A target would be any unique item created by
altering one or more of the features defining the distractors. On
each trial, the unique item could be different in size, color,
shape, motion, and so forth. Is there any doubt that this task
would be done efficiently with little practice and with no
information about the identity of the target? Moreover, one
could imagine the distractors varying randomly from trial to trial
without significant degradation of performance. As long as all of
the distractors are the same on a given trial and as long as the
difference between distractors and the odd man out is suffi-
ciently large, search will be easy, even if the observer must
monitor a multitude of maps.

The nature of parallel guidance. Tsotsos proposes what he calls
“feature range inhibition” as a way to make search more effi-
cient. Though the description is a little unclear, this seems to be
similar to our “top-down” parallel guidance. In top-down guid-
ance, information about basic features present in the target is
used to limit the deployment of attention to locations likely to
contain the target item. Tsotsos does not appear to use this type
of guidance in an optimal way. Consider his example, in section
5.2.2, of a search for a red A. In his version, feature range
inhibition excludes items that are “non red and non A.” This
leaves “exactly the number of distractors plus the target.” This is
not much of an improvement. We can do much better if we
exclude all non red or non A items, leaving only the target item.
In our model, we use excitation rather than inhibition to per-
form the equivalent operation of taking the intersection of all red
items and all A items. This, too, will restrict search to the red A.
Once guidance is proposed, it seems a pity not to use it to best
advantage.

Noise. Actually, our version of guidance works too well. If one
could restrict to the intersection of the set of red items and the
set of As, conjunction searches would be as efficient as feature
searches. We and others (McLeod et al. 1988; Nakayama &
Silverman 1986; Treisman & Sato 1990) have shown that con-
junction searches need not be serial, self-terminating nor are
they strictly parallel. We assume that the parallel guidance of
attention is limited by noise and thus is not perfect. That is, the
effort to produce the intersection of the set of red items and the
set of As significantly reduces the set of candidate targets but
some distractors are still checked and discarded by attention.
The recognition that perceptual systems are noisy is important
in models of this sort but this does not appear to be part of
Tsotsos’s account. His model appears to be largely determin-
istic. As noted, this makes it difficult to account for the data on
conjunction searches. It also makes it difficult to account for the
data from blank trials (trials containing only distractor items).
Tsotsos’s model would appear to require serial exhaustive
search in the case of blank trials. This is a reasonable model for
true serial, self-terminating searches but it does not explain
when a trial should be terminated in parallel (feature) search or
in what we call guided search through a subset of items. In these
cases, slopes on blank trials and the target trial/blank trial slope
ratios vary significantly across subjects. We see termination of
search in these cases as a signal detection problem. Subjects
search through items in order of decreasing probability that a
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given item is the desired target. In the face of some variable
amount of internal noise, each subject sets a termination thresh-
old based on a desire to respond quickly and yet miss few target
items.

None of these problems could be said to represent a “fatal
flaw” in Tsotsos’s work. Rather, each represents an area for
possible revision of his current model. We find it encouraging
that overall, Tsotsos’s model, driven by complexity theory,
already bears considerable resemblance to our data-driven
guided search model.

Adaptation and attention

Steven W. Zucker

Research Center for Intelligent Machines, McGill University, Montreal,
Quebec, Canada.

Electronic malil: 2zucker@larry.mcrcim.mcgill.edu

Tsotsos argues that “an attentional scheme has as its main goal
the selection of certain aspects of the input stimulus while
causing the effects of other aspects of the stimulus to be mini-
mized.” Moran and Desimone (1985) empirically discovered
that “the very structure of the receptive field, recently consid-
ered to be a fixed property of the neuron, can change from
moment to moment in the behaving monkey depending on the
immediate task and state of attention.” The process of focusing
attention is thus connected to dynamic variation in receptive
field properties, a seemingly novel connection. But is this trulya
novel phenomenon, and, if so, how might the mechanism be
understood? We submit that analogous phenomena exist in a
more primitive form as adaptation, and that the roots of atten-
tion can be illuminated by exploring the analogy with
adaptation.

Adaptation exists in two forms: (1) intensity adaptation, by
which the central excitatory region of a circular-surround (reti-
nal ganglion) receptive field expands or contracts at the expense
of the inhibitory surround as a function of photon intensity
(Barlow et al. 1957); and (2) the effective operating range of cells
in the visual cortex varies as a function of contrast (Sclar et al.
1989). That is, both (1) receptive field structure and (2) activity
levels can vary as a function of stimulus properties. In this case
the stimulus properties are physically based, and functionally
they extend the sensitivity of the visual system to a broader
range of operating environments.

The analogy between adaptation and attention arises as fol-
lows. Visual cortical neurons respond to contrast-encoded stim-
ulus features, and exhibit a sigmoidal operating characteristic
(plot of firing rate versus contrast). If all contrasts were in the
saturated range then no structure would be visible. Adaptation
is a primitive mechanism for preventing this, that is, for adjust-
ing the operating range so that orientation (say) structure is
detectable (pops out?) from the background. Analogously, at-
tention is a mechanism for adjusting the feature context so that
more complex structures are detectable from the background
feature clutter. The increased responses to attended stimuli
(Desimone et al., in press) would imply that the visual system
has “adapted to” the unattended stimuli.

Although the analogy between adaptation and attention pro-
vides perspective, much remains before biologically plausible
mechanisms can be specified. Adaptation is largely a bottom-up
process, whereas attention may well be a myriad of processes
many of which are top-down. Nevertheless, Tsotsos argues for a
model of attention as an inhibitory process within a pyramidal
beam, extending from large abstract receptive fields to tiny,
low-level ones. A key reason for this is the positional accuracy to
which attentional effects can be measured. It is almost as if the
attended stimuli are described within a finer coordinate system
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than the unattended ones. This accuracy may well reside in the
visual descriptions being selected, however, and not in the
details of the attentional beam. There is no evidence that
abstract descriptions or their features are continuously dis-
tributed over the retinotopic array, with the attentional “beam”
highlighting a well-delimited retinotopic subfield. In contrast,
one might speculate that visual inferences are carried out by
multistage processes, with feedforward and feedback loops
between them. The initial stages could be coarse, local ones,
and the latter stages precise, global ones. Attention could act as
a gate between the early and later stages, effectively adapting
away the unattended stimuli. There would then be no need to
postulate a “beam” running through a pyramid of receptive

fields.

Author’s Response

A little complexity analysis goes a long way

John K. Tsotsos

Department of Computer Science, University of Toronto, Toronto, Ontario
Canada M5S 1A4.
Electronic mall: tsotsos@ai.toronto.edu

1. Introduction

Commentators misunderstood several points in the tar-
get article. I will deal with these before addressing the
many important and substantive issues raised in the com-
mentaries.

I did not claim that computational complexity is “the
key” to vision, as Dickinson states, only that it is an
important and heretofore neglected dimension of study.
This is explicit throughout the introductory section of the
paper. Complexity analysis can reveal insights that no
other method of analysis can, but it cannot even begin to
address certain other equally important issues. Dickin-
son’s commentary was dedicated to countering a view
that was not expressed in the target article.

Siegel mistakenly believes that complexity theory is a
top-down approach to vision. Marr (1982) describes the
use of Laplacian operators; would Siegel consider La-
place’s equation a bottom-up approach to vision? I hope
not. Both complexity theory and Laplacian functions are
tools. Complexity theory led me to develop a theory that
has a significant top-down component; complexity pro-
vides its mathematical foundation. Strong likewise makes
this unusual connection between tool and model, claim-
ing that complexity theory as currently conceived is not
adequate for modeling biological information processes
even though in his own work he develops computational
models of biological information processing. Complexity
theory is one of the theoretical underpinnings of com-
putation. Complexity theory does not model; it is a tool
that provides a source of constraints for a model.

Heathcote & Mewhort provide an algorithm for un-
bounded visual search that they claim solves my only
example in polynomial time. I did not give such an



example in the paper, however. The example in section
2.2 was provided as part of the general discussion of visual
match to illustrate the definition; it preceded the formal
definition of unbounded visual search. That definition
does not include the target pattern and although Heath-
cote & Mewhort are not specific, I assume that their
algorithm requires the target. Kube also makes this
mistake (his third point). The target is not specified in the
unbounded problem; the values of the functions are given
only as mappings. Heathcote & Mewhort distinguish
between matching and search incorrectly; as described in
section 2.2, the former is a subproblem of the latter, and
thus its difficulty must be included within the difficulty of
the latter. If unbounded visual matching is NP-Com-
plete, as Heathcote & Mewhort seem to agree, then
unbounded visual search is necessarily NP-Complete,
too.

A major component of the representations I use is the
hierarchy - the simple variety that everyone under-
stands. I did not claim that the simple hierarchy is the
“best” mechanism for beating complexity (Strong). The
argument was for sufficiency only, as clearly stated in
section 3.1. Perhaps intrinsic parallelism (Holland 1975)
is indeed more efficient. Although the simple hierarchy is
logarithmically time-bounded, Holland’s scheme is expo-
nential in the worst case. The worst case would be when
the search creates the subset that contains the answer
only after all other possible subsets have been examined.
As Uhr points out, the logarithmic convergence in my
model may be the best attack on the complexity problem;
it is also biologically plausible.

Krueger & Tsay claim that I have misplaced the
complexity and that the truly complex processes may be
at the decisional level, yet they do not indicate whether or
not they believe that the lower-level processes I have
considered are tractable. I therefore assume that al-
though they agree that perceptual processes are compli-
cated, they believe that decisional ones are even more so.
This may be so, but it is not obvious that perceptual
processes, such as those in visual search, which require
specific choices between response actions, require no
decisional process.

Krueger & Tsay also note that I have not considered
how “smart nonoccupational perceptual mechanisms”
could eliminate complexity altogether and thus obviate
my analysis. I cannot seriously entertain this suggestion. I
have great difficulty in determining what “noncomputa-
tional” means in this context. The polar planimeter is not
“noncomputational,” and Runeson (1977) does not label it
so in his paper. Moreover, he notes that he is only
proposing an analogy, lest anyone mistakenly infer any
closer ties between the planimeter and the brain. The
polar planimeter is indeed computational because there
is a precise mechanistic algorithm for using it with well-
defined input and output. It would be easy to simulate its
operation with a computer program. Digital computers
are only one manifestation of a device that computes; one
must not equate computation with computers alone.

Krueger & Tsay argue that a really smart process
would use only one measure for matching, either same-
ness or difference, not both, as I propose. They seem to
have misunderstood the correlation measure, which is
not just a measure of sameness but ensures the max-
imality of the match. A single correctly matching pixel
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would pass a sameness or difference test, but not the two
tests together as I have set them up. In addition, lightness
and darkness have nothing to do with the validity of the
computation. The formalism is capable of dealing with
any type of physical measurement of a visual stimulus.

Krueger & Tsay go on to point out that vision may
operate in “all kinds of undreamed of ways.” Siegel also
makes the “what if things aren’t like this?” argument.
This kind of criticism is easily leveled at any theory when
the critics have no empirical counter evidence and offer
no viable alternative theory. Is it really that complex?
Siegel asks. After all, there aren’t any green elephants.
Have you never watched cartoons nor enjoyed abstract
art? Siegel describes his view as contradicting mine, yet
I agree completely that “the beauty of the brain is
that . . . it can solve really tough problems.” I am sim-
ply proposing a way of determining how tough the prob-
lems are and how they may be solved. More to the point,
it is the very toughness of the problem that may force the
brain to use the kinds of solutions I propose.

Both Cave and Strong claim that I have defined feature
maps that operate independently. In section 2.4, I state
that “types are not necessarily independent.” A map
represents one type of visual parameter; maps are phys-
ically independent, but the types of parameters they
represent are not necessarily so. Many physical visual
maps have now been documented, and within each a
variety of visual parameters seem to be represented, not
all independent of each other (Maunsell & Newsome
1987).

Cave concludes his commentary by claiming that my
model is not a serious one unless more detail of operation
is provided. I had stated explicitly, however, that I would
not address the operational level in this paper. All I
intended was to provide a source of constraints and
hypotheses.

Uhr points out what he calls a minor quibble - that the
complexity is really O(VY). This is the correct order for the
number of distinct images, not the number of data group-
ings. My analysis does not include the number of possible
values of each type of visual information. This is of course
an important issue, but the O(2'') stands, for the purpose
of my analysis.

Strong claims that my account requires one to assume
that the entire image is in the head during processing and
that this is a bad assumption. “Don’t carry anything you
can readily find later,” he says. First of all, in the typical
visual search experiment, there is no time to wait until
later — the trial is over in a few hundred milliseconds.
Second, how do you know what to discard and what to
carry if you have not analyzed, at least to some degree, in
the first place? Strong goes on to argue that this bad
assumption leads to performance that does not agree with
human data. He provides a figure as an example and
claims that any human would see a perfectly good match
to the target I define in Figure 1 of the target article. This
is highly unusual because I certainly cannot see my
target, an open black rectangle, in his figure!

Heathcote & Mewhort write that I cannot use Treis-
man’s data for comparison with my results because I use
pixels and Treisman uses display items. In the early parts of
the paper, I may have been unclear with this comparison;
however, the relationship becomes explicitand clear in the
description of the variables for Equation 23.
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2. On computational modeling and visual science

Several commentators point out the impossibility of ex-
plaining biological phenomena with computational mod-
els. This argument has been made since the early days of
artificial intelligence. Many have claimed that there is
something special about implementations that are brain-
like. This objection comes from at least two sources: those
who follow Searle (1990) and those who work on neural
networks. In the former case, the argument is rather
nonspecific; in the latter case, it seems misguided. As
Uhr points out, massive parallelism leads to greater
speed and the ability to conceive radically different archi-
tectures than if one considers only von Neumann archi-
tectures. Most neural network research, however, is
implemented on serial machines! Does this cause a prob-
lem? No, neural networks are Turing-equivalent, again as
Uhr points out, and they are subject to the same results
about computational complexity and computational theo-
ry as any other implementation. (See section 1.3 of the
target article about the Church-Turing thesis.) It is
important to note that relaxation processes are specific
solutions to search problems in large parameter spaces
and nothing more. Neural networks use variations of
general search procedures called optimization tech-
niques. If relaxation (or other optimization processes) is
indeed the process by which real neurons perform some
of their computation as Siegel suggests, it is subject to
precisely the same considerations of computational com-
plexity as any other search scheme.

Uttal points out that my particular theory cannot be an
explanation of biological behavior and that it would at best
be an analogy. Is there any other type of explanation? In
physics, cosmology, or chemistry explanations and theo-
ries are put forward and the only requirement for their
validity is that they account for the experimental observa-
tions. Would a cosmologist be required to create a uni-
verse in order for his theories to be taken seriously? Or a
biologist, life? A theory that accounts for more observa-
tions than another is a better theory. Theories whose
predictions are falsified are modified or rejected. In
addition, computation itself plays a large role in modern
theory construction even in the above disciplines. Com-
puter simulation in particular has been a very powerful
tool in the physical sciences. Yet, no cosmologist would
claim that he is creating a universe and no one would
criticize him for not doing so.

Is simulation of information processing particularly
menacing for some reason? Or is it that in Al we have
concentrated too much on toy examples and have not
developed falsifiable theories and a solid experimental
tradition, as in other disciplines? It is hard to say. The
work presented in the target article, however, is intended
to be one dimension of a framework for developing a
general theory of biological and artificial perception. 1
have considered the dimension of computational com-
plexity only, but other dimensions must also play a role,
as many commentators have correctly noted. I have
developed constraints that apply to all theories of percep-
tion and have tried to show one possible path of develop-
ment that would satisfy those constraints.

Eklundh wonders whether the sort of analysis I pro-
pose can yield precise predictions or only provides con-
straints on the model space. He is right to ask. Complex-

460 BEHAVIORAL AND BRAIN SCIENCES (1990) 13:3

ity level analysis only yields constraints, as I point out in
the target article. My analysis is followed by one possible
model conforming to those constraints. Competing mod-
els are encouraged; such models do lead to precise
predictions.

The target article was guided by observations in psy-
chology, neurophysiology, and neuroanatomy. The life-
time of my results will be determined by experimental
confirmation or refutation from those disciplines and by
their usefulness in designing machine-based perceptual
systems. Many predictions were made in the target
article, most of which no commentator criticized. Most of
the predictions conform very closely to known findings in
biology. I am pleased to see that such investigators as
Desimone, Cave, Wolfe, and Treisman find such a close
resemblance between my suggestions and their own.
That was the whole point! A large interdisciplinary set of
observations was tied together using the thread of com-
plexity analysis.

3. Visual search within vision

It is suggested by Lowe that I have not shown the
importance of visual search for vision in general. Indeed,
Lonly state that visual search may be a very basic problem
that is found in most other types of visual information
processing. Elaboration is in order. Basic bounded visual
search task seems to be precisely what any model-based
computer vision system has as its goal: Given a target or
set of targets (models), is there an instance of a target in
the test display? Lowe’s own work certainly falls into this
category (Lowe 1987). Even basic visual operations, such
as edge-finding, are also in this category: Given an edge-
detection model (e.g. Ballard & Brown 1982), is there an
instance of this edge in the test image? It is difficult to
imagine any vision system that does not involve similar
operations. My remark about the ubiquity of search in
vision therefore seems to have merit. The point has not
been rigorously proved, of course, but it is clear that
these types of operations appear from the earliest levels of
vision systems to the highest.

4. Complexity is even more complicated

Strong wonders about the relationship between the two
Knapsack problems I present, one as an example in
section 1.3 and one with a formal definition in section 2.3.
The complexity literature indicates that the same prob-
lem can be formulated in various ways. Different in-
stances will share certain basic features. So it is with the
Knapsack problem. Many different statements of it are
given in Garey & Johnson (1976). The example in section
1.3 was found in Rosenkrantz & Stearns (1983) as an easily
understood example for a noncomputational readership.
The intractability claim that Kube disputes came from
that article. As defined, the statement is true; more on
this later.

Kube proposes that the theorems I present concerning
the intractability of unbounded visual search do not hold;
he provides conditions under which Theorem 1 does not
hold, noting that the Knapsack problem is not NP-Com-
plete in the “strong sense.” He is right; however, he goes
on to say that unbounded visual search is consequently



not NP-Complete either. This is simply wrong. The
problem is still NP-Complete and has exponential time
complexity as defined, that is, with no a priori assump-
tions or bounds. My proof for unbounded visual search
has been duplicated twice so far, each proof with slightly
differing problem formulations (by Bart Selman, 1989, in
our own department and by Ron Rensink at the Univer-
sity of British Columbia, personal communication, 1989).

Let us examine this a bit further. First, some defini-
tions must be presented. Define two functions over the
nonzero integers, Length and Max. The former is a
function that maps any instance I of a problem to an
integer corresponding to the number of symbols used to
describe the instance under some reasonable encoding
scheme for all instances. The latter maps an instance to an
integer corresponding to the magnitude of the largest
number in the instance. An NP-Completeness result
does not necessarily rule out the possibility of solving a
problem with a “pseudopolynomial” time algorithm. This
is true only for “number problems,” such as Knapsack. A
problem is a number problem if there exists no poly-
nomial p such that Max[I] < p(Length[I]) for all T.
According to Kube, I assume that the magnitude of image
values must increase exponentially with retinal size. I
make no such assumption. Moreover, by definition, the
relationship cannot be polynomial. Kube’s comment does
not fit the definitions. An algorithm that solves a problem
is a pseudopolynomial-time algorithm if its time complex-
ity function is bounded above by a polynomial function of
the two variables Length[I] and Max[I]. Kube points out
that Knapsack has a known polynomial-time algorithm if
an assumption can be made about the magnitude of the
numbers; but this is not the same as the problem being
inherently polynomial. If it were, it would have proved
that all NP-Complete problems have polynomial solu-
tions, disproving the conjecture on which the entire
theory of NP-Completeness depends. It turns out that
this is a common mistake, but to show why one must
determine the complexity function for the proposed solu-
tion and the length of an instance of unbounded visual
search.

The polynomial-time solution to which Kube refers is
presented by Dantzig (1957) based on a method first
proposed by Bellman (1954). Lawler (1976) provides a
different algorithm for Knapsack also based on Bellman’s
equations. Bellman motivates his solution by pointing out
that practical experience with the problems is put to use.
I wished to conduct an analysis that did not depend on
such experience. After all, there was no experience to
draw on before our visual systems had evolved. Dantzig
carefully notes that although algorithms for approximate
solutions also exist using techniques of linear program-
ming, the solution by Bellman is intended for the deriva-
tion of exact solutions. As such, it is recommended when
there are only a few items in the knapsack and only one
kind of limitation. Moreover, Bellman says that because
of the nonlinear functional relationships inherent in his
equations, only special cases of them can be solved and,
even then, solutions will not necessarily be unique. The
algorithm, which relies on dynamic programming, seems
to require O(8-|1|) operations where 8 corresponds to one
of the thresholds of the unbounded visual search problem
defined in section 2.3, and [I| is the number of elements in
the test image set. To encode an instance of unbounded
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visual search O(|I|-log,Max[I]) bits are needed. The
number of operations, O(8+I|) is not bounded by any
polynomial function of |I|-log,Max{I] and thus the general
problem does not have a polynomial-time algorithm. 1 It is
still NP-Complete. The NP-Completeness depends on
large inputs.

What sizes of numbers are present in unbounded visual
search? This problem has three kinds of numbers: the
values of the test image, and the values of the diff and corr
functions. The human eye can discriminate over a lumi-
nance span of about 10 billion to 1 (Dowling 1987). Thus,
image values should have this as a range; similarly, the
diff function has this range while the corr function has a
range of 1 to 102 billion because it is a product of two
image values. Thus Max[I] is at least 1020. The retina has
about 130 million photoreceptors. To binary encode one
instance of unbounded visual search for humans would
require O([log,1020]-1.3-108-3) bits or more than 20 mil-
lion bits! This is certainly too large to be biologically
plausible. According to the definition given earlier, an
algorithm is pseudopolynomial if it has a time-complexity
function bounded from above by a polynomial function of
Length{I] and Max[I]. Using the estimates for Max and
Length derived here, such a time-complexity function is
of little help. This in fact exhibits a property of number
problems that are NP-Complete yet have a pseudopoly-
nomial-time solution: They display exponential behavior
with large input numbers.

There is an additional problem with the pseudopolyno-
mial time algorithm for Knapsack. That solution, together
with all solutions based on Bellman’s initial formulation?
use the following clever observation: If we wish to solve a
problem of size N, first determine the solution to same
problem but of size N-1; the cost of determining the
solution to the original problem then becomes easy be-
cause the decisions that must be made are only for the
additional element. This line of reasoning can be ex-
tended from problems of size N all the way down to size 1.
With this technique the number of operations becomes
very small. Such solutions are known as recursive; each
decision depends on decisions made for the problem of
the next size down. This recursiveness poses a serious
problem for biological plausibility. Bellman’s functions
are nonlinear; the algorithm that uses them involves two
nested if-then-else conditions to decide which functions
are used for each step based on the magnitude of the
values determined in the previous step. Even though the
solution may require polynomial rather than exponential
time, it does not appear to be parallelizable because of the
strong dependence of each step in the solution on the
previous step.3 In a retina size problem this solution may
necessarily require 130 million sequential steps.

Lowe, Krueger & Tsay, Uttal, and Wolfe all describe
the importance of noise and probabilities in vision. I
agree that research must pursue these considerations.
Probabilistic complexity is not quite so well understood,
however. Lowe and Uhr question the use of worst-case
complexity. I first point out that worst case does indeed
occur in practice. In any problem of fixed length, not
necessarily large, it is quite possible that a search method
will find a solution only after all other possible solutions
have been tried. That is just as much a worst-case scenario
as is the largest possible problem. Perceptual algorithms
must be time-bounded to be useful to a perceiving sys-
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tem. Worst-case complexity can provide this bound.
Worst-case analysis can tell us about all instances of the
problem; average-case analysis can only tell us about the
average case; it is unclear what the average case could be
for vision. Average-case and probabilistic analyses should
also be attempted once the techniques are developed and
we get a good enough idea of what the average visual
input could be.

5. Complexity equations and the data

Several comments were made about the algorithm and
explanation for visual search. Four experimental sce-
narios are addressed by the algorithm in section 5:

Type I: The target is the only item in the display to
exhibit a specific feature; the target is known in advance.

Type II: The target is the only item in the display to
exhibit a specific feature; the target is not known in
advance.

Type I1I: The target is the only item in the display to
exhibit a specific feature combination (two or more fea-
tures); the target is known in advance.

Type IV: The target is the only item in the display to

exhibit a specific feature combination (two or more fea-
tures); the target is not known in advance.
Type I is the usual version of disjunctive search found in
the literature; similarly, Type III is the usual version of
conjunctive search. The target article is a bit vague about
odd-man-out searches (Wolfe is justified in his criticism).
In my defense, 1 have not seen too many experiments
with Type II or IV conditions, Treisman and Sato (1990)
being the only example. To help clarify the conclusions of
the algorithm for visual search, I will give the time-
complexity function for each of these conditions and
comment on the relationship to the experimental data,
where possible.

Type I: Response Time varies as [T|-®(M)/2

Type II: Response Time varies as [R|-[T|-(2®®) — 1)

Type III: Response Time varies as [R|-|T|-®(M)/2

Type IV: Response Time varies as |R/||T|-(2®0 — 1)
where [R,| stands for the total number of items in the
display and |R,| represents the number of candidates left
for matching after inhibitory tuning is applied. The other
variables are as defined in the target article. In each case,
the target may be present or absent in the test displays.
Two targets rather than one would lead to a doubling of
time to compute the visual response. Quinlan & Hum-
phreys (1987) report similar effects. The story is not quite
so neat, however. In section 5.2.6 I point out that the
selection of candidates for matching may depend on their
relative response strength. In other words, the ordering
of candidates may be in descending order of response.
Section 4.5 points out that inhibitory tuning based on the
characteristics of the target leads to computational sav-
ings as well as larger responses and that the inhibition
should be applied using a Gaussian weighting function

over the feature dimension of interest, applying this
weighting function multiplicatively. This mechanism ma-
nipulates the relative ranking of candidates for a search
task. Consider the example in Figure 1. In the top half of
the figure, the possible elements of a simple conjunction
task are shown. For the given target, inhibition would
rank the possible distractors depending on which features
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Figure 1. A comparison of possible relative effects of inhibito-
ry tunings with known targets for simple and triple conjunction
experiments. The “~" implies inhibition, the “+” denotes no
change, both with respect to the relevant feature dimension.
The magnitude of inhibition is not considered here; it would
have an important effect in the actual ranking of candidates.

they possess (and to what degree). I have specified only a
“+/—" scheme here; this is not to say that the ranks are
equally spaced. The response depends on the relative
strength of the item and the amount of inhibition applied.
This, in turn, depends on the distance of the distractor
feature from the comparable target feature along the
same dimension. The weaker the distractor relative to the
target, the smaller its final response; the farther away a
feature from a target’s feature along the same dimension,
the weaker its final response. The fact that features may
not be independently computed (coarse-coding, or neu-
rons that are selective for both color and orientation, for
example) complicates the determination of “same” di-
mension.

In a typical conjunction display, some combination of
target and distractors is presented. Each display poses a
potentially different distribution of relative rankings of
candidate elements. It cannot be assumed that each
display is of precisely the same difficulty. This is even
more evident in a triple conjunction where the possible
distributions of candidate rankings are even more varied,
as shown in the triple conjunction example of Figure 1. If
search does proceed by selecting candidates in order
according to response strength, then it is easy to see how
triple conjunctions may be faster than simple conjunc-
tions. All that is required is to ensure that the ranking



always leaves the target on top and that the distractors,
even if ranked second, be distant seconds.

The proposal described in the preceding paragraph
would lead to the observations of Egeth et al. (1984), who
found that subjects can eliminate a feature dimension
from consideration if instructed to do so. Treisman & Sato
(1990) found that triple conjunctions can be fast if the
target differs from distractors in two dimensions (repre-
senting two sources of inhibition for distractors) but that
this is harder than a simple conjunction if the difference is
only on one dimension. It also predicts the observations
of Wolfe et al. (1989). Wolfe et al. always use size in their
triple conjunctions and the target is always larger by at
least double. It is easy to see how inhibition selective for
scale can strongly favor the large element over the small.
If Wolfe et al. repeated their experiments with small
targets, my proposal predicts slower searches. It is odd
that size plays such a large role in their experiments
because Cave & Wolfe (in press) say that stereo and size
are very effective for top-down guidance. Treisman &
Sato (1990) report that conjunctions involving large size
are faster than with small size. Burbeck & Yap (1990)
recently reported that scale seems selectable based on
context, with the largest response dominating. Further
support for the proposal comes from Quinlan & Hum-
phreys (1987), who observed that target-distractor dis-
criminability influences the rate of conjunctive search.
Another way of influencing the selection of candidates is
to precue for location. Treisman (1985) reports a large
advantage to precueing for location in conjunctive search
whereas it is irrelevant in disjunctive searches. This, too,
is consistent with the proposal.

Wolfe describes an odd-man-out problem that is surely
“easy,” i.e., parallel, with practice. If a unique item is
created by one or more differences over the defining
distractors, but all distractors are the same, then I must
agree that the search appears easy, especially with prac-
tice.

It seems.that my predictions for Type I and III agree
well with observations. I have only one set of experimen-
tal data with which to compare with equations for Type I
and IV; data supplied graciously by Anne Treisman
(Treisman & Sato 1990). In that experiment, targets were
unknown to subjects and displays were created with 4, 9
or 16 items. Targets consisted of (a) large items; (b) small
items; (c) large-colored items; (d) small-colored items; (e)
large-oriented items; and (f) small-oriented items. Using
the standard method, the response times for each of these
six conditions are plotted against display size and lead to
linear relationships of varying slopes. These data are
really three-dimensional, however, with the third dimen-
sion the feature dimension. My predictions for Type II
and IV call for an exponential relationship in this dimen-
sion and a linear one in the display size dimension as
observed. But how should we plot this feature dimen-
sion? It will not do to simply enumerate the features; it
cannot be assumed that they are computed with equal
ease. I fit exponential curves of the type predicted leaving
the y-intercept and constraining the ®(M) to have the
same value across all display sizes for the same feature
combination. The result is shown in Figure 2. The fit is
very good.* The values of the exponents for each condi-
tion are: (a) 4.54; (b) 4.66; (c) 4.73; (d) 4.82; (€) 5.77; and (f)
6.12. The y-intercepts are: for 4 items, 564; for 9 items,
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Figure 2. Plots of response time versus feature dimension

&(M) for unknown target experiments of Treisman & Sato
(1990). (A) 4 items in display; smooth curve is RT = 564 +
4:(2640 — 1), (B) 9items in display; smooth curve is RT = 516 +
9:-(2¢™) — 1). (C) 16 items in display; smooth curve is RT = 411
+ 16-(2¢@) — 1), The values of $(M) found for each of the display
types are: large size: 4.54; small size: 4.66; large-color: 4.73;
small-color: 4.82; large-orientation: 5.77; small-orientation:
6.12. These are common across display size.
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Figure 3. The spectrum of mechanisms for visual attention.

516; and for 16 items, 411. One set of curves alone does
not confirm predictions with certainty; I hope further
experimental data will test this prediction.

6. The inhibitory beam within attention

Zucker, Dickinson and Desimone all argue that other
manifestations of attention should be studied, namely,
adaptation and the oculomotor system. I could hardly
disagree. In addition, they argue against the concept of
the inhibitory attentional beam that I describe, as does
Strong. Eagelson, too, points out that I have not consid-
ered other aspects of attention, such as spatial indexing.
Before discussing this further, it is useful to try to place
different attentional mechanisms into context. In Figure
3, I have tried to show (incompletely) the spectrum of
attentional mechanisms. The spectrum is organized by
the size of the “space” selected by attention, where space
does not refer only to the three-dimensional world. The
largest selection is that of task, then of the world model
within which the task is to be solved, then the 3D-visual
space that is relevant, then subsets of visual space, then
subsets of computing units to apply, and, finally, the
operating parameters for each unit. Adaptation is the
lowest form of attentional manifestation in this categoriza-
tion, my beam idea is next, and actions of the oculomotor
system are above that. There is no claim in the target
article that the beam is sufficient to account for all mani-
festations of attention. In visual search, the task, world
model, and visual space are all preselected as part of the
experimental conditions. Adaptation may be relevant for
the experiment as a whole rather than on a case-by-case
basis. Once the subject has adapted to the experimental
conditions, adaptation may play a lesser role. Selection of
subunits is relevant during the course of the experiment,
however, and for this reason the beam falls out naturally
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as an important attentional mechanism. Of course, the
others have influence, but they seem to be already fixed
by the time the experiment is well underway.

Strong presents another criticism of the beam idea,
namely, that I have contradicted the observed neu-
roanatomy with respect to back projections among visual
areas in the cortex. Not at all; I recognize fully the extent
of such connections. Maunsell & Newsome (1987) pre-
sent a wiring diagram for the several areas in visual
cortex. By definition, areas are grouped into layers de-
pending on the specific connections they have with other
areas; both forward and backward connections are in-
cluded. They show seven layers that organize 16 areas
into a hierarchy.> No layer includes more than six maps.
No connection spans more than four layers with the
majority spanning only one layer. Specifically, there are
no connections from the highest layer to the lowest. This
hierarchy is consistent with the bounds on the number of
maps I derive for the most abstract retinotopic layer and,
further, the logarithmic hierarchical convergence I pro-
pose would lead to similar numbers of layers, as Uhr
points out. Van Essen and Anderson (1989) cite evidence
of 15 to 30 resolvable steps for the size of the effective
window of visual attention irrespective of retinal position
and spatial scale of interest. My prediction for the size of
maps, the width of the hexagon being about 21 and thus
the existence of 21 different sizes of receptive fields, fits
well with the number of steps of attention if attention
must pass through these receptive fields.

Strong misses the point of the argument in section 4.5;
I could probably have provided more discussion on this
point. My argument is the following. I claim that high
spatial resolution cannot be achieved by providing direct
connections from the processor layer to the early layers of
the input abstraction hierarchy. The sheer number of
such connections makes this solution impossible. The
only solution that is consistent with the neuroanatomy is
indirect connection, i.e., access through the hierarchy as
I proposed. This, of course, necessitates backward
projections.

The connectivity pattern observed in primates is com-
pletely consistent with this reasoning. The total average
connectivity with the beam in place increases by a factor
of only 2. It would have also been more correct for me to
return to the calculations of section 4.4 on N and M and to
revise those figures based on an average connectivity of
500 rather than 1,000. P becomes 817 and M becomes 6.
Maunsell & van Essen (1987) point out that area MT*6 has
a spatial extent of about 33 to 80 mm?2 in the macaque.
They found a linear relationship between body weight
and area to be the strongest single factor influencing the
size of MT*.7 If we extrapolate these results to humans of
about 65 kg, human MT* would have an area of about 910
mm?2. If hypercolumns are about 1 mm2, then this puts
the number of spatial units of resolution in the range
predicted by my calculations (John Maunsell, personal
communication, 1989).

It is probably useful to summarize the role 1 put
forward for the attentional beam concept. The beam arose
out of the need to provide access to high-resolution
information in a biologically plausible manner. High
resolution is needed not only in space, but also in the
features associated with each spatial location. So although



the initial motivation for the beam arose out of the
contradiction created by the determination of lower
bounds on map size, the need is identical for the feature
dimension. In the algorithm given in section 5.0, atten-
tion is applied in two key places, step 2 (section 5.2.2) and
step 6 (section 5.2.6). In the first instance, it is used to
“tune” the entire input hierarchy to expect features that
are specified by the task and does not involve selection of
spatial elements. One of the major effects of this tuning is
to manipulate the distribution of competitors in the
winner-take-all processes that are responsible for deci-
sion making. This manipulation changes the response
characteristics of those processes, leading to enhanced
response values achieved in shorter time. Haenny,
Maunsell and Schiller (1988), as well as Desimone (1990),
have observed a change in time course of response for
attended units. Enhanced response is therefore a side-
effect of an inhibitory mechanism. It is not necessarily the
case that enhanced response implies an enhancement
mechanism, as Krueger & Tsay suggest. Krueger & Tsay
go on to point out that there is little evidence for any
attentional effects on what features are extracted or com-
pared. Their view is out of date and incompatible with the
observations of Moran & Desimone, Haenny, Maunsell
& Schiller and many others as cited in the target article.

The second instance of attention is the application of
the beam as it was originally motivated, namely, to select
spatial candidates for matching. The mechanism for this is
currently being investigated. Treisman correctly crit-
icizes the lack of detail for the implementation of the
beam. I had intended it as an analogy only for the purpose
of the target article, however, and a future paper will
provide detail (Tsotsos, in preparation). Treisman points
out that it is difficult to attend selectively to one feature at
a particular location and to ignore others. How can one
then account for the results of Moran & Desimone (1985)
and other similar findings? In those experiments, exactly
this type of selection occurs within individual receptive
fields. I would suggest that some other mechanism must
play a confounding role for the interferences Treisman
cites. For example, coarse-coding of features would cause
this effect to fall out naturally. Suppose a single unit codes
both color-and shape to some degree in a coarse-coded
fashion. If only spatial selectivity is applied to that unit, it
may indeed be difficult to select color over shape. This
would be confirmed by my explanation too, as long as the
only dimension of attention was location. Moran & De-
simone and others showed that features selected can also
be within units. My beam idea thus includes both of these
aspects and the specification of the task determines which
is used, if not both.

I still maintain that detectors in the early abstraction
hierarchy are almost never in their “untuned” state;
vision is almost always purposeful and if it is, the visual
system will attempt to tune its resources in the direction
most suited for that purpose. Optimizing the tuning of
detectors for expected features will lead to faster re-
sponses for at least two reasons: competing items in the
display are attenuated, and, winner-take-all results are
speeded up as shown in section 4.5. Treisman points out
that my alternative explanation for search asymmetries
cannot be correct because I misinterpreted the “instruc-
tions” given to subjects. I did not misunderstand, but
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certainly misstated my understanding in the article. I
realize that subjects only see the stimuli and nothing else
and are not told to search for a logical negation of features.
Attentional tuning for search asymmetry cases would
inhibit any detectors that would respond to the features
that were not part of the target. In an attempt to put the
requisite decisional process into computation terms, I
used the term “logical negation” and thus created some
confusion about my meaning. Treisman asks why “could
the standard stimuli not be found simply by leaving the
detectors in their untuned state, so that only the target is
effective? Does that mean during the course of an
experiment? How is it proposed to turn off attentional or
top-down influences in a conscious human subject? I
agree, however, with Treisman’s clarification of the dif-
ference between “discovering existence” and “specifying
identity.”

7. Representation

Desimone and Zucker question the need for certain
representations of features within the framework that I
have presented. They (along with several other commen-
tators but on different issues) must be reminded of the
caveat I made early in the target articles. The derived
constraints and framework resulted from complexity con-
siderations alone. This is the view of vision that complex-
ity alone can yield — a considerable one, all things
considered, but certainly not complete. Moreover, in my
definition of features, I deliberately left them unspecified
because the goal was simply to count how many were
possible. This led to a lower bound for the number of
physical feature maps. I fully recognize that feature
representation is a “murky” area; I do not think I have
contributed much to it other than to place constraints on
numbers of features. :

Zucker points out that the beam idea requires continu-
ous representation of features across space. In the ide-
alized framework I present this is true.8 I might point out
that Zucker’s own work, on curvature for example, also
has this requirement and does not reflect the spatially
fragmented nature of representations in the cortex. Do
those breaks and gaps in representation have functional
value, or are they artifacts of evolution or some other
mechanism? We do not know at this point. I know of no
model that has intentionally included the seemingly ran-
dom gaps and anomalies of representation one finds in
biology. How could it? We do not yet understand what a
complete representation could be doing let alone one that
seemingly cannot cover visual space adequately.

Treisman points out the need for object files, tempo-
rary ad hoc representations that are not hard-wired in a
prelearned visual dictionary; she claims that my visual
search algorithm has a problem because it does not
include this. In step 1 of the algorithm (section 5.2.1), I
describe the need to store a representation of the target.
In step 7 (section 5.2.7), I argue for the need for a buffer
representation, precisely because the wiring require-
ments would be too great. These temporary representa-
tions serve the same purposes (roughly) as Treisman’s
object files. Mohnhaupt & Neumann also point out the
need for such an intermediate representation in vision,
citing much relevant research.
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8. Concluding remarks

The research described in the target article was first
published as a technical report at the University of Toron-
to dated September 1987 (Tsotsos 1987a), shortly before
that paper was submitted to Behavioral and Brain Sci-
ences. The arguments of section 3 first appeared at the
International Conference on Computer Vision, London,
June 1987 (Tsotsos 1987b). Cave’s comment about the
newness of the results is not correct; at the time of
submission, none of the researchers currently espousing
visual search explanations involving inhibitory guidance
(Wolfe, Cave, Treisman) were doing so. The idea was
indeed new back then, as was the explanation for visual
search.

Throughout my development, I attempted to include
only minimal assumptions and very simple optimizations
within the framework. Heathcote & Mewhort believe
that I confuse simplicity with tractability. If tractability
can be achieved simply, then the result is all the more
powerful. If you need to hang a picture frame, do you use
a jackhammer for that nail or a simple tack hammer? In
addition, I certainly do not propose that further optimiza-
tions are not possible. Some commentators objected to
my pointing out that the best use must be made of the
tools provided or that I could have chosen more powerful
or extensive optimizations (Strong, Cave,® Wolfe!?). One
should remember that not all dimensions of a problem
can be optimized simultaneously. How to choose which
dimensions should be optimized and by how much is a
judgment call — my intuition versus yours. I opted for a
principle of least commitment. Who is right? Time will
tell, of course. Science has always favored simple explana-
tions for complex phenomena and it is our challenge to
find them. If a solution is indeed too simple, then it
should be easy to demonstrate this because it will not
account for the experimental observations as well as
another more sophisticated theory. This is how science
progresses. I cannot claim at this point that I have found
the complete and correct explanation; I can only hope
that I have provided some useful constraints that delimit
the future search for the solution and some hypotheses for
one possible model. I was actually quite surprised to see
how much can be explained with simple mechanisms and
the single dimension of study on which I embarked.

Finally, I wish to emphasize strongly that complexity
theory is as appropriate for the analysis of visual search
specifically and of perception in general as any other
analytic tool currently used by biological experimen-
talists. Experimental scientists attempt to explain their
data and not just to describe it; it is not surprise that their
explanations are typically well thought out and logically
motivated, involving procedural steps or events. In this
way, a proposed course of events is hypothesized to be
responsible for the data observed. There is no appeal to
nondeterminism or to oracles that guess the right answer
or to undefined, unjustified, or “undreamed-of” mecha-
nisms that solve difficult components. Can you imagine
theories that do have these characteristics passing a peer-
review procedure? They wouldn’t pass such a procedure
(at least not in our current view of science!). In proposing
an explanation, experimental scientists attempt to pro-
vide an algorithm (using the definition of algorithm pro-
vided in my section 1.1) whose behavior leads to the
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observed data. Because biological scientists provide al-
gorithmic explanations, computational plausibility is not
only an appropriate but a necessary consideration. One
dimension of plausibility is satisfaction of the constraints
imposed by the computational complexity of the prob-
lem, the resources available for the solution of the prob-
lem, and the specific algorithm proposed.
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NOTES

1. This line of reasoning is borrowed from Garey & Johnson
(1976, pp. 90-91), who demonstrated that even though the
Partition problem has a pseudopolynomial-time algorithm, it is
still NP-Complete. The proof for the NP-Completeness of
Knapsack involves a reduction from Partition.

2. It seems that the great majority of pseudopolynomial-time
algorithms for NP-Complete number problems are derived
using the methods outlined by Bellman (1954) and Dantzig
(1957).

3. For example, no algorithms are known for linear program-
ming that are parallelizable (Dobkin et al. 1979). Linear pro-
gramming is used for approximate solutions to Knapsack.

4. Error data, etc. were unavailable for proper statistical
analysis of the fit.

5. Van Essen and Anderson (1990) note that 24 visual areas
are currently known.

6. The heavily myelinated zone of the superior temporal
sulcus area that is direction-selective receiving input from
striate cortex.

7. MT* (sq.mm.) = 14-body weight (kg.)

8. Bob Desimone points out that recent experimentation has
found a rather continuous representation of feature values along
a given dimension, say color, at a given spatial location in V4
(personal communication).

9. Cave's suggestion for encoding the relevant maps with
each prototype leaves open the problem of how to recognize
colored objects in a black and white image, normally stationary
objects that are moving, and other such exceptions from default
settings.

10. Wolfe’s “optimal” use of top-down guidance leads him
and his colleagues to appeal to undefined noise effects to “fix”
their model because it “works too well.”
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