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Abstract: Using the concepts of chaotic dynamical systems, we present an interpretation of dynamic neural activity found in cortical and
subcortical areas. The discovery of chaotic itinerancy in high-dimensional dynamical systems with and without a noise term has moti-
vated a new interpretation of this dynamic neural activity, cast in terms of the high-dimensional transitory dynamics among “exotic” at-
tractors. This interpretation is quite different from the conventional one, cast in terms of simple behavior on low-dimensional attractors.
Skarda and Freeman (1987) presented evidence in support of the conclusion that animals cannot memorize odor without chaotic activ-
ity of neuron populations. Following their work, we study the role of chaotic dynamics in biological information processing, perception,
and memory. We propose a new coding scheme of information in chaos-driven contracting systems we refer to as Cantor coding. Since
these systems are found in the hippocampal formation and also in the olfactory system, the proposed coding scheme should be of bio-
logical significance. Based on these intensive studies, a hypothesis regarding the formation of episodic memory is given.

Keywords: Cantor coding; chaotic itinerancy; dynamic aspects of the brain; dynamic associative memory; episodic memory; high-

dimensional dynamical systems; SCND attractors

1. Introduction

In recent studies in neuroscience, dynamic aspects of the
brain have been the subject of a good deal of investigation.
There has also been an accumulation of data that cannot be
rationally explained within a static framework. Recently, it
has been suggested in various contexts that the brain is or-
ganized not only in a hierarchical fashion but also in a “het-
erarchical” fashion. In this context, the word “heterarchy”
refers to structure or states existing in reticular networks, in
contrast to hierarchical structure or states. According to this
point of view, a single neuron or a neuron assembly is rep-
resented by a single code and also by a multiple code; the
information representation is realized both by the state of
neurons and by the dynamic relation among states.

In neural network models of biological information pro-
cessing, it has been assumed that an attractor in phase space
(state space) represents external and/or internal informa-
tion. In other words, it has been assumed that a neural net-
work maps the structure of information contained in the
external and/or internal environment into embedded at-
tractors (see, for example, Amari 1974; 1977; Amari & Mag-
inu 1988; Kohonen 1972; 1982; Hopfield 1982). With this
assumption, if the static representation of information is
universal, the concept of an attractor should be adequate
for neural representation (Hirsh 1989).

Recently, however, dynamic modalities of neuroactivities
have been observed as, among other types of phenomena, a
coincidence of random spikes (for example, Abeles 1991;
Aertsen et al. 1994; Fujii et al. 1996; Oliveira et al. 1997;
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Riehle et al. 1997), as coherent activity in neuron assemblies
(Aertsen et al. 1987; Arieli et al. 1996), as the synchroniza-
tion of oscillatory spike trains (Deppisch et al. 1993; Eck-
horn et al. 1988; Engel et al. 1992; Gray & Singer 1987;
1989; Gray et al. 1990; Singer 1994), as chaotic population
dynamics in the y-range (Freeman 1987; 1994; 1995a;
1995b; Kay et al. 1995; 1996), as chaotic interspike intervals
giving rise to a chaotic fluctuation of membrane potentials
(Hayashi & Ishizuka 1995). We have adopted the framework
of chaotic dynamical systems to inter;nret the functions of
dynamic neural activity emerging in the brain, which can be
regarded as a hermeneutic device (Erdi 1996) that can act in
ahermeneutic process (Erdi & Tsuda, in press; Tsuda 1984).
The dynamical systems’ interpretation of dynamic neural
activity with chaos analysis has also been presented (see, for
example, Babloyantz & Lourengo 1994; Erdi et al. 1993;
Freeman 1987; 1995a; Kaneko & Tsuda 1996; Nicolis 1982;
1991; Nicolis & Tsuda 1985; Tsuda 1984; 1990; 1991a). In
these works it has been shown that chaos can be effectively
used for biological information processing. Types of com-
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plex dynamical behavior, such as chaos, can be categorized
in terms of quantities including topology, measure, and di-
mension. The functional form of a decay of amount of in-
formation also categorizes chaos according to the ability of
a chaotic network to store spatial patterns using the dy-
namic orbits (Matsumoto & Tsuda 1985; 1987; 1988). The
forms of chaotic behavior observed in biological systems
possess a common feature: a nonuniform probability den-
sity and a weak instability. The probability distribution of
chaotic dynamics is biased due to excitability and its bifur-
cation parameter, which is a control parameter, is biased
due to biological specificity. The former bias is responsible
for the network ability mentioned above, and the latter bias
results in a restricted high-dimensional process. From
these considerations, it is seen that chaos appearing due to
a weak instability cannot be restricted to merely a low-
dimensional phase space. Thus transitory dynamics in high
dimensions emerge.

Since biological neural networks operate in noisy envi-
ronments, the interplay between their deterministic model
dynamical systems and noise is an important subject for
study. Taking into account this issue and those discussed in
the previous paragraph, in this paper we study the roles of
critical chaos in biological information processing with re-
gard to, in particular, the inseparability of dynamic memory
and perception. Based on new concepts of high-dimensional
dynamical systems, we present a hypothesis on the forma-
tion of dynamic memory and perception. This hypothesis
accounts for dynamic functional processes such as episodic
memory and the itinerant process of perception. This hy-
pothesis clarifies the biological significance of the chaotic
activity observed in the hippocampus and in the olfactory
system. The hypothesis also suggests a form of the proto-
type of thoughts.

2. Perception and dynamic memory

Studies of neural correlates of memories have developed
through investigation of the hippocampus, the olfactory
system, the temporal cortex, the prefrontal cortex, and their
interacting systems. The working memory (Baddeley 1986;
Funahashi et al. 1989; Goldman-Rakic 1987; 1996; Sawa-
guchi & Goldman-Rakic 1991) as a cognitive modality can
be dynamic and is easily destabilized in the state space. In
contrast, the episodic memory can be stabilized in state
space, but it appears in association with dynamic cognitive
processes. Finally, the semantic memory must be described
as a stable object. On the other hand, neural activities asso-
ciated with these kinds of memories seem a highly random
spatio-temporal pattern. If these neural activities corre-
spond precisely to memories, it is unlikely that they would
be represented by a single attractor in state space, but
rather by a more unstable one. This observation leads to the
following conclusion: Memories do not emerge entirely
from stored information. Rather, the nature of that which
emerges is influenced at each instant by “traces” of infor-
mation resulting from perception and cognition.

Motivated by the above conceptual observation, we have
constructed a neural network model of dynamic memory in
terms of mathematical objects that are not attractors in the
conventional sense (Tsuda 1991b; 1992; 1994; Tsuda et al.
1987). This model is discussed in the next section from an-
other viewpoint.
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There are interesting experimental results demonstrat-
ing the dynamic relations between perception and mem-
ory. In particular, an experiment conducted and a model
constructed by Freeman and his colleagues have attracted
general attention (Skarda & Freeman 1987). In both Free-
man’s work (1995a) and Kay’s work (Kay 1995; Kay et al.
1995; 1996), it is claimed that odor memories are repre-
sented by the chaotic behavior of the collective activity of
the olfactory bulb, and that the process of odor perception
can also be represented by itinerant motion of local EEGs
in the olfactory bulb, in the olfactory cortex, and in the hip-
pocampus. It was found that in the animals” motivated state
during the process of learning, which is inevitably associ-
ated with the recall and the perception processes, the
neural activity is chaotic (Freeman 1995a; Kay et al. 1995;
1996).

The studies of Freeman and Kay suggest that chaos un-
derlies the entire process of odor perception, and this
process is inseparable from the dynamic memory process.
Among a number of noteworthy findings of Freeman and
his colleagues, a key finding was that animals do not re-
spond directly to external stimuli, but rather to internal
images created by chaotic dynamics in the olfactory bulb
(Freeman 1995a; 1995c¢). This suggests that the brain is
hermeneutic (interpretative) in nature and exhibits chaotic
behavior (Tsuda 1984; 1991a). Furthermore, Skarda and
Freeman (1987) offer a hypothesis on the role of chaos in
the dynamic processes of perception and memory. Accord-
ing to this hypothesis, without chaos animals can neither
record nor perceive odor. As described in the next section,
the dynamic behavior exhibited by our theoretical model
strongly suggests that their hypothesis is correct.

For other modalities of sensation, the dynamic receptive
field may be understood as a neural correlate of dynamic
perception like a perceptual drift (Freeman 1995a). Dy-
namic (spatio-temporal) receptive fields have been ob-
served in the retina (Mizuno et al. 1985; Tsukada et al.
1983), the auditory cortex (Eggermont et al. 1981), and the
primary visual cortex (Dinse 1990; 1994). It was pointed
out that there exist subfields, some of which are activated
for only 20—50 msec during a presentation of stimuli; the
combination of activated subfields varies even for a sta-
tionary presentation of stimuli. In the theory of the dy-
namic receptive field, a classical receptive field, which is
understood as static one, is reinterpreted as a spatio-tem-
poral average of the dynamic receptive field. The spatial
average should be taken over an entire receptive field, and
the temporal average over a few hundred milliseconds.
Since the time scale 20—50 msec is approximately a “unit”
of psychological time, we may consider the dynamic re-
ceptive field as a neural correlate of internal dynamics
for restructuring and/or reorganization of mental space
(Dinse 1990), in other words, the presence of a dynamic
receptive field suggests the presence of dynamic restruc-
turing due to dynamic interactions between higher and
lower levels of information processing (see also Dinse
1994).

Concerning the processing of visual information, Gra
and Singer (1987; 1989) and Eckhorn et al.(1988) found
neural oscillations of around 40 Hz in the primary visual
cortex. These findings followed studies giving evidence for
the presence of y-range oscillations (Bressler & Freeman
1980; Freeman 1987). As an underlying mechanism for
these oscillations, the synchronization of neuron spikes may
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be conjectured. It was actually conjectured that one of the
roles of spike synchronization is to extract the invariant con-
tinuum as a figure out of diverse stimuli, and consequently
to bind different modalities of stimuli (Eckhorn et al. 1988;
Gray & Singer 1987). This is reminiscent of Abeles’s (1991)
synfire chain, proposed to describe how neuron assemblies
in the prefrontal cortex can obtain useful information from
purely random spike trains through coincident and phase-
locked firings.

In the prefrontal cortex, after Abeles’s proposition of the
synfire chain, Vaadia, Aertsen, and others observed the co-
incidence of neuron spikes, and Aertsen et al. analysed
these data precisely (Aertsen et al. 1994; Vaadia & Aertsen
1992). Aertsen et al. found a new functional representation
of neurons, which can be compared with the so-called rate
coding. Fujii et al. (1996) has proposed a dynamic cell as-
sembly hypothesis, based on the concepts of coincidence
detecting neurons and functional connectivities resulting
from coincidence (see also Aertsen et al. 1996). Recently,
Diesmann et al. (1999) constructed a neural network model
for synfire-chains.

Our main concern here is not formulating a coding
scheme at the level of a single neuron. Rather, we cast our
description in terms of macro-variables that represent
macroscopic behavior observed as collective motion (see
the Technical Appendix). These macro-variables can in turn
limit the possible types of coding scheme at the level of a
single neuron. In this respect, our viewpoint is similar to
that of statistical physicists and dynamicists (see, for exam-
ple, Amit 1989; Amit et al. 1985; 1987; Babloyantz 1986;
Haken 1979; 1983; 1991; Mayer-Kress 1986; Sompolinsky
& Crisanti 1988; Sompolinsky & Kanter 1986), where the
understanding of Haken leads to the idea that pattern for-
mation is pattern recognition). A crucial point in the treat-
ment we employ, which distinguishes our treatment from
the conventional treatments of statistical physics and dy-
namical systems, is that the macro-variables we consider do
not behave as simple functions, such as a constant function
or a function periodic in space and time, and in this sense
they are fundamentally different from order parameters
(see the Technical Appendix). The description of the
chaotic behavior in which we are interested necessitates the
use of these mathematically more general macro-variables.
Such chaotic behavior cannot always be described by a low-
dimensional attractor. We thus need a dynamical descrip-
tion that captures the high-dimensional complex dynamics.
Another crucial problem is to describe the interplay be-
tween the order parameter and the “rest” of the system —
that is, the interplay between the deterministic dynamics
and the noise. In the next section, we consider these issues
in relation to neural dynamics.

We take the view that there exists a neural correlate of
cognitive behavior. The inadequacy of the symbolic ap-
proach to higher functions of the brain, which has been
used in the field of artificial intelligence, was clearly pointed
out by Skarda and Freeman, who showed the biological sig-
nificance of chaotic behavior found in local EEG. Addi-
tionally, it should be noted that a sharp distinction cannot
be drawn between the molecular-level timescale and the
psychological timescale. For instance, one can observe
psychological events at some timescale, say 1 sec, and also
observe molecular events and electric events over almost
the same timescale. Hence there exists an overlap of
timescales. In addition, there are overlaps of many other

timescales. For these reasons, it is not appropriate to de-
scribe cognitive behavior as simply a “macroscopic” behav-
ior. It is thus necessary to study the interplay between
macroscopic and microscopic behavior and from this to
propose a plausible cognitive interpretation of neural activ-
ity. For this purpose, we study the dynamic behavior in non-
equilibrium neural networks, which gives a skeleton de-
scription of behavior observed in the brain.

In this article we study two kinds of networks. One is
a stochastic recurrent network, and the other is a chaos-
driven stable network. Based on this study, we present hy-
potheses on dynamic memory and perception.

3. Dynamical systems with and without noise
as atool for interpretation of neural activity:
Changeover of interpretation from
low-dimensional attractor to
high-dimensional itinerancy

3.1. What is noise in neural systems?

In order to clarify the origin of noise, let us consider a sys-
tem consisting of many interacting elements. Here an “ele-
ment” is assumed to obey a deterministic law, so that it en-
tails no unknown component. In cortices, the system in
which we are interested consists of on the order of 10° to
10'° the interacting neurons. Such a system is called deter-
ministic because of the absence of stochastic behavior. The
system may, however, be intractable as a deterministic sys-
tem in the practical sense, because it contains too many de-
grees of freedom. Then, one may attempt, in the sense of
mode-mode coupling theory, to identify collective modes to
act as an order parameter. This approach succeeds in the
critical regime of equilibrium phase transitions, and it can
be extended to bifurcation points in nonequilibrium states
(see for example Haken 1983). Here, the collective mode is
decoupled from the residual modes, since the collective
mode is low frequency, whereas the residual modes are
high frequency. In other words, in such a treatment the slow
motion on the center manifold is decoupled from the fast
motion involved in the convergence to the center manifold.
Here, the collective mode can be described by determinis-
tic equations with a few degrees of freedom, and the rest is
viewed as noise.

Noise is dynamically generated in such manner, but it is
usually assumed to contain infinite degrees of freedom.
Hence, as is shown in Figure 1A, the interaction between
the order parameters constituting a deterministic system
and noise is unidirectional. However, this condition is bro-
ken when order parameters, that is, collective modes, be-
come weakly unstable in a direction normal to the center
manifold, as the slow motion begins to interact with fast
motion.! Then the number of variables behaving like
noise changes in time. Figure 1B depicts this situation. An
asymptotic theory, in general, provides an effective method
to obtain a center manifold. Then, once one obtains the
center manifold of interest the stability of states within this
center manifold must be investigated. In the situation we
study here, however, stability in the direction normal to the
center manifold must be investigated, using an index like a
normal Lyapunov exponent.

Taking into account the situation as described above, it is
plausible to think of a neural network in the brain as exist-
ing in a noisy environment even in the absence of thermal
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A
a few macroscopic modes
(order parameter)
microscopic modes
(noise)
randomly
interacting
system
B
time
Figure 1. (A) Unidirectional interactions between order param-

eters representing a deterministic system and noise. (B) Order pa-
rameters and the rest can be varied in a weak instability regime.
The components that play the role of noise change with time.

noise and quantum noise. Since neurons can process infor-
mation even in such a noisy environment, in our model
“noise effects” must be taken into account.

An additional type of noise we have not yet mentioned
has been observed in neurons. This type of noise differs
from that discussed above in that it originates in nonde-
terministic factors. The following two types of noise can be
distinguished. One type results from electric current ran-
domly leaked from neighboring neurons. We refer to this
as dendritic noise. The second type results from quantal
emissions of synaptic vesicles. There are two kinds of quan-
tal emission, spontaneous emission and stimulus-induced
emission.

Spontaneous emission is too weak to activate the postsy-
naptic membrane. Actually, a single such process simply
induces a change on the order of several pV to the post-
synaptic membrane potential.

For the firing to be effective, emission on the order of
10* over all connecting neurons must occur within the de-
cay time of membrane potential. Taking into account the
maximal number of synapses per neuron and the average
decay time of a membrane potential, this is unlikely to oc-
cur. Thus this type of noise cannot in itself represent infor-
mation. It should, however, be noted that it may influence
the subthreshold dynamics.

This kind of noise may play a decisive role in the reduc-
tion of the effective dimension when delay-differential
equations are used to describe the networks. A system with
delay terms is described as an infinite dimensional dynam-
ical system. In such a system, the infinite number of vari-
ables generated by the delay allows for highly complex be-
havior of high dimension. In this case, noise can reduce the
complexity of the system, because noise divides a continu-
ous delay time into some finite intervals within which cor-
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relations among some finite variables are preserved. Hence
the effective dimensionality can be reduced by noise.

On the other hand, stimulus-induced stochastic emis-
sion, which is referred to here as synaptic noise, can be ef-
fective for the firing, since a single such process provides an
effect on the order of several mV. Thus here, a coincident
emission on the order of only 10 among ~10* synapses is
sufficient to cause a firing. In the study of model systems,
it will therefore be necessary to consider the effects of den-
dritic and synaptic noise.

3.2. The interplay between the dynamical
system and noise

In this subsection, we highlight the difference between dig-
ital and analog computations and the related role of noise.
This issue is of importance in order to properly address the
role of noise in excitable biological systems, like neural sys-
tems. Excitable systems are, in many cases, sensitive to noise,
because of the presence of a separatrix between states (i.e.,
the firing states and resting states) or the presence of an ex-
tremely nonuniform vector field. The latter occurs in phys-
iological situations described by the Hodgkin-Huxley equa-
tion. Furthermore, an interacting system of such elements
often possesses a critical regime of stability.

Some deterministic models with a few degrees of free-
dom used to describe the Belousov-Zhabotinsky reaction
system exhibit only periodic oscillations when studied on
digital computers, but the digital simulation of these mod-
els with a noise term as well as the analog simulation of
the deterministic model exhibit “chaotic” oscillations also
(Showalter et al. 1978; Tomita & Tsuda 1979). These oscil-
lations have topologies and probabilistic properties that are
similar to those observed in the actual Belousov-Zhabotinsky
system (Roux et al. 1981).

Higher-dimensional dynamical systems like the KIII
model of Freeman and our model for the dynamic associa-
tion of memory also is sensitive to noise. The KIII model
possesses a tiny basin of attraction whose size is reduced to
the size of the digitizing unit (around 10716 due to attrac-
tor crowding as the number of coupled oscillators is in-
creased. Such a situation prevents locally unstable states
from appearing. Thus noise is necessary to obtain aperiodic
orbits stably (Freeman 1997). Our model, which will be in-
troduced in the next subsection, consists of two compo-
nents, the deterministic system and two kinds of noise
terms. The deterministic part consists of a multi-Milnor at-
tractor system whose stability is critical. Hence, without
noise terms, its asymptotic solution is like that of a multi-
stable state system in the sense that one of the Milnor at-
tractors is eventually selected, depending on initial condi-
tions. However, the dependence on the initial conditions in
the present case may be more complicated than in the case
of a multi-stable state system. A Milnor attractor is a kind
of generalized attractor that may be neutrally stable, as it
can possess unstable directions. For further discussion, see
section 3.4, and for a precise definition see the Technical
Appendix.

Furthermore, contrary to conventional belief; it is possi-
ble that digital computation will create spurious periodic
orbits (Yamaguchi 1997).

These points suggest that the digital computation of a
high-dimensional dynamical system with an excitable ele-
ment like a neuron or even a neuron population could lead
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to fatal error. Apparently, the simulation of excitable bio-
logical systems demands careful treatment regarding the
interplay between deterministic and stochastic components
of the system. In the context we consider, it will be fruitful
to study systems in regimes in which chaos does not exist
but chaotic behavior generated by noise appears and sys-
tems that can be stabilized by noise, as in the case of noise-
induced order in chaotic systems (Matsumoto & Tsuda
1983) and stochastic resonance in multi-stable systems (see,
e.g., Liljenstrom et al. 1996). These studies should be more
relevant to neurosciences than studies of low-dimensional
deterministic chaos, because the brain seems to employ a
mechanism by which it distinguishes ordered motion in
noisy signals.

3.3. A model for dynamic associative memory

A nonequilibrium neural network model was proposed
(Tsuda et al. 1987) to investigate the neural correlate of the
dynamic association of memory and dynamic perception.
This network consists of two blocks, one (called block I)
containing a recurrent net and positive and negative feed-
back connections whose strengths are randomly fixed, and
the other (called block II) constructed from the same net-
work as in block I except for the addition of a specific neg-
ative feedback connection (see Fig. 2).

The skeleton of the model was based on Szentagothai’s
works (1975; 1983) on the network structure of the cerebral
cortex. It is likely that the skeleton possesses a structure
seen in the mammalian cerebral cortex. In the cerebral cor-
tex, the existence of a recurrent net is insured by a distribu-
tion of axon collaterals of pyramidal cells, though only a few
neighboring neurons are connected to any given neuron. A
Hebbian synaptic learning can be assumed in the network.
The existence of a positive and negative feedback to this
network is guaranteed by the distribution of stellate cells
and basket cells. These neurons can cause a dynamic
change of the collective internal states of pyramidal cells.
The specific negative feedback existing only in block IT may
result from specifically formed inhibitory neurons like the
Martinotti cells or the axonal tuft cells.

o o,

e

AR

block I block II

Figure 2. Skeleton network for dynamic associative memory.
The network consists of two blocks, I and II. Block I consists of a
recurrent network of a pyramidal-type neuron and a network pro-
viding global feedback, whose strength is randomly fixed. Block II
consists of the same network as in block I with the addition of spe-
cific negative feedback connections.

There are several possibilities for the function of the spe-
cific inhibitory neurons. We give here three examples.

(1) A pyramidal cell fires, an inhibitory neuron may re-
ceive its output and as a result act to reduce the output.

(2) The inhibitory neuron may receive information cor-
responding to the internal state like the membrane poten-
tial of the pyramidal cell and then work to reduce the out-
put of the pyramidal cell with a strength proportional to this
internal state.

(3) Ifthe pyramidal cellis in a steady state, the inhibitory
neuron may receive such information and then act to inhibit
the firing of the pyramidal cell.

In all of these cases, the role of the inhibitory neuron is
to temporarily hide the information contained in the state
of the pyramidal cell. In our model, the state of the pyra-
midal cell is reset to the initial state when the information
is hidden. The connections between two blocks may mimic
intra- and/or inter-cortical connections, where again Heb-
bian synaptic learning is also assumed.

Two modifications are made in order to see the effects of
dendritic and synaptic noise. First, extremely small additive
noise terms are introduced to represent dendritic noise.
Second, a type of stochastic renewal of dynamics is adopted
to represent synaptic noise. The second dynamics consists
of two independent rules for evolution of which one is se-
lected randomly at each time step. With stochastic dynam-
ics of this type, a neuron does not always output a pulse
even if the sum of the inputs exceeds the threshold at a cer-
tain time. At a given time, according to pre-determined
probabilities, either a particular neurodynamics is selected
(ie., a threshold dynamics is employed), producing some
output, or simply the same output as that for the previous
time is used. The two maps used here thus constitute a con-
tracting IFS (iterated function system) (Barnsley 198S;
Tsuda 1991a). Therefore, the overall dynamic behavior is
determined by the parameter that indicates the degree of
the instability of the Cantor sets produced by the IFS. This
instability is due to the reset caused by the specific in-
hibitory neurons.

A “chaotic” transition among memories can occur, de-
pending on the values of the assigned probabilities for
choice of a specific neurodynamics. If such a probability
value is given by the inverse of the number of neurons, then
the model is equivalent to the Hopfield model (1982). Thus
the existence of steady associative recall is also certain. In-
creasing the probability, a chaotic transition, (dynamic recall)
occurs. This transition in block I is a bit artificial, because
of the presence of specific inhibitory neurons, whereas in
block I the transition is self-organized (i.e., it is an emergent
property of the network), since it occurs even in the case of
infinitesimal connection strength between blocks I and II.
It should be noted that memories can be represented by an
exotic attractor in spite of the fact that we use Hebbian
learning. If the system is composed of a recurrent net only,
then memories are represented by an attractor in the usual
sense. The appearance of exotic attractors is due to the in-
troduction of specific inhibitory neurons. In the next sub-
section, we extend the concept of the attractor. As we will
see, the exotic attractor here can be identified with a Mil-
nor attractor.

Choosing an appropriate coordinate, the transition can be
described by the critical stage of a circle map, which is
known as a typical chaotic map. In Figure 3A and B, we show
the one-dimensional map representation of the transition.

BEHAVIORAL AND BRAIN SCIENCES (2001) 24:5 797
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Figure 3. (A) and (B) correspond to a one-dimensional map rep-
resentation of the chaotic transition among memory traces. (C)
and (D) correspond to a one-dimensional map representation of
a random transition due to an addition of noise. The abscissa de-
notes the internal state of the network at a discrete time step n,
and the ordinate the internal state at the next time stepn + 1. In
(A) and (C), strongly correlated patterns are learned, and weakly
correlated patterns are learned in (B) and (D). The functional re-
lation between the internal states for the present and the next time
step is clearly seen, especially in (A). Also, in (B), a skeleton of the
one-dimensional map is seen. This is not seen in the case of the
random transition ((C) and (D)). The one-dimensional map in (A)
provides an emergent dynamic rule for the chaotic transition.

The dimension of the transitions is a decreasing function of
the correlation among memories (Tsuda 1992). Compared
with this chaotic transition, a random transition among
memories occurs in a deterministic network with dendritic
noise only, which is depicted in Figure 3C and D. This situ-
ation is equivalent to the case of simulated annealing.

Following the study producing Figure 3, a similar chaotic
transition has been observed in other network models, for
instance, in chaotic neural networks with refractory periods
(Adachi & Aihara 1997; Aihara et al. 1990), in neural net-
works with dynamic masking (Korner et al. 1989; 1991), in
associative networks with memory of the limit cycle type
(Nara & Davis 1992; Nara et al. 1995), in associative cogni-
tive networks controlling robot movements (Tani 1992),
and in a modified Hopfield network for the travelling sales-
man problem (TSP) (Chen & Aihara 1995; Nozawa 1994;
Tokuda et al. 1997). (See also Horn & Opher 1996 as an in-
dependent but similar study.)

From these studies, it has been found that such chaotic
transitions can be used for problem solving in various fields.
We discuss below basic functions of networks exhibiting
this type of emergent property.

In this article, we would like to propose several hypothe-
ses regarding dynamic memory and perception, based on
the results of our investigation of several model systems.
Then, a basic network model is constructed using in one
case a modified recurrent net like the one treated in this
subsection, and in another case a unidirectional coupling (a
skew product) of an unstable network with a stable net-
work, where a chaotic network like the one treated here can
be adopted as the unstable network.

Before proceeding to the main topic, the introduction of
new concepts of high-dimensional dynamical systems is
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necessary. The next three subsections are devoted to this.
First, in the next two subsections, we discuss the concept of
chaotic itinerancy, which was proposed in order to capture
the essence of complex transitions in high-dimensional dy-
namical systems.

3.4. Chaotic itinerancy, ruins, and Milnor attractors

We proposed the concept of chaotic itinerancy as a univer-
sal dynamical concept in high-dimensional dynamical sys-
tems (Ikeda et al. 1989; Kaneko 1990; Tsuda et al. 1987;
Tsuda 1991a; 1991b). In low-dimensional dynamical sys-
tems, which have been adopted as a tool for the interpreta-
tion of neural activity, four classes of attractors are known:
fixed points, limit cycles, tori, and strange attractors. They
are used to represent a steady state, a periodic state, a quasi-
periodic state, and a chaotic state, respectively. Chaos can
be characterized by the presence of a positive Lyapunov ex-
ponent, which represents the orbital instability defined by
the exponential increase of separation of nearby orbits on
average. With this characterization, chaos can exist also in
high-dimensional dynamical systems. One example is hy-
per-chaos, which is characterized by the presence of more
than one positive Lyapunov exponent (Réssler 1983). The
chaotic transition among memories discussed above, how-
ever, leads us another type of chaotic behavior.

Let us imagine a multi-stable system of high dimension.
As long as each of these stable states is represented by an
attractor, one attractor is separated from the others by sep-
aratrices, forming a basin of attraction. Then, the asymp-
totic behavior corresponds to one such attractor, depending
on the initial conditions. What happens following the desta-
bilization of the system? If the instability is sufficiently
strong, many chaotic modes appear, and consequently the
system moves toward a turbulent state, that is, a very noisy
macroscopic state. In this case, not even a “trace” of the
original attractors remains. (The present meaning of the
word “trace” is made clear below.)

If, however, the instability is not so strong, an intermedi-
ate state between order and disorder can appear. The dy-
namics of such a state may be regarded as those of an itin-
erant process, indicating a correlated transition among
states. Here, the state of the system before the instability
corresponds to an attractor, but after the appearance of the
instability this is no longer the case. In this case of weak in-
stability, a crucial characteristic is that a “trace” of the orig-
inal attractor remains in spite of the generation of unstable
directions in the neighborhood of the attractor. Such an
itinerant process often becomes chaotic. A destabilized at-
tractor is called an attractor ruin, and the corresponding
overall behavior is called chaotic itinerancy (Fig. 4, see also
Technical Appendix). In this situation, an attractor of the
destabilized system consists of a collection of attractor ru-
ins and itinerant orbits connecting attractor ruins. We refer
to this new type of attractor as an itinerant attractor.

Attractor ruins are closely related with Milnor attractors
(Milnor 1985). A Milnor attractor is a kind of generalized
attractor that may possess unstable directions. A Milnor at-
tractor is defined as a minimal limiting set whose initial
points possess positive (Lebesgue) measure, and hence the
presence of unstable directions is allowed (see Technical
Appendix for precise definition). It should be noted that a
Milnor attractor is a limiting set, but dynamical orbits can
escape from it due to small (even infinitesimal) perturba-
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Figure 4. Schematic drawing of chaotic itinerancy. Dynamical
orbits are attracted to a certain attractor ruin, but they leave via an
unstable manifold after a (short or long) stay around it and move
toward another attractor ruin. This successive chaotic transition
continues unless a strong input is received. An attractor ruin is a
destabilized Milnor attractor, which can be a fixed point, a limit
cycle, a torus or a strange attractor that possesses unstable direc-
tions.

tions. A trivial but typical example of a Milnor attractor is a
fixed point in a map at a tangent bifurcation (i.e., a saddle-
node bifurcation). Such a map and point are depicted in
Figure 5. In this Figure, the fixed point p is the unique as-
ymptotic state for any starting point. A similar structure of
phase space is observed in a one-dimensional map repre-
sentation of the chaotic association of memories (see Fig.
3A), but in the case of chaotic transitions, the Milnor at-
tractor collapses due to the nonlinear interactions and sto-
chastic renewal of the neurodynamics. Figure 6, which
is a two-dimensional representation of the transition, also
shows the flow in the neighborhood of degenerate attractor
ruin. In this figure both the dynamic inflow and outflow of
orbits can be seen.

In the case of neither noise terms nor dynamical inter-
actions among variables, the orbits approach a Milnor at-

/

X(n+1)

X(n)

Figure 5. The simplest Milnor attractor in a one-dimensional
map. The absissa denotes a state at a discrete time step n, and the
ordinate a state at n + 1. There is only one fixed point, p, in this
map. This fixed point is a unique asymptotic state for any starting
point.

Yn)

05

X(n)

Figure 6. A two-dimensional representation of a chaotic transi-
tion. Arrows denote the direction of motion. The dynamical orbits
approach a fixed point, but they then escape from it. Hence the
fixed point can be regarded as a ruin of a Milnor attractor.

tractor, even if this Milnor attractor is embedded in a higher-
dimensional space. Instability due to dynamic interactions
or noise is thus necessary for the appearance of chaotic itin-
erancy. The structure of phase space in the neighborhood
of attractor ruins is complex, and this structure may be re-
lated to riddled basin boundaries often appearing in multi-
attractor systems (Grebogi et al. 1987; Kaneko 1997). It is
plausible that such a complex boundary is destabilized and
comes to chaotic orbits connecting attractor ruins.

A transition through chaotic itinerancy is topologically
quite different from a transition resulting from noise in
multi-attractor systems. In Figure 7 the schematic drawing
clarifying the difference is shown. In the latter, which has
been dealt with in previous studies, the external noise is
necessary to obtain the transitions. On the other hand, in
the former, the entire phase space is decomposed into sev-
eral subspaces, and in each subspace the system is stable, as
characterized by the Lyapunov exponents within each sub-
space, but in a direction normal to a subspace the system is
unstable, as characterized by the “normal” Lyapunov expo-
nents. Since for each subspace the normal Lyapunov expo-
nent is positive, the set representing an asymptotic state of
the dynamics restricted to each subspace is unstable, and
thus it is not an attractor in the conventional sense. It is,
however, a Milnor attractor.

One may think that a Milnor attractor is structurally un-
stable, as it exhibits such critical behavior as that appearing
in saddle-node bifurcations. It is not difficult, however, to
construct a model in which a change of parameter values
preserves such a critical regime. Actually, only the bifurca-
tion parameter in our neural network model is given by the
probabilities determining the renewal process of mappings,
and Milnor attractors are preserved through the change
of the other system parameters, such as the connection
strength of nonmodifiable synapses and input biases. Thus
chaotic itinerancy is represented in a quite different man-
ner from stochastic transitions caused by external noise in
the attractor landscape. “Pasting” subspaces together
(shown in Fig. 7B) on the time axis according to the devel-
opment of the dynamics, one can understand the concept
of an epigenetic landscape, proposed by Waddington, in
which dynamics are embedded.

3.5. Information structure of chaotic itinerancy

The information structure of chaotic itinerancy may pro-
vide foundation for description of dynamic information
processing in the brain. Since chaotic itinerancy has actu-
ally been observed in animal motivated learning (see for ex-
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A Transition by noise
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Figure 7. The difference between transitions created by pro-
ducing chaotic itinerancy and by introducing noise. (A) A transi-
tion created by introducing external noise. If the noise amplitude
is small, the probability of transition is small. Then, one may try to
increase the noise level in order to increase the chance of a tran-
sition. But this effort is not effective because the probability of the
same state recovering is also increased as the noise level increases.
In order to avoid this difficulty, one may adopt a simulated an-
nealing method, which is equivalent to using an “intelligent” noise
whose amplitude decreases just when the state transition begins.
(B) A transition created by producing chaotic itinerancy. In each
subsystem, dynamical orbits are absorbed into a basin of a certain
attractor, where an attractor can be a fixed point, a limit cycle, a
torus, or a strange attractor. The instability along a direction nor-
mal to such a subspace insures a transition from one Milnor at-
tractor ruin to another. The transition is autonomous. Recently,
Komuro constructed a mathematical theory of chaotic itinerancy
with the same idea as demonstrated in (B), based on the investi-
gation of itinerant behavior appearing in the coupled map lattices
found by Kaneko (Komuro 1999).

ample, Freeman 1995a; 1995¢; Kay et al. 1995; 1996), it
may be possible to use it for the dynamical interpretation
of cognitive processes. We investigated the information
processing of neural networks in the case that the network
exhibits chaotic itinerancy, drawing on the information the-
ory of chaos (Matsumoto & Tsuda 1985; 1987; 1988; Nico-
lis 1991; Nicolis & Tsuda 1985; Oono 1978; Shaw 1981). We

summarize this investigation below.

3.5.1. Dynamic retention of information. Information is
dynamically preserved in the chaotic behavior of a network
of nonuniform chaos (Matsumoto & Tsuda 1987; Tsuda
1992).

There exist neurons whose activity is characterized by
the skewness of the distribution of interspike intervals
caused by the skewness of the distribution of membrane
potentials. The latter skewness stems from the excitability
of the membrane. For this kind of system, the amount of in-
formation contained in the initial distributions, which is
measured by the mutual information between states of the
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system, slowly decreases in the form of an exponential or
power law in time. Here, the mutual information between
states indicates the information existing commonly in both
states. When information given in the form of probability
distributions is fed into a network of such chaotic neurons,
it is found that the information propagates in the network
without loss. This property has been demonstrated in a gen-
eral framework.

3.5.2. Learning capability. The learning capability of neural
networks increases in the presence of chaotic itinerancy.

This proposition is based on a numerical study of Heb-
bian learning (Tsuda 1992). Since Hebbian learning works
locally in phase space, it usually strengthens the stability of
learned patterns. Hence, superfluous learning representing
learning beyond a critical capacity of memory simply
strengthens one particular memory, or destroys most mem-
ories. Chaotic itinerancy as a dynamic process of a network
endows Hebbian learning with a different feature. Let us
define the critical memory capacity of a network as the
largest number of memories in the case of usual associative
network learning, in which only a single association of
memory for a single input occurs. Our model network ex-
hibits successive association represented by chaotic itiner-
ancy as well as this single association, depending on the
value of the system’s parameter, that is, the probability value
for choice of the dynamics. Thus, one can compare the
memory capacity in succesive association with that in single
association. We found about a fifty percent increase of the
capacity in the case with chaotic itinerancy, compared to the
case without chaotic itinerancy.

How can chaotic itinerancy save the network from “Heb-
bian break” described above? Since the state of the network
continually changes even under learning so that the dy-
namical orbits link memory states, the dynamical paths link-
ing memory states are also strengthened in spite of the lo-
cality of Hebbian learning. Thus, superfluous learning is
possible, implying that the memory capacity is beyond the
conventional capacity. This scenario has been verified by
another numerical experiment in which random transitions
among memory states induced by noise occur, though the
orbits become uncorrelated due to noise. Actually, we did
not find an increase of memory capacity in this experiment
(Tsuda 1992).

3.5.3. Pattern recognition. Neural networks exhibiting cha-
otic itinerancy can judge whether or not any input is close
to one of the memories.

Let us assume that a memory is represented by the state
of a neural network independently of context (this is the
vector representation). The closeness between two repre-
sentations can be expressed, for instance, by their inner
product. Numerical simulations have shown that the net-
work outputs a particular memory if the input s close to this
memory, whereas it outputs chaotic itinerancy if the input
is far from all memories (Tsuda 1992). This characteristic of
the network dynamics is independent of the type of em-
bedded patterns and the input patterns.

3.5.4. Pattern search. Neural networks exhibiting chaotic
itinerancy can perform an effective search of memory.
Distinct from a random search with noise and a simu-
lated annealing with sophisticated noise, a pattern search
with chaotic itinerancy is quite effective because of the for-
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mation of internal rule linking memories. In chaotic itiner-
ancy, a dynamical rule for linking orbits emerges. This rule
gives rise to a causal relation among memories. The nu-
merical calculations demonstrated that the memories close
to each other are likely linked. When one wishes to obtain
a certain memory state as an output of a network but has
only incomplete information regarding this memory, it is
necessary to search in memory space with only this partial
knowledge. A random search follows chance, and simulated
annealing requires sophisticated noise whose amplitude is
controlled by both the current state of the network and the
potential landscape. A search with chaotic itinerancy, on the
other hand, simply follows a dynamically changing rule cre-
ated in the network, which provides a dynamic relation
among memories. Thus the memory in question is output
after several linking stages. This characteristic of chaotic
itinerancy has actually been used to effectively solve the
travelling salesman’s problem (Chen & Aihara 1995; No-
zawa 1994; Tokuda et al. 1997) and also to provide an ef-
fective method for pattern recognition (Nara et al. 1995).

3.5.5. Simultaneous process of learning and recall. Neural
networks exhibiting chaotic itinerancy can simultaneously
perform learning and recall.

In conventional neural network models, the learning
phase and the retrieval of memories phase must be split in
order to avoid creation of spurious memories. In other
words, if these phases are not split, spurious patterns are
also memorized. As a result there is serious confusion of
“true” memories and “spurious” memories. On the other
hand, the presence of chaotic itinerancy permits this si-
multaneous performance of learning and retrieval. In this
case, no confusion results, since spurious memory states in-
evitably produced during the learning constitute dynamical
orbits which link “true” memories (Tsuda 1992; 1994).

3.5.6. Representation by process. Memory is represented
not by a state but by a process.

Memories formed in a network model via a Hebbian
learning algorithm are represented by states. When a
neural network is described by a dynamical system, the
state can be expresssed as an attractor. As we have shown in
studies of such models, however, memory is in general de-
scribed by a Milnor attractor, which is not always an attrac-
tor in the conventional sense. Then a “trace” such as that
consisting of an attractor ruin is a representation of mem-
ory and the memory trace is manifested through the transi-
tion process. Here the transition process, that is, the link-
ing process of ruins, is reasonable. In other words,
memories are realized only when they are linked to each
other.

3.5.7. Indistinguishability. Memory and information pro-
cessing cannot be distinguished.

Regarding Proposition 3.5.6, in our conscious experi-
ence, memories are always manifested in the current
process of cognition. This view has been proposed by a
number of people. Among them, Elman (1990), in dis-
cussing dynamic memory in the context of machine learn-
ing of language, asserted that memory is inextricably bound
up with the rest of the processing mechanism. Goldman-
Rakic (1996) also asserted, through her neurophysiological
studies, that a working memory can be classified as so-
called short-term memory, but it cannot effectively be dis-

tinguished from the working process. Our studies support
the plausibility of this indistinguishability.

Let us now discuss the biological significance of the
above propositions. The olfactory bulb receives odor input,
but the correlation between the bulb’s activity and the be-
havior of the animal in question stems not from external in-
put but from internal input coming from the olfactory cor-
tex, hippocampus, and amygdala (Bressler & Freeman
1980). This feedback information generates chaotic activity
of the bulb (Freeman 1987). Thus, the bulb can be re-
garded as an interface between the external odorant world
and the internal odor world. Here, dynamic behavior like
chaotic itinerancy is likely generated as an interfacial dy-
namics (Rossler 1987) which facilitates the formation of co-
ordinates where external inputs are compatible with inter-
nal images.

Such interfacial dynamics can be seen in other areas
where “higher” and “lower” level information meet. The
hippocampus-parahippocampus system is one possible such
area in the sense that here the neural activity of the frontal
cortex meets the sensory inputs. A neuron in the frontal cor-
tex generates only a few spikes per second, and even in the
sub-areas directly connected to the motor cortex a neuron
exhibits at most a few tens of spikes per second, whereas a
neuron in the sensory cortex can usually generate a few hun-
dreds of spikes per second. If a dynamical system or a noisy
dynamical system is responsible for the firing mechanism,
chaotic itinerancy is expected to exist, because it can also be
generated by the interaction of the dynamical system with
distinct timescales (Okuda & Tsuda 1994). Furthermore,
massive recurrent connections controlled by inhibitory neu-
rons in the CA3 of the hippocampus can act as a dynamic as-
sociative network like our model. Thus, we anticipate that
chaotic itinerancy facilitates the formation or collapse of
memory traces, controlled by a certain marker, generated
probably in the frontal cortex, such as “somatic marker” of
Damasio (1995; 1996). Actually, chaotic behavior has been
found by Hayashi in CA3 neurons (Hayashi & Ishizuka
1995), and it has also been shown that the spatio-temporal
representation of information is embedded in at least CA1
(Tsukada et al. 1996). Tsukada et al. found that the informa-
tion encoded in the higher order statistics (at least 2nd or-
der) of spike sequences can be extended as spatial informa-
tion of the hippocampus CAl. Taking into account these
points, it is likely that Propositions 3.5.1-3.5.5 hold in the
hippocampus-parahippocampus system.

Another possible area for interface is the inferotemporal
cortex, where a complex figure is represented by neural
activity for some short period (Miyashita 1988; 1993;
Miyashita & Chang 1988).2 In order to perform a task, an
animal must retain an image of the key figure until the next
cue comes. Since retention can be viewed as a concurrent
process of storage and recall, it is likely that the experi-
mental conditions themselves force the animal to simulta-
neously carry out the write-in and the read-out of the in-
formation concerning this key figure. From the fact that
neural networks with chaotic itinerancy can dynamically
preserve an external input and can perform the concurrent
process of the write-in and read-out of information,
Miyashita’s finding suggests that Propositions 3.5.1 and
3.5.5 hold in the inferotemporal cortex. Such a concurrent
process can also be observed in a stable network driven by
a chaotic network. This point will be discussed in the next
subsection.
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3.6. SCND attractors and Cantor coding

Our next concern is another type of dynamic behavior that
generically appears in a chaos-driven contracting system.
Here we treat unidirectionally coupled networks, where an
unstable network generating chaotic behavior plays the role
of a “driver,” and a stable network plays the role of a “re-
ceiver.” In other words, this system consists of a stable net-
work driven by a chaotic network. This kind of network ap-
pears as a unidirectionally coupled network from CA3 to
CALI (CA3 — CAl) in the hippocampus and also as a for-
ward network from the olfactory bulb to the prepyriform
cortex. These two systems are our concerns in this article.
A unidirectionally coupled network also appears more com-
monly in, for example, the prefrontal cortex = the motor
cortex, and the visual cortex = the temporal cortex. There
could be feedback loops in most areas, but it is plausible
that the forward pathways (looked at from primary sensory
levels toward higher cortices) are used to send a basic code
for the information, while the backward pathways are used
to send the code for the context. The presence of feedback
loops does not lead to a contradiction of the discussion be-
low if the forward system is contractive and the backward
system is unstable.

Chaos-driven contracting systems possess another type
of attractor called SCND (singular-continuous but nowhere-
differentiable) attractors (see Technical Appendix). It would
be particularly interesting to see the information structure
embedded in the stable network when the unstable net-
work acting as a driver exhibits a sequence of events via
chaotic itinerancy, because such a coding may be related
with the formation of “episodic” memory and primitive
“thoughts” processes.

The SCND attractor is an attractor represented by a
SCND function (Réssler et al. 1992; 1995; Tsuda 1996;
Tsuda & Yamaguchi 1998). The precise definition of a
SCND function is given in Technical Appendix; here it is
enough to think of a fractal image on a discrete set like a
Cantor set (see Technical Appendix) as a graph of such a
function. In chaos-driven contracting systems, no one can
see an attractor itself, since it appears in a slow dynamical
process in which the discrete set like the Cantor set is gen-
erated in some cross-section of a differentiable dynamical
system. Only finite subsets, each of which contains a finite
number of elements, can be observed.

The dimension of a SCND attractor exceeds its topolog-
ical dimension® by more than 1, whereas the difference be-
tween two dimensions in a conventional strange attractor is
less than 1. Thus the SCND attractor is “fat,” distributed in
a wide domain of phase space. This dimensionality insures
the robustness of coding on the attractor, which is discussed
below.

Rossler found a mechanism for the emergence of this
kind of attractor (Réssler et al. 1992). In a simple neural
network model, we recently demonstrated the presence of
such an attractor (Fig. 8).

The SCND attractor generally appears in a contracting
space when contracting dynamics are driven by chaotic dy-
namics, provided that the speed of contraction in the for-
mer is lower than the largest speed of expansion in the lat-
ter. It could thus be observed in stable neurons or neuron
assemblies that are connected with chaotic neurons or neu-
ron assemblies.

In our study, a SCND attractor generated in the mem-
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Figure 8. (A) A schematic drawing of the model exhibiting

SCND attractors consisting of three neurons/neural networks:
one is a chaotic neuron/neural network and the other two are sta-
ble excitatory and stable inhibitory neurons/neural networks. The
stable neurons/neural networks activities form a contracting sub-
space. (B) An example of SCND attractors.

brane potential of an excitatory neuron is fragile with re-
spect to external noise, but that generated in the membrane
potential of an inhibitory neuron is robust with respect to
noise. Therefore, it has been predicted that the SCND at-
tractor will be observed in the potential of inhibitory neu-
rons which are driven by chaotic neurons (Tsuda 1996).

Nearby orbits in phase space become separated due to
expanding dynamics and approach each other again due to
contracting dynamics. In chaotic dynamics, nearby orbits
become separated on average. This results in the presence
of a positive Lyapunov exponent. From the information
theoretical point of view, expanding dynamics can act as the
read-out process of information, and contracting dynamics
can act as the write-in process. Because in chaotic dynam-
ics the expanding and contracting phases depend on the po-
sition in phase space, the read-out and write-in processes
appear successively in the time series. The presence of a
positive Lyapunov exponent indicates that the overall dy-
namics on average represent the read-out process of the in-
formation contained in the initial conditions.

On the other hand, in chaos-driven contracting dynam-
ics, the information read out by chaos is written in the con-
tracting subspace by the contracting dynamics. More con-
cretely, symbol sequences created by chaos are encoded as
an element of the set in the contracting subspace. A code
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table is thus formed on the SCND attractor. Actually, the
one-to-one correspondence between the symbol sequence
generated by chaos and the position of Cantor elements has
been elucidated (see Fig. 9).

The coding scheme in this study reminds us of the cod-
ing scheme employing a fractal image generated in iterated
function system (IFS) (Barnsley 1988), and also of the cod-
ing scheme employing the Cantor set in recurrent neural
networks (RNN) (Elman 1990; 1991; Kolen 1994a; 1994b;
Pollack 1991). The former work presents a method of com-
pressing spatial patterns, whereas the latter works present
a method of encoding temporal patterns. According to the
totally disconnected IFS theorem proved by Barnsley, if and
only if there is no overlap in fractal images constructed by
any two invertible maps which constitue a contacting IFS,

a 1 2
01 11 21
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IE 010 110) 210
011 144 XTI
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Figure 9. The hierarchical structure of an SCND attractor rep-
resented by symbol sequences encoding chaotic orbits. (A) The
chaotic neuron map (Aihara et al. 1990) adopted here can produce
symbol sequences consisting of, e.g., 0, 1, and 2. The abscissa de-
notes the states at discrete time steps n, and the ordinate the states
at n + 1. Thus the figure is a graph of a one-dimensional map
which can represent the activity of a chaotic neuron. Below the
chaotic neuron map, the first, second and third transformations of
the interval are shown, accompanied by the symbol sequences in-
dicating the labeled orbits starting from the points in the respec-
tive subintervals. (B) An example of Cantor coding. Each cluster
in the Cantor set has a code generated by a chaotic neuron map.
Each cluster contains further depths of hierarchy of code. The
second depth is shown in the figure by splitting each cluster.

the IFS is totally disconnected, and hence the unique cod-
ing. Kolen (1994a; 1994b) proved that a type of second or-
der RNN known as sequential cascaded network is equiva-
lent to the set of affine transformations of an IFS if the
transformation function is linear, so that the theorem is ap-
plicable to Cantor coding even for temporal patterns.

In our system — a chaos-driven contracting system — a
strong contraction can allow the existence of non-overlap-
ping elements of the SCND attractor, but overlapping is de-
termined by the nature of the nonlinearity responsible for
the existence of the chaotic behavior in the system under
study. Thus it is not easy to quantify this condition. If we do
not use chaotic dynamics but simply a random number gen-
erator as the driver, this overlapping problem can easily be
solved, since the only condition for the existence of a unique
coding scheme is the strength of contraction. On the other
hand, if a contracting IFS is used as the receiver, the exis-
tence of a unique coding scheme is possible even in the case
that chaotic dynamics are used as the driver, due to the
presence of forbidden symbol sequences resulting directly
from the grammatical structure of symbol sequences in-
herently embedded in the chaotic dynamics. With the same
contraction strength as in the above case, the use of uncor-
related random noise, such as white Gaussian noise, may
bring about overlapping fractal patterns. In such a case, the
coding is only defined up to some finite number of signifi-
cant digits (Ichinose et al., preprint; Ryeu et al., in press).

In the context of the machine learning of languages, El-
man (1990) reconstructed a hierarchical structure embed-
ded in the input word sequences as snapshots of the in-
ternal states of some RNN during the process of the input.
Pollack (1991) found that a Cantor coding can be realized in
recurrent neural networks as a dynamical recognizer. These
two studies are within the framework of PDP (parallel dis-
tributed processing) (Rumelhart & McClelland 1986). Their
noteworthy finding is that the hierarchy of a Cantor set is
generated in the phase space of the neural network which
can encode a grammatical structure of English sentences.

The noise effects for the SCND attractor can be investi-
gated using physical quantities such as the dynamical en-
tropy and mutual information. These quantities have been
computed up to the limit of digital computations, which is
demanded to obtain precise values (Tsuda & Yamaguchi
1998). For a small amount of noise (up to ~10~* for a sys-
tem size of 1), it was found that these quantities do not
change to a precision of 6 significant figures. On the con-
trary, these quantities decrease, as increasing the noise level
up to ~1077. The computations at this noise level reached
the computation limit. Although the mechanism responsi-
ble for this kind of stability of the attractor with respect
to noise is still under study, it is certain that the state
corresponding to a Cantor set can be observed even in
noisy environments. In dynamical systems without noise, a
measure-zero set, like a Cantor set, can be observed as a
limiting state if it is dynamically stable. If the contraction
rate in a dynamical system with noise is sufficiently large,
compared with the amplitude of noise, even a measure-zero
set is observable. Furthermore, since the SCND attractor
is widely distributed in phase space because of its dimen-
sionality mentioned above in contrast to a conventional
Cantor set, the size of the overlapping region due to noise
is reduced. This results in a reduction of the ambiguity of
the code. These factors account for the effectiveness of the
code on a measure-zero set.
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Our concern with regard to robustness is maintenance of
the Cantor coding in the presence of external noise. Since
the SCND attractors can be sparsely distributed in phase
space because of the dimension gap mentioned above, a
code that is fragile with respect to noise easily drops in the
Cantor gaps (Siegelmann & Sontag 1994), where no code
exists. In this sense, one can judge if a perturbed pattern is
the correctly encoded one. Furthermore, orbits slightly
perturbed by noise promptly return to their original posi-
tions where the dynamical orbits possesses a Cantor code
due to the effect of contraction. Therefore, one can observe
a Cantor code on the cross-section even in a noisy environ-
ment if the rate of the impingement of noise on the system
is low compared with that of the development of dynamics.
The numerical studies of entropy and information men-
tioned above also indicate the robustness of the coding
scheme, as evidenced by the invariance of entropy and in-
formation with an addition of a small amount of noise.

4. Hypotheses for dynamic memory
and perception

4.1. Dynamic memory and Cantor coding
in the hippocampus

Using the concepts of high-dimensional chaotic dynamical
systems discussed in the previous section, we would like to
propose here a model for the formation of sequences of
sensory events that may suggest the neural correlate of
episodic memory (Mishkin 1982). For this, we are con-
cerned with the dynamic behavior of hippocampal net-
works.

The activity of hippocampal CA3 has been analyzed un-
der isolated but close to physiological conditions, and it was
concluded that it is highly probable that the CA3 pyramidal
neurons can exhibit chaotic activity under physiological
conditions (Hayashi & Ishizuka 1995). If the CA1 neurons
are stable in the absence of any input and the CA3 neurons
are chaotic, the contracting space defined by the CA1 net-
work will be driven by the chaotic CA3 network via the
Shaffer collaterals. It was also recently found that the in-
formation embedded in the higher statistics of temporal
pattern inputs can be encoded in the real space of CAl
(Tsukada 1994; Tsukada et al. 1996).

The situation can be created in which the positions of el-
ements of the Cantor set in phase space indicate the mag-
nitudes of membrane potentials of neurons, that is, the
number of spikes, or local EEG. A local difference of mag-
nitudes in real space brings about a global difference in
the network activity via the propagation of waves. Hence
the Cantor code in phase space can also be embedded in
the spatial pattern of the network activity. Since there are
recurrent circuits from the CA1 neuron to the CA3 neuron
via the neocortex and the parahippocampal area, the dy-
namics on the recurrent circuits over such a wide range may
work cooperatively to accomplish both encoding and de-
coding in a single process.

Concerning the long-term potentiation (LTP) in CAl,
various artificial stimulations applied to the Shaffer collat-
erals of the CA3 pyramidal neurons have also been investi-
gated. It was found that chaotic input with long auto-
correlation (i.e., intermittent chaos) are the most effective
for LTP (Tatsuno & Aizawa 1997; 1999).

We here use a simple model as a skeleton network. As a
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model for the CA3 chaotic network, we adopt our model of
dynamic associative memories discussed above or modified
version of it. Using this kind of model, we characterize the
dynamic features of the CA3 network and its functional re-
lation. As a model for the CA1 network, we employ a stable
network consisting of excitatory and inhibitory neurons. An
excitatory neuron receives CA3 outputs via Shaffer collat-
erals and also receives the output of a few neighboring in-
hibitory neurons. An inhibitory neuron, on the other hand,
receives the output of each excitatory neuron.

In our framework, the CA3 network is a device for the
generation of a sequence of patterns. The existence of such
a sequence is insured by the presence of chaotic itinerancy.
The distance between (or the closeness of) memories rep-
resented by a spatial pattern of neuron activity can be spec-
ified in CA3 by the extent of attracting areas in phase space.
Defining the distance between sequences is, however, im-
possible in CA3, because only the states of a network are
basic variables in such a phase space. Therefore, it is rea-
sonable to conjecture that such a definition can only be
made in CAL In fact, it can be made by means of the hier-
archies embedded in the SCND attractors, in the same way
shown in Figure 9. We have verified the existence of such
ahierarchical coding in the model CA1 network of any tem-
poral sequence given by the stimulations of the Shaffer col-
laterals. We have also verified the existence of hierarchical
coding in the model CAl network when the model CA3
network produces a temporal sequence of patterns linked
by chaotic orbits. The details of this study will be published

elsewhere (Tsuda & Kuroda, in press).

4.2. Dynamic memory and Cantor coding
in the olfactory system

The hard-wired condition necessary for the presence of
SCND attractors could hold in many areas of the brain.
Freeman (personal communication) pointed out as a possi-
ble such area the prepyriform cortex for olfaction, which re-
ceives synaptic connections from the olfactory bulb, where
dynamic activities such as chaotic itinerancy appear. In the
prepyriform cortex, the network consisting of excitatory
and inhibitory neurons could provide stable behavior and
thus could form a contracting space. Thus SCND attractors
will be observed in the prepyriform cortex.

Memories of olfactory sensation are created in the olfac-
tory bulb. These memories are expressed as chaotic activi-
ties of neuron assemblies. Odor memories may be linked
with higher level’s functions as well as being directly linked
with emotion. Thus odor memories could be associated with
episodic memories. Since olfactory information is sent also
to the entorhinal cortex, olfactory information is likely ab-
stracted, at least at the level of the prepyriform cortex (see
also Fig. 10). Olfactory information could be encoded and de-
coded concurrently by the combination of chaotic activities
in the bulb and SCND attractors in the cortex. In this process,
the entorhinal cortex, whose activity also exhibits itinerant
transitions among attractor ruins, may act as a type of a
history-dependent continuous perception (Kay et al. 1996).

4.3. Episodic memory

Based on the above detailed theoretical and numerical con-
siderations, we now propose an interpretation of the for-
mation of episodic memory (Fig. 11).
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Figure 10. The information flow in the olfactory system (modi-
fied from L. Kay 1995). The meaning of the symbols follow. M:
Mitral cells, G: Granular cells, EC: Entorhinal cortex, AON: An-
terior olfactory nucleus, PPC: Prepyriform cortex, and DG: Den-
tate gyrus.

Episodic memory is memory concerning the information
of individual experiences (Tulving 1972). Here, an “indi-
vidual experience” is not a series of events which one actu-
ally experiences in daily life, but, rather, is identified with
the structure of dynamic neural activity created internally
that is associated with the sensory input during such events.
Thus such an individual experience (or “episode”) is de-
pendent on the spatio-temporal context of the individual. It
is convincingly argued in reports on H.M. (Scoville & Mil-
ner 1957) and R.B. (Zola-Morgan et al. 1986) that the hip-
pocampus is responsible for episodic memory.

In the modeling, it is important to note that the structure
of CA3 is very similar to that of the neural network model
of associative memory (see, e.g., Amari 1977; Kohonen
1978). Since the work of Marr (1971) there have been many
model studies with this structural similarity. These studies
are based on the idea that the hippocampus temporarily re-
tains episodic memory as an associative memory (see for ex-
ample McClelland et al. 1995; Treves & Rolls 1994). Since
conventional associative memory models possess attractor
dynamics only, an additional mechanism is necessary to cre-
ate temporal patterns which may represent episodes. As
seen in sections 3.3 and 3.4, the presence of inhibitory in-
terneurons satisfies the condition for the generation of
temporal patterns. It is known that such inhibitory neurons
exist in CA3 (Buz$aki 1996). Taking these points into ac-
count, in the present article we further develop the theory
of episodic memory.

The situation we consider is that in which a given itiner-
ant chaotic sequence generated by one network gives rise
to a unique Cantor coding in another network. Actually, this
situation is insured in a certain type of simple neural net-
work model. Furthermore, in our theory for the formation
of episodic memory, we associate the above mentioned
chaotic network with the CA3 network and the stable one
with the CA1 network.

A variety of memory sequences is created in CA3 by
means of chaotic itinerancy. In some short period, say on
the order of a hundred milliseconds, only a few transitions
may occur. For instance, there may be a transition from (se-
mantic) memory P, to P, via intervening chaotic behavior.
We label this transmon a,a,. This label can be embedded
in the Cantor set generated in the space of the membrane

potential of CAl. This label is also hierarchically repre-
sented by one of the subsets of the whole set. This code is
sent to the entorhinal cortex and also to the neocortex.
Among the diverse pathways to the neocortex, the pathway
to the prefrontal cortex is emphasized here by the property
of the close functional relations to the motions, which may
be a key to the formation of episodic memory. The connec-
tions from CA1 to the entorhinal cortex shown in Figure 10
are used to send this kind of information (see also Tsukada
1992).

It is likely that in the neocortex and also in the entorhi-
nal cortex such a code is stored. Although there must be a
difference between the codes of the two cortices — such as

Cortices :

time

Cortices :

Figure 11. A hypothetical information flow in the formation of
episodic memory. Sensory information is temporarily stored as a
pattern of the network activity in CA3. However, it is not repre-
sented by a conventional attractor, but rather by an exotic attrac-
tor, such as a Milnor attractor. The metric in pattern space is mea-
sured in CA3 by the extent of the basin of attraction. Because of
the instability of Milnor attractors, pattern sequences are gener-
ated. These sequences denote the sequence of the experience of
sensation. The metric with respect to pattern sequences is defined
in CAl by the Euclidean distance between elements of the Can-
tor set. This information is sent to the entorhinal cortex and also
to the neocortex, where a short sequence of patterns appearing as
a result of the transitions during a short period of time (say 100
msec) is represented by, for example, a fixed point of the Milnor
type. The transition between these Milnor attractors in the cor-
tices represents a concatination of the transitions. If the most re-
cent pattern appearing in the concatinated sequence is success-
fully followed by a current pattern in CA3, the correct sequence
of sensory experience can be reconstructed.
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abstract and inferential in the neocortex and emotional and
sensational in the entorhinal cortex — two cortices may play
similar roles for the hippocampus, namely giving the con-
tent of information to the hippocampus (Buzsaki 1996). We
thus think that the coding scheme in the two cortices must
be similar, though the content, that is the meaning, differs.

Let us assume that the cortices process information tem-
porarily stored in the unstable sub-networks which have
structure similar to that of the hippocampus CA3. Then, in
the cortices, labels like a,a, can be expressed as a fixed
point attractor in Milnor’s sense. If an input to hippocam-
pus CA3 with such a label a,a, from the cortices coincides
with the instability of P, in CA3, then the next transition in
CA3 (namely from P, to, for example, P,) is reinforced. If
no coincidence between them exists, the input from the
cortices to CA3 will disturb the transition process itself in
CA3. Another mechanism seems to be necessary in order
to avoid the possibility that the matching occurs accidently.
A “somatic marker” hypothesized by Damasio (1995; 1996)
may provide a mechanism controlling chaos, as mentioned
in section 3.5.

The memory sequence P P,P, is encoded in CAl in a
deeper level of the hlerarchy of set than in the sequence
P,P,. Thus the code a,a,a, embedded in the set in CAl is
sent to the cortices. This stimulation can afford the transi-
tion from one fixed point to another, which are expressed
by the codes a,a, and a.a,, respectively, in the cortices.
This transition reinforces the correct sequence of memo-
ries. It may provide a mechanism of the formation of
episodic memory.

We have highlighted so far the Cantor coding of the tran-
sition process. One may also propose the Cantor coding of
another type, for example, the Cantor coding of memory se-
quence itself. Then, chaos linking the memories does not
manifest in the code sequence itself. We, too, can construct
such a model (Tsuda & Kuroda, in press).

In the formation of episodic memory, the relation be-
tween pattern sequences in CA3 and the geometory of the
Cantor set in CA1 may be flexibly altered, whereas in cor-
tices the alteration of the representation due to structural
changes will be slowly varied. In this respect, the hip-
pocampus may be likened to a blackboard: The timing be-
tween writing and erasing on this hippocampus “black-
board” and slowly varying transition among symbols in the
cortex is a key to the formation of episodic memory. This il-
lustrates the necessity of a long period of time, from a few
years to a lifetime, for the complete formation of episodic
memory, as can be understood by considering the existence
of retrograde amnesia for one to three years as well as an-
terograde amnesia after hippocampal deprivation (Scoville
& Milner 1957), and also after sustainment of a CA1 lesion
(Zola-Morgan et al. 1986).

Finally, it is interesting to note the recent work of Tani
(1998). Tani found that chaotic behavior appears in the in-
ternal states of his recurrent network which controls robot
learning when conflicts arise between the bottom-up per-
ception and the top-down prediction. Tani interpreted this
chaotic neural activity as an indication of awareness. In our
theory, chaos is considered to be a reflection of not only
conflicts between the hippocampal and the cortical activity
but also of intentionality (Freeman 1999) from the cortex
to the hippocampus (also see the Appendix). Furthermore,
chaotic itinerancy among semantic memories may reflect a
perceptual drift, and therefore it may be the case that the
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interplay between the cortex and the hippocampus pro-
duces episodic memory. If this is true, then the existence of
a variety of temporal sequences of semantic memories
would be insured in CA3, and the temporal sequences
would be encoded hierarchically in phase space of CAL.
Also, the Cantor set appearing in CA1 would provide a mea-
sure of “distances” between episodic memories.

5. Concluding remarks and outlook

We discussed in this article dynamical models of dynamic
associative memory and episodic memory in which chaotic
itinerancy and SCND attractors are linked in terms of the
Cantor coding. In relation to this, a dynamic mechanism for
the concurrent process of the read-out and write-in of in-
formation was proposed. The indistinguishability of mem-
ory from information processing — thus, perhaps, from cog-
nitive processes — was suggested. This dynamic mechanism
and indistinguishability seem to characterize the human
cognitive process.

We emphasized the biological significance of chaotically
itinerant attractors in high-dimensional systems, but one
can raise the criticism that “chaotic” behavior observed to
this time in the brain may not be chaotic in the mathemat-
ical sense (Freeman 2000; Rapp 1995). Referring to the dis-
cussion in sections 3.1 and 3.2, it should be noted that the
phenomena we can observe in laboratories can clearly be
described as the chaotic behavior of noisy systems, in other
words, chaotic behavior in a dynamical system with additive
or multiplicative noise or stochastic renewal. Thus it would
seem that chaos does exist in the real world in some form,
although what we actually observe as chaotic behavior is de-
pendent on our point of view. Also, we note that in an ex-
citable system with sensitive dependence on noise, noisy
chaotic behavior can appear due to the interplay between a
prechaotic state and noise. Even if mathematical chaos
does not exist in such an excitable system, the interplay of
the system with the noise may create “chaotic” behavior
possessing topology similar to that of some truly mathe-
matically chaotic behavior. For this reason, the model stud-
ies are effective to understand the causation underlying
chaotic phenomena.

Our theory supports the notion of the dynamic brain,
which has been investigated in various contexts, as men-
tioned in the Introduction. The chaotic aspects of the brain
described by our theory may change the conventional in-
terpretation of brain functions (see also Freeman & Nunez
1999).

Since Brodmann introduced functional maps of cerebral
cortex, it has been believed that it is decomposed into dif-
ferent conceptual areas, each of which is responsible for a
specific single function. This belief resulted in the conclu-
sion that the cortical functions can be hierarchically repre-
sented by a combination of subfunctions corresponding to
these areas (or simply the “sum” of them). This concept of
functional localization may lead to another concept that a
single neuron is responsible for merely a single representa-
tion of information, namely, the concept of “single neuron-
single representation.”

Although much experimental evidence has been pub-
lished to support the presence of such a neuron, its exis-
tence is still questionable, since other experiments strongly
suggest the multiple function of single neurons (Dinse
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1990; 1994). The multiple function of an area was also re-
ported for Broca’s area (Paulesu et al. 1993). Broca’s area
has been thought to be related only with writing and artic-
ulation of speech, but the activation of the area by inner
speech alone has been observed (Inui 1997; 1998; Paulesu
et al. 1993). Inui (1997) has pointed out, based on the ex-
perimental report of Imamura et al. (1996), that Area 45, a
portion of Broca’s area, must be responsible not only for the
prediction of phonetic sequences but also for the learning
and prediction of motor sequences. It can be concluded
that the multiple function observed in Broca’s area is the
result of dynamic interactions between Broca’s area and
neighboring areas (Inui 1997; 1998).

The notion of hierarchical organization of functional
modules and the notion of a direct mapping of the infor-
mation regarding an environment into the states of a neural
net are based on the conventional systems theory, which are
summarized as follows:

1. Each function is allocated to a respective element of
the system, namely to a neuron or a module. A higher func-
tion is obtained by unifying or binding distinct lower func-
tions.

2. A feature of external stimuli (for instance, the orien-
tation of lines, edges, color, etc., for vision) is directly
mapped to each neuron or to each module. The processing
of information proceeds, taking the combination of such
features, which may be realized through synaptic learning.

The dynamic behavior discussed here may, however, lead
us to consider aspects of the brain that sharply contrast with
those considered within the conventional framework,
namely the chaotic aspects of the brain. These can be sum-
marized as follows:

(i) The function of a system’s element is dynamically de-
termined so that the entire function of the system is real-
ized. Since this entire function varies in a manner deter-
mined by the changing environment and the system’s
purpose, a function of each element cannot be uniquely de-
termined. Therefore, the functional unit can be varied. Even
if a module is organized as a subsystem, the hierarchical
structure of modules will not be seen, because the bound-
ary between modules is inevitably altered due to the change
of relations among elements which depend on the entire
function. Thus “heterarchical” structure, referred to as
“moiré patterns” by Szentdgothai (1978) appears.

(ii) Higher information in the brain is not always repre-
sented by the combination of lower information but, rather,
represented by dynamic properties emergent via the
chaotic activity of neurons and/or the neural network.

Furthermore, if the brain is composed of static functional
modules, the organization of distinct pieces of information,
or the binding among them (the so-called the binding prob-
lem), must be a central issue. If we take the dynamic view-
point, on the other hand, the binding problem might not be
a real problem but simply a pseudo-problem, because in
this case information representation is dynamically realized
as awhole, based on the spatio-temporal organization of the
network.

Finally, it is interesting to note the similarity of the
chaotic aspects of the brain we have studied with the notion
of dynamic equilibrium hypothesized by Ramachandran
(1998). Ramachandran found evidence of drastic changes
of “functional modules,” which agree with the concept of a
dynamic brain. In a dynamic equilibrium state, there is a
time dependence of the states of neurons or neuron as-

semblies, as determined by the states of neighboring neu-
rons. Consideration of this concept requires that we change
the interpretation of a “functional map.” The term “dy-
namic equilibrium” is self-contradictory, since an equilib-
rium state cannot be dynamic, as no net flow of energy or
matters exists. The implication of the term “dynamic equi-
librium” is not, however, inconsistent with our assertions.
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Appendix

Chaotic dynamics associated with inference processes

In this appendix, we briefly describe the recent developments in
studies on the relation between dynamical systems and logic, in
particular the relation between chaotic behavior and deductive in-
ference processes (Basti & Perrone 1992; 1995; Grim 1993; Nico-
lis & Tsuda 1985).

The dynamical systems studies whose purpose was to relate the
neural activity to inference processes have been highlighted since
the cybernetics studies of McCulloch and Pitts (1943).* They
adopted classical logic, and used a so-called “formal neuron,”
which is now called a “McCulloch-Pitts neuron,” as a dynamical
device to simulate “thought.” A neural network consisting of neu-
rons of this type of can carry out a universal computation in the
sense of Turing. In order to capture the complexity underlying in-
ference processes, however, it seems that we need more complex
dynamical systems that provide a basis for analog computations
and also a method of generating “symbols” out of dynamic behav-
ior. For this purpose, we adopted Tukasiewicz logic, which is de-
fined on a continuous space of truth values. Using this type of
logic, we formulated several dynamical constructs, including a
meta-dynamical system, which is defined as a set of dynamical
transformations of a function whose arguments are dynamical
variables. (For further discussion, see below and Tsuda & Tadaki
[1997]. Also see Kataoka & Kaneko [2000a; in press b] for a model
of meta-dynamics referred to as a[mathematical] functional map.)

We are concerned with neural activity which is assumed to rep-
resent mental states. We assume that such neural activity can be
represented by vectors. In our theory, “true” and “false” are rep-
resented by orthonormal vectors, which thus span a subset of two-
dimensional space represented by a unit square. We consider a
projection of neural vectors into this two-dimensional space. The
component of such a projected vector in the direction of “truth”
represents the truth value of the corresponding neural activity
(see also Mizraji & Lin 1997). This truth value can be regarded as
a dynamical variable in the case of dynamic neural activity.

Taking into account the successive processes of the logical
transformation from a premise to a consequence and the substitu-
tion of this consequence for the subsequent premise, one may de-
scribe an inference process as a dynamical system (Grim 1993;
Mar & Grim 1991). In the framework employing such processes
formulated by McCullogh and Pitts (1945) and recently devel-
oped by Mar and Grim (1991), and Grim (1993), a contradictory
statement is represented by a limit cycle, while a consistent and
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self-referential statement is represented by chaos (see also Nico-
lis & Tsuda 1985). This formulation includes the idea that since a
person’s capability for self-reference enables him or her to carry
out self-reflective action, such a capability seems to guarantee at
least the capability of deductive inference. It is reasonable that
chaos would emerge in such a process, and this is an assertion of
Nicolis and Tsuda, and also an assertion of Grim and Mar. In all
theories mentioned above, the direction of scalar projection re-
mains undetermined. In the brain, this direction surely depends
on awareness and attention. Its determination is believed to be re-
lated to intentionality (Basti & Perrone 1995; Freeman 1995a;
1995b; 1999), but such considerations are beyond the scope of the
present theory.

In the manner discussed above, deductive inference processes
can be described by a certain class of chaotic dynamical systems.
In any given case, this class is determined by the type of presup-
posed logic. On the other hand, the brain describes the dynamics
of the real world surrounding it, and such a description itself must
be dynamic. We have attempted to formulate such a description
(Tsuda & Hatakeyama 2001; Tsuda & Tadaki 1997). In our for-
mulation, the dynamics of the description are functional dynam-
ics, like those briefly mentioned above. In an extreme case, these
functional dynamics possess a fixed point, which implies the exis-
tence of a fixed description, independent of the environmental dy-
namics. This description may be expressed as an “autistic state.”
In another extreme, unrealistic case, the functional dynamics are
identical to the environmental dynamics. In this case, the brain ac-
tually copies the dynamics of the environment. The dynamics ex-
hibited by models of machine learning represent such copies.

The actual description generated by the brain should be some-
where between these two extreme cases. If such a description of
dynamics follows Lukasiewicz logic, the functional dynamics will
be chaotic (Tsuda & Tadaki 1997). Such a functional dynamical
system can be compared with the chaotic dynamical system with
fuzzy distributions proposed by Grim (1993).

Recently, this manner of thinking has led us to the study of a dy-
namical description of syllogism. (Actually it is better to refer to
this as modus ponens as it is treated as a separation rule.) We have
constructed a theory describing tasks performed in cognitive ex-
periments (Tsuda & Hatakeyama 2001). This theory can also be
applied to experiments in which one investigates the correlation
between deductive inference processes and internal neuronal dy-
namics measured as the neural activity at the behavioral level. In-
terpreting logic in terms of dynamical systems thus should be
fruitful as a complement to studies of the emergence of logic from
dynamic behavior.

Technical Appendix

1. Order parameters and macro-variables

The term “order parameters” originally appeared in studies of
phase transitions in condensed matter physics. These order pa-
rameters are used to capture the behavior of a macroscopic or-
dered state emerging from large fluctuations in a critical regime.
For instance, in ferromagnetic materials, in the absence of an ex-
ternal magnetic field the magnetic moment of each atom is ran-
domly distributed above the Curie temperature, so that the net
(average) magnetic moment is zero, while below the Curie tem-
perature, a nonzero net magnetic moment appears due to the
spontaneous cooperative behavior of atoms. The order parameter
used for such a system is defined as the net magnetic moment,
which indicate the degree of order. In an equilibrium state, this
order parameter is a constant. In relaxation processes from near-
equilibrium states, the time evolution of an order parameter is ex-
pressed by an evolution equation. The use of such equations can
be extended to the case of ordered motion in far-from-equilibrium
states and also to the case of many order parameters.

An ordered state can be described by a few degrees of freedom
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(a few macro-variables), which emerge in the evolution of the sys-
tem out of many degrees of freedom. These few degrees of free-
dom are called “order parameters.” This concept has been ex-
tended to transitions and bifurcations in far-from-equilibrium
systems. Haken formulated the slaving mode principle (regarding
the behavior of such systems), which is mathematically equivalent
to the center manifold theorem. This principle asserts that order
parameters (slaving modes) enslave the remaining modes (slaved
modes) (see for example Haken 1983). Qualitatively, the manner
of thinking employed in this context is that we describe a total sys-
tem only in terms of its slow motion behavior, eliminating fast mo-
tion, and we do this by defining order parameters as the variables
governing the slow motion on the center manifold. It should be
noted that “slow” and “fast” are used here in a relative sense. In
reaction-diffusion systems, for instance, where spatio-temporal
organization is taken into account, there is no clear distinction be-
tween slow and fast modes. In such a case, by taking into account
the diffusion term too as a perturbation, one can extract the
macro-variables describing gentle fluctuations.

Because the center manifold theorem (or the slaving mode
principle) does not apply to the case of chaotic motion, the macro-
variables describing chaotic motion cannot be used as order pa-
rameters. In chaotic motion, there exist both “macro-modes,” rep-
resented by low-frequency components, and “micro-modes,”
represented by high-frequency components. Hence, it might
seem that after rescaling time an “order parameter” would
emerge. In chaotic motion, however, there is no clear boundary in
frequency space that distinguishes a low-frequency behavior from
high-frequency behavior, because of the continuous nature of the
spectrum. We note, however, that in chaotic itinerancy, the slow
motion exhibited around attractor ruins seems to be distinguish-
able from the fast motion associated with transitions among ruins.
We believe it is important to resolve this conceptual discrepancy.

2. Attractors in the conventional sense and the Milnor sense

Attractors have been defined by using the concept of attracting
sets. Let X be a compact, or at least finite dimensional, smooth
manifold. Let the development of orbits in phase space be given
by a continuous map or a diffeomorphism ¢ : X = X. For a set A,
the trapping region N D A is defined as the region satisfying A C
G(N) C N. A set A is called an attracting set when

N @ (N) = A, where & is the i-th iteration of ¢ and N rep-
i=0

resents set intersection. An attractor is an attracting set, but an at-
tracting set is not necessarily an attractor. We call a set A an at-
tractor if it is an attracting set and |A is topologically transitive,
so that A cannot be separated into subsets by ¢. Therefore, all
points in the trapping region of an attractor are absorbed, or at
least approach the attractor. In other words, any point in this
neighborhood approaches the attractor as time (or the number of
iterations) goes to infinity. Thus an attractor is a topological con-
cept.

Milnor (1985) defined an attractor from another viewpoint, in
which both topological and measure-theoretic concepts play roles.
Here we give this definition. Let p be a measure equivalent to the
Lebesgue measure on X. A compact invariant set « is called a
(minimal) Milnor attractor if the following hold: (1) The basin of
attraction B(a) of a has a positive p-measure, that is, p(B(a)) > 0.
(2) There does not exist a proper closed subset " satisfying

p(B(a)/B(a')) = 0

According to this definition, a Milnor attractor can possess an
unstable manifold.

Many definitions of attractors have been proposed from various
points of view in which different properties are emphasized. (See
Buescu 1997 for detailed discussion on various attractors, includ-
ing Milnor attractors.)
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3. Attractor ruin

We define an attractor ruin as that which remains after the col-
lapse of a Milnor attractor. If there is no such collapse, the as-
ymptotic behavior of the system is not transitory, but rather the
behavior corresponding to the Milnor attractor. Thus for the
emergence of itinerant behavior another instability is necessary.

4. Chaotic itinerancy

The mathematical study of chaotic itinerancy has only recently be-
gun, and for this reason, its definition has not yet been established.
After the present author, together with Tkeda and Kaneko (Ka-
neko & Tsuda 1996; 2001) found complex but ordered itinerant
behavior in a variety of high-dimensional dynamical systems, and
we recognized such behavior as possessing common characteris-
tics, we considered the analogy between such behavior and that
expected to appear in two interacting subsystems, one of which
possesses many more degrees of freedom than the other. In such
a situation, it is possible that the smaller subsystem would reach
a certain stable state, influenced by the larger subsystem, but
through the feedback from the smaller subsystem to the larger
one, the state of the larger subsystem may change. As a result, the
stability of the smaller subsystem could also change. Such inter-
action seems to allow the appearance of a slow transition among
“quasi-stable states” in the smaller subsystem. Phenomenologi-
cally, such transitions are often observed as being history depen-
dent or as process dependent.

Another important characteristic we commonly found is the ap-
pearance of many zero- or near-zero-Lyapunov exponents.

I introduced in the text one possible mathematical mechanism
of chaotic itinerancy. Through this mechanism, the entire phase
space is decomposed into several subspaces, and in each subspace
the dynamical orbits are attracted to an attractor ruin, as charac-
terized by the negative tangential Lyapunov exponents defined
within each subspace. However, in a direction normal to the sub-
space the dynamical orbits are repelled from such a ruin, as char-
acterized by the positive normal Lyapunov exponents.

5. Cantor sets

A typical Cantor set, called a “ternary set” or a “middle-third set,”
can be constructed by repeating the procedure of dividing a closed
interval equally into three, and removing the middle open set.
Let us consider the construction of such a Cantor set from the unit
closed interval I =[0,1]. The set removed in the first step of the
procedure is the middle open interval (1/3,2/3), and thus the re-
maining intervals are the closed intervals I,; =[0,1/3] and I ,=[2/
3,1]. At the n-th step of the procedure, 2" closed intervals I, , (i =
1,2,...,2") are obtained. Then, the Cantor set C is defined by C
) "
=N C™W, where C = Ullm., The Cantor set can also be
n=1 i=
represented by a set of points in I whose position is represented

by x = Pn where p, = 0 or 2 for each n, hence comes
3” n

n=1
the name ternary set.

The Cantor set is thus the closure of a set of countably infinite
number of endpoints of subintervals. In other words, the Cantor
set consists of a countably infinite number of uncountable sets on
a bounded interval. If one measures this set with a scale of di-
mension zero, that is, a point, one concludes it has an infinite “vol-
ume.” On the other hand, if one measures it with a scale of di-
mension one, one concludes it has zero “volume.” It is thus
reasonable to think that there is some appropriate scale in terms
of which this set has a finite “volume.” If such a scale actually ex-
ists, it should have “fractal” (noninteger) dimension. The dimen-
sion of this scale is considered the dimension of the set itself. In
fact, the Cantor set does have a noninteger dimension. An effec-

tive method to intuitively understand such an infinite set is to fol-
low the procedure.

In the main text, we did not restrict ourselves to the above de-
scribed ternary Cantor set, and actually addressed the Cantor set in
a more general sense. The Cantor set is generally defined as a
closed, totally disconnected, and perfect set. When a set does not
contain any finite intervals, it is termed totally disconnected. When
every element of a set is an accumulation point, it is termed perfect.

6. The SCND attractor

The SCND (singular-continuous but nowhere-differentiable) at-
tractor can be represented by the graph of a SCND function. The
SCND function, first studied by Rossler et al. (1992), was defined
by Tsuda and Yamaguchi (1998) in terms of singular continuity,
and differentiability on the Cantor set (Tsuda & Yamaguchi 1998),
where definitions are given below. The following definitions are
given for the ternary Cantor set, but they can be extended to the
more general case.

Definition: Singular continuity

For the union of intervals I, (i = 1,2, . .. 2") remaining at each
step n in the process of constructing a Cantor set C, one can define
a continuous function h (x) in each interval I, namely forx € 1 ,
foreach i. If the functional series {h, (x)} uniformly converges, then

we call its limit h(x), with x € C, a singular-continuous function.

Definition: Differentiability on the Cantor set
The set of right endpoints C_and the set of left endpoints C, of
subintervals 1, for every i and n are subsets of the Cantor set. That
h(y,) = hix)
y n X
is defined, where the series {y,} consisting of endpoints is a mo-
notonically convergent series to x. Then, since Dini’s derivatives
always exist, if we allow * %, one can define D" (x) = lim sup 5, (x)
n — o

and D,(x) = liminf 8 (x), where * denotes a symbol “plus” or

is, C D C_UC,.Foreachx € C, the quotient 3 (x) =

n— o

“minus.” Fory, <x, Dini’s left derivatives D™ (x) and D_(x) are
defined for x € C,. Similarly, for y, > x, Dini’s right derivatives
D*(x) and D_ (x) are defined for x € C,. If for any convergent se-
ries, D™(x) = D_(x) for Vx €C_and D*(x) = D_ (x) forVx €C,,
then we call h(x), x € C, a differentiable function on the Cantor
set.

If for some function the above condition for differentiability is
not satisfied at any value of x € C, U C_, we say that it is a nowhere-
differentiable function on the Cantor set.

7. Contracting map under the Hausdorff metric

We dealt with contracting maps in sections 3.6 and 4. The con-
traction and expansion of a map are defined in terms of some met-
ric. We adopted the Hausdorff metric. Now, let D be a set, which
for our purpose is a phase space. Let H(D) be the collection of all
nonempty closed subsets of D. For every A and B € H(D), the
Hausdorff metric is defined as:

d,,(A, B): =infle > 0|N_(A) D B, and N_(B) D A},

where N_ (o) is an e-neighborhood of «.

NOTES

1. Ifthe instability in the normal direction is too strong, the sys-
tem’s overall behavior becomes fully-developed turbulence.

2. These authors used the term “fractal” figures in reference to
represent complex figures including concave contours and/or
nonsmooth curves, but this name is misleading. The figures they
defined are not literally “fractal.” Even though a procedure to pro-
duce fractal figures was used, the figures they used are produced
by using only one or two iteration(s). The fractal, which was de-
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fined originally by Mandelbrot, must have a noninteger dimen-
sion, so that it contains infinitely many copies with various sizes of
reduction of the whole figure or its parts, whose reduction is real-
ized by affine transformations.

3. This is the dimension of the support of the attractor.

4. George Boole is, as far as we know, the first person to notice
the deep relation between dynamics (recursive maps) and logic,
but he used only fixed points (0 and 1) of the dynamical system,
x,+1 = 22, solving the algebraic equationx = x2. Tlere, x may rep-
resent, for instance, “being blue,” and the algebraic equation may
imply equivalence between the two expressions “being blue” and
“being blue and blue.” This equivalence class can be expressed as
the fixed points of the above dynamical system (Boole 1854).
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