
 

	 	 volume	18,	no.	24
 december	2018

How to Explain 

Miscomputation

Chris Tucker
College of William & Mary

©	 2018	 Chris	Tucker
This work is licensed under a Creative Commons 

Attribution-NonCommercial-NoDerivatives 3.0 License. 
<www.philosophersimprint.org/018024/>

Introduction

Just	as	a	 theory	of	 representation	 is	deficient	 if	 it	 can’t	explain	how	
misrepresentation	is	possible,	a	theory	of	computation	is	deficient	if	it	
can’t	explain	how	miscomputation	is	possible.	You	might	expect,	then,	
that	 philosophers	 of	 computation	 have	well-worked-out	 theories	 of	
miscomputation.	 But	 you’d	 be	wrong.	 They	 have	 generally	 ignored	
miscomputation.1 

My	primary	goal	 in	 this	paper	 is	 to	 clarify	both	what	miscompu-
tation	 is	and	what	needs	to	be	accomplished	in	order	 to	adequately	
explain	it.	Miscomputation	is	a	special	kind	of	malfunction.	If	the	bat-
tery	breaks,	a	system	may	fail	to	compute	what	it	is	supposed	to	com-
pute.	But	it’s	not	miscomputing,	because	it’s	not	computing	at	all.	Just	
as	 something	 doesn’t	 misrepresent	 unless	 it	 represents,	 something	
doesn’t	 miscompute	 unless	 it	 computes.	 To	 miscompute	 is	 to	 com-
pute	in	a	way	that	violates	a	computational	norm.	Consequently,	an	
adequate	account	of	miscomputation	requires	an	account	of	what	the	
system	is	computing	when	the	system	is	violating	the	relevant	compu-
tational	norms.	

A	secondary	goal	is	to	defend	an	individualist	approach	to	miscom-
putation.	The	advantage	of	this	account	is	that	it	provides	a	simple	and	
straightforward	 explanation	 of	 miscomputation.	 Piccinini	 contends	
that,	 by	 appealing	 to	 teleological	 functions,	 his	 externalist	 account	
also	enjoys	this	advantage.	It	does	not.	Not	yet,	anyway.	Following	just	
about	every	discussion	of	 functional	 individuation,	Piccinini	 focuses	
on	how	to	individuate	proper	function.2	I	focus	instead	on	how	to	indi-
viduate	actual	function.	This	distinctive	focus	reveals	that	Piccinini-in-
spired	approaches	struggle	to	account	for	the	computational	structure	
of	malfunctioning	systems.3

1.	 This	 apparent	 fact	 is	 bemoaned	 by	Dewhurst	 (2014),	 Fresco	 and	 Primiero	
(2013:	254),	and	Piccinini	(2015:	14,	48).	

2.	 Allen’s	SEP	 entry	on	 “Teleological	Notions	 in	Biology”	does	not	even	 raise	
the	question	of	how	to	individuate	a	biological	system’s	behavior	when	the	
behavior	fails	to	fulfill	its	(proper	or	teleological)	function.

3.	 Thanks	 to	 Gualtiero	 Piccinini	 for	 pointing	 out	 that	 my	 approach	 was	
distinctive.



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		2		–	 vol.	18,	no.	24	(december	2018)

of	electrical	charges.	A	system	computes	when	the	formal	properties	
of	the	input	string	“lead”	the	system	to	produce	a	certain	output	string,	
e.g.,	a	different	series	of	electrical	charges.	In	the	abstract,	a	computa-
tional structure	is	a	complete	mapping	from	the	possible	input	strings	
to	the	possible	output	strings.	A	system	has	or	implements	a	certain	
computational	structure	when	the	structure,	or	mapping,	is	a	correct	
description	of	the	system’s	(actual	and	counterfactual)	behavior.	That	
much	is	relatively	uncontroversial.	

A	simple	mapping	account	of	computation	imposes	no	restrictions	
on	which	mappings	from	inputs	to	outputs	capture	the	computational	
structure	of	 the	 system.	Such	views	 trivialize	 computation	by	being	
committed	 to	 unlimited pancomputationalism,	 i.e.,	 the	 idea	 that	
every	physical	system	computes	every	 computation.	To	do	better,	we	
must	 impose	 restrictions	 on	 which	mappings	 capture	 the	 computa-
tional	structure	of	a	system.	

The	 first	 restriction	 is	 to	 endorse	what	we	 can	 call	 a	 functional 
theory.	Such	views	hold	that	a	system’s	computational	structure	is	de-
termined	by	(a	specific	kind	of)	dispositional	or	functional	structure.4 
On	this	view,	to	say	that	a	system	implements	a	certain	computational	
structure	 is	 not	merely	 to	 describe	 the	 system:	 it	 is	 to	 explain,	 at	 a	
certain	 level	of	abstraction,	why	 the	system	 is	doing	what	 it’s	doing	
(or	would	do	were	it	given	a	certain	input).	The	relevant	type	of	expla-
nation	is	dispositional	explanation.	We	explain	what	the	salt	is	doing	
while	submerged,	in	part,	by	pointing	out	that	it	is	soluble,	that	it	has	
a	certain	dispositional	structure.	When	we	explain	a	system’s	behavior	
by	appealing	to	a	dispositional	structure	that	counts	as	computational,	
we	provide	a	computational	explanation	of	the	system’s	behavior.	

The	 functionalist	 theory	—	independently	 of	 any	 commitment	 to	
individualism	or	externalism	—	grounds	a	response	to	familiar	worries	
about	individuating	digits.	We	could	treat	any	voltage	up	to	five	volts	
as	a	single	digit.	Alternatively,	we	could	treat	any	voltage	less	than	2.5v	
as	single	digit	and	any	voltage	from	2.5	to	5v	as	a	distinct	digit.	The	

4.	 I	clarify	the	relation	between	dispositions	and	functions	in	§2.3.

The	strict	individualist	account	that	I	favor	may	allow	solar	systems	
to	compute.	For	those	who	are	bothered	by	this	drawback,	I	briefly	in-
troduce	quasi-individualism	at	the	end	of	the	paper.	It	seems	to	get	the	
advantages	 of	my	 individualist	 approach	 to	 explaining	miscomputa-
tion	while	nonetheless	avoiding	its	drawback.

I	assume	that	a	mechanistic	(functional)	theory	of	computational	
individuation	 is	 true	 and	 that	 content	 is	 not	 needed	 to	 individuate	
computational	 structure.	 Proponents	 of	 this	 framework	 tend	 to	 be	
externalists,	 so	 in	§1,	 I	 explain	why	we	should	 take	an	 individualist	
version	of	the	mechanistic	theory	seriously.	In	§2,	I	show	that	this	in-
dividualist,	mechanistic	theory	easily	accounts	for	miscomputation.	In	
§3,	 I	 criticize	an	externalist	 approach	 to	explaining	miscomputation	
inspired	by	Piccinini’s	work.	 In	§4,	 I	briefly	 introduce	the	quasi-indi-
vidualist	theory	that	may	get	the	advantages	of	both	my	account	and	
Piccinini’s	without	any	of	the	disadvantages.	

1. Computational Structures and Functional Structures

In	 this	 section,	 I	 explain	why	an	 individualist	mechanistic	 theory	 is	
worth	taking	seriously.	In	§1.1,	I’ll	rehearse	a	mostly	familiar	rationale	
for	the	mechanistic	theory,	while	highlighting	its	neutrality	between	
externalism	 and	 individualism.	 In	 §1.2,	 I	 introduce	 an	 individualist	
mechanistic	theory	that	is	modeled	on	Piccinini’s	externalist	version.	
The	near	identity	between	the	two	views	will	make	it	easier	to	under-
stand,	in	§1.3,	a	certain	advantage	of	going	externalist	and	why	it	is	a	
small	one.

1.1. Mechanistic Theories of Computational Structure
I	 focus	on	digital	computation.	Oversimplifying,	a	digital	computing	
system	is	an	input-output	device	in	which	the	relevant	inputs	and	out-
puts	are	strings	of	digits.	A	digit	is	a	state	of	the	system.	In	simple	sys-
tems,	digits	are	often	just	electrical	charges,	where	charges	of	different	
voltages	can	count	as	different	digits.	A	string	of	digits	is	an	ordered	
list	of	digits.	For	example,	a	string	of	digits	in	a	system	might	be	a	series	



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		3		–	 vol.	18,	no.	24	(december	2018)

restricted	to	the	functional	structure	of	the	system	that	is	grounded	in	
the	integration	of	its	parts.7	All	mechanistic	theories,	therefore,	deny	
that	non-mechanisms	compute.	This	denial	provides	even	the	crudest	
mechanistic	 theories	 with	 some	 protection	 against	 limited	 pancom-
putationalism.	 To	 be	 a	 mechanism	 requires	 both	 parts	 and	 integra-
tion	among	those	parts.	Mereological	simples	and	mere	mereological	
composites	lack	parts	and	integration,	respectively.8	Thus,	they	don’t	
compute.	

One	way	to	make	further	progress	against	limited	pancomputation-
alism	is	to	provide	conditions	on	which	sorts	of	integration	are	neces-
sary	for	the	existence	of	a	mechanism.	Yet	I	will	assume	that	it	takes	
very	little	integration	to	count	as	a	mechanism.	For	example,	I	assume	
that	solar	systems	(and	rocks	and	many	other	objects	that	intuitively	
do	not	compute)	do	have	 the	narrowly	 individuated	 integration	nec-
essary	to	count	as	mechanisms.	This	assumption	makes	 it	harder	 to	
show	that	individualism	is	worth	taking	seriously.	

Another	way	to	get	further	distance	from	limited	pancomputational-
ism	is	not	to	impose	further	restrictions	on	what	it	takes	to	have	mech-
anistic	structure,	but	 to	 impose	 further	restrictions	on	which	mecha-
nistic	structures	are	computational.	Digestive	organs	are	mechanisms,	
but	 digestive	 processes	 intuitively	 do	 not	 implement	 computation.	
Following	Piccinini,	I	require	that	computationally	relevant	functional	
structure	be	medium-independent.	To	count	as	a	computing	system,	
a	system’s	behavior	must	be	explicable	at	a	 level	of	abstraction	 that	
makes	no	reference	to	the	media	in	which	the	behavior	is	carried	out.	

Medium-independence	 is	 stronger	 than	 multiple	 realizability.	
There	is	more	than	one	way	to	realize	removing corks from wine bottles, 
but	 this	behavior	 is	necessarily	performed	on	certain	kind	of	media,	

7.	 See	 Coelho	 Mollo	 (2018)	 for	 the	 ways	 in	 which	 mechanistic	 theories	 of	
computation	 are	 related	 to	 functional	 and	 mechanistic	 explanation	 more	
generally.

8.	 I	take	it	that	the	mereological	composite	of	my	nose	and	computer	doesn’t	
compute	simply	because	it	has	a	part	that	computes.	It	is	commonly	assumed,	
for	example,	that	the	solar	system	doesn’t	compute	even	though	it	contains	
computers.

functionalist	 theory	 claims	 that	 digits	 are	 individuated	 according	 to	
their	functional	significance	in	the	system.	If	a	system’s	outputs	aren’t	
differentially	sensitive	to	input	voltages	of	≤5v,	then	the	computation-
al	 structure	of	a	system	treats	 those	voltages	as	a	single	digit	 rather	
than	two.	The	functionalist	picture,	so	construed,	determines	neither	a	
unique	binary	syntax	(e.g.,	assignment	of	0s	and	1s	to	voltage	ranges)	
nor	a	unique	logical	function	(e.g.,	and-gate	vs	or-gate).	I	take	this	to	
be	a	feature,	not	a	bug.	A	natural	corollary	of	the	functionalist	theory	
is	that	computational	individuation	is	explanatorily	prior	to	both	the	
semantics	and	the	binary	syntax	of	the	system.5	(We	can	still	follow	the	
convention	of	stating	computations	in	terms	of	0s	and	1s,	as	long	as	
we	keep	in	mind	that	this	way	of	talking	is	partly	mere	convention.6)

While	 the	 simple	 functionalist	 view	 is	 an	 improvement	 over	 the	
simple	mapping	 account,	 it	 is	 still	 too	 liberal.	 Since	 systems	 imple-
ment	only	those	computations	that	track	their	functional	structure,	it	
avoids	unlimited	pancomputationalism	(cf.	Dewhurst	2018:	115).	Yet	it	
doesn’t	avoid	limited pancomputationalism,	the	idea	that	everything 
computes	 at least one	 computation	 (cf.	 Chalmers	 2011:	 331).	 It	 also	
seems	committed	to	the	idea	that	digestive	processes	implement	some	
computation	or	another	(cf.	332).	

We	 can	make	 a	 little	more	progress	by	 endorsing	 a	mechanistic 
(functionalist) theory	of	computation.	To	be	a	mechanism	is,	among	
other	 things,	 to	 have	 parts	 whose	 integrated	 operation	 explains	 its	
overall	 behavior.	 Mechanistic	 theories	 hold	 that	 only	 mechanisms	
compute	and	that	the	computationally	relevant	functional	structure	is	

5.	 See	Dewhurst	 2018	 (especially	 110–1)	 for	 clarification	 and	 further	 defense	
of	 this	 functionalist	 response	 to	 Shagrir’s	 and	 Sprevak’s	 individuation	wor-
ries.	My	one	caveat	is	that	Dewhurst	incorrectly	(or	misleadingly)	claims	that	
computational	individuation	occurs	at	the	physical	level.	Coelho	Mollo	(2018,	
sec	7)	correctly	notes	that	Dewhurt’s	response	can	be	improved	by	holding	
that	computational	individuation	occurs	at	the	functional	level.

6.	 Relatedly,	many	find	 it	 useful	 to	 state	 computations	using	 the	normal	 con-
ventions	even	though	they	explicitly	acknowledge	that	it	is	computationally	
irrelevant	whether	we,	e.g.,	assign	‘0’	or	‘1’	to	the	lower	of	two	functionally	
relevant	voltage	ranges	(Fresco	2015:	1050–1;	Piccinini	2015:	142;	and	Shagrir	
2001:	373).	For	an	alternative	point	of	view,	see	Sprevak	2010:	268–9.



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		4		–	 vol.	18,	no.	24	(december	2018)

restrictions	on	which	sorts	of	functional	structure	are	computational	
(whether	there	is	computation	at	all)	and	restrictions	on	which	differ-
ences	in	functional	structure	make	a	computational	difference	(which	
computation	is	implemented).	Let	the	definitive list	be	the	complete	
list	specifying	which	properties	are	necessary	and	sufficient	for	a	dis-
positional	structure	to	be	computational	and	which	properties	further	
individuate	 a	 system’s	 computational	 structure.	 The	 definitive	 list,	
then,	 is	 the	correct	and	complete	account	of	which	 functional	 struc-
tures	 count	 as	 computational	 and	 which	 differences	 between	 func-
tional	 structures	 make	 a	 computational	 difference.	 I’ll	 pretend	 that	
Piccinini	has	given	us	the	definitive	list,	but	even	he	admits	that	his	
list	is	incomplete	(2015:	120).9 

My	 individualist	 account	 is	 identical	 to	 that	 of	 Piccinini	 (2007;	
2008;	2015),	 save	 two	differences.	This	near	 identity	means	 that	my	
account	inherits	the	incompleteness	of	Piccinini’s.	The	first	difference	
concerns	the	scope	of	computational	individuation.	He	claims	that	it	is	
individuated	widely:	the	environment	of	a	system,	including	any	larger	
system	of	which	 it	 is	 a	 part,	 can	make	 a	 difference	 to	what	 compu-
tational	 structure	 the	system	has.	 I	 claim	 it	 is	 individuated	narrowly:	
the	environment	(broadly	construed)	cannot	affect	the	computational	
individuation	of	a	 system.	He’s	a	 computational	externalist,	 and	 I’m	
an	individualist.	The	second	difference	concerns	whether	the	compu-
tationally	 relevant	 functional	 structure	 involves	 normatively	 loaded	
teleology,	i.e.,	whether	the	computationally	relevant	functional	struc-
ture	determines	what	the	system	should	be	doing.	He	says	yes;	I	say	no.	

We	won’t	be	able	 to	 fully	appreciate	 these	differences,	especially	
the	second	one,	until	the	end	of	§2.	In	the	meantime,	I’ll	assume	that	
you	have	at	least	a	crude	idea	of	what	the	differences	amount	to.	In	the	
rest	of	this	sub-section,	I’ll	consider	a	worry	about	my	individualist	ac-
count	that	arises	because	of	the	first	difference.	In	the	next	sub-section,	
I’ll	consider	a	worry	about	the	individualist	theory	that	arises	because	
of	the	second	difference.	

9.	 For	his	working	list,	see,	e.g.,	2007:	508–14,	2015b:	120–34.

namely	wine	bottles	 and	 corks.	This	behavior	 is	multiply	 realizable	
but	not	medium-independent	(Piccinini	2015:	122–3).	Medium-	inde-
pendence	imposes	a	significant	constraint	on	which	functional	struc-
tures	are	computational.	The	behavior	of	the	digestive	system	is,	for	
example,	“quintessentially	medium-dependent”	(147).	Its	processes	are	
defined	in	terms	of	“specific	chemical	changes	to	specific	families	of	
molecules”	(147).	

Computational	 structures,	 then,	 are	 medium-independent	 func-
tional	 structures.	 These	 structures	 individuate	 digits.	What	 individu-
ates	a	digit	 is	not	 that	 it	plays	some	 functional	 role	 in	 the	system	at	
some	level	of	abstraction,	as	long	as	there	is	some	(perhaps	distinct)	
level	 of	 abstraction	 in	 which	 the	 system	 has	 medium-independent	
functional	structure.	Rather:

Medium-Independent Individuation:	to	be	a	digit	is	to	
play	 a	 certain	 kind	 of	 role	 in	 the	medium-independent	
functional	structure	of	the	system,	and	distinct	digits	are	
further	typed	according	to	their	more	specific	roles	in	that	
structure	(cf.	Piccinini	2015:	122;	cf.	127–8).	

As	we’ll	see	in	§3.2,	respecting	Medium-Independent	Individuation	in	
the	context	of	malfunction	is	easier	said	than	done.

All	progress	so	far	 is	neutral	between	individualism	and	external-
ism.	We’ve	seen	that	a	specific	kind	of	mechanistic	theory	of	compu-
tation	—	one	that	appeals	 to	medium-independent,	mechanistic	 func-
tional	structure	—	avoids	three	vices:	trivializing	computation,	unlim-
ited	 pancomputationalism,	 and	 allowing	 digestive	 processes	 to	 be	
computational.	Technically,	 the	account	also	avoids	 limited	pancom-
putationalism	insofar	as	it	denies	that	non-mechanisms	compute.	But	
this	may	seem	a	mere	technicality.	We	still	lack	the	resources	to	deny	
that	solar	systems	compute.	

1.2. An Individualist Mechanistic Theory
The	most	promising	mechanistic	theories	will	 impose	further	restric-
tions	 beyond	 those	 mentioned	 in	 the	 previous	 sub-section	—	both	



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		5		–	 vol.	18,	no.	24	(december	2018)

voltage	ranges.11	If	you	think	that	computational	structures	track	func-
tional	significance,	as	Piccinini	and	I	do,	then	you	have	some	reason	
to	treat	the	larger	device	as	computing	over	fewer	digits	than	one	of	
its	parts.

My	 concerns	 about	Digital	Perseverance	 are	hardly	decisive,	 but	
my	goal	is	not	to	prove	that	my	individualistic	mechanistic	theory	is	
true.	The	goal	is	just	to	show	that	the	theory	is	worth	taking	seriously	
enough	to	explore	how,	if	true,	it	might	contribute	to	an	adequate	ex-
planation	of	miscomputation.

1.3. Solar Systems: A Comparison
Piccinini’s	externalist	mechanist	account	does	not	allow	solar	systems	
to	compute.	That’s	because	solar	systems	“are	not	collections	of	com-
ponents	functionally	organized	to	fulfill	specific	teleological	functions”	
(145).12	 There	 is	 no	 teleological	 function	 of	 solar	 systems,	 because	
there	is	nothing	they	should	be	doing,	and	there	is	certainly	no	func-
tion	that	they	should	be	computing.	 I	allow	there	to	be	computation	
without	teleological	function,	and	Piccinini	doesn’t.13	He	is,	therefore,	
better	positioned	than	I	am	to	deny	that	solar	systems	compute.	That’s	
an	advantage	of	going	externalist.	But	it’s	a	small	one.

Piccinini	 allows	 that	 something	 can	 have	 a	 teleological	 function	
to	compute	function	F	because	it	is	used	to	compute	F	or	a	designer	
intends	it	to	compute	F	(2015:	148–9).	But	there	are	limits.	Usage	or	

11.	 You’ll	save	yourself	some	time	if	you	take	my	word	for	it.	For	the	most	scrupu-
lous	readers,	I	describe	such	a	device.	Let	S3	be	the	composition	of	S1	and	S2.	
Suppose	S1	is	differentially	sensitive	to	three	voltage	ranges:	<2.5v,	2.5v–5v,	
and	>5v.	Let	S1’s	outputs	be	S2’s	inputs,	where	S2	is	only	bi-stable,	and	thus	
only	differentially	sensitive	to	two	voltage	ranges,	0–5v	and	>5v.	Whenever	
S2’s	input	is	0–5v,	it	outputs	0–5v.	Whenever	its	input	is	>5v,	it	outputs	>5v.	
In	such	a	case,	a	system	S3,	which	is	solely	composed	of	S1	and	S2,	will	be	dif-
ferentially	sensitive	to	only	two	ranges,	0–5v	and	>5v.	Assuming	that	Digital	
Perseverance	is	false,	S3	is	an	and-gate.	

12.	 Piccinini	also	points	out	that	arbitrary	inputs	into	a	solar	system	do	not	play	
the	relevant	functional	role	within	a	system	to	count	as	digits;	however,	this	
additional	point	is	neutral	between	individualism	and	externalism.

13.	 My	individualist	account	appeals	to	functional	structure	that	is	not	teleologi-
cal.	I	clarify	this	sort	of	structure	in	§2.3.

Suppose	that	S	is	a	computing	component	of	some	larger	system	
S*.	 Piccinini	 assumes	 Digital Perseverance:	 necessarily,	 feature	 F	
counts	as	a	distinct	digit	for	S	only	if	F	counts	as	a	distinct	digit	for	S*.	
The	computational	 structure	of	 the	whole	 constrains	how	digits	 are	
individuated	for	the	part	(2008:	229,	2015:	41;	cf.	Bontly	1998:	570	and	
Segal	1991:	492–3).	Let	S	be	Shagrir’s	(2001)	tri-stable	system,	which	
is	differentially	sensitive	to	three	different	voltage	ranges:	(i)	≤2.5v,	(ii)	
between	2.5v	and	5v,	and	(iii)	>5v.	Suppose	S*	computes	over	two	dig-
its,	≤5v	(0)	and	>5v	(1).	Digital	Perseverance	says	that	S	can’t	operate	
over	 three	digits,	<2.5v	(0),	2.5v	up	 to	5v	(½),	and	≤5v	(1).	 If	Digital	
Perseverance	is	true,	then	so	is	computational	externalism.	For,	given	
Digital	 Perseverance,	 the	 computational	 structure	 of	 a	 part	 can’t	 su-
pervene	on	 its	physical	structure,	 though	 it	might	supervene	on	 the	
physical	 structure	of	 the	whole	mechanism	of	which	 it	 is	 a	 part	 (cf.	
Segal	1991:	492–3).	

I	 reject	 Digital	 Perseverance.	Where	 Piccinini	 sees	 the	 computa-
tional	structure	of	the	larger	mechanism	imposing	constraints	on	the	
computational	structure	of	 the	component	part,	 I	see	computational	
significance	getting	lost	in	composition.	First,	it	is	uncontroversial	that	
a	complete	and	correct	computational	description	of	a	whole	device	
and	each	of	its	parts	is	compatible	with	the	parts	performing	different,	
usually	simpler,10	computations	than	the	whole	mechanism	(cf.	Egan	
1995:	192).	If	the	part	and	whole	can	perform	different	computations,	
why	 can’t	 the	 part	 perform	 computations	 on	 more	 digits	 than	 the	
whole?	Why	must	the	whole	mechanism	care	about	everything	each	
of	its	parts	cares	about?	Without	an	answer	to	these	questions,	there	is	
no	reason	to	deny	that	parts	can	compute	over	more	digits	than	their	
wholes.	

Second,	it’s	possible	to	have	a	computing	device,	such	that	one	of	
its	computing	parts	 is	differentially	sensitive	to	three	voltage	ranges	
when	 the	 device	 as	 a	 whole	 is	 differentially	 sensitive	 only	 to	 two	

10.	 Parts	tend	to	perform	simpler	computations,	because	systems	are	generally	
constructed	so	 that	 their	computing	operations	are	somewhat	efficient.	 It’s	
possible	for	the	parts	to	perform	more	complex	computations	than	the	whole.



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		6		–	 vol.	18,	no.	24	(december	2018)

problems	are	equally	bad.	A	 theory	has	 a	qualitative overcounting 
problem	iff:	the	theory	claims	that	a	system	computes	function	F	when	
the	system	is	not	even	eligible	to	compute	F.	A	theory	has	a	(merely) 
quantitative overcounting problem	 iff:	 the	theory	claims	that	a	sys-
tem	is	computing	function	F	when	it	isn’t,	where	the	system	is	at	least	
eligible	to	compute	F.	Qualitative	overcounting	problems	are	the	more	
serious	problem.	They	are	category	mistakes.	It	is	a	category	mistake	
to	call	a	rock	a	person.	The	rock’s	internal	structure	prevents	it	from	
being	a	person,	and	so	there	is	no	possible	environment	in	which	the	
rock	is	a	person.	Likewise,	it	is	a	category	mistake	to	say	that	the	rock	
implements	the	computations	necessary	to	run	Minecraft.	Its	internal	
structure	prevents	it	from	implementing	those	computations,	and	so	
there	is	no	possible	environment	in	which	it	does.

A	primary	reason	why	my	overcounting	problems	are,	at	most,	a	
small	advantage	 for	Piccinini	 is	 that	 there	 is	no	way	 for	Piccinini	 to	
claim	that	I	have	a	qualitative	overcounting	problem	that	he	doesn’t	
have.14	For	my	 theory	never	allows	a	 system	 to	be	eligible	 that	 isn’t	
also	eligible	under	Piccinini’s	theory.	My	alleged	problems	are	merely	
quantitative.	In	§3.1,	we’ll	see	that	Piccinini’s	overcounting	problems	
are	worse:	he	has	qualitative	overcounting	problems	that	arise	in	the	
context	of	malfunction.	

2. Miscomputing Individualistically 

My	individualist,	mechanistic	account	of	computational	individualism	
isn’t	obviously	correct,	but	it	is	worth	taking	seriously.	We’ll	get	more	
reason	to	take	it	seriously	when	we	see	how	easy	it	makes	explaining	
miscomputation.

14.	 I’m	assuming,	remember,	that	something	in	the	neighborhood	of	Piccinini’s	
mechanistic	theory	is	true.	I	haven’t	ruled	out	that	a	very	different	theory	of	
computation	would	enjoy	an	advantage	over	mine	with	respect	to	qualitative	
overcounting.

intentions	can	bestow	teleological	function	on	S	only	if	S	(or	at	least	
properly	functioning	members	of	S’s	kind)	can	compute	the	functions	
it	is	used	or	intended	to	compute	(Piccinini	2015:	149,	(iii)).	In	other	
words,	a	system’s	narrowly	individuated	functional	structure	imposes	
constraints	on	which	teleological	 functions	 it	has.	 It	can’t	be	a	teleo-
logical	 function	 of	 a	marvelously	 colored	 rock	 that	 it	 run	Minecraft;	
however,	since	the	rock	can	serve	as	a	paperweight,	it	presumably	can	
acquire	the	teleological	function	of	paperweights.

Let	us	say	that	system	S	is	eligible	to	compute	function	F	iff	S	has	
narrowly	 individuated	 functional	 structure	 compatible	with	 comput-
ing	F.	In	other	words,	S	is	eligible	to	compute	F	iff	there	is	some	pos-
sible	environment	in	which	S	computes	F.	

Anything	that	is	eligible	to	compute	on	my	account	is	also	eligible	
to	compute	on	Piccinini’s.	Assume	that	a	system	is	eligible	to	compute	
on	my	account.	Then	it	has	medium-independent,	narrowly	individu-
ated	 functional	 structure	 that	 satisfies	 the	 definitive	 list.	 This	 is	 suf-
ficient	for	computation	on	my	account	(my	individualist	view	entails	
that	 systems	 compute	 every	 function	 that	 they	 are	 eligible	 to	 com-
pute).	For	Piccinini,	this	medium-independent,	narrowly	individuated	
functional	structure	doesn’t	suffice	for	computation.	Yet	it	does	suffice	
to	be	eligible	for	computation.	In	such	a	case,	to	get	computation,	on	
his	view,	the	environment	need	only	supply	the	system	with	a	telos	to	
compute	a	function	that	its	medium-independent	functional	structure	
can	compute.	And	such	a	telos	can	be	provided	by	usage	or	intention.	

I’m	committed	to	saying	that	solar	systems	compute	whether	any-
one	bothers	to	use	or	intend	them	to	compute.	Piccinini	denies	that	
solar	systems	compute,	but	he’s	committed	to	saying	that	they	would	
compute	if	anyone	(e.g.,	a	god	or	supersmart	alien)	bothered	to	intend	
or	use	them	to	compute.	This	difference	does	not	strike	me	as	a	sound	
basis	for	preferring	one	account	of	computational	individuation	over	
another.	At	any	rate,	any	advantage	here	is	a	small	one.

My	account	seems	to	have	an	overcounting	problem.	In	other	words,	
my	account	sometimes	says	that	a	system	computes	(a	given	function)	
when,	 intuitively,	 the	system	doesn’t	do	so.	Yet	not	all	overcounting	



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		7		–	 vol.	18,	no.	24	(december	2018)

identify	what	was	actually	communicated	(I	don’t	like	your	gift)	and	
what	was	intended	to	be	communicated	(I	like	the	gift	so	much	I	want	
to	save	it	for	a	special	occasion).	

An	adequate	account	of	(the	relevant	sort	of)	miscomputation	in-
volves	 at	 least	 three	 components:	 an	 account	 of	 computational	 be-
havior	(what	computation,	if	any,	a	system	is	performing);	an	account	
of	 computational	 norms	 (what	 computation[s]	 the	 system	 should be 
performing);	and	an	explanation	of	how	these	two	accounts	together	
make	 it	possible	 for	a	 system	 to	compute	 in	a	way	 it	 should	not	be	
computing.	The	 latter	 explanation	may	be	 as	 trivial	 as	pointing	out	
that,	 in	 circumstances	C,	 the	account	of	 computational	behavior	en-
tails	that	the	system	computes	f1	when	the	account	of	computational	
norms	says	that	what	should	be	computed	is	a	distinct	function	f2.	

2.2. Miscomputation Explained
To	make	the	discussion	manageable,	I	make	two	simplifying	assump-
tions.	First,	 I	assume	that	a	system	always	manifests	 its	dispositions	
(and	so	computational	structure)	when	triggered	by	the	relevant	input	
conditions.	This	allows	us	to	ignore	various	complications,	such	as	the	
possibility	 of	 masking,	 performance	 error,	 etc.	 Witches	 and	 protec-
tive	Styrofoam	can	mask	a	vase’s	fragility	so	that	the	vase	won’t	break	
when	dropped.	We	set	aside	such	possibilities.	We	assume	that,	when	
dropped,	a	vase	will	manifest	 its	 fragility	by	breaking.	A	computing	
system	likewise	performs	the	computations	that	manifest	its	computa-
tional	structure.	Second,	I	assume	that	all	computation	is	deductive	or	
non-probabilistic.	When	such	a	computing	system	receives	a	compu-
tational	input	and	manifests	its	computational	structure,	it	is	guaran-
teed	to	produce	a	specific	computational	output.	These	two	assump-
tions	are	harmless.	Any	adequate	account	of	miscomputation	will	al-
low	a	computing	system	to	miscompute	when	it	manifests	a	deductive	
computational	 structure.	These	assumptions	simplify	our	discussion	
by	 letting	us	 assume	 that	 any	difference	 in	 computational	 behavior	
must	be	explained	by	a	difference	in	computational	structure.	

2.1 Miscomputation
We	can	better	understand	miscomputation by	considering	some	analo-
gies.	To	misbehave	is	to	behave	in	a	way	that	violates	some	relevant	
norm	(e.g.,	the	norms	of	rationality,	morality,	or	etiquette).	To	miscom-
municate	is	to	communicate	in	a	way	that	violates	some	relevant	norm	
(what	is	communicated	is	not	what	was	intended	to	be	communicated).	
To	misrepresent	 is	 to	represent	 in	a	way	that	violates	some	relevant	
norm	(e.g.,	truth).	You	get	the	picture.	To	miscompute	is	to	compute	
in	a	way	that	violates	some	relevant	norm	—	more	specifically,	a	norm	
for	what	the	system	should	be	computing.	

A	miscomputation,	so	understood,	is	a	special	kind	of	malfunction.	
It	 is	 special	 in	 two	ways.	First,	while	malfunctions	 require	normativ-
ity	 at	 some	 level	 of	 description,	miscomputation	 involves	 normativ-
ity,	more	 specifically,	 at	 the	 computational	 level.	Where	 there	 is	 no	
computational	behavior	that	the	system	should	be	performing,	there	
is	no	miscomputation.	Second,	not	all	computational	failures	count	as	
miscomputations.	 Some	 such	 failures	 are	merely	mechanical.	 If	 the	
battery	breaks,	the	computing	system	won’t	compute	anything	at	all.	
And	if	it	doesn’t	compute	anything	at	all,	it’s	not	miscomputing,	just	as	
a	diagram	doesn’t	misrepresent	unless	it	represents.	To	miscompute	is	
to	compute.	

In	this	paper,	I	focus	on	a	specific	kind	of	miscomputation,	the	kind	
in	which	a	system	implements	one	computation	when	it	should	have	
implemented	a	distinct	computation.15	The	existence	of	such	miscom-
putation	should	be	taken	seriously.	There	are	cases	of	misbehavior	in	
which	we	can	identify	what	the	child	is	doing	(throwing	his	broccoli	
across	the	room)	and	what	he	should	be	doing	(eating	the	broccoli).	
There	are	cases	of	misrepresentation	in	which	we	can	identify	what	an	
experience	represents	(one	horizontal	line	is	longer	than	another)	and	
what	counts	as	correct	 representation	(both	horizontal	 lines	are	 the	
same	length).	There	are	cases	of	miscommunication	in	which	we	can	

15.	 A	different	kind	of	miscomputation	might	occur	when	a	system	performs	a	
single	computation	when	it	should	have	performed	multiple	computations	in	
parallel.



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		8		–	 vol.	18,	no.	24	(december	2018)

miscomputations,	 just	 pick	 your	 favorite	 account	of	 the	normativity	
associated	with	 functional	 roles.	 Any	 of	 the	 standard	 accounts	will	
do,17	and	so	will	Piccinini’s	(2015,	ch	6).	Any	of	them	are	sufficient	for	
my	purposes,	 because	 they	 individuate	norms	widely.	 Since	 compu-
tational	behavior	is	individuated	narrowly	and	computational	norms	
are	individuated	widely,	it’s	easy	to	see	that	a	system	can	compute	a	
function	that	it	isn’t	supposed	to	compute.

Suppose,	 for	 illustration,	 that	 the	normativity	 for	a	manufactured	
system	can	be	supplied	by	the	intentions	of	the	designer.	If	so,	then	
miscomputations	can	arise	because	of	design	error	(cf.	Piccinini	2015:	
149).	I	might	intend	for	system	S	to	compute	function	f1	but	mistakenly	
construct	it	so	that	it	computes	function	f2	instead.	To	compute	f1,	per-
haps	 the	system	needs	 to	be	differentially	sensitive	 to	 three	voltage	
ranges	when	its	current	construction	makes	it	differentially	sensitive	
to	only	two.	In	such	a	case,	S	would	be	miscomputing.	

Or	suppose	that	S	 is	a	computing	component	of	some	larger	bio-
logical	system	S*.	In	order	for	S	to	make	its	essential	contribution	to	
the	biological	fitness	of	 S*	 (or	whatever	determines	S’s	 teleological	
function),	 it	 needs	 to	 compute	 function	 f3.	 But	 a	 component	 of	 S	 is	
damaged	(S	has	a	brain	lesion,	perhaps),	so	it	computes	f4	instead.	S	is	
miscomputing.	f4	is	the	computation	that	actually	explains	the	behav-
ior	of	S,	when	it	should	have	behaved	so	as	to	be	correctly	explained	
by	 f3.	 Again,	 given	my	 account	 of	 computational	 structure	 and	 any	
standard	account	of	computational	norms,	S	would	be	miscomputing.18

17.	 See	 Allen	 (2003)	 for	 a	 survey	 of	 the	 standard	 accounts	 for	 biological	
organisms.

18.	 For	simplicity,	I	assume	that	only	one	set	of	computational	norms	will	apply	
to	a	given	device.	If	it	is	possible	for	a	device	to	be	subject	to	conflicting	com-
putational	norms	(e.g.,	I	intend	that	a	device	compute	a	certain	function	and	
you	intend	it	to	compute	a	distinct	function),	then	a	device	may	miscompute	
relative	to	one	set	of	norms	without	miscomputing	relative	to	all	norms	that	
apply	to	it.	

Recall	from	§1	that,	in	the	abstract,	a	computational	structure	is	a	
complete	mapping	of	computational	inputs	to	computational	outputs.	
A	physical	system	has	a	certain	computational	structure	iff	the	struc-
ture/mapping	 counts	 as	 a	 correct	 description	 of	 the	 system’s	 actual	
and	counterfactual	behavior.	The	computational	structure	of	a	system	
tells	us	what	the	system	would	do	were	it	to	receive	a	given	compu-
tational	input.	Perhaps	when	given	string	0,1	as	an	input,	it	outputs	1.	
When	you	know	the	actual	inputs	to	the	system	(and	you	assume	that	
a	deductive	computational	structure	is	manifested),	the	computational	
structure	tells	you	the	actual	computational	behavior	of	the	system.	In	
other	words,	computational	structure	+	computational	inputs	=	com-
putational	behavior.	

Any	 account	 of	 computational	 behavior	 will	 have	 this	 same	 ba-
sic	 structure.	The	main	difference	between	rival	accounts	of	 compu-
tational	behavior	will	be	 their	 respective	accounts	of	computational	
structure.16	When	circumstances	remain	fixed,	a	difference	in	compu-
tational	behavior	requires	a	difference	in	computational	structure.

My	account	of	a	system’s	computational	behavior	begins,	naturally	
enough,	with	my	account	of	computational	structures.	Recall	that,	on	
my	view,	a	system’s	computational	structure	is	determined	by	its	nar-
rowly	 individuated,	 medium-independent	 functional	 structure	 (that	
satisfies	the	definitive	list).	To	determine	what	computations	are	being	
performed	by	the	system,	just	plug	in	the	computational	 inputs	(i.e.,	
those	states	of	the	system	that	play	the	relevant	kind	of	functional	role	
in	the	behavior	of	the	system).	

I	deny,	however,	that	narrowly	individuated,	medium-independent	
functional	structure	determines	the	computational	norms	 for	 the	sys-
tem.	 The	 norms	 that	 guide	 a	 system’s	 computational	 behavior	 are	
given,	at	least	in	part,	by	something	external	to	the	system	itself,	e.g.,	
the	 evolutionary	 history	 of	 the	 system,	 the	 intentions	 of	 a	 designer,	
the	role	that	system	plays	in	some	larger	system,	etc.	To	account	for	

16.	 Rival	accounts	of	computation	can	disagree	about	what	counts	as	the	compu-
tational	input	to	the	system,	i.e.,	what	counts	as	a	digit,	but	these	differences	
will	reduce	to	disagreements	over	the	computational	structure	of	the	system



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		9		–	 vol.	18,	no.	24	(december	2018)

proper	function	come	apart	—	the	purely	descriptive	notion	tracks	ac-
tual	function.

There	is	also	a	normatively	loaded	sense	of function and	functional 
structure.	To	say	that	the	function	of	the	heart	is	to	pump	blood,	in	this	
sense,	is	to	say	that	the	heart	is	supposed	to	pump	blood.	This	sense	of	
function	tracks	not	how	things	actually	work	but	how	they	should work.	
The	normatively	 loaded	 sense	of	 functional structure	 represents,	 at	 a	
certain	 level	 of	 abstraction,	 the	 dispositions	 the	 components	 should 
have	and	how	those	dispositions	should	work	together	to	underwrite	
the	dispositions	the	system	should have.	

The	 purely	 descriptive	 and	 normatively	 loaded	 senses	 come	 to-
gether	in	properly	functioning	systems.	If	a	system	is	functioning	prop-
erly,	a	system’s	purely	descriptive	and	normatively	loaded	functional	
structures	are	identical.19

In	contrast,	the	purely	descriptive	and	normatively	loaded	senses	
come	apart	in	malfunctioning	systems.	If	a	system	malfunctions,	one	
functional	 structure	will	describe	 the	actual	organization	and	opera-
tion	of	the	system	and	a	distinct	structure	will	describe	how	the	system	
should	be	organized	and	how	 it	 should operate.	Malfunction	 is	pos-
sible	only	when	actual	(purely	descriptive)	functioning	deviates	from	
proper	(normatively	loaded)	functioning.

The	 purely	 descriptive/normatively	 loaded	 distinction	 is	 not	 the	
narrow/wide	distinction.	The	 latter	distinction	concerns	whether,	at	
a	 certain	 level	of	 abstraction,	 a	 system’s	 environment	 can	affect	 the	
individuation	of	 its	 current	 structure	 and	behavior.	The	 former	 con-
cerns	whether,	at	a	certain	level	of	abstraction,	a	certain	structure	and	
behavior	are	(pure)	descriptions	of	or	norms	for	a	given	system.	It	is	
ordinarily	assumed	 that	norms	must	be	 individuated	widely,	but,	 in	
principle,	purely	descriptive	functional	structure	could	be	wide	or	nar-
row.	My	view	of	computational	structures	is	that	the	purely	descriptive	

19.	 For	simplicity,	I	assume	that	computational	norms	require	a	single,	specific	
normatively	loaded	structure.	If	proper	function	is	compatible	with	a	range	of	
functional	structures	(as	is	typical	in	actual	cases),	then	there	will	be	a	set	of	
normatively	loaded	functional	structures	and	the	actual	functional	structure	
of	properly	functioning	systems	will	be	identical	with	one	member	of	that	set.

2.3. Two Senses of Functional Structure
To	better	understand	how	my	account	of	miscomputation	works,	we	
need	 to	disambiguate	 two	 senses	of	 function	 and	 functional structure.	
Functions	are	special	kinds	of	dispositions.	Roughly,	a	component	has	
a	disposition	to	X	in	circumstances	C	iff	it	tends	to	X	in	C.	Hearts	are	
disposed	to	pump	blood	when	they	receive	the	relevant	sort	of	electri-
cal	charges	and	are	connected	to	blood	vessels	in	the	relevant	sort	of	
way	and	so	on.	Hearts	are	also	disposed	to	make	noise	in	those	same	
circumstances.	Yet	not	all	dispositions	have	the	same	sort	of	explana-
tory	significance	within	a	larger	system.	A	component’s	disposition	is	
a	function	of	that	component	iff	the	disposition	is	needed,	at	a	certain	
level	of	abstraction,	to	account	for	the	dispositions	and	behavior	of	the	
overall	system	(cf.	Cummins	1983:	28–9).	At	the	biological	level	of	ab-
straction,	we	need	to	appeal	to	the	heart’s	pumping	blood	—	but	not	its	
making	noise	—	in	order	to	account	for	the	dispositions	and	behavior	
of	the	circulatory	system.	Hence,	all	functions	are	dispositions,	but	not	
all	dispositions	are	functions.	To	be	a	function	is	to	be	a	disposition	
that	plays	an	explanatory	role	in	a	larger	system.

A	functional	structure	of	a	system	represents,	at	a	certain	level	of	
abstraction,	how	the	dispositions	of	each	component	underwrite	the	
dispositions	of	the	overall	system.	When	the	dispositions	of	the	vari-
ous	components	are	manifested,	they	work	together	to	explain	the	be-
havior	of	the	overall	system.	The	functional	structure	of	the	circulatory	
system	would	not	only	represent	the	heart’s	contribution,	but	also	the	
contributions	of	blood	and	blood	vessels,	to	the	dispositions	and	op-
eration	of	the	circulatory	system.	Functional	structures	track	how	the	
functions	of	the	components	work	together	to	account	for	the	disposi-
tions	and	behavior	of	the	overall	system.	

Functional	structures,	so	understood,	are	purely	descriptive.	They	
describe,	at	a	certain	level	of	abstraction,	how	the	dispositions	of	the	
components	 actually	 work	 together	 to	 explain	 the	 system’s	 disposi-
tions	 and	 behaviors.	 There	 is	 no	 further	 claim	 that	 this	 is	 how	 the	
various	 components	 should	 work	 (together).	 Perhaps	 it	 is	 and	 per-
haps	it	isn’t.	When	a	system	functions	improperly	—	when	actual	and	



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		10		– vol.	18,	no.	24	(december	2018)

properly	 functioning	 computing	 systems,	 the	 system’s	actual compu-
tational	structure	will	be	identical	to	the	computational	structure	that	
it	 should	 have.	 Since	 (actual)	 computational	 structures	 are	narrowly	
individuated,	the	computational	structure	that	a	system	should	have	
must	be	specifiable	in	narrowly	individuated	terms.	

Contrast	the	following	two	norms	for	a	given	system	S:

Norm specified in wide terms:	When	the	input	voltage	is	>5v,	
output	the	voltage	that	will	allow	the	larger	system	to	op-
erate	as	an	and-gate.

Norm specified in narrow terms:	When	the	input	voltage	is	
>5v,	output	>5v.

The	first	 norm	 is	 specified	 in	wide	 terms,	 because	 it	 references	 the	
larger	system	of	which	S	is	actually	a	component.	The	second	norm	is	
specified	in	narrow	terms,	because	it	mentions	behavior	that	can	be	
individuated	 internally	 to	 the	 system.	 There	 is	 no	 reference,	 explic-
itly	 or	 implicitly,	 to	 things	 beyond	 the	 system	 itself.	 Essentially,	 the	
internally	individuated	structure	a	system	should	have	is	whatever	in-
ternally	 individuated	 structure	properly	 functioning	versions	of	 that	
system	do	 have.	 I	 say	 computational	norms	are	widely	 individuated	
not	because	they	are	specified	in	terms	that	reference	things	beyond	
the	internally	individuated	states	and	structure	of	the	system;	rather,	
computational	 norms	 are	 widely	 individuated	 because	 what	 makes 
something	the	proper	internal	structure	for	a	system	is	determined	by	
things	beyond	the	internally	individuated	states	and	structure	of	the	
system	(e.g.,	what	it	takes	for	the	system	to	survive	in	its	environment,	
the	goal	of	some	designer,	etc.).

3. Miscomputing Externalistically: Parasitic Strategies

You	have	just	seen	how	easily	computational	individualists	can	accom-
modate	miscomputation.	Since	they	can	endorse	 internally	 individu-
ated	computational	behavior	while	holding	onto	externally	individu-
ated	computational	norms,	it	is	no	mystery	how	a	system	can	compute	

structure	is	narrow	and	the	normatively	loaded	is	wide.	In	other	words,	
I	 think	computational	behavior	 is	narrow	and	computational	norms	
are	wide.	At	other	levels	of	abstraction,	both	behavior	and	norms	may	
be	wide.	One	externally	individuated	functional	structure	might	pro-
vide	the	norms	for	our	mental	structure	and	behaviors	(e.g.,	the	norms	
of	rationality),	and	—	given	content	externalism	—	a	distinct	widely	in-
dividuated	functional	structure	would	specify	our	actual	mental	struc-
tures	and	behavior.

We	now	have	a	deeper	understanding	of	the	only	two	differences,	
especially	the	second,	between	my	account	of	computational	behavior	
and	that	of	Piccinini.	The	first	difference	is	that	my	version	appeals	to	
narrow	functional	structure	and	his	appeals	to	wide	functional	struc-
ture.	The	 second	difference	 is	 that	my	version	appeals	 to	purely	de-
scriptive	structures	and	his	to	normatively	loaded	ones	(cf.,	e.g.,	Pic-
cinini	2015:	113–4,	151).	When	we	get	to	the	next	section,	we’ll	see	that	
the	second	difference	 largely	explains	why	Piccinini’s	account	has	a	
hard	 time	 identifying	 the	computational	behavior	of	malfunctioning	
systems.

Narrowly	individuated	functional	structure	is,	of	course,	not	a	good	
candidate	 to	 account	 for	normatively	 loaded	 functional	 structure	or,	
more	 specifically,	 the	 computational	 norms	 of	 a	 computing	 system.	
That	 is	why,	when	I	discuss	 the	norms	for	a	device	—	computational	
or	otherwise	—	I	follow	just	about	everyone	else	in	asserting	that	the	
norms	are	individuated	widely.	Miscomputation	is	made	possible	on	
my	account,	precisely	because	there	is	a	gap	between	the	narrow	in-
dividuation	 of	 (purely	 descriptive)	 computational	 structure	 and	 the	
wide	 individuation	of	 (normatively	 loaded)	computational	norms.	A	
system	miscomputes	when	its	behavior	manifests	a	narrow	computa-
tional	structure	that	the	widely	individuated	norms	say	that	it	should	
not	have.

My	account	of	computational	structure	does	impose	one	constraint	
on	computational	norms	that	 I	should	mention.	Recall	 that,	 in	prop-
erly	 functioning	 systems,	 a	 system’s	 purely	 descriptive	 functional	
structure	is	identical	to	its	normatively	loaded	functional	structure.	In	



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		11		– vol.	18,	no.	24	(december	2018)

teleological	in	nature:	to	be	a	function	is	to	make	a	stable	contribution	
to	attaining	certain	goals.	Roughly,	for	organisms,	the	goal	would	be	
survival,	and	for	artifacts,	the	goal	would	be	some	goal	of	a	designer/
user.	This	kind	of	functional	structure	is	wide,	because	these	goals	are	
determined,	in	part,	by	something	beyond	the	system	itself.	

Teleology	 is	 generally	 designed	 to	 play	 a	 normative	 role,	 so	 it’s	
plausible	that	the	computational	structure	that	a	system	should	have	
just	is	the	computational	structure,	if	any,	that	fulfills	the	system’s	te-
leological	 function.	Externalists	 also	 sometimes	 insist	 that	 teleology	
has	 a	 significant	 role	 to	 play	 in	 determining	 (actual)	 computational	
structure.20	Whatever	 this	 role	 amounts	 to,	we	must	 allow	 that	 the	
computational	structure	of	a	malfunctioning	system	can	vary	at	least	
somewhat	independently	of	a	system’s	teleology.	

Suppose	that	S1	and	S2	and	S3	are	all	computing	systems	of	kind	
K,	and	their	teleological	function	requires	them	to	perform	a	certain	
computation.	In	particular,	they	are	required	to	output	0	(any	positive	
voltage	≤5v)	when	 they	 receive	 input	0,0.	While	 S1	 fulfills	 its	 teleo-
logical	function,	S2	and	S3	do	not	(they’re	broken).	When	given	0,0	as	
an	input,	S1	outputs	0,	S2	outputs	a	distinct	output	(9v),	and	S3	is	so	
broken	that	it	doesn’t	output	anything	at	all.	S1	and	S2	seem	to	be	com-
puting	distinct	functions,	and	S3	doesn’t	seem	to	be	computing	at	all.21 
Damage	can	change	the	computational	structure	of	a	system	without	
changing	its	teleology.	Any	appeal	to	teleology	must	respect	this	point.

Piccinini	(2015:	109–10)	claims,	as	is	typical	of	those	who	appeal	to	
teleology,	that	properly	functioning	systems	have	a	kind	of	metaphysi-
cal	priority	over	malfunctioning	systems.	He	doesn’t	cash	out	this	pri-
ority	or	its	relevance	for	miscomputation.	One	way	to	cash	it	out	is	in	
terms	of	digit	individuation:	what	counts	as	a	digit	for	a	malfunction-
ing	system	depends	on	what	counts	as	a	digit	for	properly	functioning	

20.	See,	e.g.,	Bontly	(1998:	569–70)	and	Piccinini	(2015:	43).

21.	 Why	think	that	S3	does	doesn’t	compute	at	all?	Computation	is	a	certain	kind	
of	 transition	between	 inputs	 and	outputs:	 no	outputs,	 no	 computation.	 S3	
makes as if	to	compute	but	fails	to	compute.	Just	as	throwing	the	ball	requires	
the	ball	to	leave	my	hand,	computing	requires	the	system	to	output	a	(com-
plete)	string	of	digits.	

a	function	that	it	shouldn’t.	In	this	section,	we	see	that	Piccinini’s	ex-
ternalism	makes	it	more	difficult	to	explain	how	such	miscomputation	
is	possible.	

3.1. Teleology and Actual Computational Structure
We	are	focused	on	the	sort	of	miscomputation	in	which	a	system	com-
putes	 a	 function	when	 it	 should	have	 computed	 a	distinct	 function.	
Piccinini	(2015b:	149,	(ii))	agrees	that	such	miscomputations	exist.	To	
adequately	 explain	 such	miscomputations,	 our	 account	 of	 computa-
tional	behavior	must	individuate	the	computational	behavior	of	mal-
functioning	 systems	—	not	 just	 properly	 functioning	 ones.	 When	 a	
system	malfunctions,	we	need	an	account	to	determine	whether	the	
system	is	nonetheless	computing	and,	if	so,	which	function	it	is	com-
puting.	Piccinini	never	explicitly	provides	such	an	account.	

The	heart	of	the	problem	is	Piccinini’s	characterization	of	miscom-
putation:	“if	the	[computing]	mechanism	malfunctions,	a	miscomputa-
tion	occurs”	(Piccinini	2015b:	122;	cf.	14	and	2015a,	sec	2.5).	Fresco	and	
Primiero	make	a	similar	mistake:	 “When	a	 [computing]	system	fails	
to	accomplish	the	purpose	for	which	it	was	designed,	a	miscomputa-
tion	can	be	identified”	(2013:	257;	cf.	Coelho	Mollo	forthcoming,	sec	
4).	When	you	think	about	miscomputation	in	this	way,	it	is	tempting	to	
conclude	that	you’ve	explained	how	miscomputation	is	possible	when	
all	you’ve	shown	is	that	it	is	possible	for	a	computing	system	to	issue	
the	wrong	output	(2015:	148–50	and	especially	24	and	148)	or	when	
all	you’ve	shown	is	that	it’s	possible	for	a	computing	system	to	fail	to	
follow	every	step	of	a	given	computational	procedure	(2015:	14).	But	to	
explain	miscomputation,	we	need	to	explain	more:	we	need	to	explain	
why	the	particular	malfunctions	at	issue	still	count	as	computation.	To	
miscompute	is	to	compute.

With	 that	 said,	 let’s	 see	whether	we	 can	 develop	 a	workable	 ac-
count	of	miscomputation	from	the	resources	Piccinini	provides.	What	
is	 clear	 is	 that	 teleology	 should	 play	 an	 important	 role.	 In	 chapter	
6,	Piccinini	 provides	 an	 account	of	wide	 functional	 structure	 that	 is	



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		12		– vol.	18,	no.	24	(december	2018)

transitions	 between	 inputs	 and	 outputs	 count	 as	 computations.	 A	
mapping	from	inputs	to	outputs	does	not	count	as	a	computation	if:

a.	As	the	system	is	currently	composed,	variations	in	the	
inputs	are	causally	irrelevant	to	variations	in	the	outputs;23

b.	As	the	system	is	currently	composed,	inputs	cause	out-
puts	 (e.g.,	 no	 input	 charge,	no	output	 charge),	 but	 it	 is	
entirely	 random	which	 output	 is	matched	with	 a	 given	
input.24

A	malfunctioning	computing	device	counts	as	computing,	according	
to	Parasitic	Individuation,	as	long	as	the	inputs	and	outputs	are	com-
putational	 states	 in properly functioning systems.	 In	 the	 imagined	case	
above,	the	damaged	system	receives	input	states	(2v,	7v)	and	outputs	
states	(2v),	which	are	computational	states	in	properly	functioning	sys-
tems.	That	was	all	it	took	to	show,	given	Parasitic	Individuation,	that	
the	imagined	system	was	performing	the	computation	af(0,1)	=	0.	Yet	
if	the	system	is	damaged	so	that	the	input	states	are	causally	irrelevant	
to	the	output	states	or	the	inputs	only	randomly	cause	the	outputs,	it	is	
implausible	that	the	damaged	system	is	genuinely	computing.	For	ex-
ample,	suppose	that	the	mechanism	that	controls	the	outputs	is	stuck	
on	2v,	 so	 that	 the	 input	charges	 (0,1)	do	not	 explain	why	 it	outputs	
what	it	does	(0).	The	system’s	behavior	isn’t	computational.	While	the	
system	malfunctions,	it	isn’t	computing,	and	so	it	isn’t	miscomputing	
either.	To	endorse	Parasitic	Individuation	is	to	overcount	both	compu-
tations	and	miscomputations	in	malfunctioning	systems.

Yes,	 I	 remember	 that	my	 individualist	 account	 is	 subject	 to	over-
counting	 problems,	 but	 Parasitic	 Individuation’s	 overcounting	 prob-
lems	are	worse.	Recall	that	there	are	two	kinds	of	overcounting	prob-
lems:	quantitative	and	qualitative.	A	theory	has	the	former	problem	
when	it	says	that	a	system	computes	some	function	F	when	it,	while	

23.	 See,	e.g.,	Chalmers	2011:	326	and	Piccinini	2015:	ch	7.

24.	 See,	e.g.,	Church	1940	and	Piccinini	2015:	126–7.

systems	of	its	type.	If	a	malfunctioning	system	takes	voltages	as	inputs	
and	outputs,	then	whether	those	voltages	count	as	digits	and	which	
digits	they	are	is	determined	by	how,	if	at	all,	voltages	are	grouped	in	
properly	functioning	systems	of	the	same	kind.	If	 those	voltages	are	
digits	in	properly	functioning	systems,	then	they	are	digits	in	malfunc-
tioning	systems.	If	certain	voltages	count	as	distinct	digits	in	properly	
functioning	systems,	 then	they	remain	distinct	digits	 in	malfunction-
ing	systems	of	the	same	type.	

In	other	words,	we	might	endorse	something	like:

Parasitic Individuation:	 The	 system’s	 microstates	 (e.g.,	
electrical	 charges)	must	 be	 grouped	 together	 into	mac-
rostates,	or	digits,	as	demanded	by	proper	function.	If,	ac-
cording	to	these	groupings,	the	system’s	current	behavior	
involves	inputs	and	outputs	that	count	as	digits,	then	the	
system’s	actual	computation	is	given	by	the	digits	actually	
inputted	and	outputted.22 

To	see	 the	appeal	of	Parasitic	 Individuation,	 consider	an	 illustration.	
Let	 ‘pf(m)	=	n’	 represent	 the	 computation	 that	 system	S	 should	per-
form.	Let	‘af(m)	=	n’	represent	the	computation	actually	performed	by	
S.	Suppose	that,	in	the	current	circumstances,	pf(0,1)	=	1,	where	proper	
function	individuates	microstates	into	two	digits,	0	(≤3v)	and	1	(>5v).	
If	S	functions	properly,	then	af(0,1)	will	likewise	equal	1.	Yet	suppose	
that	S	is	damaged	in	a	way	such	that	S	receives	the	inputs	2v	and	7v	
and	outputs	2v.	Parasitic	 Individuation	tells	us	 that	 the	computation	
performed	by	S	is	af(0,1)	=	0.	Due	to	malfunction,	we	get	one	value	
for	 pf(0,1)	 and	 a	 distinct	 value	 for	 af(0,1).	 Thus,	 Parasitic	 Individua-
tion	accounts	 for	 the	kind	of	miscomputation	we	are	after,	 the	kind	
in	which	a	system	implements	one	computation	when	it	should	have	
implemented	a	distinct	computation.	But	there’s	baggage.

Parasitic	 Individuation	 overcounts computations and miscomputa-
tions.	Individualists	and	externalists	generally	agree	that	only	certain	

22.	 In	personal	correspondence,	Piccinini	suggested	this	account	to	me	and	said	
that	it	was	behind	what	he	did	say	in	the	book.



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		13		– vol.	18,	no.	24	(december	2018)

after	you	dropped	it	on	the	floor).	In	the	case	of	computing	organisms,	
ancestry	may	also	play	a	role	in	explaining	why	certain	categories	and	
norms	apply	to	a	given	system	even	though	the	system	isn’t	fulfilling	
the	relevant	norms.

Those	forms	of	priority	do	not	commit	us	to	any	sort	of	computa-
tional	externalism.	For	the	individualist	can	accept	those	forms	of	pri-
ority	and	coherently	deny	that	there	is	also	individuative	priority.	She	
can	coherently	deny,	in	other	words,	that	the	computational	structure	
of	properly	functioning	systems	partly	individuates	the	computational	
structure	of	malfunctioning	systems.	The	individualist	can	insist	that	a	
system’s	actual	computational	behavior	is	given	solely	by	its	narrowly	
individuated	structure	while	also	holding	that	you	must	look	outside	
the	system	to	tell	which	norms	and	whether	certain	categories	apply	
to	it.	

I	treat	the	computational	structure	of	all	systems	in	exactly	the	same	
way:	whether	 a	 system	 is	 functioning	properly	 or	 improperly,	 a	 sys-
tem’s	computational	structure	is	its	internally	individuated	functional	
structure	(that	satisfies	the	definitive	list).	That’s	simple.	By	further	de-
manding	individuative	priority	—	by	demanding	that	proper	function	
partly	individuates	the	actual	computational	behavior	of	malfunction-
ing	systems	—	Parasitic	Individuation	individuates	the	computational	
structure	of	properly	functioning	systems	one	way	and	the	computa-
tional	structure	of	malfunctioning	systems	another.	 It	pays	 the	price	
of	 complication	 just	 to	 get	 the	 qualitative	 overcounting	 problem	 in	
return.	Perhaps	a	 refined	version	of	Parasitic	 Individuation	will	 fare	
better.

3.2. Parasitic Individuation Plus
Miscomputation	 is	 a	 special	 kind	 of	 computing	 malfunction.	 No	
computation,	 then	 no	 miscomputation	 either.	 Parasitic	 Individua-
tion	doesn’t	respect	this	point,	as	it	allows	malfunctioning	computing	
systems	to	miscompute	when	they	don’t	even	have	an	internal	struc-
ture	compatible	with	computation.	To	address	this	problem,	Parasitic	
Individuation	must	be	constrained	so	that	it	types	the	microstates	of	

eligible	 to	compute	F,	 is	not	actually	computing	F.	A	 theory	has	 the	
latter	problem	when	 it	 allows	a	 system	 to	 compute	F	when	 the	 sys-
tem	is	not	even	eligible	to	compute	F,	i.e.,	the	intrinsic	structure	of	the	
system	is	incompatible	with	computing	F.	The	latter	sort	of	problem	
seems	 to	be	worse.	 It	 is	 tantamount	 to	a	 category	mistake.	My	 indi-
vidualist	 account	 suffered	 from	 only	 quantitative	 overcounting	—	at	
least,	 there’s	no	way	for	Piccinini	to	push	a	qualitative	overcounting	
problem	against	me	without	facing	one	himself	(§1.3).	My	contention	
is	that	Parasitic	Individuation	suffers	from	qualitative	overcounting.	

If	a	system’s	inputs	do	not	cause	its	outputs,	then	there	is	no	pos-
sible	environment	in	which	it	is	computing.	We	are	working	within	a	
mechanistic	theory	which	holds	that	a	computational	description	of	a	
system’s	behavior	 is	a	certain	kind	of	explanatory	description.	To	at-
tribute	a	computation	to	a	system	is	to	say	that	the	particular	pattern	
of	inputs	causally	explains	the	particular	pattern	of	outputs.	But	Para-
sitic	Individuation	allows	malfunctioning	mechanisms	to	compute	in	
the	absence	of	such	causal	explanation.	That’s	qualitative	overcount-
ing.	 In	 the	 next	 section,	 we’ll	 try	 to	 fix	 this	 problem	with	 Parasitic	
Individuation.	

For	now,	I	want	to	explain	how,	if	I	endorse	a	teleological	account	
of	computational	norms,	my	individualist	account	can	retain	the	popu-
lar	idea	that	properly	functioning	systems	have	metaphysical	priority	
over	malfunctioning	systems.	I	can	do	this	in	at	least	two	ways.	I	can	al-
low	for	classificatory	and	normative	priority.	Suppose	we	are	looking	at	
a	certain	device,	D1,	which	is	a	properly	functioning	calculator	of	kind	
K.	We	now	look	at	another	device,	D2.	We	might	think	that	D2	should	
count	as	a	calculator	of	kind	K	even	though	it	fails	to	compute	in	the	
way	demanded	by	the	norms	of	K.	Such	a	possibility	raises	two	related	
questions,	one	normative	—	Why do the norms of K apply to D2? —	and	
one	classificatory	—	Why does D2 count as a K in those circumstances? A 
natural	answer	to	these	questions	is	that	D2	bears	some	special	rela-
tion	to	properly	functioning	members	of	kind	K.	In	the	case	of	calcula-
tors,	the	relation	will	likely	involve	some	sort	of	physical	similarities,	
similar	causal	histories,	or	even	identity	(imagine	that	D2	just	is	D1…	



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		14		– vol.	18,	no.	24	(december	2018)

as	a	distinct	digit	 (1).	SPF	 is	 functioning	properly,	and	 its	medium-in-
dependent	functional	structure	treats	voltages	in	the	way	that	proper	
function	requires.	When	it	 receives	 inputs	6v,	6v	and	outputs	3v,	 its	
behavior	will	be	described	by	af(1,1)	=	0.	

In	contrast,	SMF	 is	malfunctioning.	While	 it	has	medium-indepen-
dent	functional	structure,	it	doesn’t	treat	voltages	in	the	way	that	prop-
er	 function	 requires.	 It	 treats	 all	 voltages	≤6v	 the	 same	way	 and	all	
voltages	>8v	in	a	distinct	way.	Suppose	SMF	receives	inputs	6v,	6v	and	
it	outputs	3v.	PIP	individuates	SMF’s	macrostates	according	to	proper	
function	—	recall	 that	 the	 parasitic	 approach	 makes	 the	 individua-
tion	 of	macrostates	 in	malfunctioning	 systems	 parasitic	 on	 the	 indi-
viduation	of	macrostates	in	properly	functioning	systems	—	and	so	PIP 
holds	that	SMF’s	behavior	is	also	given	by	af(1,1)	=	0.	This	description	
of	SMF’s	behavior	 seems	mistaken.	 It	 is	 true	 that	SPF	 and	SMF’s	 actual	
behavior	is	given	by	the	same	function,	even	though	only	the	latter	is	
miscomputing.	That,	by	itself,	is	not	a	problem	(cf.	Fresco	2013,	ch	2;	
Piccinini	2015:	13).	What’s	problematic	is	that	this	description	of	SMF’s	
computational	behavior	mistakenly	implies	that	it	treats	6v	differently	
than	3v.	Indeed,	SMF	counts	as	malfunction	precisely	because	it	does	
not	 treat	 6v	differently	 than	 3v.	The	underlying	problem	 is	 that	 PIP 
(and	the	simpler	Parasitic	 Individuation)	doesn’t	respect	Medium-In-
dependent	Individuation.	When	a	malfunctioning	system	is	genuinely	
computing,	PIP	groups	microstates	together,	not	in	the	way	the	mal-
functioning	system	does	it,	but	in	the	way	that	its	properly	functioning	
counterparts	do	it.	

My	individualist	account	fares	better	precisely	because	it	respects	
Medium-Independent	Individuation.	SMF	treats	all	voltages	≤6v	in	the	
same	way,	and	so	my	individualist	account	groups	those	voltages	to-
gether	as	a	single	digit.	When	SMF	receives	inputs	6v,	6v	and	outputs	
3v,	my	account	holds	that	SMF’s	behavior	is	given	by	af(0,0)	=	0.	This	
computational	 description	 captures	 the	 intuitive	 verdict	 that	 SMF	 is	

malfunctioning	systems	into	digits	only	when	the	malfunctioning	sys-
tem	is	eligible	to	compute.

Consider	Parasitic Individuation Plus,	i.e.,	Parasitic	Individuation	
plus	 this	 constraint:	 a	malfunctioning	 system	computes	 (and	 so	has	
digits)	only	 if	 it	has	medium-independent	 functional	 structure.	Para-
sitic	Individuation	Plus	(PIP)	is	a	step	forward.	Like	Parasitic	Individu-
ation,	PIP	makes	room	for	the	kind	of	miscomputation	in	which	a	sys-
tem	computes	one	function	when	it	should	have	computed	a	distinct	
function.	Unlike	Parasitic	Individuation,	it	is	apparently	not	subject	to	
qualitative	 overcounting	 problems.	 Parasitic	 Individuation	 individu-
ates	 the	microstates	 of	malfunctioning	 computing	 systems	 into	 dig-
its	as	demanded	by	proper	function	regardless	of	the	system’s	actual	
functional	structure.	PIP	individuates	the	microstates	of	malfunction-
ing	computing	systems	into	digits	(as	demanded	by	proper	function)	
only when	the	malfunctioning	system	has	medium-independent	func-
tional	 structure.	 It	 consequently	 doesn’t	 say	 that	 a	 system	miscom-
putes	when	its	inputs	fail	to	be	causally	relevant	to	the	outputs	or	only	
randomly	cause	the	outputs.	This	is	genuine	progress.

The	problem	with	PIP	 (and	an	additional	problem	with	Parasitic	
Individuation)	is	that	it	fails	to	respect	Medium-Independent	Individu-
ation	 (roughly,	 a	 system’s	medium-independent	 functional	 structure	
is	what	individuates	its	digits).	For	a	given	system,	suppose	that	≤3v	
gives	us	one	digit	(0)	and	>5v	gives	us	a	distinct	digit	(1).	Given	Medi-
um-Independent	Individuation,	this	assignment	of	digits	tells	us	three	
things	about	how	the	system	treats	different	voltages:	it	treats	all	volt-
ages	≤3v	the	same	way,	it	treats	all	voltages	>5v	the	same	way,	and	it	
treats	voltages	≤3v	differently	than	it	treats	voltages	>5v	(cf.	Piccinini	
127–8).	Here	“the	same	treatment”	is	essentially	the	absence	of	differ-
ential	sensitivity.	At	a	medium-independent	 level	of	abstraction,	 the	
system	is	differentially	sensitive	to	the	difference	between	2v	and	7v	
but	not	to	the	difference	between	2v	and	3v.	

Now	consider	two	systems,	SPF	and	SMF.	The	two	systems	are	of	the	
same	type	and	are	subject	 to	 the	same	computational	norms.	These	
norms	demand	 that	pf(1,1)	 =	0,	≤3v	 count	 as	 one	digit	 (0),	 and	>5v	



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		15		– vol.	18,	no.	24	(december	2018)

claim	 that	a	 system’s	environment	 (construed	broadly	enough	 to	 in-
clude	designer	intentions,	any	larger	systems	of	which	the	system	is	
a	component,	etc.)	can	affect	neither	whether	a	system	computes	nor 
which	particular	function	it	computes	if	it	computes	at	all.	My	account	
of	computational	individualism	is	a	strict	individualist	account	in	this	
sense.	In	contrast,	typical	externalisms	allow	the	environment	to	affect	
both	whether	a	system	computes	and	which	particular	function	the	sys-
tem	computes.	Piccinini’s	account	is	a	typical	externalism.	Externally	
individuated	 teleological	 function	 is	 required	 for	 something	 to	 com-
pute,	and	it	helps	determine	which	function	is	computed.	

There	 is	 an	 intermediate	 position	 between	 strict	 individualism	
and	typical	externalism	that	we	can	call	quasi-individualism.	Quasi-
individualism	 (A)	 allows	 the	 environment	 to	 affect	 whether	 a	 sys-
tem	computes	at	all	but	(B)	doesn’t	allow	it	to	affect	which	function	
the	system	computes,	assuming	the	system	computes	at	all.26	Strictly	
speaking,	quasi-individualism	is	an	externalism,	because	it	allows	the	
environment	to	affect	whether	a	system	has	computational	structure	
in	the	first	place.	Yet	its	implications	for	computational	individuation	
are	probably	closer	to	stereotypical	individualist	accounts	than	stereo-
typical	externalist	ones.

(A)	enables	the	quasi-individualist	 to	endorse	Piccinini’s	explana-
tion	of	why	solar	systems	don’t	compute.	Piccinini	holds	that	solar	sys-
tems	don’t	compute	because	computation	isn’t	one	of	their	teleologi-
cal	functions.	Let	the	quasi-individualist,	then,	endorse	this	first-pass	
condition:	a	system	computes	only	if	it	has	computation	as	a	teleologi-
cal	function.27	The	problem	with	strict	individualism	is	thus	avoided.

26.	Coelho	 Mollo	 (2018)	 may	 endorse	 something	 in	 the	 neighborhood	 of	
quasi-individualism.

27.	 Suppose	a	system	has	narrowly	individuated,	medium-independent	function-
al	structure	in	both	voltage	and	temperature	ranges.	If	the	quasi-individualist	
wants	 to	allow	that	 the	system	computes	over,	 say,	voltage	ranges	without	
computing	over	temperature	ranges	too,	then	she	can	tweak	the	first	pass:	a	
system	computes	over a given kind of input	only	if	the	system	has	a	teleological	
function	to	compute	over that kind of input.	

miscomputing	precisely	because	it	mistypes	microstates,	i.e.,	it	groups	
microstates	into	macrostates	in	ways	that	it	shouldn’t.25

4. Quasi-Individualism: The Best of Both Approaches?

My	individualist	account	of	computational	behavior	made	explaining	
miscomputation	 a	 breeze.	 Since	 computational	 norms	 are	 individu-
ated	widely	and	computational	behavior	is	individuated	narrowly,	it	is	
no	mystery	how	a	system	could	compute	one	function	when	it	should	
have	computed	a	distinct	function.	On	the	downside,	it	avoids	limited	
pancomputationalism	only	by	the	hair	of	its	chinny-chin-chin.	While	
mereological	simples	won’t	compute	any	function	at	all,	solar	systems	
will	compute	some	function	or	another.	

Piccinini-inspired	 parasitic	 approaches	 decisively	 avoid	 limited	
pancomputationalism.	 Yet	 Parasitic	 Individuation	 incorrectly	 entails	
that	some	malfunctioning	systems	compute	when	their	internal	struc-
ture	makes	it	impossible	for	them	to	compute.	Parasitic	Individuation	
(Plus)	incorrectly	individuates	which	miscomputation	is	implemented	
by	malfunctioning	systems.	Wouldn’t	it	be	great	if	we	had	a	theory	that	
got	both	advantages	without	any	of	the	vices?

I	will	briefly	outline	such	a	theory	for	interested	parties,	but	keep	in	
mind	that	I’m	happy	with	the	individualist	theory.	Strict	individualists	

25.	 One	may	wonder	whether	computational	externalists	should	find	Medium-
Independent	 Individuation	plausible	after	all.	A	certain	 tri-stable	system	 is	
differentially	sensitive	to	three	different	voltage	ranges:	(i)	≤2.5v,	(ii)	between	
2.5v	and	5v,	and	(iii)	>5v	(cf.	Shagrir	2001).	If	this	system	is	a	properly	func-
tioning	component	of	some	larger	system	that	groups	(i)	and	(ii)	together,	it	
doesn’t	seem	silly	to	treat	(i)	and	(ii)	as	composing	a	single	digit	for	the	com-
ponent	system	either	(cf.	Piccinini	2008:	229,	2015:	41).	At	first	glance,	this	
may	seem	 to	violate	Medium-Independent	 Individuation,	but	 I	don’t	 think	
it	does.	It	is	certainly	true	that	the	system	treats	(i)	and	(ii)	differently	than	
(iii),	and	the	system	is	arguably	treating	(i)	and	(ii)	in	the	same	way	at	some	
appropriate	 level	of	generality	—	the	 level	of	generality	at	which	 the	 larger	
system	is	operating.	Arguably,	 then,	Medium-Independent	 Individuation	 is	
being	respected.	What	would	violate	it	is	if	we	typed	this	tri-stable	system’s	
microstates	such	that	≤3v	is	one	digit	(0)	and	>4v	is	a	distinct	digit	(1).	We	
get	the	violation	because	the	computational	joints	are	cut	where	there	are	no	
medium-independent	functional	joints	(at	any	level	of	medium-independent	
generality).



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		16		– vol.	18,	no.	24	(december	2018)

made	the	individuation	of	improper	computation	parasitic	on	the	in-
dividuation	of	proper	computation.	The	two	versions	of	this	approach	
we	 considered	had	problematic	 implications	 for	what	 systems	were	
computing	when	they	were	malfunctioning	(§3).	

Fourth,	 for	 those	 who	 are	 bothered	 by	 individualism’s	 flirtation	
with	 limited	pancomputationalism,	 I	 introduced	quasi-individualism	
(§4).	This	view	requires	teleological	function	for	a	system	to	compute	
but	otherwise	is	identical	to	my	individualist	account.	Perhaps	it	pro-
vides	the	most	promising	approach	to	explaining	miscomputation,	but	
for	now	I’ll	stick	with	plain	ol’	individualism.29

References

Allen,	Collin.	2003.	“Teleological	Notions	in	Biology.”	Stanford Encyclo-
pedia of Philosophy,	Edward	N.	Zalta	(ed.).	Stable	URL:	http://plato.
stanford.edu/entries/teleology-biology/.	

Bontly,	 Thomas.	 1998.	 “Individualism	 and	 the	 Nature	 of	 Syntactic	
States.”	The British Journal for Philosophy of Science	49(4):	557–74.

Chalmers,	David.	2011.	“A	Computational	Foundation	for	the	Study	of	
Cognition.”	Journal of Cognitive Science	12(4):	323–57.

Church,	Alonzo.	(1940).	“On	the	Concept	of	a	Random	Sequence.”	Bul-
letin of the American Mathematical Society	46(2):	130–5.	

Coelho	 Mollo,	 Dimitri.	 Forthcoming.	 “Are	 There	 Teleological	 Func-
tions	to	Compute?”	Philosophy of Science.	

_____.	 2018.	 “Functional	 Individuation,	Mechanistic	 Implementation:	
The	Proper	Way	of	Seeing	the	Mechanistic	View	of	Concrete	Com-
putation.”	Synthese	195(8):	3477–97.

_____.	1983.	The Nature of Psychological Explanation.	Cambridge	(MA):	
The	MIT	Press.

29.	Helpful	comments	on	earlier	drafts	were	provided	by	Paul	Davies,	Josh	Gert,	
Matt	 Haug,	 Jonathan	 McKeown-Green,	 Marcin	 Miłkowski,	 Kevin	 Sharpe,	
multiple	anonymous	 referees,	 and	 the	audiences	at	Minds	Online	and	 the	
2015	APA	Central.	Gualtiero	Piccinini	deserves	 special	mention,	 as	he	pro-
vided	detailed,	helpful	comments	on	multiple	versions	of	this	paper.	Those	
earlier	drafts	were	written	thanks	to	a Marsden	Fund	Fast-Start	Grant	and	a	
William	&	Mary	Summer	Research	Grant.	I	owe	these	people	and	institutions	
my	gratitude.

(B)	allows	the	quasi-individualist	to	individuate	which	computation	
is	being	performed	in	exactly	the	same	way	as	the	individualist.	The	
computation	 is	determined	by	 the	narrowly	 individuated	 functional	
structure	 (that	 satisfies	 the	definitive	 list)	—	and	 this	applies	 to	both	
properly	functioning	and	malfunctioning	systems.	A	system	miscom-
putes	when	its	behavior	manifests	a	narrow	computational	structure	
that	 its	widely	 individuated	 computational	 norms	 say	 it	 should	 not	
have.	Quasi-individualism	may	thus	offer	hope	to	explain	miscompu-
tation	as	easily	and	straightforwardly	as	 the	 individualist	while	deci-
sively	avoiding	limited	pancomputationalism.28

Conclusion

This	paper	tries	to	better	understand	miscomputation	(from	within	a	
mechanistic	framework).	First,	it	clarifies	what	miscomputation	is	and	
what	 it	 takes	 to	 adequately	 account	 for	 it	 (§2.1).	 A	 system	miscom-
putes	when	 it	 computes	 in	 a	way	 that	 it	 should	not	 compute.	Thus,	
a	complete	 theory	of	miscomputation	will	 involve	 three	component	
accounts:	accounts	of	a	system’s	computational	behavior,	its	computa-
tional	norms,	and	how	a	system’s	actual	computational	behavior	can	
violate	those	norms.	

Second,	this	paper	develops	an	individualist	theory	of	miscompu-
tation.	 It	 defends	 a	mechanistic	 account	 that	 individuates	 computa-
tional	behavior	narrowly	(§1	and	§2.3).	All	standard	accounts	of	com-
putational	norms	individuate	norms	widely,	and	any	of	them	will	do.	
Together	these	two	component	accounts	give	us	the	third:	a	system’s	
computational	behavior	can	violate	its	computational	norms	precisely	
because	 the	 former	 is	 individuated	narrowly	 and	 the	 latter	 are	 indi-
viduated	widely	(§2.2).	

Third,	 I	 criticized	Piccinini’s	 approach	 to	miscomputation,	which	

28.	Suppose	that	a	device	is	eligible	to	compute	but	lacks	a	teleological	function	
(and	anything	else	that	might	determine	what	the	device	should	be	comput-
ing).	In	these	circumstances,	the	device	can	compute	but	it	can’t	miscompute.	
If	you	find	this	result	odd	(I	don’t),	then	you’ll	have	an	additional	reason	to	
prefer	quasi-individualism	over	my	strict	individualism.	For	only	quasi-indi-
vidualism	prevents	computation	in	the	absence	of	teleological	function.



	 chris	tucker How to Explain Miscomputation

philosophers’	imprint	 –		17		– vol.	18,	no.	24	(december	2018)

Dewhurst,	Joe.	2018.	“Individuation	without	Representation.”	The Brit-
ish Journal for the Philosophy of Science	69(1):	103–16.

_____.	 2014.	 “Mechanistic	 Miscomputation:	 A	 Reply	 to	 Fresco	 and	
Primiero.”	Philosophy & Technology	27(3):	495–8.

Egan,	Frances.	1995.	“Computation	and	Content.”	The Philosophical Re-
view	104(2):	181–203.

Fresco,	Nir.	2015.	“Objective	Computation	Versus	Subjective	Compu-
tation.”	Erkenntnis	80(5):	1031–53.

_____.	 2013.	 Physical Computation and Cognitive Science.	 Dordrecht:	
Springer.

Fresco,	Nir	 and	Giuseppe	 Primiero.	 2013.	 “Miscomputation.”	Philoso-
phy & Technology 26(3):	253–72.

Piccinini,	Gualtiero.	 2015a.	 “Computation	 in	Physical	 Systems.”	Stan-
ford Encyclopedia of Philosophy,	Edward	N.	Zalta	(ed.).	Stable	URL:	
https://plato.stanford.edu/entries/computation-physicalsystems/

_____.	2015b.	Physical Computation: A Mechanistic Account.	Oxford:	Ox-
ford	University	Pres.

_____.	 2008.	 “Computation	 without	 Representation.”	 Philosophical 
Studies	137(2):	205–41.

_____.	 2007.	 “Computing	 Mechanisms.”	 Philosophy of Science	 74(4):	
501–26.

Segal,	Gabriel.	 1991.	 “Defence	of	 a	Reasonable	 Individualism.”	Mind 
100(4):	485–94.

Shagrir,	Oron.	2001.	“Content,	Computation,	and	Externalism.”	Mind 
110(438):	369–400.

Sprevak,	Mark.	2010.	“Computation,	Individuation,	and	the	Received	
View	on	Representation.”	Studies in the History and Philosophy of Sci-
ence	41(3):	260–70.


