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The dynamical analysis and control of a nonlinear MEMS resonator system is considered. Phase diagram, power spectral density
(FFT), bifurcation diagram, and the 0-1 test were applied to analyze the influence of the nonlinear stiffness term related to the
dynamics of the system. In addition, the dynamical behavior of the system is considered in fractional order. Numerical results
showed that the nonlinear stiffness parameter and the order of the fractional order were significant, indicating that the response
can be either a chaotic or periodic behavior. In order to bring the system from a chaotic state to a periodic orbit, the optimal
linear feedback control (OLFC) is considered. The robustness of the proposed control is tested by a sensitivity analysis to
parametric uncertainties.

1. Introduction

Currently, a large number of researches have been performed
to report nonlinear dynamic phenomena on MEMS resona-
tors [1] as well as application of control techniques to obtain
a desired behavior [2]. The nonlinearities in MEMS include
nonlinear springs and damping mechanisms [3], nonlinear
resistive, inductive and capacitive circuit elements [4], and
nonlinear surface, fluid, and electric and magnetic forces
[5]. In [6], the Mathieu–van der Pol–Duffing equation was
considered to present a MEMS model, and the authors
investigated the dynamics of the system considering both
forces parametrically and nonparametrically. In [7], a ther-
momechanical model of the system was developed and
explored to explain and predict the entrainment phenome-
non. In [8], the nonlinear dynamics of micromechanical
oscillators are experimentally explored, and a model was
built to explain why high-order entrainment is seen only in
doubly supported beams. By its analysis, it is suggested that
the strong amplitude–frequency relationship in doubly sup-
ported beams enables hysteresis, wide regions of primary
entrainment, and high orders of sub and super harmonic
entrainment. In [9], a model for oscillations from the

continuum description of the temperature and displacement
field is considered. A bifurcation analysis of the model was
performed, allowing estimating the threshold power for
self-oscillation as a function of geometric and optical con-
stants of the beam.

In the work, the dynamical analysis and control of a non-
linear MEMS system is considered, and the 0-1 test is applied
to investigate the nonlinear dynamics of the system in frac-
tional order. In order to suppress the chaotic motion, the
optimal linear feedback control (OLFC) control is utilized.
The robustness of the proposed control is tested by a sensitiv-
ity analysis to parametric uncertainties and for variations in
fractional order.

With the presented results, it is expected to contribute
with new information on the dynamics of the nonlinear
MEMS related to the influence of the fractional order in the
dynamics of the system and in the robustness of the OLFC
control, which is a control technique successfully used in
similar systems, where the order of the fractional derivative
is considered unitary [2]. In addition, it contributes with
new information that can be useful for the study of the appli-
cation of other control techniques that may be more robust to
variations in the fractional derivative, as the SDRE control or
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fuzzy control was successfully used in a similar system with
fractional unitary order by [2, 10, 11] and [12], respectively.

The 0-1 test can be applied to any system to identify cha-
otic dynamics. This test uses the temporal series data to char-
acterize the dynamics of the system, analyzing its spectral
and statistical properties based on the asymptotic properties
of a Brownian motion [13–16].

The optimal linear feedback control (OLFC) was pro-
posed, and the linear feedback control strategies for nonlin-
ear system were formulated, with asymptotic stability of the
closed-loop nonlinear system guaranteeing both stability
and optimality by [17]. The proposed theorem explicitly
expresses the form of the minimized function and gives
enough conditions that allow the use of the linear feedback
control for nonlinear systems. Recent published works using
the OLFC have shown interest in using the control in MEMS
[2, 13, 14, 18], and its robustness to control nonlinear sys-
tems has been proven in [19] using a polynomial chaos-
based framework.

Although it has a long history, the applications of frac-
tional calculus to physics and engineering are just a recent
focus of interest [2]. The authors in [2] showed that the frac-
tional order in a MEMS system may produce a chaotic or
periodic attractor.

This paper is organized as follows. In Section 2, the math-
ematical model for microelectromechanical systems (MEMS)
is presented and its dynamical analysis considering the non-
linear stiffness term is carried out. In Section 3, the dynamical
behavior of the system in fractional order is considered by
applying the 0-1 test. In Section 4, the optimal linear feed-
back control (OLFC) is proposed and applied, and the
robustness of the proposed control is tested by a sensitivity
analysis to parametric uncertainties. Finally, the paper is con-
cluded in Section 5.

2. Microelectromechanical System (MEMS)

Figure 1 shows a MEMS oscillator composed of a DC source
and an alternating current (AC) with a movable microbeam.

Figure 1 represents a device which consists of two fixed
plates and a movable plate between them, at which is
applied a voltage V t composed of a polarization voltage
(DC) Vp, an alternating voltage (AC) Vi sin wt , d (dis-
tance between the plates), x (horizontal movement), and m
(front panel mass).

According to [10, 12, 20–22], the mathematical model of
a MEMS oscillator with cubic nonlinearity term is repre-
sented by Figure 1 and can be written as follows:

mx + k1x + k3x
3 + cx = 1

2
C0

d − x 2 Vp +Vi sin wt

−
1
2

C0
d − x 2 V

2
p,

1

where the coefficient C0 denotes the capacitance of the
parallel-plate actuator.

According to [20–22], the nonlinear electrostatic terms of
(1) can be expanded up to the third order based on the Taylor

series expansion method, which is represented by the follow-
ing equation:

x = −μx − klx − knlx
3 + α 1 + 2x + 3x2 + 4x3 sin wt , 2

where μ = c/m, kl = k1/m, knl = k3/m, γ = C0V2
p/2md2, and

α = 2γVi/Vp.
Considering x 0 = x0 and x 0 = x0, and defining the

new variables τ =wt and u = x/x0, (1) can be represented in
dimensionless form, denoted by

u = −au − bu − cu3 + d 1 + eu + f u2 + gu3 sin τ , 3

where a = μ/w, b = kl/w2, c = knlx
2
0/w2, d = α/w2x0, e = 2x0,

f = 3x20, and g = 4x30.
Rewriting (3) in state-space notation, the equations of

motion of the system pass to be

u1 = u2,
u2 = −au2 − bu1 − cu31 + d 1 + eu1 + f u21 + gu31 sin τ ,

4

where u1 = u and u2 = u.
Describing the mathematical equations of the MEMS

oscillator, the next subsection will show the dynamical anal-
ysis of the system considering the variation of the parameter
c, which is the nonlinear stiffness term.

2.1. Numerical Simulations to the Nonlinear Stiffness Term.
Figure 2(a) shows the variation of the most significant
Lyapunov exponent determined by the Jacobian algorithms
[23] considering a period of τ = 20,000, and the bifurcation
diagram is illustrated in Figure 2(b).

Figure 2(a) shows the variation of the most significant
Lyapunov exponent, and the bifurcation diagram is illus-
trated in Figure 2(b). It provides an illustration on how
parameter c influences the system dynamics, as well as for
parameters x1 0 = 0 0001, x2 0 = 0 0006, α = 0 64, μ =
0 03, kl = −0 352, α = 0 64, and w = 1 and initial conditions
u1 0 = 0 0001 and u2 0 = 0 0006.

As shown in Figure 2, depending on values of “c”, the
oscillations of (4) can present periodic or chaotic behaviors.
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Figure 1: Oscillator microelectromechanical (MEMS).
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Figure 3 shows the behavior of (4) for parameter c =
0 001387.

Figures 3(a)–3(d) show the time history of displacements
of u1 and u2, phase plane, and Poincaré map of the system.
Those results showed that states u1 and u2 support a nonper-
iodic response of the examined system. Figures 3(e) and 3(d)
show the power spectral density (FFT) and the Lyapunov
exponent analysis. The frequency spectrum and Lyapunov
exponent show that the system stays in a chaotic state for a
chosen c = 0 001387 parameter.

In the next section, those same analyses will be carried
out by considering the fractional order of the system.

3. Chaos in the System with Fractional Order

In this section, the techniques of fractional calculus to ana-
lyze the behavior of the system (4) with a fractional order
are used. For this behavior, the application of the 0-1 test will
be considered in the variable u1.

The 0-1 test is very useful in fractional-order differential
systems. The 0-1 test has been successfully used in the analy-
sis of the chaotic regimes of the MEMS [24, 25]. Basically, the
0-1 test consists of estimating a single parameter K . The test
considers a system variable xj, where two new coordinates
p, q are defined as follows:

p n, c = 〠
n

j=0
x j cos jc ,

q n, c = 〠
n

j=0
x j sin jc ,

5

where c ∈ 0, π is a constant. The mean square displace-
ment of the new variables p n, c and q n, c are given by

M n, c = lim
n→∞

1
N
〠
N

j=1
p j + n, c − p j, c 2

+ q j + n, c − q j, c 2 ,
6

where n = 1, 2,… ,N and, therefore, the parameter Kc is
obtained in the limit for a very long time [15, 16, 24, 25]:

Kc =
cov Y ,M c

var Y var M c
, 7

where M c = M 1, c ,M 2, c ,… ,M nmax, c and Y = 1,
2,… , nmax .

Given any two vectors x and y, the covariance cov x, y
and variance var x of nmax elements are usually defined as
[15, 16, 24, 25]

cov x, y = 1
nmax

〠
nmax

n=1
x n − x y n − y ,

var x = cov x, y ,
8

where x and y are the average of x n and y n , respectively.
As a final result, the value of the searched parameter K is
obtained taking the median of 100 different values of the
parameter Kc in (6). If the K value is close to 0, the system
is periodic; on the other hand, if the K value is close to 1,
the system is chaotic. In all simulations, it has chosen n =
10000 and j = n/100,… , n/10.

Now, the next subsection will show the dynamical analy-
sis of the system considering the system in fractional order.

3.1. Dynamical Analysis of a Fractional Order. Differential
equations may involve Riemann–Liouville differential opera-
tors of fractional order q > 0, which generally takes the form
below [2, 26]

Dqx t = 1
Γ m − q

t

t0

x m u

t − u q−m+1 du, 9

where m = q , that is, m, is the first integer not less than q. It
is easily proved that the definition is the usual derivative def-
inition when q = 1. The case 0 < q < 1 seems to be particularly
important; however, there are also some applications for
q > 1. In this work, for simplicity and without loss of gen-
erality, in the following, it is assumed that t0 = 0, 0 < q < 1.
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Figure 2: (a) Largest Lyapunov exponent for the variation of c and
(b) bifurcation diagram for the variation of c.
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The system (4) in fractional order is described as follows:

dq1u1
dTq1

= u2,

dq2u2
dTq2

= −au2 − bu1 − cu31

+ d 1 + eu1 + f u21 + gu31 sin τ ,

10

where 0 < q1 and q2 ≤ 1, and its order is denoted by q = q1,
q2 here.

The behaviors in fractional order are studied by numeri-
cal tools as time histories and phase portraits considering the
algorithm proposed by [27].

In Figure 4, the results of the phase portrait are observed,
and in Figure 5 is shown the power spectral density (FFT)
considering q1 = 1 and 0 4 ≤ q2 ≤ 1.
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Figure 3: (a) Time history of state u1, (b) time history of state u2, (c) phase portrait, (d) Poincaré map, (e) power spectral density (FFT) to u1,
and (f) Lyapunov exponents.
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Analyzing the phase diagrams of Figure 4, it can be
observed that the system has periodic behavior for 0 4 ≤ q2
≤ 0 9 and tends to a quasi-periodic or chaotic behavior for
q2 > 0 9. Figure 5 shows the power spectral density (FFT)
for the cases observed in Figure 4.

Analyzing the FFT of Figure 5, it is observed that for
0 4 ≤ q2 ≤ 0 9, there is no significant difference between the
dominant frequencies. There is only significant difference
when q2 > 0 9, being the most significant for q2 ≥ 0 97 indi-
cating a chaotic behavior.

To confirm whether the behavior is chaotic or periodic,
the 0-1 test is carried out. Figure 6 shows the variation of
the value of K of the 0-1 test for the values of q2 considered
in Figures 4 and 5.

The results presented in Figure 6 confirm the behav-
iors observed in Figures 4 and 5, and the system tends
to a chaotic behavior for q2 > 0 95, where k = 0 901 for
q2 = 0 95, k = 0 9321 for q2 = 0 96, k = 0 9166 for q2 = 0 97,

k = 0 9392 for q2 = 0 98, k = 1 for q2 = 0 99, and k = 0 99 for
q2 = 0 1.

The results show that the order of the derivative of q2 influ-
ences the behavior of the system, being that for q2 < 0 95 the
system tends to a periodic behavior and for q2 > 0 95 the
system tends to be chaotic.

As the chaotic behavior was demonstrated due to the
fractional order, the next section will show and design a pro-
posed control to control the chaotic motion.

4. Control Using the Optimal Linear
Feedback Control

In order to avoid the chaotic behavior in the system, the opti-
mal linear feedback control is proposed. The objective is to
find the optimal control, such that the response of the
controlled system (4) results in a periodic orbit u∗ t
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Figure 4: MEM system in fractional order. (a) Phase portrait for q2 = 0 4, q2 = 0 5, and q2 = 0 6. (b) Phase portrait for q2 = 0 7, q2 = 0 8, and
q2 = 0 9. (c) Phase portrait for q2 = 0 95, q2 = 0 96, and q2 = 0 97. (d) Phase portrait for q2 = 0 98, q2 = 0 99, and q2 = 1.
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asymptotically stable. Considering the introduction of the
control signal U in system (4),

u1 = u2,
u2 = −au2 − bu1 − cu31 + d 1 + eu1 + f u21 + gu31 sin τ +U ,

11

whereU = ur + u, ur is the state feedback control, and u is the
feedforward control. The control that maintains the system
in the desired trajectory is given by

u = u∗2 + au∗2 + bu∗1 + cu∗
3

1 − d 1 + eu∗1 + f u∗
2

1 + gu∗
3

1 sin τ

12

Substituting (12) in (11) and defining the desired trajec-
tory errors lead to
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Figure 5: MEM system in fractional order. (a) Power spectral density (FFT) for q2 = 0 4, q2 = 0 5, and q2 = 0 6. (b) Power spectral density
(FFT) for q2 = 0 7, q2 = 0 8, and q2 = 0 9. (c) Power spectral density (FFT) for q2 = 0 95, q2 = 0 96, and q2 = 0 97. (d) Power spectral
density (FFT) for q2 = 0 98, q2 = 0 99, and q2 = 1.
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u1

u2
=

u1 − u∗1

u2 − u∗2
13

System (11) can be represented as deviations in the fol-
lowing way:

e1 = e2,

e2 = −ae2 − be1 − c e1 + u∗1
3 − u∗1

3

+ d 1 + ee1 + f e1 + u∗1
2 − u∗1

2

+ g e1 + u∗1
3 − u∗1

3 sin τ + ur

14

System (14) can be represented in the deviation as

e = Ae + G e, u∗ + Bur , 15

or in matrix form

e1

e2
=

0 1
−a −b

e1

e2
+G e, u∗ +

0
1

ur , 16

where

According to [2], for matrices Q and R, positive definite
symmetric matrices, the control ur is optimal and transfers
the nonlinear system (14) from any initial state to the final
state e ∞ = 0.

Minimizing the functional obtains

J =
∞

0
eTQe + uTr Rur dt 18

The control ur can be found by solving the equation

ur = −R−1BTPe = −Kre 19

P is the symmetric matrix and can be found from the
algebraic Riccati equation

PA + ATP − PBR−1BTP +Q = 0 20

Matrices A and B of system (16) are represented by

A =
0 1
−a −b

,

B =
0
1

21

Defining Q and R matrices obtains

Q =
100 50
50 100

,

R = 1
22

The system of (20) can be solved, obtaining

p =
59 9500 10 3582
10 3582 59 9500

,

Kr = 10 3582 10 9571

23

Substituting Kr in (19), the control signal is obtained as

ur = −10 3582e1 − 10 9571e2
= −10 3582 u1 − u∗1 − 10 9571 u2 + u∗2

24

First of all, it is important to define the desired trajectory
u∗ t , which will be considered as u∗1 = 258 sin τ and
u∗2 = 258 cos τ , whose amplitudes are near the maximum
amplitude of displacement of u1 observed in Figure 2(a)
and the predominant frequency observed in Figure 2(f).

The time history of displacement of the controlled system
can be observed in Figure 7(a), and the phase portrait is shown
in Figure 7(b), desired trajectory errors in Figure 7(c), and
signal control in Figure 7(d), considering the application of
the control U in (11).

As can be seen in Figure 7, the OLFC control was efficient
with null error for τ > 1 5 (Figure 3(c)), considering the max-
imum error in a permanent state of 2% and that the linear
feedback ur control is only used to bring the system to the
desired orbit and that the feedforward (u) control maintains
the system in the desired orbit (Figure 7(d)).

Next, the same proposed control is applied considering
parametric errors.

4.1. Proposed Control with Parametric Errors. In order to
determine the effects of uncertainties on the performance of
the controller, it is estimated that an error of ±20% is encoun-
tered in parameters a, b, c, d, f , andg, with a similar strategy

G e, u∗ =
0

−c e1 + u∗1
3 − u∗1

3 + d 1 + ee1 + f e1 + u∗1
2 − u∗1

2 + g e1 + u∗1
3 − u∗1

3 sin τ
17
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used in [10, 14, 28]. In addition, the variation of the fractional
derivative q2 in the robustness of the proposed control will be
considered.

In Figures 8, 9, and 10, the robustness of the control to
maintain the system in a periodic orbit is observed, consid-
ering the proposed control with variation in parameters
au = a 0 8 + 0 4r t , bu = b 0 8 + 0 4r t , cu = c 0 8 + 0 4r
t , du = d 0 8 + 0 4r t eu = e 0 8 + 0 4r t , f u = f 0 8 +
0 4r t , and gu = g 0 8 + 0 4r t , where r t is a ran-
dom number r t = 0, 1 . In Figure 11, the robustness
of the control to maintain the system in a periodic
orbit is observed considering the proposed control with
parameters q2 = 0 4, q2 = 0 5, q2 = 0 7, q2 = 0 9, q2 = 0 98,
and q2 = 0 99.

Considering that e−c = u1c − uu1c u2c − uu2c
T and u−c

are the states obtained with the control without parametric
uncertainties and uu−c is the state obtained with the control
with parametric uncertainties, in Figure 8 the robustness of
the control can be observed in keeping the system in the
same orbit obtained with the control without uncertainties,

considering the uncertainties only in the feedback control

(ur), with the matrix A =
0 1

−au −bu
.

As can be seen in Figure 8, even with uncertainties in
the feedback control, the control was robust with an abso-
lute maximum error of approximately e1c ≈ 0 0395 and
e2c ≈ 0 894.

In Figure 9, it is possible to observe the robustness of the
control in keeping the system in the same orbit obtained with
the control without uncertainties, considering the uncer-
tainties only in the feedforward control (u), with the feedfor-
ward control in form u = u∗2 + auu

∗
2 + buu

∗
1 + cuu

∗3
1 − du 1 +

euu
∗
1 + f uu

∗2
1 + guu

∗3
1 sin τ .

As can be seen in Figure 9, even with uncertainties in
the feedforward control, the control was robust with an
absolute maximum error of approximately ∣e1c∣ ≈ 5 264
and e2c ≈ 50 56.

In Figure 10, the robustness of the control in keeping the
system in the same orbit obtained with the control without
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Figure 7: MEM system with proposed control. (a) Time history of state u1, (b) phase portrait, (c) desired trajectory errors, and (d) signal
control.
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Figure 8: Deviation of the desired trajectory with the proposed control with parametric errors in feedback control u: (a) deviation of the
desired trajectory e1c = u1c − uu1c and (b) deviation of the desired trajectory e2c = u2c − uu2c .

0 5 10 15 20
0

1

2

3

4

5

6

e 1
c (

fe
ed

fo
rw

ar
d 

co
nt

ro
l)

T

(a)

e 2
c (

fe
ed

fo
rw

ar
d 

co
nt

ro
l)

0 5 10
T

15 20
0

10

20

30

40

50

60

(b)

Figure 9: Deviation of the desired trajectory with the proposed control with parametric errors in feedforward control (u~): (a) deviation of the
desired trajectory e1c = u1c − uu1c and (b) deviation of the desired trajectory e2c = u2c − uu2c .
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uncertainties is observed, considering the uncertainties in
feedback control (ur) and in the feedforward control (u),
with the feedforward control in the form u = u∗2 + auu

∗
2 +

buu
∗
1 + cuu

∗3
1 − du 1 + euu

∗
1 + f uu

∗2
1 + guu

∗3
1 sin τ and the

matrix A =
0 1

−au −bu
.

As can be seen in Figure 10, even with uncertainties in
the feedforward control, the control was robust with an
absolute maximum error of approximately ec1 ≈ 3 192 and
ec2 ≈ 55 84.

In Figure 11, the robustness of the control in keeping the
system in the same orbit obtained with the control with q2 =
1 can be observed. It is considered that e−q2 = u1q2 − uu1q2
u2q2 − uu1q2

T and u−q2 are the states obtained with the con-
trol with q2 = 1 and uu−q2 is the state obtained with the con-
trol with q2 ≠ 1.

As can be observed in Figure 11, the error increases when
u1 → 0 and u2 → 0 and q2 < 1, indicating that the control is
sensitive to variations in q2.

In Figure 12, the error considering the maximum ampli-
tudes of oscillation of the system with control is observed.
In this case, it is considered that emq2u− = umq2u1 −
uumq2u1 umq2u2 − uumq2u2

T and umq2u− are the maximum
amplitudes of oscillation obtained with the control with
q2 = 1 and uumq2u− is the maximum amplitude of oscillation
obtained with the control with q2 ≠ 1.

As can be seen in Figure 12, the control with variations in
q2 has smaller errors at the peak points than when it is close
to zero, thus keeping the displacement amplitudes close to
those desired, even with variations in q2, demonstrating that
for control applications of cases very different from q2 = 1, it
is necessary to design a new control feedforward control that
considers the fractional derivatives and new values of Q and
R for the feedback control.

5. Conclusions

This work investigated the dynamical behavior of a MEMS
system in fractional order. The numerical simulations
showed the existence of chaotic behavior for some regions
in the parameter space of the fractional order and regions
in the parameter of the nonlinear stiffness term; this behav-
ior was characterized by the 0-1 test. The bifurcation dia-
grams were constructed to explore the qualitative behavior
of the system.

In order to suppress such chaos, the optimal linear feed-
back control (OLFC) was projected. The efficiency of the
technique was demonstrated through numerical simulations
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Figure 11: Deviation of the desired trajectory with the proposed control for variations in q2 = 0 4, q2 = 0 5, q2 = 0 7, q2 = 0 9, q2 = 0 98, and
q2 = 0 99. (a) Deviation of the desired trajectory e1q2 = u1q2 − uu1q2 and (b) deviation of the desired trajectory e2q2 = u2q2 − uu1q2 .

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

q2

|e
m
q

2|

emq2u1
emq2u2

Figure 12: Deviation of the desired maximum amplitudes of
oscillation with the proposed control for variations in q2 = 0 4,
q2 = 0 5, q2 = 0 7, q2 = 0 9, q2 = 0 98, and q2 = 0 99. (a) Deviation of
the desired maximum amplitudes of oscillation e1q2 = u1q2 − uu1q2
and (b) deviation of the desired maximum amplitudes of oscillation
e2q2 = u2q2 − uu2q2 .
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in order to eliminate the chaotic behavior of the system. As
can be seen, the strategy was efficient to maintain the
amplitude of the oscillator in the desired periodic orbit
u∗1 = 258 sin τ and u∗2 = 258 cos τ , and it can be seen
that the control is sensible to variations in order of the frac-
tional order.

Thus, it is possible to conclude that the results obtained
for the capacitive MEMS oscillator model considered in this
work can be considered for other capacitive models with
similar formulation, such as the model used by [2, 10], in
which the OLFC control was successfully used even to para-
metric uncertainties.

The main contribution of this work is the results obtained
by considering the sensitivity control for fractional derivative
variation presented in Figures 11 and 12, because there are
some results that were not observed in previous works, then
demonstrating the importance of the controller design tak-
ing into account the order of the fractional derivative, which
is related to the effects of memory of the material, such as
the behavior observed in viscoelastic materials or with sim-
ilar behavior. It can also be observed that the error increases
as the derivative (q2) moves away from the derivative q2 = 1,
which is the value of the derivative normally used in the
control design.

With those results, it is intended for a future work to per-
form the analysis of the robustness of other control tech-
niques for the capacitive MEMS oscillator model, as well as
to verify if it is possible to improve the robustness of the
OLFC control for variations of the fractional order.
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