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Abstract 
There is a need to rapidly assess the impact of 
new technology initiatives on the Counter 
Improvised Explosive Device battle in Iraq and 
Afghanistan.  The immediate challenge is the 
need for rapid decisions, and a lack of 
engineering test data to support the assessment. 
The rapid assessment methodology exploits 
available information to build a probabilistic 
model that provides an explicit executable 
representation of the initiative’s likely impact.  
The model is used to provide a consistent, 
explicit, explanation to decision makers on the 
likely impact of the initiative. Sensitivity 
analysis on the model provides analytic 
information to support development of 
informative test plans. 

1 INTRODUCTION 
The mission of the Joint Improvised Explosive Device 
(IED) Defeat Organization (JIEDDO) is to defeat IEDs as 
weapons of strategic influence. In support of this mission, 
JIEDDO has put in place a process to field new counter-
IED initiatives much more rapidly than the traditional 
Department of Defense procurement process. In 
traditional military procurement, there is an extensive 
period of testing and evaluation before any new system is 
fielded.  While effective, the traditional procurement 
approach can take years to field a new system. If JIEDDO 
is to meet its charge for rapid response to IED threat, it 
cannot wait for the results of extensive testing.  Instead, 
rapid funding (and re-funding) decisions must be made 
with limited information. The initiatives involve diverse 
technologies across a wide spectrum of potential C-IED 
applications, and are fielded in multiple theaters. 
Initiatives arrive for consideration on a frequent but 
irregular basis.  
JIEDDO J9 Division1 has called the problem of deciding 
which initiatives to fund “Portfolio Selection.” Across a 

                                                             
1 J9 is Operations Research & Systems Analysis (ORSA). 

period of weeks or months, there is a set of initiatives in 
various stages of consideration for initial or continued 
funding. The funded initiatives and funding levels 
constitute a “portfolio” selected from all other alternatives 
of funding/non-funding and possible amounts to fund for 
each initiative.  
There are many possible analytic Portfolio Selection 
formulations, but implementing any of them requires an 
implicit or explicit ranking of alternative portfolios. A 
ranking, in turn, requires a way to measure, or at least to 
place bounds on, the value of a portfolio. Measuring the 
value of a portfolio requires in turn that one or more 
measures of value be associated with individual initiatives 
in the portfolio. These measures must be comparable 
across initiatives, so that the portfolio selection process 
can compare portfolios containing different sets of 
initiatives. 
It is not obvious that measures can be developed that are 
comparable across the range of initiatives JIEDDO must 
consider. For example, how should the value of a new 
jamming mechanism be compared against of the value a 
new unmanned surveillance platform, or a newly 
deployed military-intelligence team? Plausible measures 
such as casualty-avoidance potential are so high-level and 
context-specific that they are of little use in evaluating the 
performance of a specific initiative in its intended context.  
For example, the casualty avoidance potential of a 
jammer depends critically on the context in which it is 
employed: if no radio-controlled IEDs are encountered, or 
if any encountered IEDs are disabled without the 
necessity of jamming, then even a highly effective 
jammer will not reduce casualties. We seek conditional 
measures: given that the jammer encountered an IED that 
is susceptible to jamming, what is the chance the jammer 
prevented detonation? 
Furthermore, measures for new initiatives must be 
developed very rapidly, because the time to consider 
initiatives before making funding decisions must be as 
short as possible.  The method should identify parameters 
for further data collection. Then when additional test, 
operational or field data is collected, it should be possible 



to update these measures and metrics based on the new 
information. 
It follows that a JIEDDO initiative assessment 
methodology must provide an analyst with a way to 
rapidly:  
- Formulate analytic measures or metrics for each 

initiative that are comparable across initiatives and 
therefore can be used as inputs to the Portfolio 
Selection analysis;  

- Generate an explicit analytical representation of the 
explanation for how the initiative will work;  

- Predict the qualitative impact of the initiative on 
consistent and comparable measures or metrics;  

- Use data when available to estimate those measures 
or metrics for new initiatives;  

- Identify parameters for which additional testing 
would have significant payoff; and  

- Update those same measures and metrics based on 
new test, field or operations data.  

In this paper we present such an initiative assessment 
methodology and demonstrate its application to a case 
study. 

2 MODELING APPROACH 
We created a structured modeling method for C-IED 
initiative analysis, based on Bayesian networks (BNs).  
BNs provide an intuitive graphical representation of a 
structural model, and propagate local uncertainties 
through the model.  The method has two top-level steps: 
1. Identify the relevant Measures of Performance 

(MOPs). MOPs have been identified by JIEDDO for 
important classes of C-IED initiatives.  Using a 
common, consistent set of MOPs allows comparison 
of diverse initiatives.  

2. Model the dependence of the MOPs on system and 
environmental variables.  A Bayesian Network (BN) 
model is developed to represent the influence of 
important system and environmental variables on the 
MOPs.  By necessity, the model is general, in many 
cases reflecting only qualitative assessments of the 
influences.   

Because engineering test results are not available at initial 
assessment, the modeling approach must exploit 
knowledge in whatever form it is available.  Typically, 
knowledge comes from Subject Mater Experts (SME) at 
JIEDDO and elsewhere, from requirements documents 
from the field, from the contractor who is proposing the 
initiative, and from experience with previous initiatives.  
This information is assembled into a BN to predict the 
likely impact of the initiative. 

The impact assessment methodology must also: 

- Enable identification of information collection 
priorities for future testing.   

- Integrate with a portfolio management process, which 
will optimize investment in a set of C-IED initiatives. 

- Provide a consistent, repeatable, and extensible 
model.  The BN methodology provides an explicit 
model, integrating all available knowledge that can 
be extended when additional information becomes 
available form testing. 

3 METHODOLOGY 
This section discusses the rapid assessment methodology 
and the sensitivity analysis metrics that we use. 

3.1 RAPID ASSESSMENT METHODOLOGY   

 
 

Figure 1. The Rapid Assessment Process. 
Although the methodology is described below as a 5-step 
process, in practice it is a non-linear process involving 
continuous feedback and frequent interaction with SMEs, 
as depicted in Figure 1. 

1. Identify MOPs:  
- Create a variable for each MOP.  

- Specify clear operational definitions for each variable.  

- Determine the state space for each variable.  

- Identify primary indicators of the MOPs. Connect 
each MOP directly to a variable that toggles the 
initiative on and off (or switches among alternatives). 
Estimate the MOPs using the model. Assess the 
model to rank the MOPs according to need for 
refinement.  

2. Generate an Explanation. 



3. Implement the explanation as a probabilistic model:   
repeat until satisfied or out of time: 

-  Select most important variable to refine. Make that 
the target.  

- Refine definitions and state space for the variable. 
(For example, transform a qualitative “high, med, 
low” variable to a quantitative one.)  

- Identify the “first-order” causes and effects of the 
target.  

o Identify the primary causes of the target.  
o Identify any additional key indicators 

(typically effects that are easier to measure 
than the target itself)  

o Create variables for the causes and 
indicators  

o Specify clear operational definitions for 
each variable  

o Determine the state space for each variable  

- Determine the dependence relationships among the 
variables. Estimate local distributions.  

o Determine the structural assumptions for the 
local probability distributions.  

o Determine the values of any free parameters.  

- Assess the target variable  

- Select various combinations of causes (parents) and 
indicators (children). Instantiate variables. Assess 
whether results for the target are in line with 
expectations, or at least justified. Modify and recheck 
as required.  

- Select various states of the target and evaluate 
distributions of parents and children, to ensure they 
are also justified. Modify and recheck as required.  

- Document assumptions & limitations Quantify 
uncertainties and bound errors, if possible Determine 
what you most need to know next.  

- Evaluate the model  

o Internally, by team review  
o Internally, via sensitivity analyses  

o Externally, by consulting with the SMEs 

4. Assess the model  

- Perform global sensitivity analysis and consistency 
checking to evaluate model adequacy.  

i. Mutual information tables;  

ii. Link strength graphs;  

iii. 
dx
dy plots for select parameters identified 

in previous steps, and of practical 
interest (e.g. because we can test or 
control them). 

5. Determine the Sensitive Parameters (SPs). Create 
final ranked list of SPs for each MOP. Use both 
subjective judgment from the model-building and 
formal methods such as:  

- Mutual information table;  

- Link strength graphs; 

-  
dx
dy  plots for select parameters. 

3.2 SENSITIVITY ANALYSIS 

We employ four main kinds of sensitivity analysis:  
1. Global sensitivity to findings: Mutual Infor-

mation; 
2. Local sensitivity to findings: Link Strength;  

3. Sensitivity to CPT parameters; 

4. 
dx
dy  plots for sensitivity to CPD2  parameters.  

We describe these below. 

3.2.1 Mutual Information 

Mutual information measures the information gained 
about one variable by learning another. Let X be a factor 
of interest, and let Y be a MOP or other variable of 
interest. Let MI(X,Y) be the mutual information between X 
and Y, and let H(⋅) be the entropy in a variable. Then:  

 MI(X,Y)=H(X)-H(X|Y) 

Mutual information is an absolute measure whose scale 
varies with the number of states of the variables. We 
might consider three variants, all on a scale from zero to 1.  
Scaled MI uses a scale in which 1 is the MI of a uniform 
distribution on Y. This is useful for tracking progress in 
learning Y, such as in a sensor-tasking system, since it 
provides a stable reference.  
Normalized MI uses a scale in which 1 is the highest MI 
in the current set X of potential measurements. This 
presents each potential variable to observe as a proportion 
of the best one.  

                                                             
2Conditional Probability Distribution – the local tables or 
functions “inside” a node in a Bayesian network or 
similar graphical probability model. 



CXY  uses a scale in which 1 is the current H(Y). It 
represents the proportion of uncertainty reduced, so that 1 
means that X fully determines Y.  

3.2.2 Link Strength 

MI is defined between any two nodes, or indeed sets of 
nodes. However, it tends to decrease with the number of 
links between X and Y, because we usually lose certainty 
with each step. For example, although the 

chain  has strong links at each 

stage, the aggregate influence   is not very 
strong. Conversely, as Ebert-Uphoff notes, high mutual 
information does not reveal which of multiple paths 
carries the weight; indeed, some paths may be quite weak. 
A link strength measure allows us to examine the 
individual influence of each arc of interest. 
Ebert-Uphoff Link Strength: 

 Ebert-Uphoff defined several measures of link strength 
based on Mutual Information, drawing on the earlier work 
by Nicholson & Jitnah. The two most important are true 
average link strength ( LST ) and blind average link 

strength  (LSB).  

LST is the mutual information between X and Y, con-

ditional on Z, the set of all the other parents of Y.  

 
 

LST  averages over X and Z using the actual joint 

distribution. In contrast, LSB  assumes “that X,Z are 

independent and all uniformly distributed,” which gives 
us a simplified version of MI that we can calculate solely 
by inspecting conditional probability table for Y, without 
performing any inference at all. As Ebert-Uphoff notes, 
this purely local measure is often quite useful, such as 
when evaluating an expert-specified CPT. 
Cut Link Strength: 

Another approach is to compare P(Y|x) with and without 

the link . This was the “gold standard” that 
Nicholson & Jitnah (1998) used to evaluate their (link-
strength-like) approximate inference. But we can afford to 
use the gold standard itself. 

When cutting the arc , we marginalize over X, 
which leaves unchanged the marginal distribution for Y. 
However, if the arc was not completely superfluous, the 
new P(Y|x) will differ from the old for at least some x∈X. 

To control for possible back paths like X, we 

use an intervention operator “||” rather than a regular 
conditioning operator “|”. (An intervention operator, often 
called “do(x)”, blocks backwards inference, effectively 
cutting the links into X.) Let P(Y||x) be the resulting 
distribution in the original graph, and let P'(Y||x) be the 

same in the new graph, with X. The link strength is 
the expected distance between these two distributions:  

 
We considered two Distance functions, Kullback-Leibler 
divergence (KLD) and NonOverlap. Although KLD is the 
closest to MI, it is highly nonlinear and hard to interpret. 
Therefore we have used 1-Overlap:  

 
 

1-Overlap is a true distance measure ranging from 0 
(identical) to 1 (no overlap).  
Following Ebert-Uphoff (2007), a True measure weights 
each x by its marginal probability, while a Blind measure 
assigns equal weight to all x. 
Ebert-Uphoff wrote his scripts for the Matlab-based 
Bayes Net Toolbox (BNT) (Murphy 2007) and Intel’s 
Probabilistic Network Library (BNT’s C++ offspring) 
(Intel 2005). We implemented our variant in 
Quiddity*Script (IET, 2007). It would be relatively easy 
to do the same for Netica (Norsys 2008). Like Ebert-
Uphoff, we rely on Graphviz (AT&T, 2008) for the actual 
graph drawing.  Figure 2 shows an example. 

 

Figure 2: Example Link Strength Graph for 
Intelligence Potential. 



3.2.3 Sensitivity to CPT Parameters 
If y is continuous, then by definition, 

 , which gives the slope along 
x of p(y|e) near the current value of x. For example, x may 
be a particular probability in a CPT, such as 
P(tuberculosis=true | xray=true). There are efficient 

methods to calculate using only 3 inference 
propagations, after which querying for that slope at any x 
is constant time. However, even without that, we can just 
vary the parameter over its range, and plot the effect on 
the MOPs of interest. 

4 EXAMPLE 
This section provides an example applying the rapid 
assessment methodology to a C-IED initiative. We 
modeled a generic explosive ordnance disposal (EOD) 
robot such as the one shown in Figure 3. For our purposes, 
specific characteristics of the robot are unimportant. 
Rather, we were concerned with broad capabilities. Any 
EOD robot provides a capability to remotely neutralize an 
IED, either by disabling it or detonating it. Further, we 
assume that if the robot is unavailable or unsuccessful, an 
EOD soldier will neutralize the IED.  

 
Figure 3.   Explosive Ordnance Disposal Robot 
To develop the model, we executed the five methodology 
steps:  
1. Identify relevant MOPs.  

2. Generate an Explanation of how the initiative is 
expected to affect MOPs.  

3. Implement the explanation as a probabilistic 
model.  

4. Execute & analyze model to assess performance  

5. Determine the sensitive parameters (SPs) to help 
prioritize information collection.  

4.1 IDENTIFY MOPS 
Figure 4 shows the MOPs deemed relevant, and the 
assumptions and considerations to use in the model. Note 
that the robot does not affect detection, so there are no 
Detection MOPs. 

 
Figure 4.   MOPs for the EOD Robot. 

4.2 GENERATE AN EXPLANATION 
The explanation describes the influences of important 
system and environmental variables on the MOPs. In this 
explanation, we assume that an IED is present and has 
been successfully detected. 
- If a robot is available and working correctly, it can be 

used to attempt to disable or detonate an IED.  
- If there is a red detonation during neutralization, Blue 

soldiers are not exposed.  The robot may be damaged 
or destroyed.  

- If the robot is not available or not successful, a 
soldier will be at risk while disabling the IED 

- If the robot succeeds in disabling the IED, we can 
gather forensic intelligence. 

- Little intelligence can be collected if the robot 
detonates the IED.  

- Using the robot may take longer than using an EOD 
soldier.  

- If unsuccessful, a soldier must still disable the IED. 

4.3 IMPLEMENT THE EXPLANATION AS A 
PROBABILISTIC MODEL. 

Our explanation can be transformed rather directly to a 
structural model, or graph, as shown in Figure 5. For 
example, the top three nodes allow us to express that we 
will only use the robot if it is available (on this RCT) and 
ready. The MOP clearTime depends on the 
robotResult: was the robot used, did Red detonate the 
IED against the robot, or did it work (and if so, did it 
disable or destroy the IED)? 
 



 
Figure 5.  The Robot Explanation Model. 

The next step is to specify the domain of each variable. In 
practice, the domain evolves with the struture, as 
modeling choices are made. The model shown here is 
already the 6th revision. The revision incorporates 
feedback from modelers unfamiliar with Bayesian 
networks to make it more intelligible. 

Local probability distributions for each node are 
generated based on an available knowledge.  Without 
engineering test data, they will by necessity be qualitative 
assessments of the influence that that variables have on 
each other. 

4.4 EXECUTE & ANALYZE MODEL TO 
ASSESS PERFORMANCE 

The quickest and most intuitive analysis is to interact with 
the model in a live session. The following screenshots are 
taken from the Netica GUI.  

 

 
Figure 6.  Model Results Showing Impact of Robot 
Availability on Damage Potential and Clear Time. 

If the robot is not available, then a soldier is at risk while 
disabling the IED (Figure 6). The distribution reflects our 
assumptions. 
If a robot is available and it is working correctly, it can be 
used to attempt to remotely disable or detonate an IED. 
We can see that this lowers the risk, but takes more time. 
This distribution reflects the consequences of our 
explanation and assumptions. Although the three-decimal-
place estimate of a 6.84% probability of disposal in under 
10 minutes is not to be taken seriously, it is believable 
that the robot increases the time, roughly as shown. It is 
also believable that the actual time has a wide distribution, 
itself an average of the distributions for various specific 
settings of various unobserved ancestor variables (and 
conditioned on downstream evidence, if any). 
Finally, our Intelligence MOP reflects our understanding 
that if the robot succeeds in disabling the IED, it can be 
examined for forensic intelligence. Less intelligence can 
be collected if the robot detonates the IED. 

 

 
 
Figure 7.  Model Results Showing Impact of Robot on 

Intelligence Collection. 

4.5 DETERMINE THE SENSITIVE 
PARAMETERS (SPS) 

An attractive feature of an executable model is the ease of 
performing sensitivity analysis. In a Bayesian network, 
we look first at the mutual information between variables. 
The mutual information between X and Y is the amount of 
uncertainty in Y that we eliminate by knowing X (and vice 
versa). Table 1 shows the Top 5 most influential variables 
for each of the three main MOPs, assuming 
robotAvailable has value true, and excluding 
uninteresting variables such as deterministic Boolean 
children of continuous “auxiliary” variables that represent 
the true parameters of interest. 

The key performance parameters (KPPs) here are δ = 
P( Red Detonates ) and the conditional probability ρ = 
P( Red Detonates on Robot | Red Detonates ). In our 
model, they dominate intrinsic parameters such as 



reliability (Readiness) and effectiveness. After all, the 
main reason for using the robot is to prevent casualties. 

ClearTime Intelligence Damage 

Red Detonates on 
Robot 

Red Detonates on Robot Red Detonation 

Red Detonation Red Detonation Red Detonates on 
Robot 

Readiness P(Disable Success) P(Effective) 

P(Effective) P(Effective) Readiness 

P(Disable Success) Readiness – 

Table 1:  Robot: Top 5 Sensitive Parameters by MOP. 
Assumes the robot is available, and excludes 

uninteresting nodes. Names are made into readable 
English. 

Table 1 gives a ranking, and we can look at the mutual 
information values themselves, but those represent 
average effects. Figure 8 shows how MOPs change as we 
move a variable through its range. The figure shows that 
the effect of probability that Red detonates the IED 
against the robot is quite strong.  

 
Figure 8.   Sensitivity Analysis showing the influence 
of Red tactics:  a command detonation of the IED on 
the robot. 
The size of the effect stems in part from considering the 
whole range of reliabilities, from 0 to 1. This is equivalent 
to comparing no robot to a perfectly reliable robot. 
However, given that caveat, having a robot in this 
scenario makes a big difference. The most important 
result is that probability of a casualty drops from 80% to 

below 60%. However, our chance of getting “High” 
intelligence drops from 50% to 0, which entirely reflects 
our scenario and assumptions: as the robot is more 
reliable, we are more likely to use it. If Red detonates on 
the robot, that means we lose our chance for gathering 
intelligence. More dramatic, but far less interesting, we 
see that average time drops in half, from 36 min to 16 min. 
This merely reflects the fact that once the IED detonates, 
we don’t have to try to disable it anymore, which can 
easily take an hour.  

5 CONCLUSION 
The rapid initiative evaluation methodology provides a 
structured approach for assessing initiatives even when 
there is little formal test data to support evaluation.  The 
modeling approach uses relevant MOEs which provide a 
consistent framework for evaluation.  The graphical 
structure of the BN supports clear communication to 
decision makers about the influences and interactions of 
relevant system and environmental variables.   Populating 
the BN with local probability distributions, even when 
they are informed only by qualitative expert knowledge, 
makes the model executable.  The executable model 
supports what-if analysis or alternative scenarios that can 
be used to asses the likely impact of the initiative, and 
supports sensitivity analysis that can be used to identify 
the important system variables to be evaluated during 
formal testing. 
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