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Let G be an additive subgroup of C, let Wn = {xi = 1, xi + xj = xk : i, j, k ∈ {1, . . . , n}}, and define
En = {xi = 1, xi + xj = xk, xi · xj = xk : i, j, k ∈ {1, . . . , n}}. We discuss two conjectures. (1) If
a system S ⊆ En is consistent over R (C), then S has a real (complex) solution which consists of numbers

whose absolute values belong to [0, 22
n−2

]. (2) If a system S ⊆ Wn is consistent over G, then S has a solution
(x1, . . . , xn) ∈ (G ∩Q)n in which |xj | ≤ 2n−1 for each j.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Systems of equations over R and C

For a positive integer n we define the set of equations En by

En = {xi = 1, xi + xj = xk, xi · xj = xk : i, j, k ∈ {1, . . . , n}}.

Conjecture 1.1 ([20]). Let a system S ⊆ En be consistent over R (C). Then S has a real (complex) solution

which consists of numbers whose absolute values belong to [0, 22
n−2

].

Concerning the bound 22
n−2

in Conjecture 1.1, Vorobjov’s theorem ([23]) allows us to compute a weaker
estimation by a computable function of n. We present his result here. Let V ⊆ Rn be a real algebraic variety
given by the system of equations f1 = . . . = fm = 0, where fi ∈ Q[x1, . . . , xn] (i = 1, . . . ,m). We denote

by L the maximum of the bit-sizes of the coefficients of the system and set d =
∑m

i=1 deg(fi), r =

(
n+ 2d

n

)
.

We recall ([1, p. 285]) that the bit-size of a non-zero integer is the number of bits in its binary representation.
More precisely, the bit-size of k is τ if and only if 2τ−1 ≤ |k| < 2τ . The bit-size of a rational number is the
sum of the bit-sizes of its numerator and denominator in reduced form. N. N. Vorobjov, Jr. proved that there
exists (x1, . . . , xn) ∈ V such that |xi| < 2H(r,L) (i = 1, . . . , n), where H is some polynomial not depending
on the initial system. For a simplified proof of Vorobjov’s theorem, see [8, Lemma 9, p. 56]. For a more general
theorem, see [1, Theorem 13.15, p. 516].

It is algorithmically decidable whether a system S ⊆ En has a real (complex) solution (x1, . . . , xn) with

|x1|, . . . , |xn| ≤ 22
n−2

. It is also algorithmically decidable whether a system S ⊆ En is consistent over R (C).
For the final problem, an appropriate algorithm follows from the theorem known as effective Hilbert Nullstel-
lensatz. The expected complexity of such an algorithm is related to Steven Smale’s conjecture, which we now
recall.

For an integer m denote by τ(m) the smallest positive integer s for which there exist integers x0, x1, . . . , xs

such that x0 = 1, xs = m, and for each t ∈ {1, . . . , s} there are i, j ∈ {0, . . . , t − 1} with xi ◦ xj = xt. Here
◦ denotes addition, subtraction or multiplication. Smale’s conjecture states that for every sequence {mk}∞k=3

∗ This paper is a shortened version of [19].
∗∗ e-mail: rttyszka@cyf-kr.edu.pl
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176 A. Tyszka: Two conjectures on the arithmetic in R and C

of non-zero integers, there is no constant c such that τ(mk · k!) ≤ (log2(k))
c for all k ∈ {3, 4, 5, . . .}, see

[2, p. 126]. This conjecture implies that there is no polynomial time algorithm for Hilbert Nullstellensatz over C,
see [2, p. 126, Theorem 2].

Concerning Conjecture 1.1, for n = 1 estimation by 22
n−2

can be replaced by estimation by 1. For n > 1

estimation by 22
n−2

is the best estimation. Indeed, let n > 1 and x̃1 = 1, x̃2 = 22
0
, x̃3 = 22

1
, . . . , x̃n = 22

n−2
.

In any ring K of characteristic 0, from the system of all equations belonging to En and which are satisfied under
the substitution [x1 → x̃1, . . . , xn → x̃n], it follows that x1 = x̃1, . . . , xn = x̃n.

Theorem 1.2 If n ∈ {1, 2, 3}, then Conjecture 1.1 holds true for each subring K ⊆ C.

P r o o f. If a system S ⊆ E1 is consistent over K, then S has a solution x̂1 ∈ {0, 1}. If a system S ⊆ E2 is con-

sistent over K and
1

2
�∈ K, then S has a solution (x̂1, x̂2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1)}. If a system

S ⊆ E2 is consistent over K and
1

2
∈ K, then (x̂1, x̂2) ∈ {(0, 0), (0, 1), (1, 0), (1

2
, 1), (1,

1

2
), (1, 1), (1, 2), (2, 1)}

is a solution for S. To reduce the number of studied systems S ⊆ E3, we may assume that the equation x1 = 1
belongs to S, as when all equations x1 = 1, x2 = 1, x3 = 1 do not belong to S, then S has the solution
(0, 0, 0) ∈ K3. Let

A2 = {x̂2 ∈ C : there exists x̂3 ∈ C for which (1, x̂2, x̂3) solves S},
A3 = {x̂3 ∈ C : there exists x̂2 ∈ C for which (1, x̂2, x̂3) solves S}.

We may assume that A2 �⊆ {z ∈ C : |z| ≤ 4} or A3 �⊆ {z ∈ C : |z| ≤ 4}.
Case 1: A2 �⊆ {z ∈ C : |z| ≤ 4} and A3 ⊆ {z ∈ C : |z| ≤ 4}. If (1, x̂2, x̂3) ∈ K3 solves S, then
(1, 1, x̂3) ∈ K3 solves S.

Case 2: A2 ⊆ {z ∈ C : |z| ≤ 4} and A3 �⊆ {z ∈ C : |z| ≤ 4}. If (1, x̂2, x̂3) ∈ K3 solves S, then
(1, x̂2, 1) ∈ K3 solves S.

Case 3: A2 �⊆ {z ∈ C : |z| ≤ 4} and A3 �⊆ {z ∈ C : |z| ≤ 4}. If (1, x̂2, x̂3) ∈ K3 solves S, then (1, 0, 1) ∈ K3

solves S or (1, 1, 0) ∈ K3 solves S or (1, 1, 1) ∈ K3 solves S.
The following Observation borrows the idea from the proof of Theorem 1.2.

Observation 1.3 Let n ∈ {1, 2, 3, 4}, and let a system S ⊆ En be consistent over the subring K ⊆ C.
If (x1, . . . , xn) ∈ Kn solves S, then (x̂1, . . . , x̂n) solves S, where each x̂i is suitably chosen from the set

{xi, 0, 1, 2,
1

2
} ∩ {z ∈ K : |z| ≤ 22

n−2}.
Theorem 1.4 Conjecture 1.1 holds true for each n ∈ {1, 2, 3, 4} and each subring K ⊆ C.

P r o o f. It follows from Observation 1.3.

Let W = { {1}, {0}, {1, 0}, {1, 2}, {1, 1
2
}, {1, 2, 1

2
}, {1, 0, 2}, {1, 0, 1

2
},

{1, 0,−1}, {1, 2,−1}, {1, 2, 3}, {1, 2, 4}, {1, 1
2
,−1

2
}, {1, 1

2
,
1

4
}, {1, 1

2
,
3

2
},

{1,−1,−2}, {1, 1
3
,
2

3
}, {1, 2,

√
2}, {1, 1

2
,
1√
2
}, {1,

√
2,

1√
2
},

{1,
√
5− 1

2
,

√
5 + 1

2
}, {1,

√
5 + 1

2
,

√
5 + 3

2
}, {1, −

√
5− 1

2
,

√
5 + 3

2
}}.

For each a, b, c ∈ R (C) we define S(a, b, c) as

{E ∈ E3 : E is satisfied under the substitution [x1 → a, x2 → b, x3 → c]}.
If a, b, c ∈ R and {a} ∪ {b} ∪ {c} ∈ W , then the system S(a, b, c) is consistent over R, has a finite number of
real solutions, and each real solution of S(a, b, c) belongs to [−4, 4]3. The family

{S(a, b, c) : a, b, c ∈ R ∧ {a} ∪ {b} ∪ {c} ∈ W}
equals the family of all systems S ⊆ E3 which are consistent over R and maximal with respect to inclusion.
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If a, b, c ∈ C and {a} ∪ {b} ∪ {c} ∈ W ∪{{1, −1 +
√−3

2
,
1 +

√−3

2
}, {1, 1−

√−3

2
,
1 +

√−3

2
}}, then the

system S(a, b, c) is consistent over C, has a finite number of solutions, and each solution of S(a, b, c) belongs to
{(z1, z2, z3) ∈ C3 : |z1| ≤ 4 ∧ |z2| ≤ 4 ∧ |z3| ≤ 4}. The family

{S(a, b, c) : a, b, c ∈ C ∧ {a} ∪ {b} ∪ {c} ∈ W ∪ {{1, −1 +
√−3

2
,
1 +

√−3

2
}, {1, 1−

√−3

2
,
1 +

√−3

2
}}}

equals the family of all systems S ⊆ E3 which are consistent over C and maximal with respect to inclusion.
Let us consider the following four conjectures; analogous statements seem to be true for R.

Conjecture 1.5

(a) If a system S ⊆ En is consistent over C and maximal with respect to inclusion, then each solution of S

belongs to {(x1, . . . , xn) ∈ Cn : |x1| ≤ 22
n−2 ∧ · · · ∧ |xn| ≤ 22

n−2}.
(b) If a system S ⊆ En is consistent over C and maximal with respect to inclusion, then S has a finite number

of solutions (x1, . . . , xn).

(c) If the equation x1 = 1 belongs to S ⊆ En and S has a finite number of complex solutions (x1, . . . , xn),

then each such solution belongs to {(x1, . . . , xn) ∈ Cn : |x1| ≤ 22
n−2 ∧ · · · ∧ |xn| ≤ 22

n−2}.
(d) If a system S ⊆ En has a finite number of complex solutions (x1, . . . , xn), then each such solution belongs

to {(x1, . . . , xn) ∈ Cn : |x1| ≤ 22
n−1 ∧ · · · ∧ |xn| ≤ 22

n−1}.
Conjecture 1.5(a) strengthens Conjecture 1.1 for C. The conjunction of Conjectures 1.5(b) and 1.5(c) implies

Conjecture 1.5(a).

Concerning Conjecture 1.5(d), for n = 1 estimation by 22
n−1

can be replaced by estimation by 1. For n > 1

estimation by 22
n−1

is the best estimation. Indeed, the system

x1 + x1 = x2 x1 · x1 = x2 x2 · x2 = x3 x3 · x3 = x4 . . . xn−1 · xn−1 = xn

has precisely two complex solutions, (0, . . . , 0), and (2, 4, 16, 256, . . . , 22
n−2

, 22
n−1

).
For the complex case of Conjectures 1.1 and 1.5(a), 1.5(b), 1.5(c), 1.5(d), the author prepared two MuPAD

codes which confirm these conjectures probabilistically, see [19] and [21].

2 Systems of equations over number rings

Hilbert’s tenth problem is to give a computing algorithm which will tell of a given polynomial equation with
integer coefficients whether or not it has a solution in integers. Yu. V. Matijasevič proved ([13]) that there is
no such algorithm, see also [14], [4], [5], [10]. It implies that Conjecture 1.1 is false for Z instead of R (C).
Moreover, Matijasevič’s theorem implies that Conjecture 1.1 for Z is false with any other computable estimation

instead of 22
n−2

.
As we have proved, Conjecture 1.1 for Z is false. We describe a counterexample showing that Conjecture 1.1

for Z is false with n = 21. Lemma 1 is a special case of the result presented in [18, p. 3].

Lemma 2.1 For each non-zero integer x there exist integers a, b such that ax = (2b− 1)(3b− 1).

P r o o f. Write x as (2y−1) ·2m, where y ∈ Z and m ∈ Z∩ [0,∞). Obviously,
22m+1 + 1

3
∈ Z. By Chinese

Remainder Theorem, we can find an integer b such that b ≡ y (mod 2y − 1) and b ≡ 22m+1 + 1

3
(mod 2m).

Thus,
2b− 1

2y − 1
∈ Z and

3b− 1

2m
∈ Z. Hence

(2b− 1)(3b− 1)

x
=

2b− 1

2y − 1
· 3b− 1

2m
∈ Z.

Lemma 2.2 ([9, Lemma 2.3, p. 451]) For each x ∈ Z ∩ [2,∞) there exists y ∈ Z ∩ [1,∞) such that
1 + x3(2 + x)y2 is a square.
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178 A. Tyszka: Two conjectures on the arithmetic in R and C

Lemma 2.3 ([9, Lemma 2.3, p. 451]) For each x ∈ Z∩ [2,∞), y ∈ Z∩ [1,∞), if 1+x3(2+x)y2 is a square,
then y ≥ x+ xx−2.

Theorem 2.4 Conjecture 1.1 for Z is false with n = 21.

P r o o f. Let us consider the following system over Z. This system consists of two subsystems.
(•) x1 = 1 x1 + x1 = x2 x2 · x2 = x3 x3 · x3 = x4 x4 · x4 = x5

x5 · x5 = x6 x6 · x6 = x7 x6 · x7 = x8 x2 + x6 = x9 x8 · x9 = x10

x11 · x11 = x12 x10 · x12 = x13 x1 + x13 = x14 x15 · x15 = x14 ,

(�) x16 + x16 = x17 x1 + x18 = x17 x16 + x18 = x19 x18 · x19 = x20 x12 · x21 = x20 .
Since x1 = 1 and x12 = x11 · x11, the subsystem marked with (�) is equivalent to

x21 · x2
11 = (2x16 − 1)(3x16 − 1).

The subsystem marked with (•) is equivalent to

x2
15 = 1 + (216)3 · (2 + 216) · x2

11.

By Lemma 2.2, the last equation has a solution (x11, x15) ∈ Z2 such that x11 ≥ 1. By Lemma 2.1, we can find
integers x16, x21 satisfying x21 · x2

11 = (2x16 − 1)(3x16 − 1). Thus, the whole system is consistent over Z.
If (x1, . . . , x21) ∈ Z21 solves the whole system, then

x2
15 = 1 + (216)3 · (2 + 216) · |x11|2 and x21 · |x11|2 = (2x16 − 1)(3x16 − 1).

Since 2x16 − 1 �= 0 and 3x16 − 1 �= 0, |x11| ≥ 1. By Lemma 2.3,

|x11| ≥ 216 + (216)2
16 − 2 > (216)2

16 − 2 = 22
20 − 32 > 22

21−2
.

Lemma 2.5 ([22]). Each Diophantine equation D(x1, . . . , xp) = 0 can be equivalently written as a system
S ⊆ En, where n ≥ p and both n and S are algorithmically determinable. If the equation D(x1, . . . , xp) = 0
has only finitely many solutions in a number ring K, then the system S has only finitely many solutions in K.

Since there is a finite number of subsets of En, for any K there is a function χ : {1, 2, 3, . . .} −→ {1, 2, 3, . . .}
with the property: for each positive integer n, if a system S ⊆ En is consistent over the number ring K, then S
has a solution whose heights are less than or equal to χ(n).

Theorem 2.6 If Z has a Diophantine definition in a number ring K, then any such χ is not computable.

P r o o f. Let

(�) (∀x ∈ K)(x ∈ Z ⇔ ∃t1 . . . ∃tm W (x, t1, . . . , tm) = 0)

where W (x, t1, . . . , xm) ∈ Z[x, t1, . . . , xm]. Assume, on the contrary, that χ is computable. We show that
it would imply a positive solution to Hilbert’s tenth problem for Z. Let us consider an arbitrary Diophantine
equation D(x1, . . . , xp) = 0. According to (�), for each i ∈ {1, . . . , p} we construct the polynomial equation
W (xi, t(1,i), . . . , t(m,i)) = 0. Applying Lemma 2.5, we write the system

0 = D(x1, . . . , xp)

0 = W (x1, t(1,1), . . . , t(m,1))

...

0 = W (xp, t(1,p), . . . , t(m,p))

as an equivalent system T ⊆ En, where T and n are algorithmically determinable. Since χ is computable, we
can decide whether T has a solution in K. Therefore, we can decide whether the equation D(x1, . . . , xp) = 0 has
an integer solution. We get the contradiction to Matijasevič’s theorem.

The rings considered in Theorems 2.7 – 2.9 and 2.11 have the property that they allow Diophantine definitions
for Z. The number 2 + 2732 is prime.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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Theorem 2.7 If k ∈ Z ∩ [273,∞) and 2 + k2 is prime, then Conjecture 1.1 fails for n = 6 and the ring

Z

[
1

2 + k2

]
=

{
x

(2 + k2)m
: x ∈ Z,m ∈ Z ∩ [0,∞)

}
.

P r o o f.

(
1, 2, k, k2, 2 + k2,

1

2 + k2

)
solves the system

x1 = 1 x1 + x1 = x2 x3 · x3 = x4 x2 + x4 = x5 x5 · x6 = x1.

Assume that (x1, x2, x3, x4, x5, x6) ∈
(
Z

[
1

2 + k2

])6

solves the system. Let x5 =
a

(2 + k2)p
, x6 =

b

(2 + k2)q
,

a, b ∈ Z, p, q ∈ Z ∩ [0,∞). Since 2 + k2 is prime and 1 = |x1| = |x5 · x6| =
|a| · |b|

(2 + k2)p+q
, we con-

clude that |a| = (2 + k2)p̃ for some p̃ ∈ Z ∩ [0,∞). Hence |x5| = (2 + k2)p̃−p. On the other hand,
|x5| = |x2 + x4| = |x1 + x1 + x3 · x3| = |1 + 1 + x2

3| ≥ 2. Therefore, p̃ − p ≥ 1. Consequently,

|x5| = (2 + k2)p̃−p ≥ 2 + k2 > 22
6−2

.

Theorem 2.8 If a prime number p is greater than 2256, then Conjecture 1.1 fails for n = 10 and the

ring Z

[
1

p

]
.

P r o o f. Let us consider the system
x1 = 1 x2 · x3 = x1 x3 + x4 = x2 x4 · x5 = x6

x7 + x7 = x8 x1 + x9 = x8 x7 + x9 = x10 x9 · x10 = x6.
By Lemma 2.1, there exist integers u, s such that (p2 − 1) · u = (2s− 1)(3s− 1). Hence

(
1, p,

1

p
, p− 1

p
, p · u, (p2 − 1) · u, s, 2s, 2s− 1, 3s− 1

)
∈
(
Z

[
1

p

])10

solves the system. If (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ∈
(
Z
[
1
p

])10

solves the system, then we get

(x2 − x3) · x5 = (2x7 − 1)(3x7 − 1). Since 2x7 − 1 �= 0 and 3x7 − 1 �= 0, we get x2 �= x3. Since
x2 · x3 = 1, we get: |x2| = pn for some n ∈ Z ∩ [1,∞) or |x3| = pn for some n ∈ Z ∩ [1,∞). Therefore,
|x2| ≥ p > 22

10−2

or |x3| ≥ p > 22
10−2

.

The number −232−216−1 is square-free, because −3·7·13·97·241·673 is the factorization of −232−216−1
into prime numbers.

Theorem 2.9 Conjecture 1.1 fails for n = 6 and the ring

Z
[√

−232 − 216 − 1
]
=

{
x+ y ·

√
−232 − 216 − 1 : x, y ∈ Z

}
.

P r o o f. (1, 216 + 1,−216,−232 − 216,
√−232 − 216 − 1,−232 − 216 − 1) solves the system

x1 = 1 x2 + x3 = x1 x2 · x3 = x4 x5 · x5 = x6 x1 + x6 = x4

which has no integer solutions. For each z ∈ Z[
√−232 − 216 − 1], if |z| ≤ 22

6−2
, then z ∈ Z.

Observation 2.10 If q, a, b, c, d ∈ Z, b �= 0 or d �= 0, q ≥ 2, q is square-free, and (a+ b
√
q) · (c+ d

√
q) = 1,

then

(a ≥ 1 ∧ b ≥ 1) ∨ (a ≤ −1 ∧ b ≤ −1) ∨ (c ≥ 1 ∧ d ≥ 1) ∨ (c ≤ −1 ∧ d ≤ −1).

The number 4 ·134−1 is square-free, because 3 ·113 ·337 is the factorization of 4 ·134−1 into prime numbers.
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Theorem 2.11 If p ∈ Z∩ [13,∞) and 4p4− 1 is square-free, then Conjecture 1.1 fails for n = 5 and the ring
Z[
√

4p4 − 1] = {x+ y ·
√

4p4 − 1 : x, y ∈ Z}.
P r o o f. (1, 2p2 +

√
4p4 − 1, 2p2 −

√
4p4 − 1, 4p2, 2p) solves the system

x1 = 1 x2 · x3 = x1 x2 + x3 = x4 x5 · x5 = x4.

Assume that (x1, x2, x3, x4, x5) ∈ (Z[
√

4p4 − 1])5 solves the system. Let x2 = a + b
√
4p4 − 1 and let

x3 = c+ d
√

4p4 − 1, a, b, c, d ∈ Z. Since

¬((∃x2 ∈ Z)(∃x3 ∈ Z)(∃x5 ∈ Z[
√

4p4 − 1]) (x2 · x3 = 1 ∧ x2 + x3 = x2
5)),

we get b �= 0 or d �= 0. Since x2 · x3 = 1, Observation 2.10 implies that |x2| ≥ 1 +
√
4p4 − 1 > 22

5−2
or

|x3| ≥ 1 +
√

4p4 − 1 > 22
5−2

.

3 Systems of equations over number fields

Julia Robinson proved that Z is definable in Q by a first order formula in the language of rings. Bjorn Poonen
proved ([15]) that Z is definable in Q by a formula with 2 universal quantifiers followed by 7 existential quanti-
fiers. It is unknown whether Z is existentially definable in Q. If it is, Hilbert’s tenth problem for Q is undecidable.
The author conjectures that if a system S ⊆ En has at most finitely many integer (rational) solutions, then their

heights are less than or equal to 22
n−1

, see [22]. This conjecture and Lemma 2.5 imply that Hilbert’s tenth
problem for Z (Q) has a positive solution for Diophantine equations which have at most finitely many integer
(rational) solutions.

Theorem 3.1 If Z is definable in Q by an existential formula, then Conjecture 1.1 fails for Q.

P r o o f. If Z is definable in Q by an existential formula, then Z is definable in Q by a Diophantine formula.
Let

(∀x1 ∈ Q)(x1 ∈ Z ⇔ (∃x2 ∈ Q) . . . (∃xm ∈ Q)Φ(x1, x2, . . . , xm))

where Φ(x1, x2, . . . , xm) is a conjunction of formulae of the form xi = 1, xi + xj = xk, xi · xj = xk, where
i, j, k ∈ {1, . . . ,m}. We find an integer n with 2n ≥ m + 10. Now we are ready to describe a counterexample
to Conjecture 1.1 for Q, this counterexample uses n +m + 11 variables. Considering all equations over Q, we
can equivalently write down the system

Φ(x1, x2, . . . , xm)(1)

x2
m+2 = 1 +

(
22

n
)3

· (2 + 22
n

) · x2
1(2)

x1 · xm+1 = 1(3)

as a conjunction of formulae of the form xi = 1, xi+xj = xk, xi ·xj = xk, where i, j, k ∈ {1, . . . , n+m+11}.
The system is consistent over Q. Assume that (x1, . . . , xn+m+11) ∈ Qn+m+11 solves the system. Formula (1)
implies that x1 ∈ Z. By this and equation (2), xm+2 ∈ Z. Equation (3) implies that x1 �= 0, so by Lemma 2.3

|x1| ≥ 22
n
+ (22

n
)2

2n − 2 > 22
n+ 2n − 2n+1 ≥ 22

n+2n−1 ≥ 22
n+m+11−2

.

Theorem 3.2 Let f(x, y) ∈ Q[x, y] and the equation f(x, y) = 0 defines an irreducible algebraic curve of
genus greater than 1. Let some r ∈ R satisfy

(∗) (−∞, r) ⊆ {x ∈ R : (∃y ∈ R)f(x, y) = 0} ∨ (r,∞) ⊆ {x ∈ R : (∃y ∈ R)f(x, y) = 0}

and let K denote the function field over Q defined by f(x, y) = 0. Then Conjecture 1.1 fails for some subfield
of R that is isomorphic to K.
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P r o o f. By Faltings’ finiteness theorem ([7], cf. [12, p. 12]) the set

{u ∈ K : ∃v ∈ K f(u, v) = 0}

is finite. Let card {u ∈ K : ∃v ∈ K f(u, v) = 0} = n ≥ 1, and let U denote the following system of equations

f(xi, yi) = 0 (1 ≤ i ≤ n)

xi + ti,j = xj (1 ≤ i < j ≤ n)

ti,j · si,j = 1 (1 ≤ i < j ≤ n)

xn+1 =
∑n

i=1 x
2
i .

For some integer m > n there exists a set G of m variables such that

{x1, . . . , xn xn+1, y1, . . . , yn} ∪ {ti,j , si,j : 1 ≤ i < j ≤ n} ⊆ G

and the system U can be equivalently written down as a system V which contains only equations of the form
X = 1, X + Y = Z, X · Y = Z, where X,Y, Z ∈ G. By (∗), we find x̃, ỹ ∈ R such that f(x̃, ỹ) = 0, x̃ is
transcendental over Q, and |x̃| > 22

m−3

. If (x̂1, . . . , x̂m) ∈ (Q(x̃, ỹ))m solves V , then

x̂n+1 =
∑n

i=1 x̂i
2 ≥ x̃2 > (22

m−3

)2 = 22
m−2

.

Obviously, K is isomorphic to Q(x̃, ỹ).

Theorem 3.3 Conjecture 1.1 fails for some subfield of R and n = 7.

P r o o f. (sketch) We find α, β ∈ R such that α2 · β · (1 − α2 − β) = 1, α is transcendental over Q, and

|α| > 22
7−2

. It is known ([16]) that the equation x+ y + z = xyz = 1 has no rational solution. Applying this,
we prove: if (x1, x2, x3, x4, x5, x6, x7) ∈ Q(α, β)7 solves the system

x1 = 1 x2 · x2 = x3 x3 + x4 = x5 x5 + x6 = x1 x3 · x4 = x7 x6 · x7 = x1,

then |x2| = |α| > 22
7−2

.

4 Systems of linear equations

For a positive integer n we define the set of equations Wn by

Wn = {xi = 1, xi + xj = xk : i, j, k ∈ {1, . . . , n}}.

Conjecture 4.1 Let G be an additive subgroup of C. If a system S ⊆ Wn is consistent over G, then S has a
solution (x1, . . . , xn) ∈ (G ∩Q)

n in which |xj | ≤ 2n−1 for each j.

Concerning Conjecture 4.1, estimation by 2n−1 is the best estimation. Indeed, if 1 ∈ G, then the system

x1 = 1 x1 + x1 = x2 x2 + x2 = x3 x3 + x3 = x4 . . . xn−1 + xn−1 = xn

has a unique solution (1, 2, 4, 8, . . . , 2n−2, 2n−1) ∈ Gn.

Observation 4.2 Let n ∈ {1, 2, 3, 4}, and let a system S ⊆ Wn be consistent over the additive subgroup
G ⊆ C. If (x1, . . . , xn) ∈ Gn solves S, then (x̂1, . . . , x̂n) solves S, where each x̂i is suitably chosen from
{xi, 0, 1, 2,

1
2} ∩ {z ∈ G : |z| ≤ 2n−1}.

www.mlq-journal.org c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



182 A. Tyszka: Two conjectures on the arithmetic in R and C

Theorem 4.3 Conjecture 4.1 holds true for each n ∈ {1, 2, 3, 4} and each additive subgroup G ⊆ C.

P r o o f. It follows from Observation 4.2.

Conjecture 4.1 restricted to the case when G ⊇ Q was probabilistically confirmed by various algorithms
written in MuPAD, see [19] and [21]. In [11], a code in Mathematica illustrates the validity of Conjecture 4.1
restricted to the case when G ⊇ Q.

In the case when G ⊇ Q, we will prove a weaker version of Conjecture 4.1 with the estimation given by
(
√
5)n−1.

Observation 4.4 If A ⊆ Ck is an affine subspace and card A > 1, then there exists m ∈ {1, . . . , k} with

∅ �= A ∩ {(x1, . . . , xk) ∈ Ck : xm + xm = xm} � A.

Theorem 4.5 Let a system S ⊆ Wn be consistent over C. Then S has a rational solution (x1, . . . , xn) in
which |xj | ≤ (

√
5)n−1 for each j.

P r o o f. We shall describe how to find a solution (x1, . . . , xn) ∈ Qn in which |xj | ≤ (
√
5)n−1 for each j.

We can assume that for a certain i ∈ {1, . . . , n} the equation xi = 1 belongs to S, as otherwise (0, . . . , 0) is
a solution. Without loss of generality we can assume that the equation x1 = 1 belongs to S. Each equation
belonging to S has the form

a1x1 + . . .+ anxn = b,

where a1, . . . , an, b ∈ Z. Since x1 = 1, we can equivalently write this equation as

a2x2 + . . .+ anxn = b− a1.

We receive a system of equations whose set of solutions is a non-empty affine subspace A ⊆ Cn−1. If
card A > 1, then by Observation 4.4 we find m ∈ {2, . . . , n} for which

∅ �= A ∩ {(x2, . . . , xn) ∈ Cn−1 : xm + xm = xm} � A.

The procedure described in the last sentence is applied to the affine subspace

A ∩ {(x2, . . . , xn) ∈ Cn−1 : xm + xm = xm}
and repeated until one point is achieved. The maximum number of procedure executions is n − 1. The received
one-point affine subspace is described by equations belonging to a certain set

U ⊆ {xi = 1 : i ∈ {2, . . . , n}} ∪ {xi + xj = xk : i, j, k ∈ {1, . . . , n}, i+ j + k > 3}.
Each equation belonging to U has the form

a2x2 + . . .+ anxn = c,

where a2, . . . , an, c ∈ Z. Among these equations, we choose n − 1 linearly independent equations. We can do
this because the equations belonging to U describe one-point affine subspace. Let A be the matrix of the system,
and the system of equations has the following form

A ·

⎡
⎢⎢⎣

x2

...

xn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c2
...

cn

⎤
⎥⎥⎦ .

Let Aj be the matrix formed by replacing the j-th column of A by the column c2, . . . , cn. Clearly, det(A) ∈ Z,

and det(Aj) ∈ Z for each j ∈ {1, . . . , n− 1}. By Cramer’s rule xj =
det(Aj−1)

det(A)
∈ Q for each j ∈ {2, . . . , n}.
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When the row of matrix A corresponds to the equation xi = 1 (i > 1), then the entries in the row are 1, 0
(n− 2 times), while the right side of the equation is 1.

When the row of matrix A corresponds to the equation x1 + x1 = xi (i > 1), then the entries in the row are
1, 0 (n− 2 times), while the right side of the equation is 2.

When the row of matrix A corresponds to one of the equations: x1 + xi = x1 or xi + x1 = x1 (i > 1), then
the entries in the row are 1, 0 (n− 2 times), while the right side of the equation is 0.

When the row of matrix A corresponds to one of the equations: x1 + xi = xj or xi + x1 = xj (i > 1, j > 1,
i �= j), then the entries in the row are 1, −1, 0 (n− 3 times), while the right side of the equation is 1.

When the row of matrix A corresponds to the equation xi + xi = x1 (i > 1), then the entries in the row are
2, 0 (n− 2 times), while the right side of the equation is 1.

When the row of matrix A corresponds to the equation xi + xj = x1 (i > 1, j > 1, i �= j), then the entries in
the row are 1, 1, 0 (n− 3 times), while the right side of the equation is 1.

From now on we assume that i, j, k ∈ {2, . . . , n}.
When the row of matrix A corresponds to the equation xi + xj = xk (i �= j, i �= k, j �= k), then the entries

in the row are 1, 1, −1, 0 (n− 4 times), while the right side of the equation is 0.
When the row of matrix A corresponds to the equation xi + xi = xk (i �= k), then the entries in the row are

2, −1, 0 (n− 3 times), while the right side of the equation is 0.
When the row of matrix A corresponds to the equation xi + xj = xk (k = i or k = j), then the entries in the

row are 1, 0 (n− 2 times), while the right side of the equation is 0.
Contradictory equations, e.g. x1 + xi = xi do not belong to U , and therefore their description has been

neglected. The description presented shows that each row of matrix Aj (j ∈ {1, . . . , n − 1}) has the Euclidean
length less than or equal to

√
5. Hadamard’s inequality states that a determinant of a real matrix is majorized

by the product of the Euclidean lengths of its rows. By Hadamard’s inequality | det(Aj)| ≤ (
√
5)n−1 for each

j ∈ {1, . . . , n− 1}. Hence, |xj | = | det(Aj−1)|
| det(A)| ≤ |det(Aj−1)| ≤ (

√
5)n−1 for each j ∈ {2, . . . , n}.

In the case where G = Z, we will prove a weaker version of Conjecture 4.1 with the estimation given
by (

√
5)n−1.

Lemma 4.6 ([3]). Let A be a matrix with m rows, n columns, and integer entries. Let b1, . . . , bm ∈ Z, and
the matrix equation

A ·

⎡
⎢⎢⎣

x1

...

xn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b1
...

bm

⎤
⎥⎥⎦

defines the system of linear equations with rank m. Denote by δ the maximum of the absolute values of the m×m
minors of the augmented matrix (A, b). We claim that if the system is consistent over Z, then it has a solution
in (Z ∩ [−δ, δ])n.

Theorem 4.7 Let a system S ⊆ Wn be consistent over Z. Then S has an integer solution (x1, . . . , xn) in
which |xj | ≤ (

√
5)n−1 for each j.

P r o o f. We shall describe how to find a solution (x1, . . . , xn) ∈ Zn in which |xj | ≤ (
√
5)n−1 for each j.

We can assume that for a certain i ∈ {1, . . . , n} the equation xi = 1 belongs to S, as otherwise (0, . . . , 0) is a
solution. Without loss of generality we can assume that the equation x1 = 1 belongs to S. Analogously as in the
proof of Theorem 4.5, we construct a system of linear equations with variables x2, . . . , xn. For the augmented
matrix of this system, the Euclidean length of each row is not greater than

√
5. We finish the proof by applying

Hadamard’s inequality and Lemma 4.6.

Theorems 4.5 and 4.7 have similar forms, although linear systems over C and linear systems over Z have
different criteria of consistency. Georg Frobenius proved that a system of linear Diophantine equations has
an integer solution if and only if the rank r of the unaugmented matrix of coefficients and the greatest common
divisor of the r × r minors of this matrix do not change when the augmented matrix is taken instead, see [6, p. 84].
In the case where the equations in the system are linearly independent, the reader is referred to [17, Satz 5, p. 10].
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