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An axiomatization of “very” within systems
of set theory

Abstract

A structural (as opposed to Zadeh’s quantitative) approach to
fuzziness is given, based on the operator “very”, which is added to the
language of set theory together with some elementary axioms about it.
Due to the axiom of foundation and to a lifting axiom, the operator is
proved trivial on the cumulative hierarchy of ZF. So we have to drop
either foundation or lifting. Since fuzziness concerns complemented
predicates rather than sets, a class theory is needed for the very oper-
ator. And of them the Kelley-Morse (KM) theory is more appropriate
for reasons of class existence. Several definable realizations of the
very-operator are presented in KM™. In the last section we consider
the operator “very” without the lifting axiom on classes of urelements.
To each structurally fuzzy set X a traditional quantitative fuzzy set
X is assigned — its quantitative representation. This way we are able
partly to recover ordinary fuzzy sets from the structurally fuzzy ones.

Keywords. Fuzzy set, very-operator, axiomatic set theory, non-well-founded
set.

1 Introduction

Current set theories, like ZF, GB etc., are all supposed to be theories about
crisp collections. The reason is that their membership relation € (i.e., the
underlying logic) is two-valued. Now let us imagine a set theorist wanting
to build an axiomatic theory T capable to capture not only crisp but also
fuzzy sets, without leaving the ground of old classical logic. In what should T
differ from ZF? Our set theorist would have to examine the axioms of ZF and
decide which of them should be retained, which should be dropped and what
the new candidate axioms could be (if any). But if we inspect the axioms of
ZF one by one, we can hardly find one which cannot be true of fuzzy sets. In
fact the axioms of ZF are neutral with respect to crispness/fuzziness debate.
And the reason is quite simple: These axioms have historically emerged
in a discourse of ideas which had nothing to do with the above mentioned
dichotomy. So our set theorist should necessarily keep the axioms of ZF as



they are. He intends to keep also the underlying logic, since classical logic is
a safe and familiar ground. So he is looking for a way to allow more than two
membership degrees without changing neither the set axioms nor the logic.
How could that be achieved?

In the popular fuzzy set theory of L. Zadeh, the goal of multiple mem-
bership degrees is obtained through the well-known quantitative method of
assigning real numbers to elementhood. But in this way we only simulate
fuzzy sets within the domain of standard ones. We do not build them from
scratch as primitive objects. Can there be alternative qualitative, i.e. struc-
tural ways to represent fuzziness? In [11] we attempted to do that by the help
of nonstandard natural numbers. That was also a simulation of fuzziness,
but with emphasis on its structure rather than the current applications.

There is still another option: We can allow more than two membership
degrees if we imitate the way we treat fuzziness in everyday reasoning - and
this is what we examine in this paper. I believe that the logic of everyday
reasoning is, in its essence, classical (although I know that many people would
not agree with that), since it is vastly based on yes-no dichotomies. Yet the
dichotomies may become subtler and subtler through the use of words like
“very”, “very much”, “a little”, “more than”, “less than” etc. For instance,
people are divided not just to tall and non-tall, but also to very tall and not
very tall, to very very tall and not very very tall etc, and relations of the form
“taller than” between them are established. Thus in the framework of natural
language we obtain several membership degrees by means of comparatives for
fuzzy predicates on the one hand, like “more elegant than”, “taller than”,
“less expensive than”, and intensity operators on the other, like “very”, “very
very”, “a little”, “much” etc. In this setting a predicate is crisp, exactly if
it does not admit comparatives and intensifiers. For example it is due to
the crispness of the predicate “pregnant”, that the phrases “Mary is more
pregnant than Alice”, or “Mary is very pregnant” sound absurd.

Both comparatives and intensity operators are structural notions. The
former are essentially order relations, while the latter are operators in the
usual mathematical sense of the term. For the purpose of this paper we shall
ignore the comparatives and focus only to “very”. This operator alone yields
an infinite sequence of membership degrees. For example, for the predicate
“hot”, the operator gives the sequence of predicates “very hot”, “very very
hot”, etc. To formalize it let the variables x and X range over fuzzy (in
general) sets and classes, respectively, and let € be the fuzzy membership
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between them. Let also v be an extra operator of our language, intended
to mean “very”, and sending every class (=predicate) to a class v(X) C X.
Using v, the above predicates are formally written: X D v(X) D v?(X), etc.
In this setting a collection X is crisp if v(X) = X.

One may still wonder what it means for a collection X to be fuzzy (i.e.,
non-crisp), since for any x, either x € X or x ¢ X. The answer is that, by
our assumption, € no more expresses definite belonging, since we are living
in a universe of fuzzy collections. Definite belonging is now expressed rather
by €1, where z €; X means x € v(X). So for X to be non-crisp, it means
that there are x such that = ¢; X and = ¢; —X, which holds precisely when
v(X) # X, or v(—X) # —X. Later we shall postulate (see F4 below) that
v(X) # X iff o(—X) # —-X.

To sum up: While the axioms of ZF are currently supposed to refer to
crisp sets, and fuzzy sets are only simulated within the latter, here we assume
the contrary, i.e., that the axioms refer primarily to fuzzy sets, and that the
crisp sets form only a special subuniverse of ZF.

One of course has to offer some axioms about v. In order to do this in a
precise way let us first extend the language L of set theory to L, = LU{v} by
adding a new unary operation symbol v. The formulas of L, are constructed
in the obvious way. Next we require the axiom schemes of ZF (namely sep-
aration and replacement) to be true for formulas of L,. Finally we add the
axioms:

(FO) (Vz)(3 )( () = y) (v is a total operator).
(F1) v(z) C

(F2)zCy = v(z) Co(y).

(F3) v(z) = 2 = v({z}) = {«} (Lifting axiom).

S

Let ZF, be the theory consisting of the axioms of ZF for the language L,
together with FO-F3.

Remarks 1.1 1) Intuitively v(x) is the definite or good part of x. This
“goodness” may be either absolute, or relative to each particular x. In the
first case v must be idempotent, i.e., v = v?, since the (absolutely) good part
of a good part is the good part itself. If v(z) is good only relative to z, then
in general v? # v. In mathematics most “goodness” operators are absolute,



acting as interior operators. They catch all the intended “good elements”
out of a certain set just in one step.

2) Let us come to motivate the above axioms. F0 and F1 are obvious. If
v(X) is absolute, then F2 is also obvious, since absolute “goodness” operators
are monotonic. F2 follows also from F5 which is discussed below. However,
although F'5 is desirable and has a good motivation, some of the realizations of
“very” discussed in section 4 do not satisfy it. Another source of justification
could be the “standard” quantitative fuzzy sets due to Zadeh. There “very”
is used rather in fuzzy logic as a determination of true and false. If the truth
value of “p is true” is a € [0, 1], then the truth value of “p is very true” is
usually taken to be a® (see e.g. [13]). But this can be easily transferred to
fuzzy sets. Recall that in Zadeh’s approach, if V' is the universe of crisp sets,
a fuzzy class is a mapping f : V — [0, 1], and f(z) is the membership degree
of x. Passing to f the preceding idea of squaring, v(f) : V' — [0, 1] should
be the mapping for which,

Since f C g if (Vz)(f(x) < g(x)), and for every a € [0,1], a®> < a, we have
for every f, v(f) C f. Moreover, if f C g, then f(x) < g(x) for every z,
hence f(x)? < g(x)?, for every z, therefore v(f) C v(g).

3) Due to the foundation axiom, the universe of ZF,, just like that of
ZF, consists of levels V,,, a € On. So we need a “lifting axiom” which will
relate fuzziness/crispness of sets of a certain rank « to that of sets of rank
a + 1. F3 is this axiom. It says that if = is crisp, then so is {z}. Such
an axiom may be strongly disputable since it mixes types: v(z) = z is a
property of x with respect to its elements, while v({z}) = {z} is a property
of {z} with respect to its single element x. On the other hand F3 aims
exclusively at handling cumulative sets which form the universe of ZF and
are not met outside mathematical practice. So the author is conscious of its
counter-application character. We use it as an attempt to see the possible
formalizations of “very” in the ZF universe.

Seen this way F3 is a modest assumption about the action of v on finite
sets. Note that if we accept that v({z}) = {z} for every x, then this,
combined with F1, F2 above, trivializes v, i.e., v is the identity. Indeed,
suppose v({z}) = {z} for every z. Let y be any set. For every z € y,
{z} C y and, by F2, v({z}) C v(y). Hence {z} C v(y), or z € v(y). Thus



y Cu(y). By F1, v(y) = y for every y. Despite its modesty however, we shall
see in the next section that F3, when combined with the foundation axiom,
trivializes the very operator.

The “very” operator as treated in this paper is similar to some basic
notion of the theory of “rough sets” created by Z. Pawlak in [10]. Briefly,
on a universe A one assumes an indiscernibility relation R. For any subset
X of A the lower approximation of X is the set L(X) consisting of all x
such that R(z) C X, while the upper approximation of X is the set U(X) =
U{R(z) : R(z) N X # (0}. L(X) behaves like v(X) and is idempotent if
R is an equivalence relation. However, as explained in [10], the theory of
rough sets and the theory of fuzzy sets have distinct, rather complementary
objectives, as they focus on the granularity and the graduality of knowledge
respectively.

There have been also older attempts to axiomatize fuzzy sets in the style
of ZF, which however differ significantly from the present one. For the in-
terested reader we mention [3], [9], [7] as well as [12], where the operator
“very” has been considered. [7] deals with an axiomatization of functions
that was given by von Neumann in 1925. The author shows that the notions
of set, fuzzy set and multiset can simultaneously be handled in this setting.
[3] and [9] on the other hand employ a ternary membership relation e(z, y, 2)
(instead of the usual €) with the intended meaning: x belongs to y with
degree z.

After finishing the first draft of this paper, I learned that P. Héjek used a
very-true operator “vt” in his paper [4]. However this is a paper about fuzzy
logic rather than set theory, so “vt” applies to formulas and the intended
meaning of vteo is “¢ is very true”. He introduces for vt the following axioms
(which augment those of his system BL):

(1) vtg — ¢,

(2) vi(¢ — ) = (vtg — vity)),

(3) vt(p Vo) — (vto V vte).

We just note that (1) is the analogue of F1 and (2) is roughly the analogue
of F5 introduced later, since (2) implies vt(¢ A1) < (vte A vte)). From this
point on however the paper has no more common elements with the present
one.

The view discussed above about the need of a set theory in which fuzzy
sets would be primitive objects rather than just simulations in a universe



of crisp ones, seems to be shared also by P. Hajek and Z. Hanikova in [5],
where, in order to obtain that, they switch from classical to (some system
of) fuzzy logic and build in it a set theory as close to ZF as possible. For
example [5] presents such a theory FST inside Hajek’s basic fuzzy logic BL
and constructs a (non-trivial) interpretation of this theory (and its logic) to
ZFC with classical logic.

2 Failure of “very” in ZF,

Strangely enough, the only operator v satisfying FO-F3 in ZF, is the identity.
Let v be a mapping satisfying FO-F3 and let Cr = {z : v(z) = z} be the
class of crisp sets with respect to v.

Proposition 2.1 (ZF,)
i)r CCr = xzelr.
it) xt CCr = Px) CCr = P(x)eCr.

Proof. i) Let x C Cr. For any y € z, y € Cr, hence, by F3, v({y}) = {y}.
Now y € x means {y} C x and, by F2, v({y}) C v(z), hence {y} C v(zx), or
y € v(x). Therefore  C v(x). By F1, v(x) = x, hence x € C'r.

ii) Let x C Cr. Take y € P(x). Then y C x C Cr. By (i) above, y € Cr,
hence P(z) C Cr. The other implication follows from (i) above. follows from

(ii). 4

Corollary 2.2 The only mapping v satisfying FO-F3 in ZF, is the identity,
i.e., Cr=1V.

Proof. Let V' be the universe of ZF,. Then exactly as in ZF, we can see
that V' = UaeonVa, where V,, are defined as usual. It suffices to show that
V., € Cr. By induction on .

a) Vo=0C Cr.

b) Let a be limit, and let V3 C Cr for all 5 < a. Then V, = U,V C
Cr.

c) Let V,, € Cr. Then by (ii) of 2.1, V41 = P(V,) C Crr. -



3 Dropping foundation

The proof of 2.2 above fails either if V' # U,conVa, i.e., if we drop the
foundation axiom, or if we drop the lifting axiom F3. In this section we shall
do the first; in the last section we shall do the second. So in this and the
next section we shall work either in ZF, (=ZF, minus foundation) or is some
analogous theory of classes. The natural basic candidate class theories are
GB (Godel-Bernays) and the stronger one KM (Kelley-Morse). We choose
to work in KM,, because exactly of its strength. Namely, as we shall see later
on, the iterates v*(X), for @ € On, can be shown to exist in KM, though
not in GB,,.

Recall that KM is the theory of classes with strong comprehension (i.e.,
for every formula ¢(x) of L, with any kind of quantifiers, there is a class
X such that € X <= ¢(x). This is in contrast to what happens with
GB, where the above holds only for “normal” formulas, i.e., those with set
quantifiers only). Let KM~ be KM minus foundation.

Let L = {€} be the language of KM with variables XY ... for (fuzzy)
classes. We think of € as fuzzy membership. As usual, X is a setif X € Y
for some Y, and we use lowercase letters x, v, ... to range over sets. Let again
L, = LU {v}. We accept again the axioms FO-F3 of the preceding section,
applied now to classes, together with some further principles. Namely, we
postulate the following:

(F0)

(F1) :

(F2) X CY = v(X) CuY).

(F3) v(x) = v = v({z}) = {«}.

(FH) v(X)=X <= ov(-X)=-X.

(F5) v(X NY) =v(X)NoY).

(F5*) v(N, X»n) = N, v(X,), for every sequence of classes (X,), n € w.

Finally let KM, be the theory consisted of the axioms of KM~ for the
formulas of L,, together with axioms FO-F5 (or FO-F5*, depending on the
occasion). Throughout the rest of the paper, we work in KM or in KM —
{F5,F5"}. Whenever the presence of F5 or F5 is necessary, this will be
stated explicitly.

In the next section we give (non-trivial) examples of definable operations



in KM~ satisfying all or some of the principles FO-F5 above. Obviously this
constitutes a proof of the of the non-triviality of KM, (i.e., relative to the
consistency of KM~ plus (3X)(v(X) # X)).

Remarks 3.1 1) Note that FO, combined with F1, implies the corresponding
principle for sets, i.e., the principle (Vz)(3y)(v(x) = y). This is because if X
is a set, the v(X) is also a set, since v(X) C X and in KM, every subclass
of a set is a set.

2) F4 says that X is crisp if and only its complement is such. And indeed
the fuzziness or the crispness of a predicate P refers simultaneously to both
parts of the pair P, =P, not just to one of them. This is in agreement with
the quantitative definition of “very” considered in section 1. Recall that
the complement —f of the mapping f is defined by (—f)(z) = 1 — f(z).
Recall also that v(f) was defined there by v(f)(z) = f(x)?. Since f =g
iff f(x) = g(x) for all z, it follows that v(f) = f iff v(f)(x) = f(x), or
f(z)? = f(z), and this is possible only if f(x) =1 or 0 for every z, i.e., iff f
is crisp. But then so is —f.

3) Note that since v() = 0, by F4, also v(V) = V. This agrees with
the quantitative approach, where V' is crisp, being identical to the constant
function V' (z) = 1.

4) F5 and F5* are desirable but not always satisfied by the concrete
realizations of “very”. One could argue that the “good” elements of X NY
are no different from the good elements of X which are in common with the
good elements of Y. For example the very hot-and-humid days are exactly
those which are simultaneously very hot and very humid. This seems to be
true when the good part v(X) is absolute, but not when v(X) is relative to
X. Some of the realizations of “very” given in the next section do not satisfy
F5. On the other hand, definitely we cannot have v(X)Uv(Y) =v(X UY).
Indeed X UY may very well be crisp while each of the X,Y are not. For
instance for any fuzzy X, we have V = XU—-X and v(V) =V = v(XU-X).
Since v(X) C X, clearly V D v(X) Uv(—X).

Does the quantitative approach support F57 The answer depends on how
fNgis defined in this approach. (The non-unique definitions of the basic set
theoretic operations is one of the main drawbacks of the quantitative fuzzy set
theory.) The commonest definition of fNgis by (fNg)(z) = min{f(z), g(z)}
(and (f Ug)(z) = max{f(z),g(z)}). According to this, it is easy to see that
v(f)Nw(g) = v(f Ng), as well as v(f) Uwv(g) = v(f Ug). However this



entails in general that f N —f # 0 (and f U —f # V). Another definition is
(f Ng)(x) = max{0, f(x) +g(x) =1} (and (f U g)(z) = min{l, f(z) +g(x)},
respectively). This definition respects f N —f = 0 and f U —f = V but
v(f)No(g) =v(f Ng)is no longer true.

F1 and F5 and the fact that (V) = V make v a quasi interior operator
on the boolean algebra of all classes (that is an interior operator without
the property v? = v). The crisp classes are the “open” classes of this weak
topology. However as follows from F4, the open classes are also closed, hence
the open classes coincide to the clopen ones.

Let I(X) := —v(—X) be the dual of v. [ is intended to mean “a little”.
Intuitively, if X is the predicate “hot”, then v(—X), “very not hot”, is some-
thing like “cool”, hence [(X) is “not cool”, i.e., something like “a little hot”.
By F1, v(X) C X Cl(X). For every X call boundary of X the class

0X = 1(X)\v(X).

Definition 3.2 We say that X is crisp (with respect to v) if v(X) = X. We
say that X is hereditarily crisp if X is crisp and every element of T¢(X)
(the transitive closure of X) is crisp. A set x is weakly crisp it v({z}) = {z}.
X is said to be totally fuzzy if X # 0 and v(X) = 0.

Proposition 3.3 i) For every X, 0X =0 — X.

ii) X is crisp iff v(X) = X =1(X) iff 0X = 0.

i11) Let v satisfy F5. If X is non-crisp, then 0X 1is the union of two
totally fuzzy sets.

Proof. 1) and ii) are easy. iii) Let X be fuzzy, i.e., v(X) C X. 90X =
(X )N\v(X) = ((X\X) U (X\v(X)) # 0. Let Y = [(X)\X and Z =
X\v(X). Tt suffices to show that Y and Z are totally fuzzy. First Y, Z # 0.
Because, by F4, Y = 0 iff Z = (), hence if one of them were empty,
then 0X would be empty, which contradicts our assumption. Then, by F5,
v(Y) = v(—v(=X)) Nou(—=X) = 0, since —v(—=X) Nov(=X) = 0. Similarly
v(Z)=10. =

Let
Cr(v) ={z:v(z) = x},
WCr(v) ={x:v({z}) ={z}}, HCr(v)={x: x is hereditarily crisp}.
We write simply Cr, HC'r etc., instead of Cr(v), HCr(v), if v is understood.
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Proposition 3.4 (KM,)
i) For any family of crisp classes X;, i € I, Ujer X; and N;ep X; are crisp.
it) WE C Cr (WF is the class of well-founded sets). More generally,
X CWF = v(X)=X. In particular, for every X, v(X) D X NWF.
i11) The class HCr is an inner model of ZF™.

Proof. 1) By the monotonicity of v, v(U;e; X;) 2 Ujerv(X;). Since X; are
CI‘iSp, U(Xz) = Xl Hence U(UiEIXi) 2 UiEIXi’ therefore U<Ui61Xi) = UiGIXi'
Thus U;er X; is crisp. Further, by F4, v(M;icr Xi) = Nier Xi iff v(— Nier Xi) =
—Mier Xi, or v(User —Xi) = Ujer —X;. But since —X; are crisp, the latter
holds as proved above. Therefore also v(Nic; Xi) = Nier X, 1-€., Nier Xi is
Crisp.

ii) Follows from Corollary 2.2 and (i) above using F4.

iii) HCr is transitive and universal i.e., *t C HCr = x € HCr. But
it is easy to verify that a transitive universal class is a model of ZF~. (See
e.g. [6], p. 24, where almost universal classes are examined. For an almost
universal class to be a model of FZ™ it needs in addition to be closed under
the Godel operations, but for a universal class this is obviously true.) .

Each very-operator v gives rise to a natural very-operator abs, (the “ab-
solute core”) which is idempotent on sets and such that Cr(v) = Cr(abs,).
We shall define first the a-iterate v® of v for every ordinal a. In order to
do this inside KM, we do the following: For every class X of pairs let
dom(X) = {z : Jy (x,y) € X} and for every x € dom(X), let X5 be the
usual coding device for families of classes, i.e., X(;) = {y : (z,y) € X}. Then
consider the formula:

¢z, a, X)=:
FY)Yo) = X &z € Yoy & (V8 < a)(if § =7+ 1, then Y5 = v(Y(y)

and if § is limit, then Y{5 = (] Y(y))l. (1)
v<p

By the comprehension scheme of KM, for every class X and every ordinal
a, there is a unique class Y such that Y = {z : ¢(x,, X)}. We call this Y,
the a-th iterate of v on X and denote it by v*(X). (The existence of these
classes was in fact the reason that we chose to work in KM; rather than
in GB,. Note that the formula ¢ contains an existential class quantifier.

Therefore the classes v®(X) cannot be shown to exist in GB,.)
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The following is easy to verify by induction on «.

Lemma 3.5 For every X and a:
i) v X) = v(v*(X)).
it) v*(X) = Npea v*(X), for limit o.

Finally, the absolute core of X (with respect to v) is the class

abs,(X) = (] v*(X).

acOn

(Its existence follows again from the comprehension scheme of KM and the
above uniform definition of the iterates v*(X).)

For simplicity we write abs instead of abs, if there is no danger of con-
fusion. Intuitively, if X is, say, the predicate “hot”, then abs(X) is the
predicate “absolutely hot”.

Lemma 3.6 (KM,))

i) (AC) For every set x, abs*(x) = abs(z), i.e., abs is idempotent on sets.
If in addition v satisfies F5*, then for every class X, abs(X) = Ny, v™(X),
and abs*(X) = abs(X).

it) abs(X) =X <— v(X) = X.

Suppose v satisfies F5*. Then

iii) abs satisfies properties FO-F5. Hence abs is a very-operator such that
Cr(abs) = Cr(v).

iv) abs(X) is the greatest crisp subclass of X .

(If v does not satisfy F5*, then (iii), (iv) above hold for sets only.)

Proof. 1) It suffices to show that for every set z there is @ € On, such
that v*™(z) = v*(x). Assume on the contrary that there is an z such
that v*"}(z) C v*(x). Let |z| = k. If A > k, using AC we can find a M-
sequence (Yo )a<x, of elements of x such that y, € v*(z)\v*™(x), which is a
contradiction. (Note that this need not be true for a proper class X.) Now
suppose v satisfies F5*. Then:

H(X) = o (X) = o () 0"(X) = (] 0" (X) = (X)),

n<w n<w

hence abs(X) = v*(X) = Nyco, V" (X).

n<w
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To show that abs® = abs, clearly it suffices to show that v(abs(X)) =
abs(X), but this has just been proved.

i) abs(X) C v(X) C X, hence abs(X) = X implies X C v(X), and
v(X) = X. Conversely, v(X) = X implies v*(X) = X for every ordinal «,
hence abs(X) = X.

For the rest properties suppose v satisfies F5*.

iii) This is easy to check.

iv) For every X, abs(X) is crisp since abs? = abs. To show that abs(X)
is the greatest crisp subclass, let Y be any crisp subclass of X. Then v(Y') C
v(X), or Y C v(X). Inductively we see that Y C v™(X) for every n € N,
hence Y C abs(X).

If F5* fails for v, then we just use (i) to show the other clauses for the
case of sets. -

4 Realizations of “very”

In this section we give some concrete examples of definable very-operators.

Example 1. In KM™, put
W(X)=Xif X CWF or —X CWF, and
v(X) = X NWF otherwise.

Proposition 4.1 Let V # WF. Then v satisfies FO-F5. Moreover Cr =
HCr =WCr =WF and abs(X) = v(X).

Proof. Again F1 is obvious. F4: v(X) =X iff X CWF or —X C WF,
hence v(X) = X iff v(—X) = —X. F3: Let v(z) = . Then 2 C WF
(because —x C WF, i.e., —WF C x is not possible. This is because, since
by assumption —WF # (), =W F' is a proper class. Indeed, let a be non-well-
founded. Then {z U {a}: 2z € WF} C —WF and for z,y € WF such that
x #y, clearly x U {a} # y U {a}. Therefore —WWF' is a proper class). Then
clearly, v € WF, or {x} C WF, therefore v({z}) = {z}.

F5, F2: Let B be the collection of classes X such that X C WF or
—X C WF. Of course B is an informal object not belonging to the KM,
universe. We write X € B simply as an abbreviation of the cumbersome
formula “X CWF v —X C WUFE”. It is easy to see that B is a complete
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boolean algebra. Indeed, let X;,7 € I, be any family of elements of B. If
some of them is C WF', then N;c; X; € WF, hence N;c; X; € B. Suppose
for all i € I, —X; € WE. Then —(Nie; Xi) = Uies —X; € WF. But
—(Nier X;) € B and hence N;c; X; € B.

We show now F5.

Case 1. X,Y € B. Then X NY € B, therefore, v(X NY) =X NY =
v(X) No(Y).

Case 2. X ¢ Band Y ¢ B.

Case2a. XNY ¢ B. Then v(XNY)=(XNY)NWF =(XNWF)N
YNWF)=v(X)Nnuv(Y).

Case 2b. X NY € B. Then either XNY C WF, or —(XNY) C WF.
In the first case v(X NY) = (X NY)NWF = (X NWE)N(YNWF) =
v(X)Nwv(Y). The other case is impossible, because if —(XNY) C WF, then
XDOXNY D —-WEF, hence —X CWF,ie., X € B, a contradiction.

Case3. X e Band Y ¢ B.

Case 3a. X CWF andY ¢ B. Then X NY C WF, hence v(X NY) =
XNY=XNn{YnNnWF)=vX)novY).

Case 3b. —X C WF and Y ¢ B. We show that X NY ¢ B. Assume
the contrary. Then either XNY C WFE, or —(X NY) C WF. Suppose first
that X NY C WF. Then —(XNY)=-XU-Y DO —-WF. By assumption
X DO —WF. The last two relations imply that —-WF C —Y,or Y C WF,
whence Y € B, a contradiction. Suppose now that —(X NY) C WF or
XNY O —-WF. But then Y O —WF, and hence Y € B, a contradiction
again. Therefore XNY ¢ Band v(XNY) = XNYNWF = (. On the other
hand, v(X) = X, and v(Y) = YNWF, hence v(X)Nv(Y) = XNYNWF = ().
It follows v(X) Nv(Y) =v(X NY).

The class Cr of crisp sets with respect to v are the sets x such that
x CWF, (since z O —WF' is impossible by the argument in the beginning
of the proof). Since alsox C WF <= z € WF <= {z} € WF, it follows
that Cr = HCr = WCr = WF. Again v? = v, hence abs(X) = v(X). —

Example 2. Let vN be the von Neumann axiom of choice, |V| = |On|.
In KM™ + VN, let us a fix a well-ordering < of V' making (V, <) isomorphic
(On, <), and for every nonempty class X let min(X) be the <-least element
of X. Set

v(X) =X if X € B, and
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v(X) = X\{min(X\WF)} otherwise,
where B is the collection defined in the previous example.

Proposition 4.2 v satisfies axioms FO-F4. Here too, Cr = HCr = WCr =
WE.

Proof. As before we easily see that F1, F4, F3 hold true.

F2: Let X CY. If Y € B, then v(X) C X CY = v(Y), so the claim
holds. Let Y ¢ B. Let X € B. Then either X C WF or X O —WF. The
latter is impossible because if X O —WF, then —WF C X C Y, hence
Y € B, contradicting our assumption. So X C WF and clearly, by the
definition of v, X = v(X) C v(Y).

Suppose now that X ¢ B. We have to show that

v(X) = X\{min(X\WF)} C o(Y) = Y\ {min(Y\WF)}.

The preceding formula holds true provided: if min(Y\WF) € X, then
min(Y\WF) = min(X\WF). But if min(Y\WF) € X, then clearly
min(Y\WF) e X\WF. Since X CY, X\WF CY\WF,soif min(Y\WF) €
X\WF, obviously min(Y\W F') = min(X\W F). This proves that F2 is true.
However, we easily see that F5 fails. For example we can have X,Y C
—WF such that min(X), min(Y) ¢ X NY. Then v(X)Nov(Y)=XNY D
v(X NY). As a compensation v is not idempotent. We easily see that the
operators v, n € N, are all distinct. .

As for the absolute core of X we have:

Lemma 4.3 For every X, abs(X) = X if X C WF or X O =WF, and
abs(X) = XNWF otherwise. That is, abs is the “very” operator of Example
1.

Proof. For X CWF or X O —WF, v(X) = X, hence also abs(X) = X.
Otherwise X contains elements of —W F and

v X)) = (X)) \{min(v*(X)\WF)}.

Since the well-ordering of V' is such that every initial segment is a set, it
follows immediately that eventually, abs(X) = X N WF. -
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Example 3. Let our theory be KM™ plus some antifoundation axiom,
like AFA of [1] (in order to make sure that non-well-founded sets exist).
An e-cycle of length n, or just an n-cycle, is a sequence of the form x €
Tp_1 € -+ € x1 € x. An infinite cycle is an infinite sequence of the form
et € Xpyp €E Xy € --- € 11 € X, Of course every n-cycle gives rise to an
infinite cycle in the obvious way, so we shall use the term proper infinite cycle
for an infinite cycle not produced by a finite one. A class X is said to be
non-well-founded if there is an n-cycle, for some n € N, or a proper infinite
cycle below X. Let X have a finite cycle below it and x € X. We say that
x has cycle depth k, if k is the least integer such that starting from z we can
trace an n-cycle, for n < k, in k steps. That is, there is a sequence

YEY1€ EYpn€YEYrn2€- €y €x€X.

The cycle depth of an element is, in a sense, a measure of its non-well-
foundedness. The smaller the cycle depth of z, the more unfounded z is
supposed to be. To give another picture, suppose we are given a class X,
and want to find a relative “regularization” of X by throwing away the “most
unfounded” of its elements. Then we can define this regularization v(X) to
be X minus its elements of smallest cycle depth. For any X, let cd(X) denote
the cycle depth of X. Namely

cd(X) = min{m : we can trace a cycle in m steps below X }.

If there is no finite cycle below X, we just set cd(X) = co. Let us call a set
x weakly well-founded if there is no finite €-cycle below it. Let

WWEF = {z: z is weakly well-founded} = {x : cd(z) = co}.

Define v(X) = X, if X CWWF or X O —WWF, and
v(X) = X\{z € X : cd(z) is smallest}, otherwise.

Proposition 4.4 i) v satisfies FO-F4 and HCr = Cr = WWF.
i1) For every X, abs(X) = X if X CWWF or X O —WWF. Otherwise,
abs(X) =X NWWFE.

Proof. 1) It is easy to see that the classes X such that X or —X has
no finite cycles below it, form a boolean algebra B* O B and v(X) = X iff
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X € B*, so F1, F4 hold trivially. F3 is also clear. If x € B*, then obviously
{z} € B*.

F2: Let X CY. IfY € B*, then v(X) C X CY = u(Y). So let Y ¢ B.
If X € B, then clearly X C v(Y), hence X = v(X) Cv(Y). Let X ¢ B*.
If z €Y, cd(x) is smallest in Y and = € X, then cd(x) is clearly smallest in
X, since X CY. Therefore

v(X)=X\{z € X :cd(x)is smallest} C Y\{z € Y : cd(x) is smallest} = v(Y").

However as in the preceding example we easily see that F5 fails, and that
the mappings v", n € N, are all distinct.

By the definition of v in this example we have Cr = WW F. Moreover,
since WWF' is transitive, Cr = HCr = WWF. Also, since x € Cr iff
{z} € Cr, we get Cr = HCr = WCr = WWF.

ii) Clearly for X C WF or X DO —WF, abs(X) = X. Otherwise X
contains finite cycles below it and in each application of v we remove the
elements of least cycle depth. Since the cycle depths are finite, all such ele-
ments will be removed in w steps, therefore abs(X) = X N WWF. .

It follows immediately from 4.4 and 3.4 (iv), that

Corollary 4.5 WWF is an inner model of ZF~.

5 Dropping the lifting axiom. Sets of urele-
ments. Recovering quantitative sets from
the very-operator

One may wonder whether in the formalism of the preceding sections there
is room for “ordinary” fuzzy sets, like the set of “big” natural numbers and
similar fuzzy subsets of N. The answer is Yes, provided we dispense with
the lifting axiom F3, or (which essentially amounts to the same thing) with
the cumulative treatment of N. Indeed in everyday life no one believes that
e.g. 3 is the set {0,1,2}. Rather we treat N, R etc. as sets of urelements
(atoms). We can work in a variant of set theory (like ZFU) which postulates
the existence of urelements right from the beginning (see e.g [2]), or, even
more simply, we can ignore the set structure of the objects in question. This
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is for example the way T. Lindstrém in [8] treats the elements of a set S
in order to define the superstructure V(S) on S. In such a case v need
not be defined throughout the whole universe but only on a set or class of
urelements. Therefore in the sequel we shall use only axioms F1, F4, F5
(since F2 follows from F5).

So let A be a set (or class) of urelements, and let us confine ourselves to
subsets of A, i.e., to elements of P(A). Let v : P(A) — P(A) be a very-
operator satisfying F1, F4, F5. For example every interior (=topological)
clopen operator i on A satisfies F1, F4, F5. (i is clopen if in the produced
topology all open sets are also closed.)

The proof of the following is easy and left to the reader.

Lemma 5.1 Let iq,...,1, be operators on A satisfying F1, ¥4, F5. Then
11 0 -+ 01, satisfies F1, F4, F5.

Note that ¢;0- - -014, in the preceding lemma is in general non-idempotent.
We show now that fuzzy sets of the traditional type can be (partly) recovered
from those defined by means of a very-operator.

Definition 5.2 For any X C A, its quantitative representation X : A —
[0, 1] is defined follows:

i) X(a)=0ifa ¢ X,

ii) X(a) =1if a € Nyzev"(X) (i-e. @ € abs(X) if F5" holds),
iii) X(a) =n/(n+1) if a € v" 1 X)\v"(X).

X is a traditional fuzzy set, but with a restricted spectrum of member-
ship degrees, namely the latter are among 0 and n/(n + 1), n > 0. The
intuitive idea of the above definition is that, the closer an element a € X
is to the absolute core of X, the greater is its membership degree. And if
a € Np>o V™ (X) (which equals abs(X) if v satisfies F5), then the degree of
a is 1. The least positive membership degree assigned by X happens to be
1/2. Therefore a class X such that X(a) = 1/2 for all a € X, should be
totally fuzzy. This is indeed the case as we see in the next proposition.

Recall that X C Y if X(a) < Y(a) for all a € A, and (X NY)(a) =

min{ X (a),Y (a)}. The following establishes a good relation between a struc-
turally fuzzy set X and its quantitative representation.
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Proposition 5.3 (Assuming F5*) For any X,Y C A,
i) XCY < XCYV.
W) XNY =XnNY.
ii) X is crisp iff X is crisp (i.e., X(a) =0 or 1, for alla € A).
vi) X s totally fuzzy iff X(a) =1/2 for alla € X.

Proof. i) “=": Let X C Y and a € A. We have to show that X(a) <
Y(a). If a ¢ X, X(a) = 0, so this is obvious. Let a € abs(X). Then
X(a)=1,but X CY = abs(X) C abs(Y) (see 3.6), hence a € abs(Y") and
therefore Y (a) = 1.

Finally, let a € v"}(X)\v"(X). Then X (a) = n/(n+1). By monotonic-
ity of v, hence of v", v 1(X) C v" (V). Therefore a € v"}(Y), which
means that Y (a) > n/(n+1), ie., Y(a) > X(a).

“<”: Let X CY and let a ¢ Y. Then Y (a) = 0. By the assumption,
X(a) =0 too, hence a ¢ X. Thus X C Y.

ii) We have to show that X N'Y (a) = min{X(a),Y (a)}.

Casel. a ¢ XNY. Then X NY = 0 and either a ¢ X or a ¢ Y, therefore
either X(a) =0 or Y(a) =0, hence X NY (a) =0 = min{X(a),Y (a)}.

Case 2. Let a € abs(X NY). Then X NY(a) = 1. Since abs(X N
Y) = abs(X) Nabs(Y), it follows that a € abs(X) and a € abs(Y), i.e.,
X(a)=Y(a) =1, hence X NY(a) =1 =min{X(a),Y (a)}.

Case 3. Let a € v" Y X)\v"(X), a € v H(Y)\v"™(Y) and m < n.
Then v"1(X) C v™ (X)), therefore a € v™ 1(X)Nv™ 1Y) = v™ (X N
Y). Moreover, since a ¢ v"™(Y), a ¢ v™(X NY). Thus a € v (X N
Y)\v"™(X NY), whence X NY(a) =m/(m+ 1) = min{m/(m + 1),n/(n +
1)} = min{X(a),Y (a)}.

iii) X is crisp iff v(X) = X. Then abs(X) = X, hence X (a) =1 for all
a€ X. So X(a) =1 or 0 for every a € A, which means that X is crisp.

iv) Recall that X is totally fuzzy if X # () and v(X) = (). So if X is totally
fuzzy, a € X iff a € X\v(X) and so for every a € X, X(a) = 1/2. Conversely,
let X(a) = 1/2 for every a € X. This means that a € X = a € X\v(X),
hence v(X) = (). Therefore X is totally fuzzy. .

The functions X however do not respect the usual law of negation, since

in general (—X)(a) # 1 — X(a). This is because we defined X(a) = 0 for
every a ¢ X. To repair this consider for every X the mapping X : A — [0,1]
defined as follows:
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i) X(a)
ii) X(a)

= X(a), ifa € X, and
=1—(—X)(a),ifa e —-X.

Proposition 5.4 For any X,Y C A,
i) XCY < XCY.
i) (=X)(a) =1 —X(a), for every a € A.

i) X is crisp iff X is crisp.
iv) X s totally fuzzy iff X(a) < 1/2 for all a € A.

Proof. i) “=7: Let X C Y. If a € X, then, by (i) of 5.3, X (a) = X (a) <
Y(a) = Y(a). If a ¢ X, then X(a) = 1 — (—X)(a). Since by assumption
-X Qi—Y, by;537 (_X)<a) > (_Y)<a)7 or 1 — (—X)(CL) <1- (—Y)(a),

hence X (a) <Y (a). The converse is similar.

ii) Immediate from the definition of X.

iii) If X is crisp, so is —X, hence X(a) =1 for a € X and X (a) = 0 for
a€ —X.

iv) If X is totally fuzzy, then X(a) = 1/2 for a € X, and X(a) =
1— (=X)(a) for a € —X. But since (—X)(a) > 1/2, X(a) < 1/2. .

X now does not satisfy clause (ii) of 5.3. So both X and X partially
represent X in their basic behavior.
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