Cardinality without enumeration

Athanassios Tzouvaras
Dept. of Mathematics, Univ. of Thessaloniki, 54124 Thessaloniki, Greece
e-mail:tzouvara@math.auth.gr

Abstract

We show that the notion of cardinality of a set is independent from that of wellordering, and that reasonable total notions of cardinality exist in every model of ZF where the axiom of choice fails. Such notions are either definable in a simple and natural way, or nondefinable, produced by forcing. Analogous cardinality notions exist in nonstandard models of arithmetic admitting nontrivial automorphisms. Certain motivating phenomena from quantum mechanics are also discussed in the Appendix.

Keywords: Cardinality notion, choice, wellordering, generic class, separation class, nonstandard model of arithmetic, quantum mechanics.

1 Introduction

In current set theory, in order to assign a size to a set, i.e. a cardinal number, we must first be able to enumerate its elements along a well-ordered sequence, i.e., assign to it an ordinal number. This is because in ZF sizes are sets (initial ordinals) which carry an inherent well-ordering. Every beginner in set theory knows how tightly the theory of cardinal numbers is interwoven with that of ordinals.

However the two concepts, of size and enumeration ${ }^{1}$, seem to be independent - at least one-way: If a set X is enumerable by the elements of a set κ,

[^0]which is used as a measure of size, then indeed X gets a size through the act of enumeration, namely that of κ. But we can imagine situations where one, using e.g. an oracle, or just a device, can consistently assure us that the size of X is κ, although one is in principle unable to construct an enumeration of its elements. Some striking examples, concerning finite sets, come from quantum mechanics and are discussed in the Appendix.

Here we shall be concerned only with the formal/mathematical aspects of the question: Is it consistent to assume that in a universe of sets (satisfying the usual axioms except choice) there is a reasonable total and consistent notion of cardinality, and yet some sets have no enumeration, i.e., no well-ordering? Note that the second part of the above statement, i.e. the existence of sets without well-ordering is automatically satisfied if the universe in question is a model of $\mathrm{ZF}+\neg \mathrm{AC}$. In such universes certain sets admit wellorderings and satisfy choice, while others do not. We shall call the former well-orderable.

2 The well-orderable sets

Let $M \models$ ZF. A set $x \in M$ is said to be well-orderable in M if there is an ordinal α and a bijection $f: x \rightarrow \alpha$. If x is well-orderable, clearly there is a cardinal κ of M and a bijection $f: x \rightarrow \kappa$. Let $W S^{M}$ denote the (definable) class of well-orderable sets of M. For simplicity we often drop the superscript from $W S^{M}$, as well as from other classes relativized to M, like $\operatorname{Or} d^{M}$, etc.

Observe that $W S$ is an ideal of M, i.e., $W S$ contains all finite sets, and is closed under finite unions and subsets. Moreover, if $H W S$ denotes the class of hereditarily well-orderable sets, then $O r d \subseteq H W S$ and $H W S$ is an inner model of a good part of ZF , namely the following holds:

Proposition 2.1 The class HWS is a model of: Extensionality, empty set, pair, infinity, regularity, separation, replacement and choice. It fails to satisfy union and power set.

Proof. Extensionality, empty set, pair, infinity, regularity and separation are obviously true in $H W S$. To verify replacement, let $x \in H W S$ and let $F^{\prime \prime} x=y$, where $F: H W S \rightarrow H W S$ is a definable class-function. By assumption there is a $\alpha \in O r d$ and a bijection $f: x \rightarrow \alpha$. Define $g: y \rightarrow \alpha$
as follows:

$$
g(u)=\min \{\beta<\alpha: \exists z \in x(F(z)=u \& f(z)=\beta)\} .
$$

Then clearly g is 1-1. Since $g^{\prime \prime} y \subseteq \alpha, g^{\prime \prime} y \in H W S$, and hence $y \in H W S$.
Choice: Let $x \in H W S$, and let \preceq be a wellordering of x in M. Clearly $x \times x \in H W S$ and $\preceq \subseteq x \times x$. Therefore $\preceq \in H W S$, hence x has a wellordering in $H W S$.

Concerning union, it is well-known that there is a model in which the set of reals is the union of a countable set S whose members are countable sets (see e.g. [7], Theorem 10.6). Then $S \in H W S$ and yet $\cup S \notin H W S$.

That power set fails in general follows from the fact that $\omega \in H W S$ but $P(\omega)$, i.e., the reals, in general is not in $H S W$.

3 Notions of cardinality

We asked earlier if there is a "reasonable total and consistent notion of cardinality". We have to specify what this notion amounts to. Let $M \models$ ZF. Intuitively a notion of cardinality for M will be a mapping C which assigns to every set $x \in M$ a real cardinal number in the sense of M, i.e., $C(x) \in C a r d^{M}$, and which satisfies certain obvious compatibility conditions. Namely, if x, y are disjoint then we must have $C(x \cup y)=C(x)+C(y)$, for all $x, y C(x \times y)=C(x) \cdot C(y)$, and the like. The list of reasonable compatibility requirements for C is contained in the following

Definition 3.1 Let M be a model of ZF. A notion of cardinality for M is a mapping $C \subset M$ such that:
(1) $\operatorname{dom}(C)=M$ and $\operatorname{rng}(C)=C a r d$.
(2) $C(\kappa)=\kappa$, for every $\kappa \in$ Card.
(3) For any disjoint sets $x, y C(x \cup y)=C(x)+C(y)$.
(4) For any $x, y C(x \times y)=C(x) \cdot C(y)$.
(5) If $f: x \rightarrow y$ is an injective mapping, then $C(x) \leq C(y)$.

A cardinality notion C is said to be standard if in addition the converse of (5) holds, i.e., if $C(x) \leq C(y)$ implies that there is an injective f from x into y.

Remark 3.2 (i) It follows from (5) that if f is $1-1$ and $x \subseteq \operatorname{dom}(f)$, then $C(x) \leq C\left(f^{\prime \prime} x\right)$ and, using $f^{-1}, C\left(f^{\prime \prime} x\right) \leq C(x)$, therefore $C(x)=C\left(f^{\prime \prime} x\right)$. Moreover if $x \subseteq y$, then by (5), for $f=i d, C(x) \leq C(y)$, that is C is monotonic.
(ii) If C is standard, then $C(x)=C(y)$ implies that there is an injective f from x onto y. So the existence of a standard notion of cardinality implies AC. Moreover in the presence of AC there is a unique notion of cardinality, the standard one. Thus in order to depart from the standard cardinality, we must drop AC.
(iii) If $x \in W S$, then there is a cardinal κ and a bijection $f: x \rightarrow \kappa$, hence, by (2) and (5) above, $C(x)=|x|=\kappa$. Therefore the cardinality notion C agrees with the standard cardinality on the sets where the latter is defined.
(iv) If $x \notin W S$ then $C(x) \geq \omega$, since every finite set is by definition well-orderable.
(v) One might want to strengthen clauses (3) and (4) so as to capture infinitary sums and products of sets. However in the absence of AC infinitary operations become problematic. For example even if each x_{i} is nonempty, we cannot infer that $\Pi_{i} x_{i}$ is nonempty without the AC. The same applies to exponentiation. The set x^{y} cannot be treated without AC.

Recall that in absence of choice, finite sets have at least two non-equivalent definitions.

Definition $3.3 x$ is said to be finite if it is empty or there is an $n \in \omega$, $n \geq 1$ and a bijection $f: x \rightarrow n . x$ is said to be D-finite if there is no injection $g: x \rightarrow x$ such that $r n g(x) \neq x$.

We shall be interested in the first notion of finiteness. Let Fin be the class of finite sets. Then Fin $\subseteq W S$. Moreover

Proposition 3.4 Let C be any notion of cardinality. Then
$x \in$ Fin iff $C(x)=n$ for some $n \in \omega$.
Proof. Since Fin $\subseteq W S$, one direction is obvious. Conversely let x be infinite. It suffices to show that for every $n \in \omega$ there is a $u \subseteq x, u \in W S$ such that $|u|=n$. By induction on n. For $n=0$ this is obvious. Suppose there is $u \subseteq x, u \in W S$, such that $|u|=n$. If $u=x$, then x would be finite.

Therefore there is $a \in x-u, u \cup\{a\} \subseteq x, u \cup\{a\}$ belongs to $W S$ and has cardinality $n+1$.

A notion of cardinality C is a proper class with respect to M, i.e., $C \subset M$. Yet we are not going to shift to a theory of classes (like GB or KM) in order to accommodate C. We shall keep working in ZF. Usually classes with respect to ZF are identified with predicates $\varphi(x)$ of the language L, i.e., with definable subsets of the models M of ZF. However here we refer to arbitrary subsets of M as classes over M, and to definable subsets of M as definable classes.

As noted in remark 3.2 (iii), for every set $x \in W S$ there is a cardinal κ and a bijection $f: x \rightarrow \kappa$. We write then $|x|=\kappa$, and by the definition 3.1, $C(x)=|x|$. Let now $x \notin W S$. For every well-orderable $y \subseteq x$ we have by monotonicity $C(y) \leq C(x)$, or $|y| \leq C(x)$. Therefore for every notion of cardinality C,

$$
\begin{equation*}
C(x) \geq \sup \{|y|: y \in W S \& y \subseteq x\} \tag{1}
\end{equation*}
$$

So a natural candidate for a notion of cardinality in a model M of ZF is the following:

$$
\begin{equation*}
C_{0}(x)=\sup \{|y|: y \in W S \& y \subseteq x\} \tag{2}
\end{equation*}
$$

Remark 3.5 The referee remarked that there have been in the past two other attempts to assign cardinality to non-well-orderable sets. One by using Hartog numbers, $H(x)=\{\alpha \in O n: \exists f f: \alpha \xrightarrow{1-1} x\}$, and another by A. Lindenbaum and A. Tarski, in [12], by a definition equivalent to $L T(x)=$ $\{\alpha \in O n: \exists g g: x \xrightarrow{\text { onto }} \alpha\}$. For all $x, C_{0}(x) \leq H(x) \leq L T(x)$. In particular $H\left(\aleph_{\alpha}\right)=L T\left(\aleph_{\alpha}\right)=\aleph_{\alpha+1}$, while $C_{0}\left(\aleph_{\alpha}\right)=\aleph_{\alpha}$. However in some symmetric models (like Feferman-Lévy model, [7], p. 259, where the reals is the countable union of countable sets), $C_{0}\left(2^{\aleph_{0}}\right)=C_{0}\left(\aleph_{0}\right)=\aleph_{0}$, while $H\left(2_{0}^{\aleph}\right)=\operatorname{LT}\left(2_{0}^{\aleph}\right)=\aleph_{1}$. The referee remarked also that it would be more in Cantorian spirit to have a cardinality notion C such that $C\left(\aleph_{0}\right)<C\left(2^{\aleph_{0}}\right)$ in every model of ZF , and asked if this possible. I do not know the answer, and I just cite it here as an open question.

Despite its naturality, C_{0} has a drawback: It may happen that $C_{0}(x)=$ $C_{0}\left(x^{\prime}\right)$ and yet x, x^{\prime} do not contain well-orderable sets of same cardinalities. E.g. x can be infinite but contain only finite well-orderable subsets, whence $C_{0}(x)=\omega$, while x^{\prime} can contain a $y \subseteq x^{\prime}, y \in W S$ such that $|y|=\omega$ and for every other $z \subseteq x^{\prime}, z \in W S,|z| \leq \omega$. In some sense, x has "potential"
cardinality ω while x^{\prime} has "actual" cardinality ω. The examples of non-wellorderable sets yielded e.g. in the permutation models of [7] are of the first category. They are infinite sets a for which there is no injective mapping $f: \omega \rightarrow a$. On the other hand, if a is of this kind and $y \in W S$ such that $|y|=\omega$ and $y \cap a=\emptyset$, and we set $x=a \cup y$, then clearly $x \notin W S, C_{0}(x)=\omega$ but x is of the second category. To distinguish between them we shall call them weak and strong respectively.

Definition 3.6 A set x is said to be strong if there is a $y \subseteq x$ such that $y \in W S$ and $C_{0}(x)=|y|$. Otherwise x is said to be weak.

Note that for every well-orderable set $x,|x|$ is an aleph, and for alephs κ, λ, we have $\kappa+\lambda=\kappa \cdot \lambda=\max (\kappa, \lambda)$ without the use of the AC (see [16], p. 51).

Theorem 3.7 Let $M \models$ ZF. Then the mapping C_{0} defined above is a definable notion of cardinality in M. If moreover $M \models \mathrm{AC}$, then C_{0} is the standard notion of cardinality, i.e., $C_{0}(x)=|x|$.

Proof. That C_{0} is definable is obvious. Also $C_{0}(x)=|x|$ if $x \in W S$. If $M \models \mathrm{AC}$, then $M=W S^{M}$, therefore C_{0} is the standard cardinality. Let us now verify that C_{0} satisfies conditions (1)-(5) of definition 3.1. (1) is obvious. For (2) just note that every cardinal κ is in $W S$, hence $C_{0}(\kappa)=|\kappa|=\kappa$.
(3): Let x, y be disjoint. Suppose first that $x \cup y$ is strong. Then $x \cup y$ contains a well-orderable subset, say z, of maximum cardinality, i.e., $C_{0}(x \cup$ $y)=|z|=\kappa$. Let $z_{1}=z \cap x$ and $z_{2}=z \cap y$. Then $z_{1}, z_{2} \in W S, z_{1} \cap z_{2}=\emptyset, z=$ $z_{1} \cup z_{2}$, hence $|z|=\left|z_{1}\right|+\left|z_{2}\right|$. Since $|z|=\max \left(\left|z_{1}\right|,\left|z_{2}\right|\right)$, it follows that either z_{1} or z_{2} is a well-orderable subset of $x \cup y$ of maximum cardinality. Without loss of generality suppose this is z_{1}. Then, a fortiori, z_{1} is of maximum cardinality as subset of x, hence $\left|z_{1}\right|=C_{0}(x)$, and also $\left|z_{1}\right| \geq C_{0}(y)$. So $C_{0}(x)+C_{0}(y)=C_{0}(x)=\kappa$.

Now suppose that $x \cup y$ is weak. Then necessarily $C_{0}(x \cup y)$ is a limit cardinal. Then it is easy to see that $C_{0}(x)+C_{0}(y)=\max \left(C_{0}(x), C_{0}(y)\right)$ is also limit. Let $\kappa<C_{0}(x \cup y)$. Then, by the definition of C_{0}, there is a set $z \in W S$ such that $z \subseteq x \cup y|z|=\kappa$. Let again $z_{1}=z \cap x$ and $z_{2}=z \cap y$. Then obviously, $\left|z_{1}\right| \leq C_{0}(x)$ and $\left|z_{2}\right| \leq C_{0}(y)$. Therefore, $\kappa=|z|=\left|z_{1}\right|+\left|z_{2}\right| \leq$ $C_{0}(x)+C_{0}(y)$. Since this holds for every $\kappa<C_{0}(x \cup y)$, it follows that
$C_{0}(x \cup y) \leq C_{0}(x)+C_{0}(y)$. For the converse, assume $C_{0}(x) \geq C_{0}(y)$, i.e., $C_{0}(x)+C_{0}(y)=C_{0}(x)$, which is limit as we noted above. Let $\lambda<C_{0}(x)$ be a cardinal. Then there is $w \in W S$ such that $w \subseteq x$ and $|w|=\lambda$. Consequently, $w \subseteq x \cup y$, therefore $\lambda \leq C_{0}(x \cup y)$. Since this holds for every $\lambda<C_{0}(x)+C_{0}(y)$, it follows that $C_{0}(x)+C_{0}(y) \leq C_{0}(x \cup y)$.
(4): For the case of $x \times y$, the argument is analogous to the previous one. First suppose $C_{0}(x \times y)$ is not limit, i.e., again there is a well-orderable $z \subseteq x \times y$ of maximum cardinality, $C_{0}(x \times y)=C_{0}(z)=\kappa$. Let $z_{1}=\operatorname{dom}(z)$ and $z_{2}=\operatorname{rng}(z)$. Then clearly z_{1}, z_{2} are well-orderable (a wellordering of the pairs of z induces obvious wellorderings for the first and second coordinates of the pairs). Also, $z_{1} \subseteq x, z_{2} \subseteq y$, and $z \subseteq z_{1} \times z_{2} \subseteq x \times y$. Clearly $z_{1} \times z_{2} \in W S$. Therefore $\left|z_{1} \times z_{2}\right|=|z|=\kappa=\max \left(\left|z_{1}\right|,\left|z_{2}\right|\right)$. Let (without loss of generality) $\max \left(\left|z_{1}\right|,\left|z_{2}\right|\right)=\left|z_{1}\right|$. Then z_{1} is of maximum cardinality for x, i.e., $C_{0}(x)=\left|z_{1}\right|=\kappa$ and $\kappa \geq C_{0}(y)$. Therefore $C_{0}(x) \cdot C_{0}(y)=$ $C_{0}(x)=C_{0}(x \times y)$ and we are done.

Let now $C_{0}(x \times y)$ be limit. Consequently, so is $C_{0}(x) \cdot C_{0}(y)$, i.e., $\max \left(C_{0}(x), C_{0}(y)\right)$. Let $\kappa<C_{0}(x \times y)$, and let $z \in W S, z \subseteq x \times y$ with $|z|=\kappa$. Let again $z_{1}=\operatorname{dom}(z) \subseteq x, z_{2}=\operatorname{rang}(z) \subseteq y$, whence $z \subseteq z_{1} \times z_{2} \subseteq x \times y$. We have $\left|z_{1}\right| \leq C_{0}(x),\left|z_{2}\right| \leq C_{0}(y)$, so $|z| \leq\left|z_{1}\right| \cdot\left|z_{2}\right| \leq$ $C_{0}(x) \cdot C_{0}(y)$. This proves that $C_{0}(x \times y) \leq C_{0}(x) \cdot C_{0}(y)$. Conversely, let $C_{0}(x)=\max \left(C_{0}(x), C_{0}(y)\right)$, so $C_{0}(x) \cdot C_{0}(y)=C_{0}(x)$ and $C_{0}(x)$ is limit. Let $\lambda<C_{0}(x)$. Then there is well-orderable $u \subseteq x$ such that $|u|=\lambda$. Choose $b \in y$. Then $u \times\{b\}$ is well-orderable, $u \times\{b\} \subseteq x \times y$ and $|u \times\{b\}|=\lambda$. Therefore $\lambda \leq C_{0}(x \times y)$. This shows that $C_{0}(x) \cdot C_{0}(y) \leq C_{0}(x \times y)$.
(5): Let $f: x \rightarrow y$ be an injection and let $\kappa \leq C_{0}(x)$ be such that there is $u \in W S, u \subseteq x$ with $|u|=\kappa$. Obviously, the set $f^{\prime \prime} u$ is well-orderable, $f^{\prime \prime} u \subseteq y$ and $\left|f^{\prime \prime} u\right|=|u|=\kappa$. Therefore $\kappa \leq C_{0}(y)$. Since this holds for every $\kappa \leq C_{0}(x)$, it follows that $C_{0}(x) \leq C_{0}(y)$.

Is the above class C_{0} the only definable notion of cardinality? We' ll see below that the answer is No. Observe that if C is a notion of cardinality in M, then it gives rise to a mapping $F_{C}: \operatorname{Card} \rightarrow$ Card defined as follows:

$$
\begin{equation*}
F_{C}(\kappa)=\min \{\lambda:(\exists x \notin W S)(\exists y \in W S)(C(x)=\lambda \& y \subseteq x \&|y|=\kappa) \tag{3}
\end{equation*}
$$

In words, $F_{C}(\kappa)$ is the least C-cardinality of a non-well-orderable set that contains a well-orderable subset of cardinality $\kappa . F_{C}$ is well-defined since for
every infinite κ there is a $x \notin W S$ and a $y \in W S$ such that $y \subseteq x$ and $|y|=\kappa$. Indeed let $a \in M-W S$. We can always find a set y disjoint from a such that $|y|=\kappa$ (without the help of AC, e.g. if $\operatorname{rank}(x)=\alpha$, we can take as y the first κ ordinals beyond V_{α}). If we set $x=a \cup y$, then $x \notin W S$, hence it is as required.

By definition $F_{C}(\kappa) \geq \kappa$ for every κ. Moreover F_{C} is eventually the identity, i.e., there is κ_{0} such that $F_{C}(\kappa)=\kappa$ for all $\kappa \geq \kappa_{0}$. Indeed, let $a \in M-W S$ and let $C(a)=\kappa_{0}$. Then for every $\kappa \geq \kappa_{0}$, take as before $y \in W S$ with $|y|=\kappa$, disjoint from a and let $x=a \cup y$. Then $x \notin W S$ and $C(x)=C(a \cup y)=C(a)+C(y)=\kappa$. Therefore $F_{C}(\kappa) \leq \kappa$, consequently, $F_{C}(\kappa)=\kappa$.

Let $M \models \mathrm{ZF}+\neg \mathrm{AC}$. Call a set $a \in M-W S$ thin if a is weak and $C_{0}(a)=\omega$. (As noted earlier, many models of $\mathrm{ZF}+\neg \mathrm{AC}$ contain thin sets, cf. e.g. the symmetric models in [7].)

Lemma 3.8 (i) Let M contain a thin set. Then $F_{C_{0}}=i d$.
(ii) For every cardinality notion C,

$$
C(x) \geq \sup \left\{F_{C}(|y|): y \in W S \& y \subseteq x\right\}
$$

(iii) $F_{C}(\kappa+\lambda)=F_{C}(\kappa)+F_{C}(\lambda)$ and $F_{C}(\kappa \cdot \lambda)=F_{C}(\kappa) \cdot F_{C}(\lambda)$

Proof. (i) Indeed, let a be a thin set. For every infinite κ, let y be disjoint from a and $|y|=\kappa$. If $x=a \cup y$, then $x \notin W S, x$ contains a well-orderable set of cardinality κ and $C(x)=C(a)+C(y)=\omega+\kappa=\kappa$.
(ii) By the definition of F_{C}, for every $x \notin W S$ and every $y \subseteq x, F_{C}(|y|) \leq$ $C(x)$. Therefore

$$
C(x) \geq \sup \left\{F_{C}(|y|): y \in W S \& y \subseteq x\right\}
$$

(iii) Let $F_{C}(\kappa+\lambda)=\mu$. Then there is $x \notin W S$ and $y \in W S$ such that $y \subseteq x,|y|=\kappa+\lambda$ and $C(x)=\mu$. Then clearly, y can be split into two $y_{1}, y_{2} \in W S$ such that $\left|y_{1}\right|=\kappa,\left|y_{2}\right|=\lambda$ and $y_{1}, y_{2} \subseteq x$. Therefore $F_{C}(\kappa) \leq \mu$ and $F_{C}(\lambda) \leq \mu$, hence $\mu=F_{C}(\kappa+\lambda) \geq F_{C}(\kappa)+F_{C}(\lambda)$. Conversely, let $x_{1}, x_{2} \notin W S$ such that $x_{1} \cap x_{2}=\emptyset$ with $C\left(x_{1}\right)=F_{C}(\kappa)$ and $C\left(x_{2}\right)=F_{C}(\lambda)$ and $y_{1} \subseteq x_{1}, y_{2} \subseteq x_{2}$, with $\left|y_{1}\right|=\kappa$ and $\left|y_{2}\right|=\lambda$. But then $x_{1} \cup x_{2} \in W S$, $C\left(x_{1} \cup x_{2}\right)=F_{C}(\kappa)+F_{C}(\lambda),\left|y_{1} \cup y_{2}\right|=\kappa+\lambda$ and $y_{1} \cup y_{2} \subseteq x_{1} \cup x_{2}$. Therefore $F_{C}(\kappa+\lambda) \leq F_{C}(\kappa)+F_{C}(\lambda)$. The preservation of \cdot is shown similarly.

In view of clause (ii) of the above lemma, given a definable mapping $F:$ Card \rightarrow Card, such that $F(\kappa) \geq \kappa, F(\kappa+\lambda)=F(\kappa)+F(\lambda)$ and $F(\kappa \cdot \lambda)=F(\kappa) \cdot F(\lambda)$, one might think to define, in analogy to (2) above, the mapping C_{F} as follows:

$$
C_{F}(x)=\left\{\begin{array}{l}
|y| \text { if } x \text { is strong and } y \subseteq x \text { is of maximum cardinality, } \\
\sup \{F(|y|): y \in W S \& y \subseteq x\}, \text { otherwise. }
\end{array}\right.
$$

Theorem 3.9 Suppose $F:$ Card \rightarrow Card is a definable mapping such that $F(\kappa+\lambda)=F(\kappa)+F(\lambda)$ and $F(\kappa \cdot \lambda)=F(\kappa) \cdot F(\lambda)$. Then C_{F} is a (definable) cardinality notion.

Proof. Note that if F is as stated, then F is also monotonic, i.e., $\kappa \leq$ $\lambda \Rightarrow F(\kappa) \leq F(\lambda)$ (because if $\kappa \leq \lambda$, then $F(\lambda)=F(\kappa+\lambda)=F(\kappa)+F(\lambda) \geq$ $F(\lambda)$).

The verification is similar to that of the previous theorem. Again conditions (1) and (2) of definition 3.1 are obvious.
(3): Let $x \cap y=\emptyset$. Assume first that $x \cup y$ is strong, hence $C_{F}(x \cup y)=|z|$ for some $z \subseteq x \cup y$. Let $z_{1}=z \cap x, z_{2}=z \cap y$ and some of the z_{i}, say z_{1} is of maximum cardinality. Then $C_{F}(x)=F\left(\left|z_{1}\right|\right)$ and $\left|z_{1}\right| \geq|u|$ for every $u \subseteq y, u \in W S$. Therefore, by monotonicity, $F\left(\left|z_{1}\right|\right) \geq F(|u|)$, which means that $C_{F}(x) \geq C_{F}(y)$. Also $F(|z|)=F\left(\left|z_{1}\right|+\left|z_{2}\right|\right)=F\left(\left|z_{1}\right|\right)+F\left(\left|z_{2}\right|\right)=$ $\max \left(F\left(\left|z_{1}\right|\right), F\left(\left|z_{2}\right|\right)\right.$. Therefore $C_{F}(x \cup y)=F(|z|)=\max \left(F\left(\left|z_{1}\right|\right), F\left(\left|z_{2}\right|\right)=\right.$ $F\left(\left|z_{1}\right|\right)=C_{F}(x)=C_{F}(x)+C_{F}(y)$.

Now assume that $x \cup y$ is weak. Then $C_{F}(x \cup y)$ is limit. Using the properties of F it is easy to show that $\max \left(C_{F}(x), C_{F}(y)\right)$ is limit too. Let $F(|z|)<C_{F}(x \cup y)$ for some $z \subseteq x \cup y, z \in W S$. Taking again z_{1}, z_{2} as above, $F\left(\left|z_{1}\right|\right) \leq C_{F}(x), F\left(\left|z_{2}\right|\right) \leq C_{F}(y)$, and $F(|z|)=F\left(\left|z_{1}\right|\right)+F\left(\left|z_{2}\right|\right) \leq$ $C_{F}(x)+C_{F}\left(y\right.$. It follows that $C_{F}(x \cup y) \leq C_{F}(x)+C_{F}(y$. For the converse, notice that if, say, $C_{F}(x) \geq C_{F}(y)$, then $C_{F}(x)$ is limit. Let $F(|u|)<C_{F}(x)$, for some $u \subseteq x$. Then $u \subseteq x \cup y$ and $F(|u|) \leq C_{F}(x \cup y)$. This shows that $C_{F}(x)+C_{F}(y) \leq C_{F}(x \cup y)$.

Clause (4) is proved similarly using the fact that F preserves \cdot.
(5) Let $f: x \rightarrow y$ be an injection and $F(|z|) \leq C_{F}(x)$ for some $z \subseteq x$, $z \in W S$. Then, $F(|z|)=F\left(\left|f^{\prime \prime} z\right|\right) \leq C_{F}(y)$. Hence $C_{F}(x) \leq C_{F}(y)$.

Lemma 3.10 (i) For every $F: C a r d ~ \rightarrow C a r d, ~ F \leq F_{C_{F}}$.
(ii) For every notion of cardinality $C, C_{F_{C}} \leq C$.

Proof. (i) Let $\kappa \in$ Card, and let $F_{C_{F}}(\kappa)=\lambda$. Then there are $x_{0} \notin W S$, $y_{0} \in W S, y_{0} \subseteq x_{0},\left|y_{0}\right|=\kappa$ and $C_{F}\left(x_{0}\right)=\lambda$. But $C_{F}\left(x_{0}\right)=\sup \{F(|y|): y \in$ $\left.W S, y \subseteq x_{0}\right\}$. Therefore $F(\kappa)=F\left(\left|y_{0}\right|\right) \leq C_{F}\left(x_{0}\right)=\lambda=F_{C_{F}}(\kappa)$.
(ii) By definition, if x is strong and $y \subseteq x$ is of maximum cardinality, $C_{F_{C}}(x)=|y| \leq F_{C}(|y|) \leq C(x)$, by the definition of F_{C}. Otherwise, $C_{F_{C}}(x)=\sup \left\{F_{C}(|y|): y \subseteq x, x \in W S\right\} \leq C(x)$.

To see that in general the inequalities above are proper, consider a C defined as follows. Let a be a thin set and κ be an arbitrary infinite cardinal. Set:

$$
C(x)=\left\{\begin{array}{l}
|x| \text { if } x \subseteq a \text { and } x \text { is finite }, \\
\kappa \text { if } x \subseteq a \text { and } x \text { is infinite } \\
C(x \cap a)+C_{0}(x-a) \text { otherwise. }
\end{array}\right.
$$

It is easy to verify that C is a notion of cardinality. Then $C_{F_{C}}(a)=$ $\sup \left\{F_{C}(|y|): y \subseteq a, y \in W S\right\}$. But every $y \subseteq a$ such that $y \in W S$, is finite, and, by the definition of $C, F_{C}(n)=\omega$ for all $n \in \omega$. Hence $C_{F_{C}}(a)=\sup \left\{F_{C}(n): n \in \omega\right\}=\omega$. On the other hand $C(a)=\kappa$. That is, $C_{F_{C}} \neq C$.

Thin sets generalize naturally as follows: A set x is κ-thin if x is weak and $C_{0}(x)=\kappa$. That is, x contains well-orderable subsets of size λ for every $\lambda<\kappa$, but no well-orderable subset of size κ.

Theorem 3.11 For every infinite cardinal κ, there is a $M \models \mathrm{ZF}+\neg \mathrm{AC}$ containing κ-thin sets.

Proof. (Sketch) For simplicity we consider permutation rather than symmetric models, i.e., we work in ZFC with urelements (see [7], p. 251, for details). Let N be such a model and let $A \in N$ be a set of urelements such that $N \models|A| \geq \kappa$. Let G be the group of permutations of A (in the real world) and for every set $x \in N$ let $G_{x}=\{\pi \in G: \pi(x)=x\}$ be the subgroup fixing x. Let \mathcal{F} be the filter of subgroups generated by $G_{B}, B \subseteq A$ and $|B|<\kappa$. Clearly \mathcal{F} is a normal filter, i.e., for every $H \in \mathcal{F}$ and every $g \in G$, $g^{-1} H g \in \mathcal{F} . x$ is called symmetric if $G_{x} \in \mathcal{F}$. Let $M \subseteq N$ be the set of
hereditarily symmetric sets of N. As usual $M \models \mathrm{ZF}$ and $A \in M$. Moreover A is κ-thin. Indeed, for every $B \subseteq A$ with $|B|=\lambda<\kappa, B \in M$, since $G_{B} \in \mathcal{F}$. On the other hand there is no injection $f \in M$ such that $f: \kappa \rightarrow A$. Assume not, and let f be such a mapping. Then $\left|f^{\prime \prime} \kappa\right|=\kappa$ and there is $B \subseteq A$ such that $|B|<\kappa$ and for every π such that $\pi \upharpoonright B=i d, \pi(f)=f$. Choose $a \in\left(f^{\prime \prime} \kappa\right)-B$. Then there is π such that $\pi \upharpoonright B=i d$ and $\pi(a) \neq a$. But $a=f(\alpha)$ for some $\alpha<\kappa$. Hence $\pi(a)=\pi(f)(\pi(\alpha))=f(\alpha)=a$, a contradiction. Therefore no well-orderable subset of A of cardinality κ exists in M, i.e., $C_{0}^{M}(A)=\kappa$ and A is weak.

4 Forcing cardinality notions

Besides the definable notions of cardinality considered in the previous section, certain non-definable ones can be constructed by forcing.

Definition 4.1 Given a standard countable $M \models$ ZF. Let $P_{\text {card }}^{M}$, or just $P_{\text {card }}$, be the (definable) class of M whose elements p satisfy the following conditions (which are, roughly, the conditions of definition 3.1):
(i) p is a function such that $r n g(p) \subseteq C a r d$.
(ii) If $\kappa \in \operatorname{dom}(p)$, then $p(\kappa)=\kappa$.
(iii) If $x \in \operatorname{dom}(p)$, then $p(x) \geq C_{0}(x)=\sup \{|y|: y \subseteq x \& y \in W S\}$.
(iv) If $x, y, x \cup y \in \operatorname{dom}(p)$ and $x \cap y=\emptyset$, then $p(x \cup y))=p(x)+p(y)$.
(v) If $x, y, x \times y \in \operatorname{dom}(p)$, then $p(x \times y)=p(x) \cdot p(y)$.
(vi) If $x, y \in \operatorname{dom}(p)$ and there is an injective $f: x \rightarrow y$, then $p(x) \leq p(y)$.
$P_{\text {card }}$ is the class of forcing conditions used below. As usual p extends q, $p \preceq q$, if $p \supseteq q$. So the greatest element of P, denoted by 1_{P}, is $\emptyset . p, q$ with no common extension are said to be incompatible. We denote this by $p \mid q$. A $G \subseteq P$ is said to be generic if (a) $p \in G$ and $p \preceq q$ imply $q \in G$, (b) if $p, q \in G$ then there is $r \in G$ such that $r \preceq p$ and $r \preceq q$ and (c) $G \cap D \neq \emptyset$ for every definable class D which is dense in (P, \preceq). Existence of generic sets follows from the countability of M.

Lemma 4.2 (a) If G is $P_{\text {card }}$-generic, and $C_{G}=\bigcup\{p: p \in G\}$, then C_{G} is a class function satisfying conditions (1)-(5) of definition 3.1, i.e., G is a notion of cardinality in M. (We refer to C_{G} as a generic cardinality notion.)
(b) Let $x \notin W S$ and κ be a cardinal number such that $\kappa \geq\{|y|: y \subseteq$ $x \& y \in W S\}$. Then there is a generic notion of cardinality C such that $C(x)=\kappa$.

Proof. (a) We have to verify that C_{G} fulfils conditions (1)-(5) of definition 3.1. For this it suffices to check that for any two sets x, y, and any cardinal κ the sets $D_{x, y}=\{p: x, y \in \operatorname{dom}(p)\}, D_{x}=\{p: x \in \operatorname{dom}(p)\}$, and $E_{\kappa}=\{p: \kappa \in \operatorname{rng}(p)\}$ are dense in $P_{\text {card }}$. The proof is easy and left to the reader.
(b) Given $x \notin W S$ and κ such that $\kappa \geq \sup \{|y|: y \subseteq x \& y \in W S\}$, clearly the set $p_{0}=\{(x, \kappa)\}$ is an element of $P_{\text {card }}$. If $\left(D_{n}\right), n \geq 1$, is the sequence of dense subsets of $P_{\text {card }}$ in M, let $p_{0} \succeq p_{1} \succeq p_{2} \succeq \cdots$, with $p_{n} \in D_{n}$. The set G generated by $\left(p_{n}\right)$ is generic and $p_{0} \in G$. If we set $C=C_{G}$, then $C(x)=\kappa$.

Remark 4.3 It would be of interest to stress that the above proof goes through only because condition (iii) is included in the definition 4.1. Without (iii), the sets $D_{x, y}$ and D_{x} cannot be dense in $P_{\text {card }}$. In other words, given a set $x \notin W S$, we cannot force an arbitrary infinite cardinality κ onto it, in a consistent way, unless $\kappa \geq C_{0}(x)$. Had we dropped condition (iii) and $\kappa<C_{0}(x)$, then $\{(x, \kappa)\}$ would be an element of $P_{\text {card }}$, but if $y \subseteq x$, such that $y \in W S$ and $|y|>\kappa$, then the set D_{y} would have no element below $\{(x, \kappa)\}$.

Of course if $M \models \mathrm{AC}$, things become trivial because in this case the elements of $P_{\text {card }}$ are functions p such that $p(x)=|x|$ for every $x \in \operatorname{dom}(p)$. Therefore $P_{\text {card }}$ contains no incompatible elements, and the only generic G is P itself. So $C_{G}=$ Card, the cardinality function of M. However the following holds:

Lemma 4.4 If $M \models \neg \mathrm{AC}$, then every generic $G \subseteq P$, as well as C_{G}, is a non-definable subset of M.

Proof. If $M \models \neg \mathrm{AC}$, then $M-W S$ is a proper class. Given $p \in P_{\text {card }}$, there are q_{1}, q_{2} such that $q_{1} \preceq p, q_{1} \preceq p$ and $q_{1} \mid q_{2}$. Indeed just take a set $x \notin \operatorname{dom}(p)$ such that $x \notin W S$ and let $\kappa, \lambda \geq \sup \left\{C_{0}(x), p(x): x \in \operatorname{dom}(x)\right\}$. Then $q_{1}=p \cup\{(x, \kappa)\}$ and $q_{2}=p \cup\{(x, \lambda)\}$ are incompatible extensions of p.

Let $D=\{p \in P: \forall q \in G(q \npreceq p)\}$. D is dense in P. Assume not. Then there is p_{0} such that $\left(\forall p \preceq p_{0}\right)(\exists q \in G)\left(q \preceq p_{0}\right)$. By the above, there are $p_{1}, p_{2} \preceq p_{0}$ such that $p_{1} \mid p_{2}$. If $q_{1} \preceq p_{1}, q_{2} \preceq p_{2}$, with $q_{1}, q_{2} \in G$, then $q_{1} \mid q_{2}$ which contradicts genericity. Now if we assume G is definable, so is D. Hence, by genericity, $G \cap D \neq \emptyset$, a contradiction.

To show that C_{G} is non-definable too, just observe that G can be recovered from C_{G} as follows: $G=\left\{C_{G} \upharpoonright x: x \in M\right\}$, i.e., G is the class of the restrictions of the mapping C_{G} on sets.

It follows that for every generic $G \subseteq P_{\text {card }}$ in a model $M \models \mathrm{ZF}+\neg \mathrm{AC}, C_{G}$ is a non-definable notion of cardinality for M and that there is a large variety of such notions which agree only on the well-orderable sets. The problem, however, is that such notions seem to be "external" to the inhabitants of M. Rather G would be familiar to the inhabitants of $M[G]$, the generic extension of M - if such a model could exist (see the remark below).

Remark 4.5 We didn't say anything about the structure $M[G]$ produced (if possible) by a $P_{\text {card }}$-generic class G. Forcing with proper classes, instead of sets, causes certain difficulties. In fact for every p.o. class (P, \preceq) and every P-generic $G, M[G]$ can be defined in pretty same way as if P were a set. Moreover $M[G]$ is a standard transitive set which satisfies extensionality, empty set, pairing, infinity, regularity and even separation. These are proved without employing any forcing relation. In fact the main difficulty with proper-class forcing is to define the forcing relation $\|-$ inside the model, and then prove the fundamental lemmas (definability, truth and extension lemmas). Even if $\|-$ is definable, this does not guarantee the validity of the lemmas, unless extra conditions are imposed on P and G. For example only under these strong genericity conditions, one can prove replacement in $M[G]$. Our specific notion $P_{\text {card }}$ and its generic subsets does not seem to satisfy the extra conditions required, and $M[G]$ cannot be shown to satisfy replacement. The interested reader is referred to [1] and [19].

5 Non-definable Separation and Replacement classes

By the end of the last section, just before remark 4.5, we said that nondefinable cardinality notions look "external". Let us make precise what we mean by an "internal" class $X \subseteq M$. We mean that if $a \in M$, then every $b \subseteq a$ defined in M by the help of X, is an element of M (e.g. for internal X, all pieces $X \cap a, a \in M$, belong to M). What is required from X of this kind is to satisfy a separation axiom scheme. We shall avoid the term "internal" since it is used with other meaning in set theory, and we shall use the term "separation class" or "Sep-class". Stronger or weaker notions of "internal" are possible (see next definition).

For the precise definition we have, formally, to expand our language $L=$ $\{\in\}$ to $L_{S}=\{\in, S\}$ by adding a unary predicate $S(\cdot)$. We write $x \in S$ instead of $S(x)$. Given a language $L^{\prime} \supseteq L=\{\in\}$, let Sep denote the separation scheme:

$$
\exists x \forall y(y \in x \Longleftrightarrow y \in a \& \varphi(x))
$$

for every $\varphi \in L^{\prime}$. If (M, \in, \cdots) is an L^{\prime}-structure, $M \models$ Sep means that M satisfies Sep of the corresponding language. Similarly Rep denotes the replacement scheme:

$$
\forall x \in a \exists!y \phi(x, y) \Rightarrow \exists z \forall x \in a \exists y \in z \phi(x, y) .
$$

Definition 5.1 Let M be a standard transitive model of $M \models$ ZF and let $X \subseteq M . X$ is said to be a Sep-class of M, if $(M, X) \models$ Sep. X is said to be a Rep-class of M, if $(M, X) \models$ Rep. Finally X is said to be graded if $X \cap M_{\alpha} \in M$ for every α, where M_{α} are the levels of M.

Obviously every definable $X \subseteq M$ is a Rep-class; every Rep-class is a Sep-class; and every Sep-class is graded. None of these implications can be reversed. The following are open:

Problems. Given a transitive model $M \models \mathrm{ZF}$,

1) Is every $P_{\text {card }}$-generic class G of M, a Sep-class or a Rep-class of M ?
2) More generally, does there exist a non-definable notion of cardinality $C \subseteq M$ which is a Sep-class or a Rep-class for M ?

We could only prove the following:
Proposition 5.2 Let $M \models \mathrm{ZF}$ and let G be $P_{\text {card }}^{M}$-generic. Then C_{G} is graded.

Proof. We have to show that $C_{G} \cap M_{a}$ is a set for every α. Clearly it suffices to show that $C_{G} \cap M_{\alpha+2}$ is an element of M, for every α. Now for every $x \in M$, there is a $p \in G$ such that $C_{G} \upharpoonright x=p$ (and $x=\operatorname{dom}(p)$). (Indeed, for every x, the set $D_{x}=\{p: x \subseteq \operatorname{dom}(p)\}$ is dense in P, hence there is $q \in G$ such that $x \subseteq \operatorname{dom}(q)$. If $p=q \upharpoonright x$, then $p \succeq q$, so $p \in G$, therefore, $C_{G} \upharpoonright x=p$.) Let $\alpha \in O r d$. Since $M_{\alpha} \in M$, there is $p \in G$ such that $C_{G} \upharpoonright M_{\alpha}=p$, where $\operatorname{dom}(p)=M_{\alpha}$. Let $p^{-1^{\prime \prime}} M_{\alpha}=a$. If $f=p \upharpoonright a$, then it is easy to verify that $C_{G} \cap M_{\alpha+2}=f$. Indeed, let $(x, \kappa) \in f$. Then $x, \kappa \in M_{\alpha}$, hence $(x, \kappa) \in M_{\alpha+2}$. Since $(x, \kappa) \in p \subseteq C_{G}$, it follows $(x, \kappa) \in C_{G} \cap M_{\alpha+2}$. Therefore $f \subseteq C_{G} \cap M_{\alpha+2}$. Conversely, let $(x, \kappa) \in C_{G} \cap M_{\alpha+2}$. Then $x, \kappa \in M_{\alpha}$ and $C_{G}(x)=p(x)=\kappa$. Moreover $x \in a=\operatorname{dom}(f)$, i.e., $(x, \kappa) \in f$, so $C_{G} \cap M_{\alpha+2} \subseteq f \in M$. Since $f \in M$, we are done.

Although the above problems are open, we have something to say about. Namely a characterization of Rep-classes. The following definition comes from the analog of Reflection Theorem (see e.g. [7] or [11]) for the structure (M, X).

Definition 5.3 Let $M \models \mathrm{ZF}$. A class $X \subseteq M$ is said to be reflective if the Reflection Theorem holds in the structure (M, X), i.e., if for every formula $\varphi(\bar{x}, \bar{b}, S)$ of L_{S}, with free variables \bar{x} and parameters \bar{b}, and every ordinal β, there is an ordinal $\alpha \geq \beta$, such that for all $\bar{x} \in M_{\alpha}$,

$$
\begin{equation*}
(M, X) \models \varphi(\bar{x}, \bar{b}, S) \Longleftrightarrow\left(M_{\alpha}, X \cap M_{\alpha}\right) \models \varphi(\bar{x}, \bar{b}, S) \tag{4}
\end{equation*}
$$

Proposition 5.4 X is a Rep-class iff X is reflective and graded.
Proof. Let X be a Rep-class. Trivially X is graded. Also (M, X) satisfies Replacement. Now by a straightforward generalization of the proof of the standard Reflection, we can show the Reflection Theorem for (M, X). Indeed, the standard proof of Reflection is by induction on the length of ϕ, and the main step is the one for \exists. This is proved by the help of the Replacement
axiom. In exactly the same way the corresponding step for formulas of L_{S} is proved by the help of the Replacement axiom in (M, X). Thus X is reflective.

The proof of the other direction is rather folklore, but we include it for the sake of completeness. Suppose X is reflective and graded and let $\phi(x, y, \bar{c}, S)$ be a formula ϕ of L_{S}, \bar{c} parameters, and a set $a \in M$ such that

$$
(M, X) \models \forall x \in a \exists!y \phi(x, y, \bar{c}, S) .
$$

It suffices to show that there is $b \in M$ such that

$$
(M, X) \models \forall x \in a \exists y \in b \phi(x, y, \bar{c}, S) .
$$

Let β be such that $\bar{c}, a \in M_{\beta}$. Let

$$
\psi(u, v, \bar{c}, S):=\phi(u, v, \bar{c}, S) \& \forall x \in a \exists!y \phi(x, y, \bar{c}, S) .
$$

By the assumption there is $\alpha>\beta$ such that for all $u, v \in M_{\alpha}$,

$$
\begin{equation*}
(M, X) \models \psi(u, v, \bar{c}, S) \Longleftrightarrow\left(M_{\alpha}, X \cap M_{\alpha}\right) \models \psi(u, v, \bar{c}, S) . \tag{5}
\end{equation*}
$$

Since X is graded, $X \cap M_{\alpha} \in M$. So

$$
\exists x \in a\left[\left(M_{\alpha}, X \cap M_{\alpha}\right) \models \phi(x, y, \bar{c}, S)\right]
$$

is a formula of L. It follows by Separation in M that

$$
b=\left\{y \in M_{\alpha}: \exists x \in a\left[\left(M_{\alpha}, X \cap M_{\alpha}\right) \models \phi(x, y, \bar{c}, S)\right]\right\}
$$

is a subset of M_{α} belonging to M. Therefore

$$
\begin{equation*}
\forall x \in a \exists y \in b\left[\left(M_{\alpha}, X \cap M_{\alpha}\right) \models \phi(x, y, \bar{c}, S)\right] . \tag{6}
\end{equation*}
$$

But $a, b \subseteq M_{\alpha}$, so $x \in a$ and $y \in b$ implies $x, y \in M_{\alpha}$, and so by (5)

$$
(M, X) \models \phi(x, y, \bar{c}, S) \Longleftrightarrow\left(M_{\alpha}, X \cap M_{\alpha}\right) \models \phi(x, y, \bar{c}, S) .
$$

Therefore by (6) and the last relation

$$
(M, X) \models \forall x \in a \exists y \in b \phi(x, y, \bar{c}, S) .
$$

6 Cardinality of finite sets

In the preceding sections we showed the existence of several cardinality notions in models of $\mathrm{ZF}+\neg \mathrm{AC}$. But as follows from proposition 3.4, all of them coincide on finite sets. So if we are to deviate from standard finite cardinality, a different treatment and/or context is needed.

It is well known that the theory of finite sets is, essentially, Peano Arithmetic. So one approach to nonstandard cardinality notions could be through nonstandard models of PA. Given $N \models \mathrm{PA}$, the "internal" subsets of N are the coded ones, i.e., those representable by a single element of N. These are exactly the definable and bounded ones. Such a set $X \subseteq N$ is denoted D_{a}, for some $a \in N$, if a is a code for X (a is a code for X if $x \in X \Longleftrightarrow N \models p_{x} \mid a$, where p_{x} is the x-th prime of $\left.N\right)$. Let $S(N)$ be the collection of coded subsets of N. For each $D_{a} \in S(N), D_{a} \neq \emptyset$, there is $b \in N, b>0$, and a coded bijection $c: D_{a} \rightarrow[0, b-1]$, where $[0, b-1]$ is the initial segment of the first b elements of N. Then we write $C_{0}\left(D_{a}\right)=\left|D_{a}\right|=b$ and say that b is the (internal) cardinality of D_{a}. In fact C_{0} provides a definable enumeration of the elements of D_{a}, by means of the numbers $0, \ldots, b-1$.

In general let us define:
Definition 6.1 Let N be a model of PA. A notion of cardinality for N is a mapping $C: S(N) \rightarrow N$ such that:
(1) $r n g(C)=N$.
(2) $C(\emptyset)=0$.
(3) $C\left(D_{a} \cup\{x\}\right)=C\left(D_{a}\right)+1$, for $x \notin D_{a}$.
(4) For any disjoint sets $D_{a}, D_{b}, C\left(D_{a} \cup D_{b}\right)=C\left(D_{a}\right)+C\left(D_{b}\right)$.
(5) For any $D_{a}, D_{b}, C\left(D_{a} \times D_{b}\right)=C\left(D_{b}\right) \cdot C\left(D_{b}\right)$.
(6) If there is a coded injective mapping $e: D_{a} \rightarrow D_{b}$, then $C\left(D_{a}\right) \leq$ $C\left(D_{b}\right)$.

If C is a cardinality notion for $N \models \mathrm{PA}$, it follows easily from clauses (2) and (3) of the above definition that for every standard n (i.e., $n \in \omega$), $C\left(D_{n}\right)=\left|D_{n}\right|$ (by induction on ω).

Let $N \models$ PA be nonstandard and admitting nontrivial automorphisms (for basic information see [8]). Given a nontrivial automorphism $f: N \rightarrow N$, let us define $C_{f}: S(N) \rightarrow N$ as follows:

$$
\begin{equation*}
C_{f}\left(D_{a}\right)=f\left(\left|D_{a}\right|\right)=\left|f^{\prime \prime} D_{a}\right|=\left|D_{f(a)}\right| . \tag{7}
\end{equation*}
$$

The standard C_{0} is just C_{f} for $f=i d$.
Proposition 6.2 For every automorphism f, C_{f} is a cardinality notion.
Proof. (1) Let $b \in N$ and let $f^{-1}(b)=c$. Clearly there is $a \in N$ such that $\left|D_{a}\right|=c$. Then $C_{f}\left(D_{a}\right)=f\left(\left|D_{a}\right|\right)=f(c)=b$, therefore $r n g\left(C_{f}\right)=N$.
(2) A code for \emptyset is 1 , i.e., $D_{1}=\emptyset . \omega$ is an initial segment of N and every automorphism f fixes the elements of ω. So $C_{f}(\emptyset)=f\left(D_{1}\right)=\left|D_{f(1)}\right|=$ $\left|D_{1}\right|=0$.
(3) Let $x \notin D_{a}$. Then $C_{f}\left(D_{a} \cup\{x\}\right)=\left|f^{\prime \prime}\left(D_{a} \cup\{x\}\right)\right|=\mid f^{\prime \prime}\left(D_{a}\right) \cup$ $\{f(x)\}\left|=\left|f^{\prime \prime}\left(D_{a}\right)\right|+1=C_{f}\left(D_{a}\right)+1\right.$.
(4) Let $D_{a} \cap D_{b}=\emptyset$. Then clearly $D_{a} \cup D_{b}$ is coded and, $f^{\prime \prime} D_{a} \cap f^{\prime \prime} D_{b}=\emptyset$, so

$$
\begin{gathered}
C_{f}\left(D_{a} \cup D_{b}\right)=\left|f^{\prime \prime}\left(D_{a} \cup D_{b}\right)\right|=\left|f^{\prime \prime} D_{a} \cup f^{\prime \prime} D_{b}\right|= \\
\left|f^{\prime \prime} D_{a}\right|+\left|f^{\prime \prime} D_{b}\right|=C_{f}\left(D_{a}\right)+C_{f}\left(D_{b}\right) .
\end{gathered}
$$

(5) Similar to (4).
(6) Let $e: D_{a} \rightarrow D_{b}$ be a definable injection. Then $f(e): D_{f(a)} \rightarrow D_{f(b)}$ is a definable injection too. Therefore $\left|D_{f(a)}\right| \leq\left|D_{f(b)}\right|$, or $C_{f}\left(D_{a}\right) \leq C_{f}\left(D_{b}\right)$. \dashv

Proposition 6.3 If f is nontrivial, $C_{f} \neq C_{0}$.
Proof. Since f is non-trivial, there is a nonstandard $b \in N$ such that $f(b) \neq b$. Let a be such that $\left|D_{a}\right|=b$. Then

$$
C_{f}\left(D_{a}\right)=f\left(\left|D_{a}\right|\right)=f(b) \neq b=\left|D_{a}\right|=C_{0}\left(D_{a}\right) .
$$

The converse of 6.2 is also true.
Proposition 6.4 If $C: S(N) \rightarrow N$ is a cardinality notion, then $C=C_{f}$ for some automorphism f of N.

Proof. Let $C: S(N) \rightarrow N$ be a cardinality notion. For every $a \in N$, $a>0$, clearly the segment $[0, a-1]$ is coded. Define the mapping $f: N \rightarrow N$ as follows:

$$
\begin{equation*}
f(a)=b \Longleftrightarrow C([0, a-1])=b . \tag{8}
\end{equation*}
$$

To show that f is an automorphism, it suffices to check that f is $1-1$, onto, and preserves,$+ \cdot$ and successors.
f is 1-1: Let $a_{1}<a_{2}$, and let $a_{2}-a_{1}=c$. Then $\left[0, a_{2}-1\right]=\left[0, a_{1}-1\right] \cup$ $\left[a_{1}, a_{2}-1\right]$. Moreover, there is a coded bijection $d:[0, c-1] \rightarrow\left[a_{1}, a_{2}-1\right]$. Therefore, by the properties of C,

$$
\begin{gathered}
f\left(a_{2}\right)=C\left(\left[0, a_{2}-1\right]\right)=C\left(\left[0, a_{1}-1\right] \cup\left[a_{1}, a_{2}-1\right]\right)= \\
C\left(\left[0, a_{1}-1\right]\right)+C\left(\left[a_{1}, a_{2}-1\right]\right)=C\left(\left[0, a_{1}-1\right]\right)+C([0, c-1])=f\left(a_{1}\right)+f(c) .
\end{gathered}
$$

Since, clearly, $f(c) \neq 0, f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
f is onto: Let $b \in N$. Since C is onto N, there is D_{a} such that $C\left(D_{a}\right)=b$. Then clearly there is $d \in N$ and a coded bijection $e:[0, d-1] \rightarrow D_{a}$. Hence $C([0, d-1])=C\left(D_{a}\right)=b$. Therefore $f(d)=b$.
f preserves + :

$$
\begin{aligned}
f(a+b)= & C([0, a+b-1])=C([0, a-1])+C([a, a+b-1])= \\
& C([0, a-1])+C([0, b-1])=f(a)+f(b) .
\end{aligned}
$$

f preserves :

$$
\begin{gathered}
f(a \cdot b)=C([0, a \cdot b-1])=C([0, a-1] \times[0, b-1])= \\
C([0, a-1]) \cdot C([0, b-1])=f(a) \cdot f(b) .
\end{gathered}
$$

f preserves successors: $f(a+1)=C([0, a])=C([0, a-1])+1=f(a)+1$.
Hence f is an automorphism. Now let D_{a} be a coded set, and let $\left|D_{a}\right|=b$. Then there is a coded bijection $c: D_{a} \rightarrow[0, b-1]$. So

$$
C\left(D_{a}\right)=C([0, b-1])=f(b)=f\left(\left|D_{a}\right|\right)=C_{f}\left(D_{a}\right) .
$$

Therefore $C=C_{f}$.

However for non-trivial f, C_{f} is not internal to the model N, in a way analogous to a Sep-class. An analogous notion for PA is the following. If $N \models \mathrm{PA}$ and $X \subseteq N, X$ is said to be inductive (or "substitutable") if (M, X) satisfies the induction axiom for the expanded language; see e.g. [17], where construction of these sets by forcing techniques is given. Moreover, a model N of PA is recursively saturated iff it has an inductive satisfaction class, see e.g. [9].

Proposition 6.5 For every non-trivial automorphism f, C_{f} is not inductive.

Proof. By proposition 6.4 and relation (8), f is definable from C_{f}, so it suffices to show that f is not inductive in N. Suppose it is. Let $X=$ $\{x \in N: f(x)=x\}$. Then $0 \in X$ and if $x \in X$ then $x+1 \in X$. But X is inductive, since it is definable from f. Therefore $X=N$, i.e., $f=i d$, contrary to our assumption.

Remark 6.6 (1) The above method of constructing nonstandard cardinality notions by the use of automorphisms could in principle be applied also to models of set theory. However even if a model $M \models$ ZF admits nontrivial automorphisms, not all of them are suitable for our purpose. There must exist an automorphism that moves a cardinal number, while the automorphisms provided e.g. in [2] fix all ordinals. In general, automorphisms of models of ZF are much more complicated constructions than those of models of PA.
(2) The cardinality notions C_{f} defined above all agree on sets with standard code, i.e., on the (coded) subsets of the standard segment ω of N. It doesn't seem possible to define cardinality of such sets, by the above methods, without enumerating them. The only approach that might help to this direction would be to reconsider the meaning of "existence (of an enumeration)", i.e., to interpret \exists constructively. We shall not elaborate further here on this point. Some hints are given in the Appendix.

APPENDIX

Let me cite here the quantum phenomenon that has been one of the motivations of the present article (see e.g. [18], or [15] and other articles of the same volume). Consider a pair of two particles p_{1} and p_{2} of the same sort (say photons), isolated in a closed box, each of which can be in one of two equiprobable states, say "left" (L) and "right" (R). What is the probability that, at any given moment, one of the particles is in state L and the other in R ? According to classical statistics there are four possible and equiprobable cases for the pair, namely

$$
\begin{equation*}
R\left(p_{1}\right) R\left(p_{2}\right), R\left(p_{1}\right) L\left(p_{2}\right), L\left(p_{1}\right) R\left(p_{2}\right), L\left(p_{1}\right) L\left(p_{2}\right) \tag{9}
\end{equation*}
$$

each with probability $1 / 4$. So the probability to have particles in different states must be the sum of the probabilities of the cases $R\left(p_{1}\right) L\left(p_{2}\right)$ and $L\left(p_{1}\right) R\left(p_{2}\right)$, i.e. $1 / 2$. Yet the actual measurements (note that the above is a real, not a theoretical, experiment) show that the required probability is $1 / 3$! That only means that the system behaves as if there were only three cases: Both particles in L, both particles in R, and particles in different states. That in turn means that the system behaves as if the particles lacked identities (which are here indicated by the subscripts 1 and 2) and were indistinguishable. Indeed, if we drop the subscripts/identities from p_{1}, p_{2}, then the four cases of (9) above become

$$
\begin{equation*}
R(p) R(p), R(p) L(p), L(p) R(p), L(p) L(p) \tag{10}
\end{equation*}
$$

which actually amount to three

$$
\begin{equation*}
R(p) R(p), L(p) R(p), L(p) L(p) \tag{11}
\end{equation*}
$$

since the second and third case of (10) coincide. The cases of (11) being equiprobable, we get probability $1 / 3$ for the fact $L(p) R(p)$.

What we are interested in here is the following mathematical issue raised by the above situation: The objects p_{1}, p_{2} behave as indistinguishable copies of each other. But then how can we talk of two particles, instead of one? More generally, how is it possible to attribute cardinality to sets without being able to "identify" their elements? Concerning identification, we have already made a hint about what we believe it amounts to by writing the particles in the form p_{1}, p_{2}. We can agree that identifying the elements of a set X amounts to assigning them a numerical identity. In the simplest case of a finite X, this means that we are able to construct a bijection $f:\{1, \ldots, n\} \rightarrow X$, for some $n \in \mathbb{N}$. In such a case if $x \in X$ and $x=f(k), k$ is supposed to be the identity of x^{2}. We conclude that identification of the elements of X means the existence of a bijection $f:\{1, \ldots, n\} \rightarrow X$, for some n, and this is equivalent to the existence of an enumeration of X in the form $X=\left\{x_{1}, \ldots, x_{n}\right\}$, where

[^1]$x_{k}=f(k)$. Consequently, to say that the elements of the collection X are not identifiable, is to say that X is not orderable, while X possesses a cardinal number. This is a situation entirely different from the one we are accustomed to, i.e., the Cantorian reality. G.T. di Francia [4], p.27, puts it as follows:

What is an electron (or any other elementary particle)? From an extensional point of view, an electron is an element of the set of particles we call electron. But here we stumble on a serious problem: can one deal with sets of identical particles in any classical sense? No, because a collection of identical particles has only a cardinal number; but its elements cannot be ordered and cannot be named individually.

Guided by the idea of a set theory admitting indistinguishable and yet non-identical objects, M. Dalla Chiara, R. Giuntini, and D. Krause [3] proposed a system of axioms that might accommodate such entities.

Even simpler examples exist of situations where size of collections is attainable but no enumeration is possible. Suppose we are dealing with finite sets of elementary particles whose presence is detected only indirectly, via an instrument, e.g. a Geiger counter or a cloud chamber. Then we can safely announce that there are, say, 6 particles inside the chamber as soon as we see 6 distinct trajectories on the chamber's screen. This is a correct measurement of the size of the set of particles, and yet no reasonable way to enumerate the particles seems to exist. The particles are indistinguishable and lack identity with respect to the observer.

The above examples concern micro objects. In the field of macroscopic objects, suppose we have a hermetically closed box containing a number of balls of same substance, size and shape that move freely to all directions. For any observer, the balls cannot be distinguished from each other in any reasonable way, so they lack identity. Yet we may identify their number in several cases. E.g. if we know the weight of each ball and the weight of the box, then we can get the number by just weighing out the box. Or if we send a beam of X-rays through the box.

In all the preceding examples the notion of constructiveness occurs time and again. The point is not if an enumeration exists in an absolute way, but rather if a general observer is able to construct it. This however affects the logical meaning of \exists, and leads us to the realm of constructive mathematics à la Bishop. It is well-known that there are links between quantum mechanics
and constructive mathematics (see e.g. [5]). Some systems of constructive set theory have also appeared, e.g. [13], or [14] (where a constructive quantifier \exists_{I} is employed), but are beyond the scope of the present article.

Acknowledgements. I would like to express my gratitude to the referee for his thoughtful review of the paper. He (she) detected a serious flaw in an earlier draft of the paper. He suggested the implication \Leftarrow of proposition 5.4. He offered also valuable remarks and suggestions, even some of historical interest.

References

[1] R. Chuaqui, Forcing for the impredicative theory of classes, J. Symb. Logic 37, Number 1 (1972), 1-18.
[2] P. Cohen, Automorphisms of set theory, Proc. Symp. Pure Mathematics, volume 25, AMS Providence 1974, 325-330.
[3] M.L. Dalla Chiara, R. Giuntini, and D. Krause, Quasiset theory for microobjects, in: Elena Castelani (Ed.), Interpreting Bodies, Classical and Quantum Objects in Modern Physics, Princeton U.P. 1998, 142-152.
[4] Giuliano Toraldo di Francia, A world of individual objects?, in: Elena Castelani (Ed.), Interpreting Bodies, Classical and Quantum Objects in Modern Physics, Princeton U.P. 1998, 21-29.
[5] G. Hellman, Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem, J. Phil. Logic 22 (1993), 221-248.
[6] T. Jech, The axiom of choice, North Holland 1973.
[7] T. Jech, Set Theory, Springer Verlag 2002.
[8] R. Kay, Models of Peano Arithmetic, Oxford Logic Guides, 1991.
[9] L. Kirby, K. McAloon, and R. Murawski, Indicators, recursive saturation and expandability, Fund. Math. CXIV (1981), 127-139.
[10] D. Krause, On a quasi-set theory, Notre Dame Journal of Formal Logic 33 (1992), 402-411.
[11] K. Kunen, Set theory, an introduction to independence proofs, North Holland, 1980.
[12] A. Lindenbaum and A. Tarski, Communications sur les recherces de la Théorie des Ensebles, in: Alfred Tarski Collected Papers, Volume I, Birkhauser 1986, Steven R. Givant and Ralph N. McKenzie (Eds), pp. 171-204.
[13] J. Myhill, Constructive set theory, J. Symb. Logic 40 (1975), 347-382.
[14] J. Myhill, Intensional set theory, in: Intensional mathematics, S. Shapiro (Ed.), North Holland 1985, pp. 47-61.
[15] Hans Reichenbach, The genidentity of quantum particles, in: Elena Castelani (Ed.), Interpreting Bodies, Classical and Quantum Objects in Modern Physics, Princeton U.P. 1998, 61-72.
[16] H. Rubin and J. Rubin, Equivalents of the Axiom of Choice, North Holland, 1963.
[17] J. Schmerl, Peano models with many generic classes, Pacific J. Math. 46 (1973), No 2, 523-536.
[18] Paul Teller, Quantum Mechanics and Haecceities, in: Elena Castelani (Ed.), Interpreting Bodies, Classical and Quantum Objects in Modern Physics, Princeton U.P. 1998, 114-141.
[19] A. Zarach, Forcing with proper classes, Fund. Math. LXXXI (1973), 1-27.

[^0]: ${ }^{1}$ By enumeration throughout we mean, basically, wellordering, although in some cases, as in nonstandard models of arithmetic, wellordering is only relative to the structure.

[^1]: ${ }^{2}$ This method of assigning identity is used throughout industrial mass production in order to distinguish between millions of identical copies (e.g. cars) outgoing the production line. The method of distinction consists in engraving a serial number on each particular copy that constitutes its identity (e.g. the number engraved on the frame of a car is the only characteristic that helps to identify it). This is precisely a constructive bijection $f:\{1, \ldots, n\} \rightarrow X$, between the set X of copies and the number n of their multitude.

