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Abstract

It is proved that the forcing apparatus can be built and set to
work in ZFCA (=ZFC minus foundation plus the antifoundation ax-
iom AFA). The key tools for this construction are greatest fixed points
of continuous operators (a method sometimes referred to as “corecur-
sion”). As an application it is shown that the generic extensions of
standard models of ZFCA are models of ZFCA again.

1 Preliminaries

It is well known that the constituents of forcing machinery, including the
forcing relation ‖− itself, are defined by ∈-recursion. So it is natural to ask
what happens when foundation is missing. Let ZFC− be ZFC without the
foundation axiom. We shall show that in ZFC− plus an antifoundation axiom,
we can restore the forcing machinery by the help of greatest fixed points of
continuous operators. ZFC− will be our basic system, although there are
other interesting unfounded set theories, like New Foundations (NF). The
reason is that after [1], the standard approach to non-well-foundedness has
become the one using directed graphs and transitive closures of sets. And
transitive closures are available in ZFC− (and its variants) though not in NF.

In the place of foundation axiom we shall adopt Aczel’s antifoundation
axiom AFA. To formulate it we need a few definitions. So for the reader’s
convenience, we shall first recall certain notions and facts from [1].
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A directed graph is a pair (g,→g), where →g is a binary relation on g. If
there is no danger of confusion we write a → b instead of a →g b. An n-path
of g, for n ∈ N∪{∞}, is always a directed path, i.e., a sequence a1 → a2 → · · ·
consisting of n edges. An accessible pointed graph (apg for short) is a triple
(g,→, a0), where (g,→) is a directed graph and a0 is a distinguished node,
the point of g, such that every other node is joined with a0 by a finite path.
Again if there is no danger of confusion we write just g instead of (g,→, a0).
A decoration of an apg (g,→, a0) is a mapping d : g → V such that for every
node a, d(a) = {d(b) : a → b}. In such a case the set d(a0) assigned to the
point is said to be a picture of g. Aczel’s axiom claims the following:

(AFA) Every apg has a unique decoration.

(Actually, if AFA holds for apg’s, it holds also for every directed graph.)
It follows from AFA that for every apg (g,→, a0), there is a unique set d(a0)
having g as a picture. We denote it by σ(g,→, a0), or just σ(g), that is

σ(g) = σ(g,→, a0) = d(a0).

For example, to every set x there corresponds the apg

γ(x) = (TC(x ∪ {x}),→, x),

where TC(x) denotes the transitive closure of x, and for every y, z ∈ TC(x∪
{x}), y → z if z ∈ y. γ(x) is said to be the ∈-graph of x. Obviously the
mapping d : γ(x) → V such that d(y) = y for every y ∈ TC(x ∪ {x}), is a
decoration of γ(x). Since this decoration is unique, it follows that

σ(γ(x)) = x.

AFA in the above form talks about decorations in general, not injective
(i.e., 1-1) ones. If the decoration d of the apg (g, a0) is injective, the set d(a0)
is said to be an exact picture of g. For example the ∈-graph γ(x) defined
above is an exact picture of x, and in this sense it is unique. However x
may have many other nonexact and nonisomorphic pictures (so in general
γ(σ(g)) 6= g)). The question “which graphs are exact pictures”, or equiva-
lently, “which graphs admit injective decorations” is important and leads to
an equivalent reformulation of AFA.

In the sequel we shall often work with large, i.e. class size graphs.
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Definition 1.1 The graph (C,→C) is said to be a system if C is a class but
for every a ∈ C, the class {b ∈ C : a →C b} of the children of a in C is a set.

As usual we often write just C for the system (C,→C). For every system
C and every a ∈ C, let us set:

aC = {b ∈ C : a →C b} (the set of children nodes of a in C),
C¹a = the apg with point a and nodes and edges those of C lying on

paths starting from a.
Obviously for any a ∈ C, aC and C¹a are sets.
Let C be a system and let R ⊆ C × C be a relation on C. R is said to

be a bisimulation on C if for all a, b ∈ C:

aRb ⇒ (∀x ∈ aC)(∃y ∈ bC)(xRy) & (∀y ∈ bC)(∃x ∈ aC)(xRy).

For example the identity = is a bisimulation on every C.

Lemma 1.2 For every system C there is a greatest bisimulation ≡C on it.
Specifically, ≡C is the union of all small (i.e. set) bisimulations on C.

Proof. See [1], Theorem 2.4. a

C is said to be ≡C-extensional (or strongly extensional) if for all a, b ∈ C,

a ≡C b ⇒ a = b

(i.e., if = is the greatest bisimulation on C).
It is proved ([1], Thm. 2.23) that AFA is equivalently reformulated as

follows:

(AFA) A graph g is an exact picture iff it is ≡g-extensional.

Further, given any two apg’s (g1,→1, a1), (g2,→2, a2), we can always
think of them as subgraphs of a larger graph (g,→) where g1 = g¹a1 and
g2 = g¹a2. So we can drop →i from the notation. We say that (g1, a1),
(g2, a2) are bisimilar and write (g1, a1) ≡ (g2, a2), if a1 ≡g a2. A simple
consequence of AFA is the following:

Lemma 1.3 (g1, a1), (g2, a2) are pictures of the same set (i.e., σ(g1) =
σ(g2)) iff (g1, a1) ≡ (g2, a2).
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We come now to operators and their fixed points. An operator Γ is given
by a formula φ(v, U) of the language of set theory, with a set variable v and
a class variable U . (No quantifiers binding proper-class variables are allowed
in φ.) The operator Γφ induced by φ is the mapping Γφ(X) = {x : φ(x, X)},
sending classes to classes.

An operator Γ is said to be set continuous, if for every class X, Γ(X) =⋃{Γ(x) : x ⊆ X}. It is easy to see that this property is equivalent to the
conjunction of the following two ones: (a) X ⊆ Y ⇒ Γ(X) ⊆ Γ(Y ) (Γ is
monotone) and (b) a ∈ Γ(X) ⇒ a ∈ Γ(x) for some x ⊆ X (Γ is set based).
(In the preceding notation, lower case variables x, y denote sets, while upper
case X, Y , denote classes.) If Γ is induced by φ(v, U), in order for Γ to be
monotone it suffices for φ to be positive in U . (φ is positive in U if it is
constructed by formulas not containing U and atomic formulas v ∈ U using
only the logical operations ∧, ∨, ∃ and ∀. See e.g. [5].) X is said to be the
least (resp. greatest) fixed point of Γ, if for any other fixed point Y , X ⊆ Y
(resp. Y ⊆ X). Since operators do not involve quantification over proper
classes, we feel free to talk about them (informally) in the context of ZFC
or ZFC− (instead of their conservative extensions GBN (Gödel-Bernays-von
Neumann) and GBN−, respectively).

Lemma 1.4 In ZFC− every set continuous operator Γ has a least fixed point
(l.f.p.) and a greatest fixed point (g.f.p.) denoted Γ∞ and Γ∞ respectively.
Specifically,

Γ∞ =
⋂{X : Γ(X) ⊆ X}, Γ∞ =

⋃{x : x ⊆ Γ(x)}.
Proof. See [1], Theorems 6.4 and 6.5. See also [2], §15. a

When working in ZFC, in many cases Γ∞ = Γ∞. But in ZFC− we very
often have Γ∞ 6= Γ∞. Now it is well known that every recursion makes use
of the least fixed point of some monotone operator. This is why the method
of defining notions as g.f.p.’s is often referred to as “corecursion” (cf. [2] for
a further discussion). And indeed, if one works in ZFC− and has to choose
between Γ∞ and Γ∞ as the proper definition of a notion given in terms of
Γ, then one often chooses Γ∞, because it contains all objects scoped by the
definition, (unless of course Γ∞ contains also “undesirable” elements).

The explicit description of Γ∞ as
⋃{x : x ⊆ Γ(x)} implies that Γ∞ is

definable. In addition it offers a method for showing that a particular a
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belongs to Γ∞. Namely the following fact will be repeatedly used in the next
sections:

Lemma 1.5 Let Γ be any set continuous operator. Then a ∈ Γ∞ iff there is
a set x such that a ∈ x and x ⊆ Γ(x).

As a useful application of g.f.p.’s observe that the definition of bisimu-
lation is inductive. Specifically, given a system C, consider the operator ΓC

defined as follows: For every X ⊆ C × C:
ΓC(X) =

{(a, b) : (∀x ∈ aC)(∃y ∈ bC)((x, y) ∈ X) & (∀y ∈ bC)(∃x ∈ aC)((x, y) ∈ X)}.
It is easy to see that ΓC is set continuous. Then, using Lemmas 1.2 and 1.4,
one can easily verify that:

Lemma 1.6 i) R is a bisimulation on C iff R ⊆ ΓC(R).
ii) ≡C is the g.f.p. of ΓC.

In this paper we use g.f.p.’s to define forcing in ZFCA. In section 2 we
define names and the generic extension M [G] of a model M of ZFCA. In
section 3 we define the forcing relation and prove its basic properties. The
main result of the paper is Theorem 3.10. In section 4 we show that every
generic extension of a standard model of ZFCA is a model of ZFCA.

2 Names

Let P = (P, <,1) be a partial ordering with greatest element 1. p, q range
over elements of P. p ≤ q means that p extends q. A P-name is a set x
whose elements are pairs (y, p) such that y is a P-name and p ∈ P. In well-
founded set theories this circular definition is formally given as a definition
by ∈-recursion and leads to the class of names V P. In general, it follows from
the definition that X is a class of P-names if X ⊆ P(X × P), where P is the
powerset operator. So X can be taken to be a fixed point of the operator

Γ1(X) = P(X × P). (1)

If we call “names” only the objects of the least fixed point Γ1∞, then the
non-well-founded sets will be nameless. To be concrete, suppose x = {(x, p)},
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for p ∈ P, is in our universe. Then x fulfils the requirements for being a name
“in the wide sense”, i.e., the property of x’s being a name is compatible with
the property required for its elements. (If x is supposed to be a name, then
its element must consist of a pair whose first component, x, is a name and the
second component is an element of P. But this is the case, so no contradiction
arises.) But obviously x /∈ Γ1∞. However x ∈ Γ∞1 . To see this it suffices to
show that {x} ⊆ Γ∞1 , or that {x} ⊆ Γ1({x}), i.e., {x} ⊆ P({x} × P), which
is indeed the case.

Corollary 2.1 The operator Γ1 above has a g.f.p.

Proof. Just check that Γ1 is set continuous. a

The class Γ∞1 will be called the class of P-names and will be denoted by

V P. Note that by its definition, the class Γ∞1 is definable. The letters t, s
with subscripts range over names.

So far we have been working in ZFC−. However in order to build the
ingredients of forcing mechanism, ZFC− does not suffice. So from now on we
shall be working in ZFCA=ZFC−+AFA. Also instead of V , the real world,
we shall be working in a transitive model M of ZFCA. For a notion of forcing
P ∈ M , MP will denote the class of P-names of M .

Let us first inspect the ∈-graphs of names. Due to the fact that each name
is a set of pairs and each pair (x, y) is defined to be the set {{x}, {x, y}}, the
∈-graph γ(t) of a name t, contains, for each (s, p) ∈ t the subgraph consisting
of the edges t → {s} → s, t → {s, p} → s, and t → {s, p} → p, i.e., the
graph of figure 1.
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Figure 1

Now it is convenient to abbreviate the graph of figure 1 (including the

descendants of p) by the single weighted edge t
p−→ s. Intuitively s is a child

of t with weight p ∈ P. In general a P-weighted apg ( or just weighted apg) is
an apg such that every edge is labelled by some p ∈ P. (Formally, a weighted
graph can be defined as a set of nodes and a set of triples (a, b, p), where p
is the weight of the edge (a, b).)

Decorations of weighted graphs are to be slightly different from those of
ordinary graphs.

Definition 2.2 Let g be a weighted graph. A mapping d : g → M is said
to be a decoration of g if for every a ∈ g,

d(a) = {(d(b), p) : a
p−→ b ∈ g}.

Lemma 2.3 Let M |= ZFCA.
i) Every P-name t gives rise to a P-weighted graph.
ii) Every P-weighted graph g has a unique decoration d : g → M . More-

over for every a ∈ g, d(a) is a P-name.

Proof. i) This is obvious from the discussion that preceded definition 2.2.
ii) Let g be a weighted graph. The existence (and uniqueness) of a deco-

ration for g follows from the Solution Lemma (see [1], p.13). Indeed we have
to find a unique d such that for every a ∈ g

d(a) = {(d(b), p) : a
p−→ b ∈ g}.
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Consider the system of equations

xa = {(xb, p) : a
p−→ b ∈ g}, a, b ∈ g,

where xa, a ∈ g, are variables (xa and p are treated here as urelements.
For details cf. [1] and [2]). By the Solution Lemma (which is essentially
equivalent to AFA), the above system of equations has a unique solution.
(ξa), a ∈ g. Setting d(a) = ξa we obtain the required decoration of g.

To see that each d(a) is a name, let u = d′′g. Since d(a) = {(d(b), p) :

a
p−→ b ∈ g}, it follows that d(a) ⊆ u × P, or d(a) ∈ P(u × P). Therefore

u ⊆ P(u× P) = Γ1(u) and so u ⊆ Γ∞1 = MP. This proves the claim. a

Henceforth, for any name t, γ(t) will denote the weighted graph corre-
sponding to it.

Lemma 2.4 (ZFCA) Let M |= ZFCA be a standard transitive model, P ∈ M
and G be a generic subset of P. Then there is a G-interpretation of names
IG : MP → M such that for every t ∈ MP, IG(t) = {IG(s) : (∃p ∈ G)((s, p) ∈
t)}.

Proof. Let t be a name and let γ(t) be its weighted graph. We transform
γ(t) into the graph γG(t) as follows:

Call a path of γ(t) principal if it is of the form:

t
p1−→ s1

p2−→ s2
p3−→ s3 · · · ,

(finite or infinite) where all pi are in G.
The algorithm for constructing γG(t) is as follows:
Step 1. Erase all nodes which do not belong to some principal path.
Step 2. Delete the weights from the edges of the principal paths.
This completes the construction of γG(t). Clearly γG(t) is an apg with

point, say, a0. By AFA of the real world, there is a unique decoration d of
γG(t) and hence σ(γG(t)) = d(a0). So we can set

IG(t) = σ(γG(t)).

This completes the definition of the G-interpretation IG. It is easy to check
that for every t, IG(t) = {IG(s) : (∃p ∈ G)((s, p) ∈ t)}. a
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We come now to standard names. A name is standard if it consists of
elements of the form (s,1) where s is a standard name. So the class of
standard names M̂ can be defined again as the g.f.p. of the operator

Γ2(X) = P(X × {1}).

Since for every X, Γ2(X) ⊆ Γ1(X), it follows that Γ∞2 ⊆ Γ∞1 , i.e., M̂ ⊆ MP.
However this does not guarantee that for each x ∈ M there is a standard
name x̂ such that IG(x̂) = x.

Lemma 2.5 Let M |= ZFCA and G be a generic set for M . Then for every
x ∈ M there is a set x̂ ∈ M such that:

i) IG(x̂) = x.
ii) x̂ = {(ŷ,1) : y ∈ x},
ii) x̂ ∈ M̂ ,

Proof. Let x ∈ M and consider the ∈-graph γ(x) of x. Replace every

edge a → b of γ(x), by the weighted edge a
1−→ b. This transforms γ(x)

into the weighted graph γ(x) with point x. By lemma 2.3, there is a unique
decoration d of γ(x), and let x̂ = σ(γ(x)) = d(x).

i) By lemma 2.3, d(x), i.e. x̂, is a name and its weighted graph is just
γ(x), i.e., γ(x̂) = γ(x). The procedure that leads from γ(x) to γ(x) is,
roughly, the converse of that leading from the weighted graph γ(t) of a name
to γG(t). Therefore γG(x̂) = γ(x) (or, which amounts to the same thing,
γG(x̂) ∼= γ(x)). Hence IG(x̂) = σ(γG(x̂)) = σ(γ(x)) = x.

ii) That x̂ = {(ŷ,1) : y ∈ x} follows immediately from the inspection of
the graph of x̂.

iii) Since M̂ = Γ∞2 =
⋃{x : x ⊆ Γ2(x)}, in order to prove that x̂ ∈ M̂ , we

have to show that there is a set a such that x̂ ∈ a and a ⊆ Γ2(a). For any x̂,
let dom(x̂) = {ŷ : (ŷ,1) ∈ x̂}. Given x̂, define inductively the sequence (an),
n ∈ N, as follows: a0 = {x̂} and an+1 = ∪{dom(ŷ) : ŷ ∈ an}. Let a = ∪nan.
Then x̂ ∈ a0 ⊆ a. On the other hand, for every ŷ ∈ a, clearly ŷ ⊆ a × {1},
so ŷ ∈ P(a× {1}) = Γ2(a). Therefore a ⊆ Γ2(a) and we are done. a

Given a generic G ⊆ P, let M [G] = {IG(t) : t ∈ MP}.
Theorem 2.6 (ZFCA) Let M |= ZFCA, P ∈ M and G ⊆ P be generic.
Then M [G] exists, G ∈ M [G] and M ⊆ M [G].
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Proof. The existence of M [G] follows from the existence of IG(t) for each
name t, which is due to AFA of the metatheory. Also by the previous lemma
M ⊆ M [G]. Given G, set G = {(p̂, p) : p ∈ P}. We show G is a name.

Clearly G ⊆ MP × P, and since G is a set, G ∈ P(MP × P) = Γ1(M
P).

But MP = Γ∞1 , hence Γ1(M
P) = MP. So G ∈ MP. Now if G is generic,

IG(G) = {IG(p̂) : p ∈ G} = {p : p ∈ G} = G, whence G ∈ M [G]. M ⊆ M [G]
follows from lemma 2.5 (i). a

It is well known that every forcing poset P is densely embedded in a unique
complete Boolean algebra denoted B(P) (see e.g. [3]). Then the generic set
G generates a generic ultrafilter on B(P). Sometimes it is more convenient to
work with B(P) rather than P. In the next sections we feel free to switch from
P to B(P) and from the generic set G to the generic ultrafilter it generates.

3 The forcing relation

In this section we intend to define the forcing relation p ‖−φ for p ∈ P and

φ ∈ L(MP), to the effect that the following properties hold:
(a) p ‖−φ is definable in M (Definability Lemma),
(b) p ‖−φ & q ≤ p ⇒ q ‖−φ (Extension Lemma) and
(c) M [G] |= φ(IG(t1), . . . , IG(tn)) ⇔ (∃p ∈ G)(p ‖−φ(t1, . . . , tn)) (Truth

Lemma).

Of course as usual the crux of the matter is the definition of p ‖−t ∈ s
and p ‖−t = s. Further, p ‖−t ∈ s can be easily defined in terms of p ‖−t = s
by setting

p ‖−t ∈ s := (∃t1)(∃q ≥ p)((t1, q) ∈ s & p ‖−t = t1).

So our main task is to define p ‖−t = s so as to fulfill Lemmas (a)-(c) and
especially the Truth Lemma. The Truth Lemma for t = s amounts to the
equivalence M [G] |= IG(t) = IG(s) ⇐⇒ (∃p ∈ G)(p ‖−t = s), or, since
M [G] is a transitive structure, to

IG(t) = IG(s) ⇐⇒ (∃p ∈ G)(p ‖−t = s).

So first let us characterize IG(t) = IG(s) in the context of ZFCA. For every
p ∈ P and generic G ⊆ P, let us write
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t ∈p s := (∃q ≥ p)((t, q) ∈ s),
t ∈G s := (∃p ∈ G)(t ∈p s).

Clearly t ∈p s & q ≤ p ⇒ t ∈q s. MP endowed with ∈G is a directed system.

Let ≡G be the greatest bisimulation of (MP,∈G). It follows from lemma
1.6 that ≡G is the g.f.p. of the operator ΓG defined by:

ΓG(X) = {(t, s) : (∀t1 ∈G t)(∃s1 ∈G s)((t1, s1) ∈ X) &
(∀s1 ∈G s)(∃t1 ∈G t)((t1, s1) ∈ X)}.

The required characterization of IG(t) = IG(s) is the following:

Lemma 3.1 For any t, s ∈ MP, IG(t) = IG(s) iff t ≡G s iff (t, s) ∈ Γ∞G .

Proof. By definition, IG(t) = σ((γG(t)). Therefore IG(t) = IG(s) iff
σ(γG(t)) = σ((γG(s)). By 1.3, the latter holds if γG(t) ≡ γG(s). Now clearly
γG(t) is the ∈G-graph of t and by the definition of the graph bisimilarity,
γG(t) ≡ γG(s) iff t ≡G s. a

Therefore we have to define p ‖−t = s so as to satisfy

t ≡G s ⇐⇒ (∃p ∈ G)(p ‖−t = s). (2)

For that purpose we shall employ Kunen’s definition of p ‖−∗t = s (see [4],
p. 195) which is as follows:

p ‖−∗t = s ⇐⇒ ∀(t1, p1) ∈ t

{q ≤ p : q ≤ p1 ⇒ ∃(s1, q1) ∈ s(q ≤ q1 & q ‖−∗t1 = s1)}
is dense below p, and ∀(s1, q1) ∈ s

{q ≤ p : q ≤ q1 ⇒ ∃(t1, p1) ∈ t(q ≤ p1 & q ‖−∗t1 = s1)}
is dense below p.

Of course we have also Shoenfield’s [6] more standard simultaneous def-
initions of p ‖−∗t = s and p ‖−∗t ∈ s, and the two definitions are proved
equivalent over a well-founded set universe (at least for p ‖−∗t = s and
p ‖−∗t ∈ s with p ∈ G). But when foundation is missing their equivalence is
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open. And of the two, the most suitable one turns out to be Kunen’s (see
Remark 3.11 below).

When foundation is missing the above relation p ‖−∗t = s can be realized
as the g.f.p. of the following operator Φ:

Definition 3.2 For every X ⊆ P × MP × MP, (p, t, s) ∈ Φ(X) iff
∀(t1, p1) ∈ t

{q ≤ p : q ≤ p1 ⇒ ∃(s1, q1) ∈ s (q ≤ q1 & (q, t1, s1) ∈ X)}

is dense below p, and ∀(s1, q1) ∈ s

{q ≤ p : q ≤ q1 ⇒ ∃(t1, p1) ∈ t (q ≤ p1 & (q, t1, s1) ∈ X)}

is dense below p.

Lemma 3.3 i) Φ is set continuous; hence it has a g.f.p.
ii) (p, t, s) ∈ Φ(X) & q ≤ p ⇒ (q, t, s) ∈ Φ(X).

Proof. i) Left to the reader. (Lemma 3.8 below provides a detailed
analysis of the conditions such as (p, t, s) ∈ Φ(x). This analysis proves also
this claim.)

ii) Immediate from the definition. a

For every p ∈ P, let (p] = {q : q ≤ p}. Below x, y are elements of M .

Lemma 3.4 For every x ⊆ MP ×MP and t, s ∈ MP,

(t, s) ∈ ΓG(x) ⇒ (∃p ∈ G)(p, t, s) ∈ Φ((p]× x).

Proof. We argue by contradiction. Assume the contrary and fix x ⊆
MP×MP and t, s such that (t, s) ∈ ΓG(x) and (∀p ∈ G)(p, t, s) /∈ Φ((p]×x).
The first of them yields

(∀t1 ∈G t)(∃s1 ∈G s)((t1, s1) ∈ x) & (∀s1 ∈G s)(∃t1 ∈G t)((t1, s1) ∈ x). (3)

Also, by definition 3.2, the formula (p, t, s) /∈ Φ((p]×x) is written as follows:

∃(t1, p1) ∈ t (∃q ≤ p)(∀r ≤ q)
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[(r ≤ p1 & ∀(s1, q1) ∈ s (r ≤ q1 ⇒ (r, t1, s1) /∈ (p]× x))] ∨
∃(s1, q1) ∈ s (∃q ≤ p)(∀r ≤ q)

[(r ≤ q1 & ∀(t1, p1) ∈ t (r ≤ p1 ⇒ (r, t1, s1) /∈ (p]× x))].

The last formula is made of two symmetric disjuncts. To make it more read-
able first observe that for r ≤ q, r ∈ (p], hence (r, t1, s1) /∈ (p] × x) iff
(t1, s1) /∈ x. Also we can interchange the initial existential quantifiers, in
each disjunct. Let us set

A(q, t, s, x) := ∃(t1, p1) ∈ t (∀r ≤ q)

[(r ≤ p1 & ∀(s1, q1) ∈ s(r ≤ q1 ⇒ (t1, s1) /∈ x)] (4)

Then the formula (p, t, s) /∈ Φ((p]× x) is written

(∃q ≤ p)[A(q, t, s, x) ∨ A(q, s, t, x)].

And thus our assumption (∀p ∈ G)(p, t, s) /∈ Φ((p]× x) is the formula:

(∀p ∈ G)(∃q ≤ p)[A(q, t, s, x) ∨ A(q, s, t, x)] (5)

Define f : P→ B(P) as follows:

f(p) =
∨{q ≤ p : A(q, t, s, x)}, if (∃q ≤ p)A(q, t, s, x),∨{q ≤ p : A(q, s, t, x)} otherwise.

Obviously (a) f is definable, (b) f(p) ≤ p for all p ∈ P and, by (5), (c)
for all p ∈ G, f(p) ≤ p and f(p) 6= 0.

Claim. For all p ∈ P, f(p) /∈ G.

Proof. For p /∈ G this is obvious since f(p) ≤ p. Let p0 ∈ G. Suppose
f(p0) ∈ G. We shall reach a contradiction. By (5), f(p0) =

∨{q ≤ p0 :
A(q, t, s, x)} or f(p0) =

∨{q ≤ p0 : A(q, s, t, x)}. Assume the first, the other
case being similar. By the genericity of G, there is q0 ≤ p0 such that q0 ∈ G
and A(q0, t, s, x) holds, i.e.,

∃(t1, p1) ∈ t(∀r ≤ q0)[(r ≤ p1 & (∀(s1, q1) ∈ s)(r ≤ q1 ⇒ (t1, s1) /∈ x)]. (6)
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Fix a pair (t1, p1) ∈ t having the above property. Then by (6), q0 ≤ p1 and
since q0 ∈ G, it follows p1 ∈ G and t1 ∈G t. From the latter and assump-
tion (3), there is s1 and q1 ∈ G such that (s1, q1) ∈ s and (t1, s1) ∈ x. Let
q2 = q0 ·q1. Then q2 ≤ q0, q1, (s1, q1) ∈ s and (t1, s1) ∈ x. But this contradicts
(6). This proves the claim.

By the Claim, for all p ∈ P, −f(p) ∈ G. By the genericity of G,∧
p∈P−f(p) = r ∈ G. But then f(r) ≤ r ≤ −f(r), hence f(r) = 0 which is

impossible since r ∈ G. This proves the lemma. a.

In fact the previous lemma can be strengthened as follows.

Lemma 3.5

y ⊆ ΓG(x) ⇒ (∃p ∈ G)(∀(t, s) ∈ y)(p, t, s) ∈ Φ((p]× x).

Proof. The proof is analogous to that of 3.4 so we only sketch it. We
argue again by contradiction and let y ⊆ ΓG(x) while

(∀p ∈ G)(∃(t, s) ∈ y)(p, t, s) /∈ Φ((p]× x).

Using the formula A(q, t, s, x) of the previous proof, the last formula is written

(∀p ∈ G)(∃q ≤ p)(∃(t, s) ∈ y)[A(q, t, s, x) ∨ A(q, s, t, x)] (7)

Define f : P→ B(P) by:

f(p) =
∨{q ≤ p : (∃(t, s) ∈ y)A(q, t, s, x)}, if (∃q ≤ p)(∃(t, s) ∈ y)A(q, t, s, x),∨{q ≤ p : (t, s) ∈ y)A(q, s, t, x)} otherwise.

It suffices to prove f(p) /∈ G for all p ∈ G. Assume f(p0) ∈ G. Then
there is q0 ∈ G such that (∃(t, s) ∈ y)A(q0, t, s, x). So for some (t0, s0) ∈ y,
A(q0, t0, s0, x). Since (t0, s0) ∈ ΓG(x), we get as before a contradiction a

Corollary 3.6 For all names t, s,

t ≡G s ⇒ (∃p ∈ G)((p, t, s) ∈ Φ∞).
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Proof. Let t ≡G s, i.e. (t, s) ∈ Γ∞G . Since ΓG is set continuous there is

x ⊆ MP ×MP such that (t, s) ∈ x ⊆ ΓG(x). By lemma 3.5, there is p0 ∈ G
such that (∀(t, s) ∈ x)(p0, t, s) ∈ Φ((p0]× x). Now it is easy to see that

(p0]× x ⊆ Φ((p0]× x).

Indeed let (q, t, s) ∈ (p0] × x, i.e., q ≤ p0 and (t, s) ∈ x. Then (p0, t, s) ∈
Φ((p0] × x), and hence, by lemma 3.3, (q, t, s) ∈ Φ((p] × x). So if we set
z = (p0] × x, then (p0, t, s) ∈ z ⊆ Φ(z). By lemma 1.5, this means that
(p0, t, s) ∈ Φ∞. a

We now prove the converse of 3.4.

Lemma 3.7 Let y ⊆ P×MP ×MP. Then

(∃p ∈ G)(p, t, s) ∈ Φ(y) ⇒ (t, s) ∈ ΓG(pr(y)),

where pr(y) = {(t, s) : (∃p)(p, t, s) ∈ y}.

Proof. Let (p, t, s) ∈ Φ(y) for some p ∈ G, and let t1 ∈p1 t for some
p1 ∈ G. We shall find s1 and q1 ∈ G such that s1 ∈q1∈ s and (t1, s1) ∈ pr(y).
Let p2 = p · p1. Then p2 ∈ G and, by the assumption, the set

D = {q ≤ p2 : q ≤ p1 ⇒ ∃(s1, q1) ∈ s(q ≤ q1 & (q, t1, s1) ∈ y)}

is dense below p2. Since p2 ∈ G, D ∩ G 6= ∅. Let r ∈ D ∩ G. Then there is
(s1, q1) ∈ s with r ≤ q1 and (t1, s1) ∈ pr(y). So s1 ∈G s and (t1, s1) ∈ pr(y).
We showed that (∀t1 ∈G t)(∃s1 ∈G s)(t1, s1) ∈ pr(y). Similarly we see that
(∀s1 ∈G s)(∃t1 ∈G t)(t1, s1) ∈ pr(y). Therefore (t, s) ∈ ΓG(pr(y)). a

Lemma 3.8 Let p0 ∈ G, and t0, s0, y such that (p0, t0, s0) ∈ y ⊆ Φ(y). Then
there is u ⊆ y such that (p0, t0, s0) ∈ u ⊆ Φ(u) and ∀(t, s) ∈ pr(u)(∃q ∈
G)((q, t, s) ∈ u).

Proof. Let (p, t, s) be given. For every (t1, p1) ∈ t and (s1, q1) ∈ s let

Φ−1
(t1,p1)(p, t, s) = {(q, t1, s1) : q ≤ p · p1 ⇒ (∃q1)((s1, q1) ∈ s & q ≤ q1)},

Φ−1
(s1,q1)(p, t, s) = {(q, t1, s1) : q ≤ p · q1 ⇒ (∃p1)((t1, p1) ∈ t & q ≤ p1)}.
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It is easy to check that for every (p, t, s) end every y,

(p, t, s) ∈ Φ(y) ⇐⇒
a) For all (t1, p1) ∈ t, Φ−1

(t1,p1)(p, t, s) ⊆ y and

{q : (∃s1)(q, t1, s1) ∈ Φ−1
(t1,p1)(p, t, s)}

is dense below p, and
b) For all (s1, q1) ∈ s, Φ−1

(s1,q1)(p, t, s) ⊆ y and

{q : (∃t1)(q, t1, s1) ∈ Φ−1
(s1,q1)(p, t, s)}

is dense below p.
Further, let us set for every (p, t, s) and for every set w,

Φ−1(p, t, s) =
⋃{Φ−1

(t1,p1)(p, t, s), Φ
−1
(s1,q1)(p, t, s) : (t1, p1) ∈ t, (s1, q1) ∈ s},

Φ−1(w) =
⋃{Φ−1(p, t, s) : (p, t, s) ∈ w}.

Let now (p0, t0, s0) ∈ y ⊆ Φ(y) with p0 ∈ G. Define the sets (un), n ∈ N,
and u as follows: u0 = {(p0, t0, s0)}, un+1 = Φ−1(un) and u =

⋃
n un.

Claim.
(i) (p0, t0, s0) ∈ u.
(ii) un ⊆ y for every n.
(iii) un ⊆ Φ(un+1) for every n. Therefore u ⊆ Φ(u).
(vi) For every (t, s) ∈ pr(u) there is q ∈ G such that (q, t, s) ∈ u.

Proof. (i) is obvious. (ii) By induction on n. Obviously u0 ⊆ y. Now
since y ⊆ Φ(y), clearly Φ−1(y) ⊆ y. So suppose un ⊆ y. Then

un+1 = Φ−1(un) ⊆ Φ−1(y) ⊆ y.

(iii) Let (q, t1, s1) ∈ un. Then Φ−1(q, t1, s1) ⊆ Φ−1(un) = un+1. Now since
(q, t1, s1) ∈ un ⊆ y ⊆ Φ(y), the density conditions (a), (b) mentioned above
are satisfied, therefore (q, t1, s1) ∈ Φ(un+1). This shows that un ⊆ Φ(un+1).

(iv) Let (t1, s1) ∈ pr(u). We have to show that there is q ∈ G such that
(q, t1, s1) ∈ u. This is proved by induction on n for the elements of the sets
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pr(un). To illustrate the idea let us prove it for the elements of pr(u1).
Then the induction step is easily grasped. Take some (t1, s1) ∈ pr(u1).
Then for some q, (q, t1, s1) ∈ u1 = Φ−1(p0, t0, s0). It follows that (q, t1, s1)
belongs either to Φ−1

(t1,p1)(p0, t0, s0) for some p1 such that (t1, p1) ∈ t0, or to

Φ−1
(s1,q1)(p0, t0, s0) for some q1 such that (s1, q1) ∈ s0.

Case 1. Suppose that there is p1 such (t1, p1) ∈ t0 and p1 /∈ G. Then
obviously p0 6≤ p1, and hence the implication in the defining condition of
Φ−1

(t1,p1)(p0, t0, s0) is vacuously true. Hence (p0, t1, s1) ∈ Φ−1
(t1,p1)(p0, t0, s0) for

every s1 ∈ dom(s). Since p0 ∈ G, the claim holds.
Case 2. Suppose that there is q1 such (s1, q1) ∈ s0 and q1 /∈ G. As before

(p0, t1, s1) ∈ Φ−1
(s1,q1)(p0, t0, s0) for every t1 ∈ dom(t) and the claim holds.

Case 3. Suppose that cases 1 and 2 are false, i.e., (t1, p1) ∈ t0 ⇒ p1 ∈ G
and (s1, q1) ∈ s0 ⇒ q1 ∈ G. Then take any p1 such that (t1, p1) ∈ t0 and
any q1 such that (s1, q1) ∈ s0. Then p0, p1, q1 ∈ G. Take q = p0 · p1 · q1.
Then q ∈ G and (q, t1, s1) satisfies the defining condition of Φ−1

(t1,p1)(p0, t0, s0).

Therefore (q, t1, s1) ∈ Φ−1
(t1,p1)(p0, t0, s0) and the condition holds.

This completes the proof of the claim and the lemma. a

Corollary 3.9 For all names t, s,

(∃p ∈ G)((p, t, s) ∈ Φ∞) ⇒ t ≡G s.

Proof. Let (p0, t0, s0) ∈ Φ∞ for some p0 ∈ G. We have to show that
(t0, s0) ∈ Γ∞G . By the set continuity of Φ there is y such that (p0, t0, s0) ∈
y ⊆ Φ(y). By lemma 3.8 we may assume that for all (t, s) ∈ pr(y) there is
q ∈ G such that (q, t, s) ∈ y. By lemma 3.7 (p0, t0, s0) ∈ Φ∞ and p0 ∈ G
entail that (t0, s0) ∈ pr(y). We claim that

pr(y) ⊆ ΓG(pr(y)).

Indeed let (t, s) ∈ pr(y). By the condition for y, there is q ∈ G such that
(q, t, s) ∈ y ⊆ Φ(y). So by 3.4, (t, s) ∈ ΓG(pr(y). So we found z = pr(y) such
that (t0, s0) ∈ z ⊆ ΓG(z). Therefore (t0, s0) ∈ Γ∞G . a

Theorem 3.10 For all names t, s,

t ≡G s ⇔ (∃p ∈G)((p, t, s) ∈ Φ∞).
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Proof. Immediate from corollaries 3.6 and 3.9. a

Remark 3.11 If instead of Kunen’s definition of p ‖−∗t = s one employs
Shoenfield’s definition cited in [6], p.375, one is led to the following “circular”
formula:

p ‖−∗t = s ⇔ (∀q ≤ p)[(∀t1 ∈q t)(∃q1 ≤ q)(∃s1 ∈q1 s)(q1 ‖−∗t1 = s1) &
(∀s1 ∈q s)(∃q1 ≤ q)(∃t1 ∈q1)(q1 ‖−∗t1 = s1)].

If Φ0 is the operator induced by the last formula, then one can prove
lemma 3.4 for Φ0, but lemma 3.7 remains open. Hence Φ0 is weaker than Φ.
A natural strengthening of Φ0 is obtained if we take the “uniform” variant
of the above formula with respect to the quantifier ∃q1 ≤ q, i.e., if we define
p ‖−∗t = s by:

p ‖−∗t = s ⇔ (∀q ≤ p)(∃q1 ≤ q)[(∀t1 ∈q t)(∃s1 ∈q1 s)(q1 ‖−∗t1 = s1) &
(∀s1 ∈q s)(∃t1 ∈q1)(q1 ‖−∗t1 = s1)].

Now if Φ1 is the operator induced by the last formula, then we can prove
lemma 3.7 for Φ1, but 3.4 remains open. That is, Φ1 is stronger than Φ. In
general we have for every X, Φ1(X) ⊆ Φ(X) ⊆ Φ0(X). But I do not know if
these inclusions are proper, neither whether theorem 3.10 holds for Φ0 and
Φ1.

Definition 3.12 For each particular φ, the relation p ‖−φ is defined induc-
tively as follows:

(a) p ‖−t = s if (p, t, s) ∈ Φ∞.
(b) p ‖−t ∈ s if (∃s1 ∈p s)(p ‖−s1 = t).
(c) p ‖−φ & ψ if p ‖−φ and p ‖−ψ.
(d) p ‖−¬φ if (∀q ≤ p)(¬(p ‖−φ)).

(e) p ‖−(∀v)φ(v) if (∀t ∈ MP)(p ‖−φ(t)).

Lemma 3.13 (Definability Lemma) The relation “p ‖−φ” is definable in M .

Proof. Immediate from definition 3.12 and the fact that Φ∞ is definable.
a

Lemma 3.14 (Extension Lemma) If p ‖−φ and q ≤ p, then q ‖−φ.
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Proof. By lemma 3.3, we easily infer that (p, t, s) ∈ Φ∞ and q ≤ p imply
(q, t, s) ∈ Φ∞. Therefore the claim holds for t = s. Also t ∈p s and q ≤ p
imply t ∈q s. So it holds also for t ∈ s. The other steps are trivial. a

Lemma 3.15 (Truth Lemma) (ZFCA) Let M |= ZFCA, P ∈ M a forcing
notion and G ⊆ P generic. If φ(v1, . . . , vn) is any formula of L with free

variables among vi, and t1, . . . , tn ∈ MP, then

M [G] |= φ(IG(t1), . . . , IG(tn)) ⇐⇒ (∃p ∈ G)(p ‖−φ(t1, . . . , tn)).

Proof. By induction on the length of φ.
(a) Let φ := t = s, From lemma 3.1, theorem 3.10 and clause (a) of

definition 3.12 we have

M [G] |= IG(t) = IG(s) ⇐⇒ t ≡G s ⇐⇒

(∃p ∈ G)((p, t, s) ∈ Φ∞) ⇐⇒ (∃p ∈ G)((p ‖−t = s).

(b) Let φ := t ∈ s. Suppose (∃p ∈ G)(p ‖−t ∈ s). Then for some p ∈ G,
(∃s1 ∈p s)(p ‖−s1 = t). So s1 ∈G s and, by (a) above, IG(s1) = IG(t).
But s1 ∈G s implies IG(s1) ∈ IG(s), hence IG(t) ∈ IG(s). Conversely, let
M |= IG(t) ∈ IG(s). Then there is s1 ∈G s such that IG(s1) = IG(t). Thus,
by (a) above, there is p ∈ G such that p ‖−s1 = t and there is p1 ∈ G
such that s1 ∈p1 s. Taking a common extension q ≤ p, p1 such that q ∈ G,
and using the extension lemma, we have s1 ∈q s and q ‖−s1 = t. Therefore
(∃q ∈ G)(∃s1 ∈q s)(q ‖−s1 = t), or (∃q ∈ G)(q ‖−t ∈ s).

The proofs of the inductive steps (c) (d) and (e) are standard. a

4 Application

Theorem 4.1 (ZFCA) Let M be a standard model of ZFCA. Then for every
generic set G, M [G] |= ZFCA.

Proof. The condition of standardness is needed only to ensure that every
directed graph in the sense of M is a directed graph in the real world. If
for instance ωM is not standard, then M contains graphs having paths of
nonstandard length, and these are obviously different from graphs whose
paths are standard.
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The proof that M [G] |= ZFC− is standard using the clauses of Truth
Lemma 3.15. So it suffices to show that M [G] |= AFA, i.e., that every
directed graph of M [G] has a unique decoration in M [G]. Remember that
our metatheory is ZFCA because AFA is needed for the existence of M [G] (cf.
theorem 2.6). This together with the standardness of M makes uniqueness
trivial. Indeed if g ∈ M [G] is a graph in the sense of M , and d1, d2 are two
decorations of g in M [G], then g is also a graph and d1, d2 are decorations
of g in the real world, so by AFA of the metatheory, d1 = d2. We come to
prove existence.

Let (g,→g) be a directed graph in M [G]. To make things simpler let us
assume that g = gn∪ ge, where gn, ge are the disjoint sets of nodes and edges
of g respectively. So we write (a, b) ∈ ge instead of a →g b. We must prove
that there is a mapping e : g → M [G] such that for all a ∈ gn,

e(a) = {e(b) : (a, b) ∈ ge}.
Let us fix names gn, ge for gn and ge, as well as a name a for each node

a ∈ gn. Let a, b ∈ g. By the Truth Lemma we have

(a, b) ∈ ge ⇐⇒ M [G] |= (a, b) ∈ ge ⇐⇒ (∃p ∈ G)(p ‖−(a, b) ∈ ge). (8)

Define the weighted graph g′ as follows: The nodes of g′ are names of nodes
of g and for every two such nodes t, s

t
p−→ s ∈ g′ ⇐⇒ p ‖−(t, s) ∈ ge. (9)

From (8) and (9) we get

(a, b) ∈ ge ⇐⇒ (∃p ∈ G)(a
p−→ b ∈ g′). (10)

Clearly g′ ∈ M , so by M |= AFA and lemma 2.3, there is a decoration d
for g′. It means that for every t ∈ g′, We have

d(t) = {(d(s), p) : t
p−→ s ∈ g′},

or
(d(s), p) ∈ d(t) ⇐⇒ t

p−→ s ∈ g′. (11)

Therefore all d(t), for t ∈ g′, are names in M . Consider the mapping e : g →
M [G], such that

e(a) = IG(d(a)).

20



e is the required decoration of g. First note that e ∈ M [G], since M [G] |=
ZFC−. Further from (10), (11) and the definition of IG we have for all a, b:

IG(d(a)) = {IG(d(b)) : (∃p ∈ G)((d(b), p) ∈ d(a))} =

{IG(d(b)) : (∃p ∈ G)(a
p−→ b ∈ g′)} = {IG(d(b)) : (a, b) ∈ ge}.

Therefore, IG(d(a)) = {IG(d(b)) : (a, b) ∈ ge} and hence

e(a) = {e(b) : (a, b) ∈ ge}.

This completes the proof. a

Aczel has proved that for every M |= ZFC there is a unique N ⊇ M
such that N |= ZFCA and M is the class of well-founded sets of N (see
[1], Theorem 3.10). Given M |= ZFC, let afa(M) denote this unique AFA-
extension of M . Also given N |= ZFCA, let Nwf denote the well-founded
part of N . Then clearly afa(Nwf ) = N since both N and afa(Nwf ) are
AFA-extensions of Nwf .

Corollary 4.2 (ZFCA)
(i) Let M |= ZFC and let G ⊆ M be generic. Then afa(M [G]) =

(afa(M))[G].
(ii) In particular, if N |= ZFCA and G ⊆ Nwf , then N [G] = afa(Nwf [G]).

That is, for such particular G, the generic extension of N is reduced to the
ordinary generic extension of its well-founded part.

Proof. (i) By theorem 4.1, (afa(M))[G] is a model of ZFCA. So the
claim follows from the fact that both afa(M [G]) and (afa(M))[G] are AFA-
extensions of the well-founded universe M [G].

(ii) Similarly N [G] and afa(Nwf [G]) are AFA-extensions of Nwf [G]). a

Remark 4.3 1) Note that the condition G ⊆ Nwf in 4.2 (ii) above is not an
essential restriction. Given N |= ZFCA and a poset P ∈ N one can always
choose a poset P′ ∈ Nwf isomorphic to P, and thus we can take G ⊆ Nwf

without any loss of generality.
2) Given N |= ZFCA and G ⊆ Nwf , the structure N〈G〉 := afa(Nwf [G])

can be defined independently of the machinery developed in this paper. It
is easy to check that N〈G〉 is the smallest model of ZFCA extending N
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and containing G. However this does not guarantee that N〈G〉 is a forcing
extension of N . From a certain point of you, the main theorem 4.1 proves
exactly this: That N〈G〉 = N [G], where the latter is a genuine forcing
extension.
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